WorldWideScience

Sample records for o-acetyltransferase gene neuo

  1. Phylogenetische und funktionelle Analysen zur Kapsel O-Acetyltransferase NeuO von Escherichia coli K1

    OpenAIRE

    Mordhorst, Ines Louise

    2010-01-01

    Escherichia coli ist ein Kommensale des menschlichen und tierischen Gastrointestinaltraktes. Einige E. coli-Stämme sind in der Lage, extraintestinale Erkrankungen beim Menschen wie Harnwegsinfekte, Neugeborenen-Meningitis und Sepsis, sowie beim Tier aviäre Coliseptikämien, hervorzurufen. Ein wichtiger Virulenzfaktor des Bakteriums ist dabei die aus α-2,8-verknüpften Sialinsäuremonomeren aufgebaute K1-Kapsel, die phasenvariabel mit einer hohen Frequenz O-acetyliert werden kann. Im Jahr 20...

  2. Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among ...

    African Journals Online (AJOL)

    Yazun Bashir Jarrar

    2017-11-26

    Nov 26, 2017 ... Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among Jordanian volunteers, Libyan. Journal of Medicine .... For molecular modeling of NAT2 protein, visualized ..... cal clustering. .... cular dynamics simulation.

  3. Expression profiling of S. pombe acetyltransferase mutants identifies redundant pathways of gene regulation

    Directory of Open Access Journals (Sweden)

    Wright Anthony PH

    2010-01-01

    Full Text Available Abstract Background Histone acetyltransferase enzymes (HATs are implicated in regulation of transcription. HATs from different families may overlap in target and substrate specificity. Results We isolated the elp3+ gene encoding the histone acetyltransferase subunit of the Elongator complex in fission yeast and characterized the phenotype of an Δelp3 mutant. We examined genetic interactions between Δelp3 and two other HAT mutants, Δmst2 and Δgcn5 and used whole genome microarray analysis to analyze their effects on gene expression. Conclusions Comparison of phenotypes and expression profiles in single, double and triple mutants indicate that these HAT enzymes have overlapping functions. Consistent with this, overlapping specificity in histone H3 acetylation is observed. However, there is no evidence for overlap with another HAT enzyme, encoded by the essential mst1+ gene.

  4. Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among ...

    African Journals Online (AJOL)

    Yazun Bashir Jarrar

    2017-11-26

    Nov 26, 2017 ... Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among Jordanian volunteers. Yazun Bashir Jarrar, Ayat Ahmed Balasmeh and Wassan Jarrar. Department of Pharmacy, College of Pharmacy, AlZaytoonah University of Jordan, Amman, Jordan. ABSTRACT. The present study aimed to identify ...

  5. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    OpenAIRE

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family...

  6. Insights into the phylogeny or arylamine N-acetyltransferases in fungi.

    Science.gov (United States)

    Martins, Marta; Dairou, Julien; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Silar, Philippe

    2010-08-01

    Previous studies have shown that Eumycetes fungi can acylate arylamine thanks to arylamine N-acetyltransferases, xenobiotic-metabolizing enzymes also found in animals and bacteria. In this article, we present the results of mining 96 available fungal genome sequences for arylamine N-acetyltransferase genes and propose their phylogeny. The filamentous Pezizomycotina are shown to possess many putative N-acetyltransferases, whilst these are often lacking in other fungal groups. The evolution of the N-acetyltransferases is best explained by the presence of at least one gene in the opisthokont ancestor of the fungi and animal kingdoms, followed by recurrent gene losses and gene duplications. A possible horizontal gene transfer event may have occurred from bacteria to the basidiomycetous yeast Malassezia globosa.

  7. Carnitine acetyltransferase

    DEFF Research Database (Denmark)

    Berg, Sofia Mikkelsen; Beck-Nielsen, Henning; Færgeman, Nils Joakim

    2017-01-01

    Carnitine acetyltransferase (CRAT) deficiency has previously been shown to result in muscle insulin resistance due to accumulation of long-chain acylcarnitines. However, differences in the acylcarnitine profile and/or changes in gene expression and protein abundance of CRAT in myotubes obtained...

  8. Species specific substrates and products choices of 4-O-acetyltransferase from Trichoderma brevicompactum.

    Science.gov (United States)

    Sharma, Shikha; Kumari, Indu; Hussain, Razak; Ahmed, Mushtaq; Akhter, Yusuf

    2017-09-01

    Antagonistic species of Trichoderma such as T. harzianum, T. viride, T. virens and T. koningii are well-known biocontrol agents that have been reported to suppress pathogenic soil microbes and enhance the growth of crop plants. Secondary metabolites (SMs) including trichothecenes are responsible for its biocontrol activities. The trichothecenes, trichodermin and harzianum A (HA) are produced in species dependent manner respectively, by Trichoderma brevicompactum (TB) and Trichoderma arundinaceum (TA). The last step in the pathway involves the conversion of trichodermol into trichodermin or HA alternatively, which is catalyzed by 4-O-acetyltransferase (encoded by tri3 gene). Comparative sequence analysis of acetyltransferase enzyme of TB with other chloramphenicol acetyltransferase (CAT) family proteins revealed the conserved motif involved in the catalysis. Multiple substrate binding studies were carried out to explore the mechanism behind the two different outcomes. His188 was found to have a role in initial substrate binding. In the case of trichodermin synthesis, represented by ternary complex 1, the trichodermol and acetic anhydride (AAn), the two substrates come very close to each other during molecular simulation analysis so that interactions become possible between them and acetyl group may get transferred from AAn to trichodermol, and Tyr476 residue mediates this phenomenon resulting in the formation of trichodermin. However, in case of the HA biosynthesis using the TB version of enzyme, represented by ternary complex 2, the two substrates, trichodermol and octa-2Z,4E,6E-trienedioic acid (OCTA) did not show any such interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, David S [Stone Mountain, GA; Gudlavalleti, Seshu K [Kensington, MD; Tzeng, Yih-Ling [Atlanta, GA; Datta, Anup K [San Diego, CA; Carlson, Russell W [Athens, GA

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  10. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    OpenAIRE

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-...

  11. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier; Sutton, Brian J.; Brown, Paul R.

    2008-01-01

    The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. The β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA

  12. Three-dimensional structure of a Streptomyces sviceus GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 O-GlcNAcase

    International Nuclear Information System (INIS)

    He, Yuan; Roth, Christian; Turkenburg, Johan P.; Davies, Gideon J.

    2013-01-01

    The crystal structure of a bacterial acetyltransferase with 27% sequence identity to the C-terminal domain of human O-GlcNAcase has been solved at 1.5 Å resolution. This S. sviceus protein is compared with known GCN5-related acetyltransferases, adding to the diversity observed in this superfamily. The mammalian O-GlcNAc hydrolysing enzyme O-GlcNAcase (OGA) is a multi-domain protein with glycoside hydrolase activity in the N-terminus and with a C-terminal domain that has low sequence similarity to known acetyltransferases, prompting speculation, albeit controversial, that the C-terminal domain may function as a histone acetyltransferase (HAT). There are currently scarce data available regarding the structure and function of this C-terminal region. Here, a bacterial homologue of the human OGA C-terminal domain, an acetyltransferase protein (accession No. ZP-05014886) from Streptomyces sviceus (SsAT), was cloned and its crystal structure was solved to high resolution. The structure reveals a conserved protein core that has considerable structural homology to the acetyl-CoA (AcCoA) binding site of GCN5-related acetyltransferases (GNATs). Calorimetric data further confirm that SsAT is indeed able to bind AcCoA in solution with micromolar affinity. Detailed structural analysis provided insight into the binding of AcCoA. An acceptor-binding cavity was identified, indicating that the physiological substrate of SsAT may be a small molecule. Consistent with recently published work, the SsAT structure further questions a HAT function for the human OGA domain

  13. Three-dimensional structure of a Streptomyces sviceus GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 O-GlcNAcase

    Energy Technology Data Exchange (ETDEWEB)

    He, Yuan [Northwest University, Xi’an 710069 (China); The University of York, York YO10 5DD (United Kingdom); Roth, Christian; Turkenburg, Johan P.; Davies, Gideon J., E-mail: gideon.davies@york.ac.uk [The University of York, York YO10 5DD (United Kingdom); Northwest University, Xi’an 710069 (China)

    2014-01-01

    The crystal structure of a bacterial acetyltransferase with 27% sequence identity to the C-terminal domain of human O-GlcNAcase has been solved at 1.5 Å resolution. This S. sviceus protein is compared with known GCN5-related acetyltransferases, adding to the diversity observed in this superfamily. The mammalian O-GlcNAc hydrolysing enzyme O-GlcNAcase (OGA) is a multi-domain protein with glycoside hydrolase activity in the N-terminus and with a C-terminal domain that has low sequence similarity to known acetyltransferases, prompting speculation, albeit controversial, that the C-terminal domain may function as a histone acetyltransferase (HAT). There are currently scarce data available regarding the structure and function of this C-terminal region. Here, a bacterial homologue of the human OGA C-terminal domain, an acetyltransferase protein (accession No. ZP-05014886) from Streptomyces sviceus (SsAT), was cloned and its crystal structure was solved to high resolution. The structure reveals a conserved protein core that has considerable structural homology to the acetyl-CoA (AcCoA) binding site of GCN5-related acetyltransferases (GNATs). Calorimetric data further confirm that SsAT is indeed able to bind AcCoA in solution with micromolar affinity. Detailed structural analysis provided insight into the binding of AcCoA. An acceptor-binding cavity was identified, indicating that the physiological substrate of SsAT may be a small molecule. Consistent with recently published work, the SsAT structure further questions a HAT function for the human OGA domain.

  14. Crystal structure of homoserine O-acetyltransferase from Leptospira interrogans

    International Nuclear Information System (INIS)

    Wang Mingzhu; Liu Lin; Wang Yanli; Wei Zhiyi; Zhang Ping; Li Yikun; Jiang Xiaohua; Xu Hang; Gong Weimin

    2007-01-01

    Homoserine O-acetyltransferase (HTA, EC 2.3.1.31) initiates methionine biosynthesis pathway by catalyzing the transfer of acetyl group from acetyl-CoA to homoserine. This study reports the crystal structure of HTA from Leptospira interrogans determined at 2.2 A resolution using selenomethionyl single-wavelength anomalous diffraction method. HTA is modular and consists of two structurally distinct domains-a core α/β domain containing the catalytic site and a helical bundle called the lid domain. Overall, the structure fold belongs to α/β hydrolase superfamily with the characteristic 'catalytic triad' residues in the active site. Detailed structure analysis showed that the catalytic histidine and serine are both present in two conformations, which may be involved in the catalytic mechanism for acetyl transfer

  15. The histone acetyltransferase PsGcn5 mediates oxidative stress responses and is required for full virulence of Phytophthora sojae.

    Science.gov (United States)

    Zhao, Wei; Wang, Tao; Liu, Shusen; Chen, Qingqing; Qi, Rende

    2015-10-01

    In eukaryotic organisms, histone acetyltransferase complexes are coactivators that are important for transcriptional activation by modifying chromatin. In this study, a gene (PsGcn5) from Phytophthora sojae encoding a histone acetyltransferase was identified as a homolog of one component of the histone acetyltransferase complex from yeasts to mammals. PsGcn5 was constitutively expressed in each stage tested, but had a slightly higher expression in sporulating hyphae and 3 h after infection. PsGcn5-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation. These mutants had normal development, but compared to wild type strains they had higher sensitivity to hydrogen peroxide (H2O2) and significantly reduced virulence in soybean. Diaminobenzidine staining revealed an accumulation of H2O2 around the infection sites of PsGcn5-silenced mutants but not for wild type strains. Inhibition of the plant NADPH oxidase by diphenyleneiodonium prevented host-derived H2O2 accumulation in soybean cells and restored infectious hyphal growth of the mutants. Thus, we concluded that PsGcn5 is important for growth under conditions of oxidative stress and contributes to the full virulence of P. sojae by suppressing the host-derived reactive oxygen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.

    Science.gov (United States)

    Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka

    2005-01-01

    We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.

  17. N-acetyltransferase 2 gene polymorphism and presbycusis.

    Science.gov (United States)

    Unal, Murat; Tamer, Lülüfer; Doğruer, Zeynep Nil; Yildirim, Hatice; Vayisoğlu, Yusuf; Camdeviren, Handan

    2005-12-01

    The enzyme of N-acetyltransferase (NAT) is involved in the metabolism and detoxification of cytotoxic and carcinogenic compounds as well as reactive oxygen species (ROS). The excessive amount of ROS generation occurs in the ageing inner ear. The exact etiopathogenesis of presbycusis is not known, but it is generally accepted that it is the result of series of insults, such as physiologic age-related degeneration, noise exposure, medical disorders and their treatment, as well as hereditary susceptibility. The effect of aging shows a wide interindividual range; we aimed to investigate whether profiles of NAT2 genotypes may be associated with the risk of presbycusis. Hospital-based, case-control study. We examined 68 adults with presbycusis and 98 healthy controls. DNA was extracted from whole blood, and the polymorphisms of NAT2*5A, NAT2*6A, NAT2*7A/B, and NAT2*14A were determined using a real-time polymerase chain reaction and fluorescence resonance energy transfer with a Light-Cycler Instrument. Associations between specific genotypes and the development of presbycusis were examined by use of logistic regression analyses to calculate odds ratios and 95% confidence intervals. Gene polymorphisms at NAT2*5A, NAT2*7A/B, and NAT2*14A in subjects with presbycusis were not significantly different from in the controls (P > .05). However, in NAT2*6A, the risk of presbycusis was 15.2-fold more in individuals with mutant allele than subjects with wild genotype (P = .013). Individuals with NAT2*6A heterozygote allele had a 0.34-fold less risk in the development of presbycusis than subjects with mutant allele (P = .032) We demonstrated a significant association between the NAT2*6A polymorphism and age-related hearing loss in this population. However, the sample size was relatively small, and further studies need to investigate the exact role of NAT2 gene polymorphism in the etiopathogenesis of the presbycusis.

  18. A method to detect transfected chloramphenicol acetyltransferase gene expression in intact animals

    International Nuclear Information System (INIS)

    Narayanan, R.; Jastreboff, M.M.; Chiu, Chang Fang; Ito, Etsuro; Bertino, J.R.

    1988-01-01

    A rapid procedure is described for assaying chloramphenicol acetyltransferase enzyme activity in intact animals following transfection of the RSV CAT plasmid into mouse bone marrow cells by electroporation. The reconstituted mice were injected with [ 14 C]chloramphenicol and ethyl acetate extracts of 24-h urine samples were analyzed by TLC autoradiography for the excretion of 14 C-labeled metabolites. CAT expression in vivo can be detected by the presence of acetylated 14 C-labeled metabolites in the urine within 1 week after bone marrow transplantation and, under the conditions described, these metabolites can be detected for at least 3 months. CAT expression in intact mice as monitored by the urine assay correlates with the CAT expression in the hematopoietic tissues assayed in vitro. This method offers a quick mode of screening for introduced CAT gene expression in vivo without sacrificing the mice

  19. Genetic variants in the choline acetyltransferase (ChAT) gene are modestly associated with normal cognitive function in the elderly

    DEFF Research Database (Denmark)

    Mengel-From, J; Christensen, K; Thinggaard, M

    2011-01-01

    Genetic variants in the choline acetyltransferase (ChAT) gene have been suggested as risk factors for neurodegenerative Alzheimer's disease (AD). Here we tested the importance of genetic variants in the ChAT gene in normal cognitive function of elderly in a study sample of Danish twins...... and singletons (N = 2070). The ChAT rs3810950 A allele, which has been associated with increased risk for AD, was found to be associated with a decrease cognitive status evaluated by a five-component cognitive composite score [P = 0.03, regression coefficient -0.30, 95% confidence interval (CI) -0.57 to -0...

  20. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    OpenAIRE

    Silvia eTavares; Silvia eTavares; Markus eWirtz; Marcel Pascal Beier; Jochen eBogs; Jochen eBogs; Jochen eBogs; Ruediger eHell; Sara eAmâncio

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT protein fam...

  1. Key gene regulating cell wall biosynthesis and recalcitrance in Populus, gene Y

    Science.gov (United States)

    Chen, Jay; Engle, Nancy; Gunter, Lee E.; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.

    2015-12-08

    This disclosure provides methods and transgenic plants for improved production of renewable biofuels and other plant-derived biomaterials by altering the expression and/or activity of Gene Y, an O-acetyltransferase. This disclosure also provides expression vectors containing a nucleic acid (Gene Y) which encodes the polypeptide of SEQ ID NO: 1 and is operably linked to a heterologous promoter.

  2. Method to produce acetyldiacylglycerols (ac-TAGs) by expression of an acetyltransferase gene isolated from Euonymus alatus (burning bush)

    Energy Technology Data Exchange (ETDEWEB)

    Durrett, Timothy; Ohlrogge, John; Pollard, Michael

    2016-05-03

    The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.

  3. Identification of critical residues of the serotype modifying O-acetyltransferase of Shigella flexneri

    Directory of Open Access Journals (Sweden)

    Thanweer Farzaana

    2012-07-01

    Full Text Available Abstract Background Thirteen serotypes of Shigella flexneri (S. flexneri have been recognised, all of which are capable of causing bacillary dysentery or shigellosis. With the emergence of the newer S. flexneri serotypes, the development of an effective vaccine has only become more challenging. One of the factors responsible for the generation of serotype diversity is an LPS O-antigen modifying, integral membrane protein known as O-acetyltransferase or Oac. Oac functions by adding an acetyl group to a specific O-antigen sugar, thus changing the antigenic signature of the parent S. flexneri strain. Oac is a membrane protein, consisting of hydrophobic and hydrophilic components. Oac bears homology to several known and predicted acetyltransferases with most homology existing in the N-terminal transmembrane (TM regions. Results In this study, the conserved motifs in the TM regions and in hydrophilic loops of S. flexneri Oac were targeted for mutagenesis with the aim of identifying the amino acid residues essential for the function of Oac. We previously identified three critical arginines–R73, R75 and R76 in the cytoplasmic loop 3 of Oac. Re-establishing that these arginines are critical, in this study we suggest a catalytic role for R73 and a structural role for R75 and R76 in O-acetylation. Serine-glycine motifs (SG 52–53, GS 138–139 and SYG 274–276, phenylalanine-proline motifs (FP 78–79 and FPV 282–84 and a tryptophan-threonine motif (WT141-142 found in TM segments and residues RK 110–111, GR 269–270 and D333 found in hydrophilic loops were also found to be critical to Oac function. Conclusions By studying the effect of the mutations on Oac’s function and assembly, an insight into the possible roles played by the chosen amino acids in Oac was gained. The transmembrane serine-glycine motifs and hydrophilic residues (RK 110–111, GR 269–270 and D333 were shown to have an affect on Oac assembly which suggests a structural role

  4. N-acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiaoyi [Fukui Prefectural Univ., Fukui (Japan). Dept. of Bioscience; Takagi, Hiroshi [Nara Inst. of Science and Technology, Ikoma, Nara (Japan). Graduate School of Biological Sciences

    2007-07-15

    N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H{sub 2}O{sub 2}, heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H{sub 2}O{sub 2} or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H{sub 2}O{sub 2}. Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains. (orig.)

  5. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Directory of Open Access Journals (Sweden)

    Bingfu eGuo

    2015-10-01

    Full Text Available Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at four-fold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  6. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates.

    Science.gov (United States)

    Lilly, M; Lambrechts, M G; Pretorius, I S

    2000-02-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid

  7. Regioselective Acetylation of C21 Hydroxysteroids by the Bacterial Chloramphenicol Acetyltransferase I.

    Science.gov (United States)

    Mosa, Azzam; Hutter, Michael C; Zapp, Josef; Bernhardt, Rita; Hannemann, Frank

    2015-07-27

    Chloramphenicol acetyltransferase I (CATI) detoxifies the antibiotic chloramphenicol and confers a corresponding resistance to bacteria. In this study we identified this enzyme as a steroid acetyltransferase and designed a new and efficient Escherichia-coli-based biocatalyst for the regioselective acetylation of C21 hydroxy groups in steroids of pharmaceutical interest. The cells carried a recombinant catI gene controlled by a constitutive promoter. The capacity of the whole-cell system to modify different hydroxysteroids was investigated, and NMR spectroscopy revealed that all substrates were selectively transformed into the corresponding 21-acetoxy derivatives. The biotransformation was optimized, and the reaction mechanism is discussed on the basis of a computationally modeled substrate docking into the crystal structure of CATI. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Novel 6'-N-Aminoglycoside Acetyltransferase, AAC(6')-Ial, from a Clinical Isolate of Serratia marcescens.

    Science.gov (United States)

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Shimada, Kayo; Dahal, Rajan K; Mishra, Shyam K; Ohara, Hiroshi; Kirikae, Teruo; Pokhrel, Bharat M

    2016-03-01

    Serratia marcescens IOMTU115 has a novel 6'-N-aminoglycoside acetyltransferase-encoding gene, aac(6')-Ial. The encoded protein AAC(6')-Ial has 146 amino acids, with 91.8% identity to the amino acid sequence of AAC(6')-Ic in S. marcescens SM16 and 97.3% identity to the amino acid sequence of AAC(6')-Iap in S. marcescens WW4. The minimum inhibitory concentrations of aminoglycosides for Escherichia coli expressing AAC(6')-Ial were similar to those for E. coli expressing AAC(6')-Ic or AAC(6')-Iap. Thin-layer chromatography showed that AAC(6')-Ial, AAC(6')-Ic, or AAC(6')-Iap acetylated all the aminoglycosides tested, except for apramycin, gentamicin, and lividomycin. Kinetics assays revealed that AAC(6')-Ial is a functional acetyltransferase against aminoglycosides. The aac(6')-Ial gene was located on chromosomal DNA.

  9. Antifungal Activity of Phenyl Derivative of Pyranocoumarin from Psoralea corylifolia L. Seeds by Inhibition of Acetylation Activity of Trichothecene 3-O-Acetyltransferase (Tri101

    Directory of Open Access Journals (Sweden)

    Sangeetha Srinivasan

    2012-01-01

    Full Text Available Antifungal activity of petroleum ether extract of Psoralea corylifolia L. seed, tested against Fusarium sp. namely, Fusarium oxysporum, Fusarium moniliforme, and Fusarium graminearum, was evaluated by agar well diffusion assay. The chromatographic fractionation of the extract yielded a new phenyl derivative of pyranocoumarin (PDP. The structure of the PDP was confirmed using spectroscopic characterization (GC-MS, IR, and NMR, and a molecular mass of m/z 414 [M-2H]+ with molecular formula C27H28O4 was obtained. The PDP had a potent antifungal activity with a minimum inhibitory concentration of 1 mg/mL against Fusarium sp. Molecular docking using Grid-Based Ligand Docking with Energetics (GLIDE, Schrodinger was carried out with the Tri101, trichothecene 3-O-acetyltransferase, as target protein to propose a mechanism for the antifungal activity. The ligand PDP showed bifurcated hydrogen bond interaction with active site residues at TYR 413 and a single hydrogen bond interaction at ARG 402 with a docking score −7.19 and glide energy of −45.78 kcal/mol. This indicated a strong binding of the ligand with the trichothecene 3-O-acetyltransferase, preventing as a result the acetylation of the trichothecene mycotoxin and destruction of the “self-defense mechanism” of the Fusarium sp.

  10. LHX3 interacts with inhibitor of histone acetyltransferase complex subunits LANP and TAF-1β to modulate pituitary gene regulation.

    Science.gov (United States)

    Hunter, Chad S; Malik, Raleigh E; Witzmann, Frank A; Rhodes, Simon J

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.

  11. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds.

    Science.gov (United States)

    Durrett, Timothy P; McClosky, Daniel D; Tumaney, Ajay W; Elzinga, Dezi A; Ohlrogge, John; Pollard, Mike

    2010-05-18

    Endosperm and embryo tissues from the seeds of Euonymus alatus (Burning Bush) accumulate high levels of 3-acetyl-1,2-diacyl-sn-glycerols (acTAGs) as their major storage lipids. In contrast, the aril tissue surrounding the seed produces long-chain triacylglycerols (lcTAGs) typical of most other organisms. The presence of the sn-3 acetyl group imparts acTAGs with different physical and chemical properties, such as a 30% reduction in viscosity, compared to lcTAGs. Comparative transcriptome analysis of developing endosperm and aril tissues using pyrosequencing technology was performed to isolate the enzyme necessary for the synthesis of acTAGs. An uncharacterized membrane-bound O-acyltransferase (MBOAT) family member was the most abundant acyltransferase in the endosperm but was absent from the aril. Expression of this MBOAT in yeast resulted in the accumulation of acTAGs but not lcTAG; hence, the enzyme was named EaDAcT (Euonymus alatus diacylglycerol acetyltransferase). Yeast microsomes expressing EaDAcT possessed acetyl-CoA diacylglycerol acetyltransferase activity but lacked long-chain acyl-CoA diacylglycerol acyltransferase activity. Expression of EaDAcT under the control of a strong, seed-specific promoter in Arabidopsis resulted in the accumulation of acTAGs, up to 40 mol % of total TAG in the seed oil. These results demonstrate the utility of deep transcriptional profiling with multiple tissues as a gene discovery strategy for low-abundance proteins. They also show that EaDAcT is the acetyltransferase necessary and sufficient for the production of acTAGs in Euonymus seeds, and that this activity can be introduced into the seeds of other plants, allowing the evaluation of these unusual TAGs for biofuel and other applications.

  12. Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p

    Directory of Open Access Journals (Sweden)

    Greenblatt Jack F

    2007-09-01

    Full Text Available Abstract Background Histone modifications have been implicated in the regulation of transcription and, more recently, in DNA replication and repair. In yeast, a major conserved histone acetyltransferase, Hat1p, preferentially acetylates lysine residues 5 and 12 on histone H4. Results Here, we report that a nuclear sub-complex consisting of Hat1p and its partner Hat2p interacts physically and functionally with the origin recognition complex (ORC. While mutational inactivation of the histone acetyltransferase (HAT gene HAT1 alone does not compromise origin firing or initiation of DNA replication, a deletion in HAT1 (or HAT2 exacerbates the growth defects of conditional orc-ts mutants. Thus, the ORC-associated Hat1p-dependent histone acetyltransferase activity suggests a novel linkage between histone modification and DNA replication. Additional genetic and biochemical evidence points to the existence of partly overlapping histone H3 acetyltransferase activities in addition to Hat1p/Hat2p for proper DNA replication efficiency. Furthermore, we demonstrated a dynamic association of Hat1p with chromatin during S-phase that suggests a role of this enzyme at the replication fork. Conclusion We have found an intriguing new association of the Hat1p-dependent histone acetyltransferase in addition to its previously known role in nuclear chromatin assembly (Hat1p/Hat2p-Hif1p. The participation of a distinct Hat1p/Hat2p sub-complex suggests a linkage of histone H4 modification with ORC-dependent DNA replication.

  13. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients.

    Science.gov (United States)

    Noon, Jason B; Baum, Thomas J

    2016-04-12

    Hoplolaimina plant-parasitic nematodes (PPN) are a lineage of animals with many documented cases of horizontal gene transfer (HGT). In a recent study, we reported on three likely HGT candidate genes in the soybean cyst nematode Heterodera glycines, all of which encode secreted candidate effectors with putative functions in the host plant. Hg-GLAND1 is a putative GCN5-related N-acetyltransferase (GNAT), Hg-GLAND13 is a putative invertase (INV), and Hg-GLAND16 is a putative chorismate mutase (CM), and blastp searches of the non-redundant database resulted in highest similarity to bacterial sequences. Here, we searched nematode and non-nematode sequence databases to identify all the nematodes possible that contain these three genes, and to formulate hypotheses about when they most likely appeared in the phylum Nematoda. We then performed phylogenetic analyses combined with model selection tests of alternative models of sequence evolution to determine whether these genes were horizontally acquired from bacteria. Mining of nematode sequence databases determined that GNATs appeared in Hoplolaimina PPN late in evolution, while both INVs and CMs appeared before the radiation of the Hoplolaimina suborder. Also, Hoplolaimina GNATs, INVs and CMs formed well-supported clusters with different rhizosphere bacteria in the phylogenetic trees, and the model selection tests greatly supported models of HGT over descent via common ancestry. Surprisingly, the phylogenetic trees also revealed additional, well-supported clusters of bacterial GNATs, INVs and CMs with diverse eukaryotes and archaea. There were at least eleven and eight well-supported clusters of GNATs and INVs, respectively, from different bacteria with diverse eukaryotes and archaea. Though less frequent, CMs from different bacteria formed supported clusters with multiple different eukaryotes. Moreover, almost all individual clusters containing bacteria and eukaryotes or archaea contained species that inhabit very similar

  14. Phosphinothricin Acetyltransferases Identified Using In Vivo, In Vitro, and Bioinformatic Analyses

    Science.gov (United States)

    VanDrisse, Chelsey M.; Hentchel, Kristy L.

    2016-01-01

    ABSTRACT Acetylation of small molecules is widespread in nature, and in some cases, cells use this process to detoxify harmful chemicals. Streptomyces species utilize a Gcn5 N-acetyltransferase (GNAT), known as Bar, to acetylate and detoxify a self-produced toxin, phosphinothricin (PPT), a glutamate analogue. Bar homologues, such as MddA from Salmonella enterica, acetylate methionine analogues such as methionine sulfoximine (MSX) and methionine sulfone (MSO), but not PPT, even though Bar homologues are annotated as PPT acetyltransferases. S. enterica was used as a heterologous host to determine whether or not putative PPT acetyltransferases from various sources could acetylate PPT, MSX, and MSO. In vitro and in vivo analyses identified substrates acetylated by putative PPT acetyltransferases from Deinococcus radiodurans (DR_1057 and DR_1182) and Geobacillus kaustophilus (GK0593 and GK2920). In vivo, synthesis of DR_1182, GK0593, and GK2920 blocked the inhibitory effects of PPT, MSX, and MSO. In contrast, DR_1057 did not detoxify any of the above substrates. Results of in vitro studies were consistent with the in vivo results. In addition, phylogenetic analyses were used to predict the functionality of annotated PPT acetyltransferases in Burkholderia xenovorans, Bacillus subtilis, Staphylococcus aureus, Acinetobacter baylyi, and Escherichia coli. IMPORTANCE The work reported here provides an example of the use of a heterologous system for the identification of enzyme function. Many members of this superfamily of proteins do not have a known function, or it has been annotated solely on the basis of sequence homology to previously characterized enzymes. The critical role of Gcn5 N-acetyltransferases (GNATs) in the modulation of central metabolic processes, and in controlling metabolic stress, necessitates approaches that can reveal their physiological role. The combination of in vivo, in vitro, and bioinformatics approaches reported here identified GNATs that can

  15. The novel kasugamycin 2'-N-acetyltransferase gene aac(2')-IIa, carried by the IncP island, confers kasugamycin resistance to rice-pathogenic bacteria.

    Science.gov (United States)

    Yoshii, Atsushi; Moriyama, Hiromitsu; Fukuhara, Toshiyuki

    2012-08-01

    Kasugamycin (KSM), a unique aminoglycoside antibiotic, has been used in agriculture for many years to control not only rice blast caused by the fungus Magnaporthe grisea but also rice bacterial grain and seedling rot or rice bacterial brown stripe caused by Burkholderia glumae or Acidovorax avenae subsp. avenae, respectively. Since both bacterial pathogens are seed-borne and cause serious injury to rice seedlings, the emergence of KSM-resistant B. glumae and A. avenae isolates highlights the urgent need to understand the mechanism of resistance to KSM. Here, we identified a novel gene, aac(2')-IIa, encoding a KSM 2'-N-acetyltransferase from both KSM-resistant pathogens but not from KSM-sensitive bacteria. AAC(2')-IIa inactivates KSM, although it reveals no cross-resistance to other aminoglycosides. The aac(2')-IIa gene from B. glumae strain 5091 was identified within the IncP genomic island inserted into the bacterial chromosome, indicating the acquisition of this gene by horizontal gene transfer. Although excision activity of the IncP island and conjugational gene transfer was not detected under the conditions tested, circular intermediates containing the aac(2')-IIa gene were detected. These results indicate that the aac(2')-IIa gene had been integrated into the IncP island of a donor bacterial species. Molecular detection of the aac(2')-IIa gene could distinguish whether isolates are resistant or susceptible to KSM. This may contribute to the production of uninfected rice seeds and lead to the effective control of these pathogens by KSM.

  16. A novel method to quantify the activity of alcohol acetyltransferase Using a SnO2-based sensor of electronic nose.

    Science.gov (United States)

    Hu, Zhongqiu; Li, Xiaojing; Wang, Huxuan; Niu, Chen; Yuan, Yahong; Yue, Tianli

    2016-07-15

    Alcohol acetyltransferase (AATFase) extensively catalyzes the reactions of alcohols to acetic esters in microorganisms and plants. In this work, a novel method has been proposed to quantify the activity of AATFase using a SnO2-based sensor of electronic nose, which was determined on the basis of its higher sensitivity to the reducing alcohol than the oxidizing ester. The maximum value of the first-derivative of the signals from the SnO2-based sensor was therein found to be an eigenvalue of isoamyl alcohol concentration. Quadratic polynomial regression perfectly fitted the correlation between the eigenvalue and the isoamyl alcohol concentration. The method was used to determine the AATFase activity in this type of reaction by calculating the conversion rate of isoamyl alcohol. The proposed method has been successfully applied to determine the AATFase activity of a cider yeast strain. Compared with GC-MS, the method shows promises with ideal recovery and low cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol [Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Yoon, Sung-il, E-mail: sungil@kangwon.ac.kr [Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2015-03-20

    Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helices with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. - Highlights: • cjPseH adopts a single-domain structure of a central β-sheet decorated by α-helices. • cjPseH features two continuously connected grooves on the protein surface. • Acetyl coenzyme A (AcCoA) binds into a deep groove of cjPseH in an ‘L’ shape. • The acetyl end of AcCoA points to a wide groove, a potential substrate-binding site.

  18. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    Science.gov (United States)

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  19. Comparative transcriptomic analyses of differentially expressed genes in transgenic melatonin biosynthesis ovine HIOMT gene in switchgrass

    Directory of Open Access Journals (Sweden)

    Shan Yuan

    2016-11-01

    Full Text Available Melatonin serves pleiotropic functions in prompting plant growth and resistance to various stresses. The accurate biosynthetic pathway of melatonin remains elusive in plant species, while the N-acetyltransferase and O-methyltransferase were considered to be the last two key enzymes during its biosynthesis. To investigate the biosynthesis and metabolic pathway of melatonin in plants, the RNA-seq profile of overexpression of the ovine HIOMT was analyzed and compared with the previous transcriptome of transgenic oAANAT gene in switchgrass, a model plant for cellulosic ethanol production. A total of 946, 405 and 807 differentially expressed unigenes were observed in AANAT vs. control, HIOMT vs. control, and AANAT vs. HIOMT, respectively. The significantly upregulated (F-box/kelch-repeat protein, zinc finger BED domain-containing protein-3 genes were consistent with enhanced phenotypes of shoot, stem and root growth in transgenic oHIOMT switchgrass. Early flowering in overexpression of oHIOMT switchgrass involved in the regulation of flowering-time genes (APETALA2. Several stress resistant related genes (SPX domain-containing membrane protein, copper transporter 1, late blight resistance protein homolog R1A-6 OS etc. were specifically and significantly upregulated in transgenic oHIOMT only, while metabolism-related genes (phenylalanine-4-hydroxylase, tyrosine decarboxylase 1, protein disulfide-isomerase and galactinol synthase 2 etc. were significantly upregulated in transgenic oAANAT only. These results provide new sights into the biosynthetic and physiological functional networks of melatonin in plants.

  20. The Novel Kasugamycin 2′-N-Acetyltransferase Gene aac(2′)-IIa, Carried by the IncP Island, Confers Kasugamycin Resistance to Rice-Pathogenic Bacteria

    Science.gov (United States)

    Moriyama, Hiromitsu; Fukuhara, Toshiyuki

    2012-01-01

    Kasugamycin (KSM), a unique aminoglycoside antibiotic, has been used in agriculture for many years to control not only rice blast caused by the fungus Magnaporthe grisea but also rice bacterial grain and seedling rot or rice bacterial brown stripe caused by Burkholderia glumae or Acidovorax avenae subsp. avenae, respectively. Since both bacterial pathogens are seed-borne and cause serious injury to rice seedlings, the emergence of KSM-resistant B. glumae and A. avenae isolates highlights the urgent need to understand the mechanism of resistance to KSM. Here, we identified a novel gene, aac(2′)-IIa, encoding a KSM 2′-N-acetyltransferase from both KSM-resistant pathogens but not from KSM-sensitive bacteria. AAC(2′)-IIa inactivates KSM, although it reveals no cross-resistance to other aminoglycosides. The aac(2′)-IIa gene from B. glumae strain 5091 was identified within the IncP genomic island inserted into the bacterial chromosome, indicating the acquisition of this gene by horizontal gene transfer. Although excision activity of the IncP island and conjugational gene transfer was not detected under the conditions tested, circular intermediates containing the aac(2′)-IIa gene were detected. These results indicate that the aac(2′)-IIa gene had been integrated into the IncP island of a donor bacterial species. Molecular detection of the aac(2′)-IIa gene could distinguish whether isolates are resistant or susceptible to KSM. This may contribute to the production of uninfected rice seeds and lead to the effective control of these pathogens by KSM. PMID:22660700

  1. The MYST family histone acetyltransferase complex regulates stress resistance and longevity through transcriptional control of DAF-16/FOXO transcription factors.

    Science.gov (United States)

    Ikeda, Takako; Uno, Masaharu; Honjoh, Sakiko; Nishida, Eisuke

    2017-08-09

    The well-known link between longevity and the Sir2 histone deacetylase family suggests that histone deacetylation, a modification associated with repressed chromatin, is beneficial to longevity. However, the molecular links between histone acetylation and longevity remain unclear. Here, we report an unexpected finding that the MYST family histone acetyltransferase complex (MYS-1/TRR-1 complex) promotes rather than inhibits stress resistance and longevity in Caenorhabditis elegans Our results show that these beneficial effects are largely mediated through transcriptional up-regulation of the FOXO transcription factor DAF-16. MYS-1 and TRR-1 are recruited to the promoter regions of the daf-16 gene, where they play a role in histone acetylation, including H4K16 acetylation. Remarkably, we also find that the human MYST family Tip60/TRRAP complex promotes oxidative stress resistance by up-regulating the expression of FOXO transcription factors in human cells. Tip60 is recruited to the promoter regions of the foxo1 gene, where it increases H4K16 acetylation levels. Our results thus identify the evolutionarily conserved role of the MYST family acetyltransferase as a key epigenetic regulator of DAF-16/FOXO transcription factors. © 2017 The Authors.

  2. Genetic polymorphisms of N-acetyltransferase 2 & susceptibility to antituberculosis drug-induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Surendra K Sharma

    2016-01-01

    Full Text Available Background & objectives: The N-acetyltransferase 2 (NAT2 gene encodes an enzyme which both activates and deactivates arylamine and other drugs and carcinogens. This study was aimed to investigate the role of NAT2 gene polymorphism in anti-tuberculosis drug-induced hepatotoxicity (DIH. Methods: In this prospective study, polymerase chain reaction-restriction fragment length polymorphism results for NAT2 gene were compared between 185 tuberculosis patients who did not develop DIH and 105 tuberculosis patients who developed DIH while on anti-tuberculosis drugs. Results: Frequency of slow-acetylator genotype was commonly encountered and was not significantly different between DIH (82.8% and non-DIH (77.2% patients. However, the genotypic distribution of variant NAT2FNx015/FNx017 amongst slow-acetylator genotypes was significantly higher in DIH (56% group as compared to non-DIH (39% group (odds ratio 2.02; P=0.006. Interpretation & conclusions: The present study demonstrated no association between NAT2 genotype and DIH in the north Indian patients with tuberculosis.

  3. New N-Acetyltransferase Fold in the Structure and Mechanism of the Phosphonate Biosynthetic Enzyme FrbF

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Brian; Cobb, Ryan E.; DeSieno, Matthew A.; Zhao, Huimin; Nair, Satish K. (UIUC)

    2015-10-15

    The enzyme FrbF from Streptomyces rubellomurinus has attracted significant attention due to its role in the biosynthesis of the antimalarial phosphonate FR-900098. The enzyme catalyzes acetyl transfer onto the hydroxamate of the FR-900098 precursors cytidine 5'-monophosphate-3-aminopropylphosphonate and cytidine 5'-monophosphate-N-hydroxy-3-aminopropylphosphonate. Despite the established function as a bona fide N-acetyltransferase, FrbF shows no sequence similarity to any member of the GCN5-like N-acetyltransferase (GNAT) superfamily. Here, we present the 2.0 {angstrom} resolution crystal structure of FrbF in complex with acetyl-CoA, which demonstrates a unique architecture that is distinct from those of canonical GNAT-like acetyltransferases. We also utilized the co-crystal structure to guide structure-function studies that identified the roles of putative active site residues in the acetyltransferase mechanism. The combined biochemical and structural analyses of FrbF provide insights into this previously uncharacterized family of N-acetyltransferases and also provide a molecular framework toward the production of novel N-acyl derivatives of FR-900098.

  4. Endoplasmic reticulum stress-responsive transcription factor ATF6α directs recruitment of the Mediator of RNA polymerase II transcription and multiple histone acetyltransferase complexes.

    Science.gov (United States)

    Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C

    2012-06-29

    The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription.

  5. Purification, crystallization and preliminary X-ray analysis of the aminoglycoside-6′-acetyltransferase AAC(6′)-Im

    International Nuclear Information System (INIS)

    Toth, Marta; Vakulenko, Sergei B.; Smith, Clyde A.

    2012-01-01

    AAC(6′)-Im is an N-acetyltransferase enzyme responsible for aminoglycoside resistance in E. faecium and E. coli isolates. Crystals of the kanamycin complex of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of enzymatic deactivation of the drugs. The aminoglycoside N-acetyltransferases (AACs) are a large family of bacterial enzymes that are responsible for coenzyme-A-facilitated acetylation of aminoglycosides. The gene encoding one of these enzymes, AAC(6′)-Im, has been cloned and the protein (comprising 178 amino-acid residues) was expressed in Escherichia coli, purified and crystallized as the kanamycin complex. Synchrotron diffraction data to approximately 2.0 Å resolution were collected from a crystal of this complex on beamline BL12-2 at SSRL (Stanford, California, USA). The crystals belonged to the hexagonal space group P6 5 , with approximate unit-cell parameters a = 107.75, c = 37.33 Å, and contained one molecule in the asymmetric unit. Structure determination is under way using molecular replacement

  6. Acetyltransferases and tumour suppression

    International Nuclear Information System (INIS)

    Phillips, A C; Vousden, Karen H

    2000-01-01

    The acetyltransferase p300 was first identified associated with the adenoviral transforming protein E1A, suggesting a potential role for p300 in the regulation of cell proliferation. Direct evidence demonstrating a role for p300 in human tumours was lacking until the recentl publication by Gayther et al, which strongly supports a role for p300 as a tumour suppressor. The authors identify truncating mutations associated with the loss or mutation of the second allele in both tumour samples and cell lines, suggesting that loss of p300 may play a role in the development of a subset of human cancers

  7. Histone acetyltransferases : challenges in targeting bi-substrate enzymes

    NARCIS (Netherlands)

    Wapenaar, Hannah; Dekker, Frank J

    2016-01-01

    Histone acetyltransferases (HATs) are epigenetic enzymes that install acetyl groups onto lysine residues of cellular proteins such as histones, transcription factors, nuclear receptors, and enzymes. HATs have been shown to play a role in diseases ranging from cancer and inflammatory diseases to

  8. Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink(®) and WideStrike(®) cotton.

    Science.gov (United States)

    Carbonari, Caio A; Latorre, Débora O; Gomes, Giovanna L G C; Velini, Edivaldo D; Owens, Daniel K; Pan, Zhiqiang; Dayan, Franck E

    2016-04-01

    Insertion of the gene encoding phosphinothricin acetyltransferase (PAT) has resulted in cotton plants resistant to the herbicide glufosinate. However, the lower expression and commensurate reduction in PAT activity is a key factor in the low level of injury observed in the WideStrike(®) cotton and relatively high level of resistance observed in LibertyLink(®) cotton. LibertyLink(®) cotton cultivars are engineered for glufosinate resistance by overexpressing the bar gene that encodes phosphinothricin acetyltransferase (PAT), whereas the insect-resistant WideStrike(®) cultivars were obtained using the similar pat gene as a selectable marker. The latter cultivars carry some level of resistance to glufosinate which enticed certain farmers to select this herbicide for weed control with WideStrike(®) cotton. The potency of glufosinate on conventional FM 993, insect-resistant FM 975WS, and glufosinate-resistant IMACD 6001LL cotton cultivars was evaluated and contrasted to the relative levels of PAT expression and activity. Conventional cotton was sensitive to glufosinate. The single copy of the pat gene present in the insect-resistant cultivar resulted in very low RNA expression of the gene and undetectable PAT activity in in vitro assays. Nonetheless, the presence of this gene provided a good level of resistance to glufosinate in terms of visual injury and effect on photosynthetic electron transport. The injury is proportional to the amount of ammonia accumulation. The strong promoter associated with bar expression in the glufosinate-resistant cultivar led to high RNA expression levels and PAT activity which protected this cultivar from glufosinate injury. While the insect-resistant cultivar demonstrated a good level of resistance to glufosinate, its safety margin is lower than that of the glufosinate-resistant cultivar. Therefore, farmers should be extremely careful in using glufosinate on cultivars not expressly designed and commercialized as resistant to this

  9. IL-1β-specific recruitment of GCN5 histone acetyltransferase induces the release of PAF1 from chromatin for the de-repression of inflammatory response genes.

    Science.gov (United States)

    Kim, Nari; Sun, Hwa-Young; Youn, Min-Young; Yoo, Joo-Yeon

    2013-04-01

    To determine the functional specificity of inflammation, it is critical to orchestrate the timely activation and repression of inflammatory responses. Here, we explored the PAF1 (RNA polymerase II associated factor)-mediated signal- and locus-specific repression of genes induced through the pro-inflammatory cytokine interleukin (IL)-1β. Using microarray analysis, we identified the PAF1 target genes whose expression was further enhanced by PAF1 knockdown in IL-1β-stimulated HepG2 hepatocarcinomas. PAF1 bound near the transcription start sites of target genes and dissociated on stimulation. In PAF1-deficient cells, more elongating RNA polymerase II and acetylated histones were observed, although IL-1β-mediated activation and recruitment of nuclear factor κB (NF-κB) were not altered. Under basal conditions, PAF1 blocked histone acetyltransferase general control non-depressible 5 (GCN5)-mediated acetylation on H3K9 and H4K5 residues. On IL-1β stimulation, activated GCN5 discharged PAF1 from chromatin, allowing productive transcription to occur. PAF1 bound to histones but not to acetylated histones, and the chromatin-binding domain of PAF1 was essential for target gene repression. Moreover, IL-1β-induced cell migration was similarly controlled through counteraction between PAF1 and GCN5. These results suggest that the IL-1β signal-specific exchange of PAF1 and GCN5 on the target locus limits inappropriate gene induction and facilitates the timely activation of inflammatory responses.

  10. Homeobox genes and melatonin synthesis

    DEFF Research Database (Denmark)

    Rohde, Kristian; Møller, Morten; Rath, Martin Fredensborg

    2014-01-01

    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based indu......Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a c......AMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX......) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating c...

  11. Transfection of cultured cells of the cotton boll weevil, Anthonomus grandis, with a heat-shock-promoter-chloramphenicol-acetyltransferase construct.

    Science.gov (United States)

    Stiles, B; Heilmann, J; Sparks, R B; Santoso, A; Leopold, R A

    1992-01-01

    Expression of heat shock proteins (hsp) in the BRL-AG-3C cell line from the cotton boll weevil was examined. It was determined that the maximal expression of endogenous hsp occurred at 41 degrees C. Various transfection methods were then compared using this cell line in conjunction with a transiently expressed bacterial gene marker (chloramphenicol acetyltransferase) which was under the control of the Drosophila hsp 70 gene promoter. The cationic lipid preparation Lipofectin was found to be very efficient at transfecting the boll weevil cells. Polylysine and 20-hydroxyecdysone-conjugated polylysine were moderately effective, whereas polybrene and electroporation, under the conditions reported herein, were ineffective at transfecting this cell line.

  12. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey

    Directory of Open Access Journals (Sweden)

    Jia Li

    2015-12-01

    Full Text Available All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT, the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2.

  13. Induction of spermidine/spermine N1-acetyltransferase by methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Pegg, A E; Erwin, B G; Persson, L

    1985-10-17

    The anti-tumor agent methylglyoxal bis(guanylhydrazone) was found to be a competitive inhibitor of spermidine/spermine N1-acetyltransferase with a Ki of about 8 microM. Treatment of rats with this drug lead to a very large increase in the total amount of spermidine/spermine N1-acetyltransferase in liver, kidney and spleen. The total increase as measured using a specific antiserum amounted to 700-fold in liver and 100-fold in kidney within 18 h of treatment with 80 mg/kg doses. At least part of this induction was due to a pronounced increase in the half-life of the acetyltransferase which increased from 15 min to more than 12 h. The very large increase in the amount of the enzyme is likely to overwhelm the direct inhibition, and a net increase in the acetylation of polyamines by this enzyme would be expected to occur after treatment with methylglyoxal bis(guanylhydrazone). The acetylated polyamines are known to be rapidly degraded by polyamine oxidase producing putrescine. Direct evidence that a substantial part of the increase in the content of putrescine in the liver of rats treated with methylglyoxal bis(guanylhydrazone) occurs via the induction of this acetylase/oxidase pathway was obtained. These results indicate that methylglyoxal bis(guanylhydrazone) affects cellular polyamine levels not only by means of its inhibitory effect on S-adenosylmethionine decarboxylase and diamine oxidase but also by the induction of spermidine/spermine N1-acetyltransferase. They also raise the possibility that the enormous increase in this enzyme which occurs with higher doses may contribute to the very severe toxicity of methylglyoxal bis(guanylhydrazone).

  14. 5' Analysis of the soybean leghaemoglobin lbc(3) gene

    DEFF Research Database (Denmark)

    Stougaard, J; Sandal, N N; Grøn, A

    1987-01-01

    The soybean leghaemoglobin lbc(3) gene promoter was analysed in transgenic Lotus corniculatus plants. Hybrid-promoter constructions and 5' deletions were studied using chimeric genes composed of the various promoters, the chloramphenicol acetyltransferase (CAT) coding sequence and the lbc(3) 3...

  15. Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation

    DEFF Research Database (Denmark)

    Malatesta, Martina; Steinhauer, Cornelia; Mohammad, Faizaan

    2013-01-01

    The Hedgehog (Hh) signaling pathway plays an important role in embryonic patterning and development of many tissues and organs as well as in maintaining and repairing mature tissues in adults. Uncontrolled activation of the Hh-Gli pathway has been implicated in developmental abnormalities as well...... that the histone acetyltransferase PCAF/KAT2B is an important factor of the Hh pathway. Specifically, we show that PCAF depletion impairs Hh activity and reduces expression of Hh target genes. Consequently, PCAF downregulation in medulloblastoma and glioblastoma cells leads to decreased proliferation and increased...... apoptosis. In addition, we found that PCAF interacts with GLI1, the downstream effector in the Hh-Gli pathway, and that PCAF or GLI1 loss reduces the levels of H3K9 acetylation on Hh target gene promoters. Finally, we observed that PCAF silencing reduces the tumor-forming potential of neural stem cells...

  16. Cigarette Smoking, N-Acetyltransferase 2 Acetylation Status, and Bladder Cancer Risk

    DEFF Research Database (Denmark)

    Marcus, P.M.; Hayes, R.B.; Vineis, P.

    2000-01-01

    Tobacco use is an established cause of bladder cancer. The ability to detoxify aromatic amines, which are present in tobacco and are potent bladder carcinogens, is compromised in persons with the N-acetyltransferase 2 slow acetylation polymorphism. The relationship of cigarette smoking with bladder...... cancer risk therefore has been hypothesized to be stronger among slow acetylators. The few studies to formally explore such a possibility have produced inconsistent results, however. To assess this potential gene-environment interaction in as many bladder cancer studies as possible and to summarize...... results, we conducted a meta-analysis using data from 16 bladder cancer studies conducted in the general population (n = 1999 cases), Most had been conducted in European countries. Because control subjects were unavailable for a number of these studies, we used a case-series design, which can be used...

  17. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA.

    Directory of Open Access Journals (Sweden)

    David Sychantha

    2017-10-01

    Full Text Available The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain. We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.

  18. Prevalence of the N-Acetyltransferase (NAT2 gene polymorphism 282C>T in Peruvian population and health implications

    Directory of Open Access Journals (Sweden)

    Salazar-Granara Alberto

    2016-03-01

    Full Text Available Objective: To determine the frequency of the C282T polymorphism of the NAT2 gene (N acetyltransferase in Peruvian populations. Field work, focused on exploring genetic risk factor in Peruvian populations, which has influence in the response to drugs and malignancies aetiology. Material and Methods: Cross-sectional study. 166 voluntaries from Lima, Lambayeque, Apurimac, Puno, San Martin, Amazonas and Loreto were enrolled. The sampling was done by convenience and it was use the RFLP-PCR conventional technique was used. Results: The allele frequency were 54% (n=126 for C282 and 46% (n=106 for T282. For the T allele, by its orign , stand out 2 those which origins were Lima 42% (n=25, Amazonas 47% (n=16, San Martin 74% (n=28 and Apurimac 50% (n=13 (X , p>0.05. A global genotype frequency were 26.7% (n=31 for C282/C282, 56.0% (n=65 for C282/T282 and 17.2% (n=20 for T282/T282 (Hardy Weinberg Test p>0.05. By origin, Puno presented allelic imbalance (Hardy Weinberg test p0.05. Conclusion: The overall frequency of NAT2 allele T282 was 46%; San Martin had the highest prevalence (74%. The T282 allele is linked to neoplastic diseases and adverse reactions to anti-TB drugs, these results will be used for the application of pharmacogenetics in Peru

  19. Diversification of the Histone Acetyltransferase GCN5 through Alternative Splicing in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Alexandre Martel

    2017-12-01

    Full Text Available The epigenetic modulatory SAGA complex is involved in various developmental and stress responsive pathways in plants. Alternative transcripts of the SAGA complex's enzymatic subunit GCN5 have been identified in Brachypodium distachyon. These splice variants differ based on the presence and integrity of their conserved domain sequences: the histone acetyltransferase domain, responsible for catalytic activity, and the bromodomain, involved in acetyl-lysine binding and genomic loci targeting. GCN5 is the wild-type transcript, while alternative splice sites result in the following transcriptional variants: L-GCN5, which is missing the bromodomain and S-GCN5, which lacks the bromodomain as well as certain motifs of the histone acetyltransferase domain. Absolute mRNA quantification revealed that, across eight B. distachyon accessions, GCN5 was the dominant transcript isoform, accounting for up to 90% of the entire transcript pool, followed by L-GCN5 and S-GCN5. A cycloheximide treatment further revealed that the S-GCN5 splice variant was degraded through the nonsense-mediated decay pathway. All alternative BdGCN5 transcripts displayed similar transcript profiles, being induced during early exposure to heat and displaying higher levels of accumulation in the crown, compared to aerial tissues. All predicted protein isoforms localize to the nucleus, which lends weight to their purported epigenetic functions. S-GCN5 was incapable of forming an in vivo protein interaction with ADA2, the transcriptional adaptor that links the histone acetyltransferase subunit to the SAGA complex, while both GCN5 and L-GCN5 interacted with ADA2, which suggests that a complete histone acetyltransferase domain is required for BdGCN5-BdADA2 interaction in vivo. Thus, there has been a diversification in BdGCN5 through alternative splicing that has resulted in differences in conserved domain composition, transcript fate and in vivo protein interaction partners. Furthermore, our

  20. GCN5 regulates the activation of PI3K/Akt survival pathway in B cells exposed to oxidative stress via controlling gene expressions of Syk and Btk.

    Science.gov (United States)

    Kikuchi, Hidehiko; Kuribayashi, Futoshi; Takami, Yasunari; Imajoh-Ohmi, Shinobu; Nakayama, Tatsuo

    2011-02-25

    Histone acetyltransferase(s) (HATs) are involved in the acetylation of core histones, which is an important event for transcription regulation through alterations in the chromatin structure in eukaryotes. General control non-depressible 5 (GCN5) was first identified as a global coactivator and transcription-related HAT. Here we report that GCN5 regulates the activation of phosphatidylinositol 3-kinase (PI3K)/acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) survival pathway in B cells exposed to oxidative stress via controlling gene expressions of spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (Btk). The GCN5-deficiency remarkably caused apoptotic cell death by treatment with exogenous hydrogen peroxide (H(2)O(2)) in chicken DT40 cells. In GCN5-deficient DT40 cells, gene expressions of Syk and Btk, which are involved in activation of PI3K/Akt survival pathway in DT40 cells exposed to exogenous H(2)O(2), were remarkably decreased compared with those in wild type DT40 cells. In addition, phosphorylation of Akt in H(2)O(2)-treated GCN5-deficient cells was remarkably suppressed as compared to that of DT40. Chromatin immunoprecipitation assay revealed that GCN5 binds to proximal 5'-upstream regions of Syk and Btk genes in vivo. These results suggest that GCN5 takes part in transcriptional regulations of the Syk and Btk genes, and plays a key role in epigenetic regulation of PI3K/Akt survival pathway in B cells exposed to reactive oxygen species such as H(2)O(2). Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Choline acetyltransferase expression during periods of behavioral activity and across natural sleep-wake states in the basal forebrain.

    Science.gov (United States)

    Greco, M A; McCarley, R W; Shiromani, P J

    1999-01-01

    The present study examined whether the expression of the messenger RNA encoding the protein responsible for acetylcholine synthesis is associated with sleep-wakefulness. Choline acetyltransferase messenger RNA levels were analysed using a semi-quantitative assay in which reverse transcription was coupled to complementary DNA amplification using the polymerase chain reaction. To examine the relationship between steady-state messenger RNA and behavioral activity, rats were killed during the day (4.00 p.m.) or night (4.00 a.m.), and tissue from the vertical and horizontal limbs of the diagonal bands of Broca was analysed. Choline acetyltransferase messenger RNA levels were higher during the day than during the night. The second study examined more closely the association between choline acetyltransferase messenger RNA levels and individual bouts of wakefulness, slow-wave sleep or rapid eye movement sleep. Choline acetyltransferase messenger RNA levels were low during wakefulness, intermediate in slow-wave sleep and high during rapid eye movement sleep. In contrast, protein activity, measured at a projection site of cholinergic neurons of the basal forebrain, was higher during wakefulness than during sleep. These findings suggest that choline acetyltransferase protein and messenger RNA levels exhibit an inverse relationship during sleep and wakefulness. The increased messenger RNA expression during sleep is consistent with a restorative function of sleep.

  2. Regulation of spermidine/spermine N1-acetyltransferase in L6 cells by polyamines and related compounds.

    Science.gov (United States)

    Erwin, B G; Pegg, A E

    1986-01-01

    Exposure of rat L6 cells in culture to exogenous polyamines led to a very large increase in the activity of spermidine/spermine N1-acetyltransferase. Spermine was more potent than spermidine in bringing about this increase, but in both cases the elevated acetyltransferase activity increased the cellular conversion of spermidine into putrescine. The N1-acetyltransferase turned over very rapidly in the L6 cells, with a half-life of 9 min after spermidine and 18 min after spermine. A wide variety of synthetic polyamine analogues also brought about a substantial induction of spermidine/spermine N1-acetyltransferase activity. These included sym-norspermidine, sym-norspermine, sym-homospermidine, N4-substituted spermidine derivatives, 1,3,6-triaminohexane, 1,4,7-triaminoheptane and deoxyspergualin, which were comparable with spermidine in their potency, and N1N8-bis(ethyl)spermidine, N1N9-bis(ethyl)homospermidine, methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-amino-guanidine ), which were even more active than spermidine. It is suggested that these polyamine analogues may bring about a decrease in cellular polyamines not only by inhibiting biosynthesis but by stimulating the degradation of spermidine into putrescine. PMID:3800951

  3. Mechanism by which arylamine N-acetyltransferase 1 ablation causes insulin resistance in mice

    DEFF Research Database (Denmark)

    Camporez, João Paulo; Wang, Yongliang; Faarkrog, Kasper

    2017-01-01

    A single-nucleotide polymorphism in the human arylamine N-acetyltransferase 2 (Nat2) gene has recently been identified as associated with insulin resistance in humans. To understand the cellular and molecular mechanisms by which alterations in Nat2 activity might cause insulin resistance, we...... examined murine ortholog Nat1 knockout (KO) mice. Nat1 KO mice manifested whole-body insulin resistance, which could be attributed to reduced muscle, liver, and adipose tissue insulin sensitivity. Hepatic and muscle insulin resistance were associated with marked increases in both liver and muscle...... adipose tissue, and hepatocytes. Taken together, these studies demonstrate that Nat1 deletion promotes reduced mitochondrial activity and is associated with ectopic lipid-induced insulin resistance. These results provide a potential genetic link among mitochondrial dysfunction with increased ectopic lipid...

  4. Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering.

    Science.gov (United States)

    Dong, Hongjun; Tao, Wenwen; Zhang, Yanping; Li, Yin

    2012-01-01

    Clostridium acetobutylicum is an important solvent (acetone-butanol-ethanol) producing bacterium. However, a stringent, effective, and convenient-to-use inducible gene expression system that can be used for regulating the gene expression strength in C. acetobutylicum is currently not available. Here, we report an anhydrotetracycline-inducible gene expression system for solvent-producing bacterium C. acetobutylicum. This system consists of a functional chloramphenicol acetyltransferase gene promoter containing tet operators (tetO), Pthl promoter (thiolase gene promoter from C. acetobutylicum) controlling TetR repressor expression cassette, and the chemical inducer anhydrotetracycline (aTc). The optimized system, designated as pGusA2-2tetO1, allows gene regulation in an inducer aTc concentration-dependent way, with an inducibility of over two orders of magnitude. The stringency of TetR repression supports the introduction of the genes encoding counterselective marker into C. acetobutylicum, which can be used to increase the mutant screening efficiency. This aTc-inducible gene expression system will thus increase the genetic manipulation capability for engineering C. acetobutylicum. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Season-dependent effects of photoperiod and temperature on circadian rhythm of arylalkylamine N-acetyltransferase2 gene expression in pineal organ of an air-breathing catfish, Clarias gariepinus.

    Science.gov (United States)

    Singh, Kshetrimayum Manisana; Saha, Saurav; Gupta, Braj Bansh Prasad

    2017-08-01

    Arylalkylamine N-acetyltransferase (AANAT) activity, aanat gene expression and melatonin production have been reported to exhibit prominent circadian rhythm in the pineal organ of most species of fish. Three types of aanat genes are expressed in fish, but the fish pineal organ predominantly expresses aanat2 gene. Increase and decrease in daylength is invariably associated with increase and decrease in temperature, respectively. But so far no attempt has been made to delineate the role of photoperiod and temperature in regulation of the circadian rhythm of aanat2 gene expression in the pineal organ of any fish with special reference to seasons. Therefore, we studied effects of various lighting regimes (12L-12D, 16L-8D, 8L-16D, LL and DD) at a constant temperature (25°C) and effects of different temperatures (15°, 25° and 35°C) under a common photoperiod 12L-12D on circadian rhythm of aanat2 gene expression in the pineal organ of Clarias gariepinus during summer and winter seasons. Aanat2 gene expression in fish pineal organ was studied by measuring aanat2 mRNA levels using Real-Time PCR. Our findings indicate that the pineal organ of C. gariepinus exhibits a prominent circadian rhythm of aanat2 gene expression irrespective of photoperiods, temperatures and seasons, and the circadian rhythm of aanat2 gene expression responds differently to different photoperiods and temperatures in a season-dependent manner. Existence of circadian rhythm of aanat2 gene expression in pineal organs maintained in vitro under 12L-12D and DD conditions as well as a free running rhythm of the gene expression in pineal organ of the fish maintained under LL and DD conditions suggest that the fish pineal organ possesses an endogenous circadian oscillator, which is entrained by light-dark cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors.

    Science.gov (United States)

    Montgomery, David C; Sorum, Alexander W; Guasch, Laura; Nicklaus, Marc C; Meier, Jordan L

    2015-08-20

    The finding that chromatin modifications are sensitive to changes in cellular cofactor levels potentially links altered tumor cell metabolism and gene expression. However, the specific enzymes and metabolites that connect these two processes remain obscure. Characterizing these metabolic-epigenetic axes is critical to understanding how metabolism supports signaling in cancer, and developing therapeutic strategies to disrupt this process. Here, we describe a chemical approach to define the metabolic regulation of lysine acetyltransferase (KAT) enzymes. Using a novel chemoproteomic probe, we identify a previously unreported interaction between palmitoyl coenzyme A (palmitoyl-CoA) and KAT enzymes. Further analysis reveals that palmitoyl-CoA is a potent inhibitor of KAT activity and that fatty acyl-CoA precursors reduce cellular histone acetylation levels. These studies implicate fatty acyl-CoAs as endogenous regulators of histone acetylation, and suggest novel strategies for the investigation and metabolic modulation of epigenetic signaling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    International Nuclear Information System (INIS)

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:α-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal α-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from [ 3 H]CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with [ 3 H]acetyl-CoA. The acetyl group can be transferred to glucosamine, forming [ 3 H]N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism

  8. Translational coupling in Escherichia coli of a heterologous Bacillus subtilis-Escherichia coli gene fusion.

    OpenAIRE

    Zaghloul, T I; Doi, R H

    1986-01-01

    The efficient expression in Escherichia coli of the Tn9-derived chloramphenicol acetyltransferase (EC 2.3.1.28) gene fused distal to the promoter and N terminus of the Bacillus subtilis aprA gene was dependent on the initiation of translation from the ribosome-binding site in the aprA gene.

  9. Rapid quantitative assay for chloramphenicol acetyltransferase

    International Nuclear Information System (INIS)

    Neumann, J.R.; Morency, C.A.; Russian, K.O.

    1987-01-01

    Measuring the expression of exogenous genetic material in mammalian cells is commonly done by fusing the DNA of interest to a gene encoding an easily-detected enzyme. Chloramphenicol acetyltransferase(CAT) is a convenient marker because it is not normally found in eukaryotes. CAT activity has usually been detected using a thin-layer chromatographic separation followed by autoradiography. An organic solvent extraction-based method for CAT detection has also been described, as well as a procedure utilizing HPLC analysis. Building on the extraction technique, they developed a rapid sensitive kinetic method for measuring CAT activity in cell homogenates. The method exploits the differential organic solubility of the substrate ([ 3 H] or [ 14 C]acetyl CoA) and the product (labeled acetylchloramphenicol). The assay is a simple one-vial, two-phase procedure and requires no tedious manipulations after the initial setup. Briefly, a 0.25 ml reaction with 100mM Tris-HCL, 1mM chloramphenicol, 0.1mM [ 14 C]acetyl CoA and variable amounts of cell homogenate is pipetted into a miniscintillation vial, overlaid with 5 ml of a water-immiscible fluor, and incubated at 37 0 C. At suitable intervals the vial is counted and the CAT level is quantitatively determined as the rate of increase in counts/min of the labeled product as it diffuses into the fluor phase, compared to a standard curve. When used to measure CAT in transfected Balb 3T3 cells the method correlated well with the other techniques

  10. Crystallization and preliminary X-ray diffraction analysis of PAT, an acetyltransferase from Sulfolobus solfataricus

    International Nuclear Information System (INIS)

    Cho, Ching-Chang; Luo, Ching-Wei; Hsu, Chun-Hua

    2008-01-01

    PAT, an acetyltransferase from the archaeon S. solfataricus that specifically acetylates the chromatin protein Alba, was expressed, purified and crystallized. PAT is an acetyltransferase from the archaeon Sulfolobus solfataricus that specifically acetylates the chromatin protein Alba. The enzyme was expressed, purified and subsequently crystallized using the sitting-drop vapour-diffusion technique. Native diffraction data were collected to 1.70 Å resolution on the BL13C1 beamline of NSRRC from a flash-frozen crystal at 100 K. The crystals belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 44.30, b = 46.59, c = 68.39 Å

  11. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma

    DEFF Research Database (Denmark)

    van Beekum, Olivier; Brenkman, Arjan B; Grøntved, Lars

    2008-01-01

    The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism in adipocytes, by regulating their differentiation, maintenance, and function. The transcriptional activity of PPARgamma is dictated by the set...... in cells, and through use of chimeric proteins, we established that coactivation by Tip60 critically depends on the N-terminal activation function 1 of PPARgamma, a domain involved in isotype-specific gene expression and adipogenesis. Chromatin immunoprecipitation experiments showed that the endogenous Tip...... of proteins with which this nuclear receptor interacts under specific conditions. Here we identify the HIV-1 Tat-interacting protein 60 (Tip60) as a novel positive regulator of PPARgamma transcriptional activity. Using tandem mass spectrometry, we found that PPARgamma and the acetyltransferase Tip60 interact...

  12. Peroxisome proliferator-activated receptor gamma and spermidine/spermine N1-acetyltransferase gene expressions are significantly correlated in human colorectal cancer

    International Nuclear Information System (INIS)

    Linsalata, Michele; Giannini, Romina; Notarnicola, Maria; Cavallini, Aldo

    2006-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that regulates adipogenic differentiation and glucose homeostasis. Spermidine/spermine N 1 -acetyltransferase (SSAT) and ornithine decarboxylase (ODC) are key enzymes involved in the metabolism of polyamines, compounds that play an important role in cell proliferation. While the PPARγ role in tumour growth has not been clearly defined, the involvement of the altered polyamine metabolism in colorectal carcinogenesis has been established. In this direction, we have evaluated the PPARγ expression and its relationship with polyamine metabolism in tissue samples from 40 patients operated because of colorectal carcinoma. Since it is known that the functional role of K-ras mutation in colorectal tumorigenesis is associated with cell growth and differentiation, polyamine metabolism and the PPARγ expression were also investigated in terms of K-ras mutation. PPARγ, ODC and SSAT mRNA levels were evaluated by reverse transcriptase and real-time PCR. Polyamines were quantified by high performance liquid chromatography (HPLC). ODC and SSAT activity were measured by a radiometric technique. PPARγ expression, as well as SSAT and ODC mRNA levels were significantly higher in cancer as compared to normal mucosa. Tumour samples also showed significantly higher polyamine levels and ODC and SSAT activities in comparison to normal samples. A significant and positive correlation between PPARγ and the SSAT gene expression was observed in both normal and neoplastic tissue (r = 0.73, p < 0.0001; r = 0.65, p < 0.0001, respectively). Moreover, gene expression, polyamine levels and enzymatic activities were increased in colorectal carcinoma samples expressing K-ras mutation as compared to non mutated K-ras samples. In conclusion, our data demonstrated a close relationship between PPARγ and SSAT in human colorectal cancer and this could represent an attempt to decrease polyamine levels and to reduce cell

  13. RNA-seq analysis of overexpressing ovine AANAT gene of melatonin biosynthesis in switchgrass

    Directory of Open Access Journals (Sweden)

    Shan Yuan

    2016-08-01

    Full Text Available Melatonin serves important functions in the promotion of growth and anti-stress regulation by efficient radical scavenging and regulation of antioxidant enzyme activity in various plants. To investigate its regulatory roles and metabolism pathways, the transcriptomic profile of overexpressing the ovine arylalkylamine N-acetyltransferase (oAANAT gene, encoding the penultimate enzyme in melatonin biosynthesis, was compared with empty vector (EV control using RNA-seq in switchgrass, a model plant of cellulosic ethanol conversion. The 85.22 million high quality reads that were assembled into 135,684 unigenes were generated by Illumina sequencing for transgenic oAANAT switchgrass with an average sequence length of 716 bp. A total of 946 differential expression genes (DEGs in transgenic line comparing to control switchgrass, including 737 up-regulated and 209 down-regulated genes, were mainly enriched with two main functional patterns of melatonin identifying by gene ontology analysis: the growth regulator and stress tolerance. Furthermore, KEGG maps indicated that the biosynthetic pathways of secondary metabolite (phenylpropanoids, flavonoids, steroids, stilbenoid, diarylheptanoid and gingerol and signaling pathways (MAPK signaling pathway, estrogen signaling pathway were involved in melatonin metabolism. This study substantially expands the transcriptome information for switchgrass and provides valuable clues for identifying candidate genes involved in melatonin biosynthesis and elucidating the mechanism of melatonin metabolism.

  14. Ubiquitylation of the acetyltransferase MOF in Drosophila melanogaster.

    Science.gov (United States)

    Schunter, Sarah; Villa, Raffaella; Flynn, Victoria; Heidelberger, Jan B; Classen, Anne-Kathrin; Beli, Petra; Becker, Peter B

    2017-01-01

    The nuclear acetyltransferase MOF (KAT8 in mammals) is a subunit of at least two multi-component complexes involved in transcription regulation. In the context of complexes of the 'Non-Specific-Lethal' (NSL) type it controls transcription initiation of many nuclear housekeeping genes and of mitochondrial genes. While this function is conserved in metazoans, MOF has an additional, specific function in Drosophila in the context of dosage compensation. As a subunit of the male-specific-lethal dosage compensation complex (MSL-DCC) it contributes to the doubling of transcription output from the single male X chromosome by acetylating histone H4. Proper dosage compensation requires finely tuned levels of MSL-DCC and an appropriate distribution of MOF between the regulatory complexes. The amounts of DCC formed depends directly on the levels of the male-specific MSL2, which orchestrates the assembly of the DCC, including MOF recruitment. We found earlier that MSL2 is an E3 ligase that ubiquitylates most MSL proteins, including MOF, suggesting that ubiquitylation may contribute to a quality control of MOF's overall levels and folding state as well as its partitioning between the complex entities. We now used mass spectrometry to map the lysines in MOF that are ubiquitylated by MSL2 in vitro and identified in vivo ubiquitylation sites of MOF in male and female cells. MSL2-specific ubiquitylation in vivo could not be traced due to the dominance of other, sex-independent ubiquitylation events and conceivably may be rare or transient. Expressing appropriately mutated MOF derivatives we assessed the importance of the ubiquitylated lysines for dosage compensation by monitoring DCC formation and X chromosome targeting in cultured cells, and by genetic complementation of the male-specific-lethal mof2 allele in flies. Our study provides a comprehensive analysis of MOF ubiquitylation as a reference for future studies.

  15. Ubiquitylation of the acetyltransferase MOF in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sarah Schunter

    Full Text Available The nuclear acetyltransferase MOF (KAT8 in mammals is a subunit of at least two multi-component complexes involved in transcription regulation. In the context of complexes of the 'Non-Specific-Lethal' (NSL type it controls transcription initiation of many nuclear housekeeping genes and of mitochondrial genes. While this function is conserved in metazoans, MOF has an additional, specific function in Drosophila in the context of dosage compensation. As a subunit of the male-specific-lethal dosage compensation complex (MSL-DCC it contributes to the doubling of transcription output from the single male X chromosome by acetylating histone H4. Proper dosage compensation requires finely tuned levels of MSL-DCC and an appropriate distribution of MOF between the regulatory complexes. The amounts of DCC formed depends directly on the levels of the male-specific MSL2, which orchestrates the assembly of the DCC, including MOF recruitment. We found earlier that MSL2 is an E3 ligase that ubiquitylates most MSL proteins, including MOF, suggesting that ubiquitylation may contribute to a quality control of MOF's overall levels and folding state as well as its partitioning between the complex entities. We now used mass spectrometry to map the lysines in MOF that are ubiquitylated by MSL2 in vitro and identified in vivo ubiquitylation sites of MOF in male and female cells. MSL2-specific ubiquitylation in vivo could not be traced due to the dominance of other, sex-independent ubiquitylation events and conceivably may be rare or transient. Expressing appropriately mutated MOF derivatives we assessed the importance of the ubiquitylated lysines for dosage compensation by monitoring DCC formation and X chromosome targeting in cultured cells, and by genetic complementation of the male-specific-lethal mof2 allele in flies. Our study provides a comprehensive analysis of MOF ubiquitylation as a reference for future studies.

  16. Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation.

    Science.gov (United States)

    Kurat, Christoph F; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda

    2014-09-30

    DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase-specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APC(Cdh1)) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation.

  17. Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation

    Science.gov (United States)

    Kurat, Christoph F.; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda

    2014-01-01

    DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase–specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APCCdh1) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation. PMID:25228766

  18. p300 Acetyltransferase Regulates Androgen Receptor Degradation and PTEN-Deficient Prostate Tumorigenesis

    NARCIS (Netherlands)

    Zhong, J.; Ding, L.; Bohrer, L.R.; Pan, Y.; Liu, P.; Zhang, J.; Sebo, T.J.; Karnes, R.J.; Tindall, D.J.; Deursen, J.M. van; Huang, H.

    2014-01-01

    Overexpression of the histone acetyltransferase p300 is implicated in the proliferation and progression of prostate cancer, but evidence of a causal role is lacking. In this study, we provide genetic evidence that this generic transcriptional coactivator functions as a positive modifier of prostate

  19. Small molecule inhibitors of histone deacetylases and acetyltransferases as potential therapeutics in oncology

    NARCIS (Netherlands)

    van den Bosch, Thea; Leus, Niek; Timmerman, Tirza; Dekker, Frank J

    2016-01-01

    Uncontrolled cell proliferation and resistance to apoptosis in cancer are, among others, regulated by post-translational modifications of histone proteins. The most investigated type of histone modification is lysine acetylation. Histone acetyltransferases (HATs), acetylate histone lysine residues,

  20. Structural and functional characterization of an arylamine N-acetyltransferase from the pathogen Mycobacterium abscessus

    DEFF Research Database (Denmark)

    Cocaign, Angélique; Kubiak, Xavier Jean Philippe; Xu, Ximing

    2014-01-01

    Mycobacterium abscessus is the most pathogenic rapid-growing mycobacterium and is one of the most resistant organisms to chemotherapeutic agents. However, structural and functional studies of M. abscessus proteins that could modify/inactivate antibiotics remain nonexistent. Here, the structural...... is endogenously expressed and functional in both the rough and smooth M. abscessus morphotypes. The crystal structure of (MYCAB)NAT1 at 1.8 Å resolution reveals that it is more closely related to Nocardia farcinica NAT than to mycobacterial isoforms. In particular, structural and physicochemical differences from...... and functional characterization of an arylamine N-acetyltransferase (NAT) from M. abscessus [(MYCAB)NAT1] are reported. This novel prokaryotic NAT displays significant N-acetyltransferase activity towards aromatic substrates, including antibiotics such as isoniazid and p-aminosalicylate. The enzyme...

  1. Carnitine acetyltransferase: A new player in skeletal muscle insulin resistance?

    Directory of Open Access Journals (Sweden)

    Sofia Mikkelsen Berg

    2017-03-01

    Full Text Available Carnitine acetyltransferase (CRAT deficiency has previously been shown to result in muscle insulin resistance due to accumulation of long-chain acylcarnitines. However, differences in the acylcarnitine profile and/or changes in gene expression and protein abundance of CRAT in myotubes obtained from obese patients with type 2 diabetes mellitus (T2DM and glucose-tolerant obese and lean controls remain unclear. The objective of the study was to examine whether myotubes from obese patients with T2DM express differences in gene expression and protein abundance of CRAT and in acylcarnitine species pre-cultured under glucose and insulin concentrations similar to those observed in healthy individuals in the over-night fasted, resting state. Primary myotubes obtained from obese persons with or without T2DM and lean controls (n=9 in each group were cultivated and harvested for LC-MS-based profiling of acylcarnitines. The mRNA expression and protein abundance of CRAT were determined by qPCR and Western Blotting, respectively. Our results suggest that the mRNA levels and protein abundance of CRAT were similar between groups. Of the 14 different acylcarnitine species measured by LC-MS, the levels of palmitoylcarnitine (C16 and octadecanoylcarnitine (C18 were slightly reduced in myotubes derived from T2DM patients (p<0.05 compared to glucose-tolerant obese and lean controls. This suggests that the CRAT function is not the major contributor to primary insulin resistance in cultured myotubes obtained from obese T2DM patients.

  2. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors.

    Directory of Open Access Journals (Sweden)

    Linya You

    2015-03-01

    Full Text Available Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1 is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.

  3. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex

    Czech Academy of Sciences Publication Activity Database

    Benoni, Roberto; De Bei, O.; Paredi, G.; Hayes, C. S.; Franko, N.; Mozzarelli, A.; Bettati, S.; Campanini, B.

    2017-01-01

    Roč. 591, č. 9 (2017), s. 1212-1224 ISSN 0014-5793 Institutional support: RVO:61388963 Keywords : cysteine synthase * protein - protein interaction * serine acetyltransferase Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.623, year: 2016

  4. Defining the extreme substrate specificity of Euonymus alatus diacylglycerol acetyltransferase, an unusual membrane-bound O-acyltransferase

    Science.gov (United States)

    Bansal, Sunil; Durrett, Timothy P.

    2016-01-01

    Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. In vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. This improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants. PMID:27688773

  5. Risks on N-acetyltransferase 2 and bladder cancer: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Zhu Z

    2015-12-01

    Full Text Available Zongheng Zhu,1 Jinshan Zhang,2 Wei Jiang,3 Xianjue Zhang,4 Youkong Li,4 Xiaoming Xu51Department of General Surgery, Huangshi Love & Health Hospital, Huangshi, 2Department of Tumor surgery, Huangshi Central Hospital, Huangshi, 3Department of Urinary Surgery, Huangshi No 5 Hospital, Huangshi, 4Department of Urinary Surgery Jingzhou Central Hospital, Jingzhou, 5Department of Bone Surgery, Jingzhou Central Hospital, Jingzhou, People’s Republic of ChinaBackground: It is known that bladder cancer disease is closely related to aromatic amine compounds, which could cause cancer by regulating of N-acetylation and N-acetyltransferase 1 and 2 (NAT1 and NAT2. The NAT2 slowed acetylation and would increase the risk of bladder cancer, with tobacco smoke being regarded as a risk factor for this increased risk. However, the relationship between NAT2 slow acetylation and bladder cancer is still debatable at present. This study aims to explore preliminarily correlation of NAT2 slow acetylation and the risk of bladder cancer.Methods: The articles were searched from PubMed, Cochran, McGrane English databases, CBM, CNKI, and other databases. The extraction of bladder cancer patients and a control group related with the NAT2 gene were detected by the state, and the referenced articles and publications were also used for data retrieval. Using a random effects model, the model assumes that the studies included in the analysis cases belong to the overall population in the study of random sampling, and considering the variables within and between studies. Data were analyzed using STATA Version 6.0 software, using the META module. According to the inclusion and exclusion criteria of the literature study, 20 independent studies are included in this meta-analysis.Results: The results showed that the individual differences of bladder cancer susceptibility might be part of the metabolism of carcinogens. Slow acetylation status of bladder cancer associated with the pooled

  6. Structure of Mesorhizobium loti arylamine N-acetyltransferase 1

    Energy Technology Data Exchange (ETDEWEB)

    Holton, Simon J. [Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU (United Kingdom); Dairou, Julien [CNRS-UMR 7000, Faculté de Médecine Pitié-Salpêtrière, 105 Boulevard de l’Hôpital, 75013 Paris (France); Sandy, James [Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT (United Kingdom); Rodrigues-Lima, Fernando; Dupret, Jean-Marie [CNRS-UMR 7000, Faculté de Médecine Pitié-Salpêtrière, 105 Boulevard de l’Hôpital, 75013 Paris (France); UFR de Biochimie, Université Denis Diderot-Paris 7, 75005 Paris (France); Noble, Martin E. M. [Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU (United Kingdom); Sim, Edith, E-mail: edith.sim@pharm.ox.ac.uk [Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT (United Kingdom); Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU (United Kingdom)

    2005-01-01

    The crystal structure of a M. loti arylamine N-acetyltransferase 1 has been determined at 2.0 Å resolution. The arylamine N-acetyltransferase (NAT) enzymes have been found in a broad range of both eukaryotic and prokaryotic organisms. The NAT enzymes catalyse the transfer of an acetyl group from acetyl Co-enzyme A onto the terminal nitrogen of a range of arylamine, hydrazine and arylhydrazine compounds. Recently, several NAT structures have been reported from different prokaryotic sources including Salmonella typhimurium, Mycobacterium smegmatis and Pseudomonas aeruginosa. Bioinformatics analysis of the Mesorhizobium loti genome revealed two NAT paralogues, the first example of multiple NAT isoenzymes in a eubacterial organism. The M. loti NAT 1 enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme was crystallized in 0.5 M Ca(OAc){sub 2}, 16% PEG 3350, 0.1 M Tris–HCl pH 8.5 using the sitting-drop vapour-diffusion method. A data set diffracting to 2.0 Å was collected from a single crystal at 100 K. The crystal belongs to the orthorhombic spacegroup P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.2, b = 97.3, c = 114.3 Å. The structure was refined to a final free-R factor of 24.8%. The structure reveals that despite low sequence homology, M. loti NAT1 shares the common fold as reported in previous NAT structures and exhibits the same catalytic triad of residues (Cys-His-Asp) in the active site.

  7. Structure of Mesorhizobium loti arylamine N-acetyltransferase 1

    International Nuclear Information System (INIS)

    Holton, Simon J.; Dairou, Julien; Sandy, James; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Noble, Martin E. M.; Sim, Edith

    2004-01-01

    The crystal structure of a M. loti arylamine N-acetyltransferase 1 has been determined at 2.0 Å resolution. The arylamine N-acetyltransferase (NAT) enzymes have been found in a broad range of both eukaryotic and prokaryotic organisms. The NAT enzymes catalyse the transfer of an acetyl group from acetyl Co-enzyme A onto the terminal nitrogen of a range of arylamine, hydrazine and arylhydrazine compounds. Recently, several NAT structures have been reported from different prokaryotic sources including Salmonella typhimurium, Mycobacterium smegmatis and Pseudomonas aeruginosa. Bioinformatics analysis of the Mesorhizobium loti genome revealed two NAT paralogues, the first example of multiple NAT isoenzymes in a eubacterial organism. The M. loti NAT 1 enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme was crystallized in 0.5 M Ca(OAc) 2 , 16% PEG 3350, 0.1 M Tris–HCl pH 8.5 using the sitting-drop vapour-diffusion method. A data set diffracting to 2.0 Å was collected from a single crystal at 100 K. The crystal belongs to the orthorhombic spacegroup P2 1 2 1 2 1 , with unit-cell parameters a = 53.2, b = 97.3, c = 114.3 Å. The structure was refined to a final free-R factor of 24.8%. The structure reveals that despite low sequence homology, M. loti NAT1 shares the common fold as reported in previous NAT structures and exhibits the same catalytic triad of residues (Cys-His-Asp) in the active site

  8. [Gene deletion and functional analysis of the heptyl glycosyltransferase (waaF) gene in Vibrio parahemolyticus O-antigen cluster].

    Science.gov (United States)

    Zhao, Feng; Meng, Songsong; Zhou, Deqing

    2016-02-04

    To construct heptyl glycosyltransferase gene II (waaF) gene deletion mutant of Vibrio parahaemolyticus, and explore the function of the waaF gene in Vibrio parahaemolyticus. The waaF gene deletion mutant was constructed by chitin-based transformation technology using clinical isolates, and then the growth rate, morphology and serotypes were identified. The different sources (O3, O5 and O10) waaF gene complementations were constructed through E. coli S17λpir strains conjugative transferring with Vibrio parahaemolyticus, and the function of the waaF gene was further verified by serotypes. The waaF gene deletion mutant strain was successfully constructed and it grew normally. The growth rate and morphology of mutant were similar with the wild type strains (WT), but the mutant could not occurred agglutination reaction with O antisera. The O3 and O5 sources waaF gene complementations occurred agglutination reaction with O antisera, but the O10 sources waaF gene complementations was not. The waaF gene was related with O-antigen synthesis and it was the key gene of O-antigen synthesis pathway in Vibrio parahaemolyticus. The function of different sources waaF gene were not the same.

  9. Crystallization of ornithine acetyltransferase from yeast by counter-diffusion and preliminary X-ray study

    Energy Technology Data Exchange (ETDEWEB)

    Maes, Dominique, E-mail: dominique.maes@vub.ac.be; Crabeel, Marjolaine [Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel (VUB) and Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussels (Belgium); Van de Weerdt, Cécile; Martial, Joseph [Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liège, Allée de la Chimie 3, B-4000 Liège (Belgium); Peeters, Eveline; Charlier, Daniël [Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels (Belgium); Decanniere, Klaas; Vanhee, Celine; Wyns, Lode; Zegers, Ingrid [Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel (VUB) and Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussels (Belgium)

    2006-12-01

    A study on the crystallization of ornithine acetyltransferase from yeast, catalysing the fifth step in microbial arginine synthesis, is presented. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either batch or hanging-drop techniques. A study is presented on the crystallization of ornithine acetyltransferase from yeast, which catalyzes the fifth step in microbial arginine synthesis. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either the batch or hanging-drop techniques. This makes the difference between useless crystals and crystals that allow successful determination of the structure of the protein. The crystals belong to space group P4, with unit-cell parameters a = b = 66.98, c = 427.09 Å, and a data set was collected to 2.76 Å.

  10. The Spt-Ada-Gcn5 Acetyltransferase (SAGA complex in Aspergillus nidulans.

    Directory of Open Access Journals (Sweden)

    Paraskevi Georgakopoulos

    Full Text Available A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate, but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA complex, the SAGA complex may have a role in acetate repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination (DUB module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus, deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.

  11. 3D structure prediction of histone acetyltransferase (HAC proteins of the p300/CBP family and their interactome in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Amar Cemanovic

    2014-09-01

    Full Text Available Histone acetylation is an important posttranslational modification correlated with gene activation. In Arabidopsis thaliana the histone acetyltransferase (HAC proteins of the CBP family are homologous to animal p300/CREB (cAMP-responsive element-binding proteins, which are important histone acetyltransferases participating in many physiological processes, including proliferation, differentiation, and apoptosis. In this study the 3-D structure of all HAC protein subunits in Arabidopsis thaliana: HAC1, HAC2, HAC4, HAC5 and HAC12 is predicted by homology modeling and confirmed by Ramachandran plot analysis. The amino acid sequences HAC family members are highly similar to the sequences of the homologous human p300/CREB protein. Conservation of p300/CBP domains among the HAC proteins was examined further by sequence alignment and pattern search. The domains of p300/CBP required for the HAC function, such as PHD, TAZ and ZZ domains, are conserved in all HAC proteins. Interactome analysis revealed that HAC1, HAC5 and HAC12 proteins interact with S-adenosylmethionine-dependent methyltransferase domaincontaining protein that shows methyltransferase activity, suggesting an additional function of the HAC proteins. Additionally, HAC5 has a strong interaction value for the putative c-myb-like transcription factor MYB3R-4, which suggests that it also may have a function in regulation of DNA replication.

  12. No germline mutations in the histone acetyltransferase gene EP300 in BRCA1 and BRCA2 negative families with breast cancer and gastric, pancreatic, or colorectal cancer

    International Nuclear Information System (INIS)

    Campbell, Ian G; Choong, David; Chenevix-Trench, Georgia

    2004-01-01

    Mutations in BRCA1, BRCA2, ATM, TP53, CHK2 and PTEN account for many, but not all, multiple-case breast and ovarian cancer families. The histone acetyltransferase gene EP300 may function as a tumour suppressor gene because it is sometimes somatically mutated in breast, colorectal, gastric and pancreatic cancers, and is located on a region of chromosome 22 that frequently undergoes loss of heterozygosity in many cancer types. We hypothesized that germline mutations in EP300 may account for some breast cancer families that include cases of gastric, pancreatic and/or colorectal cancer. We screened the entire coding region of EP300 for mutations in the youngest affected members of 23 non-BRCA1/BRCA2 breast cancer families with at least one confirmed case of gastric, pancreatic and/or colorectal cancer. These families were ascertained in Australia through the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. Denaturing HPLC analysis identified a heterozygous alteration at codon 211, specifically a GGC to AGC (glycine to serine) alteration, in two individuals. This conservative amino acid change was not within any known functional domains of EP300. The frequency of the Ser211 variant did not differ significanlty between a series of 352 breast cancer patients (4.0%) and 254 control individuals (2.8%; P = 0.5). The present study does not support a major role for EP300 mutations in breast and ovarian cancer families with a history of gastric, pancreatic and/or colorectal cancer

  13. Regulation of Histone Acetyltransferase TIP60 Function by Histone Deacetylase 3

    Science.gov (United States)

    Yi, Jingjie; Huang, Xiangyang; Yang, Yuxia; Zhu, Wei-Guo; Gu, Wei; Luo, Jianyuan

    2014-01-01

    The key member of the MOZ (monocyticleukaemia zinc finger protein), Ybf2/Sas3, Sas2, and TIP60 acetyltransferases family, Tat-interactive protein, 60 kD (TIP60), tightly modulates a wide array of cellular processes, including chromatin remodeling, gene transcription, apoptosis, DNA repair, and cell cycle arrest. The function of TIP60 can be regulated by SIRT1 through deacetylation. Here we found that TIP60 can also be functionally regulated by HDAC3. We identified six lysine residues as its autoacetylation sites. Mutagenesis of these lysines to arginines completely abolishes the autoacetylation of TIP60. Overexpression of HDAC3 increases TIP60 ubiquitination levels. However, unlike SIRT1, HDAC3 increased the half-life of TIP60. Further study found that HDAC3 colocalized with TIP60 both in the nucleus and the cytoplasm, which could be the reason why HDAC3 can stabilize TIP60. The deacetylation of TIP60 by both SIRT1 and HDAC3 reduces apoptosis induced by DNA damage. Knockdown of HDAC3 in cells increased TIP60 acetylation levels and increased apoptosis after DNA damage. Together, our findings provide a better understanding of TIP60 regulation mechanisms, which is a significant basis for further studies of its cellular functions. PMID:25301942

  14. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    Science.gov (United States)

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction.

    Science.gov (United States)

    Park, Dongsun; Lee, Hong Jun; Joo, Seong Soo; Bae, Dae-Kwon; Yang, Goeun; Yang, Yun-Hui; Lim, Inja; Matsuo, Akinori; Tooyama, Ikuo; Kim, Yun-Bae; Kim, Seung U

    2012-04-01

    A human neural stem cell (NSC) line over-expressing human choline acetyltransferase (ChAT) gene was generated and these F3.ChAT NSCs were transplanted into the brain of rat Alzheimer disease (AD) model which was induced by application of ethylcholine mustard aziridinium ion (AF64A) that specifically denatures cholinergic nerves and thereby leads to memory deficit as a salient feature of AD. Transplantation of F3.ChAT human NSCs fully recovered the learning and memory function of AF64A animals, and induced elevated levels of acetylcholine (ACh) in cerebrospinal fluid (CSF). Transplanted F3.ChAT human NSCs were found to migrate to various brain regions including cerebral cortex, hippocampus, striatum and septum, and differentiated into neurons and astrocytes. The present study demonstrates that brain transplantation of human NSCs over-expressing ChAT ameliorates complex learning and memory deficits in AF64A-cholinotoxin-induced AD rat model. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tzu-Chin [Chest Clinic, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Yi-Chin [Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan (China); Chen, Hsiao-Ling [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Huang, Pei-Ru; Liu, Shang-Yu [Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan (China); Yeh, Shu-Lan, E-mail: suzyyeh@csmu.edu.tw [Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan (China); Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2016-02-01

    Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhanced TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation. - Highlights: • Genistein enhances the antitumor effect of TSA through p53-associated pathways. • Genistein enhances TSA-induced histone acetylation commonly. • An acetyltransferase inhibitor diminishes the antitumor effect of genistein + TSA. • TSA in combination with genistein increases the expression of p300. • Genistein given by i.p. injection increases the antitumor effect of TSA in vivo.

  17. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase

    International Nuclear Information System (INIS)

    Wu, Tzu-Chin; Lin, Yi-Chin; Chen, Hsiao-Ling; Huang, Pei-Ru; Liu, Shang-Yu; Yeh, Shu-Lan

    2016-01-01

    Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhanced TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation. - Highlights: • Genistein enhances the antitumor effect of TSA through p53-associated pathways. • Genistein enhances TSA-induced histone acetylation commonly. • An acetyltransferase inhibitor diminishes the antitumor effect of genistein + TSA. • TSA in combination with genistein increases the expression of p300. • Genistein given by i.p. injection increases the antitumor effect of TSA in vivo.

  18. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism.

    Science.gov (United States)

    Gómez-Rodríguez, Elida Yazmín; Uresti-Rivera, Edith Elena; Patrón-Soberano, Olga Araceli; Islas-Osuna, María Auxiliadora; Flores-Martínez, Alberto; Riego-Ruiz, Lina; Rosales-Saavedra, María Teresa; Casas-Flores, Sergio

    2018-01-01

    Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1), a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA), a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF) to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression of mycoparasitism

  19. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism.

    Directory of Open Access Journals (Sweden)

    Elida Yazmín Gómez-Rodríguez

    Full Text Available Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1, a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA, a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression

  20. Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat

    International Nuclear Information System (INIS)

    Kenney, S.; Kamine, J.; Markovitz, D.; Fenrick, R.; Pagano, J.

    1988-01-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses

  1. A human parvovirus, adeno-associated virus, as a eucaryotic vector: Transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Tratschin, J.D.; West, M.H.P.; Sandbank, T.; Carter, B.J.

    1984-10-01

    The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/ (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.

  2. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Christina L. [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Winn, Louise M., E-mail: winnl@queensu.ca [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2016-09-01

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5 mM VPA over 24 h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. - Highlights: • VPA exposure in vitro downregulates Cbp/p300 mRNA and induces protein degradation. • Cbp/p300 histone acetyltransferase activity is similarly reduced with VPA exposure. • Inhibition of Cbp/p300 acetyltransferase activity

  3. Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase.

    Science.gov (United States)

    Costi, Roberta; Di Santo, Roberto; Artico, Marino; Miele, Gaetano; Valentini, Paola; Novellino, Ettore; Cereseto, Anna

    2007-04-19

    Cinnamoly compounds 1a-c and 2a-d were designed, synthesized, and in vitro tested as p300 inhibitors. At different degrees, all tested compounds were proven to inactivate p300, particularly, derivative 2c was the most active inhibitor, also showing high specificity for p300 as compared to other histone acetyltransferases. Most notably, 2c showed anti-acetylase activity in mammalian cells. These compounds represent a new class of synthetic inhibitors of p300, characterized by simple chemical structures.

  4. Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni.

    Science.gov (United States)

    Ha, Reuben; Frirdich, Emilisa; Sychantha, David; Biboy, Jacob; Taveirne, Michael E; Johnson, Jeremiah G; DiRita, Victor J; Vollmer, Waldemar; Clarke, Anthony J; Gaynor, Erin C

    2016-10-21

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The Fusarium graminearum Histone Acetyltransferases Are Important for Morphogenesis, DON Biosynthesis, and Pathogenicity

    Directory of Open Access Journals (Sweden)

    Xiangjiu Kong

    2018-04-01

    Full Text Available Post-translational modifications of chromatin structure by histone acetyltransferase (HATs play a central role in the regulation of gene expression and various biological processes in eukaryotes. Although HAT genes have been studied in many fungi, few of them have been functionally characterized. In this study, we identified and characterized four putative HATs (FgGCN5, FgRTT109, FgSAS2, FgSAS3 in the plant pathogenic ascomycete Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. We replaced the genes and all mutant strains showed reduced growth of F. graminearum. The ΔFgSAS3 and ΔFgGCN5 mutant increased sensitivity to oxidative and osmotic stresses. Additionally, ΔFgSAS3 showed reduced conidia sporulation and perithecium formation. Mutant ΔFgGCN5 was unable to generate any conidia and lost its ability to form perithecia. Our data showed also that FgSAS3 and FgGCN5 are pathogenicity factors required for infecting wheat heads as well as tomato fruits. Importantly, almost no Deoxynivalenol (DON was produced either in ΔFgSAS3 or ΔFgGCN5 mutants, which was consistent with a significant downregulation of TRI genes expression. Furthermore, we discovered for the first time that FgSAS3 is indispensable for the acetylation of histone site H3K4, while FgGCN5 is essential for the acetylation of H3K9, H3K18, and H3K27. H3K14 can be completely acetylated when FgSAS3 and FgGCN5 were both present. The RNA-seq analyses of the two mutant strains provide insight into their functions in development and metabolism. Results from this study clarify the functional divergence of HATs in F. graminearum, and may provide novel targeted strategies to control secondary metabolite expression and infections of F. graminearum.

  6. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot

    International Nuclear Information System (INIS)

    Landa, Premysl; Vankova, Radomira; Andrlova, Jana; Hodek, Jan; Marsik, Petr; Storchova, Helena; White, Jason C.; Vanek, Tomas

    2012-01-01

    Highlights: ► Exposure to different nanoparticles resulted in specific changes in gene transcription. ► Nano ZnO caused most dramatic changes in Arabidopsis gene expression. ► Nano ZnO was the most toxic and up-regulated most stress-related genes. ► Fullerene soot caused significant gene expression response – mainly stress-related. ► Nano TiO 2 had weak impact on Arabidopsis gene expression indicating minimal toxicity. - Abstract: The effect of exposure to 100 mg/L zinc oxide (nZnO), fullerene soot (FS) or titanium dioxide (nTiO 2 ) nanoparticles on gene expression in Arabidopsis thaliana roots was studied using microarrays. After 7 d, nZnO, FS, or nTiO 2 exposure resulted in 660 up- and 826 down-regulated genes, 232 up- and 189 down-regulated genes, and 80 up- and 74 down-regulated genes, respectively (expression difference > 2-fold; p[t test] 2 exposure, which resulted in up- and down-regulation of genes involved mainly in responses to biotic and abiotic stimuli. The data clearly indicate that the mechanisms of phytotoxicity are highly nanoparticle dependent despite of a limited overlap in gene expression response.

  7. Mutation of the CH1 Domain in the Histone Acetyltransferase CREBBP Results in Autism-Relevant Behaviors in Mice.

    Directory of Open Access Journals (Sweden)

    Fei Zheng

    Full Text Available Autism spectrum disorders (ASDs are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP cause Rubinstein-Taybi Syndrome (RTS, a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300 as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1 domain (CBPΔCH1/ΔCH1 have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations.

  8. Effect of dietary γ-aminobutyric acid on the nerve growth factor and the choline acetyltransferase in the cerebral cortex and hippocampus of ovariectomized female rats.

    Science.gov (United States)

    Tujioka, Kazuyo; Thanapreedawat, Panicha; Yamada, Takashi; Yokogoshi, Hidehiko; Horie, Kenji; Kim, Mujo; Tsutsui, Kazumi; Hayase, Kazutoshi

    2014-01-01

    The brain protein synthesis and the plasma concentration of growth hormone (GH) is sensitive to the dietary γ-aminobutyric acid (GABA) in ovariectomized female rats; however, the role of dietary GABA on biomarkers including nerve growth factor (NGF) and choline acetyltransferase for the function of cholinergic neurons remains unknown in ovariectomized female rats. The purpose of this study was to determine whether the dietary GABA affects the concentration and mRNA level of NGF, and the activity of choline acetyltransferase in the brains of ovariectomized female rats. Experiments were done on two groups of 24-wk-old ovariectomized female rats given 0 or 0.5% GABA added to a 20% casein diet. The concentrations of NGF and activities of choline acetyltransferase in the cerebral cortex and hippocampus, and mRNA level of NGF in the hippocampus increased significantly with the 20% casein+0.5% GABA compared with the 20% casein diet alone. In the hippocampus, the mRNA level of NGF significantly correlated with the NGF concentration (r=0.714, pGABA to ovariectomized female rats is likely to control the mRNA level and concentration of NGF and cause an increase in the activity of choline acetyltransferase in the brains.

  9. Structure and gene cluster of the O-antigen of Escherichia coli O54.

    Science.gov (United States)

    Naumenko, Olesya I; Guo, Xi; Senchenkova, Sof'ya N; Geng, Peng; Perepelov, Andrei V; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2018-06-15

    Mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O54 afforded an O-polysaccharide, which was studied by sugar analysis, solvolysis with anhydrous trifluoroacetic acid, and 1 H and 13 C NMR spectroscopy. Solvolysis cleaved predominantly the linkage of β-d-Ribf and, to a lesser extent, that of β-d-GlcpNAc, whereas the other linkages, including the linkage of α-l-Rhap, were stable under selected conditions (40 °C, 5 h). The following structure of the O-polysaccharide was established: →4)-α-d-GalpA-(1 → 2)-α-l-Rhap-(1 → 2)-β-d-Ribf-(1 → 4)-β-d-Galp-(1 → 3)-β-d-GlcpNAc-(1→ The O-antigen gene cluster of E. coli O54 was analyzed and found to be consistent in general with the O-polysaccharide structure established but there were two exceptions: i) in the cluster, there were genes for phosphoserine phosphatase and serine transferase, which have no apparent role in the O-polysaccharide synthesis, and ii) no ribofuranosyltransferase gene was present in the cluster. Both uncommon features are shared by some other enteric bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO{sub 2}, and fullerene soot

    Energy Technology Data Exchange (ETDEWEB)

    Landa, Premysl [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Vankova, Radomira [Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Andrlova, Jana [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Department of Crop Sciences and Agroforestry, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, 165 21 Prague 6 - Suchdol (Czech Republic); Hodek, Jan [Department of Molecular Biology, Crop Research Institute, v.v.i., 161 06 Praha 6 - Ruzyne (Czech Republic); Marsik, Petr [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Storchova, Helena [Plant Reproduction Laboratory, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); White, Jason C. [Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06512 (United States); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Exposure to different nanoparticles resulted in specific changes in gene transcription. Black-Right-Pointing-Pointer Nano ZnO caused most dramatic changes in Arabidopsis gene expression. Black-Right-Pointing-Pointer Nano ZnO was the most toxic and up-regulated most stress-related genes. Black-Right-Pointing-Pointer Fullerene soot caused significant gene expression response - mainly stress-related. Black-Right-Pointing-Pointer Nano TiO{sub 2} had weak impact on Arabidopsis gene expression indicating minimal toxicity. - Abstract: The effect of exposure to 100 mg/L zinc oxide (nZnO), fullerene soot (FS) or titanium dioxide (nTiO{sub 2}) nanoparticles on gene expression in Arabidopsis thaliana roots was studied using microarrays. After 7 d, nZnO, FS, or nTiO{sub 2} exposure resulted in 660 up- and 826 down-regulated genes, 232 up- and 189 down-regulated genes, and 80 up- and 74 down-regulated genes, respectively (expression difference > 2-fold; p[t test] < 0.05). The genes induced by nZnO and FS include mainly ontology groups annotated as stress responsive, including both abiotic (oxidative, salt, water deprivation) and biotic (wounding and defense to pathogens) stimuli. The down-regulated genes upon nZnO exposure were involved in cell organization and biogenesis, including translation, nucleosome assembly and microtubule based process. FS largely repressed the transcription of genes involved in electron transport and energy pathways. Only mild changes in gene expression were observed upon nTiO{sub 2} exposure, which resulted in up- and down-regulation of genes involved mainly in responses to biotic and abiotic stimuli. The data clearly indicate that the mechanisms of phytotoxicity are highly nanoparticle dependent despite of a limited overlap in gene expression response.

  11. An Acetyltransferase Conferring Tolerance to Toxic Aromatic Amine Chemicals

    Science.gov (United States)

    Martins, Marta; Rodrigues-Lima, Fernando; Dairou, Julien; Lamouri, Aazdine; Malagnac, Fabienne; Silar, Philippe; Dupret, Jean-Marie

    2009-01-01

    Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils. PMID:19416981

  12. Immunolocalization of choline acetyltransferase of common type in the central brain mass of Octopus vulgaris

    Directory of Open Access Journals (Sweden)

    A. Casini

    2012-07-01

    Full Text Available Acetylcholine, the first neurotransmitter to be identified in the vertebrate frog, is widely distributed among the animal kingdom. The presence of a large amount of acetylcholine in the nervous system of cephalopods is well known from several biochemical and physiological studies. However, little is known about the precise distribution of cholinergic structures due to a lack of a suitable histochemical technique for detecting acetylcholine. The most reliable method to visualize the cholinergic neurons is the immunohistochemical localization of the enzyme choline acetyltransferase, the synthetic enzyme of acetylcholine. Following our previous study on the distribution patterns of cholinergic neurons in the Octopus vulgaris visual system, using a novel antibody that recognizes choline acetyltransferase of the common type (cChAT, now we extend our investigation on the octopus central brain mass. When applied on sections of octopus central ganglia, immunoreactivity for cChAT was detected in cell bodies of all central brain mass lobes with the notable exception of the subfrontal and subvertical lobes. Positive varicosed nerves fibers where observed in the neuropil of all central brain mass lobes.

  13. Immunolocalization of choline acetyltransferase of common type in the central brain mass of Octopus vulgaris.

    Science.gov (United States)

    Casini, A; Vaccaro, R; D'Este, L; Sakaue, Y; Bellier, J P; Kimura, H; Renda, T G

    2012-07-19

    Acetylcholine, the first neurotransmitter to be identified in the vertebrate frog, is widely distributed among the animal kingdom. The presence of a large amount of acetylcholine in the nervous system of cephalopods is well known from several biochemical and physiological studies. However, little is known about the precise distribution of cholinergic structures due to a lack of a suitable histochemical technique for detecting acetylcholine. The most reliable method to visualize the cholinergic neurons is the immunohistochemical localization of the enzyme choline acetyltransferase, the synthetic enzyme of acetylcholine. Following our previous study on the distribution patterns of cholinergic neurons in the Octopus vulgaris visual system, using a novel antibody that recognizes choline acetyltransferase of the common type (cChAT), now we extend our investigation on the octopus central brain mass. When applied on sections of octopus central ganglia, immunoreactivity for cChAT was detected in cell bodies of all central brain mass lobes with the notable exception of the subfrontal and subvertical lobes. Positive varicosed nerves fibers where observed in the neuropil of all central brain mass lobes.

  14. Insight into cofactor recognition in arylamine N-acetyltransferase enzymes

    DEFF Research Database (Denmark)

    Xu, Ximing; Li de la Sierra-Gallay, Inés; Kubiak, Xavier Jean Philippe

    2015-01-01

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of arylamines. To better understand the mode of binding of the cofactor by this family of enzymes, the structure of Mesorhizobium loti NAT1 [(RHILO)NAT1] was determined...... for Bacillus anthracis NAT1 and Homo sapiens NAT2. Therefore, in contrast to previous data, this study shows that different orthologous NATs can bind their cofactors in a similar way, suggesting that the mode of binding CoA in this family of enzymes is less diverse than previously thought. Moreover......, it supports the notion that the presence of the `mammalian/eukaryotic insertion loop' in certain NAT enzymes impacts the mode of binding CoA by imposing structural constraints....

  15. Selective production of deacetylated mannosylerythritol lipid, MEL-D, by acetyltransferase disruption mutant of Pseudozyma hubeiensis.

    Science.gov (United States)

    Konishi, Masaaki; Makino, Motoki

    2018-01-01

    Mannosylerythritol lipids (MELs) are produced by several smut fungi of the Ustilaginaceae family; they are promising microbial biosurfactants and have excellent surface-active and self-assembling properties. Pseudozyma hubeiensis is a candidate for abundant MEL production and produces large amounts of 4-O-[(4'-mono-O-acetyl-2',3'-di-O-alkanoyl)-β-d-mannopyranosyl]-meso-erythritol (MEL-C). An acetyltransferase disruption mutant of P. hubeiensis, SY62-MM36, was obtained to selectively produce deacetylated 4-O-[(2',3'-di-O-alkanoyl)-β-d-mannopyranosyl]-meso-erythritol (MEL-D), and the structures of the products were determined. Lower mobility of major spots of the mutant on silica gel thin-layer chromatography verified its more hydrophilic nature than that of wild-type MEL-A, B, and C. Structural analyses confirmed the product to be MEL-D, which comprises acyl chains of caproic acid (C6:0), capric acid (C10:0), and lauric acid (C12:0). The critical micelle concentration (CMC) and the surface tension (γCMC) of the MEL-D were 2.0 × 10 -5  M and 29.7 mN/m, respectively. SY62-MM36 also produced a minor product that was estimated as triacylated MEL-D. The triacylated MEL-D had a CMC of 3.5 × 10 -5  M and a γCMC of 29.6 mN/m. In water, MEL-D formed a lamella liquid crystal phase over a broad range of concentrations. By fed-batch cultivation, the mutant produced 91.6 ± 6.3 g/L of MEL-D for 7 days. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Histone acetyltransferase inhibitors antagonize AMP-activated protein kinase in postmortem glycolysis

    Directory of Open Access Journals (Sweden)

    Qiong Li

    2017-06-01

    Full Text Available Objective The purpose of this study was to investigate the influence of AMP-activated protein kinase (AMPK activation on protein acetylation and glycolysis in postmortem muscle to better understand the mechanism by which AMPK regulates postmortem glycolysis and meat quality. Methods A total of 32 mice were randomly assigned to four groups and intraperitoneally injected with 5-Aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR, a specific activator of AMPK, AICAR and histone acetyltransferase inhibitor II, or AICAR, Trichostatin A (TSA, an inhibitor of histone deacetylase I and II and Nicotinamide (NAM, an inhibitor of the Sirt family deacetylases. After mice were euthanized, the Longissimus dorsi muscle was collected at 0 h, 45 min, and 24 h postmortem. AMPK activity, protein acetylation and glycolysis in postmortem muscle were measured. Results Activation of AMPK by AICAR significantly increased glycolysis in postmortem muscle. At the same time, it increased the total acetylated proteins in muscle 45 min postmortem. Inhibition of protein acetylation by histone acetyltransferase inhibitors reduced AMPK activation induced increase in the total acetylated proteins and glycolytic rate in muscle early postmortem, while histone deacetylase inhibitors further promoted protein acetylation and glycolysis. Several bands of proteins were detected to be differentially acetylated in muscle with different glycolytic rates. Conclusion Protein acetylation plays an important regulatory role in postmortem glycolysis. As AMPK mediates the effects of pre-slaughter stress on postmortem glycolysis, protein acetylation is likely a mechanism by which antemortem stress influenced postmortem metabolism and meat quality though the exact mechanism is to be elucidated.

  17. Acetyl coenzyme A synthetase is acetylated on multiple lysine residues by a protein acetyltransferase with a single Gcn5-type N-acetyltransferase (GNAT) domain in Saccharopolyspora erythraea.

    Science.gov (United States)

    You, Di; Yao, Li-Li; Huang, Dan; Escalante-Semerena, Jorge C; Ye, Bang-Ce

    2014-09-01

    Reversible lysine acetylation (RLA) is used by cells of all domains of life to modulate protein function. To date, bacterial acetylation/deacetylation systems have been studied in a few bacteria (e.g., Salmonella enterica, Bacillus subtilis, Escherichia coli, Erwinia amylovora, Mycobacterium tuberculosis, and Geobacillus kaustophilus), but little is known about RLA in antibiotic-producing actinomycetes. Here, we identify the Gcn5-like protein acetyltransferase AcuA of Saccharopolyspora erythraea (SacAcuA, SACE_5148) as the enzyme responsible for the acetylation of the AMP-forming acetyl coenzyme A synthetase (SacAcsA, SACE_2375). Acetylated SacAcsA was deacetylated by a sirtuin-type NAD(+)-dependent consuming deacetylase (SacSrtN, SACE_3798). In vitro acetylation/deacetylation of SacAcsA enzyme was studied by Western blotting, and acetylation of lysine residues Lys(237), Lys(380), Lys(611), and Lys(628) was confirmed by mass spectrometry. In a strain devoid of SacAcuA, none of the above-mentioned Lys residues of SacAcsA was acetylated. To our knowledge, the ability of SacAcuA to acetylate multiple Lys residues is unique among AcuA-type acetyltransferases. Results from site-specific mutagenesis experiments showed that the activity of SacAcsA was controlled by lysine acetylation. Lastly, immunoprecipitation data showed that in vivo acetylation of SacAcsA was influenced by glucose and acetate availability. These results suggested that reversible acetylation may also be a conserved regulatory posttranslational modification strategy in antibiotic-producing actinomycetes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-κB acetylation in fibroblast-like synoviocyte MH7A cells

    International Nuclear Information System (INIS)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul; Lee, Mee-Hee; Lee, Yoo-Hyun; Lee, Jeongmin; Jun, Woojin; Kim, Sunoh; Yoon, Ho-Geun

    2011-01-01

    Highlights: → Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. → Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. → Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-κB. → Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKBα. Accordingly, DP treatment inhibited TNFα-stimulated increases in NF-κB function and expression of NF-κB target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  19. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Lee, Mee-Hee [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Lee, Yoo-Hyun [Department of Food Science and Nutrition, The University of Suwon, Kyunggi-do (Korea, Republic of); Lee, Jeongmin [Department of Medical Nutrition, Kyung Hee University, Kyunggi-do (Korea, Republic of); Jun, Woojin [Department of Food and Nutrition, Chonnam National University, Gwangju (Korea, Republic of); Kim, Sunoh, E-mail: sunoh@korea.ac.kr [Jeollanamdo Institute of Natural Resources Research, Jeonnam (Korea, Republic of); Yoon, Ho-Geun, E-mail: yhgeun@yuhs.ac [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2011-07-08

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  20. Detection of cholera (ctx) and zonula occludens (zot) toxin genes in Vibrio cholerae O1, O139 and non-O1 strains.

    Science.gov (United States)

    Rivera, I G; Chowdhury, M A; Sanchez, P S; Sato, M I; Huq, A; Colwell, R R; Martins, M T

    1995-09-01

    Vibrio cholerae O1 and V. cholerae non-O1 strains isolated from environmental samples collected in São Paulo, Brazil, during cholera epidemics and pre-epidemic periods were examined for the presence of toxin genes. V. cholerae O1 strains isolated from clinical samples in Peru and Mexico, and V. cholerae O139 strains from India were also examined for the presence of ctx (cholera toxin gene) and zot (zonula occludens toxin gene) by polymerase chain reaction (PCR). A modified DNA-extraction method applied in this study yielded satisfactory recovery of genomic DNA from vibrios. Results showed that strains of V. cholerae O1 isolated during the preepidemic period were ctx (-)/zot (-) whereas strains isolated during the epidemic were ctx (+)/zot (+). All V. cholerae non-O1 strains tested in the study were ctx (-)/zot (-), whereas all V. cholerae O139 strains were ctx (+)/zot (+). Rapid detection of the virulence genes (ctx and zot) can be achieved by PCR and this can serve as an important tool in the epidemiology and surveillance of V. cholerae.

  1. Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro.

    Science.gov (United States)

    Nancolas, Bethany; Bull, Ian D; Stenner, Richard; Dufour, Virginie; Curnow, Paul

    2017-06-01

    The alcohol-O-acyltransferases are bisubstrate enzymes that catalyse the transfer of acyl chains from an acyl-coenzyme A (CoA) donor to an acceptor alcohol. In the industrial yeast Saccharomyces cerevisiae this reaction produces acyl esters that are an important influence on the flavour of fermented beverages and foods. There is also a growing interest in using acyltransferases to produce bulk quantities of acyl esters in engineered microbial cell factories. However, the structure and function of the alcohol-O-acyltransferases remain only partly understood. Here, we recombinantly express, purify and characterize Atf1p, the major alcohol acetyltransferase from S. cerevisiae. We find that Atf1p is promiscuous with regard to the alcohol cosubstrate but that the acyltransfer activity is specific for acetyl-CoA. Additionally, we find that Atf1p is an efficient thioesterase in vitro with specificity towards medium-chain-length acyl-CoAs. Unexpectedly, we also find that mutating the supposed catalytic histidine (H191) within the conserved HXXXDG active site motif only moderately reduces the thioesterase activity of Atf1p. Our results imply a role for Atf1p in CoA homeostasis and suggest that engineering Atf1p to reduce the thioesterase activity could improve product yields of acetate esters from cellular factories. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.

  2. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    Science.gov (United States)

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Are the angiotensin-converting enzime gene and acticity risk factors for stroke? São fatores de risco para acidente vascular cerebral o gene e a atividade da enzima conversora de angiotensina ?

    Directory of Open Access Journals (Sweden)

    Miris Dikmen

    2006-06-01

    Full Text Available Stroke is a multifactorial disease in which genetic factors play an important role. This study was carried out to determine angiotensin-converting enzyme (ACE gene polymorphism in Turkish acute stroke patients and to establish whether there is an association of angiotensin-converting enzyme gene I/D polymorphism with clinical parameters. In this study 185 patients and 50 controls were recruited. We have investigated the association among the allelic distribution of the insertion/deletion (I/D polymorphism of the ACE gene identified by polymerase chain reaction. Distribution of ACE gene I/D genotypes and allele frequencies in patients were not significantly different from controls. D allele frequencies were 57.8% in patients versus 53.0% in controls and I allele 42.2% versus 47% respectively. History of hypertension, stroke, renal, heart and vessel diseases incidence and age, gender, systolic-diastolic blood pressures and creatinine levels were significantly high in patients. But these results and ACE activities had no significant differences among the ACE genotypes in patients and controls. Our results suggest that the ACE gene polymorphism is not associated with the pathogenesis of stroke in Turkish stroke patients.O acidente vascular cerebral (AVC é doença multifatorial em que fatores genéticos desempenham papel importante. Este estudo foi desenvolvido para verificar o polimorfismo do gene da enzima conversora da angiotensina (ECA em pacientes turcos com AVC agudo e estabelecer se existe associação do gene I/D da ECA com parâmetros clínicos. O estudo foi realizado com 185 pacientes e 50 controles. A associação entre a distribuição alélica da inserção / deleção (I/D do polimorfismo do gene da ECA foi estudada pela reação em cadeia da polimerase. A distribuição dos genótipos I/D do gene da ECA e suas freqüências não apresentaram significância estatística quando comparados os pacientes e controles. As freqüências dos

  4. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    Science.gov (United States)

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  5. Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation.

    Directory of Open Access Journals (Sweden)

    Jiachen Wang

    2014-01-01

    Full Text Available Histone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs. While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged dominant-negative form of GCN5b containing a point mutation that ablates enzymatic activity (E703G. Stabilization of this dominant-negative GCN5b was mediated through ligand-binding to a destabilization domain (dd fused to the protein. Induced accumulation of the ddHAGCN5b(E703G protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip. Proteomics studies revealed that GCN5b interacts with AP2-domain proteins, apicomplexan plant-like transcription factors, as well as a "core complex" that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1 subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required

  6. Resveratrol Promotes Nerve Regeneration via Activation of p300 Acetyltransferase-Mediated VEGF Signaling in a Rat Model of Sciatic Nerve Crush Injury.

    Science.gov (United States)

    Ding, Zhuofeng; Cao, Jiawei; Shen, Yu; Zou, Yu; Yang, Xin; Zhou, Wen; Guo, Qulian; Huang, Changsheng

    2018-01-01

    Peripheral nerve injuries are generally associated with incomplete restoration of motor function. The slow rate of nerve regeneration after injury may account for this. Although many benefits of resveratrol have been shown in the nervous system, it is not clear whether resveratrol could promote fast nerve regeneration and motor repair after peripheral nerve injury. This study showed that the motor deficits caused by sciatic nerve crush injury were alleviated by daily systematic resveratrol treatment within 10 days. Resveratrol increased the number of axons in the distal part of the injured nerve, indicating enhanced nerve regeneration. In the affected ventral spinal cord, resveratrol enhanced the expression of several vascular endothelial growth factor family proteins (VEGFs) and increased the phosphorylation of p300 through Akt signaling, indicating activation of p300 acetyltransferase. Inactivation of p300 acetyltransferase reversed the resveratrol-induced expression of VEGFs and motor repair in rats that had undergone sciatic nerve crush injury. The above results indicated that daily systematic resveratrol treatment promoted nerve regeneration and led to rapid motor repair. Resveratrol activated p300 acetyltransferase-mediated VEGF signaling in the affected ventral spinal cord, which may have thus contributed to the acceleration of nerve regeneration and motor repair.

  7. Postsynaptic alpha-adrenergic receptors potentiate the beta-adrenergic stimulation of pineal serotonin N-acetyltransferase.

    OpenAIRE

    Klein, D C; Sugden, D; Weller, J L

    1983-01-01

    The role played by postsynaptic alpha-adrenergic receptors in the stimulation of pineal N-acetyltransferase (EC 2.3.1.5) and [3H]melatonin production was investigated in the rat. In vivo studies indicated that phenylephrine, an alpha-adrenergic agonist, potentiated and prolonged the effects of isoproterenol, a beta-adrenergic agonist. Similar observations were made in organ culture with glands devoid of functional nerve endings. In addition, a combination of 1 microM prazosin, an alpha 1-adre...

  8. p27Kip1 Modulates Axonal Transport by Regulating α-Tubulin Acetyltransferase 1 Stability

    Directory of Open Access Journals (Sweden)

    Giovanni Morelli

    2018-05-01

    Full Text Available Summary: The protein p27Kip1 plays roles that extend beyond cell-cycle regulation during cerebral cortex development, such as the regulation of neuronal migration and neurite branching via signaling pathways that converge on the actin and microtubule cytoskeletons. Microtubule-dependent transport is essential for the maturation of neurons and the establishment of neuronal connectivity though synapse formation and maintenance. Here, we show that p27Kip1 controls the transport of vesicles and organelles along the axon of mice cortical projection neurons in vitro. Moreover, suppression of the p27Kip1 ortholog, dacapo, in Drosophila melanogaster disrupts axonal transport in vivo, leading to the reduction of locomotor activity in third instar larvae and adult flies. At the molecular level, p27Kip1 stabilizes the α-tubulin acetyltransferase 1, thereby promoting the acetylation of microtubules, a post-translational modification required for proper axonal transport. : Morelli et al. report that p27Kip1/Dacapo modulates the acetylation of microtubules in axons via stabilization of ATAT1, the main α-tubulin acetyltransferase. Its conditional loss leads to the reduction of bidirectional axonal transport of vesicles and mitochondria in vitro in mice and in vivo in Drosophila. Keywords: p27Kip1, dacapo, acetylation, axonal transport, ATAT1, alpha-tubulin, HDAC6, Drosophila, mouse, cerebral cortex

  9. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  10. New plasmid-mediated aminoglycoside 6'-N-acetyltransferase, AAC(6')-Ian, and ESBL, TLA-3, from a Serratia marcescens clinical isolate.

    Science.gov (United States)

    Jin, Wanchun; Wachino, Jun-Ichi; Kimura, Kouji; Yamada, Keiko; Arakawa, Yoshichika

    2015-05-01

    Enterobacteriaceae clinical isolates showing amikacin resistance (MIC 64 to >256 mg/L) in the absence of 16S rRNA methyltransferase (MTase) genes were found. The aim of this study was to clarify the molecular mechanisms underlying amikacin resistance in Enterobacteriaceae clinical isolates that do not produce 16S rRNA MTases. PCR was performed to detect already-known amikacin resistance determinants. Cloning experiments and sequence analyses were performed to characterize unknown amikacin resistance determinants. Transfer of amikacin resistance determinants was performed by conjugation and transformation. The complete nucleotide sequence of the plasmids was determined by next-generation sequencing technology. Amikacin resistance enzymes were purified with a column chromatography system. The enzymatic function of the purified protein was investigated by thin-layer chromatography (TLC) and HPLC. Among the 14 isolates, 9 were found to carry already-known amikacin resistance determinants such as aac(6')-Ia and aac(6')-Ib. Genetic analyses revealed the presence of a new amikacin acetyltransferase gene, named aac(6')-Ian, located on a 169 829 bp transferable plasmid (p11663) of the Serratia marcescens strain NUBL-11663, one of the five strains negative for known aac(6') genes by PCR. Plasmid p11663 also carried a novel ESBL gene, named blaTLA-3. HPLC and TLC analyses demonstrated that AAC(6')-Ian catalysed the transfer of an acetyl group from acetyl coenzyme A onto an amine at the 6'-position of various aminoglycosides. We identified aac(6')-Ian as a novel amikacin resistance determinant together with a new ESBL gene, blaTLA-3, on a transferable plasmid of a S. marcescens clinical isolate. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Functional Expression of the Thiolase Gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri

    Science.gov (United States)

    The first step of the butanol pathway involves an acetyl-CoA acetyltransferase (ACoAAT), which controls the key branching point from acetyl-CoA to butanol. ACoAAT, also known as thiolase (EC 2.3.1.9), is encoded by the thl gene and catalyzes ligation of 2 acetyl-CoA into acetoacetyl-CoA. Bioinform...

  12. Identification of a mutation in the CHAT gene of Old Danish Pointing Dogs affected with congenital myasthenic syndrome

    DEFF Research Database (Denmark)

    Proschowsky, Helle Friis; Flagstad, Annette; Cirera, Susanna

    2007-01-01

    The presence of a recessive inherited muscle disease in Old Danish Pointing Dogs has been well known for years. Comparisons of this disease with myasthenic diseases of other dog breeds and humans have pointed toward a defect in the synthesis of the neurotransmitter acetylcholine possibly due...... to decreased activity of the enzyme choline acetyltransferase. We sequenced exons 5-18 of the gene encoding choline acetyltransferase (CHAT) in 2 affected and 2 unaffected dogs and identified a G to A missense mutation in exon 6. The mutation causes a valine to methionine substitution and segregates...... in agreement with the inheritance of the disease. The mutation was not detected in 50 dogs representing 25 other dog breeds. A DNA test has been developed and is now available to the breeders of Old Danish Pointing Dogs....

  13. Responses of human cells to ZnO nanoparticles: a gene transcription study†

    Science.gov (United States)

    Moos, Philip J.; Olszewski, Kyle; Honeggar, Matthew; Cassidy, Pamela; Leachman, Sancy; Woessner, David; Cutler, N. Shane; Veranth, John M.

    2013-01-01

    The gene transcript profile responses to metal oxide nanoparticles was studied using human cell lines derived from the colon and skin tumors. Much of the research on nanoparticle toxicology has focused on models of inhalation and intact skin exposure, and effects of ingestion exposure and application to diseased skin are relatively unknown. Powders of nominally nanosized SiO2, TiO2, ZnO and Fe2O3 were chosen because these substances are widely used in consumer products. The four oxides were evaluated using colon-derived cell lines, RKO and CaCo-2, and ZnO and TiO2 were evaluated further using skin-derived cell lines HaCaT and SK Mel-28. ZnO induced the most notable gene transcription changes, even though this material was applied at the lowest concentration. Nano-sized and conventional ZnO induced similar responses suggesting common mechanisms of action. The results showed neither a non-specific response pattern common to all substances nor synergy of the particles with TNF-α cotreatment. The response to ZnO was not consistent with a pronounced proinflammatory signature, but involved changes in metal metabolism, chaperonin proteins, and protein folding genes. This response was observed in all cell lines when ZnO was in contact with the human cells. When the cells were exposed to soluble Zn, the genes involved in metal metabolism were induced but the genes involved in protein refoldling were unaffected. This provides some of the first data on the effects of commercial metal oxide nanoparticles on human colon-derived and skin-derived cells. PMID:21769377

  14. Substrate-Induced Allosteric Change in the Quaternary Structure of the Spermidine N-Acetyltransferase SpeG

    OpenAIRE

    Filippova, Ekaterina V.; Weigand, Steven; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Anderson, Wayne F.

    2015-01-01

    The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl-coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulates their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligan...

  15. Xenobiotic Metabolizing Gene Variants and Renal Cell Cancer: A Multicenter Study

    International Nuclear Information System (INIS)

    Heck, Julia E.; Moore, Lee E.; Lee, Yuan-Chin A.; McKay, James D.; Hung, Rayjean J.; Karami, Sara; Gaborieau, Valérie; Szeszenia-Dabrowska, Neonila; Zaridze, David G.; Mukeriya, Anush; Mates, Dana; Foretova, Lenka; Janout, Vladimir; Kollárová, Helena; Bencko, Vladimir; Rothman, Nathaniel; Brennan, Paul; Chow, Wong-Ho; Boffetta, Paolo

    2012-01-01

    Background: The countries of Central and Eastern Europe have among the highest worldwide rates of renal cell cancer (RCC). Few studies have examined whether genetic variation in xenobiotic metabolic pathway genes may modify risk for this cancer. Methods: The Central and Eastern Europe Renal Cell Cancer study was a hospital-based case–control study conducted between 1998 and 2003 across seven centers in Central and Eastern Europe. Detailed data were collected from 874 cases and 2053 controls on demographics, work history, and occupational exposure to chemical agents. Genes [cytochrome P-450 family, N-acetyltransferases, NAD(P)H:quinone oxidoreductase I (NQO1), microsomal epoxide hydrolase (mEH), catechol-O-methyltransferase (COMT), uridine diphosphate-glucuronosyltransferase (UGT)] were selected for the present analysis based on their putative role in xenobiotic metabolism. Haplotypes were calculated using fastPhase. Odds ratios and 95% confidence intervals were estimated by unconditional logistic regression adjusted for country of residence, age, sex, smoking, alcohol intake, obesity, and hypertension. Results: We observed an increased risk of RCC with one SNP. After adjustment for multiple comparisons it did not remain significant. Neither NAT1 nor NAT2 slow acetylation was associated with disease. Conclusion: We observed no association between this pathway and renal cell cancer.

  16. Xenobiotic Metabolizing Gene Variants and Renal Cell Cancer: A Multicenter Study

    Energy Technology Data Exchange (ETDEWEB)

    Heck, Julia E. [International Agency for Research on Cancer, Lyon (France); Department of Epidemiology, School of Public Health, University of California Los Angeles, Los Angeles, CA (United States); Moore, Lee E. [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (United States); Lee, Yuan-Chin A. [International Agency for Research on Cancer, Lyon (France); Department of Epidemiology, School of Public Health, University of California Los Angeles, Los Angeles, CA (United States); McKay, James D. [International Agency for Research on Cancer, Lyon (France); Hung, Rayjean J. [Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, ON (Canada); Karami, Sara [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (United States); Gaborieau, Valérie [International Agency for Research on Cancer, Lyon (France); Szeszenia-Dabrowska, Neonila [Department of Epidemiology, Institute of Occupational Medicine, Lodz (Poland); Zaridze, David G. [Cancer Research Centre, Institute of Carcinogenesis, Moscow (Russian Federation); Mukeriya, Anush [Cancer Research Centre, Department of Epidemiology, Moscow (Russian Federation); Mates, Dana [Institute of Public Health, Bucharest (Romania); Foretova, Lenka [Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno (Czech Republic); Janout, Vladimir; Kollárová, Helena [Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc (Czech Republic); Bencko, Vladimir [First Faculty of Medicine, Institute of Hygiene and Epidemiology, Charles University in Prague, Prague, Czech Republic (Czech Republic); Rothman, Nathaniel [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (United States); Brennan, Paul [International Agency for Research on Cancer, Lyon (France); Chow, Wong-Ho [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (United States); Boffetta, Paolo, E-mail: paolo.boffetta@mssm.edu [International Prevention Research Institute, Lyon (France); Tisch Cancer Institute, Mt. Sinai School of Medicine, New York, NY (United States)

    2012-02-20

    Background: The countries of Central and Eastern Europe have among the highest worldwide rates of renal cell cancer (RCC). Few studies have examined whether genetic variation in xenobiotic metabolic pathway genes may modify risk for this cancer. Methods: The Central and Eastern Europe Renal Cell Cancer study was a hospital-based case–control study conducted between 1998 and 2003 across seven centers in Central and Eastern Europe. Detailed data were collected from 874 cases and 2053 controls on demographics, work history, and occupational exposure to chemical agents. Genes [cytochrome P-450 family, N-acetyltransferases, NAD(P)H:quinone oxidoreductase I (NQO1), microsomal epoxide hydrolase (mEH), catechol-O-methyltransferase (COMT), uridine diphosphate-glucuronosyltransferase (UGT)] were selected for the present analysis based on their putative role in xenobiotic metabolism. Haplotypes were calculated using fastPhase. Odds ratios and 95% confidence intervals were estimated by unconditional logistic regression adjusted for country of residence, age, sex, smoking, alcohol intake, obesity, and hypertension. Results: We observed an increased risk of RCC with one SNP. After adjustment for multiple comparisons it did not remain significant. Neither NAT1 nor NAT2 slow acetylation was associated with disease. Conclusion: We observed no association between this pathway and renal cell cancer.

  17. Mycothiol acetyltransferase (Rv0819) of Mycobacterium tuberculosis is a potential biomarker for direct diagnosis of tuberculosis using patient serum specimens.

    Science.gov (United States)

    Zeitoun, H; Bahey-El-Din, M; Kassem, M A; Aboushleib, H M

    2017-12-01

    Mycobacterium tuberculosis infection constitutes a global threat that results in significant morbidity and mortality worldwide. Efficient and early diagnosis of tuberculosis (TB) is of paramount importance for successful treatment. The aim of the current study is to investigate the mycobacterial mycothiol acetyltransferase Rv0819 as a potential novel biomarker for the diagnosis of active TB infection. The gene encoding Rv0819 was cloned and successfully expressed in Escherichia coli. The recombinant Rv0819 was purified using metal affinity chromatography and was used to raise murine polyclonal antibodies against Rv0819. The raised antibodies were employed for direct detection of Rv0819 in patient serum samples using dot blot assay and competitive enzyme-linked immunosorbent assay (ELISA). Serum samples were obtained from 68 confirmed new TB patients and 35 healthy volunteers as negative controls. The dot blot assay showed sensitivity of 64·7% and specificity of 100%, whereas the competitive ELISA assay showed lower sensitivity (54·4%) and specificity (88·57%). The overall sensitivity of the combined results of the two tests was found to be 89·7%. Overall, the mycobacterial Rv0819 is a potential TB serum biomarker that can be exploited, in combination with other TB biomarkers, for efficient and reliable diagnosis of active TB infection. The early and accurate diagnosis of tuberculosis infection is of paramount importance for initiating treatment and avoiding clinical complications. Most current diagnostic tests have poor sensitivity and/or specificity and in many cases they are too expensive for routine diagnostic testing in resource-limited settings. In the current study, we examined a novel mycobacterial serum biomarker, namely mycothiol acetyltransferase Rv0819. The antigen was detectable in serum specimens of a significant number of tuberculosis patients. This article proves the importance of Rv0819 and paves the way towards its future use as a useful

  18. The E1A proteins of all six human adenovirus subgroups target the p300/CBP acetyltransferases and the SAGA transcriptional regulatory complex

    International Nuclear Information System (INIS)

    Shuen, Michael; Avvakumov, Nikita; Torchia, Joe; Mymryk, Joe S.

    2003-01-01

    The N-terminal/conserved region 1 (CR1) portion of the human adenovirus (Ad) 5 E1A protein was previously shown to inhibit growth in the simple eukaryote Saccharomyces cerevisiae. We now demonstrate that the corresponding regions of the E1A proteins of Ad3,-4,-9,-12, and -40, which represent the remaining five Ad subgroups, also inhibit yeast growth. These results suggest that the E1A proteins of all six human Ad subgroups share a common cellular target(s) conserved in yeast. Growth inhibition induced by either full-length or the N-terminal/CR1 portion of Ad5 E1A was relieved by coexpression of the E1A binding portions of the mammalian p300, CBP, and pCAF acetyltransferases. Similarly, growth inhibition by the N-terminal/CR1 portions of the other Ad E1A proteins was suppressed by expression of the same regions of CBP or pCAF known to bind Ad5 E1A. The physical interaction of each of the different Ad E1A proteins with CBP, p300, and pCAF was confirmed in vitro. Furthermore, deletion of the gene encoding yGcn5, the yeast homolog of pCAF and a subunit of the SAGA transcriptional regulatory complex, restored growth in yeast expressing each of the different Ad E1A proteins. This indicates that the SAGA complex is a conserved target of all Ad E1A proteins. Our results demonstrate for the first time that the p300, CBP, and pCAF acetyltransferases are common targets for the E1A proteins of all six human Ad subgroups, highlighting the importance of these interactions for E1A function

  19. Biochemical and Structural Analysis of an Eis Family Aminoglycoside Acetyltransferase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Green, Keith D.; Biswas, Tapan; Chang, Changsoo; Wu, Ruiying; Chen, Wenjing; Janes, Brian K.; Chalupska, Dominika; Gornicki, Piotr; Hanna, Philip C.; Tsodikov, Oleg V.; Joachimiak, Andrzej; Garneau-Tsodikova, Sylvie

    2015-05-26

    Proteins from the enhanced intracellular survival (Eis) family are versatile acetyltransferases that acetylate amines at multiple positions of several aminoglycosides (AGs). Their upregulation confers drug resistance. Homologues of Eis are present in diverse bacteria, including many pathogens. Eis from Mycobacterium tuberculosis (Eis_Mtb) has been well characterized. In this study, we explored the AG specificity and catalytic efficiency of the Eis family protein from Bacillus anthracis (Eis_Ban). Kinetic analysis of specificity and catalytic efficiency of acetylation of six AGs indicates that Eis_Ban displays significant differences from Eis_Mtb in both substrate binding and catalytic efficiency. The number of acetylated amines was also different for several AGs, indicating a distinct regiospecificity of Eis_Ban. Furthermore, most recently identified inhibitors of Eis_Mtb did not inhibit Eis_Ban, underscoring the differences between these two enzymes. To explain these differences, we determined an Eis_Ban crystal structure. The comparison of the crystal structures of Eis_Ban and Eis_Mtb demonstrates that critical residues lining their respective substrate binding pockets differ substantially, explaining their distinct specificities. Our results suggest that acetyltransferases of the Eis family evolved divergently to garner distinct specificities while conserving catalytic efficiency, possibly to counter distinct chemical challenges. The unique specificity features of these enzymes can be utilized as tools for developing AGs with novel modifications and help guide specific AG treatments to avoid Eis-mediated resistance.

  20. Association between AA-NAT gene polymorphism and reproductive performance in sheep

    OpenAIRE

    Ding-ping,Bai; Cheng-jiang,Yu; Yu-lin,Chen

    2012-01-01

    Arylalkylamine N-acetyltransferase (AA-NAT) is critical enzyme in Melatonin (MLT) biosynthesis for MLT regulating the animal seasonal breeding. In this study, DNA sequencing methods were applied to detect the polymorphisms of the AA-NAT gene in 179 Chinese sheep belonging to two non-seasonal reproduction breeds and two seasonal reproduction breeds. One mutation at exon 3 (NM_001009461:c.486A > G) was firstly described at the sheep AA-NAT locus. Hence, we described the SmaI PCR-RFLP m...

  1. Choline acetyltransferase-containing neurons in the human parietal neocortex

    Directory of Open Access Journals (Sweden)

    V Benagiano

    2009-06-01

    Full Text Available A number of immunocytochemical studies have indicated the presence of cholinergic neurons in the cerebral cortex of various species of mammals. Whether such cholinergic neurons in the human cerebral cortex are exclusively of subcortical origin is still debated. In this immunocytochemical study, the existence of cortical cholinergic neurons was investigated on surgical samples of human parietal association neocortex using a highly specific monoclonal antibody against choline acetyltransferase (ChAT, the acetylcholine biosynthesising enzyme. ChAT immunoreactivity was detected in a subpopulation of neurons located in layers II and III. These were small or medium-sized pyramidal neurons which showed cytoplasmic immunoreactivity in the perikarya and processes, often in close association to blood microvessels. This study, providing demonstration of ChAT neurons in the human parietal neocortex, strongly supports the existence of intrinsic cholinergic innervation of the human neocortex. It is likely that these neurons contribute to the cholinergic innervation of the intracortical microvessels.

  2. Investigação genética da surdez hereditária: mutação do gene da Conexina 26 Genetic investigation of hereditary deafness: connexin 26 gene mutation

    Directory of Open Access Journals (Sweden)

    Paula Michele da Silva Schmidt

    2009-01-01

    Full Text Available Nos últimos anos houve grande progresso na localização de genes associados à deficiência auditiva hereditária, possibilitando diagnósticos cada vez mais precisos e precoces. Mutações no gene da Conexina 26 (GJB2 - Cx26 causam deficiência auditiva. Pela facilidade e benefício do rastreamento de mutações no gene GJB2, o teste genético está se tornando um importante recurso na saúde pública. O objetivo foi realizar pesquisa bibliográfica sobre a mutação do gene da Conexina 26 e sua influência na audição. Foi realizado um levantamento bibliográfico por meio de busca eletrônica utilizando os descritores: perda auditiva, genética, triagem genética, Conexina 26, nas bases de dados MEDLINE, SciELO e LILACS, desde a década de 90 até os dias atuais. Concluiu-se que a mutação 35delG da Conexina 26 está potencialmente vinculada a alguns casos de perda auditiva não esclarecida. A pesquisa desta mutação poderia ser incluída na bateria de exames de investigação etiológica da surdez indeterminada, uma vez que esclarece a etiologia de alguns casos e a sua identificação possibilita o aconselhamento genético.In the last few years, great progress has been made in the search for genes associated to hereditary hearing impairment, allowing more precise and earlier diagnosis. Connexin 26 gene mutations (GJB2 - Cx26 cause hearing impairment. Due to the easiness and benefits of the screening of mutations on the gene GJB2, genetic testing is becoming an important resource in public health. The aim of the present study was to conduct a literature research about the mutation of the Connexin 26 gene and its influence in hearing. It was carried out a literature review through electronic search using the keywords: hearing loss, genetics, genetic screening, and Connexin 26, at the databases MEDLINE, SciELO and LILACS, from the 90s to the present days. The results indicate that the 35delG mutation of Connexin 26 is potentially associated

  3. Depression of nocturnal pineal serotonin N-acetyltransferase activity in castrate male rats

    International Nuclear Information System (INIS)

    Rudeen, P.K.; Reiter, R.J.; Texas Univ., San Antonio

    1980-01-01

    Pineal serotonin N-acetyltransferase (NAT) activity was examined in intact rats, castrated rats, and in rats that had been castrated and had received testosterone proprionate. Castration resulted in significantly depressing nocturnal levels of pineal NAT (p<0.05) when compared to enzyme activity in intact rats. Testosterone proprionate administration restored plasma LH levels to normal values in castrate rats but did not induce nocturnal pineal enzyme activity to levels seen in the pineal glands of intact rats. The data substantiate the existence of a feedback control of pineal biosynthetic activity by the hypophyseal-gonadal system, but the identity of the hormone(s) responsible for regulation of pineal NAT activity is not known. (author)

  4. The enhanced callose deposition in barley with ml-o powdery mildew resistance genes

    DEFF Research Database (Denmark)

    Skou, Jens-Peder

    1985-01-01

    Carborundum treatment of barley leaves induced a callose deposition which was detected as diffuse blotches in the epidermal cells of susceptible barleys and as deeply stained tracks along the scratches in barleys with the ml-o powdery mildew resistance gene. Subsequent inoculation with powdery...... mildew resulted in appositions that enlarged inversely to their size in the respective varieties when inoculated without carborundum treatment. Aphids sucking the leaves resulted in rows of callose containing spots along the anticlinal cell walls. The spots were larger in the ml-o mutant than...... in the mother variety. Callose was deposited in connection with the pleiotropic necrotic spotting in barleys with the ml-o gene. Modification of the necrotic spotting by crossing the ml-o gene into other gene backgrounds did not result in any change in the size of appositions upon inoculation with powdery...

  5. daf-31 encodes the catalytic subunit of N alpha-acetyltransferase that regulates Caenorhabditis elegans development, metabolism and adult lifespan.

    Science.gov (United States)

    Chen, Di; Zhang, Jiuli; Minnerly, Justin; Kaul, Tiffany; Riddle, Donald L; Jia, Kailiang

    2014-10-01

    The Caenorhabditis elegans dauer larva is a facultative state of diapause. Mutations affecting dauer signal transduction and morphogenesis have been reported. Of these, most that result in constitutive formation of dauer larvae are temperature-sensitive (ts). The daf-31 mutant was isolated in genetic screens looking for novel and underrepresented classes of mutants that form dauer and dauer-like larvae non-conditionally. Dauer-like larvae are arrested in development and have some, but not all, of the normal dauer characteristics. We show here that daf-31 mutants form dauer-like larvae under starvation conditions but are sensitive to SDS treatment. Moreover, metabolism is shifted to fat accumulation in daf-31 mutants. We cloned the daf-31 gene and it encodes an ortholog of the arrest-defective-1 protein (ARD1) that is the catalytic subunit of the major N alpha-acetyltransferase (NatA). A daf-31 promoter::GFP reporter gene indicates daf-31 is expressed in multiple tissues including neurons, pharynx, intestine and hypodermal cells. Interestingly, overexpression of daf-31 enhances the longevity phenotype of daf-2 mutants, which is dependent on the forkhead transcription factor (FOXO) DAF-16. We demonstrate that overexpression of daf-31 stimulates the transcriptional activity of DAF-16 without influencing its subcellular localization. These data reveal an essential role of NatA in controlling C. elegans life history and also a novel interaction between ARD1 and FOXO transcription factors, which may contribute to understanding the function of ARD1 in mammals.

  6. Neuroimágenes en las alteraciones del sueño

    OpenAIRE

    Dr. M. Marcelo Gálvez

    2013-01-01

    Las imágenes médicas han representado un importante avance en el estudio de las enfermedades del sistema nervio cerebral. Sin embargo existe un importante grupo de enfermedades que se caracterizan por la ausencia o una muy leve alteración de la estructura cerebral que son muy difíciles de detectar utilizando imágenes convencionales, como las enfermedades psiquiátricas, algunos tipos de epilepsia y las alteraciones del sueño. Las alteraciones de la estructura se pueden estudiar más detallad...

  7. Gene transfer into subcultured endometrial cells using lipofection.

    Science.gov (United States)

    Lascombe, I; Mougin, P; Vuillermoz, C; Adessi, G L; Jouvenot, M

    1996-01-01

    Lipofection using the Lipofectin reagent was optimized to transiently transfect subcultured guinea pig endometrial stromal cells with a beta-galactosidase gene driven by a simian virus 40 promoter. Efficient transfection was obtained in the following conditions: a value of six for the ratio of lipofectin to DNA, a low cellular density (10(5) cells per 35-mm well) at the time of subculture (48 h before lipofection) and a lipofection duration of 12 hours. Lipofection was compared to calcium phosphate precipitation previously optimized in the same culture model. At a low cellular density, the lipofection method was found to be more efficient than the calcium phosphate precipitation. This result gives a great relevance to lipofection since the cultured cells available in an experiment are often limited. Then, using cells at low density and a plasmid containing the chloramphenicol acetyltransferase (cat) gene linked to an estrogen response element, it was shown that the lipofection procedure is a suitable tool for the evaluation of gene regulation by estrogen.

  8. Investigation of Leptin gene in broiler and layer chicken lines Investigação do gene da Leptina em linhagens de aves de corte e postura

    Directory of Open Access Journals (Sweden)

    Kerli Ninov

    2008-04-01

    Full Text Available Leptin, a polypeptide hormone secreted mainly by adipose tissue, plays an important role in feed intake regulation, energy metabolism and reproduction in several species. Its function has been intensively studied in mammals; however, in birds limited information is available. The cDNA sequence for chicken leptin has been reported, and high hepatic expression levels of leptin were associated with fat deposition in selected bird lines. However, controversies still remain concerning to the chicken leptin gene and several authors failed to amplify this gene from genomic DNA or cDNA. In view of this controversy and the importance of this gene, the present study aimed to investigate the leptin gene in a population of birds developed by Embrapa Swine and Poultry Research Center (Brazil. First of all, the sequences of Gallus gallus leptin gene (GenBank AF012727 and Mus musculus (GenBank NM_008493 were aligned with the objective of designing primers in conserved regions among the two species, since 94.6% of similarity is described in the literature in those species. For all four pairs of primers designed, several amplification tests were performed with both DNA and cDNA, but neither unique fragment nor expected band size was ever achieved. The leptin sequence in GenBank does not represent the sequence of the chicken leptin gene.A leptina, hormônio polipeptídico secretado principalmente pelo tecido adiposo, tem um papel importante na regulação da ingestão de alimentos, metabolismo de energia e reprodução em mamíferos. A função do gene da leptina tem sido intensamente estudada em mamíferos, porém, em aves, ainda é pouco conhecida. O cDNA deste gene foi identificado em galinhas, e a alta expressão hepática e os níveis de leptina no plasma foram associados à alta deposição de gordura presente em linhagens de aves selecionadas. Entretanto, permanecem controvérsias sobre o gene da leptina em galinhas, pois diversos autores não conseguiram

  9. O síndrome de Diógenes

    OpenAIRE

    Ramirez, N; Gois, J

    2006-01-01

    O Síndrome de Diógenes é caracterizado por uma grave incapacidade para os cuidados e higiene pessoal, isolamento social marcado, acumulação de objectos inúteis, falta de pudor e recusa de ajuda. Pode ser desencadeado por acontecimentos vitais stressantes e é também denominado Síndroma de Esqualidez Senil. A maioria dos doentes com este Síndrome vivem sozinhos. Um caso típico é apresentado.

  10. Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors.

    OpenAIRE

    Daniell, H; Vivekananda, J; Nielsen, B L; Ye, G N; Tewari, K K; Sanford, J C

    1990-01-01

    Expression of chloramphenicol acetyltransferase (cat) by suitable vectors in chloroplasts of cultured tobacco cells, delivered by high-velocity microprojectiles, is reported here. Several chloroplast expression vectors containing bacterial cat genes, placed under the control of either psbA promoter region from pea (pHD series) or rbcL promoter region from maize (pAC series) have been used in this study. In addition, chloroplast expression vectors containing replicon fragments from pea, tobacc...

  11. SUMOylation of the ING1b tumor suppressor regulates gene transcription

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Guérillon, Claire; Kim, Tae-Sun

    2014-01-01

    members of histone deacetylase complexes, whereas ING3-5 are stoichiometric components of different histone acetyltransferase complexes. The INGs target these complexes to histone marks, thus acting as epigenetic regulators. ING proteins affect angiogenesis, apoptosis, DNA repair, metastasis......1b E195A), we further demonstrate that ING1b SUMOylation regulates the binding of ING1b to the ISG15 and DGCR8 promoters, consequently regulating ISG15 and DGCR8 transcription. These results suggest a role for ING1b SUMOylation in the regulation of gene transcription....

  12. Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants.

    Science.gov (United States)

    Hérouet, Corinne; Esdaile, David J; Mallyon, Bryan A; Debruyne, Eric; Schulz, Arno; Currier, Thomas; Hendrickx, Koen; van der Klis, Robert-Jan; Rouan, Dominique

    2005-03-01

    Transgenic plant varieties, which are tolerant to glufosinate-ammonium, were developed. The herbicide tolerance is based upon the presence of either the bar or the pat gene, which encode for two homologous phosphinothricin acetyltransferases (PAT), in the plant genome. Based on both a review of published literature and experimental studies, the safety assessment reviews the first step of a two-step-approach for the evaluation of the safety of the proteins expressed in plants. It can be used to support the safety of food or feed products derived from any crop that contains and expresses these PAT proteins. The safety evaluation supports the conclusion that the genes and the donor microorganisms (Streptomyces) are innocuous. The PAT enzymes are highly specific and do not possess the characteristics associated with food toxins or allergens, i.e., they have no sequence homology with any known allergens or toxins, they have no N-glycosylation sites, they are rapidly degraded in gastric and intestinal fluids, and they are devoid of adverse effects in mice after intravenous administration at a high dose level. In conclusion, there is a reasonable certainty of no harm resulting from the inclusion of the PAT proteins in human food or in animal feed.

  13. Regulated expression of the human cytomegalovirus pp65 gene: Octamer sequence in the promoter is required for activation by viral gene products

    International Nuclear Information System (INIS)

    Depto, A.S.; Stenberg, R.M.

    1989-01-01

    To better understand the regulation of late gene expression in human cytomegalovirus (CMV)-infected cells, the authors examined expression of the gene that codes for the 65-kilodalton lower-matrix phosphoprotein (pp65). Analysis of RNA isolated at 72 h from cells infected with CMV Towne or ts66, a DNA-negative temperature-sensitive mutant, supported the fact that pp65 is expressed at low levels prior to viral DNA replication but maximally expressed after the initiation of viral DNA replication. To investigate promoter activation in a transient expression assay, the pp65 promoter was cloned into the indicator plasmid containing the gene for chloramphenicol acetyltransferase (CAT). Transfection of the promoter-CAT construct and subsequent superinfection with CMV resulted in activation of the promoter at early times after infection. Cotransfection with plasmids capable of expressing immediate-early (IE) proteins demonstrated that the promoter was activated by IE proteins and that both IE regions 1 and 2 were necessary. These studies suggest that interactions between IE proteins and this octamer sequence may be important for the regulation and expression of this CMV gene

  14. Characterization of the Pichia pastoris protein-O-mannosyltransferase gene family.

    Directory of Open Access Journals (Sweden)

    Juergen H Nett

    Full Text Available The methylotrophic yeast, Pichiapastoris, is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, either N-linked or O-linked, can elicit an immune response or enable the expressed protein to bind to mannose receptors, thus reducing their efficacy. Previously we have reported the elimination of β-linked glycans in this organism. In the current report we have focused on reducing the O-linked mannose content of proteins produced in P. pastoris, thereby reducing the potential to bind to mannose receptors. The initial step in the synthesis of O-linked glycans in P. pastoris is the transfer of mannose from dolichol-phosphomannose to a target protein in the yeast secretory pathway by members of the protein-O-mannosyltransferase (PMT family. In this report we identify and characterize the members of the P. pastoris PMT family. Like Candida albicans, P. pastoris has five PMT genes. Based on sequence homology, these PMTs can be grouped into three sub-families, with both PMT1 and PMT2 sub-families possessing two members each (PMT1 and PMT5, and PMT2 and PMT6, respectively. The remaining sub-family, PMT4, has only one member (PMT4. Through gene knockouts we show that PMT1 and PMT2 each play a significant role in O-glycosylation. Both, by gene knockouts and the use of Pmt inhibitors we were able to significantly reduce not only the degree of O-mannosylation, but also the chain-length of these glycans. Taken together, this reduction of O-glycosylation represents an important step forward in developing the P. pastoris platform as a suitable system for the production of therapeutic glycoproteins.

  15. Genes de suscetibilidade no transtorno de déficit de atenção e hiperatividade Susceptibility genes in attention/deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Tatiana Roman

    2002-02-01

    Full Text Available O transtorno de déficit de atenção e hiperatividade (TDAH é um dos transtornos mais comuns da infância e adolescência, afetando entre 3% a 6% das crianças em idade escolar. Essa patologia caracteriza-se por sintomas de desatenção, hiperatividade e impulsividade, apresentando ainda uma alta heterogeneidade clínica. Embora as causas precisas do TDAH não estejam esclarecidas, a influência de fatores genéticos é fortemente sugerida pelos estudos epidemiológicos, cujas evidências impulsionaram um grande número de investigações com genes candidatos. Atualmente, apesar da ênfase dada a este tópico, nenhum gene pode ser considerado necessário ou suficiente ao desenvolvimento do TDAH, e a busca de genes que influenciam este processo ainda é o foco de muitas pesquisas. O objetivo desse artigo é, portanto, sumarizar e discutir os principais resultados das pesquisas com genes candidatos no TDAH.Attention-deficit/hyperactivity disorder (ADHD is one of the most common psychiatric disorders of childhood and adolescence, affecting 3%-6% of school age children. It is characterized by symptoms of inattention, hyperactivity and impulsivity, showing also a high clinical heterogeneity. Although the precise causes of ADHD are unclear, the influence of genetic factors is strongly suggested by epidemiologic studies, that provide evidences for a large number of investigations with candidate genes. Nowadays, despite the great attention driven to this subject, no gene can be considered as necessary or sufficient to the development of ADHD, and the search for genes that affect this process is still the focus of many investigations. Thus, the objective of this paper is to summarize and discuss the main results on the research with possible susceptibility genes for ADHD.

  16. Nuclear 82-kDa choline acetyltransferase decreases amyloidogenic APP metabolism in neurons from APP/PS1 transgenic mice.

    Science.gov (United States)

    Albers, Shawn; Inthathirath, Fatima; Gill, Sandeep K; Winick-Ng, Warren; Jaworski, Ewa; Wong, Daisy Y L; Gros, Robert; Rylett, R Jane

    2014-09-01

    Alzheimer disease (AD) is associated with increased amyloidogenic processing of amyloid precursor protein (APP) to β-amyloid peptides (Aβ), cholinergic neuron loss with decreased choline acetyltransferase (ChAT) activity, and cognitive dysfunction. Both 69-kDa ChAT and 82-kDa ChAT are expressed in cholinergic neurons in human brain and spinal cord with 82-kDa ChAT localized predominantly to neuronal nuclei, suggesting potential alternative functional roles for the enzyme. By gene microarray analysis, we found that 82-kDa ChAT-expressing IMR32 neural cells have altered expression of genes involved in diverse cellular functions. Importantly, genes for several proteins that regulate APP processing along amyloidogenic and non-amyloidogenic pathways are differentially expressed in 82-kDa ChAT-containing cells. The predicted net effect based on observed changes in expression patterns of these genes would be decreased amyloidogenic APP processing with decreased Aβ production. This functional outcome was verified experimentally as a significant decrease in BACE1 protein levels and activity and a concomitant reduction in the release of endogenous Aβ1-42 from neurons cultured from brains of AD-model APP/PS1 transgenic mice. The expression of 82-kDa ChAT in neurons increased levels of GGA3, which is involved in trafficking BACE1 to lysosomes for degradation. shRNA-induced decreases in GGA3 protein levels attenuated the 82-kDa ChAT-mediated decreases in BACE1 protein and activity and Aβ1-42 release. Evidence that 82-kDa ChAT can enhance GGA3 gene expression is shown by enhanced GGA3 gene promoter activity in SN56 neural cells expressing this ChAT protein. These studies indicate a novel relationship between cholinergic neurons and APP processing, with 82-kDa ChAT acting as a negative regulator of Aβ production. This decreased formation of Aβ could result in protection for cholinergic neurons, as well as protection of other cells in the vicinity that are sensitive to

  17. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Aili Li

    Full Text Available Hydrogen peroxide (H(2O(2 plays important roles in plant biotic and abiotic stress responses. However, the effect of H(2O(2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H(2O(2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H(2O(2 treatment for 6 hour in one powdery mildew (PM resistant (PmA and two susceptible (Cha and Han lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H(2O(2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, 'transport' activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H(2O(2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H(2O(2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt. Eight of these genes were found to be co-regulated by H(2O(2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H(2O(2 stress and uncovers potential links between H(2O(2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat.

  18. daf-31 encodes the catalytic subunit of N alpha-acetyltransferase that regulates Caenorhabditis elegans development, metabolism and adult lifespan.

    Directory of Open Access Journals (Sweden)

    Di Chen

    2014-10-01

    Full Text Available The Caenorhabditis elegans dauer larva is a facultative state of diapause. Mutations affecting dauer signal transduction and morphogenesis have been reported. Of these, most that result in constitutive formation of dauer larvae are temperature-sensitive (ts. The daf-31 mutant was isolated in genetic screens looking for novel and underrepresented classes of mutants that form dauer and dauer-like larvae non-conditionally. Dauer-like larvae are arrested in development and have some, but not all, of the normal dauer characteristics. We show here that daf-31 mutants form dauer-like larvae under starvation conditions but are sensitive to SDS treatment. Moreover, metabolism is shifted to fat accumulation in daf-31 mutants. We cloned the daf-31 gene and it encodes an ortholog of the arrest-defective-1 protein (ARD1 that is the catalytic subunit of the major N alpha-acetyltransferase (NatA. A daf-31 promoter::GFP reporter gene indicates daf-31 is expressed in multiple tissues including neurons, pharynx, intestine and hypodermal cells. Interestingly, overexpression of daf-31 enhances the longevity phenotype of daf-2 mutants, which is dependent on the forkhead transcription factor (FOXO DAF-16. We demonstrate that overexpression of daf-31 stimulates the transcriptional activity of DAF-16 without influencing its subcellular localization. These data reveal an essential role of NatA in controlling C. elegans life history and also a novel interaction between ARD1 and FOXO transcription factors, which may contribute to understanding the function of ARD1 in mammals.

  19. Associations between polymorphic variants of the tryptophan hydroxylase 2 gene and obsessive-compulsive disorder Associação entre polimorfismos do gene da triptofano hidroxilase 2 e o transtorno obsessivo-compulsivo

    Directory of Open Access Journals (Sweden)

    Felipe Filardi da Rocha

    2011-01-01

    Full Text Available OBJECTIVE: A substantial body of evidence suggests that obsessive-compulsive disorder has a genetic component, and substantial candidate genes for the disorder have been investigated through association analyses. A particular emphasis has been placed on genes related to the serotonergic system, which is likely to play an important role in the pathogenesis of obsessive-compulsive disorder. The gene for tryptophan hydroxylase 2, which is a rate limiting enzyme in serotonin synthesis is considered an important candidate gene associated with psychiatric disorders. METHOD: Our sample consisted of 321 subjects (107 diagnosed with obsessive-compulsive disorder and 214 healthy controls, which were genotyped for eight tagSNPs (rs4448731, rs4565946, rs11179000, rs7955501, rs10506645, rs4760820, rs1487275 and rs10879357 covering the entire human tryptophan hydroxylase 2 gene. Statistical analyses were performed using UNPHASED, version 3.0.12, and Haploview ((R. RESULTS: Single markers, genotype analysis did not show a significant genetic association with obsessive-compulsive disorder. A significant association between the T-C-T (rs4448731, rs4565946, rs10506645 and C-A-T (rs4565946, rs7955501, rs10506645 haplotypes and obsessive-compulsive disorder was observed, as well as a strong linkage disequilibrium between SNPs rs4448731 and rs4565946, and SNPs rs10506645 and 4760820. DISCUSSION: Our research has not demonstrated the existence of associations between the eight SNPs of TPH2 and obsessive-compulsive disorder. However, two LD and two haplotypes areas were demonstrated, thus suggesting that more studies in TPH2 are needed to investigate the role of tryptophan hydroxylase 2 variants in obsessive-compulsive disorder.OBJETIVO: Diversos estudos demonstram que o transtorno obsessivo-compulsivo apresenta considerável contribuição genética, com diversos genes candidatos tendo sido estudados por meio de estudos de associação. Como alterações do sistema

  20. Associations between polymorphic variants of the tryptophan hydroxylase 2 gene and obsessive-compulsive disorder Associação entre polimorfismos do gene da triptofano hidroxilase 2 e o transtorno obsessivo-compulsivo

    Directory of Open Access Journals (Sweden)

    Felipe Filardi da Rocha

    2011-06-01

    Full Text Available OBJECTIVE: A substantial body of evidence suggests that obsessive-compulsive disorder has a genetic component, and substantial candidate genes for the disorder have been investigated through association analyses. A particular emphasis has been placed on genes related to the serotonergic system, which is likely to play an important role in the pathogenesis of obsessive-compulsive disorder. The gene for tryptophan hydroxylase 2, which is a rate limiting enzyme in serotonin synthesis, is considered an important candidate gene associated with psychiatric disorders. METHOD: Our sample consisted of 321 subjects (107 diagnosed with obsessive-compulsive disorder and 214 healthy controls, which were genotyped for eight tagSNPs (rs4448731, rs4565946, rs11179000, rs7955501, rs10506645, rs4760820, rs1487275 and rs10879357 covering the entire human tryptophan hydroxylase 2 gene. Statistical analyses were performed using UNPHASED, version 3.0.12, and Haploview®. RESULTS: Single markers, genotype analysis did not show a significant genetic association with obsessive-compulsive disorder. A significant association between the T-C-T (rs4448731, rs4565946, rs10506645 and C-A-T (rs4565946, rs7955501, rs10506645 haplotypes and obsessive-compulsive disorder was observed, as well as a strong linkage disequilibrium between SNPs rs4448731 and rs4565946, and SNPs rs10506645 and 4760820. DISCUSSION: Our research has not demonstrated the existence of associations between the eight SNPs of TPH2 and obsessive-compulsive disorder. However, two LD and two haplotypes areas were demonstrated, thus suggesting that more studies in TPH2 are needed to investigate the role of tryptophan hydroxylase 2 variants in obsessive-compulsive disorder.OBJETIVO: Diversos estudos demonstram que o transtorno obsessivo-compulsivo apresenta considerável contribuição genética, com diversos genes candidatos tendo sido estudados por meio de estudos de associação. Como alterações do sistema

  1. Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Tracey A Martin

    Full Text Available Methamphetamine (METH addiction is associated with several neuropsychiatric symptoms. Little is known about the effects of METH on gene expression and epigenetic modifications in the rat nucleus accumbens (NAC. Our study investigated the effects of a non-toxic METH injection (20 mg/kg on gene expression, histone acetylation, and the expression of the histone acetyltransferase (HAT, ATF2, and of the histone deacetylases (HDACs, HDAC1 and HDAC2, in that structure. Microarray analyses done at 1, 8, 16 and 24 hrs after the METH injection identified METH-induced changes in the expression of genes previously implicated in the acute and longterm effects of psychostimulants, including immediate early genes and corticotropin-releasing factor (Crf. In contrast, the METH injection caused time-dependent decreases in the expression of other genes including Npas4 and cholecystokinin (Cck. Pathway analyses showed that genes with altered expression participated in behavioral performance, cell-to-cell signaling, and regulation of gene expression. PCR analyses confirmed the changes in the expression of c-fos, fosB, Crf, Cck, and Npas4 transcripts. To determine if the METH injection caused post-translational changes in histone markers, we used western blot analyses and identified METH-mediated decreases in histone H3 acetylated at lysine 9 (H3K9ac and lysine 18 (H3K18ac in nuclear sub-fractions. In contrast, the METH injection caused time-dependent increases in acetylated H4K5 and H4K8. The changes in histone acetylation were accompanied by decreased expression of HDAC1 but increased expression of HDAC2 protein levels. The histone acetyltransferase, ATF2, showed significant METH-induced increased in protein expression. These results suggest that METH-induced alterations in global gene expression seen in rat NAC might be related, in part, to METH-induced changes in histone acetylation secondary to changes in HAT and HDAC expression. The causal role that HATs and

  2. Full structure and insight into the gene cluster of the O-specific polysaccharide of Yersinia intermedia H9-36/83 (O:17).

    Science.gov (United States)

    Sizova, Olga V; Shashkov, Alexander S; Kondakova, Anna N; Knirel, Yuriy A; Shaikhutdinova, Rima Z; Ivanov, Sergei A; Kislichkina, Angelina A; Kadnikova, Lidia A; Bogun, Aleksandr G; Dentovskaya, Svetlana V

    2018-05-02

    Lipopolysaccharide was isolated from bacteria Yersinia intermedia H9-36/83 (O:17) and degraded with mild acid to give an O-specific polysaccharide, which was isolated by GPC on Sephadex G-50 and studied by sugar analysis and 1D and 2D NMR spectroscopy. The polysaccharide was found to contain 3-deoxy-3-[(R)-3-hydroxybutanoylamino]-d-fucose (d-Fuc3NR3Hb) and the following structure of the heptasaccharide repeating unit was established: The structure established is consistent with the gene content of the O-antigen gene cluster. The O-polysaccharide structure and gene cluster of Y. intermedia are related to those of Hafnia alvei 1211 and Escherichia coli O:103. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control.

    Science.gov (United States)

    Hashimoto, H; Toide, K; Kitamura, R; Fujita, M; Tagawa, S; Itoh, S; Kamataki, T

    1993-12-01

    CYP3 A4 is the adult-specific form of cytochrome P450 in human livers [Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. & Kamataki, T. (1990) Biochemistry 29, 4430-4433]. The sequences of three genomic clones for CYP3A4 were analyzed for all exons, exon-intron junctions and the 5'-flanking region from the major transcription site to nucleotide position -1105, and compared with those of the CYP3A7 gene, a fetal-specific form of cytochrome P450 in humans. The results showed that the identity of 5'-flanking sequences between CYP3A4 and CYP3A7 genes was 91%, and that each 5'-flanking region had characteristic sequences termed as NFSE (P450NF-specific element) and HFLaSE (P450HFLa specific element), respectively. A basic transcription element (BTE) also lay in the 5'-flanking region of the CYP3A4 gene as seen in many CYP genes [Yanagida, A., Sogawa, K., Yasumoto, K. & Fujii-Kuriyama, Y. (1990) Mol. Cell. Biol. 10, 1470-1475]. The BTE binding factor (BTEB) was present in both adult and fetal human livers. To examine the transcriptional activity of the CYP3A4 gene, DNA fragments in the 5'-flanking region of the gene were inserted in front of the simian virus 40 promoter and the chloramphenicol acetyltransferase structural gene, and the constructs were transfected in HepG2 cells. The analysis of the chloramphenicol acetyltransferase activity indicated that (a) specific element(s) which could bind with a factor(s) in livers was present in the 5'-flanking region of the CYP3A4 gene to show the transcriptional activity.

  4. Cloning, characterization, and expression analysis of the novel acetyltransferase retrogene Ard1b in the mouse.

    Science.gov (United States)

    Pang, Alan Lap-Yin; Peacock, Stephanie; Johnson, Warren; Bear, Deborah H; Rennert, Owen M; Chan, Wai-Yee

    2009-08-01

    N-alpha-terminal acetylation is a modification process that occurs cotranslationally on most eukaryotic proteins. The major enzyme responsible for this process, N-alpha-terminal acetyltransferase, is composed of the catalytic subunit ARD1A and the auxiliary subunit NAT1. We cloned, characterized, and studied the expression pattern of Ard1b (also known as Ard2), a novel homolog of the mouse Ard1a. Comparison of the genomic structures suggests that the autosomal Ard1b is a retroposed copy of the X-linked Ard1a. Expression analyses demonstrated a testis predominance of Ard1b. A reciprocal expression pattern between Ard1a and Ard1b is also observed during spermatogenesis, suggesting that Ard1b is expressed to compensate for the loss of Ard1a starting from meiosis. Both ARD1A and ARD1B can interact with NAT1 to constitute a functional N-alpha-terminal acetyltransferase in vitro. The expression of ARD1B protein can be detected in mouse testes but is delayed until the first appearance of round spermatids. In a cell culture model, the inclusion of the long 3' untranslated region of Ard1b leads to reduction of luciferase reporter activity, which implicates its role in translational repression of Ard1b during spermatogenesis. Our results suggest that ARD1B may have an important role in the later course of the spermatogenic process.

  5. Duplicação [TA] na região promotora do gene UGT1A1 : revisão sistemática e meta - análise

    OpenAIRE

    Monteiro, Susana Cristina Fidalgo

    2012-01-01

    O Síndroma de Gilbert (SG) é uma entidade clínica comum caracterizada por uma forma benigna de hiperbilirrubinemia não conjugada, na ausência de disfunção hepática e de hemólise. O seu diagnóstico, inicialmente de carácter presuntivo, passou a dispor de caracterização molecular quando, em 1995, foram descritas as primeiras mutações no gene UridinoDifosfato-glucuronosil transferase-1 (UGT1A1). Em particular, uma duplicação de 2 nucleotídeos [TA] na região promotora do gene, que tem vindo a rev...

  6. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants

    International Nuclear Information System (INIS)

    Dairou, Julien; Petit, Emile; Ragunathan, Nilusha; Baeza-Squiban, Armelle; Marano, Francelyne; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2009-01-01

    Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and β-naphthylamine (β-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating that inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H 2 O 2 or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.

  7. Purification and characterization of an N alpha-acetyltransferase from Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, F J; Lin, L W; Smith, J A

    1988-10-15

    N alpha-Acetyltransferase, which catalyzes the transfer of an acetyl group from acetyl coenzyme A to the alpha-NH2 group of proteins and peptides, was isolated from Saccharomyces cerevisiae and demonstrated by protein sequence analysis to be NH2-terminally blocked. The enzyme was purified 4,600-fold to apparent homogeneity by successive purification steps using DEAE-Sepharose, hydroxylapatite, DE52 cellulose, and Affi-Gel blue. The Mr of the native enzyme was estimated to be 180,000 +/- 10,000 by gel filtration chromatography, and the Mr of each subunit was estimated to be 95,000 +/- 2,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pH optimum near 9.0, and its pI is 4.3 as determined by chromatofocusing on Mono-P. The enzyme catalyzed the transfer of an acetyl group to various synthetic peptides, including human adrenocorticotropic hormone (ACTH) (1-24) and its [Phe2] analogue, yeast alcohol dehydrogenase I (1-24), yeast alcohol dehydrogenase II (1-24), and human superoxide dismutase (1-24). These peptides contain either Ser or Ala as NH2-terminal residues which together with Met are the most commonly acetylated NH2-terminal residues (Persson, B., Flinta, C., von Heijne, G., and Jornvall, H. (1985) Eur. J. Biochem. 152, 523-527). Yeast enolase, containing a free NH2-terminal Ala residue, is known not to be N alpha-acetylated in vivo (Chin, C. C. Q., Brewer, J. M., and Wold, F. (1981) J. Biol. Chem. 256, 1377-1384), and enolase (1-24), a synthetic peptide mimicking the protein's NH2 terminus, was not acetylated in vitro by yeast acetyltransferase. The enzyme did not catalyze the N alpha-acetylation of other synthetic peptides including ACTH(11-24), ACTH(7-38), ACTH(18-39), human beta-endorphin, yeast superoxide dismutase (1-24). Each of these peptides has an NH2-terminal residue which is rarely acetylated in proteins (Lys, Phe, Arg, Tyr, Val, respectively). Among a series of divalent cations, Cu2+ and Zn2+ were demonstrated to be

  8. 15-Deoxy-{Delta}{sup 12,14}-prostaglandin J{sub 2} impairs the functions of histone acetyltransferases through their insolubilization in cells

    Energy Technology Data Exchange (ETDEWEB)

    Hironaka, Asako [Department of Biochemistry, Nara Medical University, Shijo-Cho 840, Kashihara, Nara 634-8521 (Japan); Morisugi, Toshiaki; Kawakami, Tetsuji [Department of Oral and Maxillofacial Surgery, Nara Medical University, Shijo-Cho 840, Kashihara, Nara 634-8521 (Japan); Miyagi, Ikuko [Laboratory of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-Cho, Okinawa 903-0215 (Japan); Tanaka, Yasuharu, E-mail: yatanaka@med.u-ryukyu.ac.jp [Laboratory of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-Cho, Okinawa 903-0215 (Japan)

    2009-12-11

    The cyclopentenonic prostaglandin 15-deoxy-{Delta}{sup 12,14}-PG J{sub 2} (15d-PGJ{sub 2}) is a metabolite derived from PGD{sub 2}. Although 15d-PGJ{sub 2} has been demonstrated to be a potent ligand for peroxisome proliferator activated receptor {gamma} (PPAR{gamma}), the functions are not fully understood. In order to examine the effect of 15d-PGJ{sub 2} on histone acetyltransferases (HATs), several lines of cell including mouse embryonic fibroblast (MEF) cells were exposed to 15d-PGJ{sub 2}. Three types of HAT, p300, CREB-binding protein (CBP), and p300/CBP-associated factor (PCAF), selectively disappeared from the soluble fraction in time- and dose-dependent manners. Inversely, HATs in the insoluble fraction increased, suggesting their conformational changes. The decrease in the soluble form of HATs resulted in the attenuation of NF-{kappa}B-, p53-, and heat shock factor-dependent reporter gene expressions, implying that the insoluble HATs are inactive. The resultant insoluble PCAF and p300 seemed to be digested by proteasome, because proteasome inhibitors caused the accumulation of insoluble HATs. Taken together, these results indicate that 15d-PGJ{sub 2} attenuates some gene expressions that require HATs. This inhibitory action of 15d-PGJ{sub 2} on the function of HATs was independent of PPAR{gamma}, because PPAR{gamma} agonists could not mimick 15d-PGJ{sub 2} and PPAR{gamma} antagonists did not inhibit 15d-PGJ{sub 2}.

  9. Níveis de seleção: uma avaliação a partir da teoria do \\"gene egoísta\\"

    OpenAIRE

    Maria Rita Spina Bueno

    2008-01-01

    Esta dissertação de mestrado aborda a controvérsia em torno de qual é o nível biológico no qual a seleção natural atua, com ênfase na proposta de Richard Dawkins do gene egoísta e nas questões que surgem em torno da mesma. Examina-se um panorama de questões de filosofia da biologia abordadas a partir do problema dos níveis nos quais a seleção natural atua. Esperamos que ao avaliar o impacto da teoria do gene egoísta na problemática evolutiva, consigamos compreender sua importância. O objetivo...

  10. A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cuperus, Josh T; Lo, Russell S; Shumaker, Lucia; Proctor, Julia; Fields, Stanley

    2015-07-17

    Strategies to optimize a metabolic pathway often involve building a large collection of strains, each containing different versions of sequences that regulate the expression of pathway genes. Here, we develop reagents and methods to carry out this process at high efficiency in the yeast Saccharomyces cerevisiae. We identify variants of the Escherichia coli tet operator (tetO) sequence that bind a TetR-VP16 activator with differential affinity and therefore result in different TetR-VP16 activator-driven expression. By recombining these variants upstream of the genes of a pathway, we generate unique combinations of expression levels. Here, we built a tetO toolkit, which includes the I-OnuI homing endonuclease to create double-strand breaks, which increases homologous recombination by 10(5); a plasmid carrying six variant tetO sequences flanked by I-OnuI sites, uncoupling transformation and recombination steps; an S. cerevisiae-optimized TetR-VP16 activator; and a vector to integrate constructs into the yeast genome. We introduce into the S. cerevisiae genome the three crt genes from Erwinia herbicola required for yeast to synthesize lycopene and carry out the recombination process to produce a population of cells with permutations of tetO variants regulating the three genes. We identify 0.7% of this population as making detectable lycopene, of which the vast majority have undergone recombination at all three crt genes. We estimate a rate of ∼20% recombination per targeted site, much higher than that obtained in other studies. Application of this toolkit to medically or industrially important end products could reduce the time and labor required to optimize the expression of a set of metabolic genes.

  11. Importância da detecção das mutações no gene FLT3 e no gene NPM1 na leucemia mieloide aguda - Classificação da Organização Mundial de Saúde 2008 Importance of detecting FLT3 and NPM1 gene mutations in acute myeloid leukemia -World Health Organization Classification 2008

    Directory of Open Access Journals (Sweden)

    Marley Aparecida Licínio

    2010-01-01

    Full Text Available As leucemias mieloides agudas (LMA constituem um grupo de neoplasias malignas caracterizadas pela proliferação descontrolada de células hematopoéticas, decorrente de mutações que podem ocorrer em diferentes fases da diferenciação de células precursoras mieloides. Em 2008, a Organização Mundial da Saúde (OMS-2008 publicou uma nova classificação para neoplasias do sistema hematopoético e linfoide. De acordo com essa classificação, para um diagnóstico mais preciso e estratificação de prognóstico de pacientes com leucemias mieloides agudas, devem-se pesquisar mutações nos genes FLT3 e NPM1. Sabe-se que a presença de mutações no gene FLT3 é de prognóstico desfavorável e que as mutações no gene NPM1 do tipo A são de prognóstico favorável. Assim, nos países desenvolvidos, a análise das mutações no gene FLT3 e NPM1 tem sido considerada como um fator de prognóstico importante na decisão terapêutica em pacientes com diagnóstico de leucemias mieloides agudas. Considerando essas informações, é de extrema importância a análise das mutações no gene FLT3 (duplicação interna em tandem - DIT - e mutação pontual D835 e no gene NPM1 como marcadores moleculares para o diagnóstico, o prognóstico e a monitoração de doença residual mínima em pacientes com leucemias mieloides agudas.Acute myeloid leukemia (AML is a group of malignancies characterized by uncontrolled proliferation of hematopoietic cells resulting from mutations that occur at different stages in the differentiation of myeloid precursor cells. In 2008, the World Health Organization (WHO-2008 published a new classification for cancers of the hematopoietic and lymphoid system. According to this classification, FLT3 and NPM1 gene mutations should be investigated for a more precise diagnosis and prognostic stratification of AML patients. It is well known that the presence of FLT3 gene mutations is considered an unfavorable prognostic factor and type

  12. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene

    Directory of Open Access Journals (Sweden)

    Shusaku Uchida

    2017-01-01

    Full Text Available Summary: Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. : Uchida et al. link CRTC1 synapse-to-nucleus shuttling in memory. Weak and strong training induce CRTC1 nuclear transport and transient Fgf1b transcription by a complex including CRTC1, CREB, and histone acetyltransferase CBP, whereas strong training alone maintains Fgf1b transcription through CRTC1-dependent substitution of KAT5 for CBP, leading to memory enhancement. Keywords: memory enhancement, long-term potentiation, hippocampus, nuclear transport, epigenetics, FGF1, CRTC1, KAT5/Tip60, HDAC3, CREB

  13. Microdissecção e captura a laser na investigação do gene TP53 em tecidos incluídos em parafina Laser-capture microdissection for TP53 gene analysis in paraffin-embedded tissues

    Directory of Open Access Journals (Sweden)

    Shadia Muhammad Ihlaseh

    2007-02-01

    Full Text Available INTRODUÇÃO: Microdissecção e captura a laser (MCL é uma técnica de desenvolvimento recente que permite a coleta de células individuais ou pequeno conjunto de células para análise molecular. Atualmente, no Brasil, há raros microscópios para MCL, de modo que a divulgação dos procedimentos inerentes a essa técnica é oportuna para destacar seu amplo potencial para diagnóstico e investigação. OBJETIVO: Este trabalho descreve a padronização dos procedimentos de MCL e de extração de DNA de material fixado em formalina e incluído em parafina. MATERIAL E MÉTODOS: Foram estudados o éxon 8 do gene TP53 e o gene da ciclofilina em amostras de tecido normal e de neoplasias de fígado e rim provenientes de modelo de carcinogênese química induzida em rato. A extração do DNA foi comprovada por reação em cadeia da polimerase (nested-PCR. RESULTADOS: Foram padronizados os procedimentos de preparo dos cortes histológicos, de microdissecção e captura a laser e de obtenção de seqüências gênicas pela reação de nested-PCR para tecidos incluídos em parafina. Obtivemos amplificação de 48,3% das amostras para o éxon 8 do gene TP53 e 51,7% para o gene da ciclofilina. Considerando pelo menos um dos dois segmentos gênicos, foram amplificadas 79,3% das amostras. DISCUSSÃO E CONCLUSÃO: A extração de DNA de tecidos fixados em formalina e incluídos em parafina e a técnica de nested-PCR foram adequadamente padronizadas para produtos gênicos de interesse, obtidos de material coletado por MCL. Esses procedimentos podem ser úteis para a obtenção de seqüências de DNA de arquivos para análise molecular.BACKGORUND: Laser-capture micro-dissection (LCM is a recently developed procedure that provides single cells or specific cell groups for molecular analysis. Currently, there are few LCM systems in Brazil, in such a way that it is necessary to disseminate the technical procedures inherent to the methodology, and also to

  14. Avaliação molecular do gene WT1 em pacientes pre-puberes com disgenesia gonadal parcial

    OpenAIRE

    Eduardo Becker Tagliarini

    2004-01-01

    Resumo: Em seres humanos, a detenninação do sexo masculino dá-se pela presença de um cromossomo Y que, por meio da expressão do gene SRY, fará com que os primórdios gonadais se diferenciem em testículos. Além do SRY há outros genes envolvidos na detenninação e diferenciação masculina, tal como o WTI, que codifica um fator de transcrição do tipo "zinc-finger", essencial para o desenvolvimento gonadal e renal em mamíferos. Sabe-se que mutações germinativas do gene WTI estão relacionadas à forma...

  15. Dysregulation of Histone Acetyltransferases and Deacetylases in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yonggang Wang

    2014-01-01

    Full Text Available Cardiovascular disease (CVD remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors which contribute to CVD is required in order to develop more effective treatment options. Dysregulation of epigenetic posttranscriptional modifications of histones in chromatin is thought to be associated with the pathology of many disease models, including CVD. Histone acetyltransferases (HATs and deacetylases (HDACs are regulators of histone lysine acetylation. Recent studies have implicated a fundamental role of reversible protein acetylation in the regulation of CVDs such as hypertension, pulmonary hypertension, diabetic cardiomyopathy, coronary artery disease, arrhythmia, and heart failure. This reversible acetylation is governed by enzymes that HATs add or HDACs remove acetyl groups respectively. New evidence has revealed that histone acetylation regulators blunt cardiovascular and related disease states in certain cellular processes including myocyte hypertrophy, apoptosis, fibrosis, oxidative stress, and inflammation. The accumulating evidence of the detrimental role of histone acetylation in cardiac disease combined with the cardioprotective role of histone acetylation regulators suggests that the use of histone acetylation regulators may serve as a novel approach to treating the millions of patients afflicted by cardiac diseases worldwide.

  16. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-01-01

    Full Text Available Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF signaling pathway in early embryoid bodies (EBs. Gcn5−/− EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.

  17. Cloning, Characterization, and Expression Analysis of the Novel Acetyltransferase Retrogene Ard1b in the Mouse1

    OpenAIRE

    Pang, Alan Lap-Yin; Peacock, Stephanie; Johnson, Warren; Bear, Deborah H.; Rennert, Owen M.; Chan, Wai-Yee

    2009-01-01

    N-alpha-terminal acetylation is a modification process that occurs cotranslationally on most eukaryotic proteins. The major enzyme responsible for this process, N-alpha-terminal acetyltransferase, is composed of the catalytic subunit ARD1A and the auxiliary subunit NAT1. We cloned, characterized, and studied the expression pattern of Ard1b (also known as Ard2), a novel homolog of the mouse Ard1a. Comparison of the genomic structures suggests that the autosomal Ard1b is a retroposed copy of th...

  18. USP7 Attenuates Hepatic Gluconeogenesis Through Modulation of FoxO1 Gene Promoter Occupancy

    Science.gov (United States)

    Hall, Jessica A.; Tabata, Mitsuhisa; Rodgers, Joseph T.

    2014-01-01

    Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in the regulation of FoxO1 transcriptional activity are the modifying/demodifying enzymes that lead to posttranslational modification. Here, we demonstrate the functional interaction and regulation of FoxO1 by herpesvirus-associated ubiquitin-specific protease 7 (USP7; also known as herpesvirus-associated ubiquitin-specific protease, HAUSP), a deubiquitinating enzyme. We show that USP7-mediated mono-deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the intimate regulation of deubiquitination and glucose metabolic control with important implication in diseases such as diabetes. PMID:24694308

  19. ORF Alignment: NC_003282 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_003282 gi|25145178 >1nm8A 15 591 29 627 e-131 ... gb|AAB88370.1| Abnormal choline ...acetyltransferase protein 1, isoform b ... [Caenorhabditis elegans] ref|NP_500387.2| choline ... ... ... acetyltransferase, abnormal CHoline Acetyltransferase ... CHA-1, UNCoordinated locomotion UNC-17 (...71.3 kD) ... (unc-17+cha-1) [Caenorhabditis elegans] pir||T37293 ... choli...ne O-acetyltransferase (EC 2.3.1.6) - ... Caenorhabditis elegans sp|P32756|CLAT_CAEEL Choline

  20. O papel do polimorfismo funcional VNTR da região promotora do gene MAOA nos transtornos psiquiátricos

    Directory of Open Access Journals (Sweden)

    Sílvia A. Nishioka

    2011-01-01

    Full Text Available INTRODUÇÃO: Muitos estudos têm investigado a associação do polimorfismo VNTR (número variável de repetições em série localizado na região promotora do gene da enzima monoamina oxidase A (MAOA com alterações no comportamento humano e em diversos transtornos psiquiátricos. OBJETIVO: O objetivo do presente trabalho foi revisar a literatura sobre a participação desse polimorfismo funcional na modulação do comportamento humano para o desenvolvimento dos transtornos psiquiátricos. MÉTODO: A pesquisa foi realizada na literatura em inglês, de janeiro de 1998 a junho de 2009, disponível no Medline, Embase, Web of Science e na base de dados PsycInfo, utilizando os seguintes termos: "MAOA e comportamento humano" e "MAOA e psiquiatria". RESULTADOS: Foram encontrados 3.873 estudos. Desses, 109 foram selecionados e incluídos na revisão. Encontrou-se associação de alelos de baixa atividade do VNTR com transtorno de personalidade antissocial, transtorno de conduta, transtorno de déficit de atenção e hiperatividade, jogo patológico e dependência de substâncias. Alelos da alta atividade da MAOA foram associados a depressão, ansiedade, neuroticismo e anorexia nervosa. Não se encontrou associação entre polimorfismos da MAOA e esquizofrenia e transtorno bipolar. CONCLUSÃO: Os principais achados dão suporte ao papel do polimorfismo VNTR da região promotora do gene da MAOA em alguns transtornos psiquiátricos, apesar das divergências encontradas devidas às dificuldades metodológicas de estudos em genética. De modo geral, os estudos associam os alelos de baixa atividade da MAOA com comportamentos impulsivos e agressivos ("comportamentos hiperativos", enquanto os alelos de alta atividade do geneo mais associados a "comportamentos hipoativos".

  1. A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin N-acetyltransferase expressed in transgenic rice plants.

    Science.gov (United States)

    Byeon, Yeong; Lee, Hyoung Yool; Lee, Kyungjin; Back, Kyoungwhan

    2014-09-01

    Ectopic overexpression of melatonin biosynthetic genes of animal origin has been used to generate melatonin-rich transgenic plants to examine the functional roles of melatonin in plants. However, the subcellular localization of these proteins expressed in the transgenic plants remains unknown. We studied the localization of sheep (Ovis aries) serotonin N-acetyltransferase (OaSNAT) and a translational fusion of a rice SNAT transit peptide to OaSNAT (TS:OaSNAT) in plants. Laser confocal microscopy analysis revealed that both OaSNAT and TS:OaSNAT proteins were localized to the cytoplasm even with the addition of the transit sequence to OaSNAT. Transgenic rice plants overexpressing the TS:OaSNAT fusion transgene exhibited high SNAT enzyme activity relative to untransformed wild-type plants, but lower activity than transgenic rice plants expressing the wild-type OaSNAT gene. Melatonin levels in both types of transgenic rice plant corresponded well with SNAT enzyme activity levels. The TS:OaSNAT transgenic lines exhibited increased seminal root growth relative to wild-type plants, but less than in the OaSNAT transgenic lines, confirming that melatonin promotes root growth. Seed-specific OaSNAT expression under the control of a rice prolamin promoter did not confer high levels of melatonin production in transgenic rice seeds compared with seeds from transgenic plants expressing OaSNAT under the control of the constitutive maize ubiquitin promoter. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Cloning, Characterization, and Expression Analysis of the Novel Acetyltransferase Retrogene Ard1b in the Mouse1

    Science.gov (United States)

    Pang, Alan Lap-Yin; Peacock, Stephanie; Johnson, Warren; Bear, Deborah H.; Rennert, Owen M.; Chan, Wai-Yee

    2009-01-01

    N-alpha-terminal acetylation is a modification process that occurs cotranslationally on most eukaryotic proteins. The major enzyme responsible for this process, N-alpha-terminal acetyltransferase, is composed of the catalytic subunit ARD1A and the auxiliary subunit NAT1. We cloned, characterized, and studied the expression pattern of Ard1b (also known as Ard2), a novel homolog of the mouse Ard1a. Comparison of the genomic structures suggests that the autosomal Ard1b is a retroposed copy of the X-linked Ard1a. Expression analyses demonstrated a testis predominance of Ard1b. A reciprocal expression pattern between Ard1a and Ard1b is also observed during spermatogenesis, suggesting that Ard1b is expressed to compensate for the loss of Ard1a starting from meiosis. Both ARD1A and ARD1B can interact with NAT1 to constitute a functional N-alpha-terminal acetyltransferase in vitro. The expression of ARD1B protein can be detected in mouse testes but is delayed until the first appearance of round spermatids. In a cell culture model, the inclusion of the long 3′ untranslated region of Ard1b leads to reduction of luciferase reporter activity, which implicates its role in translational repression of Ard1b during spermatogenesis. Our results suggest that ARD1B may have an important role in the later course of the spermatogenic process. PMID:19246321

  3. Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharide in Staphylococcus aureus.

    Science.gov (United States)

    Lin, W S; Cunneen, T; Lee, C Y

    1994-11-01

    We previously cloned a 19.4-kb DNA region containing a cluster of genes affecting type 1 capsule production from Staphylococcus aureus M. Subcloning experiments showed that these capsule (cap) genes are localized in a 14.6-kb region. Sequencing analysis of the 14.6-kb fragment revealed 13 open reading frames (ORFs). Using complementation tests, we have mapped a collection of Cap- mutations in 10 of the 13 ORFs, indicating that these 10 genes are involved in capsule biosynthesis. The requirement for the remaining three ORFs in the synthesis of the capsule was demonstrated by constructing site-specific mutations corresponding to each of the three ORFs. Using an Escherichia coli S30 in vitro transcription-translation system, we clearly identified 7 of the 13 proteins predicted from the ORFs. Homology search between the predicted proteins and those in the data bank showed very high homology (52.3% identity) between capL and vipA, moderate homology (29% identity) between capI and vipB, and limited homology (21.8% identity) between capM and vipC. The vipA, vipB, and vipC genes have been shown to be involved in the biosynthesis of Salmonella typhi Vi antigen, a homopolymer polysaccharide consisting of N-acetylgalactosamino uronic acid, which is also one of the components of the staphylococcal type 1 capsule. The homology between these sets of genes therefore suggests that capL, capI, and capM may be involved in the biosynthesis of amino sugar, N-acetylgalactosamino uronic acid. In addition, the search showed that CapG aligned well with the consensus sequence of a family of acetyltransferases from various prokaryotic organisms, suggesting that CapG may be an acetyltransferase. Using the isogenic Cap- and Cap+ strains constructed in this study, we have confirmed that type 1 capsule is an important virulence factor in a mouse lethality test.

  4. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level

    International Nuclear Information System (INIS)

    Yamagoe, S.; Kohda, T.; Oishi, M.

    1991-01-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed

  5. Aplicação de genes marcadores em estudos de ecologia microbiana com ênfase no sistema GUS Applications of markers genes on ecologic microbial studies with enphasis on GUS system

    Directory of Open Access Journals (Sweden)

    Fábio Martins Mercante

    2000-06-01

    Full Text Available Muitos aspectos ecológicos envolvidos nas interações entre espécies leguminosas e estirpes de rizóbio têm sido facilmente entendidos com o emprego de técnicas que utilizam genes marcadores. A introdução de um gene marcador específico tem se mostrado altamente viável para análises dessas interações. Os genes marcadores são capazes de codificar para produtos que podem ser facilmente identificados ou medidos, especialmente, enzimas que podem atuar em diferentes substratos, fornecendo produtos coloridos ou fluorescentes facilmente detectáveis. De uma maneira geral, os genes marcadores têm sido utilizados em diferentes aspectos da ecologia microbiana, como nos estudos de competição entre estirpes de rizóbio, expressão de genes simbióticos, colonização da rizosfera e raízes, entre outros. Em todos esses estudos, os genes repórteres precisam ser introduzidos no genoma alvo através de um plasmídeo ou por inserção cromossomal. Nesta revisão, são enfatizados, principalmente, os diversos usos e aplicações de genes marcadores nos estudos de ecologia microbiana, com ênfase no sistema GUS (b-glucuronidase.Many of the ecological aspects involved with the interactions between legume species and rhizobia strains have been made easily to understood with the use of reporter gene techniques. The introduction of a specific reporter gene in an organism has shown to be highly efficient to analyze such interactions. These reporter genes generally code for products that can be easily identified or measured, mainly enzymes that can act on a variety of substrates, supplying colored or fluorescent detectable products. In general, the marker genes have been used in different aspects of microbial ecology, as in the competition studies among rhizobia strains, symbiotic gene expression, rhizosphere and root colonization, among others. In all studies, the marker genes need to be introduced into the genome by a plasmid or through a chromosomal

  6. Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling

    International Nuclear Information System (INIS)

    Oh, Somi; You, Eunae; Ko, Panseon; Jeong, Jangho; Keum, Seula; Rhee, Sangmyung

    2017-01-01

    Microtubules are required for diverse cellular processes, and abnormal regulation of microtubule dynamics is closely associated with severe diseases including malignant tumors. In this study, we report that α-tubulin N-acetyltransferase (αTAT1), a regulator of α-tubulin acetylation, is required for colon cancer proliferation and invasion via regulation of Wnt1 and its downstream genes expression. Public transcriptome analysis showed that expression of ATAT1 is specifically upregulated in colon cancer tissue. A knockout (KO) of ATAT1 in the HCT116 colon cancer cell line, using the CRISPR/Cas9 system showed profound inhibition of proliferative and invasive activities of these cancer cells. Overexpression of αTAT1 or the acetyl-mimic K40Q α-tubulin mutant in αTAT1 KO cells restored the invasiveness, indicating that microtubule acetylation induced by αTAT1 is critical for HCT116 cell invasion. Analysis of colon cancer-related gene expression in αTAT1 KO cells revealed that the loss of αTAT1 decreased the expression of WNT1. Mechanistically, abrogation of tubulin acetylation by αTAT1 knockout inhibited localization of β-catenin to the plasma membrane and nucleus, thereby resulting in the downregulation of Wnt1 and of its downstream genes including CCND1, MMP-2, and MMP-9. These results suggest that αTAT1-mediated Wnt1 expression via microtubule acetylation is important for colon cancer progression. - Highlights: • Ablation of αTAT1 inhibits HCT116 colon cancer cell invasion. • αTAT1/acetylated microtubules regulate expression of Wnt1/β-catenin target genes. • Acetylated microtubules regulate cellular localization of β-catenin. • Loss of αTAT1 prevents Wnt1 from inducing β-catenin-dependent and -independent pathways.

  7. Patterns of Direct Projections from the Hippocampus to the Medial Septum-Diagonal Band Complex : Anterograde Tracing with Phaseolus vulgaris Leucoagglutinin Combined with Immunohistochemistry of Choline Acetyltransferase

    NARCIS (Netherlands)

    Gaykema, R.P.A.; Kuil, J. van der; Hersh, L.B.; Luiten, P.G.M.

    1991-01-01

    The projections from the Ammon's horn to the cholinergic cell groups in the medial septal and diagonal band nuclei were investigated with anterograde tracing of Phaseolus vulgaris leucoagglutinin combined with immunocytochemical detection of choline acetyltransferase, in the rat. Tracer injections

  8. Avaliação da expressão do gene MGMT nos tecidos normal e neoplásico de doentes com câncer colorretal

    Directory of Open Access Journals (Sweden)

    Adriana Teixeira Cordeiro

    Full Text Available OBJETIVO: Avaliar a expressão tecidual do gene de reparo MGMT comparando a mucosa cólica normal e neoplásica em doentes com câncer colorretal. MÉTODOS: Foram estudados 44 portadores de adenocarcinoma colorretal confirmado por estudo histopatológico. Foram excluídos doentes suspeitos de pertencerem a famílias com câncer colorretal hereditário (HNPCC e PAF e os portadores de câncer do reto médio e inferior submetidos a tratamento quimioradioterápico neoadjuvante. A expressão do gene MGMT foi avaliada pela técnica da reação de polimerase em cadeia em tempo real (RT-PCR. A comparação dos resultados encontrados para expressão do gene MGMT entre tecidos normais e neoplásicos foi feita pelo teste t de Student pareado, adotando-se nível de significância de 5% (p <0,05. RESULTADOS: A expressão tecidual do gene MGMT em todos os doentes foi menor no tecido neoplásico quando comparada a do tecido normal (p=0,002. CONCLUSÃO: O gene de reparo MGMT encontra-se menos expresso no tecido neoplásico quando comparados aos tecidos normais em portadores de CCR esporádico.

  9. Insulin increases transcription of rat gene 33 through cis-acting elements in 5[prime]-flanking DNA

    Energy Technology Data Exchange (ETDEWEB)

    Cadilla, C.; Isham, K.R.; Lee, K.L.; Ch' ang, L.Y.; Kenney, F.T. (Oak Ridge National Lab., TN (United States)); Johnson, A.C. (National Cancer Institute, Bethesda, MD (United States). Lab. of Molecular Biology)

    1992-01-01

    Gene 33 is a multihormonally-regulated rat gene whose transcription is rapidly and markedly enhanced by insulin in liver and cultured hepatoma cells. To examine the mechanism by which insulin regulates transcription, the authors have constructed chimeric plasmids in which expression of the bacterial cat gene, encoding chloramphenicol acetyltransferase (CAT), is governed by gene 33 promoter elements and contiguous sequence in DNA flanking the transcription start point (tsp). When transfected into H4IIE hepatoma cells, these constructs gave rise to stably transformed cell lines producing the bacterial CAT enzyme. This expression was increased by insulin treatment in a fashion resembling the effect of this hormone on transcription of the native gene. In vitro transcription assays in nuclear extracts also revealed increased transcription of the chimeric plasmids when the extracts were prepared from insulin-treated rat hepatoma cells. The results demonstrate that induction by insulin is mediated by cis-acting nucleotide sequences located between bp [minus]480 to +27 relative to the tsp.

  10. Longevity Genes Revealed by Integrative Analysis of Isoform-Specific daf-16/FoxO Mutants of Caenorhabditis elegans.

    Science.gov (United States)

    Chen, Albert Tzong-Yang; Guo, Chunfang; Itani, Omar A; Budaitis, Breane G; Williams, Travis W; Hopkins, Christopher E; McEachin, Richard C; Pande, Manjusha; Grant, Ana R; Yoshina, Sawako; Mitani, Shohei; Hu, Patrick J

    2015-10-01

    FoxO transcription factors promote longevity across taxa. How they do so is poorly understood. In the nematode Caenorhabditis elegans, the A- and F-isoforms of the FoxO transcription factor DAF-16 extend life span in the context of reduced DAF-2 insulin-like growth factor receptor (IGFR) signaling. To elucidate the mechanistic basis for DAF-16/FoxO-dependent life span extension, we performed an integrative analysis of isoform-specific daf-16/FoxO mutants. In contrast to previous studies suggesting that DAF-16F plays a more prominent role in life span control than DAF-16A, isoform-specific daf-16/FoxO mutant phenotypes and whole transcriptome profiling revealed a predominant role for DAF-16A over DAF-16F in life span control, stress resistance, and target gene regulation. Integration of these datasets enabled the prioritization of a subset of 92 DAF-16/FoxO target genes for functional interrogation. Among 29 genes tested, two DAF-16A-specific target genes significantly influenced longevity. A loss-of-function mutation in the conserved gene gst-20, which is induced by DAF-16A, reduced life span extension in the context of daf-2/IGFR RNAi without influencing longevity in animals subjected to control RNAi. Therefore, gst-20 promotes DAF-16/FoxO-dependent longevity. Conversely, a loss-of-function mutation in srr-4, a gene encoding a seven-transmembrane-domain receptor family member that is repressed by DAF-16A, extended life span in control animals, indicating that DAF-16/FoxO may extend life span at least in part by reducing srr-4 expression. Our discovery of new longevity genes underscores the efficacy of our integrative strategy while providing a general framework for identifying specific downstream gene regulatory events that contribute substantially to transcription factor functions. As FoxO transcription factors have conserved functions in promoting longevity and may be dysregulated in aging-related diseases, these findings promise to illuminate fundamental

  11. Avaliação de plantas transgênicas de Petunia x hybrida contendo o gene Psag12 - ipt cultivadas sob deficiência nutricional.

    Directory of Open Access Journals (Sweden)

    Francine Lorena Cuquel

    2001-05-01

    Full Text Available Deficiência nutricional em plantas pode causar clorose, necrose, desfolha, redução do crescimento e da produtividade e senescência prematura. Aplicações xógenas de citocinina podem aliviar tais sintomas. Este estudo foi efetuado para avaliar os efeitos da produção auto-regulada de citocinina na tolerância de plantas de petúnia (Petunia x hybrida à deficiência nutricional. Um gene quimérico contendo o promotor SAG12 unido ao gene ipt, o qual codifica a produção de isopentenyl transferase, uma enzima da rota metabólica da biossíntese de citocinina, foi introduzido em petúnia através de transformação mediada por Agrobacterium. Duas plantas contendo o gene ipt foram selecionadas e autopolinizadas para obtenção das linhas a serem submetidas à deficiência nutricional. Ambas as linhas PSAG12–ipt avaliadas foram mais tolerantes à deficiência nutricional que as plantas do tipo selvagem. Os resultados indicam que a produção endógena de citocinina pode aumentar a tolerância das plantas à deficiência nutricional.

  12. Analysis of a cis-Acting Element Involved in Regulation by Estrogen of Human Angiotensinogen Gene Expression.

    Science.gov (United States)

    Zhao, Yan-Yan; Sun, Kai-Lai; Ashok, Kumar

    1998-01-01

    The work was aimed to identify the estrogen responsive element in the human angiotensinogen gene. The nucleotide sequence between the transcription initiation site and TATA box in angiotensinogen gene promoter was found to be strongly homologous with the consensus estrogen responsive element. This sequence was confirmed as the estrogen responsive element (HAG ERE) by electrophoretic mobility shift assay. The recombinant expression vectors were constructed in which chloramphenicol acetyltransferase (CAT) reporter gene was driven by angiotensinogen core promoter with HAG ERE of by TK core promoter with multiplied HAG ERE, and were used in cotransfection with the human estrogen receptor expression vector into HepG(2) cells; CAT assays showed an increase of the CAT activity on 17beta-estradiol treatment in those transfectants. These results suggest that the human angiotensinogen gene is transcriptionally up-regulated by estrogen through the estrogen responsive element near TATA box of the promoter.

  13. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity.

    Science.gov (United States)

    Love, Dona C; Ghosh, Salil; Mondoux, Michelle A; Fukushige, Tetsunari; Wang, Peng; Wilson, Mark A; Iser, Wendy B; Wolkow, Catherine A; Krause, Michael W; Hanover, John A

    2010-04-20

    Nutrient-driven O-GlcNAcylation of key components of the transcription machinery may epigenetically modulate gene expression in metazoans. The global effects of GlcNAcylation on transcription can be addressed directly in C. elegans because knockouts of the O-GlcNAc cycling enzymes are viable and fertile. Using anti-O-GlcNAc ChIP-on-chip whole-genome tiling arrays on wild-type and mutant strains, we detected over 800 promoters where O-GlcNAc cycling occurs, including microRNA loci and multigene operons. Intriguingly, O-GlcNAc-marked promoters are biased toward genes associated with PIP3 signaling, hexosamine biosynthesis, and lipid/carbohydrate metabolism. These marked genes are linked to insulin-like signaling, metabolism, aging, stress, and pathogen-response pathways in C. elegans. Whole-genome transcriptional profiling of the O-GlcNAc cycling mutants confirmed dramatic deregulation of genes in these key pathways. As predicted, the O-GlcNAc cycling mutants show altered lifespan and UV stress susceptibility phenotypes. We propose that O-GlcNAc cycling at promoters participates in a molecular program impacting nutrient-responsive pathways in C. elegans, including stress, pathogen response, and adult lifespan. The observed impact of O-GlcNAc cycling on both signaling and transcription in C. elegans has important implications for human diseases of aging, including diabetes and neurodegeneration.

  14. Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP

    International Nuclear Information System (INIS)

    Lewis, E.J.; Harrington, C.A.; Chikaraishi, D.M.

    1987-01-01

    Glucocorticoid and cyclic AMP increase tyrosine hydroxylase (TH) activity and mRNA levels in pheochromocytoma cultures. The transcriptional activity of the TH gene, as measured by nuclear run-on assay, is also increased when cultures are treated with the synthetic glucocorticoid dexamethasone or agents that increase intracellular cyclic AMP, such as forskolin and 8-BrcAMP. Both inducers effect transcriptional changes within 10 min after treatment and are maximal after 30 min for forskolin and after 60 min for dexamethasone. The 5' flanking sequences of the TH gene were fused to the bacterial gene chloramphenicol acetyltransferase (CAT), and the hybrid gene was transfected into pheochromocytoma cultures and GH 4 pituitary cells. In both cell lines, a region of the TH gene containing bases -272 to +27 conferred induction of CAT by cyclic AMP, but not by glucocorticoid. The same results were found when a region of the TH gene containing -773 to + 27 was used. Thus, the sequences required for induction of TH by cyclic AMP are contained within 272 bases of 5' flanking sequence, but sequences sufficient for glucocorticoid regulation are not contained with 773 bases

  15. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil

    Science.gov (United States)

    Yang, Liuqing; Zhang, Xiaojun; Ju, Xiaotang

    2017-02-01

    The linkage between N2O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of the North China Plain. We investigated the abundance of bacterial amoA for nitrification and narG, nirS, nirK, and nosZ for denitrification by in situ soil sampling to determine how the abundance of these genes changes instantly during N fertilization events and is related to high N2O emission peaks. We also investigated how long-term incorporated straw and/or manure affect(s) the abundance of these genes based on a seven-year field experiment. The overall results demonstrate that the long-term application of urea-based fertilizer and/or manure significantly enhanced the number of bacterial amoA gene copies leading to high N2O emission peaks after N fertilizer applications. These peaks contributed greatly to the annual N2O emissions in the crop rotation. A significant correlation between annual N2O emissions and narG, nirS, and nirK gene numbers indicates that the abundance of these genes is related to N2O emission under conditions for denitrification, thus partly contributing to the annual N2O emissions. These findings will help to draw up appropriate measures for mitigation of N2O emissions in this ‘hotspot’ region.

  16. Upregulation of human heme oxygenase gene expression by Ets-family proteins.

    Science.gov (United States)

    Deramaudt, B M; Remy, P; Abraham, N G

    1999-03-01

    Overexpression of human heme oxygenase-1 has been shown to have the potential to promote EC proliferation and angiogenesis. Since Ets-family proteins have been shown to play an important role in angiogenesis, we investigated the presence of ETS binding sites (EBS), GGAA/T, and ETS protein contributing to human HO-1 gene expression. Several chloramphenicol acetyltransferase constructs were examined in order to analyze the effect of ETS family proteins on the transduction of HO-1 in Xenopus oocytes and in microvessel endothelial cells. Heme oxygenase promoter activity was up-regulated by FLI-1ERGETS-1 protein(s). Chloramphenicol acetyltransferase (CAT) assays demonstrated that the promoter region (-1500 to +19) contains positive and negative control elements and that all three members of the ETS protein family were responsible for the up-regulation of HHO-1. Electrophoretic mobility shift assays (EMSA), performed with nuclear extracts from endothelial cells overexpressing HHO-1 gene, and specific HHO-1 oligonucleotides probes containing putative EBS resulted in a specific and marked bandshift. Synergistic binding was observed in EMSA between AP-1 on the one hand, FLI-1, ERG, and ETS-1 protein on the other. Moreover, 5'-deletion analysis demonstrated the existence of a negative control element of HHO-1 expression located between positions -1500 and -120 on the HHO-1 promoter. The presence of regulatory sequences for transcription factors such as ETS-1, FLI-1, or ERG, whose activity is associated with cell proliferation, endothelial cell differentiation, and matrix metalloproteinase transduction, may be an indication of the important role that HO-1 may play in coronary collateral circulation, tumor growth, angiogenesis, and hemoglobin-induced endothelial cell injuries.

  17. Digital Gene Expression Profiling Analysis of Aged Mice under Moxibustion Treatment

    Directory of Open Access Journals (Sweden)

    Nan Liu

    2018-01-01

    Full Text Available Aging is closely connected with death, progressive physiological decline, and increased risk of diseases, such as cancer, arteriosclerosis, heart disease, hypertension, and neurodegenerative diseases. It is reported that moxibustion can treat more than 300 kinds of diseases including aging related problems and can improve immune function and physiological functions. The digital gene expression profiling of aged mice with or without moxibustion treatment was investigated and the mechanisms of moxibustion in aged mice were speculated by gene ontology and pathway analysis in the study. Almost 145 million raw reads were obtained by digital gene expression analysis and about 140 million (96.55% were clean reads. Five differentially expressed genes with an adjusted P value 1 were identified between the control and moxibustion groups. They were Gm6563, Gm8116, Rps26-ps1, Nat8f4, and Igkv3-12. Gene ontology analysis was carried out by the GOseq R package and functional annotations of the differentially expressed genes related to translation, mRNA export from nucleus, mRNA transport, nuclear body, acetyltransferase activity, and so on. Kyoto Encyclopedia of Genes and Genomes database was used for pathway analysis and ribosome was the most significantly enriched pathway term.

  18. Plant isoflavone and isoflavanone O-methyltransferase genes

    Science.gov (United States)

    Broeckling, Bettina E.; Liu, Chang-Jun; Dixon, Richard A.

    2014-08-19

    The invention provides enzymes that encode O-methyltransferases (OMTs) from Medicago truncatula that allow modification to plant (iso)flavonoid biosynthetic pathways. In certain aspects of the invention, the genes encoding these enzymes are provided. The invention therefore allows the modification of plants for isoflavonoid content. Transgenic plants comprising such enzymes are also provided, as well as methods for improving disease resistance in plants. Methods for producing food and nutraceuticals, and the resulting compositions, are also provided.

  19. Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence

    International Nuclear Information System (INIS)

    Kontunen-Soppela, Sari; Parviainen, Juha; Ruhanen, Hanna; Brosche, Mikael; Keinaenen, Markku; Thakur, Ramesh C.; Kolehmainen, Mikko; Kangasjaervi, Jaakko; Oksanen, Elina; Karnosky, David F.; Vapaavuori, Elina

    2010-01-01

    Gene expression responses of paper birch (Betula papyrifera) leaves to elevated concentrations of CO 2 and O 3 were studied with microarray analyses from three time points during the summer of 2004 at Aspen FACE. Microarray data were analyzed with clustering techniques, self-organizing maps, K-means clustering and Sammon's mappings, to detect similar gene expression patterns within sampling times and treatments. Most of the alterations in gene expression were caused by O 3 , alone or in combination with CO 2 . O 3 induced defensive reactions to oxidative stress and earlier leaf senescence, seen as decreased expression of photosynthesis- and carbon fixation-related genes, and increased expression of senescence-associated genes. The effects of elevated CO 2 reflected surplus of carbon that was directed to synthesis of secondary compounds. The combined CO 2 + O 3 treatment resulted in differential gene expression than with individual gas treatments or in changes similar to O 3 treatment, indicating that CO 2 cannot totally alleviate the harmful effects of O 3 . - Clustering analysis of birch leaf gene expression data reveals differential responses to O 3 and CO 2 .

  20. Genes relacionados ao metabolismo dos fosfolípides como fatores de risco para o transtorno afetivo bipolar

    Directory of Open Access Journals (Sweden)

    Meira-Lima Ivanor V

    2003-01-01

    Full Text Available Os estudos de epidemiologia genética fornecem consistente evidência de que o componente genético tem um papel preponderante no risco para o Transtorno Afetivo Bipolar (TAB, embora genes de vulnerabilidade ainda não tenham sido identificados de forma inequívoca. Nesta atualização os autores apresentam dados demonstrando que os fosfolípides exercem um relevante papel nos processos de sinalização intracelular e que estudos da neuroquímica dos estabilizadores do humor convergem em apontar para uma ação destas drogas nas vias de transdução de sinais reguladas pelas fosfolipases. Concluem que investigações de variantes nos genes que codificam enzimas do metabolismo dos fosfolípides como potenciais genes de susceptibilidade podem ampliar o conhecimento acerca dos fatores de risco e dos mecanismos fisiopatológicos envolvidos no surgimento destes transtornos do humor.

  1. Expression of the sigma35 and cry2AB genes involved in Bacillus thuringiensis virulence Expressão dos genes sigma35 e cry2AB envolvidos na virulência de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Ana Maria Guidelli-Thuler

    2009-06-01

    Full Text Available There are several genes involved in Bacillus thuringiensis sporulation. The regulation and expression of these genes results in an upregulation in Cry protein production, and this is responsible for the death of insect larvae infected by Bacillus thuringiensis. Gene expression was monitored in Bacillus thuringiensis during three developmental phases. DNA macroarrays were constructed for selected genes whose sequences are available in the GenBank database. These genes were hybridized to cDNA sequences from B. thuringiensis var. kurstaki HD-1. cDNA probes were synthesized by reverse transcription from B. thuringiensis RNA templates extracted during the exponential (log growth, stationary and sporulation phases, and labeled with 33PadCTP. Two genes were differentially expressed levels during the different developmental phases. One of these genes is related to sigma factor (sigma35, and the other is a cry gene (cry2Ab. There were differences between the differential levels of expression of various genes and among the expression detected for different combinations of the sigma factor and cry2Ab genes. The maximum difference in expression was observed for the gene encoding sigma35 factor in the log phase, which was also expressed at a high level during the sporulation phase. The cry2Ab gene was only expressed at a high level in the log phase, but at very low levels in the other phases when compared to the sigma35.Muitos genes estão envolvidos nos mecanismos de esporulação da bactéria Bacillus thuringiensis. A regulação e expressão desses genes resultam em uma produção massiva da proteína Cry, responsável pela morte das larvas de muitos insetos. Neste trabalho monitorou-se a expressão de genes de Bacillus thuringiensis, ao longo de três fases de seu desenvolvimento. Foram construídos macroarrays de DNA dos genes selecionados, cujas seqüências estão disponibilizadas no GenBank. Estes genes foram hibridizados com cDNAs obtidos de B

  2. oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets.

    Science.gov (United States)

    Kwon, Andrew T; Arenillas, David J; Worsley Hunt, Rebecca; Wasserman, Wyeth W

    2012-09-01

    oPOSSUM-3 is a web-accessible software system for identification of over-represented transcription factor binding sites (TFBS) and TFBS families in either DNA sequences of co-expressed genes or sequences generated from high-throughput methods, such as ChIP-Seq. Validation of the system with known sets of co-regulated genes and published ChIP-Seq data demonstrates the capacity for oPOSSUM-3 to identify mediating transcription factors (TF) for co-regulated genes or co-recovered sequences. oPOSSUM-3 is available at http://opossum.cisreg.ca.

  3. Oxidative stress gene expression profile in inbred mouse after ischemia/reperfusion small bowel injury Perfil da expressão gênica do estresse oxidativo em camundongos isogênicos após lesão de isquemia e reperfusão intestinal

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Bertoletto

    2012-11-01

    Full Text Available PURPOSE: To determine the profile of gene expressions associated with oxidative stress and thereby contribute to establish parameters about the role of enzyme clusters related to the ischemia/reperfusion intestinal injury. METHODS: Twelve male inbred mice (C57BL/6 were randomly assigned: Control Group (CG submitted to anesthesia, laparotomy and observed by 120min; Ischemia/reperfusion Group (IRG submitted to anesthesia, laparotomy, 60min of small bowel ischemia and 60min of reperfusion. A pool of six samples was submitted to the qPCR-RT protocol (six clusters for mouse oxidative stress and antioxidant defense pathways. RESULTS: On the 84 genes investigated, 64 (76.2% had statistic significant expression and 20 (23.8% showed no statistical difference to the control group. From these 64 significantly expressed genes, 60 (93.7% were up-regulated and 04 (6.3% were down-regulated. From the group with no statistical significantly expression, 12 genes were up-regulated and 8 genes were down-regulated. Surprisingly, 37 (44.04% showed a higher than threefold up-regulation and then arbitrarily the values was considered as a very significant. Thus, 37 genes (44.04% were expressed very significantly up-regulated. The remained 47 (55.9% genes were up-regulated less than three folds (35 genes - 41.6% or down-regulated less than three folds (12 genes - 14.3%. CONCLUSION: The intestinal ischemia and reperfusion promote a global hyper-expression profile of six different clusters genes related to antioxidant defense and oxidative stress.OBJETIVO: Determinar o perfil de expressão dos genes associados com estresse oxidativo e contribuir para estabelecer parâmetros sobre o papel das familias de enzimas relacionadas com a lesão de isquemia / reperfusão intestinal. MÉTODOS: Doze camundongos machos isogênicos (C57BL/6 foram distribuídos aleatoriamente: Grupo Controle (CG submetido à laparotomia anestesia, e observado por 120min; Grupo isquemia/reperfusão (IRG

  4. Hepatic gene expression profiling using GeneChips in zebrafish exposed to 17{alpha}-methyldihydrotestosterone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.L.; Thomason, R.G.; Lee, D.M.; Brill, J.L.; Price, B.B.; Carr, G.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States); Versteeg, D.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States)], E-mail: versteeg.dj@pg.com

    2008-04-28

    Concentration and time-dependent changes in hepatic gene expression were examined in adult, female zebrafish (Danio rerio) exposed to 0, 0.1, 0.7, 4.9 {mu}g/L of a model androgen, 17{alpha}-methyldihydrotestosterone (MDHT). At 24 and 168 h, fish were sacrificed and liver was extracted for gene expression analysis using custom Affymetrix GeneChip Zebrafish Genome Microarrays. In an effort to link gene expression changes to higher levels of biological organization, blood was collected for measurement of plasma steroid hormones (17{beta}-estradiol (E2), testosterone (T)) and vitellogenin (VTG) using ELISA. Body and ovary weight were also measured. A significant reduction in E2 occurred at 24 h (0.7 and 4.9 {mu}g/L) and 168 h (4.9 {mu}g/L) following MDHT exposure. In contrast, T was significantly increased at 24 h (4.9 {mu}g/L) and 168 h (0.1, 0.7, 4.9 {mu}g/L). 171 and 575 genes were significantly affected in a concentration-dependent manner at either 24 or 168 h by MDHT exposure at p {<=} 0.001 and p {<=} 0.01, respectively. Genes involved in retinoic acid metabolism (e.g. aldehyde dehydrogenase 8, member A1; retinol dehydrogenase 12), steroid biosynthesis and metabolism (e.g. hydroxysteroid (11{beta}) dehydrogenase 2; hydroxy-delta-5-steroid dehydrogenase, 3 beta-), hormone transport (e.g. sex hormone binding globulin), and regulation of cell growth and proliferation (e.g. N-myc downstream regulated gene 1; spermidinespermine N(1)-acetyltransferase) were affected by MDHT exposure. In this study, we identified genes involved in a variety of biological processes that have the potential to be used as markers of exposure to androgenic substances. Genes identified in this study provide information on the potential mode of action of strong androgens in female fish. In addition, when used for screening of EDC's, these genes may also serve as sensitive markers of exposure to androgenic compounds.

  5. Avanços tecnológicos e variabilidade genética da expansão CGG da região promotora do gene FMR1

    OpenAIRE

    Gigonzac, Marc Alexandre Duarte

    2016-01-01

    A Síndrome do X-Frágil (SXF) é a principal causa de deficiência intelectual herdável no mundo e a segunda de etiologia genética, com uma prevalência estimada de 1/4000 homens e 1/8000 mulheres. O mecanismo molecular mais comum na SXF é decorrente de alterações na expressão do gene FMR1, localizado em Xq27.3, devido a expansões trinucleotídicas CGG na região promotora e subsequente metilação do gene. Apesar de apresentar achados clínicos consistentes, os mesmos nãoo exclusivos, e a existênc...

  6. Terapia gênica, doping genético e esporte: fundamentação e implicações para o futuro Gene therapy, genetic doping and sport: fundaments and implications for the future

    Directory of Open Access Journals (Sweden)

    Guilherme Giannini Artioli

    2007-10-01

    Full Text Available A busca pelo desempenho ótimo tem sido uma constante no esporte de alto rendimento. Para tanto, muitos atletas acabam utilizando drogas e métodos ilícitos, os quais podem ter importantes efeitos adversos. A terapia gênica é uma modalidade terapêutica bastante recente na medicina, cujos resultados têm, até o momento, indicado sua eficácia no tratamento de diversas doenças graves. O princípio da terapia gênica consiste na transferência vetorial de materiais genéticos para células-alvo, com o objetivo de suprir os produtos de um gene estruturalmente anormal no genoma do paciente. Recentemente, o potencial para uso indevido da terapia gênica entre atletas tem despertado a atenção de cientistas e de órgãos reguladores de esporte. A transferência de genes que poderiam melhorar o desempenho esportivo por atletas saudáveis, método proibido em 2003, foi denominado de doping genético. Os genes candidatos mais importantes para doping genético são os que codificam para GH, IGF-1, bloqueadores da miostatina, VEGF, endorfinas e encefalinas, eritropoetina, leptina e PPAR-delta. Uma vez inserido no genoma do atleta, o gene se expressaria gerando um produto endógeno capaz de melhorar o desempenho atlético. Assim, os métodos atuais de detecção de doping nãoo sensíveis a esse tipo de manipulação, o que poderia estimular seu uso indevido entre atletas. Além disso, a terapia gênica ainda apresenta problemas conhecidos de aplicação, como resposta inflamatória e falta de controle da ativação do gene. Em pessoas saudáveis, é provável que tais problemas sejam ainda mais importantes, já que haveria excesso do produto do gene transferido. Há também outros riscos ainda não conhecidos, específicos para cada tipo de gene. Em vista disso, debates sobre o doping genético devem ser iniciados no meio acadêmico e esportivo, para que sejam estudadas medidas de prevenção, controle e detecção do doping genético, evitando

  7. Dietary TiO2 particles modulate expression of hormone-related genes in Bombyx mori.

    Science.gov (United States)

    Shi, Guofang; Zhan, Pengfei; Jin, Weiming; Fei, JianMing; Zhao, Lihua

    2017-08-01

    Silkworm (Bombyx mori) is an economically beneficial insect. Its growth and development are regulated by endogenous hormones. In the present study, we found that feeding titanium dioxide nanoparticles (TiO 2 NP) caused a significant increase of body size. TiO 2 NP stimulated the transcription of several genes, including the insulin-related hormone bombyxin, PI3K/Akt/TOR (where PI3K is phosphatidylinositol 3-kinase and TOR is target of rapamycin), and the adenosine 5'-monophosphateactivated protein kinase (AMPK)/target of rapamycin (TOR) pathways. Differentially expressed gene (DEG) analysis documented 26 developmental hormone signaling related genes that were differentially expressed following dietary TiO 2 NP treatment. qPCR analysis confirmed the upregulation of insulin/ecdysteroid signaling genes, such as bombyxin B-1, bombyxin B-4, bombyxin B-7, MAPK, P70S6K, PI3k, eIF4E, E75, ecdysteroid receptor (EcR), and insulin-related peptide binding protein precursor 2 (IBP2). We infer from the upregulated expression of bombyxins and the signaling network that they act in bombyxin-stimulated ecdysteroidogenesis. © 2017 Wiley Periodicals, Inc.

  8. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    OpenAIRE

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-01-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did no...

  9. Identification of late O{sub 3}-responsive genes in Arabidopsis thaliana by cDNA microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    D' Haese, D. [Univ. of Antwerp, Dept. of Biology, Antwerp (BE) and Univ. of Newcastle, School of Biology and Psychology, Div. of Biology, Newcastle-Upon-Tyne (United Kingdom); Horemans, N.; Coen, W. De; Guisez, Y. [Univ. of Antwerp, Dept. of Biology, Antwerp (Belgium)

    2006-09-15

    To better understand the response of a plant to 0{sub 3} stress, an integrated microarray analysis was performed on Arabidopsis plants exposed during 2 days to purified air or 150 nl l{sup -1} O{sub 3}, 8 h day-l. Agilent Arabidopsis 2 Oligo Microarrays were used of which the reliability was confirmed by quantitative real-time PCR of nine randomly selected genes. We confirmed the O{sub 3} responsiveness of heat shock proteins (HSPs), glutathione-S-tranferases and genes involved in cell wall stiffening and microbial defence. Whereas, a previous study revealed that during an early stage of the O{sub 3} stress response, gene expression was strongly dependent on jasmonic acid and ethylene, we report that at a later stage (48 h) synthesis of jasrnonic acid and ethylene was downregulated. In addition, we observed the simultaneous induction of salicylic acid synthesis and genes involved in programmed cell death and senescence. Also typically, the later stage of the response to O{sub 3} appeared to be the induction of the complete pathway leading to the biosynthesis of anthocyanin diglucosides and the induction of thioredoxin-based redox control. Surprisingly absent in the list of induced genes were genes involved in ASC-dependent antioxidation, few of which were found to be induced after 12 h of 0{sub 3} exposure in another study. We discuss these and other particular results of the microarray analysis and provide a map depicting significantly affected genes and their pathways highlighting their interrelationships and subcellular localization. (au)

  10. [Construction of enterohemorrhagic Escherichia coli O157:H7 strains with espF gene deletion and complementation].

    Science.gov (United States)

    Hua, Ying; Sun, Qi; Wang, Xiangyu; DU, Yanli; Shao, Na; Zhang, Qiwei; Zhao, Wei; Wan, Chengsong

    2015-11-01

    To construct enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains with delection espF gene and its nucleotide fragment and with espF gene complementation. A pair of homologous arm primers was designed to amplify the gene fragment of kanamycin resistance, which was transformed into EHEC O157:H7 EDL933w strain via the PKD46 plasmid by electroporation. The replacement of the espF gene by kanamycin resistance gene through the PKD46-mediated red recombination system was confirmed by PCR and sequencing. The entire coding region of espF along with its nucleotide fragment was amplified by PCR and cloned into pBAD33 plasmid, which was transformed into a mutant strain to construct the strain with espF complementation. RT-PCR was used to verify the transcription of espF and its nucleotide fragment in the complemented mutant strain. We established EHEC O157:H7 EDL933w strains with espF gene deletion and with espF gene complementation. Both espF and its nucleotide fragment were transcribed in the complemented mutant strain. The two strains provide a basis for further study of the regulatory mechanism of espF.

  11. A 20 bp cis-acting element is both necessary and sufficient to mediate elicitor response of a maize PRms gene.

    Science.gov (United States)

    Raventós, D; Jensen, A B; Rask, M B; Casacuberta, J M; Mundy, J; San Segundo, B

    1995-01-01

    Transient gene expression assays in barley aleurone protoplasts were used to identify a cis-regulatory element involved in the elicitor-responsive expression of the maize PRms gene. Analysis of transcriptional fusions between PRms 5' upstream sequences and a chloramphenicol acetyltransferase reporter gene, as well as chimeric promoters containing PRms promoter fragments or repeated oligonucleotides fused to a minimal promoter, delineated a 20 bp sequence which functioned as an elicitor-response element (ERE). This sequence contains a motif (-246 AATTGACC) similar to sequences found in promoters of other pathogen-responsive genes. The analysis also indicated that an enhancing sequence(s) between -397 and -296 is required for full PRms activation by elicitors. The protein kinase inhibitor staurosporine was found to completely block the transcriptional activation induced by elicitors. These data indicate that protein phosphorylation is involved in the signal transduction pathway leading to PRms expression.

  12. Assaying the reporter gene chloramphenicol acetyltransferase

    International Nuclear Information System (INIS)

    Crabb, D.W.; Minth, C.D.; Dixon, J.E.

    1989-01-01

    These experiments document the presence of enzymatic activities in extracts of commonly used cell lines which interfere with the determination of CAT activity. We suspect that the deacetylase activity is the most important, as the extract of the H4IIE C3 cells was capable of completely deacetylating the mono- and diacetylchloramphenicol formed during a 2-hr incubation of CAT with chloramphenicol and acetyl-CoA. The results of the inhibitor experiments are consistent with the presence of proteases which degrade CAT, or a serine carboxylesterase. The interference was also reduced by about half by EDTA; a metalloenzyme (either a protease or esterase) may therefore be involved. This interference appears to be a common phenomenon. We have surveyed 23 different cell types for the presence of the interfering activity and found it in 15. The interference was particularly prominent in several neuroendocrine and hepatoma cells. We took advantage of the effect of EDTA and the heat stability of CAT to eliminate the interference. Addition of 5 mM EDTA and a 10-min incubation of the sonicated cell suspension at 60 degrees prior to centrifugation abolished the interference in all cell lines tested. It is important to note that in order to reveal any CAT activity in some of the extracts (e.g., PC-12 or Hep3B), it was necessary to run the CAT assay for 2 hr. The control assays were therefore run almost to completion, and were well beyond the linear range of the assay. Therefore, the small differences which we observed between the heat-treated and control samples in some instances (e.g., rice, corn, or HeLa cells) will be dramatically amplified when the CAT assay is performed under conditions in which only a small percentage of the substrate is converted to product

  13. Effective gene silencing activity of prodrug-type 2'-O-methyldithiomethyl siRNA compared with non-prodrug-type 2'-O-methyl siRNA.

    Science.gov (United States)

    Hayashi, Junsuke; Nishigaki, Misa; Ochi, Yosuke; Wada, Shun-Ichi; Wada, Fumito; Nakagawa, Osamu; Obika, Satoshi; Harada-Shiba, Mariko; Urata, Hidehito

    2018-07-01

    Small interfering RNAs (siRNAs) are an active agent to induce gene silencing and they have been studied for becoming a biological and therapeutic tool. Various 2'-O-modified RNAs have been extensively studied to improve the nuclease resistance. However, the 2'-O-modified siRNA activities were often decreased by modification, since the bulky 2'-O-modifications inhibit to form a RNA-induced silencing complex (RISC). We developed novel prodrug-type 2'-O-methyldithiomethyl (MDTM) siRNA, which is converted into natural siRNA in an intracellular reducing environment. Prodrug-type 2'-O-MDTM siRNAs modified at the 5'-end side including 5'-end nucleotide and the seed region of the antisense strand exhibited much stronger gene silencing effect than non-prodrug-type 2'-O-methyl (2'-O-Me) siRNAs. Furthermore, the resistances for nuclease digestion of siRNAs were actually enhanced by 2'-O-MDTM modifications. Our results indicate that 2'-O-MDTM modifications improve the stability of siRNA in serum and they are able to be introduced at any positions of siRNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Primary structure of the human M2 mitochondrial autoantigen of primary biliary cirrhosis: Dihydrolipoamide acetyltransferase

    International Nuclear Information System (INIS)

    Coppel, R.L.; McNeilage, L.J.; Surh, C.D.; Van De Water, J.; Spithill, T.W.; Whittingham, S.; Gershwin, M.E.

    1988-01-01

    Primary biliary cirrhosis is a chronic, destructive autoimmune liver disease of humans. Patient sera are characterized by a high frequency of autoantibodies to a M r 70,000 mitochondrial antigen a component of the M2 antigen complex. The authors have identified a human cDNA clone encoding the complete amino acid sequence of this autoantigen. The predicted structure has significant similarity with the dihydrolipoamide acetyltransferase of the Escherichia coli pyruvate dehydrogenase multienzyme complex. The human sequence preserves the Glu-Thr-Asp-Lys-Ala motif of the lipoyl-binding site and has two potential binding sites. Expressed fragments of the cDNA react strongly with sera from patients with primary biliary cirrhosis but not with sera from patients with autoimmune chronic active hepatitis or sera from healthy subjects

  15. The GABA A-Receptor γ2 (GABRG2 Gene in obsessive-compulsive disorder O gene do receptor GABA A- γ2 (GABRG2 no transtorno obsessivo-compulsivo

    Directory of Open Access Journals (Sweden)

    Margaret A. Richter

    2009-12-01

    Full Text Available OBJECTIVE: The γ-aminobutyric acid type A (GABA A system may be implicated in obsessive-compulsive disorder, based on its major role in modulation of anxiety and its function as the principal inhibitory neurotransmitter system in the cortex. In addition, glutamatergic/GABAergic mechanisms appear to play a role in the pathophysiology of obsessive-compulsive disorder, making the GABA A receptor-γ2 (GABργ2 gene a good candidate for susceptibility in this disorder. METHOD: 118 probands meeting DSM-IV criteria for primary obsessive-compulsive disorder and their available parents were recruited for participation in this study and informed consent was obtained. An NciI restriction site polymorphism in the second intron was genotyped and data was analyzed using the Transmission Disequilibrium Test. RESULTS: In total, 61 of the participating families were informative (i.e., with at least one heterozygous parent. No biases were observed in the transmission of either of the two alleles (χ2 = 0.016, 1 d.f., p = 0.898 to the affected probands in the total sample. CONCLUSION/DISCUSSION: While these results do not provide support for a major role for the GABA A receptor-γ2 in obsessive-compulsive disorder, further investigations of this gene in larger samples are warranted.OBJETIVO: O sistema gabaérgico tipo A (GABA A pode estar implicado no transtorno obsessivo-compulsivo devido ao seu grande papel na modulação da ansiedade e da sua função como o principal neurotransmissor inibidor no córtex. Além disso, mecanismos glutamatérgicos/gabaérgicos parecem desempenhar um papel na fisiopatologia do transtorno obsessivo-compulsivo, tornando o gene do receptor GABA A-γ2 (GABRG2 um bom gene candidato para a suscetibilidade genética a este transtorno. MÉTODO: 118 probandos que preencheram os critérios do DSM-IV para transtorno obsessivo-compulsivo primário e seus pais (quando disponíveis foram recrutados para a participação neste estudo

  16. Crystal Structures of Murine Carnitine Acetyltransferase in Ternary Complexes with Its Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao,Y.; Jogl, G.; Tong, L.

    2006-01-01

    Carnitine acyltransferases catalyze the reversible exchange of acyl groups between coenzyme A (CoA) and carnitine. They have important roles in many cellular processes, especially the oxidation of long-chain fatty acids in the mitochondria for energy production, and are attractive targets for drug discovery against diabetes and obesity. To help define in molecular detail the catalytic mechanism of these enzymes, we report here the high resolution crystal structure of wild-type murine carnitine acetyltransferase (CrAT) in a ternary complex with its substrates acetyl-CoA and carnitine, and the structure of the S554A/M564G double mutant in a ternary complex with the substrates CoA and hexanoylcarnitine. Detailed analyses suggest that these structures may be good mimics for the Michaelis complexes for the forward and reverse reactions of the enzyme, representing the first time that such complexes of CrAT have been studied in molecular detail. The structural information provides significant new insights into the catalytic mechanism of CrAT and possibly carnitine acyltransferases in general.

  17. Expressão dos genes que codificam as proteínas anexina-1 e galectina-1 nos pólipos rinossinusais e sua modulação pelo glicocorticoide Expression of genes that encode the annexin-1 and galectin-1 proteins in nasal polyposis and their modulation by glucocorticoid

    Directory of Open Access Journals (Sweden)

    Atílio Maximino Fernandes

    2010-04-01

    Full Text Available A fisiopatologia da polipose rinossinusal não é totalmente compreendida, apesar de várias hipóteses em relação ao seu processo inflamatório. OBJETIVOS: Estudo prospectivo da expressão dos genes das proteínas, anexina-1 e a galectina-1, que têm ação anti-inflamatória, e sua modulação pelo glicocorticoide. MATERIAL E MÉTODOS: Onze pacientes portadores de polipose rinossinusal tiveram biopsiados seus pólipos em dois momentos: na ausência de glicocorticoide sistêmico, e na sua presença. Nas duas amostras, foi avaliada a expressão desses genes e comparada com a expressão na mucosa nasal normal do meato médio. RESULTADOS: Verificou-se que a média de expressão dos genes que codifica a anexina-1 e galectina-1 estava predominantemente aumentada, independente do uso do glicocorticoide em relação à mucosa nasal controle. Entretanto, nos pólipos sem uso de corticoide, a média de expressão do gene da anexina-1 foi significativamente maior do que nos pólipos que estavam sob uso de glicocorticoide. Com relação à galectina-1 não houve diferença significativa entre as médias de expressão antes e após o uso de glicocorticoide sistêmico. CONCLUSÃO: Os genes apresentaram um aumento da expressão na mucosa nasal polipoide, independente do uso do glicocorticoide, porém a relação destes dois genes das proteínas anti-inflamatórias com o glicocorticoide não ocorreu da mesma maneira.Rhinosinusal polyps physiopathology is not fully understand, despite numerous hypotheses regarding its inflammatory process. AIMS: a prospective study regarding the gene expression of proteins: anexin-1 and galectin-1, which has an anti-inflammatory action and is modulated by steroids. MATERIALS AND METHODS: eleven patients with rhinosinusal polyps suffered a biopsy of their polyps at two moments: in the absence of systemic steroids and during its use. In the two samples we assessed the expression of these genes and compared it to the normal

  18. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus

    International Nuclear Information System (INIS)

    Davis, M.G.; Kenney, S.C.; Kamine, J.; Pagano, J.S.; Huang, E.S.

    1987-01-01

    Almost all homosexual patients with acquired immunodeficiency syndrome are also actively infected with human cytomegalovirus (HCMV). The authors have hypothesized that an interaction between HCMV and human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome, may exist at a molecular level and contribute to the manifestations of HIV infection. In this report, they demonstrate that the immediate-early gene region of HCMV, in particular immediate-early region 2, trans-activates the expression of the bacterial gene chloramphenicol acetyltransferase that is fused to the HIV long terminal repeat and carried by plasmid pHIV-CAT. The HCMV immediate-early trans-activator increases the level of mRNA from the plamid pHIV-CAT. The sequences of HIV that are responsive to trans-activation by the HDMV immediate-early region are distinct from HIV sequences that are required for response to the HIV tat. The stimulation of HIV gene expression by HDMV gene functions could enhance the consequences of HIV infection in persons with previous or concurrent HCMV infection

  19. Isolation and characterization of a chitinase gene from entomopathogenic fungus Verticillium lecanii Isolamento e caracterização de um gene de quitinase do fungo entomopatogênico Verticillium lecanii

    Directory of Open Access Journals (Sweden)

    Yanping Zhu

    2008-06-01

    Full Text Available Entomopathogenic fungus Verticillium lecanii is a promising whitefly and aphid control agent. Chitinases secreted by this insect pathogen have considerable importance in the biological control of some insect pests. An endochitinase gene Vlchit1 from the fungus was cloned and overexpressed in Escherichia coli. The Vlchit1 gene not only contains an open reading frame (ORF which encodes a protein of 423 amino acids (aa, but also is interrupted by three short introns. A homology modelling of Vlchit1 protein showed that the chitinase Vlchit1 has a (α/β8 TIM barrel structure. Overexpression test and Enzymatic activity assay indicated that the Vlchit1 is a functional enzyme that can hydrolyze the chitin substrate, so the Vlchit1 gene can service as a useful gene source for genetic manipulation leading to strain improvement of entomopathogenic fungi or constructing new transgenic plants with resistance to various fungal and insects pests.O fungo entomopatogênico Verticillium lecanii é um agente promissor no controle da mosca-branca e do pulgão. As quitinases secretadas por esse patógeno de insetos têm uma grande importância no controle biológico de doenças causadas por insetos. Um gene de endoquitinase Vlchit1 desse fungo foi clonado e expresso em Escherichia coli. O gene Vlchit contém não apenas um ORF que codifica uma proteína de 423 aminoácidos, mas também é interrompido por três pequenos introns. A modelagem de homologia da proteína Vlchit1indicou que a quitinase Vlchit1 tem uma estrutura (α/β 8 TIM barrel. Testes de expressão e de atividade enzimática indicaram que Vlchit1 é uma enzima funcional que hidroliza quitina, portanto o gene Vlchit pode ser um gene útil para manipulação genética para melhoramento de cepas de fungos entomopatogênicos ou para a construção de novas plantas transgênicas com resistência a várias doenças causadas por fungos e insetos.

  20. Lack of association between VNTR polymorphism of dopamine transporter gene (SLC6A3 and schizophrenia in a Brazilian sample Ausência de associação entre o polimorfismo VNTR do gene do transportador de dopamina (SLC6A3 e esquizofrenia em uma população brasileira

    Directory of Open Access Journals (Sweden)

    Quirino Cordeiro

    2004-12-01

    Full Text Available A role of dopaminergic dysfunction has been postulated in the aetiology of schizophrenia. We hypothesized that variations in the dopamine transporter gene (SLC6A3 may be associated with schizophrenia. We conducted case-control and family based analysis on the polymorphic SLC6A3 variable number tandem repeat (VNTR in a sample of 220 schizophrenic patients, 226 gender and ethnic matched controls, and 49 additional case-parent trios. No differences were found in allelic or genotypic distributions between cases and controls and no significant transmission distortions from heterozygous parents to schizophrenic offspring were detected. Thus, our results do not support an association of the SLC6A3 VNTR with schizophrenia in our sample.Genes do sistema dopaminérgico são de escolha para a pesquisa de susceptibilidade para a esquizofrenia. Desse modo, possível contribuição do polimorfismo do gene do transportador de dopamina (SLC6A3 no aumento da vulnerabilidade para a esquizofrenia foi investigada no presente estudo. Analisou-se a distribuição do sítio polimórfico do gene do transportador de dopamina (VNTR em uma população de 220 pacientes com esquizofrenia (critério diagnóstico: DSM-IV e comparou-se com a distribuição em uma população controle de 226 indivíduos pareados para sexo e etnia. Nenhuma diferença foi observada na distribuição dos alelos entre casos e controles. O mesmo polimorfismo também foi investigado em uma segunda amostra composta por 49 trios (pais e probando. O resultado também foi negativo. Tais dados nãoo suporte para a participação do polimorfismo do gene do transportador de dopamina no aumento de susceptibilidade para esquizofrenia na amostra estudada.

  1. K19 capsular polysaccharide of Acinetobacter baumannii is produced via a Wzy polymerase encoded in a small genomic island rather than the KL19 capsule gene cluster.

    Science.gov (United States)

    Kenyon, Johanna J; Shneider, Mikhail M; Senchenkova, Sofya N; Shashkov, Alexander S; Siniagina, Maria N; Malanin, Sergey Y; Popova, Anastasiya V; Miroshnikov, Konstantin A; Hall, Ruth M; Knirel, Yuriy A

    2016-08-01

    Polymerization of the oligosaccharides (K units) of complex capsular polysaccharides (CPSs) requires a Wzy polymerase, which is usually encoded in the gene cluster that directs K unit synthesis. Here, a gene cluster at the Acinetobacter K locus (KL) that lacks a wzy gene, KL19, was found in Acinetobacter baumannii ST111 isolates 28 and RBH2 recovered from hospitals in the Russian Federation and Australia, respectively. However, these isolates produced long-chain capsule, and a wzy gene was found in a 6.1 kb genomic island (GI) located adjacent to the cpn60 gene. The GI also includes an acetyltransferase gene, atr25, which is interrupted by an insertion sequence (IS) in RBH2. The capsule structure from both strains was →3)-α-d-GalpNAc-(1→4)-α-d-GalpNAcA-(1→3)-β-d-QuipNAc4NAc-(1→, determined using NMR spectroscopy. Biosynthesis of the K unit was inferred to be initiated with QuiNAc4NAc, and hence the Wzy forms the β-(1→3) linkage between QuipNAc4NAc and GalpNAc. The GalpNAc residue is 6-O-acetylated in isolate 28 only, showing that atr25 is responsible for this acetylation. The same GI with or without an IS in atr25 was found in draft genomes of other KL19 isolates, as well as ones carrying a closely related CPS gene cluster, KL39, which differs from KL19 only in a gene for an acyltransferase in the QuiNAc4NR synthesis pathway. Isolates carrying a KL1 variant with the wzy and atr genes each interrupted by an ISAba125 also have this GI. To our knowledge, this study is the first report of genes involved in capsule biosynthesis normally found at the KL located elsewhere in A. baumannii genomes.

  2. Breast cancer, heterocyclic aromatic amines from meat and N-acetyltransferase 2 genotype.

    Science.gov (United States)

    Delfino, R J; Sinha, R; Smith, C; West, J; White, E; Lin, H J; Liao, S Y; Gim, J S; Ma, H L; Butler, J; Anton-Culver, H

    2000-04-01

    Breast cancer risk has been hypothesized to increase with exposure to heterocyclic aromatic amines (HAAs) formed from cooking meat at high temperature. HAAs require enzymatic activation to bind to DNA and initiate carcinogenesis. N-acetyltransferase 2 (NAT2) enzyme activity may play a role, its rate determined by a polymorphic gene. We examined the effect of NAT2 genetic polymorphisms on breast cancer risk from exposure to meat by cooking method, doneness and estimated HAA [2-amino-1-methyl-6-phenylimidazole[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx)] intake. Women were recruited with suspicious breast masses and questionnaire data were collected prior to biopsy to blind subjects and interviewers to diagnoses. For 114 cases with breast cancer and 280 controls with benign breast disease, NAT2 genotype was determined using allele-specific PCR amplification to detect slow acetylator mutations. HAAs were estimated from interview data on meat type, cooking method and doneness, combined with a quantitative HAA database. Logistic regression models controlled for known risk factors, first including all controls, then 108 with no or low risk (normal breast or no hyperplasia) and finally 149 with high risk (hyperplasia, atypical hyperplasia, complex fibroadenomas). Meat effects were examined within NAT2 strata to assess interactions. We found no association between NAT2 and breast cancer. These Californian women ate more white than red meat (control median 46 versus 8 g/day). There were no significant associations of breast cancer with red meat for any doneness. White meat was significantly protective (>67 versus chicken, including well done, pan fried and barbecued chicken. MeIQx and DiMeIQx were not associated with breast cancer. A protective effect of PhIP was confounded after controlling for well done chicken. Results were unchanged using low or high risk controls or dropping

  3. The NSL Complex Regulates Housekeeping Genes in Drosophila

    Science.gov (United States)

    Raja, Sunil Jayaramaiah; Holz, Herbert; Luscombe, Nicholas M.; Manke, Thomas; Akhtar, Asifa

    2012-01-01

    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription. PMID:22723752

  4. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses.

    Science.gov (United States)

    He, Peng; Zhang, Yun-Fei; Hong, Duan-Yang; Wang, Jun; Wang, Xing-Liang; Zuo, Ling-Hua; Tang, Xian-Fu; Xu, Wei-Ming; He, Ming

    2017-03-01

    Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. To date, this is the most

  5. Ausência de associação entre polimorfismo do gene da interleucina-1 beta e o prognóstico de pacientes com traumatismo crânio-encefálico grave Lack of association between interleukin-1 gene polymorphism and prognosis in severe traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Taís Frederes Krämer Alcalde

    2009-12-01

    Full Text Available OBJETIVO: O traumatismo crânio-encefálico é a principal causa de óbito em indivíduos com idade entre 1 a 45 anos. O desfecho do traumatismo crânio-encefálico pode estar relacionado, além de fatores pré-morbidade e gravidade do dano, com fatores genéticos. Genes que podem ter relação com o resultado pós-trauma vêm sendo estudados, porém, ainda existem poucas informações sobre a associação entre polimorfismos genéticos e o desfecho do traumatismo crânio-encefálico. O gene da interleucina-1 beta (IL-1B é um dos genes estudados, pois esta citocina encontra-se em níveis elevados após o traumatismo crânio-encefálico e pode afetar de forma negativa seu desfecho. O objetivo do presente estudo foi analisar o polimorfismo -31C/T, localizado na região promotora do gene IL-1B, em pacientes com traumatismo crânio-encefálico grave visando correlacioná-lo com o desfecho primário precoce (alta do centro de terapia intensiva ou morte. MÉTODOS: Foram estudados 69 pacientes internados por traumatismo crânio-encefálico grave em três hospitais de Porto Alegre e região metropolitana. O polimorfismo foi analisado através da reação em cadeia da polimerase, seguida da digestão com enzima de restrição. RESULTADOS: O traumatismo crânio-encefálico grave foi associado a uma mortalidade de 45%. Não foram observadas diferenças significativas nas frequências alélicas e genotípicas entre os grupos de pacientes divididos pelo desfecho do traumatismo crânio-encefálico. CONCLUSÃO: Nossos resultados sugerem que o polimorfismo -31C/T do gene IL-1B não tem impacto significativo no desfecho fatal dos pacientes com traumatismo crânio-encefálico grave.OBJECTIVE: Traumatic brain injury is the major cause of death among individuals between 1-45 years-old. The outcome of traumatic brain injury may be related to brain susceptibility to the injury and genetic factors. Genes that may affect traumatic brain injury outcome are being

  6. Expression of p190 BCR-ABL fusion gene in a patient with chronic myeloid leukemia Expressão do rearranjo gênico BCR-ABL com ponto de quebra na região menor do gene BCR em um paciente com leucemia mielóide crônica

    Directory of Open Access Journals (Sweden)

    P. V. B. Carvalho

    2003-01-01

    Full Text Available A minority of chronic myeloid leukemia cases have breakpoints in the minor cluster region (m-bcr of the BCR-ABL gene. We report on a patient with Ph-positive and m-bcr breakpoint at diagnosis. She was treated with hydroxyurea and interferon-alpha. Two years later, she developed a lymphoid blast crisis and died shortly after. We discuss herein the different forms of the BCR-ABL oncogene, its products, and the possible influence of them on the clinical outcome of patients with the disease.A leucemia mielóide crônica (LMC é uma doença mieloproliferativa clonal e caracteriza-se pela presença da translocação cromossômica entre os braços longos dos cromossomos 9 e 22, o denominado cromossomo Ph. Esta translocação determina a fusão dos genes BCR e ABL. Os diferentes pontos de quebra no gene BCR determinam a síntese de proteínas com diferentes pesos moleculares pelo gene BCR-ABL. Nós relatamos o caso de uma paciente portadora de LMC com ponto de quebra cromossômico na região menor do gene BCR. Foi tratada com hidroxiuréia e interferon alfa. Dois anos após o diagnóstico desenvolveu crise blástica linfóide e evoluiu rapidamente para o óbito. Nós discutimos nesta apresentação as diferentes formas do gene BCR-ABL e seus produtos e a possível influência dos mesmos na evolução clínica dos pacientes com a doença.

  7. Polimorfismos dos genes do receptor de serotonina (5-HT2A e da catecol-O-metiltransferase (COMT: fatores desencadeantes da fibromialgia? Serotonin receptor (5-HT 2A and catechol-O-methyltransferase (COMT gene polymorphisms: Triggers of fibromyalgia?

    Directory of Open Access Journals (Sweden)

    Josie Budag Matsuda

    2010-04-01

    Full Text Available INTRODUÇÃO: A fibromialgia é uma síndrome reumática caracterizada por dor difusa e crônica associada a fadiga, insônia, ansiedade, depressão, perda de memória e tontura. Embora os mecanismos fisiológicos que controlam a fibromialgia não tenham sido estabelecidos, fatores neuroendócrinos, genéticos ou moleculares podem estar envolvidos. OBJETIVO: O objetivo do presente estudo foi caracterizar os polimorfismos dos genes do receptor de serotonina (5-HT2A e da catecolO-metiltransferase (COMT em pacientes brasileiros com fibromialgia, a fim de avaliar sua participação na etiologia da doença. MATERIAL E MÉTODOS: O DNA genômico extraído de 102 amostras de sangue (51 pacientes, 51 controles foi usado para a caracterização molecular dos polimorfismos dos genes 5-HT2A e COMT, por meio de PCR-RFLP. RESULTADOS: A análise molecular dos polimorfismos do gene 5-HT2A demonstrou frequências de 25,49% C/C, 49,02% T/C e 25,49% T/T, nos pacientes com fibromialgia, e 17,65% C/C, 62,74% T/C e 19,61% T/T, no grupo controle, não apresentando diferença significativa entre o grupo de pacientes e o grupo controle. Os polimorfismos do gene da COMT em pacientes com fibromialgia apresentaram uma frequência de 17,65% e 45,10% para os genótipos H/H e L/H, respectivamente. No grupo controle, as frequências foram de 29,42%, para H/H, e 60,78%, para L/H, sem diferença significativa entre ambos os grupos. Entretanto, houve diferença significativa na frequência do genótipo L/L em pacientes (37,25% e controles (9,8%, o que permitiu a diferenciação entre os dois grupos. CONCLUSÃO: A frequência do genótipo L/L foi maior nos pacientes com fibromialgia. Apesar de a fibromialgia envolver uma situação poligênica e fatores ambientais, o estudo molecular do SNP rs4680 do gene da COMT pode auxiliar a identificação de indivíduos suscetíveis.INTRODUCTION: Fibromyalgia is a rheumatic syndrome characterized by diffuse and chronic pain associated with

  8. A vector carrying the GFP gene (Green fluorescent protein as a yeast marker for fermentation processes Um vetor com o gene da GFP (Green fluorescent protein para a marcação de leveduras em processos fermentativos

    Directory of Open Access Journals (Sweden)

    Luiz Humberto Gomes

    2000-12-01

    Full Text Available Contaminant yeasts spoil pure culture fermentations and cause great losses in quality and product yields. They can be detected by a variety of methods although none being so efficient for early detection of contaminant yeast cells that appear at low frequency. Pure cultures bearing genetic markers can ease the direct identification of cells and colonies among contaminants. Fast and easy detection are desired and morphological markers would even help the direct visualization of marked pure cultures among contaminants. The GFP gene for green fluorescent protein of Aquorea victoria, proved to be a very efficient marker to visualize transformed cells in mixed populations and tissues. To test this marker in the study of contaminated yeast fermentations, the GFP gene was used to construct a vector under the control of the ADH2 promoter (pYGFP3. Since ADH2 is repressed by glucose the expression of the protein would not interfere in the course of fermentation. The transformed yeasts with the vector pYGFP3 showed high stability and high bioluminescence to permit identification of marked cells among a mixed population of cells. The vector opens the possibility to conduct further studies aiming to develop an efficient method for early detection of spoilage yeasts in industrial fermentative processes.Leveduras contaminantes podem causar grandes perdas em processos fermentativos quando infectam culturas puras e degradam a qualidade do produto final. Estas leveduras podem ser detectadas por diversos métodos mas nenhum deles oferece resultados com a exatidão e precisão necessárias, quando os contaminantes estão em baixa freqüência. Culturas puras contendo um gene marcador podem ser utilizadas para a direta identificação de células e colônias contaminantes. Detecção rápida e fácil é desejada e marcadores morfológicos podem auxiliar na visualização da cultura marcada. O gene da GFP (green fluorescent protein extraído da Aequorea victoria

  9. Directional Migration in Esophageal Squamous Cell Carcinoma (ESCC) is Epigenetically Regulated by SET Nuclear Oncogene, a Member of the Inhibitor of Histone Acetyltransferase Complex

    OpenAIRE

    Xiang Yuan; Xinshuai Wang; Bianli Gu; Yingjian Ma; Yiwen Liu; Man Sun; Jinyu Kong; Wei Sun; Huizhi Wang; Fuyou Zhou; Shegan Gao

    2017-01-01

    Directional cell migration is of fundamental importance to a variety of biological events, including metastasis of malignant cells. Herein, we specifically investigated SET oncoprotein, a subunit of the recently identified inhibitor of acetyltransferases (INHAT) complex and identified its role in the establishment of front–rear cell polarity and directional migration in Esophageal Squamous Cell Carcinoma (ESCC). We further define the molecular circuits that govern these processes by showing t...

  10. The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides 1O2-resistance genes in resistance to the photoactivated toxin cercosporin.

    Science.gov (United States)

    Beseli, Aydin; Goulart da Silva, Marilia; Daub, Margaret E

    2015-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides and plant pathogenic fungus Cercospora nicotianae have been used as models for understanding resistance to singlet oxygen ((1)O(2)), a highly toxic reactive oxygen species. In Rhodobacter and Cercospora, (1)O(2) is derived, respectively, from photosynthesis and from the (1)O(2)-generating toxin cercosporin which the fungus produces to parasitize plants. We identified common genes recovered in transcriptome studies of putative (1)O(2)-resistance genes in these two systems, suggesting common (1)O(2)-resistance mechanisms. To determine if the Cercospora homologs of R. sphaeroides (1)O(2)-resistance genes are involved in resistance to cercosporin, we expressed the genes in the cercosporin-sensitive fungus Neurospora crassa and assayed for increases in cercosporin resistance. Neurospora crassa transformants expressing genes encoding aldo/keto reductase, succinyl-CoA ligase, O-acetylhomoserine (thiol) lyase, peptide methionine sulphoxide reductase and glutathione S-transferase did not have elevated levels of cercosporin resistance. Several transformants expressing aldehyde dehydrogenase were significantly more resistant to cercosporin. Expression of the transgene and enzyme activity did not correlate with resistance, however. We conclude that although the genes tested in this study are important in (1)O(2) resistance in R. sphaeroides, their Cercospora homologs are not involved in resistance to (1)O(2) generated from cercosporin. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Two distinct promoters drive transcription of the human D1A dopamine receptor gene.

    Science.gov (United States)

    Lee, S H; Minowa, M T; Mouradian, M M

    1996-10-11

    The human D1A dopamine receptor gene has a GC-rich, TATA-less promoter located upstream of a small, noncoding exon 1, which is separated from the coding exon 2 by a 116-base pair (bp)-long intron. Serial 3'-deletions of the 5'-noncoding region of this gene, including the intron and 5'-end of exon 2, resulted in 80 and 40% decrease in transcriptional activity of the upstream promoter in two D1A-expressing neuroblastoma cell lines, SK-N-MC and NS20Y, respectively. To investigate the function of this region, the intron and 245 bp at the 5'-end of exon 2 were investigated. Transient expression analyses using various chloramphenicol acetyltransferase constructs showed that the transcriptional activity of the intron is higher than that of the upstream promoter by 12-fold in SK-N-MC cells and by 5.5-fold in NS20Y cells in an orientation-dependent manner, indicating that the D1A intron is a strong promoter. Primer extension and ribonuclease protection assays revealed that transcription driven by the intron promoter is initiated at the junction of intron and exon 2 and at a cluster of nucleotides located 50 bp downstream from this junction. The same transcription start sites are utilized by the chloramphenicol acetyltransferase constructs employed in transfections as well as by the D1A gene expressed within the human caudate. The relative abundance of D1A transcripts originating from the upstream promoter compared with those transcribed from the intron promoter is 1.5-2.9 times in SK-N-MC cells and 2 times in the human caudate. Transcript stability studies in SK-N-MC cells revealed that longer D1A mRNA molecules containing exon 1 are degraded 1.8 times faster than shorter transcripts lacking exon 1. Although gel mobility shift assay could not detect DNA-protein interaction at the D1A intron, competitive co-transfection using the intron as competitor confirmed the presence of trans-acting factors at the intron. These data taken together indicate that the human D1A gene has

  12. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater.

    Science.gov (United States)

    Moreira, Nuno F F; Narciso-da-Rocha, Carlos; Polo-López, M Inmaculada; Pastrana-Martínez, Luisa M; Faria, Joaquim L; Manaia, Célia M; Fernández-Ibáñez, Pilar; Nunes, Olga C; Silva, Adrián M T

    2018-05-15

    Solar-driven advanced oxidation processes were studied in a pilot-scale photoreactor, as tertiary treatments of effluents from an urban wastewater treatment plant. Solar-H 2 O 2 , heterogeneous photocatalysis (with and/or without the addition of H 2 O 2 and employing three different photocatalysts) and the photo-Fenton process were investigated. Chemical (sulfamethoxazole, carbamazepine, and diclofenac) and biological contaminants (faecal contamination indicators, their antibiotic resistant counterparts, 16S rRNA and antibiotic resistance genes), as well as the whole bacterial community, were characterized. Heterogeneous photocatalysis using TiO 2 -P25 and assisted with H 2 O 2 (P25/H 2 O 2 ) was the most efficient process on the degradation of the chemical organic micropollutants, attaining levels below the limits of quantification in less than 4 h of treatment (corresponding to Q UV  < 40 kJ L -1 ). This performance was followed by the same process without H 2 O 2 , using TiO 2 -P25 or a composite material based on graphene oxide and TiO 2 . Regarding the biological indicators, total faecal coliforms and enterococci and their antibiotic resistant (tetracycline and ciprofloxacin) counterparts were reduced to values close, or beneath, the detection limit (1 CFU 100 mL -1 ) for all treatments employing H 2 O 2 , even upon storage of the treated wastewater for 3-days. Moreover, P25/H 2 O 2 and solar-H 2 O 2 were the most efficient processes in the reduction of the abundance (gene copy number per volume of wastewater) of the analysed genes. However, this reduction was transient for 16S rRNA, intI1 and sul1 genes, since after 3-days storage of the treated wastewater their abundance increased to values close to pre-treatment levels. Similar behaviour was observed for the genes qnrS (using TiO 2 -P25), bla CTX-M and bla TEM (using TiO 2 -P25 and TiO 2 -P25/H 2 O 2 ). Interestingly, higher proportions of sequence reads affiliated to the phylum Proteobacteria

  13. In vitro inhibition of choline acetyltransferase by a series of 2-benzylidene-3-quinuclidinones

    International Nuclear Information System (INIS)

    Capacio, B.R.

    1988-01-01

    Ten substituted 2-benzylidene-3-quinuclidinones were synthesized and evaluated for their relative potency as in vitro inhibitors of choline acetyltransferase (ChAT). Acetylcholine (ACh) synthesis was followed radiometrically by the incorporation of labeled acetate originating from 14 C-acetyl-CoA. Woolf-Augustinsson-Hofstee data analysis was used to calculate Vmax, Km, and Ki values. The inhibition was found to be noncompetitive or uncompetitive with respect to choline. Quantitative structure activity relationship correlations demonstrated a primary dependence on κ-σ, as well as steric properties of the substituted benzene ring. Additional radiometric and spectrophotometric were performed with 2-(3'-methyl)-benzylidene-3-quinuclidinone, one of the more potent analogs, to further elucidate the inhibitory mechanism. ChAT-mediated cleavage of ACh was measured spectrophotometrically by following the appearance of NADH at 340 nanometers in an enzyme coupled assay. Lineweaver-Burk analysis indicated mixed or uncompetitive inhibition with respect to both substrates of the forward reaction, suggesting interference with a rate limiting step

  14. Influência dos genes candidatos MC1R, ASIP, TYRP1 e kit na pigmentação em ovinos crioulos e predição do efeito dos polimorfismos não sinônimos no gene MC1R humano

    OpenAIRE

    Diego Hepp

    2015-01-01

    A coloração dos animais é uma característica que apresenta uma grande diversidade de fenótipos nas diferentes espécies. Diferentes abordagens podem ser utilizadas para o entendimento da diversidade na coloração existente nas espécies animais. Através da análise de genes candidatos as mutações responsáveis pela variação na coloração têm sido descritas em diferentes espécies, demonstrando o envolvimento de mecanismos moleculares variados na sua regulação. Este trabalho tem por objetivo a utiliz...

  15. Caracterização patológica e gênica (gene P53) dos tumores mamários em cadelas.

    OpenAIRE

    Daniela Maria Bastos de Souza

    2006-01-01

    Os tumores mamários em cadelas tem alta incidência e malignidade sendo provocados por vários fatores de risco incluindo idade, atividade hormonal, nutrição, vírus, pseudogestação e administração de progestágenos exógenos. O gene p53, conhecido como um gene supressor de tumor, tem apresentado mutações relacionadas com neoplasias. Neste trabalho, o objetivo foi caracterizar os tumores mamários em cadelas, avaliar o comprometimento da mama lateral ao tumor e o envolvimento de fatores de risco...

  16. Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1.

    Science.gov (United States)

    Cook, W L; Wachsmuth, K; Johnson, S R; Birkness, K A; Samadi, A R

    1984-07-01

    Plasmid profiles, the location of cholera toxin subunit A genes, and the presence of the defective VcA1 prophage genome in classical Vibrio cholerae isolated from patients in Bangladesh in 1982 were compared with those in older classical strains isolated during the sixth pandemic and with those in selected eltor and nontoxigenic O1 isolates. Classical strains typically had two plasmids (21 and 3 megadaltons), eltor strains typically had no plasmids, and nontoxigenic O1 strains had zero to three plasmids. The old and new isolates of classical V. cholerae had two HindIII chromosomal digest fragments containing cholera toxin subunit A genes, whereas the eltor strains from Eastern countries had one fragment. The eltor strains from areas surrounding the Gulf of Mexico also had two subunit A gene fragments, which were smaller and easily distinguished from the classical pattern. All classical strains had 8 to 10 HindIII fragments containing the defective VcA1 prophage genome; none of the Eastern eltor strains had these genes, and the Gulf Coast eltor strains contained a different array of weakly hybridizing genes. These data suggest that the recent isolates of classical cholera in Bangladesh are closely related to the bacterial strain(s) which caused classical cholera during the sixth pandemic. These data do not support hypotheses that either the eltor or the nontoxigenic O1 strains are precursors of the new classical strains.

  17. Kinetic characterisation of arylamine N-acetyltransferase from Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Sim Edith

    2007-03-01

    Full Text Available Abstract Background Arylamine N-acetyltransferases (NATs are important drug- and carcinogen-metabolising enzymes that catalyse the transfer of an acetyl group from a donor, such as acetyl coenzyme A, to an aromatic or heterocyclic amine, hydrazine, hydrazide or N-hydroxylamine acceptor substrate. NATs are found in eukaryotes and prokaryotes, and they may also have an endogenous function in addition to drug metabolism. For example, NAT from Mycobacterium tuberculosis has been proposed to have a role in cell wall lipid biosynthesis, and is therefore of interest as a potential drug target. To date there have been no studies investigating the kinetic mechanism of a bacterial NAT enzyme. Results We have determined that NAT from Pseudomonas aeruginosa, which has been described as a model for NAT from M. tuberculosis, follows a Ping Pong Bi Bi kinetic mechanism. We also describe substrate inhibition by 5-aminosalicylic acid, in which the substrate binds both to the free form of the enzyme and the acetyl coenzyme A-enzyme complex in non-productive reaction pathways. The true kinetic parameters for the NAT-catalysed acetylation of 5-aminosalicylic acid with acetyl coenzyme A as the co-factor have been established, validating earlier approximations. Conclusion This is the first reported study investigating the kinetic mechanism of a bacterial NAT enzyme. Additionally, the methods used herein can be applied to investigations of the interactions of NAT enzymes with new chemical entities which are NAT ligands. This is likely to be useful in the design of novel potential anti-tubercular agents.

  18. Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor.

    Directory of Open Access Journals (Sweden)

    Izumi Kaneko

    2015-05-01

    Full Text Available Stage-specific transcription is a fundamental biological process in the life cycle of the Plasmodium parasite. Proteins containing the AP2 DNA-binding domain are responsible for stage-specific transcriptional regulation and belong to the only known family of transcription factors in Plasmodium parasites. Comprehensive identification of their target genes will advance our understanding of the molecular basis of stage-specific transcriptional regulation and stage-specific parasite development. AP2-O is an AP2 family transcription factor that is expressed in the mosquito midgut-invading stage, called the ookinete, and is essential for normal morphogenesis of this stage. In this study, we identified the genome-wide target genes of AP2-O by chromatin immunoprecipitation-sequencing and elucidate how this AP2 family transcription factor contributes to the formation of this motile stage. The analysis revealed that AP2-O binds specifically to the upstream genomic regions of more than 500 genes, suggesting that approximately 10% of the parasite genome is directly regulated by AP2-O. These genes are involved in distinct biological processes such as morphogenesis, locomotion, midgut penetration, protection against mosquito immunity and preparation for subsequent oocyst development. This direct and global regulation by AP2-O provides a model for gene regulation in Plasmodium parasites and may explain how these parasites manage to control their complex life cycle using a small number of sequence-specific AP2 transcription factors.

  19. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Felipe eMoraga

    2015-10-01

    Full Text Available Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt–Ada–Gcn5 Acetyltransferase is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.

  20. Characterization of a Staphylococcal Plasmid Related to pUB110 and Carrying Two Novel Genes, vatC and vgbB, Encoding Resistance to Streptogramins A and B and Similar Antibiotics

    OpenAIRE

    Allignet, Jeanine; Liassine, Nadia; El Solh, Névine

    1998-01-01

    We isolated and sequenced a plasmid, named pIP1714 (4,978 bp), which specifies resistance to streptogramins A and B and the mixture of these compounds. pIP1714 was isolated from a Staphylococcus cohnii subsp. cohnii strain found in the environment of a hospital where pristinamycin was extensively used. Resistance to both compounds and related antibiotics is encoded by two novel, probably cotranscribed genes, (i) vatC, encoding a 212-amino-acid (aa) acetyltransferase that inactivates streptogr...

  1. The human oxytocin gene promoter is regulated by estrogens.

    Science.gov (United States)

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  2. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates.

    Science.gov (United States)

    Lilly, Mariska; Bauer, Florian F; Lambrechts, Marius G; Swiegers, Jan H; Cozzolino, Daniel; Pretorius, Isak S

    2006-07-15

    The fruity odours of wine are largely derived from the synthesis of esters and higher alcohols during yeast fermentation. The ATF1- and ATF2-encoded alcohol acetyltransferases of S. cerevisiae are responsible for the synthesis of ethyl acetate and isoamyl acetate esters, while the EHT1-encoded ethanol hexanoyl transferase is responsible for synthesizing ethyl caproate. However, esters such as these might be degraded by the IAH1-encoded esterase. The objectives of this study were: (a) to overexpress the genes encoding ester-synthesizing and ester-degrading enzymes in wine yeast; (b) to prepare Colombard table wines and base wines for distillation using these modified strains; and (c) to analyse and compare the ester concentrations and aroma profiles of these wines and distillates. The overexpression of ATF1 significantly increased the concentrations of ethyl acetate, isoamyl acetate, 2-phenylethyl acetate and ethyl caproate, while the overexpression of ATF2 affected the concentrations of ethyl acetate and isoamyl acetate to a lesser degree. The overexpression of IAH1 resulted in a significant decrease in ethyl acetate, isoamyl acetate, hexyl acetate and 2-phenylethyl acetate. The overexpression of EHT1 resulted in a marked increase in ethyl caproate, ethyl caprylate and ethyl caprate. The flavour profile of the wines and distillates prepared using the modified strains were also significantly altered as indicated by formal sensory analysis. This study offers prospects for the development of wine yeast starter strains with optimized ester-producing capability that could assist winemakers in their effort to consistently produce wine and distillates such as brandy to definable flavour specifications and styles.

  3. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Bertinellys TEIXEIRA

    2016-01-01

    Full Text Available The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC, aminoglycoside-adenyltransferases (AAD, and aminoglycoside-phosphotransferases (APH, is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137 were identified from the Intensive Care Unit (ICU, mainly from discharges (96/137. The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively. Phenotype VI, resistant to these antibiotics, was the most frequent (14/49, followed by phenotype I, resistant to all the aminoglycosides tested (12/49. The aac(6´-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  4. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    Science.gov (United States)

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  5. Polimorfismos de DNA nos genes dos receptores de estrogênio e FSHR e associação com resposta superovulatória em bovinos

    OpenAIRE

    Valeriano, Ana Cláudia de Melo

    2010-01-01

    Estudos baseados em genes candidatos buscam identificar polimorfismos e a prospecção de genes candidatos que estão envolvidos no processo de ovulaçãoo ferramentas de importantes quando se pretende incrementar a eficiência reprodutiva de rebanhos e melhorar as respostas das biotécnicas de multiplicação animal. Sendo assim, o objetivo deste estudo foi sequenciar e detectar polimorfismos em parte do “exon” 10 do gene do receptor do hormônio folículo estimulante (FSHR); genotipar doadoras de e...

  6. Bone Metastasis in Advanced Breast Cancer: Analysis of Gene Expression Microarray.

    Science.gov (United States)

    Cosphiadi, Irawan; Atmakusumah, Tubagus D; Siregar, Nurjati C; Muthalib, Abdul; Harahap, Alida; Mansyur, Muchtarruddin

    2018-03-08

    Approximately 30% to 40% of breast cancer recurrences involve bone metastasis (BM). Certain genes have been linked to BM; however, none have been able to predict bone involvement. In this study, we analyzed gene expression profiles in advanced breast cancer patients to elucidate genes that can be used to predict BM. A total of 92 advanced breast cancer patients, including 46 patients with BM and 46 patients without BM, were identified for this study. Immunohistochemistry and gene expression analysis was performed on 81 formalin-fixed paraffin-embedded samples. Data were collected through medical records, and gene expression of 200 selected genes compiled from 6 previous studies was performed using NanoString nCounter. Genetic expression profiles showed that 22 genes were significantly differentially expressed between breast cancer patients with metastasis in bone and other organs (BM+) and non-BM, whereas subjects with only BM showed 17 significantly differentially expressed genes. The following genes were associated with an increasing incidence of BM in the BM+ group: estrogen receptor 1 (ESR1), GATA binding protein 3 (GATA3), and melanophilin with an area under the curve (AUC) of 0.804. In the BM group, the following genes were associated with an increasing incidence of BM: ESR1, progesterone receptor, B-cell lymphoma 2, Rab escort protein, N-acetyltransferase 1, GATA3, annexin A9, and chromosome 9 open reading frame 116. ESR1 and GATA3 showed an increased strength of association with an AUC of 0.928. A combination of the identified 3 genes in BM+ and 8 genes in BM showed better prediction than did each individual gene, and this combination can be used as a training set. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Histone acetyltransferase (HAT) activity of p300 modulates human T lymphotropic virus type 1 p30II-mediated repression of LTR transcriptional activity

    International Nuclear Information System (INIS)

    Michael, Bindhu; Nair, Amrithraj M.; Datta, Antara; Hiraragi, Hajime; Ratner, Lee; Lairmore, Michael D.

    2006-01-01

    Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T cell leukemia/lymphoma, and is implicated in a variety of lymphocyte-mediated inflammatory disorders. HTLV-1 provirus has regulatory and accessory genes in four pX open reading frames. HTLV-1 pX ORF-II encodes two proteins, p13 II and p30 II , which are incompletely defined in virus replication or pathogenesis. We have demonstrated that pX ORF-II mutations block virus replication in vivo and that ORF-II encoded p30 II , a nuclear-localizing protein that binds with CREB-binding protein (CBP)/p300, represses CREB and Tax responsive element (TRE)-mediated transcription. Herein, we have identified p30 II motifs important for p300 binding and in regulating TRE-mediated transcription in the absence and presence of HTLV-1 provirus. Within amino acids 100-179 of p30 II , a region important for repression of LTR-mediated transcription, we identified a single lysine residue at amino acid 106 (K3) that significantly modulates the ability of p30 II to repress TRE-mediated transcription. Exogenous p300, in a dose-responsive manner, reverses p30 II -dependent repression of TRE-mediated transcription, in the absence or presence of the provirus, In contrast to wild type p300, p300 HAT mutants (defective in histone acetyltransferase activity) only partially rescued p30 II -mediated LTR repression. Deacetylation by histone deacetylase-1 (HDAC-1) enhanced p30 II -mediated LTR repression, while inhibition of deacetylation by trichostatin A decreases p30 II -mediated LTR repression. Collectively, our data indicate that HTLV-1 p30 II modulates viral gene expression in a cooperative manner with p300-mediated acetylation

  8. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    Science.gov (United States)

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-07-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.

  9. Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes

    Directory of Open Access Journals (Sweden)

    Labedan Bernard

    2006-01-01

    Full Text Available Abstract Background The N-acetylation of L-glutamate is regarded as a universal metabolic strategy to commit glutamate towards arginine biosynthesis. Until recently, this reaction was thought to be catalyzed by either of two enzymes: (i the classical N-acetylglutamate synthase (NAGS, gene argA first characterized in Escherichia coli and Pseudomonas aeruginosa several decades ago and also present in vertebrates, or (ii the bifunctional version of ornithine acetyltransferase (OAT, gene argJ present in Bacteria, Archaea and many Eukaryotes. This paper focuses on a new and surprising aspect of glutamate acetylation. We recently showed that in Moritella abyssi and M. profunda, two marine gamma proteobacteria, the gene for the last enzyme in arginine biosynthesis (argH is fused to a short sequence that corresponds to the C-terminal, N-acetyltransferase-encoding domain of NAGS and is able to complement an argA mutant of E. coli. Very recently, other authors identified in Mycobacterium tuberculosis an independent gene corresponding to this short C-terminal domain and coding for a new type of NAGS. We have investigated the two prokaryotic Domains for patterns of gene-enzyme relationships in the first committed step of arginine biosynthesis. Results The argH-A fusion, designated argH(A, and discovered in Moritella was found to be present in (and confined to marine gamma proteobacteria of the Alteromonas- and Vibrio-like group. Most of them have a classical NAGS with the exception of Idiomarina loihiensis and Pseudoalteromonas haloplanktis which nevertheless can grow in the absence of arginine and therefore appear to rely on the arg(A sequence for arginine biosynthesis. Screening prokaryotic genomes for virtual argH-X 'fusions' where X stands for a homologue of arg(A, we retrieved a large number of Bacteria and several Archaea, all of them devoid of a classical NAGS. In the case of Thermus thermophilus and Deinococcus radiodurans, the arg(A-like sequence

  10. A novel missense mutation pattern of the GCH1 gene in dopa-responsive dystonia Novo padrão de mutação missense no gene GCH1 na distonia dopa-responsiva

    Directory of Open Access Journals (Sweden)

    Rosana H. Scola

    2007-12-01

    Full Text Available Dopa-responsive dystonia (DRD is an inherited metabolic disorder now classified as DYT5 with two different biochemical defects: autosomal dominant GTP cyclohydrolase 1 (GCH1 deficiency or autosomal recessive tyrosine hydroxylase deficiency. We report the case of a 10-years-old girl with progressive generalized dystonia and gait disorder who presented dramatic response to levodopa. The phenylalanine to tyrosine ratio was significantly higher after phenylalanine loading test. This condition had two different heterozygous mutations in the GCH1 gene: the previously reported P23L mutation and a new Q182E mutation. The characteristics of the DRD and the molecular genetic findings are discussed.Distonia dopa-responsiva (DRD, classificada como DYT5, é um erro inato do metabolismo que pode ser causado por dois diferentes tipos de defeito bioquímico: deficiência de GTP ciclo-hidrolase 1 (GCH1 (autossômica dominante ou de tirosina hidroxilase (autossômica recessiva. Descrevemos o caso de menina de 10 anos com distonia generalizada progressiva e alteração da marcha com importante melhora após uso de levodopa. A relação fenilalanina/tirosina estava aumentada após teste de sobrecarga com fenilalanina. O estudo molecular mostrou que o paciente apresenta uma combinação hererozigótica de mutação no gene GCH1: a já conhecida mutação P23L e uma nova mutação Q182E. Discutem-se as características da DRD e as alterações genéticas possíveis.

  11. Sequence similarity between the viral cp gene and the transgene in transgenic papayas Similaridade de seqüência entre o gene cp do vírus e do transgene presente em mamoeiros transgênicos

    Directory of Open Access Journals (Sweden)

    Manoel Teixeira Souza Júnior

    2005-05-01

    Full Text Available The Papaya ringspot virus (PRSV coat protein transgene present in 'Rainbow' and 'SunUp' papayas disclose high sequence similarity (>89% to the cp gene from PRSV BR and TH. Despite this, both isolates are able to break down the resistance in 'Rainbow', while only the latter is able to do so in 'SunUp'. The objective of this work was to evaluate the degree of sequence similarity between the cp gene in the challenge isolate and the cp transgene in transgenic papayas resistant to PRSV. The production of a hybrid virus containing the genome backbone of PRSV HA up to the Apa I site in the NIb gene, and downstream from there, the sequence of PRSV TH was undertaken. This hybrid virus, PRSV HA/TH, was obtained and used to challenge 'Rainbow', 'SunUp', and an R2 population derived from line 63-1, all resistant to PRSV HA. PRSV HA/TH broke down the resistance in both papaya varieties and in the 63-1 population, demonstrating that sequence similarity is a major factor in the mechanism of resistance used by transgenic papayas expressing the cp gene. A comparative analysis of the cp gene present in line 55-1 and 63-1-derived transgenic plants and in PRSV HA, BR, and TH was also performed.O gene da capa protéica (cp do vírus da mancha anelar do mamoeiro (Papaya ringspot virus, PRSV, presente nos mamoeiros 'Rainbow' e 'SunUp', tem alta similaridade de seqüência (>89% com o gene cp dos isolados PRSV BR e TH. Apesar deste alto grau de similaridade, ambos isolados são capazes de quebrar a resistência observada em 'Rainbow', ao passo que TH quebra a resistência em 'SunUp'. O objetivo deste trabalho foi avaliar o grau de similaridade de seqüência entre o gene cp do vírus desafiante e do transgene em mamoeiros transgênicos resistentes a PRSV. Produziu-se um vírus híbrido contendo o genoma do isolado PRSV HA até o sítio de restrição Apa I no gene NIb, e, a partir deste ponto, este vírus continha o genoma do isolado PRSV TH. PRSV HA/TH foi utilizado

  12. [Sequencing and analysis of the resistome of Streptomyces fradiae ATCC19609 in order to develop a test system for screening of new antimicrobial agents].

    Science.gov (United States)

    Vatlin, A A; Bekker, O B; Lysenkova, L N; Korolev, A M; Shchekotikhin, A E; Danilenko, V N

    2016-06-01

    The paper provides the annotation and data on sequencing the antibiotic resistance genes in Streptomyces fradiae strain ATCC19609, highly sensitive to different antibiotics. Genome analysis revealed four groups of genes that determined the resistome of the tested strain. These included classical antibiotic resistance genes (nine aminoglycoside phosphotransferase genes, two beta-lactamase genes, and the genes of puromycin N-acetyltransferase, phosphinothricin N-acetyltransferase, and aminoglycoside acetyltransferase); the genes of ATP-dependent ABC transporters, involved in the efflux of antibiotics from the cell (MacB-2, BcrA, two-subunit MDR1); the genes of positive and negative regulation of transcription (whiB and padR families); and the genes of post-translational modification (serine-threonine protein kinases). A comparative characteristic of aminoglycoside phosphotransferase genes in S. fradiae ATCC19609, S. lividans TK24, and S. albus J1074, the causative agent of actinomycosis, is provided. The possibility of using the S. fradiae strain ATCC19609 as the test system for selection of the macrolide antibiotic oligomycin A derivatives with different levels of activity is demonstrated. Analysis of more than 20 semisynthetic oligomycin A derivatives made it possible to divide them into three groups according to the level of activity: inactive (>1 nmol/disk), 10 substances; with medium activity level (0.05–1 nmol/disk), 12 substances; and more active (0.01–0.05 nmol/disk), 2 substances. Important for the activity of semisynthetic derivatives is the change in the position of the 33rd carbon atom in the oligomycin A molecule.

  13. In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation.

    Science.gov (United States)

    Burckhardt, Rachel M; Escalante-Semerena, Jorge C

    2017-11-01

    Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for s treptothricin a ce t yltransferase A , formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA + restored streptothricin resistance to B. subtilis satA ( Bs SatA) strains. Purified Bs SatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity ( K d [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA + in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis The initial characterization of the enzyme provides insights into its

  14. Arylamine N-acetyltransferase 2 (NAT2 genetic diversity and traditional subsistence: a worldwide population survey.

    Directory of Open Access Journals (Sweden)

    Audrey Sabbagh

    Full Text Available Arylamine N-acetyltransferase 2 (NAT2 is involved in human physiological responses to a variety of xenobiotic compounds, including common therapeutic drugs and exogenous chemicals present in the diet and the environment. Many questions remain about the evolutionary mechanisms that have led to the high prevalence of slow acetylators in the human species. Evidence from recent surveys of NAT2 gene variation suggests that NAT2 slow-causing variants might have become targets of positive selection as a consequence of the shift in modes of subsistence and lifestyle in human populations in the last 10,000 years. We aimed to test more extensively the hypothesis that slow acetylation prevalence in humans is related to the subsistence strategy adopted by the past populations. To this end, published frequency data on the most relevant genetic variants of NAT2 were collected from 128 population samples (14,679 individuals representing different subsistence modes and dietary habits, allowing a thorough analysis at both a worldwide and continent scale. A significantly higher prevalence of the slow acetylation phenotype was observed in populations practicing farming (45.4% and herding (48.2% as compared to populations mostly relying on hunting and gathering (22.4% (P = 0.0007. This was closely mirrored by the frequency of the slow 590A variant that was found to occur at a three-fold higher frequency in food producers (25% as compared to hunter-gatherers (8%. These findings are consistent with the hypothesis that the Neolithic transition to subsistence economies based on agricultural and pastoral resources modified the selective regime affecting the NAT2 acetylation pathway. Furthermore, the vast amount of data collected enabled us to provide a comprehensive and up-to-date description of NAT2 worldwide genetic diversity, thus building up a useful resource of frequency data for further studies interested in epidemiological or anthropological research

  15. Microarray-Based Screening of Differentially Expressed Genes of E. coli O157:H7 Sakai during Preharvest Survival on Butterhead Lettuce

    Directory of Open Access Journals (Sweden)

    Inge Van der Linden

    2016-01-01

    Full Text Available Numerous outbreaks of Escherichia coli O157:H7 have been linked to the consumption of leafy vegetables. However, up to the present, little has been known about E. coli O157:H7’s adaptive responses to survival on actively growing (and thus responsive plants. In this study, whole genome transcriptional profiles were generated from E. coli O157:H7 cells (isolate Sakai, stx- one hour and two days after inoculation on the leaves of growing butterhead lettuce, and compared with an inoculum control. A total of 273 genes of E. coli O157:H7 Sakai (5.04% of the whole genome were significantly induced or repressed by at least two-fold (p < 0.01 in at least one of the analyzed time points in comparison with the control. Several E. coli O157:H7 genes associated with oxidative stress and antimicrobial resistance were upregulated, including the iron-sulfur cluster and the multiple antibiotic resistance (mar operon, whereas the Shiga toxin virulence genes were downregulated. Nearly 40% of the genes with significantly different expression were poorly characterized genes or genes with unknown functions. These genes are of special interest for future research as they may play an important role in the pathogens’ adaptation to a lifestyle on plants. In conclusion, these findings suggest that the pathogen actively interacts with the plant environment by adapting its metabolism and responding to oxidative stress.

  16. Otimização de metodologia para o estudo de genes KIR Methodology optimization for KIR genotyping

    Directory of Open Access Journals (Sweden)

    Cristiane Conceição Chagas Rudnick

    2010-06-01

    Full Text Available Receptores killer cell immunoglobulin-like (KIRs são moléculas localizadas na superfície de células natural killer (NK e em subpopulações de linfócitos T codificadas por genes do cromossomo 19q13.4. A interação entre receptores KIR e moléculas antígeno leucocitário humano (HLA de classe I determina se células NK exercerão ou não sua função citotóxica e/ou secretora de citocinas ou se esta será inibida. Este trabalho teve por finalidade otimizar a metodologia para a genotipagem KIR, baseando-se nas condições descritas por Martin (2004. A técnica utilizada foi a reação em cadeia da polimerase com primers de sequência específica (PCR-SSP com iniciadores sintetizados pela Invitrogen® e visualização do produto amplificado em gel de agarose a 2% com brometo de etídio. Adaptações foram realizadas e a concentração de alguns reagentes foi alterada, como a do controle interno de 100 nM para 150 nM, iniciadores específicos senso e antissenso de KIR12.5/12.3, KIR13.5/13.3, KIR14.5/14.3, KIR22.5/22.3 e KIR36.5/36.3 de 500 nM para 750 nM e da solução de MgCl2 de 1,5 mM para 2 mM. As concentrações dos demais reagentes e temperaturas de amplificação foram mantidas. Nessas condições, o uso da Taq DNA polimerase recombinante (Invitrogen® foi satisfatório. Os resultados das genotipagens de 70 indivíduos foram confirmados por rSSO-Luminex® (One Lambda, Canoga Park, CA, EUA. A tipagem de genes KIR por essa técnica apresentou sensibilidade, especificidade, reprodutibilidade e baixo custo.The killer cell immunoglobulin-like receptors (KIRs are molecules expressed on natural killer (NK cells surface and in T-cell subsets encoded by genes located in chromosome 19q13.4. The interaction between KIR receptors and HLA class I molecules determines if the NK cells will fulfill their cytotoxic function and/or cytokine secretion or if this function will be inhibited. The objective of this work was to optimize KIR genotyping method

  17. Bifurcated Degradative Pathway of 3-Sulfolactate in Roseovarius nubinhibens ISM via Sulfoacetaldehyde Acetyltransferase and (S)-Cysteate Sulfolyase ▿ †

    Science.gov (United States)

    Denger, Karin; Mayer, Jutta; Buhmann, Matthias; Weinitschke, Sonja; Smits, Theo H. M.; Cook, Alasdair M.

    2009-01-01

    Data from the genome sequence of the aerobic, marine bacterium Roseovarius nubinhibens ISM were interpreted such that 3-sulfolactate would be degraded as a sole source of carbon and energy for growth via a novel bifurcated pathway including two known desulfonative enzymes, sulfoacetaldehyde acetyltransferase (EC 2.3.3.15) (Xsc) and cysteate sulfo-lyase (EC 4.4.1.25) (CuyA). Strain ISM utilized sulfolactate quantitatively with stoichiometric excretion of the sulfonate sulfur as sulfate. A combination of enzyme assays, analytical chemistry, enzyme purification, peptide mass fingerprinting, and reverse transcription-PCR data supported the presence of an inducible, tripartite sulfolactate uptake system (SlcHFG), and a membrane-bound sulfolactate dehydrogenase (SlcD) which generated 3-sulfopyruvate, the point of bifurcation. 3-Sulfopyruvate was in part decarboxylated by 3-sulfopyruvate decarboxylase (EC 4.1.1.79) (ComDE), which was purified. The sulfoacetaldehyde that was formed was desulfonated by Xsc, which was identified, and the acetyl phosphate was converted to acetyl-coenzyme A by phosphate acetyltransferase (Pta). The other portion of the 3-sulfopyruvate was transaminated to (S)-cysteate, which was desulfonated by CuyA, which was identified. The sulfite that was formed was presumably exported by CuyZ (TC 9.B.7.1.1 in the transport classification system), and a periplasmic sulfite dehydrogenase is presumed. Bioinformatic analyses indicated that transporter SlcHFG is rare but that SlcD is involved in three different combinations of pathways, the bifurcated pathway shown here, via CuyA alone, and via Xsc alone. This novel pathway involves ComDE in biodegradation, whereas it was discovered in the biosynthesis of coenzyme M. The different pathways of desulfonation of sulfolactate presumably represent final steps in the biodegradation of sulfoquinovose (and exudates derived from it) in marine and aquatic environments. PMID:19581363

  18. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    Science.gov (United States)

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  19. Expressão de genes relacionados à função adrenocortical no estado de caquexia neoplásica = Expression of genes related to the adrenocortical function in the neoplastic cachexia process

    Directory of Open Access Journals (Sweden)

    Nicole de Angelis Scripes

    2009-04-01

    Full Text Available A glândula adrenal tem papel fundamental na resposta neuroendócrina,especialmente em situações em que há comprometimento da homeostasia. No processo de caquexia neoplásica, há prejuízo da homeostasia por alterações nutricionais e metabólicas do câncer em estágio avançado, envolvendo a resposta do eixo hipotálamo-hipófise-adrenal. Neste trabalho, foi utilizado um modelo animal de caquexia induzida pelo tumor de Walker-256 em ratos Wistar. Os animais (n=4 foram sacrificados dez dias após a inoculação de células tumorais e a glândula adrenal foi removida. O RNA foi extraído para o estudo da expressão de genes relacionados ao controle da esteroidogênese por RT-PCR semiquantitativa. A análise dos dados demonstrou expressão significativamente reduzida dos genes MC2R (receptor tipo 2 para melacortina, 3ßHSD I (3β-hidroxiesteroidedesidrogenase tipo I e TSPO (proteína translocadora em animais com caquexia neoplásica(valores de P=0,037; 0,0097 e 0,052, respectivamente, revelando falência do córtex da adrenal.The adrenal gland plays a crucial role in the neuroendocrine response, especially in situations where homeostasis is disturbed. In the neoplastic cachexia process, there is homeostasis impairment by nutritional and metabolic alterations of advanced-stage cancer, involving hypothalamus-pituitary-adrenal axis response. In thisassignment, an experimental model of cachexia induced by Walker-256 tumor was performed in Wistar rats. Animals (n=4 were sacrificed 10 days after inoculation of tumor cells, and the adrenal glands were excised. The RNA was isolated for the study of gene expression related to the steroidogenesis control by semi-quantitative RT-PCR. Data analysis showed a significant reduced expression of MC2R (melancortin type 2 receptor, 3ßHSD I (3-beta-hydroxysteroid dehydrogenase type I and TSPO (translocator protein genes in animals with neoplastic cachexia (P=0.037, 0.0097 and 0.052, respectively, revealing

  20. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome

    DEFF Research Database (Denmark)

    Vega, H; Trainer, A H; Gordillo, M

    2010-01-01

    Roberts syndrome (RBS) and SC phocomelia are caused by mutations in ESCO2, which codes for an acetyltransferase involved in the regulation of sister chromatid cohesion. Of 26 mutations described to date, only one missense mutation has been reported and all others are predicted to be truncating...

  1. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome

    NARCIS (Netherlands)

    Vega, H.; Trainer, A.H.; Gordillo, M.; Crosier, M.; Kayserili, H.; Skovby, F.; Uzielli, M.L.G.; Schnur, R.E.; Manouvrier, S.; Blair, E.; Hurst, J.A.; Forzano, F.; Meins, M.; Simola, K.O.J.; Raas-Rothschild, A; Hennekam, R.C.M.; Jabs, E.W.

    2010-01-01

    Background Roberts syndrome (RBS) and SC phocomelia are caused by mutations in ESCO2, which codes for an acetyltransferase involved in the regulation of sister chromatid cohesion. Of 26 mutations described to date, only one missense mutation has been reported and all others are predicted to be

  2. Identificação e validação de marcadores microssatélites ligados ao gene Rpp5 de resistência à ferrugem-asiática-da-soja Identification and validation of microsatellite markers linked to the Rpp5 gene conferring resistance to Asian soybean rust

    Directory of Open Access Journals (Sweden)

    Thaiza Galhardo Silva Morceli

    2008-11-01

    Full Text Available O objetivo deste trabalho foi identificar novos marcadores microssatélites, ligados ao gene Rpp5 de resistência à ferrugem-da-soja, e validar os marcadores previamente mapeados, para que possam ser utilizados em programas de seleção assistida por marcadores moleculares (SAM. Para tanto, uma população F2 com 100 indivíduos, derivada do cruzamento entre a PI 200526 e a cultivar Coodetec 208, suscetível à ferrugem, foi artificialmente infectada e avaliada quanto à sua reação de resistência à ferrugem. Marcadores microssatélites foram testados nos genitores e em dois "bulks" contrastantes, para a identificação de marcadores ligados. Dois novos marcadores, potencialmente associados à resistência, foram testados em plantas individuais, e se constatou que eles estão ligados ao gene Rpp5 e estão presentes no grupo de ligação N da soja. A eficiência de seleção foi determinada em relação a todos os marcadores ligados ao gene Rpp5, e a combinação entre os marcadores Sat_275+Sat_280 foi de 100%.The main objective of this work was to identify new microsatellite markers, linked to the Rpp5 resistance gene to Asian soybean rust, and to validate previously mapped markers for use in marker-assisted selection (MAS programs. To this end, a F2 population with 100 individuals, derived from crossing between PI 200526 and cultivar Coodetec 208, susceptible to rust, was artificially infected and evaluated for its reaction of resistance to rust. Microsatellite markers were tested on parents and in the two contrasting bulks to identifying linked markers. Two new markers, potentially associated with resistance, were tested in individual plants, and they were found to be linked to gene Rpp5 and to be present in the N linkage group of soybean. The selection efficiencies were determined for all markers linked to gene Rpp5, and the combination of the markers Sat_275+Sat_280 was 100%.

  3. Paralogous gene analysis reveals a highly enantioselective 1,2-O-isopropylideneglycerol caprylate esterase of Bacillus subtilis

    NARCIS (Netherlands)

    Droge, MJ; Bos, R; Quax, WJ

    Carboxylesterase NP of Bacillus subtilis Thai 1-8, characterized in 1992 as a very enantioselective (S)-naproxen esterase, was found to show no enantiopreference towards (S)-1,2-O-isopropylideneglycerol (IPG) esters. The ybfK gene was identified by the B. subtilis genome project as an unknown gene

  4. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Yupeng; Khalid, Muhammad Salman; Peng, Qi-An; Xu, Xiangyu; Wu, Lei; Younas, Aneela; Bashir, Saqib; Mo, Yongliang; Lin, Shan; Zafar-Ul-Hye, Muhammad; Abid, Muhammad; Hu, Ronggui

    2018-04-01

    Several studies have been carried out to examine nitrous oxide (N 2 O) emissions from agricultural soils in the past. However, the emissions of N 2 O particularly during amelioration of acidic soils have been rarely studied. We carried out the present study using a rice-rapeseed rotation soil (pH 5.44) that was amended with dolomite (0, 1 and 2 g kg -1 soil) under 60% water filled pore space (WFPS) and flooding. N 2 O emissions and several soil properties (pH, NH 4 + N, NO 3 - -N, and nosZ gene transcripts) were measured throughout the study. The increase in soil pH with dolomite application triggered soil N transformation and transcripts of nosZ gene controlling N 2 O emissions under both water regimes (60% WFPS and flooding). The 60% WFPS produced higher soil N 2 O emissions than that of flooding, and dolomite largely reduced N 2 O emissions at higher pH under both water regimes through enhanced transcription of nosZ gene. The results suggest that ameliorating soil acidity with dolomite can substantially mitigate N 2 O emissions through promoting nosZ gene transcription. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. GUS gene expression driven by a citrus promoter in transgenic tobacco and 'Valencia' sweet orange Expressão do gene GUS controlado por promotor de citros em plantas transgênicas de tabaco e laranja 'Valência'

    Directory of Open Access Journals (Sweden)

    Fernando Alves de Azevedo

    2006-11-01

    Full Text Available The objective of this work was the transformation of tobacco and 'Valencia' sweet orange with the GUS gene driven by the citrus phenylalanine ammonia-lyase (PAL gene promoter (CsPP. Transformation was accomplished by co-cultivation of tobacco and 'Valência' sweet orange explants with Agrobacterium tumefaciens containing the binary vector CsPP-GUS/2201. After plant transformation and regeneration, histochemical analyses using GUS staining revealed that CsPP promoter preferentially, but not exclusively, conferred gene expression in xylem tissues of tobacco. Weaker GUS staining was also detected throughout the petiole region in tobacco and citrus CsPP transgenic plants.O objetivo deste trabalho foi realizar a transformação de plantas de tabaco e laranja 'Valência' com o gene GUS controlado pelo promotor do gene da fenilalanina amônia-liase (PAL de citros (CsPP. Foi realizada transformação genética por meio do co-cultivo de explantes de tabaco e laranja 'Valência' com Agrobacterium tumefaciens que continha o vetor binário CsPP-GUS/2201. Após a transformação e a regeneração, a detecção da atividade de GUS por ensaios histoquímicos revelou que o promotor CsPP, preferencialmente, mas não exclusivamente, confere expressão gênica em tecidos do xilema de tabaco. Expressão mais baixa de GUS também foi detectada na região de tecido de pecíolo, em plantas transgênicas (CsPP de tabaco e laranja 'Valência'.

  6. Andrographolide: A potent antituberculosis compound that targets Aminoglycoside 2'-N-acetyltransferase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Prabu, Amudha; Hassan, Sameer; Prabuseenivasan; Shainaba, A S; Hanna, L E; Kumar, Vanaja

    2015-09-01

    Tuberculosis (TB) still remains a major challenging infectious disease. The increased rate of emergence of multi-drug resistant and extensively-drug resistant strains of the organism has further complicated the situation, resulting in an urgent need for new anti-TB drugs. Antimycobacterial activity of Andrographis paniculata was evaluated using a rapid LRP assay and the probable targets were identified by docking analysis. The methanolic extract of A. paniculata showed maximum antimycobacterial activity at 250μg/ml against all the tested strains of M. tuberculosis (H37Rv, MDR, and drug sensitive). Based on bioassay guided fractionation, andrographolide was identified as the potent molecule. With the docking analysis, both ICDH (Isocitrate Dehydrogenase) and AAC (Aminoglycoside 2'-N-acetyltransferase) were predicted as targets of andrographolide in M. tuberculosis. Molecular simulation revealed that, ICDH showed low binding affinity to andrographolide. However, for AAC, the andrographolide was observed to be well within the active site after 10ns of molecular simulation. This suggests that ACC (PDB ID 1M4I) could be the probable target for andrographolide. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A silk peptide fraction restores cognitive function in AF64A-induced Alzheimer disease model rats by increasing expression of choline acetyltransferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yeseul [College of Veterinary Medicine, Veterinary Medical Center, Chungbuk National University, Cheongju (Korea, Republic of); Lee, Sang Hoon [Department of Food Science and Technology, Chungbuk National University, Cheongju (Korea, Republic of); Jang, Su Kil [Division of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung (Korea, Republic of); Guo, Haiyu; Ban, Young-Hwan; Park, Dongsun [College of Veterinary Medicine, Veterinary Medical Center, Chungbuk National University, Cheongju (Korea, Republic of); Jang, Gwi Yeong; Yeon, Sungho [Department of Food Science and Technology, Chungbuk National University, Cheongju (Korea, Republic of); Lee, Jeong-Yong [Worldway Co., Ltd., Sejong (Korea, Republic of); Choi, Ehn-Kyoung [College of Veterinary Medicine, Veterinary Medical Center, Chungbuk National University, Cheongju (Korea, Republic of); Joo, Seong Soo [Division of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung (Korea, Republic of); Jeong, Heon-Sang, E-mail: hsjeong@cbu.ac.kr [Department of Food Science and Technology, Chungbuk National University, Cheongju (Korea, Republic of); Kim, Yun-Bae, E-mail: solar93@cbu.ac.kr [College of Veterinary Medicine, Veterinary Medical Center, Chungbuk National University, Cheongju (Korea, Republic of)

    2017-01-01

    This study investigated the effects of a silk peptide fraction obtained by incubating silk proteins with Protease N and Neutrase (SP-NN) on cognitive dysfunction of Alzheimer disease model rats. In order to elucidate underlying mechanisms, the effect of SP-NN on the expression of choline acetyltransferase (ChAT) mRNA was assessed in F3.ChAT neural stem cells and Neuro2a neuroblastoma cells; active amino acid sequence was identified using HPLC-MS. The expression of ChAT mRNA in F3.ChAT cells increased by 3.79-fold of the control level by treatment with SP-NN fraction. The active peptide in SP-NN was identified as tyrosine-glycine with 238.1 of molecular weight. Male rats were orally administered with SP-NN (50 or 300 mg/kg) and challenged with a cholinotoxin AF64A. As a result of brain injury and decreased brain acetylcholine level, AF64A induced astrocytic activation, resulting in impairment of learning and memory function. Treatment with SP-NN exerted recovering activities on acetylcholine depletion and brain injury, as well as cognitive deficit induced by AF64A. The results indicate that, in addition to a neuroprotective activity, the SP-NN preparation restores cognitive function of Alzheimer disease model rats by increasing the release of acetylcholine. - Highlights: • Cognition-enhancing effects of SP-NN, a silk peptide preparation, were investigated. • SP-NN enhanced ChAT mRNA expression in F3.ChAT neural stem cells and Neuro-2a neuroblastoma cells. • Active molecule was identified as a dipeptide composed of tyrosine-glycine. • SP-NN reversed cognitive dysfunction elicited by AF64A. • Neuroprotection followed by increased acetylcholine level was achieved with SP-NN.

  8. A new tetracycline efflux gene, tet(40), is located in tandem with tet(O/32/O) in a human gut firmicute bacterium and in metagenomic library clones.

    Science.gov (United States)

    Kazimierczak, Katarzyna A; Rincon, Marco T; Patterson, Andrea J; Martin, Jennifer C; Young, Pauline; Flint, Harry J; Scott, Karen P

    2008-11-01

    The bacterium Clostridium saccharolyticum K10, isolated from a fecal sample obtained from a healthy donor who had received long-term tetracycline therapy, was found to carry three tetracycline resistance genes: tet(W) and the mosaic tet(O/32/O), both conferring ribosome protection-type resistance, and a novel, closely linked efflux-type resistance gene designated tet(40). tet(40) encodes a predicted membrane-associated protein with 42% amino acid identity to tetA(P). Tetracycline did not accumulate in Escherichia coli cells expressing the Tet(40) efflux protein, and resistance to tetracycline was reduced when cells were incubated with an efflux pump inhibitor. E. coli cells carrying tet(40) had a 50% inhibitory concentration of tetracycline of 60 microg/ml. Analysis of a transconjugant from a mating between donor strain C. saccharolyticum K10 and the recipient human gut commensal bacterium Roseburia inulinivorans suggested that tet(O/32/O) and tet(40) were cotransferred on a mobile element. Sequence analysis of a 37-kb insert identified on the basis of tetracycline resistance from a metagenomic fosmid library again revealed a tandem arrangement of tet(O/32/O) and tet(40), flanked by regions with homology to parts of the VanG operon previously identified in Enterococcus faecalis. At least 10 of the metagenomic inserts that carried tet(O/32/O) also carried tet(40), suggesting that tet(40), although previously undetected, may be an abundant efflux gene.

  9. Gene Expression during Survival of Escherichia coli O157:H7 in Soil and Water

    Directory of Open Access Journals (Sweden)

    Ashley D. Duffitt

    2011-01-01

    Full Text Available The in vitro survival of Escherichia coli O157:H7 at 15∘C under two experimental conditions (sterile soil and sterile natural water was examined. DNA microarrays of the entire set of E. coli O157:H7 genes were used to measure the genomic expression patterns after 14 days. Although the populations declined, some E. coli O157:H7 cells survived in sterile stream water up to 234 days and in sterile soil for up to 179 days. Cells incubated in soil microcosms for 14 days expressed genes for antibiotic resistance, biosynthesis, DNA replication and modification, metabolism, phages, transposons, plasmids, pathogenesis and virulence, antibiotic resistance, ribosomal proteins, the stress response, transcription, translation, and transport and binding proteins at significantly higher levels than cells grown in Luria broth. These results suggest that E. coli O157:H7 may develop a different phenotype during transport through the environment. Furthermore, this pathogen may become more resistant to antibiotics making subsequent infections more difficult to treat.

  10. Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts

    Energy Technology Data Exchange (ETDEWEB)

    Daniell, H.; McFadden, B.A.

    1987-09-01

    The uptake and expression by plastids isolated from dark-grown cucumber cotyledons (etioplasts) of two pUC derivatives, pCS75 and pUC9-CM, respectively carrying genes for the large and small subunits of ribulose bisphosphate carboxylase/oxygenase of Anacystis nidulans or chloramphenicol acetyltransferase, is reported. Untreated etioplasts take up only 3% as much DNA as that taken up by EDTA-washed etioplasts after 2 hr of incubation with nick-translated (/sup 32/P)-pCS75. The presence or absence of light does not affect DNA uptake, binding, or breakdown by etioplasts. Calcium or magnesium ions inhibit DNA uptake by 86% but enhance binding and breakdown of donor DNA by EDTA-treated etioplasts. Uncouplers that abolish membrane potential, transmembrane proton gradient, or both do not affect DNA uptake, binding, or breakdown by etioplasts. However, both DNA uptake and binding are severely inhibited by ATP. After the incubation of EDTA-treated etioplasts with pCS75, immunoprecipitation using antiserum to the small subunit of ribulose bisphosphate carboxylase/oxygenase from A. nidulans reveals the synthesis of small subunits. Treatment of etioplasts with 10 mM EDTA shows a 10-min duration to be optimal for the expression of chloramphenicol acetyltransferase encoded by pUC9-CM. A progressive increase in the expression of this enzyme is observed with an increase in the concentration of pUC9-CM in the DNA uptake medium. The plasmid-dependent incorporation of (/sup 35/S) methionine by EDTA-treated organelles declines markedly during cotyledon greening in vivo.

  11. Differential gene expression, induced by salicylic acid and Fusarium oxysporum f. sp. lycopersici infection, in tomato Expressão diferencial de genes induzida por ácido salicílico e por Fusarium oxysporum f. sp. lycopersici, em tomateiro

    Directory of Open Access Journals (Sweden)

    Daniel Oliveira Jordão do Amaral

    2008-08-01

    Full Text Available The objective of this work was to determine the transcript profile of tomato plants (Lycopersicon esculentum Mill., during Fusarium oxysporum f. sp. lycopersici infection and after foliar application of salicylic acid. The suppression subtractive hybridization (SSH technique was used to generate a cDNA library enriched for transcripts differentially expressed. A total of 307 clones was identified in two subtractive libraries, which allowed the isolation of several defense-related genes that play roles in different mechanisms of plant resistance to phytopathogens. Genes with unknown roles were also isolated from the two libraries, which indicates the possibility of identifying new genes not yet reported in studies of stress/defense response. The SSH technique is effective for identification of resistance genes activated by salicylic acid and F. oxysporum f. sp. lycopersici infection. Not only the application of this technique enables a cost effective isolation of differentially expressed sequences, but also it allows the identification of novel sequences in tomato from a relative small number of sequences.O objetivo deste trabalho foi determinar o perfil de transcritos em plantas de tomate (Lycopersicon esculentum Mill., durante a infecção com Fusarium oxysporum f. sp. lycopersici e após a aplicação foliar de ácido salicílico. A técnica de hibridização subtrativa por supressão (SSH foi utilizada para gerar uma biblioteca de cDNA enriquecida por transcritos diferencialmente expressos. Foram identificados 307 clones, em duas bibliotecas subtrativas, que permitiram o isolamento de diversos genes de defesa com função em diferentes processos relacionados à resistência vegetal contra patógenos. Também foram isolados, nas duas bibliotecas, genes com função desconhecida, o que indica a possibilidade de identificação de novos genes que ainda não tenham sido relatados em estudos anteriores de resposta a estresses e defesa, em plantas

  12. Acroqueratodermia aquagénica associada a uma mutação do gene da fibrose quística

    Directory of Open Access Journals (Sweden)

    V. Coelho-Macias

    2013-05-01

    Full Text Available Resumo: Descrita em 1996, a acroqueratodermia aquagénica é uma entidade rara, caracterizada pelo aparecimento de pápulas edematosas palmares após contacto com água. Múltiplas associações foram enumeradas mas, recentemente, a associação a mutações do gene da fibrose quística foi demonstrada.Descreve-se o caso de uma mulher de 18 anos, saudável, com prurido e edema palmar após imersão em água. O exame objetivo inicial não mostrava alterações mas, 5 min após imersão em água, observavam-se múltiplas pápulas esbranquiçadas palmares. O estudo do gene da fibrose quística (CFTR revelou uma mutação F508del num dos alelos. A doente negava outras queixas ou história familiar relevante.A acroqueratodermia aquagénica é uma entidade provavelmente subdiagnosticada que poderá constituir uma manifestação de mutações do gene CFTR, o que possibilitaria a identificação de portadores e aconselhamento genético. Abstract: Reported for the first time in 1996, aquagenic keratoderma is a rare condition which is characterized by edematous flat-topped papules appearing on palmar skin after water immersion. Multiple anecdotal associations have been described but, recently, the association with cystic fibrosis gene mutations (CFTR has been highlighted.The authors describe an 18 year-old female, with one-month complaints of pruritus and swelling of palmar skin after water immersion. On examination, palmar skin was unremarkable but, 5 minutes after water immersion, multiple whitish papules became apparent. CFTR genotype study showed a F508del mutation in one alelle. She had no other symptoms and no relevant family history.Aquagenic keratoderma is probably an under-diagnosed entity that might represent a manifestation of CFTR mutations, making carrier state identification and genetic counseling possible. Palavras-chave: Acroqueratodermia aquagénica, Fibrose quística, Aconselhamento genético, Keywords: Aquagenic keratoderma, Cystic

  13. Identification of Early Response Genes in Human Peripheral Leukocytes Infected with Orientia tsutsugamushi: The Emergent of a Unique Gene Expression Profile for Diagnosis of O. tsutsugamush Infection

    Science.gov (United States)

    2010-01-01

    all found in Homo sapiens and the biological processes were assigned based on human protein reference database (HPRD, www.hprd.org). Gene names in...the following: i) whether infection by O. tsutsugamushi is accompanied by distinct gene expression profiles; ii) which features of the host

  14. Síndrome de Diógenes: revisão sistemática da literatura

    OpenAIRE

    Almeida, Rosa; Ribeiro, Oscar

    2012-01-01

    Contexto: A Síndrome de Diógenes (SD) apresenta atualmente um interesse crescente no âmbito da investigação clínica, social e de saúde pública. Caracteriza-se por uma quebra e rejeição de padrões sociais observados no descuido pessoal e habitacional severo, no abandono progressivo do contacto social, no reduzido insight do problema e no comportamento de acumulação de objetos e lixo. Inúmeras hipóteses explicativas foram desenvolvidas, porém, nenhuma cobre integralmente a complexidade associad...

  15. Polimorfismo do gene dos receptores de progesterona e o aborto espontâneo de repetição Progesterone receptor gene polymorphism and recurrent spontaneous abortion

    Directory of Open Access Journals (Sweden)

    Évelyn Traina

    2010-05-01

    Full Text Available OBJETIVO: investigar se polimorfismos dos genes que codificam o receptor de progesterona (PROGINS estão relacionados à ocorrência de aborto espontâneo de repetição (AER. MÉTODOS: em estudo caso-controle, foram selecionados 85 pacientes com antecedente de pelo menos três abortos precoces sem etiologia definida (Grupo Caso e 157 mulheres com história de pelo menos duas gestações de termo sem intercorrências e sem passado de abortamento (Grupo Controle. Realizada coleta de 10 mL de sangue por punção venosa periférica e extração de DNA pela técnica DTAB/CTAB. As genotipagens foram feitas por reação em cadeia de polimerase (PCR, nas condições de ciclagem específica para o polimorfismo em estudo, seguida de amplificação em gel de agarose a 2%. A visualização das bandas foi feita sob luz ultravioleta e os géis foram fotografados. As diferenças genotípicas e alélicas entre os dois grupos para o polimorfismo PROGINS foram calculadas pelo teste de χ2, adotando-se como nível de significância valores de pPURPOSE: to assess a possible association between polymorphism of the progesterone receptor gene (PROGINS and recurrent spontaneous abortion (RSA. METHODS: in this case-control study, 85 women with at least three previous spontaneous abortions without an identifiable cause (RSA Group and 157 women with at least two previous term pregnancies without pathologies and no previous miscarriage (Control Group were selected. An amount of 10 mL of peripheral blood was collected by venipuncture and genomic DNA was extracted by the DTAB/CTAB method, followed by the polymerase chain reaction (PCR under specific conditions for this polymorphism and by amplification by 2% agarose gel electrophoresis. The bands were visualized with an ultraviolet light transilluminator and the gels were photographed. Differences in the PROGINS genotype and allele frequencies between groups were analyzed by the χ2 test, with the level of significance set

  16. Eight hours of nocturnal 915 MHz radiofrequency identification (RFID) exposure reduces urinary levels of melatonin and its metabolite via pineal arylalkylamine N-acetyltransferase activity in male rats.

    Science.gov (United States)

    Kim, Hye Sun; Paik, Man-Jeong; Lee, Yu Hee; Lee, Yun-Sil; Choi, Hyung Do; Pack, Jeong-Ki; Kim, Nam; Ahn, Young Hwan

    2015-01-01

    We investigated the effects of whole-body exposure to the 915 MHz radiofrequency identification (RFID) on melatonin biosynthesis and the activity of rat pineal arylalkylamine N-acetyltransferase (AANAT). Rats were exposed to RFID (whole-body specific absorption rate, 4 W/kg) for 8 h/day, 5 days/week, for weeks during the nighttime. Total volume of urine excreted during a 24-h period was collected after RFID exposure. Urinary melatonin and 6-hydroxymelatonin sulfate (6-OHMS) was measured by gas chromatography-mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA), respectively. AANAT enzyme activity was measured using liquid biphasic dif-13 fusion assay. Protein levels and mRNA expression of AANAT was 14 measured by Western blot and reverse transcription polymerase 15 chain reaction (RT-PCR) analysis, respectively. Eight hours of nocturnal RFID exposure caused a significant reduction in both urinary melatonin (p = 0. 003) and 6-OHMS (p = 0. 026). Activity, protein levels, and mRNA expression of AANAT were suppressed by exposure to RFID (p RFID exposure can cause reductions in the levels of both urinary melatonin and 6-OHMS, possibly due to decreased melatonin biosynthesis via suppression of Aanat gene transcription in the rat pineal gland.

  17. [Regulation of heat shock gene expression in response to stress].

    Science.gov (United States)

    Garbuz, D G

    2017-01-01

    Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS

  18. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT; a key enzyme for physiological and behavioral switch in arthropods

    Directory of Open Access Journals (Sweden)

    Susumu eHiragaki

    2015-04-01

    Full Text Available The evolution of N-acetyltransfeases (NATs seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT has been extensively studied since it Leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT, and also xenobiotic reactions (arylamine NAT or simply NAT. NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the

  19. Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands

    International Nuclear Information System (INIS)

    Han, Ji Seung; Crowe, David L

    2010-01-01

    The peroxisome proliferator activated receptor (PPAR) subgroup of the nuclear hormone receptor superfamily is activated by a variety of natural and synthetic ligands. PPARs can heterodimerize with retinoid X receptors, which have homology to other members of the nuclear receptor superfamily. Ligand binding to PPAR/RXRs results in recruitment of transcriptional coactivator proteins such as steroid receptor coactivator 1 (SRC-1) and CREB binding protein (CBP). Both SRC-1 and CBP are histone acetyltransferases, which by modifying nucleosomal histones, produce more open chromatin structure and increase transcriptional activity. Nuclear hormone receptors can recruit limiting amounts of coactivators from other transcription factor binding sites such as AP-1, thereby inhibiting the activity of AP-1 target genes. PPAR and RXR ligands have been used in experimental breast cancer therapy. The role of coactivator expression in mammary tumorigenesis and response to drug therapy has been the subject of recent studies. We examined the effects of loss of SRC-1 on MMTV-neu mediated mammary tumorigenesis. SRC-1 null mutation in mammary tumor prone mice increased the tumor latency period, reduced tumor proliferation index and metastasis, inhibited response to PPAR and RXR ligands, and induced genes involved in mammary gland differentiation. We also examined human breast cancer cell lines overexpressing SRC-1 or CBP. Coactivator overexpression increased cellular proliferation with resistance to PPAR and RXR ligands and remodeled chromatin of the proximal epidermal growth factor receptor promoter. These results indicate that histone acetyltransferases play key roles in mammary tumorigenesis and response to anti-proliferative therapies

  20. Detection of ctx gene positive non-O1/non-O139 V. cholerae in shrimp aquaculture environments.

    Science.gov (United States)

    Madhusudana, Rao B; Surendran, P K

    2013-06-01

    Water and post-larvae samples from black tiger (Penaeus monodon) shrimp hatcheries; pond water, pond sediment and shrimp from aquaculture farms were screened for the presence of V. cholerae. A V. cholerae-duplex PCR method was developed by utilizing V. cholerae species specific sodB primers and ctxAB genes specific primers. Incidence of V. cholerae was not observed in shrimp hatchery samples but was noticed in aquaculture samples. The incidence of V. cholerae was higher in pond water (7.6%) than in pond sediment (5.2%). Shrimp head (3.6%) portion had relatively higher incidence than shrimp muscle (1.6%). All the V. cholerae isolates (n = 42) belonged to non-O1/non-O139 serogroup, of which 7% of the V. cholerae isolates were potentially cholera-toxigenic (ctx positive). All the ctx positive V. cholerae (n = 3) were isolated from the pond water. Since, cholera toxin (CT) is the major contributing factor for cholera gravis, it is proposed that the mere presence of non-O1/non-O139 V. cholerae need not be the biohazard criterion in cultured black tiger shrimp but only the presence of ctx carrying non-O1/non-O139 V. cholerae may be considered as potential public health risk.

  1. A multiplex degenerate PCR analytical approach targeting to eight genes for screening GMOs.

    Science.gov (United States)

    Guo, Jinchao; Chen, Lili; Liu, Xin; Gao, Ying; Zhang, Dabing; Yang, Litao

    2012-06-01

    Currently, the detection methods with lower cost and higher throughput are the major trend in screening genetically modified (GM) food or feed before specific identification. In this study, we developed a quadruplex degenerate PCR screening approach for more than 90 approved GMO events. This assay is consisted of four PCR systems targeting on nine DNA sequences from eight trait genes widely introduced into GMOs, such as CP4-EPSPS derived from Acetobacterium tumefaciens sp. strain CP4, phosphinothricin acetyltransferase gene derived from Streptomyceshygroscopicus (bar) and Streptomyces viridochromogenes (pat), and Cry1Ab, Cry1Ac, Cry1A(b/c), mCry3A, and Cry3Bb1 derived from Bacillus thuringiensis. The quadruplex degenerate PCR assay offers high specificity and sensitivity with the absolute limit of detection (LOD) of approximate 80targetcopies. Furthermore, the applicability of the quadruplex PCR assay was confirmed by screening either several artificially prepared samples or samples of Grain Inspection, Packers and Stockyards Administration (GIPSA) proficiency program. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Insulin stimulates choline acetyltransferase activity in cultured embryonic chicken retina neurons

    International Nuclear Information System (INIS)

    Kyriakis, J.M.; Hausman, R.E.; Peterson, S.W.

    1987-01-01

    The effect of insulin on the appearance of the enzyme choline acetyltransferase in embryonic chicken retina neurons cultured in defined medium was studied. In the presence of a minimal level of insulin (1 ng/ml), ChoAcT activity increased with time in culture. A correspondence between the insulin concentration in the defined medium (1-100 ng/ml) and both the rate of increase and maximum attained level of ChoAcT activity was observed. Maximal ChoAcT activity was 2- to 3-fold greater in cells cultured in the presence of 100 ng of insulin per ml than in cells cultured in the presence of 1 ng of insulin per ml. To elicit maximum ChoAcT activity, insulin at 100 ng/ml was required in the medium for only the first 4 days of the culture period, at which time insulin could be reduced to maintenance levels (10 ng/ml) without affecting ChoAcT activity. Insulin binding assays performed during a 7-day culture period revealed that irrespective of the 125 I-insulin concentration in the medium during culture, cell-surface insulin receptors decreased by ≅ 90% between 4 and 7 days in culture. This decrease in insulin binding corresponded to the observed decrease in the sensitivity of ChoAcT activity to insulin. The findings suggest that insulin plays a role in mediating cholinergic differentiation in the embryonic chicken retina

  3. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.

    Directory of Open Access Journals (Sweden)

    Andrew F Neuwald

    2016-12-01

    Full Text Available Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs, which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu.

  4. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.

    Science.gov (United States)

    Neuwald, Andrew F; Altschul, Stephen F

    2016-12-01

    Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu).

  5. DNA microarray-based assessment of virulence potential of Shiga toxin gene-carrying Escherichia coli O104:H7 isolated from feedlot cattle feces.

    Directory of Open Access Journals (Sweden)

    Pragathi B Shridhar

    Full Text Available Escherichia coli O104:H4, a hybrid pathotype reported in a large 2011 foodborne outbreak in Germany, has not been detected in cattle feces. However, cattle harbor and shed in the feces other O104 serotypes, particularly O104:H7, which has been associated with sporadic cases of diarrhea in humans. The objective of our study was to assess the virulence potential of Shiga toxin-producing E. coli (STEC O104:H7 isolated from feces of feedlot cattle using DNA microarray. Six strains of STEC O104:H7 isolated from cattle feces were analyzed using FDA-E. coli Identification (ECID DNA microarray to determine their virulence profiles and compare them to the human strains (clinical of O104:H7, STEC O104:H4 (German outbreak strain, and O104:H21 (milk-associated Montana outbreak strain. Scatter plots were generated from the array data to visualize the gene-level differences between bovine and human O104 strains, and Pearson correlation coefficients (r were determined. Splits tree was generated to analyze relatedness between the strains. All O104:H7 strains, both bovine and human, similar to O104:H4 and O104:H21 outbreak strains were negative for intimin (eae. The bovine strains were positive for Shiga toxin 1 subtype c (stx1c, enterohemolysin (ehxA, tellurite resistance gene (terD, IrgA homolog protein (iha, type 1 fimbriae (fimH, and negative for genes that code for effector proteins of type III secretory system. The six cattle O104 strains were closely related (r = 0.86-0.98 to each other, except for a few differences in phage related and non-annotated genes. One of the human clinical O104:H7 strains (2011C-3665 was more closely related to the bovine O104:H7 strains (r = 0.81-0.85 than the other four human clinical O104:H7 strains (r = 0.75-0.79. Montana outbreak strain (O104:H21 was more closely related to four of the human clinical O104:H7 strains than the bovine O104:H7 strains. None of the bovine E. coli O104 strains carried genes characteristic of E

  6. Sulfonamide-Based Inhibitors of Aminoglycoside Acetyltransferase Eis Abolish Resistance to Kanamycin in Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Garzan, Atefeh; Willby, Melisa J.; Green, Keith D.; Gajadeera, Chathurada S.; Hou, Caixia; Tsodikov, Oleg V.; Posey, James E.; Garneau-Tsodikova, Sylvie

    2016-12-08

    A two-drug combination therapy where one drug targets an offending cell and the other targets a resistance mechanism to the first drug is a time-tested, yet underexploited approach to combat or prevent drug resistance. By high-throughput screening, we identified a sulfonamide scaffold that served as a pharmacophore to generate inhibitors of Mycobacterium tuberculosis acetyltransferase Eis, whose upregulation causes resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN) in Mycobacterium tuberculosis. Rational systematic derivatization of this scaffold to maximize Eis inhibition and abolish the Eis-mediated KAN resistance of M. tuberculosis yielded several highly potent agents. A crystal structure of Eis in complex with one of the most potent inhibitors revealed that the inhibitor bound Eis in the AG-binding pocket held by a conformationally malleable region of Eis (residues 28–37) bearing key hydrophobic residues. These Eis inhibitors are promising leads for preclinical development of innovative AG combination therapies against resistant TB.

  7. Combination Treatments with Luteolin and Fisetin Enhance Anti-Inflammatory Effects in High Glucose-Treated THP-1 Cells Through Histone Acetyltransferase/Histone Deacetylase Regulation.

    Science.gov (United States)

    Kim, Arang; Yun, Jung-Mi

    2017-08-01

    Hyperglycemia leads to diabetes and its diabetic complications. In this study, we investigated the synergistic effects of luteolin and fisetin on proinflammatory cytokine secretion and its underlying epigenetic regulation in human monocytes exposed to hyperglycemic (HG) concentrations. Human monocytic cells (THP-1) were cultured under controlled (14.5 mM mannitol), normoglycemic (5.5 mM glucose), or HG (20 mM glucose) conditions in the absence or presence of the two phytochemicals for 48 h. Whereas HG conditions significantly induced histone acetylation, nuclear factor-kappa B (NF-κB) activation, interleukin 6, and tumor necrosis factor-α release from THP-1 cells; combination treatments with the two phytochemicals (500 nM fisetin, and l μM and 500 nM luteolin) suppressed NF-κB activity and inflammatory cytokine release. Fisetin, luteolin, and their combination treatments also significantly decreased the activity of histone acetyltransferase, a known NF-κB coactivator; inhibited reactive oxygen species production; and activated sirtuin (SIRT)1 and forkhead box O3a (FOXO3a) expressions (P < .05). Thus, combination treatments with the two phytochemicals inhibited HG condition-induced cytokine production in monocytes, through epigenetic changes involving NF-κB activation. We, therefore, suggest that combination treatments with luteolin and fisetin may be a potential candidate for the treatment and prevention of diabetes and its complications.

  8. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*.

    Science.gov (United States)

    Carrer, Michele; Liu, Ning; Grueter, Chad E; Williams, Andrew H; Frisard, Madlyn I; Hulver, Matthew W; Bassel-Duby, Rhonda; Olson, Eric N

    2012-09-18

    Obesity and metabolic syndrome are associated with mitochondrial dysfunction and deranged regulation of metabolic genes. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) is a transcriptional coactivator that regulates metabolism and mitochondrial biogenesis through stimulation of nuclear hormone receptors and other transcription factors. We report that the PGC-1β gene encodes two microRNAs (miRNAs), miR-378 and miR-378*, which counterbalance the metabolic actions of PGC-1β. Mice genetically lacking miR-378 and miR-378* are resistant to high-fat diet-induced obesity and exhibit enhanced mitochondrial fatty acid metabolism and elevated oxidative capacity of insulin-target tissues. Among the many targets of these miRNAs, carnitine O-acetyltransferase, a mitochondrial enzyme involved in fatty acid metabolism, and MED13, a component of the Mediator complex that controls nuclear hormone receptor activity, are repressed by miR-378 and miR-378*, respectively, and are elevated in the livers of miR-378/378* KO mice. Consistent with these targets as contributors to the metabolic actions of miR-378 and miR-378*, previous studies have implicated carnitine O-acetyltransferase and MED13 in metabolic syndrome and obesity. Our findings identify miR-378 and miR-378* as integral components of a regulatory circuit that functions under conditions of metabolic stress to control systemic energy homeostasis and the overall oxidative capacity of insulin target tissues. Thus, these miRNAs provide potential targets for pharmacologic intervention in obesity and metabolic syndrome.

  9. Low Concentrations of o,p’-DDT Inhibit Gene Expression and Prostaglandin Synthesis by Estrogen Receptor-Independent Mechanism in Rat Ovarian Cells

    Science.gov (United States)

    Liu, Jing; Zhao, Meirong; Zhuang, Shulin; Yang, Yan; Yang, Ye; Liu, Weiping

    2012-01-01

    o,p’-DDT is an infamous xenoestrogen as well as a ubiquitous and persistent pollutant. Biomonitoring studies show that women have been internally exposed to o,p’-DDT at range of 0.3–500 ng/g (8.46×10−10 M−1.41×10−6 M) in blood and other tissues. However, very limited studies have investigated the biological effects and mechanism(s) of o,p’-DDT at levels equal to or lower than current exposure levels in human. In this study, using primary cultures of rat ovarian granulosa cells, we determined that very low doses of o,p’-DDT (10−12−10−8 M) suppressed the expression of ovarian genes and production of prostaglandin E2 (PGE2). In vivo experiments consistently demonstrated that o,p’-DDT at 0.5–1 mg/kg inhibited the gene expression and PGE2 levels in rat ovary. The surprising results from the receptor inhibitors studies showed that these inhibitory effects were exerted independently of either classical estrogen receptors (ERs) or G protein-coupled receptor 30 (GPR30). Instead, o,p’-DDT altered gene expression or hormone action via inhibiting the activation of protein kinase A (PKA), rather than protein kinase C (PKC). We further revealed that o,p’-DDT directly interfered with the PKA catalytic subunit. Our novel findings support the hypothesis that exposure to low concentrations of o,p’-DDT alters gene expression and hormone synthesis through signaling mediators beyond receptor binding, and imply that the current exposure levels of o,p’-DDT observed in the population likely poses a health risk to female reproduction. PMID:23209616

  10. The prevalence of Escherichia coli O157 and O157:H7 in ground beef and raw meatball by immunomagnetic separation and the detection of virulence genes using multiplex PCR.

    Science.gov (United States)

    Cadirci, Ozgür; Siriken, Belgin; Inat, Gökhan; Kevenk, Tahsin Onur

    2010-03-01

    The present study was conducted to investigate the presence of Escherichia coli O157 and O157:H7 strains and to detect the presence of the stx1, stx2, and eaeA genes in isolates derived from 200 samples (100 samples from fresh ground beef and 100 samples from raw meatball). The samples were purchased from the Samsun Province in Turkey, over a period of 1 year. Enrichment-based immunomagnetic separation and multiplex polymerase chain reaction were applied for these analyses. E. coli O157 was detected in five of the 200 (2.5%) samples tested (one isolated from ground beef and four from meatball samples), whereas E. coli O157: H7 was not detected in any sample. During the analysis, eight strains of E. coli O157 were obtained. The genes stx1, stx2, and eaeA were detected in two E. coli O157 isolates obtained from two meatball samples, whereas only the eaeA and the stx2 genes were detected in four E. coli O157 strains that were isolated from one meatball sample. None of the stx1, stx2, and eaeA was detected in the E. coli O157 isolates obtained from the ground beef and the one meatball samples. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. High-resolution mapping of the S-locus in Turnera leads to the discovery of three genes tightly associated with the S-alleles.

    Science.gov (United States)

    Labonne, Jonathan J D; Goultiaeva, Alina; Shore, Joel S

    2009-06-01

    While the breeding system known as distyly has been used as a model system in genetics, and evolutionary biology for over a century, the genes determining this system remain unknown. To positionally clone genes determining distyly, a high-resolution map of the S-locus region of Turnera has been constructed using segregation data from 2,013 backcross progeny. We discovered three putative genes tightly linked with the S-locus. An N-acetyltransferase (TkNACE) flanks the S-locus at 0.35 cM while a sulfotransferase (TkST1) and a non-LTR retroelement (TsRETRO) show complete linkage to the S-locus. An assay of population samples of six species revealed that TsRETRO, initially discovered in diploid Turnera subulata, is also associated with the S-allele in tetraploid T. subulata and diploid Turnera scabra. The sulfotransferase gene shows some level of differential expression in long versus short styles, indicating it might be involved in some aspect of distyly. The complete linkage of TkST1 and TsRETRO to the S-locus suggests that both genes may reside within, or in the immediate vicinity of the S-locus. Chromosome walking has been initiated using one of the genes discovered in the present study to identify the genes determining distyly.

  12. Differential effects of simple repeating DNA sequences on gene expression from the SV40 early promoter.

    Science.gov (United States)

    Amirhaeri, S; Wohlrab, F; Wells, R D

    1995-02-17

    The influence of simple repeat sequences, cloned into different positions relative to the SV40 early promoter/enhancer, on the transient expression of the chloramphenicol acetyltransferase (CAT) gene was investigated. Insertion of (G)29.(C)29 in either orientation into the 5'-untranslated region of the CAT gene reduced expression in CV-1 cells 50-100 fold when compared with controls with random sequence inserts. Analysis of CAT-specific mRNA levels demonstrated that the effect was due to a reduction of CAT mRNA production rather than to posttranscriptional events. In contrast, insertion of the same insert in either orientation upstream of the promoter-enhancer or downstream of the gene stimulated gene expression 2-3-fold. These effects could be reversed by cotransfection of a competitor plasmid carrying (G)25.(C)25 sequences. The results suggest that a G.C-binding transcription factor modulates gene expression in this system and that promoter strength can be regulated by providing protein-binding sites in trans. Although constructs containing longer tracts of alternating (C-G), (T-G), or (A-T) sequences inhibited CAT expression when inserted in the 5'-untranslated region of the CAT gene, the amount of CAT mRNA was unaffected. Hence, these inhibitions must be due to posttranscriptional events, presumably at the level of translation. These effects of microsatellite sequences on gene expression are discussed with respect to recent data on related simple repeat sequences which cause several human genetic diseases.

  13. Association between the DRD2-141C Insertion/Deletion polymorphism and schizophrenia Associação entre o polimorfismo -141C Ins/Del do gene do DRD2 e esquizofrenia

    Directory of Open Access Journals (Sweden)

    Quirino Cordeiro

    2009-06-01

    Full Text Available Epidemiological studies have demonstrated that the genetic component is an important risk factor for the development of schizophrenia. The genes that codify the different compounds of the dopaminergic system have created interest for molecular investigations in patients with schizophrenia because the antipsychotic drugs, especially those of first generation, act on this cerebral system. Thus the aim of the present study was to investigate the possible association between the -141 Ins/Del (rs1799732 polymorphism of the dopamine receptor type 2 (DRD2 and schizophrenia. The distribution of the alleles and genotypes of the studied polymorphism was investigated in a sample of 229 patients and 733 controls. There were statistical differences in the allelic (χ2=9.78; p=0.001 and genotypic genotypic (χ2=12.74; p=0.001 distributions between patients and controls. Thus the -141C Ins/Del polymorphism of the DRD2 gene (allele Ins was associated to the SCZ phenotype in the investigated sample.Estudos epidemiológicos têm demonstrado que o componente genético é um importante fator de risco para o desenvolvimento de esquizofrenia. Os genes que codificam os diferentes componentes do sistema dopaminérgico passaram a despertar interesse para os estudos moleculares em pacientes com esquizofrenia, devido ao fato dos antipsicóticos, em especial os de primeira geração, exercerem sua ação nesse sistema. Assim, o objetivo do presente estudo foi investigar a possível associação entre polimorfismo -141C Ins/Del (rs1799732 do gene do receptor dopaminérgico tipo 2 (DRD2 e esquizofrenia. Um total de 229 pacientes e 733 controles pareados para sexo e idade foi selecionado com o objetivo de investigar a distribuição dos alelos e genótipos do polimorfismo investigado entre os grupos de pacientes e controles. Houve diferença estatisticamente significante nas distribuições alélica (χ2=9,78; p=0,001 e genotípica (χ2=12,74; p=0,001 entre pacientes e

  14. Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene

    International Nuclear Information System (INIS)

    Mavrothalassitis, G.J.; Watson, D.K.; Papas, T.S.

    1990-01-01

    The 5' end of the human c-ets-2 gene, ETS2, was cloned and characterized. The major transcription initiation start sites were identified, and the pertinent sequences surrounding the ETS2 promoter were determined. The promoter region of ETS2 does not possess typical TATA and CAAT elements. However, this promoter contains several repeat regions, as well as two consensus AP2 binding sites and three putative Sp1 sites. There is also a palindromic region similar to the serum response element of the c-fos gene, located 1,400 base pairs (bp) upstream from the first major transcription initiation site. A G+C-rich sequence (GC element) with dyad symmetry can be seen in the ETS2 promoter, immediately following an unusually long polypurine-polypyrimidine tract. A series of deletion fragments from the putative promoter region were ligated in front of the bacterial chloramphenicol acetyltransferase gene and tested for activity following transfection into HeLa cells. The 5' boundary of the region needed for maximum promoter activity was found to be 159 bp upstream of the major initiation site. The promoter of ETS2 (within the polypyrimidine tract) serves to illustrate an alternative structure that may be present in genes with TATA-less promoters

  15. Análise do gene PTEN por hibridização in situ fluorescente no carcinoma de células renais

    Directory of Open Access Journals (Sweden)

    Eurico Cleto Ribeiro de Campos

    Full Text Available OBJETIVO: avaliar a frequência de deleção do gene PTEN no carcinoma de células renais e o impacto da deleção nas taxas de sobrevida global e livre de doença. MÉTODOS: foram analisados 110 pacientes portadores de carcinoma de células renais submetidos à nefrectomia radical ou parcial entre os anos de 1980 e 2007. Em 53 casos foi possível a análise do gene PTEN pelo método de hibridização in situ fluorescente através da técnica de "tissue microarray". Para a análise estatística, os pacientes foram classificados em dois grupos, de acordo com a presença ou ausência de deleção. RESULTADOS: o tempo médio de seguimento foi de 41,9 meses. Deleção hemizigótica foi identificada em 18 pacientes (33,9%, ao passo que deleção homozigótica esteve presente em três (5,6%. Em aproximadamente 40% dos casos analisados havia deleção. Monossomia e trissomia foram detectadas, respectivamente, em nove (17% e dois pacientes (3,8%. Em 21 pacientes (39,6%, a análise por hibridização in situ do gene PTEN foi normal. Não houve diferenças estatisticamente significativas nas taxas de sobrevida global (p=0,468 e livre de doença (p=0,344 entre os pacientes portadores ou não de deleção. Foram fatores independentes para a sobrevida global: estádio clínico TNM, sintomatologia ao diagnóstico, alto grau de Fuhrmann performance status (Ecog e recorrência tumoral. A livre de doença foi influenciada unicamente pelo estádio clínico TNM. CONCLUSÃO: deleção do gene PTEN no CCR foi detectada com frequência de aproximadamente 40% e sua presença não foi determinante de menores taxas de sobrevida, permanecendo os fatores prognósticos tradicionais como determinantes da evolução dos pacientes.

  16. N-acetyltransferase 2 (NAT2 Gene Polymorphisms and the Effectiveness of Infertility Treatment in Patients with Peritoneal Endometriosis

    Directory of Open Access Journals (Sweden)

    Ekaterina D. Dubinskaya

    2014-03-01

    Full Text Available Today, infertility has become a global issue. WHO ranks it the fifth among the major diseases of those below 60 years, after alcoholism, depression, injuries and eyesight disorders. Numerous studies conducted on the problems of infertility in endometriosis still do not offer clear answers regarding the pathogenesis and mechanisms of this disease and its influences on fertility. According to the survey results, point mutations of the NAT2 gene (NAT2*5 and NAT2*6 have been identified in 75.6% of the patients with infertility problems and the peritoneal form of endometriosis, that create “slow” allelic variants, which exceed the average index in the population. The peculiarities of the NAT2 gene polymorphisms have been proven to be associated with the effectiveness of the infertility treatment of female patients with peritoneal endometriosis. In the group of non-pregnant patients, the presence of с.341Т>C, c.481C>T, c.590G>A and c.803A>G heterozygous point mutations are 73.2, 73.2, 5.4, and 62.5%, respectively. The significant difference in the comparison of the allelic polymorphism during the various stages of the endometriosis was not identified. At stage III-IV endometriosis the frequency of three and more point substitutions was significantly higher. NAT2 gene polymorphisms can find use as an additional criterion for predicting the effectiveness of the infertility treatment of patients with peritoneal endometriosis.

  17. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    Science.gov (United States)

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  18. Sequence Variations in the Flagellar Antigen Genes fliCH25 and fliCH28 of Escherichia coli and Their Use in Identification and Characterization of Enterohemorrhagic E. coli (EHEC O145:H25 and O145:H28.

    Directory of Open Access Journals (Sweden)

    Lothar Beutin

    Full Text Available Enterohemorrhagic E. coli (EHEC serogroup O145 is regarded as one of the major EHEC serogroups involved in severe infections in humans. EHEC O145 encompasses motile and non-motile strains of serotypes O145:H25 and O145:H28. Sequencing the fliC-genes associated with the flagellar antigens H25 and H28 revealed the genetic diversity of the fliCH25 and fliCH28 gene sequences in E. coli. Based on allele discrimination of these fliC-genes real-time PCR tests were designed for identification of EHEC O145:H25 and O145:H28. The fliCH25 genes present in O145:H25 were found to be very similar to those present in E. coli serogroups O2, O100, O165, O172 and O177 pointing to their common evolution but were different from fliCH25 genes of a multiple number of other E. coli serotypes. In a similar way, EHEC O145:H28 harbor a characteristic fliCH28 allele which, apart from EHEC O145:H28, was only found in enteropathogenic (EPEC O28:H28 strains that shared some common traits with EHEC O145:H28. The real time PCR-assays targeting these fliCH25[O145] and fliCH28[O145] alleles allow better characterization of EHEC O145:H25 and EHEC O145:H28. Evaluation of these PCR assays in spiked ready-to eat salad samples resulted in specific detection of both types of EHEC O145 strains even when low spiking levels of 1-10 cfu/g were used. Furthermore these PCR assays allowed identification of non-motile E. coli strains which are serologically not typable for their H-antigens. The combined use of O-antigen genotyping (O145wzy and detection of the respective fliCH25[O145] and fliCH28[O145] allele types contributes to improve identification and molecular serotyping of E. coli O145 isolates.

  19. A expressão de genes reparadores do DNA nos tumores sincrônicos de câncer colorretal esporádico DNA repair gene expression in synchronic tumors of sporadic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Igor Proscurshim

    2007-03-01

    Full Text Available RACIONAL: Um dos mecanismos genéticos presentes em aproximadamente 80% dos pacientes com síndrome hereditária não-polipóide do câncer colorretal (HNPCC são os defeitos nos genes reparadores de DNA, como o MSH2, MSH6 e MLH1, onde os tumores sincrônicos são relativamente freqüentes. Já no câncer colorretal esporádico as lesões sincrônicas são raras. OBJETIVO: Verificar se o mesmo mecanismo genético presente no HNPCC está presente no câncer colorretal esporádico que apresentam com lesões sincrônicas. MÉTODOS: Foram incluídos no estudo todos os pacientes com câncer colorretal sincrônico não HNPCC. Imunoistoquímica com anticorpos para MSH2,MSH6, e MLH1 foi realizada para cada tumor. RESULTADOS: Todos os pacientes apresentaram expressão normal de MSH2 e MLH1. O único gene com imunoexpressão alterada foi o MSH6. CONCLUSÃO: Possivelmente outro mecanismo genético seja responsável pelo surgimento de dois tumores sincrônicos no câncer colorretal esporádico.BACKGROUND: Mismatch repair genes (such as MSH2, MLH1 and MSH6 mutations are present in over 80% of hereditary non-polyposis colorectal cancer (HNPCC tumors, which frequently exhibit synchronous lesions. Sporadic colorectal cancer is rarely associated with synchronous lesions. AIM: To investigate the role of mismatch repair gene mutation in synchronous sporadic colorectal cancer. METHODS: Patients with sporadic synchronous colorectal adenocarcinomas were included in the study. Immunohistochemistry was performed using MSH2, MLH1 and MSH6 antibodies. RESULTS: All patients had two synchoronous lesions. None of them had altered MSH2 or MLH1 expression. One patient had altered MSH6 expression in both tumors. CONCLUSION: Possibly, other molecular mechanisms are involved in carcinogenesis of sporadic synchronous colorectal cancer.

  20. Synthesis of O-[11C]acetyl CoA, O-[11C]acetyl-L-carnitine, and L-[11C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey

    International Nuclear Information System (INIS)

    Jacobson, Gunilla B.; Watanabe, Yasuyoshi; Valind, Sven; Kuratsune, Hirohiko; Laangstroem, Bengt

    1997-01-01

    The syntheses of L-carnitine, O-acetyl CoA, and O-acetyl-L-carnitine labelled with 11 C at the 1- or 2-position of the acetyl group or the N-methyl position of carnitine, using the enzymes acetyl CoA synthetase and carnitine acetyltransferase, are described. With a total synthesis time of 45 min, O-[1- 11 C]acetyl CoA and O-[2- 11 C]acetyl CoA was obtained in 60-70% decay-corrected radiochemical yield, and O-[1- 11 C]acetyl-L-carnitine and O-[2- 11 C]acetyl-L-carnitine in 70-80% yield, based on [1- 11 C]acetate or [2- 11 C]acetate, respectively. By an N-methylation reaction with [ 11 C]methyl iodide, L-[methyl- 11 C]carnitine was obtained within 30 min, and O-acetyl-L-[methyl- 11 C]carnitine within 40 min, giving a decay-corrected radiochemical yield of 60% and 40-50%, respectively, based on [ 11 C]methyl iodide. Initial data of the kinetics of the different 11 C-labelled L-carnitine and acetyl-L-carnitines in renal cortex of anaesthetized monkey (Macaca mulatta) are presented

  1. Expressão dos genes nodC, nodW e nopP em Bradyrhizobium japonicum estirpe CPAC 15 avaliada por RT-qPCR Expression of nodC, nodW and nopP genes in Bradyrhizobium japonicum CPAC 15 strain evaluated by RT-qPCR

    Directory of Open Access Journals (Sweden)

    Simone Bortolan

    2009-11-01

    Full Text Available O objetivo deste trabalho foi avaliar a expressão, por RT-qPCR, dos genes de nodulação nodC e nodW e do gene nopP da estirpe CPAC 15, que provavelmente atuam na infecção das raízes da soja. Foram realizados dois experimentos. No primeiro, a expressão dos genes foi avaliada nas células após a incubação com genisteína por 15 min, 1, 4 e 8 horas. Os resultados revelaram que os três genes apresentaram maior expressão imediatamente após o contato com o indutor (15 min. No segundo experimento, a bactéria foi cultivada na presença de indutores (genisteína ou exsudatos de sementes de soja por 48 horas. A expressão dos três genes foi maior na presença de genisteína, com valores de expressão para nodC, nodW e nopP superiores ao controle. Os resultados obtidos confirmam a funcionalidade dos três genes na estirpe CPAC 15, com ênfase para o nopP, cuja funcionalidade em Bradyrhizobium japonicum foi descrita pela primeira vez.The objective of this work was to evaluate, by RT-qPCR, the expression of the nodC and nodW nodulation genes and of the nopP gene of the CPAC 15 strain, which probably play a role in the infection of soybean roots. Two experiments were done. In the first, the gene expression was evaluated in cells after incubation with genistein for 15 min, 1, 4 and 8 hours. Results showed that the three genes showed higher expression immediately after contact with the inducer (15 min. In the second experiment, the bacterium was grown in the presence of inducers (genistein or soybean seed exudates for 48 hours. The expression of the three genes was greater when induced by genistein, and the expression of nodC, nodW and nopP had higher values than the control. The results confirm the functionality of the three genes in the CPAC 15 strain, with an emphasis on the nopP, whose functionality in Bradyrhizobium japonicum was described for the first time.

  2. Neuroimágenes en las alteraciones del sueño

    Directory of Open Access Journals (Sweden)

    Dr. M. Marcelo Gálvez

    2013-05-01

    Las técnicas de resonancia magnética funcional corresponden a pruebas similares a los test clínicos pero realizados al interior del resonador que permiten una evaluación de las áreas funcionales cerebrales. El PET-CT que utiliza principalmente glucosa radiactiva (18 FDG para visualizar el metabolismo cerebral. Este artículo revisa los principales hallazgos demostrados mediante imágenes estructurales y funcionales en los pacientes con Síndrome de Apnea Obstructiva del Sueño (SAOS, Narcolepsia e Insomnio idiopático.

  3. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    Science.gov (United States)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  4. The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters

    DEFF Research Database (Denmark)

    Thrane, Sandra Wingaard; Taylor, Véronique L.; Freschi, Luca

    2015-01-01

    . aeruginosa O12 OSA gene cluster, an antibiotic resistance determinant (gyrAC248T), and other genes that have been transferred between P. aeruginosa strains with distinct core genome architectures. We showed that these genes were likely acquired from an O12 serotype strain that is closely related to P...... in clinical settings and outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics. Here, we explore how the P. aeruginosa OSA biosynthesis gene clusters evolve in the population by investigating the association between the phylogenetic relationships among 83 P....... aeruginosa strains and their serotypes. While most serotypes were closely linked to the core genome phylogeny, we observed horizontal exchange of OSA biosynthesis genes among phylogenetically distinct P. aeruginosa strains. Specifically, we identified a "serotype island" ranging from 62 kb to 185 kb containing the P...

  5. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene.

    Science.gov (United States)

    Uchida, Shusaku; Teubner, Brett J W; Hevi, Charles; Hara, Kumiko; Kobayashi, Ayumi; Dave, Rutu M; Shintaku, Tatsushi; Jaikhan, Pattaporn; Yamagata, Hirotaka; Suzuki, Takayoshi; Watanabe, Yoshifumi; Zakharenko, Stanislav S; Shumyatsky, Gleb P

    2017-01-10

    Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. A single gene causes an interspecific difference in pigmentation in Drosophila.

    Science.gov (United States)

    Ahmed-Braimah, Yasir H; Sweigart, Andrea L

    2015-05-01

    The genetic basis of species differences remains understudied. Studies in insects have contributed significantly to our understanding of morphological evolution. Pigmentation traits in particular have received a great deal of attention and several genes in the insect pigmentation pathway have been implicated in inter- and intraspecific differences. Nonetheless, much remains unknown about many of the genes in this pathway and their potential role in understudied taxa. Here we genetically analyze the puparium color difference between members of the virilis group of Drosophila. The puparium of Drosophila virilis is black, while those of D. americana, D. novamexicana, and D. lummei are brown. We used a series of backcross hybrid populations between D. americana and D. virilis to map the genomic interval responsible for the difference between this species pair. First, we show that the pupal case color difference is caused by a single Mendelizing factor, which we ultimately map to an ∼11-kb region on chromosome 5. The mapped interval includes only the first exon and regulatory region(s) of the dopamine N-acetyltransferase gene (Dat). This gene encodes an enzyme that is known to play a part in the insect pigmentation pathway. Second, we show that this gene is highly expressed at the onset of pupation in light brown taxa (D. americana and D. novamexicana) relative to D. virilis, but not in the dark brown D. lummei. Finally, we examine the role of Dat in adult pigmentation between D. americana (heavily melanized) and D. novamexicana (lightly melanized) and find no discernible effect of this gene in adults. Our results demonstrate that a single gene is entirely or almost entirely responsible for a morphological difference between species. Copyright © 2015 by the Genetics Society of America.

  7. A Role for Histone Deacetylases in the Cellular and Behavioral Mechanisms Underlying Learning and Memory

    Science.gov (United States)

    Mahgoub, Melissa; Monteggia, Lisa M.

    2014-01-01

    Histone deacetylases (HDACs) are a family of chromatin remodeling enzymes that restrict access of transcription factors to the DNA, thereby repressing gene expression. In contrast, histone acetyltransferases (HATs) relax the chromatin structure allowing for an active chromatin state and promoting gene transcription. Accumulating data have…

  8. Identification of an enhancer element of class Pi glutathione S-transferase gene required for expression by a co-planar polychlorinated biphenyl.

    Science.gov (United States)

    Matsumoto, M; Imagawa, M; Aoki, Y

    1999-01-01

    3,3',4,4',5-Pentachlorobiphenyl (PenCB), one of the most toxic co-planar polychlorinated biphenyl congeners, specifically induces class Pi glutathione S-transferase (GSTP1) as well as cytochrome P-450 1A1 in primary cultured rat liver parenchymal cells [Aoki, Matsumoto and Suzuki (1993) FEBS Lett. 333, 114-118]. However, the 5'-flanking sequence of the GSTP1 gene does not contain a xenobiotic responsive element, to which arylhydrocarbon receptor binds. Using a chloramphenicol acetyltransferase assay we demonstrate here that the enhancer termed GSTP1 enhancer I (GPEI) is necessary for the stimulation by PenCB of GSTP1 gene expression in primary cultured rat liver parenchymal cells. GPEI is already known to contain a dyad of PMA responsive element-like elements oriented palindromically. It is suggested that a novel signal transduction pathway activated by PenCB contributes to the stimulation of GSTP1 expression. PMID:10051428

  9. Análise do perfil de expressão dos genes da cana-de-açúcar envolvidos na interação com Leifsonia xyli subsp: xyli Differential gene expression in sugar cane infected by Leifsonia xyli subsp: xyli

    Directory of Open Access Journals (Sweden)

    Maria Inês Tiraboschi Ferro

    2007-06-01

    Full Text Available Utilizando a técnica de macroarranjos de cDNA em membranas de náilon, analisou-se o perfil de expressão de 3.575 ESTs ("Expressed Sequence Tags" de cana-de-açúcar, oriundas do projeto SUCEST, em duas variedades, uma tolerante (SP80-0185 e outra suscetível (SP70-3370 ao Raquitismo da Soqueira. Foram analisadas amostras foliares de plantas inoculadas com Leifsonia xyli subsp. xyli., agente etiológico do Raquitismo, contrastadas com plantas não inoculadas (controle, para cada variedade, marcadas com sondas de cDNA e hibridizadas contra os macroarranjos. Após as hibridizações e análises estatísticas dos dados foi possível identificar 49 ESTs com expressão alterada, sendo 44 na variedade tolerante (41 ESTs induzidos e 3 reprimidos e 5 na variedade suscetível (2 ESTs induzidos e 3 reprimidos. Os resultados obtidos sugerem que a tolerância da variedade SP80-0185 de cana-de-açúcar à bactéria fitopatogênica pode estar relacionada com a percepção de sinais extracelulares, visto que ESTs relacionados a vias de transdução de sinais apresentaram expressão gênica induzida na variedade tolerante, os quais codificam para uma EST com similaridade à H+-ATPase da membrana plasmática, fatores de transcrição G-box, OsNAC6, "DNA binding", família MYB e "Zinc Finger" e ainda uma EST com similaridade ao fator de ligação ao G-Box, o qual corresponde a uma seqüência de DNA cis presente em vários promotores de plantas e requerido para o reconhecimento de muitos estímulos ambientais. Na variedade suscetível foi reprimido uma EST com similaridade à lipase. Esta enzima, também de membrana, faz parte da síntese do jasmonato, o qual ativa as defesas vegetais contra patógenos de plantas. Possíveis funções para os genes induzidos ou reprimidos nas cultivares de cana tolerante ou resistente ao Raquitismo são discutidas neste trabalho.The macroarray nylon membrane technology was used to study the differential gene expression of 3

  10. Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures – linking genome-wide transcriptional changes to cellular physiology

    Science.gov (United States)

    Pócsi, István; Miskei, Márton; Karányi, Zsolt; Emri, Tamás; Ayoubi, Patricia; Pusztahelyi, Tünde; Balla, György; Prade, Rolf A

    2005-01-01

    Background In addition to their cytotoxic nature, reactive oxygen species (ROS) are also signal molecules in diverse cellular processes in eukaryotic organisms. Linking genome-wide transcriptional changes to cellular physiology in oxidative stress-exposed Aspergillus nidulans cultures provides the opportunity to estimate the sizes of peroxide (O22-), superoxide (O2•-) and glutathione/glutathione disulphide (GSH/GSSG) redox imbalance responses. Results Genome-wide transcriptional changes triggered by diamide, H2O2 and menadione in A. nidulans vegetative tissues were recorded using DNA microarrays containing 3533 unique PCR-amplified probes. Evaluation of LOESS-normalized data indicated that 2499 gene probes were affected by at least one stress-inducing agent. The stress induced by diamide and H2O2 were pulse-like, with recovery after 1 h exposure time while no recovery was observed with menadione. The distribution of stress-responsive gene probes among major physiological functional categories was approximately the same for each agent. The gene group sizes solely responsive to changes in intracellular O22-, O2•- concentrations or to GSH/GSSG redox imbalance were estimated at 7.7, 32.6 and 13.0 %, respectively. Gene groups responsive to diamide, H2O2 and menadione treatments and gene groups influenced by GSH/GSSG, O22- and O2•- were only partly overlapping with distinct enrichment profiles within functional categories. Changes in the GSH/GSSG redox state influenced expression of genes coding for PBS2 like MAPK kinase homologue, PSK2 kinase homologue, AtfA transcription factor, and many elements of ubiquitin tagging, cell division cycle regulators, translation machinery proteins, defense and stress proteins, transport proteins as well as many enzymes of the primary and secondary metabolisms. Meanwhile, a separate set of genes encoding transport proteins, CpcA and JlbA amino acid starvation-responsive transcription factors, and some elements of sexual development

  11. TEAD1-dependent expression of the FoxO3a gene in mouse skeletal muscle

    Directory of Open Access Journals (Sweden)

    Xu Xuewen

    2011-01-01

    Full Text Available Abstract Background TEAD1 (TEA domain family member 1 is constitutively expressed in cardiac and skeletal muscles. It acts as a key molecule of muscle development, and trans-activates multiple target genes involved in cell proliferation and differentiation pathways. However, its target genes in skeletal muscles, regulatory mechanisms and networks are unknown. Results In this paper, we have identified 136 target genes regulated directly by TEAD1 in skeletal muscle using integrated analyses of ChIP-on-chip. Most of the targets take part in the cell process, physiology process, biological regulation metabolism and development process. The targets also play an important role in MAPK, mTOR, T cell receptor, JAK-STAT, calcineurin and insulin signaling pathways. TEAD1 regulates foxo3a transcription through binding to the M-CAT element in foxo3a promoter, demonstrated with independent ChIP-PCR, EMSA and luciferase reporter system assay. In addition, results of over-expression and inhibition experiments suggest that foxo3a is positively regulated by TEAD1. Conclusions Our present data suggests that TEAD1 plays an important role in the regulation of gene expression and different signaling pathways may co-operate with each other mediated by TEAD1. We have preliminarily concluded that TEAD1 may regulate FoxO3a expression through calcineurin/MEF2/NFAT and IGF-1/PI3K/AKT signaling pathways in skeletal muscles. These findings provide important clues for further analysis of the role of FoxO3a gene in the formation and transformation of skeletal muscle fiber types.

  12. A modulatory role of the Rax homeobox gene in mature pineal gland function

    DEFF Research Database (Denmark)

    Rohde, Kristian; Bering, Tenna; Furukawa, Takahisa

    2017-01-01

    The retinal and anterior neural fold homeobox gene (Rax) controls development of the eye and the forebrain. Postnatal expression of Rax in the brain is restricted to the pineal gland, a forebrain structure devoted to melatonin synthesis. The role of Rax in pineal function is unknown. In order...... to investigate the role of Rax in pineal function while circumventing forebrain abnormalities of the global Rax knockout, we generated an eye and pineal-specific Rax conditional knockout mouse. Deletion of Rax in the pineal gland did not affect morphology of the gland, suggesting that Rax is not essential...... for the nucleus to develop. Telemetric analyses confirmed the lack of a functional circadian clock. Arylalkylamine N-acetyltransferase (Aanat) transcripts, encoding the melatonin rhythm-generating enzyme, were undetectable in the pineal gland of the Rax conditional knockout under normal conditions, whereas...

  13. Prevenção da insalubridade habitacional relacionada com a síndrome de Diógenes

    OpenAIRE

    Nicolau, Mirene

    2015-01-01

    Relatório de estágio apresentado para obtenção do grau de Mestre na especialidade de Enfermagem Comunitária RESUMO Problema: A insalubridade habitacional relacionada com a Síndrome de Diógenes é de complexa intervenção multidisciplinar. Possível início na infância, de evolução progressiva e silenciosa. Carateriza-se pelo descuido pessoal/habitacional, isolamento, negação do problema e acumulação de objetos inúteis, desencadeado por fatores do âmbito da saúde mental. Sendo alvo de ate...

  14. Analysis of the Agrotis segetum pheromone gland transcriptome in the light of sex pheromone biosynthesis.

    Science.gov (United States)

    Ding, Bao-Jian; Löfstedt, Christer

    2015-09-18

    Moths rely heavily on pheromone communication for mate finding. The pheromone components of most moths are modified from the products of normal fatty acid metabolism by a set of tissue-specific enzymes. The turnip moth, Agrotis segetum uses a series of homologous fatty-alcohol acetate esters ((Z)-5-decenyl, (Z)-7-dodecenyl, and (Z)-9 tetradecenyl acetate) as its sex pheromone components. The ratio of the components differs between populations, making this species an interesting subject for studies of the enzymes involved in the biosynthetic pathway and their influence on sex pheromone variation. Illumina sequencing and comparative analysis of the transcriptomes of the pheromone gland and abdominal epidermal tissue, enabled us to identify genes coding for putative key enzymes involved in the pheromone biosynthetic pathway, such as fatty acid synthase, β-oxidation enzymes, fatty-acyl desaturases (FAD), fatty-acyl reductases (FAR), and acetyltransferases. We functionally assayed the previously identified ∆11-desaturase [GenBank: ES583599, JX679209] and FAR [GenBank: JX679210] and candidate acetyltransferases (34 genes) by heterologous expression in yeast. The functional assay confirmed that the ∆11-desaturase interacts with palmitate and produces (Z)-11-hexadecenoate, which is the common unsaturated precursor of three homologous pheromone component acetates produced by subsequent chain-shortening, reduction and acetylation. Much lower, but still visible, activity on 14C and 12C saturated acids may account for minor pheromone compounds previously observed in the pheromone gland. The FAR characterized can operate on various unsaturated fatty acids that are the immediate acyl precursors of the different A. segetum pheromone components. None of the putative acetyltransferases that we expressed heterologously did acetylate any of the fatty alcohols tested as substrates. The massive sequencing technology generates enormous amounts of candidate genes potentially

  15. Resposta à restrição calórica por meio de uma intervenção dietética para redução de peso em mulheres obesas portadoras de polimorfismos dos genes ADRB2, ADRB3 e GHRL

    OpenAIRE

    Saliba, Louise Farah

    2014-01-01

    Orientadora : Profª Drª Lupe Furtado Alle Tese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Biológicas, Programa de Pós-Graduação em Genética. Defesa: Curitiba, 09/05/2014 Inclui referências Área de concentração :Genética Resumo: Ainda que as formas de tratamento da obesidade estejam estabelecidas, existe uma variação interindividual na resposta aos tratamentos, assim, genes relacionados à obesidade, os chamados genes candidatos à obesidade e seus polim...

  16. Synthesis of mesoporous SiO2–ZnO nanocapsules: encapsulation of small biomolecules for drugs and “SiOZO-plex” for gene delivery

    International Nuclear Information System (INIS)

    Kumar, Vijay Bhooshan; Annamanedi, Madhavi; Prashad, Muvva Durga; Arunasree, Kalle M.; Mastai, Yitzhak; Gedanken, Aharon; Paik, Pradip

    2013-01-01

    This work presents a new synthesis of mesoporous SiO 2 –ZnO composite nanocapsules with sizes of 90–150 nm and represents their applications in encapsulation of small biomolecules (fluorescent molecules, drugs, and DNA) for uses in medical biotechnology (e.g., drug and gene delivery) for the first time. The nanocapsule size and morphology have been confirmed through the HRSEM and HRTEM. The mesoporous structure of the novel materials has been confirmed through both BET and HRTEM, and the pore diameter observed to be ca. 2–8 nm with an average diameter of 5.1 nm. The BET surface area of mesoporous SiO 2 –ZnO was found to be ∼230 m 2 g −1 . Three different types of pores were detected through HRTEM: type-I, normal pores in silica matrix, pore with ZnO nanoparticles at the boundary (type-II) and type-III, the pores with tiny ZnO nanoparticles (∼5–7 nm) inside them. To demonstrate the biocompatibility and cell viability of the nanocapsules, normal and cancerous lymphocyte cells have been chosen and investigated in a systematic way. Fluorescent dye (Rhodamine 6G), anticancer drug e.g., Doxorubicin (DOX) were loaded in all types of pores, and EtBr-labeled DNA molecules were loaded efficiently into the mesopores of second and third types of the composite nanocapsules to manifest the characteristic of mesoporous, and to find out its loading efficacy. The release kinetics of Rhodamine 6G and DOX were studied. The results highlight the potential of novel functional mesoporous SiO 2 –ZnO nanoparticles for using as the carrier of drugs and formation of “SiOZO-plex”, a complex of mesoporous SiO 2 –ZnO with DNA for gene delivery applications.Graphical Abstract

  17. Genes and chromosomes: control of development

    Directory of Open Access Journals (Sweden)

    Oleg Serov

    2004-09-01

    Full Text Available The past decade has witnessed immense progress in research into the molecular basis behind the developmental regulation of genes. Sets of genes functioning under hierarchical control have been identified, evolutionary conserved systems of genes effecting the cell-to-cell transmission of transmembrane signals and assigned a central role in morphogenesis have been intensively studied; the concept of genomic regulatory networks coordinating expression of many genes has been introduced, to mention some of the major breakthroughs. It should be noted that the temporal and tissue-specific parameters of gene expression are correctly regulated in development only in the context of the chromosome and that they are to a great extent dependent on the position of the gene on the chromosome or the interphase nucleus. Moreover epigenetic inheritance of the gene states through successive cell generations has been conducted exclusively at the chromosome level by virtue of cell or chromosome memory. The ontogenetic memory is an inherent property of the chromosome and cis-regulation has a crucial role in its maintenance.Durante a última década houve imenso progresso na pesquisa sobre as bases moleculares da regulação gênica durante o desenvolvimento. Foram identificados grupos de genes funcionando sob controle hierárquico, sistemas de genes conservados ao longo da evolução atuando na transmissão célula a célula de sinais transmembrana e com uma função central na morfogênese foram intensamente estudados e o conceito de redes genômicas regulatórias coordenando a expressão de diversos genes foi introduzido, para citar apenas alguns dos principais avanços. Deve-se notar que os parâmetros tempo e tecido-específicos da expressão gênica são corretamente regulados durante o desenvolvimento apenas no contexto do cromossomo e que são amplamente dependentes da posição do gene no cromossomo ou no núcleo em interfase. Além do mais, a herança epigen

  18. Frequency of single nucleotide polymorphisms of some immune response genes in a population sample from São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Léa Campos de Oliveira

    2011-09-01

    Full Text Available Objective: To present the frequency of single nucleotide polymorphismsof a few immune response genes in a population sample from SãoPaulo City (SP, Brazil. Methods: Data on allele frequencies ofknown polymorphisms of innate and acquired immunity genes werepresented, the majority with proven impact on gene function. Datawere gathered from a sample of healthy individuals, non-HLA identicalsiblings of bone marrow transplant recipients from the Hospital dasClínicas da Faculdade de Medicina da Universidade de São Paulo,obtained between 1998 and 2005. The number of samples variedfor each single nucleotide polymorphism analyzed by polymerasechain reaction followed by restriction enzyme cleavage. Results:Allele and genotype distribution of 41 different gene polymorphisms,mostly cytokines, but also including other immune response genes,were presented. Conclusion: We believe that the data presentedhere can be of great value for case-control studies, to define whichpolymorphisms are present in biologically relevant frequencies and toassess targets for therapeutic intervention in polygenic diseases witha component of immune and inflammatory responses.

  19. Avaliação da expressão tecidual do gene de reparo MLH1 e dos níveis de dano oxidativo ao DNA em doentes com câncer colorretal Evaluation of expression of mismatch repair gene MLH1 and levels of oxidative DNA damage in normal and neoplastic tissues of patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Real Martinez

    2009-09-01

    Full Text Available O dano oxidativo ao DNA provocado por radicais livres de oxigênio representa um dos principais mecanismos responsáveis pelas etapas iniciais da carcinogênese colorretal. O estresse oxidativo ocasiona erros de pareamento de bases possibilitando o aparecimento de mutações em genes controladores do ciclo celular. As células possuem um sistema de defesa representado pelos genes de reparo do DNA que corrigindo os erros de pareamento impedem o desenvolvimento de mutações. Poucos estudos avaliaram a relação entre dano oxidativo ao DNA e a expressão tecidual do gene de reparo MLH1. OBJETIVO: O objetivo do presente estudo foi avaliar os níveis de estresse oxidativo ao DNA e a expressão tecidual do gene de reparo MLH1 nas células da mucosa cólica normal e neoplásica de doentes com câncer colorretal. MATERIAL E MÉTODO: Foram estudados 44 doentes com diagnóstico de adenocarcinoma colorretal. Foram excluídos os doentes com câncer colorretal hereditário, portadores de câncer relacionado às doenças inflamatórias intestinais e os submetidos à radioquimioterapia neoadjuvante. Para a avaliação dos níveis de dano oxidativo ao DNA utilizou-se a técnica da eletroforese alcalina em gel de célula isolada (ensaio do cometa avaliando 100 células obtidas dos tecidos normal e neoplásico. Para a avaliação da expressão do gene MLH1 utilizou-se a técnica de reação de polimerase em cadeia em tempo real (RT-PCR com primer especificamente desenhados para amplificação do gene. A comparação dos resultados encontrados para os níveis de estresse oxidativo ao DNA, e expressão do gene MLH1 nos tecidos normais e neoplásicos foi feito pelo teste t de Student, adotando-se nível de significância de 5% (pThe oxidative DNA damage caused by oxygen free radicals is one of the most important mechanisms responsible for the initial steps of colorectal carcinogenesis. The oxidative stress can cause errors in the pairing of nitrogenous bases that

  20. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins

    Directory of Open Access Journals (Sweden)

    Michael N. Davies

    2016-01-01

    Full Text Available Lysine acetylation (AcK, a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT, an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.

  1. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1.

    Directory of Open Access Journals (Sweden)

    Kimberley D Seed

    2012-09-01

    Full Text Available The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.

  2. Synthesis of O-[{sup 11}C]acetyl CoA, O-[{sup 11}C]acetyl-L-carnitine, and L-[{sup 11}C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Gunilla B.; Watanabe, Yasuyoshi; Valind, Sven; Kuratsune, Hirohiko; Laangstroem, Bengt

    1997-07-01

    The syntheses of L-carnitine, O-acetyl CoA, and O-acetyl-L-carnitine labelled with {sup 11}C at the 1- or 2-position of the acetyl group or the N-methyl position of carnitine, using the enzymes acetyl CoA synthetase and carnitine acetyltransferase, are described. With a total synthesis time of 45 min, O-[1-{sup 11}C]acetyl CoA and O-[2-{sup 11}C]acetyl CoA was obtained in 60-70% decay-corrected radiochemical yield, and O-[1-{sup 11}C]acetyl-L-carnitine and O-[2-{sup 11}C]acetyl-L-carnitine in 70-80% yield, based on [1-{sup 11}C]acetate or [2-{sup 11}C]acetate, respectively. By an N-methylation reaction with [{sup 11}C]methyl iodide, L-[methyl-{sup 11}C]carnitine was obtained within 30 min, and O-acetyl-L-[methyl-{sup 11}C]carnitine within 40 min, giving a decay-corrected radiochemical yield of 60% and 40-50%, respectively, based on [{sup 11}C]methyl iodide. Initial data of the kinetics of the different {sup 11}C-labelled L-carnitine and acetyl-L-carnitines in renal cortex of anaesthetized monkey (Macaca mulatta) are presented.

  3. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  4. Identification of genes for melatonin synthetic enzymes in 'Red Fuji' apple (Malus domestica Borkh.cv.Red) and their expression and melatonin production during fruit development.

    Science.gov (United States)

    Lei, Qiong; Wang, Lin; Tan, Dun-Xian; Zhao, Yu; Zheng, Xiao-Dong; Chen, Hao; Li, Qing-Tian; Zuo, Bi-Xiao; Kong, Jin

    2013-11-01

    Melatonin is present in many edible fruits; however, the presence of melatonin in apple has not previously been reported. In this study, the genes for melatonin synthetic enzymes including tryptophan decarboxylase, tryptamine 5-hydroxylase (T5H), arylalkylamine N-acetyltransferase, and N-acetylserotonin methyltransferase were identified in 'Red Fuji' apple. Each gene has several homologous genes. Sequence analysis shows that these genes have little homology with those of animals and they only have limited homology with known genes of rice melatonin synthetic enzymes. Multiple origins of melatonin synthetic genes during the evolution are expected. The expression of these genes is fully coordinated with melatonin production in apple development. Melatonin levels in apple exhibit an inverse relationship with the content of malondialdehyde, a product of lipid peroxidation. Two major melatonin synthetic peaks appeared on July 17 and on October 8 in both unbagged and bagged apple samples. At the periods mentioned above, apples experienced rapid expansion and increased respiration. These episodes significantly elevate reactive oxygen species production in the apple. Current data further confirmed that melatonin produced in apple was used to neutralize the toxic oxidants and protect the developing apple against oxidative stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Shiga toxin-producing Escherichia coli in Central Greece: prevalence and virulence genes of O157:H7 and non-O157 in animal feces, vegetables, and humans.

    Science.gov (United States)

    Pinaka, O; Pournaras, S; Mouchtouri, V; Plakokefalos, E; Katsiaflaka, A; Kolokythopoulou, F; Barboutsi, E; Bitsolas, N; Hadjichristodoulou, C

    2013-11-01

    In Greece, Shiga toxin-producing Escherichia coli (STEC) have only been sporadically reported. The objective of this study was to estimate the prevalence of STEC and Escherichia coli O157:H7 in farm animals, vegetables, and humans in Greece. A total number of 1,010 fecal samples were collected from farm animals (sheep, goats, cattle, chickens, pigs), 667 diarrheal samples from humans, and 60 from vegetables, which were cultured in specific media for STEC isolates. Enzyme-linked immunosorbent assay (ELISA) was used to detect toxin-producing colonies, which, subsequently, were subjected to a multiplex polymerase chain reaction (PCR) for stx1, stx2, eae, rfbE O157, and fliC h7 genes. Eighty isolates (7.9 %) from animal samples were found to produce Shiga toxin by ELISA, while by PCR, O157 STEC isolates were detected from 8 (0.8 %) samples and non-O157 STEC isolates from 43 (4.2 %) samples. STEC isolates were recovered mainly from sheep and goats, rarely from cattle, and not from pigs and chickens, suggesting that small ruminants constitute a potential risk for human infections. However, only three human specimens (0.4 %) were positive for the detection of Shiga toxins and all were PCR-negative. Similarly, all 60 vegetable samples were negative for toxin production and for toxin genes, but three samples (two roman rockets and one spinach) were positive by PCR for rfbE O157 and fliC h7 genes. These findings indicate that sheep, goats, cattle, and leafy vegetables can be a reservoir of STEC and Escherichia coli O157:H7 isolates in Greece, which are still rarely detected among humans.

  6. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics.

    Science.gov (United States)

    Krawczyk-Balska, A; Markiewicz, Z

    2016-02-01

    Intrinsic resistance to antibiotics is a serious therapeutic problem in the case of many bacterial species. The Gram-positive human pathogen Listeria monocytogenes is intrinsically resistant to broad spectrum cephalosporin antibiotics, which are commonly used in therapy of bacterial infections. Besides three penicillin-binding proteins the intrinsic cephalosporin resistome of L. monocytogenes includes multidrug resistance transporter transporters, proteins involved in peptidoglycan biosynthesis and modification, cell envelope proteins with structural or general detoxification function, cytoplasmic proteins with unknown function and regulatory proteins. Analysis of the regulation of the expression of genes involved in the intrinsic resistance of L. monocytogenes to cephalosporins highlights the high complexity of control of the intrinsic resistance phenotype. The regulation of the transcription of the intrinsic resistome determinants involves the activity of eight regulators, namely LisR, CesR, LiaR, VirR, σ(B) , σ(H) , σ(L) and PrfA, of which the most prominent role play LisR, CesR and σ(B) . Furthermore, the vast majority of the intrinsic resistome determinants contribute to the tolerance of different stress conditions and virulence. A study indicates that O-acetyltransferase OatA is the most promising candidate for co-drug development since an agent targeting OatA should sensitize L. monocytogenes to certain antibiotics, therefore improving the efficacy of listeriosis treatment as well as food preservation measures. © 2015 The Society for Applied Microbiology.

  7. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.3361 >orf19.3361; Contig19-10173; 157397..>158185;... YAT2*; carnitine acetyltransferase; gene family | truncated protein MSTYRFQETLEKLPIPDLVQTCNAYLEALKPLQTEQEHE

  8. Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1.

    OpenAIRE

    Cook, W L; Wachsmuth, K; Johnson, S R; Birkness, K A; Samadi, A R

    1984-01-01

    Plasmid profiles, the location of cholera toxin subunit A genes, and the presence of the defective VcA1 prophage genome in classical Vibrio cholerae isolated from patients in Bangladesh in 1982 were compared with those in older classical strains isolated during the sixth pandemic and with those in selected eltor and nontoxigenic O1 isolates. Classical strains typically had two plasmids (21 and 3 megadaltons), eltor strains typically had no plasmids, and nontoxigenic O1 strains had zero to thr...

  9. Synthesis of mesoporous SiO{sub 2}-ZnO nanocapsules: encapsulation of small biomolecules for drugs and 'SiOZO-plex' for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay Bhooshan [School of Engineering Sciences and Technology, University of Hyderabad (India); Annamanedi, Madhavi [School of Life Sciences, University of Hyderabad, Department of Animal Sciences (India); Prashad, Muvva Durga [University of Hyderabad, Centre for Nanoscience and Nanotechnology (India); Arunasree, Kalle M. [School of Life Sciences, University of Hyderabad, Department of Animal Sciences (India); Mastai, Yitzhak; Gedanken, Aharon, E-mail: gedanken@mail.biu.ac.il [Bar-Ilan University, Department of Chemistry, Institute for Nanotechnology and Advanced Materials (Israel); Paik, Pradip, E-mail: ppse@uohyd.ernet.in [School of Engineering Sciences and Technology, University of Hyderabad (India)

    2013-09-15

    This work presents a new synthesis of mesoporous SiO{sub 2}-ZnO composite nanocapsules with sizes of 90-150 nm and represents their applications in encapsulation of small biomolecules (fluorescent molecules, drugs, and DNA) for uses in medical biotechnology (e.g., drug and gene delivery) for the first time. The nanocapsule size and morphology have been confirmed through the HRSEM and HRTEM. The mesoporous structure of the novel materials has been confirmed through both BET and HRTEM, and the pore diameter observed to be ca. 2-8 nm with an average diameter of 5.1 nm. The BET surface area of mesoporous SiO{sub 2}-ZnO was found to be {approx}230 m{sup 2} g{sup -1}. Three different types of pores were detected through HRTEM: type-I, normal pores in silica matrix, pore with ZnO nanoparticles at the boundary (type-II) and type-III, the pores with tiny ZnO nanoparticles ({approx}5-7 nm) inside them. To demonstrate the biocompatibility and cell viability of the nanocapsules, normal and cancerous lymphocyte cells have been chosen and investigated in a systematic way. Fluorescent dye (Rhodamine 6G), anticancer drug e.g., Doxorubicin (DOX) were loaded in all types of pores, and EtBr-labeled DNA molecules were loaded efficiently into the mesopores of second and third types of the composite nanocapsules to manifest the characteristic of mesoporous, and to find out its loading efficacy. The release kinetics of Rhodamine 6G and DOX were studied. The results highlight the potential of novel functional mesoporous SiO{sub 2}-ZnO nanoparticles for using as the carrier of drugs and formation of 'SiOZO-plex', a complex of mesoporous SiO{sub 2}-ZnO with DNA for gene delivery applications.Graphical Abstract.

  10. Distribution of the urease gene cluster among and urease activities of enterohemorrhagic Escherichia coli O157 isolates from humans

    NARCIS (Netherlands)

    Friedrich, Alexander W; Köck, Robin; Bielaszewska, Martina; Zhang, Wenlan; Karch, Helge; Mathys, Werner

    Enterohemorrhagic Escherichia coli (EHEC) O157 strains belong to two closely related major groups, which are differentiated by their sorbitol fermentation phenotypes. Here we studied the conservation of urease genes and their expression in sorbitol-fermenting (SF) and non-SF EHEC O157 isolates. PCR

  11. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dokter Wim

    2010-06-01

    Full Text Available Abstract Background Glucocorticoids (GCs control expression of a large number of genes via binding to the GC receptor (GR. Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT and mice that have lost the ability to form GR dimers (GRdim. Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs.

  12. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    Science.gov (United States)

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  13. Disease: H01794 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H01794 Genitopatellar syndrome (GPS) Genitopatellar syndrome (GPS) is a rare disorder in which patel...f the gene encoding the histone acetyltransferase KAT6B cause Genitopatellar synd

  14. Sequence Variations in the Flagellar Antigen Genes fliC H25 and fliC H28 of Escherichia coli and Their Use in Identification and Characterization of Enterohemorrhagic E. coli (EHEC) O145:H25 and O145:H28

    Science.gov (United States)

    Beutin, Lothar; Delannoy, Sabine; Fach, Patrick

    2015-01-01

    Enterohemorrhagic E. coli (EHEC) serogroup O145 is regarded as one of the major EHEC serogroups involved in severe infections in humans. EHEC O145 encompasses motile and non-motile strains of serotypes O145:H25 and O145:H28. Sequencing the fliC-genes associated with the flagellar antigens H25 and H28 revealed the genetic diversity of the fliC H25 and fliC H28 gene sequences in E. coli. Based on allele discrimination of these fliC-genes real-time PCR tests were designed for identification of EHEC O145:H25 and O145:H28. The fliC H25 genes present in O145:H25 were found to be very similar to those present in E. coli serogroups O2, O100, O165, O172 and O177 pointing to their common evolution but were different from fliC H25 genes of a multiple number of other E. coli serotypes. In a similar way, EHEC O145:H28 harbor a characteristic fliC H28 allele which, apart from EHEC O145:H28, was only found in enteropathogenic (EPEC) O28:H28 strains that shared some common traits with EHEC O145:H28. The real time PCR-assays targeting these fliC H25[O145] and fliC H28[O145] alleles allow better characterization of EHEC O145:H25 and EHEC O145:H28. Evaluation of these PCR assays in spiked ready-to eat salad samples resulted in specific detection of both types of EHEC O145 strains even when low spiking levels of 1–10 cfu/g were used. Furthermore these PCR assays allowed identification of non-motile E. coli strains which are serologically not typable for their H-antigens. The combined use of O-antigen genotyping (O145wzy) and detection of the respective fliC H25[O145] and fliC H28[O145] allele types contributes to improve identification and molecular serotyping of E. coli O145 isolates. PMID:26000885

  15. A CONTRIBUIÇÃO DO GENE HALOTANO SOBRE AS CARACTERÍSTICAS DE QUALIDADE DA CARNE SUÍNA

    Directory of Open Access Journals (Sweden)

    Culau Paulete de Oliveira Vargas

    2002-01-01

    Full Text Available O objetivo deste trabalho foi o de avaliar o efeito do gene halotano sobre as características de qualidade da carne suína. Foram utilizadas 151 carcaças de suínos híbridos comerciais, sendo 93 carcaças com genótipo halotano normal (HalNN, 51 heterozigotos (HalNn e 7 recessivas (Hal nn. As medidas efetuadas foram: espessura de toucinho e de músculo, percentagem de carne, peso da carcaça, pH aos 45 minutos e 24 horas após o abate, no músculo Longissimus dorsi, cor, perda de líquido por gotejamento e identificação do genótipo halotano em amostras de gordura através de PCR-RFLP. Suínos HalNn apresentaram maior espessura de músculo e percentagem de carne do que os suínos HalNN. Houve diferença significativa entre suínos HalNn e HalNN quanto ao pH inicial e à cor . Em relação à espessura de toucinho, pH final e perda de líquido, não houve diferença significativa entre os genótipos. A qualidade da carne de suínos HalNn foi inferior à de suínos HalNN, em termos de pH e cor. A qualidade da carcaça de suínos HalNn não se mostrou melhor do que a dos suínos Hal nn, em relação à espessura de toucinho e músculo e à percentagem de carne. A relação entre quantidade e qualidade da carne parece depender da presença do gene halotano.

  16. Identification of genes from the fungal pathogen Cryptococcus neoformans related to transmigration into the central nervous system.

    Directory of Open Access Journals (Sweden)

    Hsiang-Kuang Tseng

    Full Text Available A mouse brain transmigration assessment (MBTA was created to investigate the central nervous system (CNS pathogenesis of cryptococcal meningoencephalitis.Two cryptococcal mutants were identified from a pool of 109 pre-selected mutants that were signature-tagged with the nourseothricin acetyltransferase (NAT resistance cassette. These two mutants displayed abnormal transmigration into the central nervous system. One mutant displaying decreased transmigration contains a null mutation in the putative FNX1 gene, whereas the other mutant possessing a null mutation in the putative RUB1 gene exhibited increased transmigration into the brain. Two macrophage adhesion-defective mutants in the pool, 12F1 and 3C9, showed reduced phagocytosis by macrophages, but displayed no defects in CNS entry suggesting that transit within macrophages (the "Trojan horse" model of CNS entry is not the primary mechanism for C. neoformans migration into the CNS in this MBTA.This research design provides a new strategy for genetic impact studies on how Cryptococcus passes through the blood-brain barrier (BBB, and the specific isolated mutants in this assay support a transcellular mechanism of CNS entry.

  17. Expression of an alfalfa (Medicago sativa L.) peroxidase gene in transgenic Arabidopsis thaliana enhances resistance to NaCl and H2O2.

    Science.gov (United States)

    Teng, K; Xiao, G Z; Guo, W E; Yuan, J B; Li, J; Chao, Y H; Han, L B

    2016-05-23

    Peroxidases (PODs) are enzymes that play important roles in catalyzing the reduction of H2O2 and the oxidation of various substrates. They function in many different and important biological processes, such as defense mechanisms, immune responses, and pathogeny. The POD genes have been cloned and identified in many plants, but their function in alfalfa (Medicago sativa L.) is not known, to date. Based on the POD gene sequence (GenBank accession No. L36157.1), we cloned the POD gene in alfalfa, which was named MsPOD. MsPOD expression increased with increasing H2O2. The gene was expressed in all of the tissues, including the roots, stems, leaves, and flowers, particularly in stems and leaves under light/dark conditions. A subcellular analysis showed that MsPOD was localized outside the cells. Transgenic Arabidopsis with MsPOD exhibited increased resistance to H2O2 and NaCl. Moreover, POD activity in the transgenic plants was significantly higher than that in wild-type Arabidopsis. These results show that MsPOD plays an important role in resistance to H2O2 and NaCl.

  18. Predominance of N-acetyl transferase 2 slow acetylator alleles in ...

    African Journals Online (AJOL)

    Student

    The human N-acetyltransferase II (NAT2) gene may vary between individuals resulting in variability in the incidence of adverse drug reactions. We set out in this adhoc analysis to determine the distribution of allele frequencies of NAT2 gene variants among children less than ten years treated with artemisinin-based.

  19. Associação do polimorfismo do gene da enzima conversora da angiotensina com dados ecocardiográficos em jovens normotensos filhos de hipertensos

    Directory of Open Access Journals (Sweden)

    Franken Roberto Alexandre

    2004-01-01

    Full Text Available OBJETIVOS: Os autores objetivaram no presente estudo avaliar o polimorfismo da enzima conversora da angiotensina com dados do ecocardiograma de jovens estudantes de Medicina, filhos de hipertensos, comparados com jovens filhos de normotensos. MÉTODOS: Foram estudados 80 jovens normotensos divididos em dois grupos: 40 filhos normotensos de pais hipertensos e 40 filhos normotensos de pais hipertensos. Critérios de exclusão foram hipertensão arterial, fumo, obesidade, uso de contraceptivos orais. Uso crônico de medicamentos e presença de qualquer doença. Os alunos foram incluídos entre 1994 e 1996. Cinqüenta alunos foram submetidos a ecocardiograma transtoráxico. A análise estatística foi feita através do teste T de Student. A avaliação do polimorfismo do gene da enzima conversora da angiotensina foi feita nos 80 alunos conforme segue: 1 5 ml de sangue em tubo contendo EDTA, 2 extração do DNA, 3 medida da concentração do DNA por eletroforese, 4 reação em cadeia de polimerase com ''primer'' do gene da enzima conversora da angiotensina, 5 análise do polimorfismo do gene da enzima conversora da angiotensina através da eletroforese e 6 análise estatística através do teste do Qui-quadrado. RESULTADOS: O grupo de estudantes filhos de hipertensos mostraram maior espessura do septo interventricular (7,82mm+/-0,69 contra 7,38 +/- 0,8, p 7,82mm; DD 32%, DI 24%, II 20% contra septo 7,38mm: DD28%, DI12%, II 12%, contra septo 131,52g: DD 20,69% DI 13,79%, II 6,9% contra massa 117,11g: DD 30,43%, DI 8,7%, II 8,7% contra massa < 117,11g: DD 13,04%, DI 21,74%, II 17,39% (p=0,17 CONCLUSÃO: Encontramos diferenças entre a espessura do septo interventricular de estudantes normotensos filhos de hipertensos e filhos de normotensos. Por outro lado, não encontramos diferenças entre os grupos considerando o polimorfismo do gene da enzima de conversão da angiotensina, assim como qualquer relação do gene da enzima de conversão da

  20. Genetic Diversity of the fliC Genes Encoding the Flagellar Antigen H19 of Escherichia coli and Application to the Specific Identification of Enterohemorrhagic E. coli O121:H19

    Science.gov (United States)

    Beutin, Lothar; Delannoy, Sabine

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O121:H19 belong to a specific clonal type distinct from other classical EHEC and major enteropathogenic E. coli groups and is regarded as one of the major EHEC serogroups involved in severe infections in humans. Sequencing of the fliC genes associated with the flagellar antigen H19 (fliCH19) revealed the genetic diversity of the fliCH19 gene sequences in E. coli. A cluster analysis of 12 fliCH19 sequences, 4 from O121 and 8 from non-O121 E. coli strains, revealed five different genotypes. All O121:H19 strains fell into one cluster, whereas a second cluster was formed by five non-O121:H19 strains. Cluster 1 and cluster 2 strains differ by 27 single nucleotide exchanges in their fliCH19 genes (98.5% homology). Based on allele discrimination of the fliCH19 genes, a real-time PCR test was designed for specific identification of EHEC O121:H19. The O121 fliCH19 PCR tested negative in 73 E. coli H19 strains that belonged to serogroups other than O121, including 28 different O groups, O-nontypeable H19, and O-rough:H19 strains. The O121 fliCH19 PCR reacted with all 16 tested O121:H19 strains and 1 O-rough:H19 strain which was positive for the O121 wzx gene. A cross-reaction was observed only with E. coli H32 strains which share sequence similarities in the target region of the O121 fliCH19 PCR. The combined use of O-antigen genotyping (O121 wzx) and the detection of O121 fliCH19 allele type contributes to improving the identification and molecular serotyping of EHEC O121:H19 motile and nonmotile strains and variants of these strains lacking stx genes. PMID:25862232

  1. A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis.

    Science.gov (United States)

    Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang

    2017-08-15

    High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Depletion of the human N-terminal acetyltransferase hNaa30 disrupts Golgi integrity and ARFRP1 localization.

    Science.gov (United States)

    Starheim, Kristian K; Kalvik, Thomas V; Bjørkøy, Geir; Arnesen, Thomas

    2017-04-30

    The organization of the Golgi apparatus (GA) is tightly regulated. Golgi stack scattering is observed in cellular processes such as apoptosis and mitosis, and has also been associated with disruption of cellular lipid metabolism and neurodegenerative diseases. Our studies show that depletion of the human N-α-acetyltransferase 30 (hNaa30) induces fragmentation of the Golgi stack in HeLa and CAL-62 cell lines. The GA associated GTPase ADP ribosylation factor related protein 1 (ARFRP1) was previously shown to require N-terminal acetylation for membrane association and based on its N-terminal sequence, it is likely to be a substrate of hNaa30. ARFRP1 is involved in endosome-to- trans -Golgi network (TGN) traffic. We observed that ARFRP1 shifted from a predominantly cis -Golgi and TGN localization to localizing both Golgi and non-Golgi vesicular structures in hNaa30-depleted cells. However, we did not observe loss of membrane association of ARFRP1. We conclude that hNaa30 depletion induces Golgi scattering and induces aberrant ARFRP1 Golgi localization. © 2017 The Author(s).

  3. Response of bacterial pdo1, nah, and C12O genes to aged soil PAH pollution in a coke factory area.

    Science.gov (United States)

    Han, Xue-Mei; Liu, Yu-Rong; Zheng, Yuan-Ming; Zhang, Xiao-Xia; He, Ji-Zheng

    2014-01-01

    Soil pollution caused by polycyclic aromatic hydrocarbons (PAHs) is threatening human health and environmental safety. Investigating the relative prevalence of different PAH-degrading genes in PAH-polluted soils and searching for potential bioindicators reflecting the impact of PAH pollution on microbial communities are useful for microbial monitoring, risk evaluation, and potential bioremediation of soils polluted by PAHs. In this study, three functional genes, pdo1, nah, and C12O, which might be involved in the degradation of PAHs from a coke factory, were investigated by real-time quantitative PCR (qPCR) and clone library approaches. The results showed that the pdo1 and C12O genes were more abundant than the nah gene in the soils. There was a significantly positive relationship between the nah or pdo1 gene abundances and PAH content, while there was no correlation between C12O gene abundance and PAH content. Analyses of clone libraries showed that all the pdo1 sequences were grouped into Mycobacterium, while all the nah sequences were classified into three groups: Pseudomonas, Comamonas, and Polaromonas. These results indicated that the abundances of nah and pdo1 genes were positively influenced by levels of PAHs in soil and could be potential microbial indicators reflecting the impact of soil PAH pollution and that Mycobacteria were one of the most prevalent PAHs degraders in these PAH-polluted soils. Principal component analysis (PCA) and correlation analyses between microbial parameters and environmental factors revealed that total carbon (TC), total nitrogen (TN), and dissolved organic carbon (DOC) had positive effects on the abundances of all PAH-degrading genes. It suggests that increasing TC, TN, and DOC inputs could be a useful way to remediate PAH-polluted soils.

  4. ORF Alignment: NC_002771 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002771 gi|15829246 >1nm8A 15 579 43 592 3e-82 ... ref|NP_326606.1| CARNITINE O-ACE...TYLTRANSFERASE [Mycoplasma pulmonis UAB CTIP] ... emb|CAC13948.1| CARNITINE O-ACETYLTRANSFERASE ...

  5. The KL24 gene cluster and a genomic island encoding a Wzy polymerase contribute genes needed for synthesis of the K24 capsular polysaccharide by the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51.

    Science.gov (United States)

    Kenyon, Johanna J; Kasimova, Anastasiya A; Shneider, Mikhail M; Shashkov, Alexander S; Arbatsky, Nikolay P; Popova, Anastasiya V; Miroshnikov, Konstantin A; Hall, Ruth M; Knirel, Yuriy A

    2017-03-01

    The whole-genome sequence of the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51 belonging to sequence type ST103 (Institut Pasteur scheme) revealed that the set of genes at the capsule locus, KL24, includes four genes predicted to direct the synthesis of 3-acetamido-3,6-dideoxy-d-galactose (d-Fuc3NAc), and this sugar was found in the capsular polysaccharide (CPS). One of these genes, fdtE, encodes a novel bifunctional protein with an N-terminal FdtA 3,4-ketoisomerase domain and a C-terminal acetyltransferase domain. KL24 lacks a gene encoding a Wzy polymerase to link the oligosaccharide K units to form the CPS found associated with isolate RCH51, and a wzy gene was found in a small genomic island (GI) near the cpn60 gene. This GI is in precisely the same location as another GI carrying wzy and atr genes recently found in several A. baumannii isolates, but it does not otherwise resemble it. The CPS isolated from RCH51, studied by sugar analysis and 1D and 2D 1H and 13C NMR spectroscopy, revealed that the K unit has a branched pentasaccharide structure made up of Gal, GalNAc and GlcNAc residues with d-Fuc3NAc as a side branch, and the K units are linked via a β-d-GlcpNAc-(1→3)-β-d-Galp linkage formed by the Wzy encoded by the GI. The functions of the glycosyltransferases encoded by KL24 were assigned to formation of specific bonds. A correspondence between the order of the genes in KL24 and other KL and the order of the linkages they form was noted, and this may be useful in future predictions of glycosyltransferase specificities.

  6. Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment

    International Nuclear Information System (INIS)

    Castagna, A.; Ranieri, A.

    2009-01-01

    Plants react to O 3 threat by setting up a variety of defensive strategies involving the co-ordinated modulation of stress perception, signalling and metabolic responses. Although stomata largely controls O 3 uptake, differences in O 3 tolerance cannot always be ascribed to changes in stomatal conductance but cell protective and repair processes should be taken into account. O 3 -driven ROS production in the apoplast induces a secondary, active, self-propagating generation of ROS, whose levels must be finely tuned, by many enzymatic and non-enzymatic antioxidant systems, to induce gene activation without determining uncontrolled cell death. Additional signalling molecules, as ethylene, jasmonic and salicylic acid are also crucial to determine the spreading and the containment of leaf lesions. The main recent results obtained on O 3 sensing, signal transduction, ROS formation and detoxification mechanisms are here discussed. - A dissection of the complex network of interacting mechanisms which determine the cell fate under ozone stress.

  7. Potential economic impact of the 21-gene expression assay on the treatment of breast cancer in brazil Potencial impacto econômico do painel de expressão de 21 genes no tratamento adjuvante do câncer de mama no Brasil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Bacchi

    2010-01-01

    resources would entail targeted use of the 21-gene expression assay.OBJETIVO: O índice de recorrência (IR, também conhecido como painel de 21 genes, pode apoiar decisões com relação ao uso de quimioterapia (QT no câncer de mama precoce. Procuramos investigar o impacto potencial da incorporação do IR na prática privada no Brasil, a partir da perspectiva das fontes pagadoras. MÉTODOS: Conduzimos uma pesquisa com 30 oncologistas brasileiros (de um total de aproximadamente 700, que foram estratificados por Estado de acordo com a proporção de pacientes com câncer de mama e com cobertura pelo sistema de saúde suplementar. Avaliamos o tratamento de primeira escolha para pacientes com câncer de mama com axila negativa e expressão positiva do receptor de estrógeno, independente do estado menopausal. Os entrevistados não estavam cientes do objetivo do estudo. As respostas permitiram uma avaliação quantitativa dos padrões de cuidado, considerando o uso de diferentes regimes de QT, o tipo de pré-medicações, o uso de fatores de crescimento e o tratamento hospitalar da neutropenia febril. Calculamos o custo dos medicamentos usando o Brasíndice, e o custo do IR foi fixado em R$ 3.900,00 (MammaGene®. Outras despesas médicas diretas, custos médicos indiretos e custos não-médicos não foram considerados. RESULTADOS: Numa corte hipotética de 100 pacientes sem acesso ao teste de IR, 84 iriam receber quimioterapia. Reclassificando a elegibilidade das pacientes para QT de acordo com o IR, esse número cairia para 49. Para uma coorte hipotética de 100 pacientes com acesso ao IR, seriam economizados R$ 134.915,00 em despesas médicas diretas. CONCLUSÃO: Considerando o preço atual para avaliação do IR no Brasil, nossa análise econômica sugere que este teste economizaria custos, pela perspectiva das fontes pagadoras do setor privado. Além disso, o uso otimizado de recursos poderia requerer o emprego do painel de 21 genes de forma racional.

  8. An RNA-seq transcriptome analysis of histone modifiers and RNA silencing genes in soybean during floral initiation process.

    Directory of Open Access Journals (Sweden)

    Lim Chee Liew

    Full Text Available Epigenetics has been recognised to play vital roles in many plant developmental processes, including floral initiation through the epigenetic regulation of gene expression. The histone modifying proteins that mediate these modifications involve the SET domain-containing histone methyltransferases, JmjC domain-containing demethylase, acetylases and deacetylases. In addition, RNA interference (RNAi-associated genes are also involved in epigenetic regulation via RNA-directed DNA methylation and post-transcriptional gene silencing. Soybean, a major crop legume, requires a short day to induce flowering. How histone modifications regulate the plant response to external cues that initiate flowering is still largely unknown. Here, we used RNA-seq to address the dynamics of transcripts that are potentially involved in the epigenetic programming and RNAi mediated gene silencing during the floral initiation of soybean. Soybean is a paleopolyploid that has been subjected to at least two rounds of whole genome duplication events. We report that the expanded genomic repertoire of histone modifiers and RNA silencing genes in soybean includes 14 histone acetyltransferases, 24 histone deacetylases, 47 histone methyltransferases, 15 protein arginine methyltransferases, 24 JmjC domain-containing demethylases and 47 RNAi-associated genes. To investigate the role of these histone modifiers and RNA silencing genes during floral initiation, we compared the transcriptional dynamics of the leaf and shoot apical meristem at different time points after a short-day treatment. Our data reveal that the extensive activation of genes that are usually involved in the epigenetic programming and RNAi gene silencing in the soybean shoot apical meristem are reprogrammed for floral development following an exposure to inductive conditions.

  9. Caracterização dos Genes de metalo-beta-lactamase blaNDM, blaSPM e blaIMP em Pseudomonas aeruginosa Resistentes a Carbapenens

    Directory of Open Access Journals (Sweden)

    Carolina Jahn

    2017-01-01

    Full Text Available Justificativa e objetivo: P. aeruginosa é responsável por causar grande variedade de infecções agudas e crônicas. A resistência aos carbapenêmicos está se tornando um problema terapêutico mundial e a produção de metalo-beta-lactamases (MBL tem surgido como um dos mecanismos responsáveis por esta resistência. Objetivou-se identificar as cepas produtoras de MBL e verificar a presença dos genes codificador blaNDM, blaSPM e blaIMP em isolados de P. aeruginosa resistentes aos carbapenens. Métodos: Foram analisadas 16 cepas de P. aeruginosa, isoladas de diferentes sítios de indivíduos atendidos pelo Hospital do Vale do Rio Pardo-RS, no período de março 2014 a fevereiro de 2015. A identificação bioquímica foi realizada segundo protocolo da ANVISA e o antibiograma pelo método de ágar difusão em disco. A triagem fenotípica foi feita pelo teste modificado de aproximação de discos utilizando o EDTA como inibidor e a presença dos genes através da técnica de reação em cadeia da polimerase. Resultados: O setor clínico com maior prevalência de isolamento de P. aeruginosa resistente aos carbapenens é a unidade de terapia intensiva (50%. Em relação aos espécimes clínicos, 62,5% dos isolados foram identificados no trato respiratório inferior. Através do teste fenotípico, 50% das amostras analisadas mostraram ser produtora da enzima MBL. Através da técnica de reação em cadeia da polimerase foi possível identificar a presença de um dos três genes propostos, sendo eles blaSPM. Conclusão: Os isolados de P. aeruginosa mostraram serem produtores de MBL e apresentaram o gene de resistência blaSPM nesta espécie no interior do Rio Grande do Sul. Palavras Chaves: Pseudomonas aeruginosa; metalo-beta-lactamases; blaNDM, blaIMP, e blaSPM .

  10. Identification of E. coli O157:H7 by Using Specific Primers for rfbE and stx2b Genes

    Directory of Open Access Journals (Sweden)

    Mostafa Bakhshi

    2017-07-01

    Sorbitol-MacConkey agar was used to verification of growth ability of selected colonies during PCR. Results: By appearance of the bonds belong to rfbE and stx2B genes on agarose gel, the ability of designed primers in gene detection in samples of E .coli O157:H7 was verified. Colonies which selected during PCR have growth potency on sorbitol-MacConkey agar medium. Conclusion: It was revealed that we can prepare a fast, precise and relative comfortable method for detection of E. coli O157:H7 strain by using PCR technique and specific primers than other available methods.

  11. Expressão transiente do gene gus, sob regulação de quatro promotores, em diferentes tecidos de mamoeiro (Carica papaya L. e videira (Vitis sp. Transient expression of the gus gene, under the regulation of four promoters, on different tissues of papaya (Carica papaya l. and grape (Vitis sp.

    Directory of Open Access Journals (Sweden)

    Adelar Almeida Pinto

    2002-12-01

    Full Text Available O mamoeiro (Carica papaya L. e a videira (Vitis vinifera L. destacam-se entre as fruteiras produzidas no Brasil por serem plantadas em quase todo o território nacional e apresentarem importância econômica e social. A tecnologia de produção de organismos geneticamente modificados, também conhecidos como "transgênicos", tem grande potencial de uso no desenvolvimento de fruteiras melhoradas. Porém, questões de propriedade intelectual limitam o uso da engenharia genética por países em desenvolvimento, que normalmente não detêm direitos sobre processos ou produtos necessários ao uso desta. Neste contexto, o presente estudo buscou avaliar promotores de expressão gênica alternativos ao CaMV 35S, que é o mais utilizado no desenvolvimento de transgênicos, mas é patenteado. Para tanto, construções gênicas com o gene gus sob a regulação de diferentes promotores foram testadas para expressão transiente em diversos tecidos de mamoeiro e videira. Expressão transiente foi avaliada em embriões somáticos, folhas, caules, raízes e frutos. O promotor do gene UBQ3, que é constitutivo e se encontra em domínio publico, mostrou ser uma alternativa promissora para futuros trabalhos de transformação genética de mamoeiro, mas não de videira.Papaya (Carica papaya L. and grapes (Vitis vinifera L. are among the most important fruit crops produced in Brazil, and are cultivated in several regions around the country being of economical and social importance. Genetic engineering has great potential on the development of genetically improved fruit crops. However, intellectual property issues constantly limit the commercial use of this technology in developing countries. Thus, the present study aimed to evaluate gene promoters as alternatives to the 35S CaMV, which is the most used so far in the development of transgenic plants, but it is patented. In order to do that, the expression of the gus gene under the regulation of distinct promoters was

  12. Disposition, Metabolism and Histone Deacetylase and Acetyltransferase Inhibition Activity of Tetrahydrocurcumin and Other Curcuminoids

    Directory of Open Access Journals (Sweden)

    Júlia T. Novaes

    2017-10-01

    Full Text Available Tetrahydrocurcumin (THC, curcumin and calebin-A are curcuminoids found in turmeric (Curcuma longa. Curcuminoids have been established to have a variety of pharmacological activities and are used as natural health supplements. The purpose of this study was to identify the metabolism, excretion, antioxidant, anti-inflammatory and anticancer properties of these curcuminoids and to determine disposition of THC in rats after oral administration. We developed a UHPLC–MS/MS assay for THC in rat serum and urine. THC shows multiple redistribution phases with corresponding increases in urinary excretion rate. In-vitro antioxidant activity, histone deacetylase (HDAC activity, histone acetyltransferase (HAT activity and anti-inflammatory inhibitory activity were examined using commercial assay kits. Anticancer activity was determined in Sup-T1 lymphoma cells. Our results indicate THC was poorly absorbed after oral administration and primarily excreted via non-renal routes. All curcuminoids exhibited multiple pharmacological effects in vitro, including potent antioxidant activity as well as inhibition of CYP2C9, CYP3A4 and lipoxygenase activity without affecting the release of TNF-α. Unlike curcumin and calebin-A, THC did not inhibit HDAC1 and PCAF and displayed a weaker growth inhibition activity against Sup-T1 cells. We show evidence for the first time that curcumin and calebin-A inhibit HAT and PCAF, possibly through a Michael-addition mechanism.

  13. Associação entre os polimorfismos HaeIII e MspI do gene para o receptor alfa de estrogênio e densidade mamográfica em mulheres após a menopausa Association between HaeIII and MspI polymorphisms of estrogen receptor alpha gene and mammographic density in post-menopausal women

    Directory of Open Access Journals (Sweden)

    Eduardo Henrique de Moura Ramos

    2006-10-01

    Full Text Available OBJETIVO: Avaliar a presença dos polimorfismos HaeIII e MspI do gene para o receptor de estrogênio alfa, bem como fatores clínicos e suas possíveis associações com a densidade mamográfica em mulheres após a menopausa. MÉTODOS: Foram avaliadas 115 mulheres após a menopausa, não usuárias de terapia hormonal e sem lesão mamária clínica ou mamograficamente identificada. A densidade mamográfica foi determinada por três observadores independentes, tomando-se como base a classificação dos padrões mamográficos do ACR-BIRADS®, 2003 (duas avaliações subjetivas e uma computadorizada - Adobe Photoshop® 7.0. Amostras de raspado bucal foram obtidas para extração de DNA e em seguida foi realizada uma PCR-RFLP (Polymerase Chain Reation - Restriction Fragment Length Polymorphism para análise de polimorfismos presentes no íntron 1 e éxon 1 do gene do REalfa (HaeIII e MspI. RESULTADOS: O polimorfismo HaeIII foi encontrado em 43 (37,4% das 115 mulheres, ao passo que o MspI estava presente em 96 (83,5% das mesmas. Houve alto grau de concordância entre os três observadores na determinação da densidade mamográfica. Trinta e quatro (29,6% mulheres tinham mamas densas, e 81 (70,4%, mamas lipossubstituídas. CONCLUSÃO: Não houve associação entre o polimorfismo HaeIII do gene para o receptor de estrogênio alfa e densidade mamográfica (Fisher = 0,712. Houve associação próxima à significância estatística entre o polimorfismo MspI e densidade (Fisher = 0,098. Idade, paridade e índice de massa corporal mostraram-se associados com densidade mamográfica.PURPOSE: To assess the presence of estrogen receptor gene polymorphisms HaeIII and MspI as well as clinical factors, and their possible associations with high mammographic density in post-menopausal women. METHODS: One hundred and fifteen post-menopausal women, not in use of hormonal therapy and without clinical or mammographic lesions were evaluated. Three independent observers

  14. Expression of human bone morphogenetic protein (BMP-2 and BMP-4 genes in transgenic bovine fibroblasts Expressão dos genes bone morphogenetic protein (BMP-2 e BMP-4 em fibroblastos bovinos transgênicos

    Directory of Open Access Journals (Sweden)

    C. Oleskovicz

    2004-08-01

    Full Text Available cDNAs dos genes bone morphogenetic protein-2 (BMP-2 e bone morphogenetic protein-4 (BMP-4 foram sintetizados a partir de RNA total extraído de tecidos ósseos de pacientes que apresentavam trauma facial (fraturas do maxilar entre o 7º e o 10º dia pós-trauma e clonados num vetor para expressão em células mamíferas, sob controle do promotor de citomegalovírus (CMV. Os vetores contendo os genes BMP-2 e o BMP-4 foram utilizados para a transfecção de fibroblastos bovinos. mRNAs foram indiretamente detectados por RT-PCR nas células transfectadas. As proteínas BMP-2 e BMP-4 foram detectadas mediante análises de Western blot. Os resultados demonstram a possibilidade de produção desses fatores de crescimento celular em fibroblastos bovinos. Essas células poderão ser utilizadas como fontes doadoras de material genético para a técnica de transferência nuclear na geração de animais transgênicos.

  15. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  16. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  17. Absence of p53 gene mutations in mice colon pre-cancerous stage induced by o-nitrotoluene

    Directory of Open Access Journals (Sweden)

    Nahed A Hussien

    2014-01-01

    Conclusion: The results from the present study indicate that point mutations in the p53 gene, in the coding region (exons 5-8 and outside it (exons 10, 11, are not involved in the development of the colon precancerous stage induced by o-nt in mice.

  18. EXPRESSÃO DE GENES DE MEDIADORES CITOTÓXICOS POR CMSP TRATADAS COM PASTAS ENDODÔNTICAS INDICADAS PARA DENTES DECÍDUOS

    OpenAIRE

    Brenda Lanza Nakashima

    2015-01-01

    Pastas iodoformadas (PI) e a base de hidróxido de cálcio (PH) são empregadas na pulpectomia de dentes decíduos, complementando a ação antimicrobiana do preparo químico mecânico e favorecendo o reparo tecidual. Essas pastas ocupam e permanecem por um período de tempo ao longo do canal radicular, entrando em contato com a região periapical e tecidos adjacentes, tornando-se o objetivo deste estudo quantificar a expressão relativa de genes de toxicidade manifestados pelas pastas, de forma a avali...

  19. Isoflavone Malonyltransferases GmIMaT1 and GmIMaT3 Differently Modify Isoflavone Glucosides in Soybean (Glycine max under Various Stresses

    Directory of Open Access Journals (Sweden)

    Muhammad Z. Ahmad

    2017-05-01

    Full Text Available Malonylated isoflavones are the major forms of isoflavonoids in soybean plants, the genes responsible for their biosyntheses are not well understood, nor their physiological functions. Here we report a new benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase (BAHD family isoflavone glucoside malonyltransferase GmIMaT1, and GmIMaT3, which is allelic to the previously characterized GmMT7 and GmIF7MaT. Biochemical studies showed that recombinant GmIMaT1 and GmIMaT3 enzymes used malonyl-CoA and several isoflavone 7-O-glucosides as substrates. The Km values of GmIMaT1 for glycitin, genistin, and daidzin were 13.11, 23.04, and 36.28 μM, respectively, while these of GmIMaT3 were 12.94, 26.67, and 30.12 μM, respectively. Transgenic hairy roots overexpressing both GmIMaTs had increased levels of malonyldaidzin and malonylgenistin, and contents of daidzin and glycitin increased only in GmIMaT1-overexpression lines. The increased daidzein and genistein contents were detected only in GmIMaT3-overexpression lines. Knockdown of GmIMaT1 and GmIMaT3 reduced malonyldaidzin and malonylgenistin contents, and affected other isoflavonoids differently. GmIMaT1 is primarily localized to the endoplasmic reticulum while GmIMaT3 is primarily in the cytosol. By examining their transcript changes corresponding to the altered isoflavone metabolic profiles under various environmental and hormonal stresses, we probed the possible functions of GmIMaTs. Two GmIMaTs displayed distinct tissue expression patterns and respond differently to various factors in modifying isoflavone 7-O-glucosides under various stresses.

  20. Cloning, expression and sequence diversity of iss gene from avian pathogenic Escherichia coli (APEC isolated in Brazil / Clonagem, expressão e diversidade na seqüência do gene iss de Escherichia coli patogênica para aves (APEC, isolada no Brasil

    Directory of Open Access Journals (Sweden)

    Marilda Carlos Vidotto

    2010-09-01

    Full Text Available A proteína Iss (increased serum survival é uma importante característica de resistência ao sistema complemento da Escherichia coli patogênica para aves (APEC. Os objetivos deste trabalho foram clonar e verificar a diversidade da seqüência do gene iss de APEC e caracterizar a proteína Iss recombinante. O gene iss de 309 bp foi amplificado por PCR, clonado e expresso na E. coli BL21 (DE3 utilizando o vetor pET SUMO. O gene iss da APEC9 foi classificado como iss tipo 1 pela diferenciação entre 3 tipos de iss alelos. A proteína Iss foi expressa pela indução com IPTG, purificada em coluna com resina ligada ao íon níquel e utilizada na imunização de galinhas poedeiras. Anticorpos da classe IgY anti rIss reagiram com a proteina rIss, a qual apresentou massa molecular de 22 kDa, correspondendo 11kDa da Iss e 11 kDa da proteína SUMO. The Iss (Increased serum survival protein is an important characteristic of resistance to complement system of avian pathogenic Escherichia coli (APEC. The objectives of this work were to cloning and verify the sequence diversity of iss gene from APEC and characterize the recombinant Iss protein. The iss gene of 309 bp was amplified by PCR, cloned and expressed in E. coli BL21 (DE3 using the pET SUMO vector. The iss gene from APEC9 strain was classified as iss type 1 by differentiation of the three iss gene allele types. The protein was expressed by induction of IPTG and purified in resin charged with the nickel ion. Antibodies IgY anti rIss reacted with rIss showing a molecular mass of 22 kDa, corresponding 11KDa of Iss protein and 11 KDa SUMO protein.

  1. Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains.

    Science.gov (United States)

    Wang, Shaohui; Meng, Qingmei; Dai, Jianjun; Han, Xiangan; Han, Yue; Ding, Chan; Liu, Haiwen; Yu, Shengqing

    2014-01-01

    Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR) assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs) bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.

  2. Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains.

    Directory of Open Access Journals (Sweden)

    Shaohui Wang

    Full Text Available Systemic infections by avian pathogenic Escherichia coli (APEC are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.

  3. Expressão dos genes que codificam as proteínas anexina-1 e galectina-1 nos pólipos rinossinusais e sua modulação pelo glicocorticoide

    OpenAIRE

    Fernandes,Atílio Maximino; Babeto,Erica; Rahal,Paula; Provazzi,Paola Jocelan Scarin; Hidalgo,Claudia Augusta; Anselmo-Lima,Wilma T

    2010-01-01

    A fisiopatologia da polipose rinossinusal não é totalmente compreendida, apesar de várias hipóteses em relação ao seu processo inflamatório. OBJETIVOS: Estudo prospectivo da expressão dos genes das proteínas, anexina-1 e a galectina-1, que têm ação anti-inflamatória, e sua modulação pelo glicocorticoide. MATERIAL E MÉTODOS: Onze pacientes portadores de polipose rinossinusal tiveram biopsiados seus pólipos em dois momentos: na ausência de glicocorticoide sistêmico, e na sua presença. Nas duas ...

  4. Expression in mammalian cells of the Escherichia coli O6 alkylguanine-DNA-alkyltransferase gene ogt reduces the toxicity of alkylnitrosoureas.

    Science.gov (United States)

    Harris, L. C.; Margison, G. P.

    1993-01-01

    V79 Chinese hamster cells expressing either the O6-alkylguanine-DNA-alkyltransferase (ATase) encoded by the E. coli ogt gene or a truncated version of the E. coli ada gene have been exposed to various alkylnitrosoureas to investigate the contribution of ATase repairable lesions to the toxicity of these compounds. Both ATases are able to repair O6-alkylguanine (O6-AlkG) and O4-alkylthymine (O4-AlkT) but the ogt ATase is more efficient in the repair of O4-methylthymine (O4-MeT) and higher alkyl derivatives of O6-AlkG than is the ada ATase. Expression of the ogt ATase provided greater protection against the toxic effects of the alkylating agents then the ada ATase particularly with N-ethyl-N-nitrosourea (ENU) and N-butyl-N-nitrosourea (BNU) to which the ada ATase expressing cells were as sensitive as parent vector transfected cells. Although ogt was expressed at slightly higher levels than the truncated ada in the transfected cells, this could not account for the differential protection observed. For-N-methyl-N-nitrosourea (MNU) the increased protection in ogt-transfected cells is consistent with O4-MeT acting as a toxic lesion. For the longer chain alkylating agents and chloroethylating agents, the protection afforded by the ogt protein may be a consequence of the more efficient repair of O6-AlkG, O4-AlkT or both of these lesions in comparison with the ada-encoded ATase. Images Figure 2 Figure 3 PMID:8512805

  5. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Science.gov (United States)

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  6. The early response of pineal N-acetyltransferase activity, melatonin and catecholamine levels in rats irradiated with gamma rays

    International Nuclear Information System (INIS)

    Kassayova, M.; Ahlersova, E.; Ahlers, I.; Pastorova, B.

    1995-01-01

    Male Wistar rats adapted to an artificial light-dark regimen were whole-body gamma-irradiated with a dose of 14.35 Gy. Irradiation, sham-irradiation and decapitation 30, 60 and 120 min after the exposure were performed between 2000 h and 0100 h in the darkness. The serotonin N-acetyltransferase activity (NAT), the concentration of melatonin and corticosterone were also determined. Ionizing radiation did not change the activity of NAT, the key enzyme of melatonin synthesis; however, it decreased the concentration of pineal melatonin. The concentration of pineal dopamine and norepinephrine decreased 30 and 120 min after exposure, while the concentration of epinephrine was elevated 30 min after irradiation, though later it was markedly decreased. The serum melatonin level was not changed but an increase in corticosterone level was observed. In the early period after exposure a decrease in pineal melatonin occurred, accompanied by a decrease in pineal catecholamines. On the contrary, in the phase of developed radiation injury the signs of increased melatonin synthesis were observed on days 3 and 4 after the exposure. (author) 6 figs., 25 refs

  7. Association of N-acetyltransferase-2 and glutathione S-transferase polymorphisms with idiopathic male infertility in Vietnam male subjects.

    Science.gov (United States)

    Trang, Nguyen Thi; Huyen, Vu Thi; Tuan, Nguyen Thanh; Phan, Tran Duc

    2018-04-25

    N-acetyltransferase-2 (NAT2) and Glutathione S-transferases (GSTs) are phase-II xenobiotic metabolizing enzymes participating in detoxification of toxic arylamines, aromatic amines, hydrazines and reactive oxygen species (ROS), which are produced under oxidative and electrophile stresses. The purpose of this research was to investigate whether two common single-nucleotide polymorphisms (SNP) of NAT2 (rs1799929, rs1799930) and GSTP1 (rs1138272, rs1695) associated with susceptibility to idiopathic male infertility. A total 300 DNA samples (150 infertile patients and 150 healthy control) were genotyped for the polymorphisms by ARMS - PCR. We revealed a significant association between the NAT2 variant genotypes (CT + TT (rs1799929), (OR: 3.74; p male infertility in subjects from Vietnam. This pilot study is the first (as far as we know) to reveal that polymorphisms of NAT2 (rs1799929, rs1799930) and GSTP1 (rs1138272, rs1695) are some novel genetic markers for susceptibility to idiopathic male infertility. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Browse Title Index

    African Journals Online (AJOL)

    Items 251 - 300 of 319 ... ... and Application of Nuclear Morphometry and DNA Image Cytometry, Abstract ... of the N-acetyltransferase 2 gene (NAT2) among Jordanian volunteers ... Vol 7, No 1 (2012), Sleep complaints and daytime sleepiness ...

  9. Variation of antibiotic resistance genes in municipal wastewater treatment plant with A(2)O-MBR system.

    Science.gov (United States)

    Du, Jing; Geng, Jinju; Ren, Hongqiang; Ding, Lili; Xu, Ke; Zhang, Yan

    2015-03-01

    The variation of five antibiotic resistance genes (ARGs)-tetG, tetW, tetX, sul1, and intI1-in a full-scale municipal wastewater treatment plant with A(2)O-MBR system was studied. The concentrations of five resistance genes both in influent and in membrane bioreactor (MBR) effluent decreased as sul1 > intI1 > tetX > tetG > tetW, and an abundance of sul1 was statistically higher than three other tetracycline resistance genes (tetG, tetW, and tetX) (p MBR effluent. The reduction of tetW, intI1, and sul1 was all significantly positively correlated with the reduction of 16S ribosomal DNA (rDNA) in the wastewater treatment process (p MBR was observed for all ARGs.

  10. High temperature in combination with UV irradiation enhances horizontal transfer of stx2 gene from E. coli O157:H7 to non-pathogenic E. coli.

    Directory of Open Access Journals (Sweden)

    Wan-Fu Yue

    Full Text Available Shiga toxin (stx genes have been transferred to numerous bacteria, one of which is E. coli O157:H7. It is a common belief that stx gene is transferred by bacteriophages, because stx genes are located on lambdoid prophages in the E. coli O157:H7 genome. Both E. coli O157:H7 and non-pathogenic E. coli are highly enriched in cattle feedlots. We hypothesized that strong UV radiation in combination with high temperature accelerates stx gene transfer into non-pathogenic E. coli in feedlots.E. coli O157:H7 EDL933 strain were subjected to different UV irradiation (0 or 0.5 kJ/m(2 combination with different temperature (22, 28, 30, 32, and 37 °C treatments, and the activation of lambdoid prophages was analyzed by plaque forming unit while induction of Stx2 prophages was quantified by quantitative real-time PCR. Data showed that lambdoid prophages in E. coli O157:H7, including phages carrying stx2, were activated under UV radiation, a process enhanced by elevated temperature. Consistently, western blotting analysis indicated that the production of Shiga toxin 2 was also dramatically increased by UV irradiation and high temperature. In situ colony hybridization screening indicated that these activated Stx2 prophages were capable of converting laboratory strain of E. coli K12 into new Shiga toxigenic E. coli, which were further confirmed by PCR and ELISA analysis.These data implicate that high environmental temperature in combination with UV irradiation accelerates the spread of stx genes through enhancing Stx prophage induction and Stx phage mediated gene transfer. Cattle feedlot sludge are teemed with E. coli O157:H7 and non-pathogenic E. coli, and is frequently exposed to UV radiation via sunlight, which may contribute to the rapid spread of stx gene to non-pathogenic E. coli and diversity of shiga toxin producing E. coli.

  11. Caracterização do gene vip3A e toxicidade da proteína Vip3Aa50 à lagarta-do-cartucho e à lagarta-da-soja

    Directory of Open Access Journals (Sweden)

    Camila Soares Figueiredo

    2013-09-01

    Full Text Available O objetivo deste trabalho foi caracterizar o gene vip3A de Bacillus thuringiensis e verificar a toxicidade da proteína Vip3Aa50 a larvas da lagarta-do-cartucho (Spodoptera frugiperda e da lagarta-da-soja (Anticarsia gemmatalis. O gene vip3A foi amplificado por PCR, com iniciadores específicos, e gerou um fragmento de 2.370 pb. Esse fragmento foi clonado em vetor pGEM-T Easy e, em seguida, sequenciado, subclonado em vetor de expressão pET-28a (+ e inserido em células de Escherichia coli BL21 (DE3. A expressão da proteína Vip3Aa50 foi induzida por isopropil-β-D-1-tiogalactopiranosídeo (IPTG, visualizada em SDS-PAGE e detectada por "Western blot". Os ensaios de toxicidade revelaram alta atividade da proteína Vip3Aa50 contra as larvas neonatas da lagarta-da-soja e da lagarta-do-cartucho, com CL50 de 20,3 e 79,6 ng cm-2, respectivamente. O gene vip3Aa50 é um novo gene da classe vip3A.

  12. Cyclic AMP regulation of the human glycoprotein hormone α-subunit gene is mediated by an 18-base-pair element

    International Nuclear Information System (INIS)

    Silver, B.J.; Bokar, J.A.; Virgin, J.B.; Vallen, E.A.; Milsted, A.; Nilson, J.H.

    1987-01-01

    cAMP regulates transcription of the gene encoding the α-subunit of human chorionic gonadotropin (hCG) in the choriocarcinoma cells (BeWo). To define the sequences required for regulation by cAMP, the authors inserted fragments from the 5' flanking region of the α-subunit gene into a test vector containing the simian virus 40 early promoter (devoid of its enhancer) linked to the bacterial chloramphenicol acetyltransferase (CAT) gene. Results from transient expression assays in BeWo cells indicated that a 1500-base-pair (bp) fragment conferred cAMP responsiveness on the CAT gene regardless of position or orientation of the insert relative to the viral promoter. A subfragment extending from position -169 to position -100 had the same effect on cAMP-induced expression. Furthermore, the entire stimulatory effect could be achieved with an 18-bp synthetic oligodeoxynucleotide corresponding to a direct repeat between position -146 and -111. In the absence of cAMP, the α-subunit 5' flanking sequence also enhanced transcription from the simian virus 40 early promoter. They localized this enhancer activity to the same -169/-100 fragment containing the cAMP response element. The 18-bp element alone, however, had no effect on basal expression. Thus, this short DNA sequence serves as a cAMP response element and also functions independently of other promoter-regulatory elements located in the 5' flanking sequence of the α-subunit gene

  13. Terapia gênica Gene therapy

    Directory of Open Access Journals (Sweden)

    Nance Beyer Nardi

    2002-01-01

    Full Text Available Terapia gênica é um procedimento médico que envolve a modificação genética de células como forma de tratar doenças. Os genes influenciam praticamente todas as doenças humanas, seja pela codificação de proteínas anormais diretamente responsáveis pela doença, seja por determinar suscetibilidade a agentes ambientais que a induzem. A terapia gênica é ainda experimental, e está sendo estudada em protocolos clínicos para diferentes tipos de doenças. O desenvolvimento de métodos seguros e eficientes de transferência gênica para células humanas é um dos pontos mais importantes na terapia gênica. Apesar do grande esforço dirigido na última década para o aperfeiçoamento dos protocolos de terapia gênica humana, e dos avanços importantes na pesquisa básica, as aplicações terapêuticas da tecnologia de transferência gênica continuam ainda em grande parte teóricas. O potencial da terapia gênica é muito grande, devendo ainda causar grande impacto em todos os aspectos da medicina.Gene therapy is a medical intervention that involves modifying the genetic material of living cells to fight disease. Genes influence virtually every human disease, either by encoding for abnormal proteins, which are directly responsible for the disease, or by causing a susceptibility to environmental agents which induce it. Gene therapy is still experimental, and is being studied in clinical trials for many different types of diseases. The development of safe and effective methods of implanting normal genes into the human cell is one of the most important technical issues in gene therapy. Although much effort has been directed in the last decade toward improvement of protocols in human gene therapy, and in spite of many considerable achievements in basic research, the therapeutic applications of gene transfer technology still remain mostly theoretical. The potential for gene therapy is huge and likely to impact on all aspects of medicine.

  14. Genomic comparison of Escherichia coli serotype O103:H2 isolates with and without verotoxin genes: implications for risk assessment of strains commonly found in ruminant reservoirs

    Directory of Open Access Journals (Sweden)

    Robert Söderlund

    2016-02-01

    Full Text Available Introduction: Escherichia coli O103:H2 occurs as verotoxigenic E. coli (VTEC carrying only vtx1 or vtx2 or both variants, but also as vtx-negative atypical enteropathogenic E. coli (aEPEC. The majority of E. coli O103:H2 identified from cases of human disease are caused by the VTEC form. If aEPEC strains frequently acquire verotoxin genes and become VTEC, they must be considered a significant public health concern. In this study, we have characterized and compared aEPEC and VTEC isolates of E. coli O103:H2 from Swedish cattle. Methods: Fourteen isolates of E. coli O103:H2 with and without verotoxin genes were collected from samples of cattle feces taken during a nationwide cattle prevalence study 2011–2012. Isolates were sequenced with a 2×100 bp setup on a HiSeq2500 instrument producing >100× coverage per isolate. Single-nucleotide polymorphism (SNP typing was performed using the genome analysis tool kit (GATK. Virulence genes and other regions of interest were detected. Susceptibility to transduction by two verotoxin-encoding phages was investigated for one representative aEPEC O103:H2 isolate. Results and Discussion: This study shows that aEPEC O103:H2 is more commonly found (64% than VTEC O103:H2 (36% in the Swedish cattle reservoir. The only verotoxin gene variant identified was vtx1a. Phylogenetic comparison by SNP analysis indicates that while certain subgroups of aEPEC and VTEC are closely related and have otherwise near identical virulence gene repertoires, they belong to separate lineages. This indicates that the uptake or loss of verotoxin genes is a rare event in the natural cattle environment of these bacteria. However, a representative of a VTEC-like aEPEC O103:H2 subgroup could be stably lysogenized by a vtx-encoding phage in vitro.

  15. Acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase. Evidence for a transmembrane acetylation mechanism

    International Nuclear Information System (INIS)

    Bame, K.J.; Rome, L.H.

    1985-01-01

    The lysosomal membrane enzyme acetyl-CoA: alpha-glucosaminide N-acetyltransferase catalyzes the transfer of an acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction mechanism was examined using highly purified lysosomal membranes from rat liver. The reaction was followed by measuring the acetylation of a monosaccharide acetyl acceptor, glucosamine. The enzyme reaction was optimal above pH 5.5, and a 2-3-fold stimulation of activity was observed when the membranes were assayed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicated that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. Further evidence to support this mechanism was provided by characterization of the enzyme half-reactions. Membranes incubated with acetyl-CoA and [ 3 H]CoA were found to produce acetyl-[ 3 H]CoA. This exchange was optimal at pH values above 7.0. Treating membranes with [ 3 H] acetyl-CoA resulted in the formation of an acetyl-enzyme intermediate. The acetyl group could then be transferred to glucosamine, forming [ 3 H]N-acetylglucosamine. The transfer of the acetyl group from the enzyme to glucosamine was optimal between pH 4 and 5. The results suggest that acetyl-CoA does not cross the lysosomal membrane. Instead, the enzyme is acetylated on the cytoplasmic side of the lysosome and the acetyl group is then transferred to the inside where it is used to acetylate heparan sulfate

  16. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  17. Detoxification and repair process of ozone injury: From O{sub 3} uptake to gene expression adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Castagna, A., E-mail: castagna@agr.unipi.i [Department of Agricultural Chemistry and Biotechnology, University of Pisa, Via del Borghetto 80, 56124 Pisa (Italy); Ranieri, A., E-mail: aranieri@agr.unipi.i [Department of Agricultural Chemistry and Biotechnology, University of Pisa, Via del Borghetto 80, 56124 Pisa (Italy)

    2009-05-15

    Plants react to O{sub 3} threat by setting up a variety of defensive strategies involving the co-ordinated modulation of stress perception, signalling and metabolic responses. Although stomata largely controls O{sub 3} uptake, differences in O{sub 3} tolerance cannot always be ascribed to changes in stomatal conductance but cell protective and repair processes should be taken into account. O{sub 3}-driven ROS production in the apoplast induces a secondary, active, self-propagating generation of ROS, whose levels must be finely tuned, by many enzymatic and non-enzymatic antioxidant systems, to induce gene activation without determining uncontrolled cell death. Additional signalling molecules, as ethylene, jasmonic and salicylic acid are also crucial to determine the spreading and the containment of leaf lesions. The main recent results obtained on O{sub 3} sensing, signal transduction, ROS formation and detoxification mechanisms are here discussed. - A dissection of the complex network of interacting mechanisms which determine the cell fate under ozone stress.

  18. The Role of Catechol-O-Methyltransferase (COMT Gene in the Etiopathogenesis of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Ceren Acar

    2014-09-01

    Full Text Available Genetic factors in the risk of developing schizophrenia is of great importance. With the help of the advances in the field of genetics in recent years by using linkage analysis several genes have been identified that may be a risk factor in schizophrenia. Several association studies have been performed in many different populations on the candidate susceptibility genes that were defined in previous studies. However, these studies give controversial results in different countries with different populations, and there are problems in obtaining replicable results. In this review we aimed to focus on the genetic basis of schizophrenia and the relationship between schizophrenia and catechol-O-methyltransferase (COMT gene. COMT encodes an enzyme molecule which has an important function in dopamine pathways. It has great importance in catecholamine metabolism and pharmacology and genetic mechanism of catechol metabolism variations and their clinical consequences. COMT transfers the methyl group from S-adenosyl-methionine to the hydroxyl group of catechol nucleus (such as dopamine, norepinephrine or catechol estrogen. Genetic variations found in COMT gene are associated with a broad spectrum of clinical phenotype including psychiatric disorders or estrogen related cancers. Several groups have performed studies on the relationship between schizophrenia and COMT. The most commonly studied polymorphism in COMT gene is rs4680 and it causes a valine methionine conversion at codon 158. The association studies on this polymorphism in different populations gave both positive and negative results. Schizoprenia is a complex disease caused by the interaction of environmental and genetic factors, while interpreting the genetic data, this fact and the possibility of the presence of different gene products should be taken into account. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(3.000: 217-226

  19. Subunits of ADA-two-A-containing (ATAC) or Spt-Ada-Gcn5-acetyltrasferase (SAGA) Coactivator Complexes Enhance the Acetyltransferase Activity of GCN5.

    Science.gov (United States)

    Riss, Anne; Scheer, Elisabeth; Joint, Mathilde; Trowitzsch, Simon; Berger, Imre; Tora, László

    2015-11-27

    Histone acetyl transferases (HATs) play a crucial role in eukaryotes by regulating chromatin architecture and locus specific transcription. GCN5 (KAT2A) is a member of the GNAT (Gcn5-related N-acetyltransferase) family of HATs. In metazoans this enzyme is found in two functionally distinct coactivator complexes, SAGA (Spt Ada Gcn5 acetyltransferase) and ATAC (Ada Two A-containing). These two multiprotein complexes comprise complex-specific and shared subunits, which are organized in functional modules. The HAT module of ATAC is composed of GCN5, ADA2a, ADA3, and SGF29, whereas in the SAGA HAT module ADA2b is present instead of ADA2a. To better understand how the activity of human (h) hGCN5 is regulated in the two related, but different, HAT complexes we carried out in vitro HAT assays. We compared the activity of hGCN5 alone with its activity when it was part of purified recombinant hATAC or hSAGA HAT modules or endogenous hATAC or hSAGA complexes using histone tail peptides and full-length histones as substrates. We demonstrated that the subunit environment of the HAT complexes into which GCN5 incorporates determines the enhancement of GCN5 activity. On histone peptides we show that all the tested GCN5-containing complexes acetylate mainly histone H3K14. Our results suggest a stronger influence of ADA2b as compared with ADA2a on the activity of GCN5. However, the lysine acetylation specificity of GCN5 on histone tails or full-length histones was not changed when incorporated in the HAT modules of ATAC or SAGA complexes. Our results thus demonstrate that the catalytic activity of GCN5 is stimulated by subunits of the ADA2a- or ADA2b-containing HAT modules and is further increased by incorporation of the distinct HAT modules in the ATAC or SAGA holo-complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The Pneumococcal Serotype 15C Capsule Is Partially O-Acetylated and Allows for Limited Evasion of 23-Valent Pneumococcal Polysaccharide Vaccine-Elicited Anti-Serotype 15B Antibodies.

    Science.gov (United States)

    Spencer, Brady L; Shenoy, Anukul T; Orihuela, Carlos J; Nahm, Moon H

    2017-08-01

    As a species, Streptococcus pneumoniae (the pneumococcus) utilizes a diverse array of capsular polysaccharides to evade the host. In contrast to large variations in sugar composition and linkage formation, O-acetylation is a subtle capsular modification that nonetheless has a large impact on capsular shielding and recognition of the capsule by vaccine-elicited antibodies. Serotype 15B, which is included in the 23-valent pneumococcal polysaccharide vaccine (PPV23), carries the putative O-acetyltransferase gene wciZ The coding sequence of wciZ contains eight consecutive TA repeats [(TA) 8 ]. Replication slippage is thought to result in the addition or loss of TA repeats, subsequently causing frameshift and truncation of WciZ to yield a nonacetylated serotype, 15C. Using sensitive serological tools, we show that serotype 15C isolates whose wciZ contains seven or nine TA repeats retain partial O-acetylation, while serotype 15C isolates whose wciZ contains six TA repeats have barely detectable O-acetylation. We confirmed by inhibition enzyme-linked immunosorbent assay that (TA) 7 serotype 15C is ∼0.1% as acetylated as serotype 15B, while serotype 15X is nonacetylated. To eliminate the impact of genetic background, we created isogenic serotype 15B, (TA) 7 serotype 15C, and 15BΔ wciZ (15X) strains and found that reduction or absence of WciZ-mediated O-acetylation did not affect capsular shielding from phagocytes, biofilm formation, adhesion to nasopharyngeal cells, desiccation tolerance, or murine colonization. Sera from PPV23-immunized persons opsonized serotype 15B significantly but only slightly better than serotypes 15C and 15X; thus, PPV23 may not result in expansion of serotype 15C. Copyright © 2017 American Society for Microbiology.

  1. Pesquisa de marcadores para os genes da cadeia pesada da beta-miosina cardíaca e da proteína C de ligação à miosina em familiares de pacientes com cardiomiopatia hipertrófica Research of markers for the genes of the heavy chain of cardiac beta-myosin and myosin binding protein C in relatives of patients with hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Adriana Paula Tirone

    2005-06-01

    Full Text Available OBJETIVO: Estudar os marcadores moleculares para os genes da cadeia pesada da beta-miosina cardíaca e da proteína-C de ligação à miosina em familiares de portadores de cardiomiopatia hipertrófica. MÉTODOS: Foram estudadas 12 famílias que realizaram anamnese, exame físico, eletrocardiograma, ecocardiograma e coleta de sangue para o estudo genético através da reação em cadeia da polimerasse. RESULTADOS: Dos 227 familiares 25% eram acometidos, sendo 51% do sexo masculino com idade média de 35±19 (2 a 95 anos. A análise genética mostrou ligação com o gene da b-miosina cardíaca em uma família e, em outra, ligação com o gene da proteína C de ligação à miosina. Em cinco famílias foram excluídas ligações com os dois genes; em duas, a ligação com o gene da proteína C de ligação à miosina, porém para o gene da b-miosina os resultados foram inconclusivos; em duas famílias os resultados foram inconclusivos para os dois genes e em uma foi excluída ligação para o gene da b-miosina mas ficou inconclusivo para o gene da proteína C de ligação à miosina. CONCLUSÃO: Em nosso meio, talvez predominem outros genes que não aqueles descritos na literatura, ou que existam outras diferenças genéticas relacionadas com a origem de nossa população e/ou fatores ambientais.OBJECTIVE: To study the molecular markers for the genes of the heavy chain of cardiac beta-myosin and the myosin binding protein C in relatives of carriers of hypertrophic cardiomyopathy. METHODS: Twelve families who had anamnesis, physical exam, electrocardiogram, echocardiogram and blood collection for the genetic study through the chain reaction of polymerase. RESULTS: From the 227 relatives, 25% were ill-taken, with 51% men, with an average age of 35±19 (2 to 95 years old. The genetic analysis showed a connection with the gene of the cardiac b-myosin in a family and, in another, a connection with the gene of the myosin-binding protein C. In five

  2. Towards a Molecular Definition of Enterohemorrhagic Escherichia coli (EHEC): Detection of Genes Located on O Island 57 as Markers To Distinguish EHEC from Closely Related Enteropathogenic E. coli Strains

    Science.gov (United States)

    Delannoy, Sabine; Beutin, Lothar

    2013-01-01

    Among strains of Shiga-toxin (Stx) producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are associated with severe clinical illness in humans. These strains are also called enterohemorrhagic E. coli (EHEC), and the development of methods for their reliable detection from food has been challenging thus far. PCR detection of major EHEC virulence genes stx1, stx2, eae, and O-serogroup-specific genes is useful but does not identify EHEC strains specifically. Searching for the presence of additional genes issued from E. coli O157:H7 genomic islands OI-122 and OI-71 increases the specificity but does not clearly discriminate EHEC from enteropathogenic E. coli (EPEC) strains. Here, we identified two putative genes, called Z2098 and Z2099, from the genomic island OI-57 that were closely associated with EHEC and their stx-negative derivative strains (87% for Z2098 and 91% for Z2099). Z2098 and Z2099 were rarely found in EPEC (10% for Z2098 and 12% for Z2099), STEC (2 and 15%), and apathogenic E. coli (1% each) strains. Our findings indicate that Z2098 and Z2099 are useful genetic markers for a more targeted diagnosis of typical EHEC and new emerging EHEC strains. PMID:23325824

  3. Complementation Studies of Bacteriophage λ O Amber Mutants by Allelic Forms of O Expressed from Plasmid, and O-P Interaction Phenotypes.

    Science.gov (United States)

    Hayes, Sidney; Rajamanickam, Karthic; Hayes, Connie

    2018-04-05

    λ genes O and P are required for replication initiation from the bacteriophage λ origin site, ori λ, located within gene O . Questions have persisted for years about whether O-defects can indeed be complemented in trans . We show the effect of original null mutations in O and the influence of four origin mutations (three are in-frame deletions and one is a point mutation) on complementation. This is the first demonstration that O proteins with internal deletions can complement for O activity, and that expression of the N-terminal portion of gene P can completely prevent O complementation. We show that O-P co-expression can limit the lethal effect of P on cell growth. We explore the influence of the contiguous small RNA OOP on O complementation and P-lethality.

  4. Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa.

    Science.gov (United States)

    Fuchs, Eric J; Meneses Martínez, Allan; Calvo, Amanda; Muñoz, Melania; Arrieta-Espinoza, Griselda

    2016-01-01

    Wild crop relatives are an important source of genetic diversity for crop improvement. Diversity estimates are generally lacking for many wild crop relatives. The objective of the present study was to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated the likelihood of gene flow between wild and commercial rice species because the latter is commonly sympatric with wild rice populations. Introgression may change wild species by incorporating alleles from domesticated species, increasing the risk of losing original variation. Specimens from all known O. glumaepatula populations in Costa Rica were analyzed with 444 AFLP markers to characterize genetic diversity and structure. We also compared genetic diversity estimates between O. glumaepatula specimens and O. sativa commercial rice. Our results showed that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. Despite the restricted distribution of this species in Costa Rica, populations are fairly large, reducing the effects of drift on genetic diversity. We found a dismissible but significant structure (θ = 0.02 ± 0.001) among populations. A Bayesian structure analysis suggested that some individuals share a significant proportion of their genomes with O. sativa. These results suggest that gene flow from cultivated O. sativa populations may have occurred in the recent past. These results expose an important biohazard: recurrent hybridization may reduce the genetic diversity of this wild rice species. Introgression may transfer commercial traits into O. glumaepatula, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica.

  5. KAT-Independent Gene Regulation by Tip60 Promotes ESC Self-Renewal but Not Pluripotency

    Directory of Open Access Journals (Sweden)

    Diwash Acharya

    2017-04-01

    Full Text Available Although histone-modifying enzymes are generally assumed to function in a manner dependent on their enzymatic activities, this assumption remains untested for many factors. Here, we show that the Tip60 (Kat5 lysine acetyltransferase (KAT, which is essential for embryonic stem cell (ESC self-renewal and pre-implantation development, performs these functions independently of its KAT activity. Unlike ESCs depleted of Tip60, KAT-deficient ESCs exhibited minimal alterations in gene expression, chromatin accessibility at Tip60 binding sites, and self-renewal, thus demonstrating a critical KAT-independent role of Tip60 in ESC maintenance. In contrast, KAT-deficient ESCs exhibited impaired differentiation into mesoderm and endoderm, demonstrating a KAT-dependent function in differentiation. Consistent with this phenotype, KAT-deficient mouse embryos exhibited post-implantation developmental defects. These findings establish separable KAT-dependent and KAT-independent functions of Tip60 in ESCs and during differentiation, revealing a complex repertoire of regulatory functions for this essential chromatin remodeling complex.

  6. The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype

    Directory of Open Access Journals (Sweden)

    Shevchenko J. I.

    2014-11-01

    Full Text Available Aim. To estimate WaaL ligase contribution in the lipopolysaccharide (LPS phenotype profile formation of Y. enterocolitica O:3 (YeO3 bacteria. Methods. The waaL-knock-out mutants were created by an allelic exchange strategy. The LPS phenotypes of created mutants were visualized by silver-stained DOC-PAGE and immunoblotting with specific outer core (core oligosaccharide, hexasaccharide, OC and O-polysaccharide (OPS or O-Ag monoclonal antibodies. Results. Deletion of waaLOS gene from YeO3 genome has a marked effect on OC ligation in either single or double mutants. The waaLPS deletion has an opposite effect on the OPS ligation – barely detected increasing of OPS bands. Conclusions. The LPS ligases of YeO3 exhibit relaxed donor substrate specificity. Under given conditions the effect of WaaLOS ligase is more significant for OC and OPS ligation onto lipid A than that of WaaLPS.

  7. What are the genes? 1 -O-O ...

    Indian Academy of Sciences (India)

    In this issue of Resonance that celebrates the doscoveries of T H Morgan,itis only appropriate that the reader is exposed first hand to the sharp intellect and the critical nature of his thinking. Reproduced below is a brief passage on the concept of the gene, excerpted from his Nobel lecture. (The complete lecture can be seen ...

  8. Detecção dos genes codificantes da toxina CDT, e pesquisa de fatores que influenciam na produção de hemolisinas em amostras de Campylobacter jejuni de origem avícola

    Directory of Open Access Journals (Sweden)

    Michele M. Trindade

    2015-08-01

    Full Text Available Resumo: Membros termofílicos do gênero Campylobacter são reconhecidos como importantes enteropatógenos para o ser humano e animais. A grande diversidade ecológica destes micro-organismos em diferentes habitats tais como água, animais e alimentos predispõem ao aparecimento de novos fatores de virulência. Este trabalho teve por objetivo detectar os genes codificantes da Toxina Distensiva Citoletal (CDT por meio da técnica de PCR, pesquisar a atividade de hemolisinas e a influência de soluções quelantes e de íons nesta atividade. Foram utilizadas 45 amostras de Campylobacter jejuni de origem avícola para pesquisa de atividade hemolítica, cultivadas em Caldo Triptona de Soja (TSB. Após o crescimento bacteriano, as amostras foram semeadas em Ágar tríptico de soja (TSA contendo 5% de sangue de ovino. Para verificar a influência de agentes quelantes e solução de íons na atividade hemolítica, as amostras de C. jejuni foram cultivadas em TSB contendo separadamente os quelantes EDTA, ácido acético, soluções de íons CaCl2, MgCl2 e FeCl3, em atmosfera de microaerofilia. Quanto à atividade de hemolisina de C. jejuni em placas de TSA - sangue ovino foi possível observar que houve hemólise em 40% das amostras analisadas apenas com caldo TSB. Somente o ácido acético apresentou ação quelante sobre a atividade de hemolisinas em amostras de C. jejuni semeadas em placas de TSA - sangue ovino. Para detecção dos genes cdtA, cdtB e cdtC através da técnica da Reação em Cadeia da Polimerase (PCR foram utilizadas 119 amostras de C. jejuni de origem avícola. Foi possível observar que 37,8% possuíam o perfil de genes cdtABC. Os resultados demonstraram em amostras avícolas a presença de cepas de C. jejuni com potencial virulento, devido à presença dos genes da toxina CDT e potencial hemolítico, que apresentou ação reduzida in vitro com ácido acético.

  9. Substrate-Induced Allosteric Change in the Quaternary Structure of the Spermidine N-Acetyltransferase SpeG.

    Science.gov (United States)

    Filippova, Ekaterina V; Weigand, Steven; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Anderson, Wayne F

    2015-11-06

    The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulate their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligand-free form in three different conformational states: open, intermediate and closed. All structures were crystallized in C2 space group symmetry and contain six monomers in the asymmetric unit cell. Two hexamers related by crystallographic 2-fold symmetry form the SpeG dodecamer. The open and intermediate states have a unique open dodecameric ring. This SpeG dodecamer is asymmetric except for the one 2-fold axis and is unlike any known dodecameric structure. Using a fluorescence thermal shift assay, size-exclusion chromatography with multi-angle light scattering, small-angle X-ray scattering analysis, negative-stain electron microscopy and structural analysis, we demonstrate that this unique open dodecameric state exists in solution. Our combined results indicate that polyamines trigger conformational changes and induce the symmetric closed dodecameric state of the protein when they bind to their allosteric sites. Copyright © 2015. Published by Elsevier Ltd.

  10. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    Directory of Open Access Journals (Sweden)

    Kyungha Shin

    2016-01-01

    Full Text Available Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs overexpressing choline acetyltransferase (ChAT improve cognitive function of Alzheimer’s disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level.

  11. Expressão eficiente do gene reporter beta-glucuronidase nos tecidos vasculares de batata (Solanum tuberosum L. utilizando de um promotor específico (BRA3 de Agrobacterium rhizogenes Efficient expression of beta-glucuronidase reporter gene in vascular tissue of potato (Solanum tuberosum L. utilizing a specific promoter (BRA3 from Agrobacterium rhizogenes

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Torres

    2003-06-01

    Full Text Available Promotores tecido-específico controlam a transcrição de genes em diferentes tecidos vegetais bem como em diferentes estádios de desenvolvimento da planta, levando à indução de distintos níveis de atividade transiente e/ou estável do gene. Tais promotores podem ser empregados para a expressão seletiva de genes de interesse. O promotor rol A de Agrobacterium rhizogenes, por exemplo, é floema-específico, sugerindo que possa ser empregado em estratégias de defesa de plantas que são infectadas por vírus com replicação restrita ao floema. A expressão do gene marcador da ß-glucuronidase (gus dirigido pelo promotor rol A (pBRA3 foi observada em plantas transgênicas de batata (cvs. Macaca e Baronesa. Entrenós e secções de folhas foram submetidos ao cocultivo com A. tumefaciens. A atividade do gene gus avaliada em brotações resistentes à canamicina não se restringiu ao floema (alto nível de expressão do gene, mas também se manifestou no xilema dos caules. As expressões transiente e estável são, no entanto, tecido-específicas, localizadas sobretudo no sistema vascular de entrenós e ausente em raízes e folhas. As plantas gus positivas foram micropropagadas, plantadas em casa de vegetação e avaliadas por PCR, utilizando-se 'primers' específicos para o gene npt II. Nenhuma alteração fenotípica foi observada em plantas transgênicas, em relação às não transformadas.Tissue-especific promoters allow the modulation of gene transcription in different tissue types as well as in different stages of plant development, leading different levels of transient and stable activity of the gene product. These promoters have been employed for selective gene expression. The Agrobacterium rhizogenes rol A gene promoter (BRA3 controls phloem-specific expression indicating that this promoter might have an important role in plant defense strategies against virus which replicated only in the phloem. The expression of

  12. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Directory of Open Access Journals (Sweden)

    Pomari E

    2014-06-01

    Full Text Available Elena Pomari, Bruno Stefanon, Monica Colitti Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy Background: Arctium lappa (AL, Camellia sinensis (CS, Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG, and Vaccinium myrtillus (VM are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods: Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (mRNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results: A noncytotoxic dose (200 µM of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001 regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion: The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in

  13. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases.

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Georgii, Elisabeth; Bernhardt, Jörg; Wu, Keqiang; Durner, Jörg; Lindermayr, Christian

    2017-02-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases1[OPEN

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Durner, Jörg

    2017-01-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. PMID:27980017

  15. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Brenner, Everton A; Zein, Imad; Chen, Yongsheng

    2010-01-01

    Background OMT (O-methyltransferase) genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Results Variation in genomic sequences codi...

  16. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress.

    Science.gov (United States)

    Jiang, Chunmiao; Shen, Qingxi J; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan

    2017-01-01

    Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, pWRKY family of transcription factors in O.officinalis. Insight was gained into the classification, evolution, and function of the OoWRKY genes, revealing the putative roles of eight significantly different expression OoWRKYs in Xoo strains PXO99 and C5 stress responses in O.officinalis. This study provided a better understanding of the evolution and functions of O. officinalis WRKY genes, and suggested that manipulating eight significantly different expression OoWRKYs would enhance resistance to bacterial blight.

  17. Epigenetic Regulation of Inflammatory Gene Expression in Macrophages by Selenium

    Science.gov (United States)

    Narayan, Vivek; Ravindra, Kodihalli C.; Liao, Chang; Kaushal, Naveen; Carlson, Bradley A.; Prabhu, K. Sandeep

    2014-01-01

    Acetylation of histone and non-histone proteins by histone acetyltransferases plays a pivotal role in the expression of pro-inflammatory genes. Given the importance of dietary selenium in mitigating inflammation, we hypothesized that selenium supplementation may regulate inflammatory gene expression at the epigenetic level. The effect of selenium towards histone acetylation was examined in both in vitro and in vivo models of inflammation by chromatin immunoprecipitation (ChIP) assays and immunoblotting. Our results indicated that selenium supplementation, as selenite, decreased acetylation of histone H4 at K12 and K16 in COX-2 and TNF promoters, and of the p65 subunit of the redox sensitive transcription factor NFκB in primary and immortalized macrophages. On the other hand, selenomethionine had a much weaker effect. Selenite treatment of HIV-1 infected human monocytes also significantly decreased the acetylation of H4 at K12 and K16 on the HIV-1 promoter, supporting the downregulation of proviral expression by selenium. A similar decrease in histone acetylation was also seen in the colonic extracts of mice treated with dextran sodium sulfate that correlated well with the levels of selenium in the diet. Bone marrow-derived macrophages from Trspfl/flCreLysM mice that lack expression of selenoproteins in macrophages confirmed the important role of selenoproteins in the inhibition of histone H4 acetylation. Our studies suggest that the ability of selenoproteins to skew the metabolism of arachidonic acid to contribute, in part, to their ability to inhibit histone acetylation. In summary, our studies suggest a new role for selenoproteins in the epigenetic modulation of pro-inflammatory genes. PMID:25458528

  18. ¿Anteojos o anteojeras?: imágenes de la/s ciencia/s en la escuela secundaria

    OpenAIRE

    Hernández, Marilina Ayelén

    2017-01-01

    En este trabajo nos proponemos revisar las imágenes de la(s) ciencia(s) que se propone(n) y/o habilitan en la escuela secundaria a través de tres indicadores: 1. La recopilación de experiencias didácticas de actividades realizadas con alumnos/as de la escuela secundaria de la modalidad orientada en Ciencias Naturales en el último año, en la asignatura Filosofía e Historia de la Ciencia y la Tecnología. 2. La perspectiva del Currículum, prescripciones y objetivos que tiene en cuenta el n...

  19. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Directory of Open Access Journals (Sweden)

    Aimée M Moore

    Full Text Available Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome, yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure, and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000, and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301. We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway. This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective

  20. Impact of engineered Streptococcus thermophilus trains overexpressing glyA gene on folic acid and acetaldehyde production in fermented milk Impacto de linhagens de Streptococcus thermophilus com aumento da expressão do gene glyA na produção de ácido folico e acetaldeído em leite fermentado

    Directory of Open Access Journals (Sweden)

    Ana Carolina Sampaio Dória Chaves

    2003-11-01

    Full Text Available The typical yogurt flavor is caused by acetaldehyde produced through many different pathways by the yogurt starter bacteria L. bulgaricus and S. thermophilus. The attention was focused on one specific reaction for acetaldehyde and folic acid formation catalyzed by serine hydroxymethyltransferase (SHMT, encoded by the glyA gene. In S. thermophilus, this enzyme SHMT also plays the typical role of the enzyme threonine aldolase (TA that is the interconvertion of threonine into glycine and acetaldehyde. The behavior of engineered S. thermophilus strains in milk fermentation is described, folic acid and acetaldehyde production were measured and pH and counts were followed. The engineered S. thermophilus strains StA2305 and StB2305, have the glyA gene (encoding the enzyme serine hydroxymethyltransferase overexpressed. These engineered strains showed normal growth in milk when it was supplemented with Casitione. When they were used in milk fermentation it was observed an increase in folic acid and in acetaldehyde production by StA2305 and for StB2305 it was noticed a significative increase in folic acid formation.O acetaldeído, responsável pelo sabor e aroma característicos de iogurte, é produzido por diferentes vias metabólicas pelas bactérias lácticas: Streptococcus thermophilus (S. thermophilus e Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus. Neste trabalho, a atenção foi focada especificamente na reação para a formação de acetaldeído e de ácido fólico, catalisada pela enzima serina hidroximetil transferase (SHMT, codificada pelo gene glyA. A enzima SHMT catalisa diversas reações e, no caso da bactéria S. thermophilus, ela exerce também a atividade característica da enzima treonina aldolase (TA, definida como a interconversão do aminoácido treonina em glicina e acetaldeído. Foram construídas linhagens de S. thermophilus (StA2305 e StB2305 com super expressão do gene glyA. Estas linhagens modificadas apresentaram

  1. Transcriptional changes in epigenetic modifiers associated with gene silencing in the intestine of the sea cucumber, Apostichopus japonicus (Selenka), during aestivation

    Science.gov (United States)

    Wang, Tianming; Yang, Hongsheng; Zhao, Huan; Chen, Muyan; Wang, Bing

    2011-11-01

    The sea cucumber, Apostichopus japonicus, undergoes aestivation to improve survival during periods of high-temperature. During aestivation, the metabolic rate is depressed to reduce the consumption of reserved energy. We evaluated the role of epigenetic modification on global gene silencing during metabolic rate depression in the sea cucumber. We compared the expression of epigenetic modifiers in active and aestivating sea cucumbers. The expression of three genes involved in DNA methylation and chromatin remodeling (DNA (cytosine-5)-methyltransferase 1, Methyl-CpG-binding domain protein 2), and Chromodomain-helicase-DNA-binding protein 5) was significantly higher during aestivation (Days 20 and 40). Similarly, we observed an increase in the expression of genes involved in histone acetylation (Histone deacetylase 3) and Histone-binding protein RBBP4) during the early (Days 5 and 10) and late phases (Days 20 and 40) of aestivation. There was no change in the expression of KAT2B, a histone acetyltransferase. However, the expression of histone methylation associated modifiers (Histone-arginine methyltransferase CARMER and Histone-lysine N-methyltransferase MLL5) was significantly higher after 5 d in the aestivating group. The results suggest that the expression of epigenetic modifiers involved in DNA methylation, chromatin remodeling, histone acetylation, and histone methylation is upregulated during aestivation. We hypothesize that these changes regulate global gene silencing during aestivation in A. japonicus.

  2. Global analysis of gene expression in response to L-Cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica

    Science.gov (United States)

    2011-01-01

    Background Entamoeba histolytica, an enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. E. histolytica completely lacks glutathione metabolism but possesses L-cysteine as the principle low molecular weight thiol. L-Cysteine is essential for the structure, stability, and various protein functions, including catalysis, electron transfer, redox regulation, nitrogen fixation, and sensing for regulatory processes. Recently, we demonstrated that in E. histolytica, L-cysteine regulates various metabolic pathways including energy, amino acid, and phospholipid metabolism. Results In this study, employing custom-made Affymetrix microarrays, we performed time course (3, 6, 12, 24, and 48 h) gene expression analysis upon L-cysteine deprivation. We identified that out of 9,327 genes represented on the array, 290 genes encoding proteins with functions in metabolism, signalling, DNA/RNA regulation, electron transport, stress response, membrane transport, vesicular trafficking/secretion, and cytoskeleton were differentially expressed (≥3 fold) at one or more time points upon L-cysteine deprivation. Approximately 60% of these modulated genes encoded proteins of no known function and annotated as hypothetical proteins. We also attempted further functional analysis of some of the most highly modulated genes by L-cysteine depletion. Conclusions To our surprise, L-cysteine depletion caused only limited changes in the expression of genes involved in sulfur-containing amino acid metabolism and oxidative stress defense. In contrast, we observed significant changes in the expression of several genes encoding iron sulfur flavoproteins, a major facilitator super-family transporter, regulator of nonsense transcripts, NADPH-dependent oxido-reductase, short chain dehydrogenase, acetyltransferases, and various other genes involved in diverse cellular functions. This study represents the first genome-wide analysis of

  3. Global analysis of gene expression in response to L-Cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Jeelani Ghulam

    2011-05-01

    Full Text Available Abstract Background Entamoeba histolytica, an enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. E. histolytica completely lacks glutathione metabolism but possesses L-cysteine as the principle low molecular weight thiol. L-Cysteine is essential for the structure, stability, and various protein functions, including catalysis, electron transfer, redox regulation, nitrogen fixation, and sensing for regulatory processes. Recently, we demonstrated that in E. histolytica, L-cysteine regulates various metabolic pathways including energy, amino acid, and phospholipid metabolism. Results In this study, employing custom-made Affymetrix microarrays, we performed time course (3, 6, 12, 24, and 48 h gene expression analysis upon L-cysteine deprivation. We identified that out of 9,327 genes represented on the array, 290 genes encoding proteins with functions in metabolism, signalling, DNA/RNA regulation, electron transport, stress response, membrane transport, vesicular trafficking/secretion, and cytoskeleton were differentially expressed (≥3 fold at one or more time points upon L-cysteine deprivation. Approximately 60% of these modulated genes encoded proteins of no known function and annotated as hypothetical proteins. We also attempted further functional analysis of some of the most highly modulated genes by L-cysteine depletion. Conclusions To our surprise, L-cysteine depletion caused only limited changes in the expression of genes involved in sulfur-containing amino acid metabolism and oxidative stress defense. In contrast, we observed significant changes in the expression of several genes encoding iron sulfur flavoproteins, a major facilitator super-family transporter, regulator of nonsense transcripts, NADPH-dependent oxido-reductase, short chain dehydrogenase, acetyltransferases, and various other genes involved in diverse cellular functions. This study represents the first

  4. Identification of a second flagellin gene and functional characterization of a sigma70-like promoter upstream of a Leptospira borgpetersenii flaB gene.

    Science.gov (United States)

    Lin, Min; Dan, Hanhong; Li, Yijing

    2004-02-01

    Leptospira borgpetersenii, one of the causative agents of leptospirosis in both animals and humans, is a bacterial pathogen with characteristic motility that is mediated by the rotation of two periplasmic flagella (PF). The flaB gene coding for a core polypeptide subunit of PF was previously characterized by sequence analysis of its open reading frame (ORF) (M. Lin, J Biochem Mol Biol Biophys 2:181-187, 1999). The present study was undertaken to isolate and clone the uncharacterized sequence upstream of the flaB gene by using a PCR-based genome walking procedure. This has resulted in a 1470-bp genomic DNA sequence in which an 846-bp ORF coding for a 281-amino acid polypeptide (31.3 kDa) is identified 455 bp upstream from the flaB start codon. The encoded protein exhibits 72% amino acid identity to the deduced FlaB protein sequence of L. borgpetersenii and a high degree of sequence homology to the FlaB proteins of other spirochaetes. This has demonstrated for the first time that a second flaB gene homolog is present in a Leptospira species. The newly identified gene is designated flaB1, and the previously cloned flaB renamed flaB2. Within the intergenic sequence between flaB1 and flaB2, a potential stem-loop structure (12-bp inverted repeats) was identified 25 bp downstream of the flaB1 stop codon; this could serve as a transcription terminator for the flaB1 mRNA. Three E. coli-like promoter regions (I, II, and III) for binding Esigma(70), a regulatory sequence uncommonly found in flagellar genes, were predicted upstream of the flaB2 ORF. Only promoter region II contains a promoter that is functional in E. coli, as revealed at phenotypic and transcriptional levels by its capability of directing the expression of the chloramphenicol acetyltransferase (CAT) gene in the promoter probe vector pKK232-8. These observations may suggest that flaB1 and flaB2 are transcribed separately and do not form a transcriptional operon controlled by a single promoter.

  5. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming β-cyano-L-alanine

    International Nuclear Information System (INIS)

    Omura, Hironori; Yoshida, Toyokazu; Nagasawa, Toru; Kobayashi, Michihiko; Shimizu, Sakayu

    2003-01-01

    A thermophilic and cyanide ion-tolerant bacterium, Bacillus stearothermophilus CN3 isolated from a hot spring in Japan, was found to produce thermostable β-cyano-L-alanine synthase. The enzyme catalyzes the synthesis of β-cyano-L-alanine from O-acetyl-L-serine and cyanide ions. The purified enzyme has a molecular mass of approximately 70 kDa and consists of two identical sub-units. It was stable in the pH range of 6.0 to 10.0 and up to 70degC. The enzyme also catalyzes the synthesis of various β-substituted-L-alanine derivatives from O-acetyl-L-serine and nucleophilic reagents. The gene encoding the β-cyano-L-alanine synthase was isolated from B. stearothermophilus CN3. Sequence homology analysis revealed that the β-cyano-L-alanine synthase of the bacterium is O-acetyl-L-serine sulfhydrylase. A recombinant plasmid, constructed by ligation of the cloned gene and an expression vector, pKK223-3, was introduced into E. coli JM109. The transformed E. coli cells overexpressed β-cyano-L-alanine synthase. Heat stable β-cyano-L-alanine synthase can be applied to the synthesis of [4- 11 C]L-2,4-diaminobutyric acid as a tracer for positron emission tomography. (author)

  6. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming {beta}-cyano-L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Omura, Hironori; Yoshida, Toyokazu; Nagasawa, Toru [Gifu Univ. (Japan). Dept. of Biomolecular Science; Kuroda, Masako [Ikeda Food Research Co., Ltd., Fukuyama, Hiroshima (Japan); Kobayashi, Michihiko; Shimizu, Sakayu [Kyoto Univ. (Japan). Agricultural Sciences

    2003-10-01

    A thermophilic and cyanide ion-tolerant bacterium, Bacillus stearothermophilus CN3 isolated from a hot spring in Japan, was found to produce thermostable {beta}-cyano-L-alanine synthase. The enzyme catalyzes the synthesis of {beta}-cyano-L-alanine from O-acetyl-L-serine and cyanide ions. The purified enzyme has a molecular mass of approximately 70 kDa and consists of two identical sub-units. It was stable in the pH range of 6.0 to 10.0 and up to 70degC. The enzyme also catalyzes the synthesis of various {beta}-substituted-L-alanine derivatives from O-acetyl-L-serine and nucleophilic reagents. The gene encoding the {beta}-cyano-L-alanine synthase was isolated from B. stearothermophilus CN3. Sequence homology analysis revealed that the {beta}-cyano-L-alanine synthase of the bacterium is O-acetyl-L-serine sulfhydrylase. A recombinant plasmid, constructed by ligation of the cloned gene and an expression vector, pKK223-3, was introduced into E. coli JM109. The transformed E. coli cells overexpressed {beta}-cyano-L-alanine synthase. Heat stable {beta}-cyano-L-alanine synthase can be applied to the synthesis of [4-{sup 11}C]L-2,4-diaminobutyric acid as a tracer for positron emission tomography. (author)

  7. Differential gene expression and adherence of Escherichia coli O157:H7 in vitro and in ligated pig intestines.

    Directory of Open Access Journals (Sweden)

    Xianhua Yin

    Full Text Available BACKGROUND: Escherichia coli O157:H7 strain 86-24 grown in MacConkey broth (MB shows almost no adherence to cultured epithelial cells but adheres well in pig ligated intestines. This study investigated the mechanisms associated with the difference between in-vitro and in-vivo adherence of the MB culture. METHODOLOGY/PRINCIPAL FINDINGS: It was found that decreased adherence in vitro by bacteria grown in MB was mainly due to lactose, possibly implicating the involvement of carbon catabolite repression (CCR. Expression of selected virulence-related genes associated with adherence and CCR was then examined by quantitative PCR. When bacteria were grown in MB and Brain Heart Infusion with NaHCO(3 (BHIN plus lactose, pH was reduced to 5.5-5.9 and there was a significant decrease in expression of the locus of enterocyte effacement (LEE genes eae, tir, espD, grlA/R and ler, and an increase in cya (cAMP, and two negative regulators of the LEE, gadE and hfq. Putative virulence genes stcE, hlyA, ent and nleA were also decreased in vitro. Reversal of these changes was noted for bacteria recovered from the intestine, where transcripts for qseF and fis and putative virulence factors AidA(15, TerC and Ent/EspL2 were significantly increased, and transcripts for AIDA(48, Iha, UreC, Efa1A, Efa1B, ToxB, EhxA, StcE, NleA and NleB were expressed at high levels. CONCLUSIONS/SIGNIFICANCE: Presence of lactose resulted in decreased expression of LEE genes and the failure of EHEC O157:H7 to adhere to epithelial cells in vitro but this repression was overcome in vivo. CCR and/or acidic pH may have played a role in repression of the LEE genes. Bacterial pathogens need to integrate their nutritional metabolism with expression of virulence genes but little is known of how this is done in E. coli O157:H7. This study indicates one aspect of the subject that should be investigated further.

  8. The Role of the Catechol-o-methyltransferase (COMT) Gene Val158Met in Aggressive Behavior, A Review of Genetic Studies

    Science.gov (United States)

    Qayyum, Arqam; Zai, Clement C.; Hirata, Yuko; Tiwari, Arun K.; Cheema, Sheraz; Nowrouzi, Behdin; Beitchman, Joseph H.; Kennedy, James L.

    2015-01-01

    Aggressive behaviors have become a major public health problem, and early-onset aggression can lead to outcomes such as substance abuse, antisocial personality disorder among other issues. In recent years, there has been an increase in research in the molecular and genetic underpinnings of aggressive behavior, and one of the candidate genes codes for the catechol-O-methyltransferase (COMT). COMT is involved in catabolizing catecholamines such as dopamine. These neurotransmitters appear to be involved in regulating mood which can contribute to aggression. The most common gene variant studied in the COMT gene is the Valine (Val) to Methionine (Met) substitution at codon 158. We will be reviewing the current literature on this gene variant in aggressive behavior. PMID:26630958

  9. P53 and Rb tumor suppressor gene alterations in gastric cancer Alterações dos genes supressores tumorais p53 e Rb no câncer gástrico

    Directory of Open Access Journals (Sweden)

    Rejane Mattar

    2004-01-01

    Full Text Available Inactivation of tumor suppressor genes has been frequently observed in gastric carcinogenesis. Our purpose was to study the involvement of p53, APC, DCC, and Rb genes in gastric carcinoma. METHOD: Loss of heterozygosity of the p53, APC, DCC and Rb genes was studied in 22 gastric cancer tissues using polymerase chain reaction; single-strand conformation polymorphism of the p53 gene exons 5-6 and exons 7-8 was studied using 35S-dATP, and p53 expression was detected using a histological immunoperoxidase method with an anti-p53 clone. RESULTS AND DISCUSSION: No loss of heterozygosity was observed in any of these tumor suppressor genes; homozygous deletion was detected in the Rb gene in 23% (3/13 of the cases of intestinal-type gastric carcinoma. Eighteen (81.8% cases showed band mobility shifts in exons 5-6 and/or 7-8 of the p53 gene. The presence of the p53 protein was positive in gastric cancer cells in 14 cases (63.6%. Normal gastric mucosa showed negative staining for p53; thus, the immunoreactivity was likely to represent mutant forms. The correlation of band mobility shift and the immunoreactivity to anti-p53 was not significant (P = .90. There was no correlation of gene alterations with the disease severity. CONCLUSIONS: The inactivation of Rb and p53 genes is involved in gastric carcinogenesis in our environment. Loss of the Rb gene observed only in the intestinal-type gastric cancer should be further evaluated in association with Helicobacter pylori infection. The p53 gene was affected in both intestinal and diffuse histological types of gastric cancer.A inativação de genes supressores tumorais tem sido freqüentemente observada na carcinogênese gástrica. O nosso objetivo foi estudar o envolvimento dos genes p53, APC, DCC e Rb no câncer gástrico. MÉTODO: Vinte e dois casos de câncer gástrico foram estudados por PCR-LOH (reação de polimerase em cadeia- perda de alelo heterozigoto dos genes p53, APC, DCC e Rb; e por PCR-SSCP (reação

  10. The genes and enzymes of sucrose metabolism in moderately thermophilic methanotroph Methylocaldum szegediense O12.

    Science.gov (United States)

    But, Sergey Y; Solntseva, Natalia P; Egorova, Svetlana V; Mustakhimov, Ildar I; Khmelenina, Valentina N; Reshetnikov, Alexander; Trotsenko, Yuri A

    2018-05-01

    Four enzymes involved in sucrose metabolism: sucrose phosphate synthase (Sps), sucrose phosphate phosphatase (Spp), sucrose synthase (Sus) and fructokinase (FruK), were obtained as his-tagged proteins from the moderately thermophilic methanotroph Methylocaldum szegediense O12. Sps, Spp, FruK and Sus demonstrated biochemical properties similar to those of other bacterial counterparts, but the translated amino acid sequences of Sps and Spp displayed high divergence from the respective microbial enzymes. The Sus of M. szegediense O12 catalyzed the reversible reaction of sucrose cleavage in the presence of ADP or UDP and preferred ADP as a substrate, thus implying a connection between sucrose and glycogen metabolism. Sus-like genes were found only in a few methanotrophs, whereas amylosucrase was generally used in sucrose cleavage in this group of bacteria. Like other microbial fructokinases, FruK of M. szegediense O12 showed a high specificity to fructose.

  11. The G209A mutation in the alpha-synuclein gene in Brazilian families with Parkinson's disease Mutação G209A no gene da alfa-sinucleína em famílias brasileiras com doença de Parkinson

    Directory of Open Access Journals (Sweden)

    Hélio A.G. Teive

    2001-09-01

    Full Text Available A missense G209A mutation of the alpha-synuclein gene was recently described in a large Contursi kindred with Parkinson's disease (PD. The objective of this study is to determine if the mutation G209A of the alpha-synuclein gene was present in 10 Brazilian families with PD. PD patients were recruited from movement disorders clinics of Brazil. A family history with two or more affected in relatives was the inclusion criterion for this study. The alpha-synuclein G209A mutation assay was made using polymerase chain reaction and the restriction enzyme Tsp45I. Ten patients from 10 unrelated families were studied. The mean age of PD onset was 42.7 years old. We did not find the G209A mutation in our 10 families with PD. Our results suggest that alpha-synuclein mutation G209A is uncommon in Brazilian PD families.Recentemente foi detectada mutação missense G209A no gene da alfa-sinucleína em uma grande família com doença de Parkinson (DP de Contursi, Itália. Este estudo tem o objetivo de determinar se a mutação G209A está presente em 10 famílias brasileiras com DP. Pacientes com DP foram recrutados em clínicas de distúrbio do movimento no Brasil. O critério de inclusão no estudo foi à presença de dois ou mais familiares acometidos pela DP. A mutação G209A do gene da alfa-sinucleína foi pesquisada usando a técnica de reação em cadeia de polimerase e a enzima de restrição Tsp45I. Foram estudados 10 pacientes de famílias não-relacionadas. A idade média do início dos sintomas da DP foi 42,7 anos. Não encontramos a mutação estudada neste grupo de pacientes. Nossos resultados sugerem que a mutação G209A é incomum em famílias brasileiras com DP.

  12. Molecular characterization of enteroinvasive Escherichia coli ipa genes by PCR-RFLP analysis Caracterização molecular do gene ipa de Escherichia coli enteroinvasora pela análise de PCR- RFLP

    Directory of Open Access Journals (Sweden)

    Adriana Gibotti

    2004-06-01

    Full Text Available In this study, polymorphism in ipa genes was found in five out of nine EIEC serotypes studied. When SalI and HindII were used in RFLP-PCR assays many EIEC serotypes showed polymorphism in ipaB and ipaD. On the other hand, no polymorphism was observed in ipaA and ipaC in these strains. The polymorphism present in EIEC strains is serotype-dependent, since restriction patterns were conserved amongst strains belonging to the same serotype. When IpaB deduced amino acid sequences of S. flexneri M90T and FBC124-13 were compared, ten amino acids changes could be observed mainly in the amino-terminal region. The deduced EIEC IpaD amino-acid sequence presented 91% similarity with the Shigella strain. In this case, amino acid changes were spread out through the whole structure, except in the carboxyl-terminal region.No presente estudo, foi encontrado polimorfismo no gene ipa em cinco sorotipos de EIEC, de nove estudados. Quando enzimas de restrição SalI e HindII foram utilizadas no ensaio de PCR-RFLP, amostras de EIEC apresentaram polimorfismo em ipaB e ipaD. Por outro lado, não foram observados polimorfismos nos genes ipaA e ipaC nestas cepas, quando diversas enzimas de restrição foram utilizadas. O polimorfismo presente em cepas de EIEC é sorotipo-dependente, uma vez que os padrões de restrição foram conservados entre as cepas pertencentes ao mesmo sorotipo. Quando a seqüência deduzida de aminoácidos de IpaB de S. flexneri M90T e FBC124-13 foram comparadas, mudanças foram observadas em dez aminoácidos na região amino-terminal. A seqüência deduzida de aminoácidos de IpaD de EIEC apresentou similaridade de 91% com a cepa de Shigella. Neste caso, mudanças de aminoácidos ocorreram em toda a estrutura da molécula de IpaD, exceto na região carboxi-terminal.

  13. Sekuen Nukleotida Gene Shiga like toxin-2 dari Isolat Lokal Escherichia coli O157:H7 asal Hewan dan Manusia (NUCLEOTIDES SQUENCES OF SHIGA-LIKE TOXIN 2 GENES OF ESCHERICHIA COLI O157:H7 LOCAL ISOLATES ORIGINATED FROM ANIMALS AND HUMAN

    Directory of Open Access Journals (Sweden)

    I Wayan Suardana

    2017-04-01

    Full Text Available Animals/livestock, especially cattle, are known as the main reservoir of Escherichia coli O157: H7. As the only one of zoonotic E. coli, the pathogenicity of these bacteria is determined by its ability to produce one or more very potent cytotoxin known as Shiga-like toxin (Stx or verocytotoxin, particularly of the Stx2 type that is closely related to the incidence of hemolytic uremic syndrome (HUS in humans. This study analyzed the nucleotide sequences of stx2 gene between isolates from animals and humans in an effort to assess the potential zoonoses of the agent. The research activity was initiated by cultivating 20 isolates of E. coli O157:H7 collection based on result in the previous study i.e. 2 isolates originated from cattle feces, 2 isolates originated from beef, 2 isolates originated from chicken feces, 2 isolates originated from human feces, and 12 non-clinical isolates originated from human fecal who were suffering with renal failure. All isolates were confirmed on selective medium Sorbitol MacConkey Agar (SMAC followed by testing on aglutination O157 latex test, and H7 antisera. Molecular analysis of stx2 gene covering open reading frame (ORF of the stx2 gene was performed using the primer which was designed by researcher i.e. Stx2 (F/Stx2 (R. The results showed, there were 2 isolates i.e. KL-48 (2 originated from human feces and SM-25 (1 originated from cattle feces were positive for carrying a stx2 gene, which was marked by the 1587 bp PCR product. Analysis of sequencing showed both isolates had identical to stx2 nucleotide squences with E. phaga 933 as well as E. coli ATCC 933. These results indicate the both local isolates are potential as zoonotic agents with clinical effects similar to E. phaga 933 and E. coli ATCC 43894. ABSTRAK Hewan ternak khususnya sapi, dikenal sebagai reservoir utama Escherichia coli O157:H7. Sebagai satu-satunya serotipe E. coli yang bersifat zoonosis, patogenitas bakteri ini ditentukan oleh kemampuannya

  14. Identificação do gene mcyA em florações naturais de Radiocystis fernandoi, em um tributário do reservatório de Rosana, Brasil = Identification of the mcyA gene in natural blooms of Radiocystis fernandoi from a tributary of the Rosana reservoir, Brazil

    Directory of Open Access Journals (Sweden)

    Iraúza Arroteia Fonseca

    2011-07-01

    Full Text Available As cianobactérias são conhecidamente produtoras de toxinas. Dentro de uma mesma espécie, podemos encontrar variedades tóxicas e não-tóxicas, impossíveis de diferenciação apenas pela morfologia. A principal toxina produzida pelas cianobactérias é a microcistina. Esta proteína é biossintetizada por um grupo de genes conhecidos como mcy. A detecção destes genes a partir de PCR permite a distinção das variedades tóxicas e nãotóxicas. Desse modo, o objetivo desse trabalho foi investigar a ocorrência de florações produtoras de toxinas em um rio tributário do reservatório de Rosana, via amplificação do gene mcyA por PCR. Foram coletadas duas amostras de água da subsuperfície. As duas amostras coletadas no rio do Corvo foram dominadas pela espécie Radiocystis fernandoi e apresentaram resultados positivos para a presença do gene mcyA, confirmando o potencial tóxico dessa espécie. Os resultados representam alerta sobre a qualidade da água do rio do Corvo. A técnica PCR foi eficiente para a rápida detecção de cianobactérias produtoras detoxinas, inclusive podendo ser utilizada antes mesmo do agravamento das condições ambientais pela produção de toxinas, além de apresentar baixo custo.Cyanobacterias are known as toxin producers. Within the same species, toxic and non-toxic varieties can be found and it is impossible to differentiate them only by morphology. The most important toxinproduced by cyanobacteria is microcystin. This protein is synthesized by a cluster of genes known as mcy. The detection of these genes by PCR allows the differentiation of the producing toxin strain from the non-producing toxin strain. Thus, the goal of this work was to investigate the occurrence of toxigenic blooms of cyanobacteria in the Corvo River through PCR amplification of mcyA gene. For this, two samples of blooms of cyanobacteria were collected in Corvo River. Both samples were dominated by Radiocystis fernandoi and presented

  15. Programa GENES: Aplicativo Computacional em Estatística Aplicada à Genética (GENES - Software for Experimental Statistics in Genetics

    Directory of Open Access Journals (Sweden)

    Cosme Damião Cruz

    1998-03-01

    Full Text Available The main purpose of the GENES software is to help people working with genetic analysis and data processing in breeding programs, using several biometrics models. This software has several help windows that are very friendly to the user. More information about this program is available in the book" Programa GENES - Aplicativo Computacional em Genética e Estatística, 442. 1997". Purchase orders are welcome at the following address: editora@mail.ufv.br. Shareware copies of the GENES software are available at http://www.genetica.dbg.ufv.br.RESUMO O programa GENES é um software destinado à análise e processamento de dados por meio de diferentes modelos biométricos. Seu uso é de grande importância em estudos genéticos aplicados ao melhoramento vegetal e animal, por permitir estimativa de parâmetros para entendimento de fenômenos biológicos e fundamentais em processo de tomada de decisão e na predição do sucesso e viabilidade da estratégia de seleção. O programa pode ser obtido pela rede Internet (http://www.genetica.dbg.ufv.br ou por solicitação pelo endereço: Departamento de Biologia Geral, Universidade Federal de Viçosa, 36571-000 Viçosa, MG, Brasil. O programa conta com telas de ajuda, tornando-o de fácil utilização. Informações adicionais sobre seu uso estão disponíveis no livro" Programa GENES - Aplicativo Computacional em Genética e Estatística, 442, 1997" adquirido por E-mail enviado para editora@mail.ufv.br.

  16. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    Science.gov (United States)

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Directory of Open Access Journals (Sweden)

    Yuanjun Li

    2016-08-01

    Full Text Available Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones, which include the xanthanolides. To date, the biogenesis of xanthanolides, especiallytheir downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that were highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of sesquiterpene lactones are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  18. Expressão do gene da leptina e seu receptor Ob-Rb no parênquima mamário de novilhas leiteiras Leptin and leptin receptor Ob-Rb gene expression in mammary parenchyma of dairy heifers

    Directory of Open Access Journals (Sweden)

    Betina Joyce Lew

    2012-05-01

    Full Text Available Objetivou-se com este trabalho avaliar os efeitos de uma dieta de alto nível de energia e proteína combinada com a aplicação de bST no perfil de expressão dos genes da leptina e de seu receptor Ob-Rb no parênquima mamário de novilhas leiteiras. Foram utilizadas amostras de parênquima mamário de 32 novilhas holandesas distribuídas aleatoriamente em quatro tratamentos (n=8: dieta com alto ou baixo teor de energia e proteína combinada ou não com a aplicação de bST. O delineamento utilizado foi em blocos casualizados com arranjo de tratamentos em esquema fatorial 2 × 2. A extração do RNA total das amostras de tecido foi feita e o nível de expressão gênica foi analisado por qRT-PCR utilizando-se o gene da glicuronidase β como controle, pelo método 2-ΔΔCt. Animais que receberam a dieta com alto conteúdo de energia e proteína apresentaram maior expressão de mRNA de leptina, com aumento de 56%, e menor expressão de mRNA do receptor Ob-Rb, com redução de 18%. Por outro lado, a aplicação de bST resultou em diminuição da expressão do mRNA de leptina e do receptor Ob-Rb em 74% e 23%, respectivamente. Não houve interação entre dieta e aplicação de bST. O aumento na expressão de leptina pode explicar, ao menos em parte, os efeitos negativos da dieta de alta energia e proteína, oferecida no período pré-púbere, sobre a produção de leite de novilhas leiteiras.The objective of this study was to examine the effects of a diet with high level of energy and protein, combined with bST injections, on leptin and leptin-receptor (Ob-Rb gene expression profile in the mammary parenchyma of dairy heifers. Mammary parenchyma samples from 32 Holstein heifers, randomly assigned to one of four treatments (n=8, were utilized: high or low energy and protein diet, with or without bST injection. The experiment was designed in randomized blocks and arranged in a 2 × 2 factorial arrangement. Total RNA was extracted from tissue samples

  19. Abundance and distribution of antibiotic resistance genes in a full-scale anaerobic-aerobic system alternately treating ribostamycin, spiramycin and paromomycin production wastewater.

    Science.gov (United States)

    Tang, Mei; Dou, Xiaomin; Wang, Chunyan; Tian, Zhe; Yang, Min; Zhang, Yu

    2017-12-01

    The occurrence of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) has been intensively investigated for wastewater treatment systems treating single class of antibiotic in recent years. However, the impacts of alternately occurring antibiotics in antibiotic production wastewater on the behavior of ARGs in biological treatment systems were not well understood yet. Herein, techniques including high-capacity quantitative PCR and quantitative PCR (qPCR) were used to investigate the behavior of ARGs in an anaerobic-aerobic full-scale system. The system alternately treated three kinds of antibiotic production wastewater including ribostamycin, spiramycin and paromomycin, which referred to stages 1, 2 and 3. The aminoglycoside ARGs (52.1-79.3%) determined using high-capacity quantitative PCR were the most abundant species in all sludge samples of the three stages. The total relative abundances of macrolide-lincosamide-streptogramin (MLS) resistance genes and aminoglycoside resistance genes measured using qPCR were significantly higher (P  0.05) in both aerobic and anaerobic sludge samples. In aerobic sludge, one acetyltransferase gene (aacA4) and the other three nucleotidyltransferase genes (aadB, aadA and aadE) exhibited positive correlations with intI1 (r 2  = 0.83-0.94; P < 0.05), implying the significance of horizontal transfer in their proliferation. These results and facts will be helpful to understand the abundance and distribution of ARGs from antibiotic production wastewater treatment systems.

  20. Methylenetetrahydrofolate reductase gene polymorphism is not related to the risk of ischemic cerebrovascular disease in a Brazilian population Polimorfismo no gene de metilenetetrahidrofolato redutase não está relacionado com o risco de doença cerebrovascular isquêmica em uma população brasileira

    Directory of Open Access Journals (Sweden)

    Samuel Katsuyuki Shinjo

    2007-01-01

    Full Text Available PURPOSE: Data are conflicting concerning the risk for ischemic stroke associated with a common polymorphism in the gene encoding 5,10-methylenetetrahydrofolate reductase C677T, which predisposes carriers to hyperhomocysteinemia. A meta-analysis study suggested that the 5,10-methylenetetrahydrofolate reductase 677TT genotype might have a small influence in determining susceptibility to ischemic stroke. METHODS: We analyzed the 5,10-methylenetetrahydrofolate reductase 677TT genotype polymorphism in Brazilian subjects with ischemic stroke, using a case-control design. RESULTS: We compared 5,10-methylenetetrahydrofolate reductase genotypes in groups of subjects presenting ischemic stroke (n = 127 and normal control (n = 126 and found an odds ratio of 1.97 (95% CI, 0.84-4.64 in a multivariate analysis in which results were adjusted to baseline clinical characteristics of study participants. CONCLUSION: We found that the homozygous 5,10-methylenetetrahydrofolate reductase C677T genotype was not a risk factor for ischemic stroke in these Brazilian subjects.OBJETIVO: Os dados são conflitantes em relação a risco de acidente cerebrovascular associado a polimorfismo do gene 5,10-metilenetetrahidrofolato redutase C677T, o qual predispõe a hiperhomocisteinemia. Um estudo de meta-análise sugere que o genotipo 5,10-metilenetetrahidrofolato redutase 677TT poderia ter uma pequena influência em determinar susceptibilidade a acidente cerebrovascular. MÉTODOS: Analisamos este polimorfismo em indivíduos brasileiros com acidente cerebrovascular isquêmico, baseando-se em um estudo de caso-controle. RESULTADOS: Comparamos os genótipos 5,10-metilenetetrahidrofolato redutase em grupos de indivíduos com acidente cerebrovascular isquêmico (n=127 e controle normal (n=126, e encontramos Odds Ratio de 1,97 (IC 95% 0,84 - 4,64 em uma análise multivariada, na qual os resultados foram ajustados a características clínicas basais dos indivíduos estudados. DISCUSSÃO

  1. Freqüência da mutação gene da síndrome do estresse suíno e sua associação com características reprodutivas em marrãs híbridas Frequency of the porcine stress sindrome gene mutation and its association with reproductive traits in crossbred gilts

    Directory of Open Access Journals (Sweden)

    Simone Eliza Facioni Guimarães

    1999-01-01

    Full Text Available O objetivo deste trabalho foi determinar a freqüência do gene causador da síndrome do estresse em suíno (PSS e sua associação com características reprodutivas em marrãs híbridas. Setenta e duas marrãs híbridas Landrace x Large White, provenientes de granjas comerciais localizadas na região de Ponte Nova - Minas Gerais, foram analisadas para a presença da mutação PSS. No diagnóstico da mutação feito por reação em cadeia da polimerase - polimorfismo de comprimento de fragmentos de restrição (PCR-RFLP, o fragmento de 659pb do gene ryr-1 foi amplificado e, nos mutantes a substituição de citosina por timina, que acarreta mudança de aminoácidos da proteína madura de arginina para cisteína nos animais afetados, foi identificado. Dados relativos ao número de leitões nascidos vivos, leitões nascidos com baixa viabilidade e leitões natimortos por leitegada, peso médio dos leitões ao nascer e repetições de cio foram analisados. Do total de marrãs analisadas, foram encontradas 13,88% de marrãs heterozigotas e nenhuma homozigota recessiva. Não houve efeito dos genótipos sobre as características analisadas.The objective of this work was to determine the frequency of the porcine stress sindrome (PSS gene mutation and its association with reproductive traits in crossbred gilts. Seventy two crossbred Landrace x Large White females from commercial farms of Ponte Nova region location - Minas Gerais State, were analyzed for the PSS mutation. The mutation diagnose was made by polimerase chain reaction - restriction fragment length polimorphism, where the 659pb fragment from the ryr-1 gene was amplifyied, and in the mutants the substitution of cytosine by thimine, that leads to the change in the mature protein amino acids from arginine to cysteine in the affected animals, was identified. Data relative to the number of piglets born alive, born alive with low viability and dead piglets per litter, average piglets born weight and

  2. BDNF gene polymorphism, cognition and symptom severity in a Brazilian population-based sample of first-episode psychosis subjects Polimorfismo do gene do BDNF, cognição e gravidade dos sintomas em uma amostra de base populacional brasileira de indivíduos apresentando o primeiro episódio psicótico

    Directory of Open Access Journals (Sweden)

    Eduardo Martinho Jr

    2012-10-01

    Full Text Available OBJECTIVE: To investigate the influence of brain-derived neurotrophic factor (BDNF gene variations on cognitive performance and clinical symptomatology in first-episode psychosis (FEP. METHODS: We performed BDNF val66met variant genotyping, cognitive testing (verbal fluency and digit spans and assessments of symptom severity (as assessed with the PANSS in a population-based sample of FEP patients (77 with schizophreniform psychosis and 53 with affective psychoses and 191 neighboring healthy controls. RESULTS: There was no difference in the proportion of Met allele carriers between FEP patients and controls, and no significant influence of BDNF genotype on cognitive test scores in either of the psychosis groups. A decreased severity of negative symptoms was found in FEP subjects that carried a Met allele, and this finding reached significance for the subgroup with affective psychoses (p OBJETIVO: Investigar a influência da variação do gene do fator neurotrófico derivado do cérebro (BDNF no desempenho cognitivo e na sintomatologia clínica durante o primeiro episódio psicótico (PEP. MÉTODOS: Foram realizados a genotipificação das variantes Val66met do BDNF, o teste cognitivo (fluência verbal e repetição de dígitos e as avaliações da gravidade dos sintomas (conforme avaliado pela Positive and Negative Syndrome Scale [PANSS] em uma amostra de pacientes com PEP de base populacional (77 com psicose esquizofreniforme e 53 com psicose afetiva e 191 vizinhos controle saudáveis. RESULTADOS: Não houve diferença na proporção de portadores do alelo Met entre pacientes com PEP e o grupo controle. Não houve influência significativa do genótipo do BDNF sobre a pontuação de cada um dos grupos psicóticos. Foi encontrada uma diminuição da gravidade dos sintomas negativos em sujeitos com PEP portadores do alelo Met, e essa descoberta mostrou-se significativa para o subgrupo com psicose afetiva (p < 0,01, ANOVA. CONCLUSÕES: Os

  3. Avaliação e seleção de progênies F3 de cafeeiros de porte baixo com o gene SH3 de resistência a Hemileia vastatrix Berk. et Br. Evaluation and selection of Coffea arabica F3 progenies with low height and the leaf-rust SH3 resistence gene

    Directory of Open Access Journals (Sweden)

    Albano Silva da Conceição

    2005-01-01

    Full Text Available Com o objetivo de avaliar e selecionar progênies F3 de cafeeiros de porte baixo com o gene SH3 de resistência à ferrugem, foram estudadas 36 progênies de cafeeiros tipo arábica (Coffea arabica L. , em geração F3, resultantes dos cruzamentos dirigidos entre as cultivares Catuaí Vermelho IAC 46 e Catuaí Vermelho IAC 81 com o acesso IAC 1110 (BA-10. Esse último, originário da Índia, é fonte dos genes SH2SH3 que conferem resistência a Hemileia vastatrix. O experimento, estabelecido em 1988 no Centro Experimental do Instituto Agronômico, em Campinas (SP, no delineamento experimental em blocos ao acaso com seis repetições, duas plantas por parcela e no espaçamento 3,0 x 1,8 m, utilizou como testemunha a cultivar Catuaí Vermelho IAC 81, totalizando 37 tratamentos. Avaliaram-se no campo, a produção de café (média de sete colheitas, vigor vegetativo, resistência à ferrugem, porte da planta, coloração das folhas novas e maturação dos frutos. Os frutos das plantas mais produtivas foram analisados em laboratório quanto ao rendimento, tipos de sementes, peneira média e massa de 1000 grãos. A análise da variância dos dados de produção das progênies evidenciou que houve diferenças significativas entre as progênies, ao nível de 1% de probabilidade, pelo teste F. Foram selecionadas 11 progênies com média superior à testemunha e dentro dessas, 39 cafeeiros. Das 25 progênies restantes foram selecionados mais 15 cafeeiros produtivos e resistentes ao agente da ferrugem. Desses 54 cafeeiros, foram selecionados os 18 que apresentaram peneira média acima de 15,5 e maior freqüência de grãos normais do tipo chato. As progênies dessas plantas selecionadas foram avaliadas na geração F4, em fase de mudas, quando se verificou que dez delas estavam em homozigoze para porte baixo. Com as 18 plantas, o Programa de Melhoramento do Café, no IAC, terá continuidade como progênies F4, visando à obtenção de nova cultivar de

  4. A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories.

    Directory of Open Access Journals (Sweden)

    Stephanie A Maddox

    Full Text Available The study of the cellular and molecular mechanisms underlying the consolidation and reconsolidation of traumatic fear memories has progressed rapidly in recent years, yet few compounds have emerged that are readily useful in a clinical setting for the treatment of anxiety disorders such as post-traumatic stress disorder (PTSD. Here, we use a combination of biochemical, behavioral, and neurophysiological methods to systematically investigate the ability of garcinol, a naturally-occurring histone acetyltransferase (HAT inhibitor derived from the rind of the fruit of the Kokum tree (Garcina indica, to disrupt the consolidation and reconsolidation of Pavlovian fear conditioning, a widely studied rodent model of PTSD. We show that local infusion of garcinol into the rat lateral amygdala (LA impairs the training and retrieval-related acetylation of histone H3 in the LA. Further, we show that either intra-LA or systemic administration of garcinol within a narrow window after either fear conditioning or fear memory retrieval significantly impairs the consolidation and reconsolidation of a Pavlovian fear memory and associated neural plasticity in the LA. Our findings suggest that a naturally-occurring compound derived from the diet that regulates chromatin function may be useful in the treatment of newly acquired or recently reactivated traumatic memories.

  5. Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: coexistence with vasoactive intestinal peptide and choline acetyltransferase

    International Nuclear Information System (INIS)

    Leblanc, G.C.; Trimmer, B.A.; Landis, S.C.

    1987-01-01

    Neuropeptide Y (NPY) is widely distributed in the sympathetic nervous system, where it is colocalized with norepinephrine. The authors report here that NPY-immunoreactive neurons are also abundant in three cranial parasympathetic ganglia, the otic, sphenopalatine, and ciliary, in the rat measured by radioimmunoassay. High-performance liquid chromatographic analysis of the immunoreactive material present in the otic ganglion indicates that this material is very similar to porcine NPY and indistinguishable from the NPY-like immunoreactivity present in rat sympathetic neurons. These findings raise the possibility that NPY acts as a neuromodulator in the parasympathetic as well as the sympathetic nervous system. In contrast to what had been observed for sympathetic neurons, NPY-immunoreactive neurons in cranial parasympathetic ganglia do not contain detectable catecholamines or tyrosine hydroxylase immunoreactivity, and many do contain immunoreactivity for vasoactive intestinal peptide and/or choline acetyltransferase. These findings suggest that there is no simple rule governing coexpression of NPY with norepinephrine, acetylcholine, or vasoactive intestinal peptide in autonomic neurons. Further, while functional studies have indicated that NPY exerts actions on the peripheral vasculature which are antagonistic to those of acetylcholine and vasoactive intestinal peptide, the present results raise the possibility that these three substances may have complementary effects on other target tissues

  6. A Naturally-Occurring Histone Acetyltransferase Inhibitor Derived from Garcinia indica Impairs Newly Acquired and Reactivated Fear Memories

    Science.gov (United States)

    Maddox, Stephanie A.; Watts, Casey S.; Doyère, Valérie; Schafe, Glenn E.

    2013-01-01

    The study of the cellular and molecular mechanisms underlying the consolidation and reconsolidation of traumatic fear memories has progressed rapidly in recent years, yet few compounds have emerged that are readily useful in a clinical setting for the treatment of anxiety disorders such as post-traumatic stress disorder (PTSD). Here, we use a combination of biochemical, behavioral, and neurophysiological methods to systematically investigate the ability of garcinol, a naturally-occurring histone acetyltransferase (HAT) inhibitor derived from the rind of the fruit of the Kokum tree (Garcina indica), to disrupt the consolidation and reconsolidation of Pavlovian fear conditioning, a widely studied rodent model of PTSD. We show that local infusion of garcinol into the rat lateral amygdala (LA) impairs the training and retrieval-related acetylation of histone H3 in the LA. Further, we show that either intra-LA or systemic administration of garcinol within a narrow window after either fear conditioning or fear memory retrieval significantly impairs the consolidation and reconsolidation of a Pavlovian fear memory and associated neural plasticity in the LA. Our findings suggest that a naturally-occurring compound derived from the diet that regulates chromatin function may be useful in the treatment of newly acquired or recently reactivated traumatic memories. PMID:23349897

  7. Non-specific activities of the major herbicide-resistance gene BAR.

    Science.gov (United States)

    Christ, Bastien; Hochstrasser, Ramon; Guyer, Luzia; Francisco, Rita; Aubry, Sylvain; Hörtensteiner, Stefan; Weng, Jing-Ke

    2017-12-01

    Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops 1-4 . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids 1 , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes 5,6 . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.

  8. Carcinoma epidermóide do pulmão: Polissomia e amplificação do cromossoma 7 e do gene EGRF com forma wild type nos exões 19 e 21

    Directory of Open Access Journals (Sweden)

    Patrícia Couceiro

    2010-05-01

    Full Text Available Resumo: Objectivo: O receptor do factor de crescimento epidérmico (EGFR está sobreexpresso na maioria dos carcinomas do pulmão de não pequenas células (CPNPC e é um dos principais alvos específicos dos inibidores da tirosina cinase (TKI utilizados para o tratamento do CPNPC avançado. Apesar disto, há um considerável número de factores biológicos que também estão associados à resposta dos EGFR-TKIs. Este estudo teve como principal objectivo a pesquisa de mutações somáticas e amplificação do EGFR em casos de carcinoma epidermóide do pulmão. Material e métodos: Secções representativas de carcinoma epidermóide foram seleccionadas de 54 casos em que o tecido estava fixado em formal e incluído em parafina, sendo depois submetidos à construção de TMA. A determinação da expressão proteica do EGFR foi feita por imunoistoquímica (IHQ (Zymed, laboratórios. A hibridização in situ de fluorescência (FISH foi realizada com a sonda EGFR LSI / CEP 7 (Vysis; Abbott Molecular, EUA. O ADN genómico foi extraído de 48 casos, amplificado por reacção em cadeia da polimerase (PCR para pesquisa de mutações nos exões 19 (deleções e 21 (mutações pontuais. Todos os casos expressaram positividade para a citoqueratina de alto peso molecular e foi observada negatividade para CK7, CD56 e cromogranina. Resultados: A sobreexpressão proteica do EGFR foi identificada em 49 casos, pela aplicação do score de Hirsh/ Cappuzzo (2005. A pesquisa de alterações génicas no cromossoma 7 e do gene EGFR foram analisadas por FISH e de acordo com o método de Cappuzzo (2005, foi identificada alta polissomia em 31 casos e amplificação em 7 casos. Por electroforese capilar, foram detectadas no exão 19 do EGFR: deleções em heterozigotia em 3 dos 48 casos estudados e o exão 21 apresentou-se sempre na sua forma wild-type, quando estudado por enzimas de restrição. Conclusões: A detecção de deleções e mutações pontuais no EGFR

  9. A importância do gene p53 na carcinogênese humana The importance of the p53 gene in human carcinogenesis

    Directory of Open Access Journals (Sweden)

    Agnes C. Fett-Conte

    2002-04-01

    Full Text Available Existem várias razões que justificam o título de "guardião do genoma" do gene P53. Seu envolvimento, direto ou indireto, tem sido observado na etiopatogenia de praticamente todas as neoplasias humanas, incluindo as leucemias e linfomas. Conhecer seus mecanismos de ação é fundamental para compreender os aspectos moleculares da carcinogênese. O presente trabalho apresenta uma revisão sobre as características deste gene e sua importância no diagnóstico, prognóstico e terapêutica, o que faz dele um alvo em potencial das estratégias de terapia gênica.There are several reasons which justify the name of 'guardian of the genome' given to the P53 gene. Its involvement either directly or indirectly has been observed in the pathology of practically all human neoplasias, including leukemia and lymphomas. Knowledge of its mechanisms of action is fundamental to understand molecular aspects of carcinogenesis. This work presents a revision of the characteristics of this gene and its importance in the diagnosis, prognosis and treatment and why this makes it a potential target for gene therapy strategies.

  10. Seleção e caracterização molecular de isolados de Bacillus thuringiensis para o controle de Spodoptera spp.

    Directory of Open Access Journals (Sweden)

    Kelly Christiane Constanski

    2015-08-01

    Full Text Available Resumo:O objetivo deste trabalho foi selecionar e caracterizar molecularmente isolados de Bacillus thuringiensistóxicos a Spodoptera eridaniaeS. frugiperda. Trinta e quatro isolados foram submetidos ao bioensaio, dos quais três foram selecionados e usados para a estimativa da CL50. Os isolados selecionados não diferiram da linhagem padrão HD-1. Na caracterização molecular, identificou-se a presença dos genes cry1 e cry2, nos isolados BR37 e BR94, e dos genes cry4A, cry4B, cry10, cry11 e cyt1 no isolado BR58, o que confirmou o perfil proteico obtido de 130, 70 e 65 kDa. Foram identificados cristais bipiramidais e esféricos. O isolado BR58, apesar de não conter os genes relacionados à toxicidade a Lepidoptera, causa mortalidade em ambas as espécies

  11. Protection of hematopoietic cells from O(6)-alkylation damage by O(6)-methylguanine DNA methyltransferase gene transfer: studies with different O(6)-alkylating agents and retroviral backbones.

    Science.gov (United States)

    Jansen, M; Bardenheuer, W; Sorg, U R; Seeber, S; Flasshove, M; Moritz, T

    2001-07-01

    Overexpression of O(6)-methylguanine DNA methyltransferase (MGMT) can protect hematopoietic cells from O(6)-alkylation damage. To identify possible clinical applications of this technology we compared the effect of MGMT gene transfer on the hematotoxicity induced by different O(6)-alkylating agents in clinical use: the chloroethylnitrosoureas ACNU, BCNU, CCNU and the tetrazine derivative temozolomide. In addition, various retroviral vectors expressing the MGMT-cDNA were investigated to identify optimal viral backbones for hematoprotection by MGMT expression. Protection from ACNU, BCNU, CCNU or temozolomide toxicity was evaluated utilizing a Moloney murine leukemia virus-based retroviral vector (N2/Zip-PGK-MGMT) to transduce primary murine bone marrow cells. Increased resistance in murine colony-forming units (CFU) was demonstrated for all four drugs. In comparison to mock-transduced controls, after transduction with N2/Zip-PGK-MGMT the IC50 for CFU increased on average 4.7-fold for ACNU, 2.5-fold for BCNU, 6.3-fold for CCNU and 1.5-fold for temozolomide. To study the effect of the retroviral backbone on hematoprotection various vectors expressing the human MGMT-cDNA from a murine embryonic sarcoma virus LTR (MSCV-MGMT) or a hybrid spleen focus-forming/murine embryonic sarcoma virus LTR (SF1-MGMT) were compared with the N2/Zip-PGK-MGMT vector. While all vectors increased resistance of transduced human CFU to ACNU, the SF1-MGMT construct was most efficient especially at high ACNU concentrations (8-12 microg/ml). Similar results were obtained for protection of murine high-proliferative-potential colony-forming cells. These data may help to optimize treatment design and retroviral constructs in future clinical studies aiming at hematoprotection by MGMT gene transfer.

  12. Interação entre qualidade do meio ambiente, estresse e a variação do gene APOE na determinação da suscetibilidade à fibromialgia Association between environmental quality, stress and APOE gene variation in fibromyalgia susceptibility determination

    Directory of Open Access Journals (Sweden)

    Roze Mary Ribas Becker

    2010-12-01

    Full Text Available INTRODUÇÃO: A fibromialgia se trata de uma desordem multifatorial, cuja etiologia reside na interação entre a susceptibilidade genética e o ambiente. No entanto, poucos trabalhos procuram detectar quais seriam os fatores considerados de risco. OBJETIVO: Investigar a influência genética e sua interação com qualidade ambiental e com estresse como possíveis fatores de risco para o desenvolvimento da fibromialgia. PACIENTES E MÉTODOS: Neste estudo transversal, foram investigados dois grupos de mulheres, sendo 47 com diagnóstico clínico de fibromialgia, e 41 mulheres do grupo controle, todas da comunidade de Novo Hamburgo, RS. O polimorfismo do gene da apolipoproteína E (APOE foi analisado, a partir do DNA extraído do sangue total de ambas as amostras. Os fatores ambientais foram avaliados através do inventário de sintomas para adultos de Lipp (ISSL, para a averiguação do estresse comportamental, e da aplicação do domínio V do WHOQOL-100. RESULTADOS: Dentre as pacientes, foram encontradas mais mulheres com níveis altos de estresse, quando comparado à amostra controle (P INTRODUCTION: Fibromyalgia is a multifactorial disease, of which etiology is based on interaction between genetic susceptibility and environment. However, few studies attempted to identify the risk factors. OBJECTIVE: To investigate the genetic influence and its interaction with environmental quality and stress, as possible risk factors for fibromyalgia development. PATIENTS AND METHODS: This cross-sectional study investigated two groups of women, of which 47 had a clinical diagnosis of fibromyalgia, and 41 women comprising thre control group, all from the town of Novo Hamburgo, RS. The apolipoprotein E (APOE gene polymorphism was analyzed in DNA extracted from total blood, in both samples. Environmental factors were studied through Lipp's Inventory of Stress Symptoms for Adults and by applying the WHOQOL-100 domain V. RESULTS: Among the patients, more women

  13. Genetic variation in PCAF, a key mediator in epigenetics, is associated with reduced vascular morbidity and mortality: evidence for a new concept from three independent prospective studies

    NARCIS (Netherlands)

    Pons, D.; Trompet, S.; Craen, A.J.M.; Thijssen, P.E.; Quax, P.H.A.; de Vries, M.R.; Wierda, R.J.; van den Elsen, P.J.; Monraats, P.S.; Ewing, M.M.; Heijmans, B.T.; Slagboom, P.E.; Zwinderman, A.H.; Doevendans, P.A.F.M.; Tio, R.A.; de Winter, R.J.; de Maat, M.P.M.; Lakoubova, O.A.; Sattar, N.; Sheperd, J.; Westendorp, R.G.J.; Jukema, J.W.

    2011-01-01

    Aims: This study was designed to investigate the counterbalancing influence of genetic variation in the promoter of the gene encoding P300/CBP associated factor (PCAF), a lysine acetyltransferase (KAT), on coronary heart disease (CHD) and mortality. Methods and results: The association of genetic

  14. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors.

    Science.gov (United States)

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-04-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.

  15. Single residue mutation in active site of serine acetyltransferase isoform 3 from Entamoeba histolytica assists in partial regaining of feedback inhibition by cysteine.

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar

    Full Text Available The cysteine biosynthetic pathway is essential for survival of the protist pathogen Entamoeba histolytica, and functions by producing cysteine for countering oxidative attack during infection in human hosts. Serine acetyltransferase (SAT and O-acetylserine sulfhydrylase (OASS are involved in cysteine biosynthesis and are present in three isoforms each. While EhSAT1 and EhSAT2 are feedback inhibited by end product cysteine, EhSAT3 is nearly insensitive to such inhibition. The active site residues of EhSAT1 and of EhSAT3 are identical except for position 208, which is a histidine residue in EhSAT1 and a serine residue in EhSAT3. A combination of comparative modeling, multiple molecular dynamics simulations and free energy calculation studies showed a difference in binding energies of native EhSAT3 and of a S208H-EhSAT3 mutant for cysteine. Mutants have also been generated in vitro, replacing serine with histidine at position 208 in EhSAT3 and replacing histidine 208 with serine in EhSAT1. These mutants showed decreased affinity for substrate serine, as indicated by K(m, compared to the native enzymes. Inhibition kinetics in the presence of physiological concentrations of serine show that IC50 of EhSAT1 increases by about 18 folds from 9.59 µM for native to 169.88 µM for H208S-EhSAT1 mutant. Similar measurements with EhSAT3 confirm it to be insensitive to cysteine inhibition while its mutant (S208H-EhSAT3 shows a gain of cysteine inhibition by 36% and the IC50 of 3.5 mM. Histidine 208 appears to be one of the important residues that distinguish the serine substrate from the cysteine inhibitor.

  16. Molecular Structure of WlbB, a Bacterial N-Acetyltransferase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Thoden, James B.; Holden, Hazel M. (UW)

    2010-09-08

    The pathogenic bacteria Pseudomonas aeruginosa and Bordetella pertussis contain in their outer membranes the rare sugar 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Five enzymes are required for the biosynthesis of this sugar starting from UDP-N-acetylglucosamine. One of these, referred to as WlbB, is an N-acetyltransferase that converts UDP-2-acetamido-3-amino-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NA) to UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NAcA). Here we report the three-dimensional structure of WlbB from Bordetella petrii. For this analysis, two ternary structures were determined to 1.43 {angstrom} resolution: one in which the protein was complexed with acetyl-CoA and UDP and the second in which the protein contained bound CoA and UDP-GlcNAc3NA. WlbB adopts a trimeric quaternary structure and belongs to the L{beta}H superfamily of N-acyltransferases. Each subunit contains 27 {beta}-strands, 23 of which form the canonical left-handed {beta}-helix. There are only two hydrogen bonds that occur between the protein and the GlcNAc3NA moiety, one between O{sup {delta}1} of Asn 84 and the sugar C-3{prime} amino group and the second between the backbone amide group of Arg 94 and the sugar C-5{prime} carboxylate. The sugar C-3{prime} amino group is ideally positioned in the active site to attack the si face of acetyl-CoA. Given that there are no protein side chains that can function as general bases within the GlcNAc3NA binding pocket, a reaction mechanism is proposed for WlbB whereby the sulfur of CoA ultimately functions as the proton acceptor required for catalysis.

  17. Microarray profiling of progesterone-regulated endometrial genes during the rhesus monkey secretory phase

    Directory of Open Access Journals (Sweden)

    Okulicz William C

    2004-07-01

    Full Text Available Abstract Background In the endometrium the steroid hormone progesterone (P, acting through its nuclear receptors, regulates the expression of specific target genes and gene networks required for endometrial maturation. Proper endometrial maturation is considered a requirement for embryo implantation. Endometrial receptivity is a complex process that is spatially and temporally restricted and the identity of genes that regulate receptivity has been pursued by a number of investigators. Methods In this study we have used high density oligonucleotide microarrays to screen for changes in mRNA transcript levels between normal proliferative and adequate secretory phases in Rhesus monkey artificial menstrual cycles. Biotinylated cRNA was prepared from day 13 and days 21–23 of the reproductive cycle and transcript levels were compared by hybridization to Affymetrix HG-U95A arrays. Results Of ~12,000 genes profiled, we identified 108 genes that were significantly regulated during the shift from a proliferative to an adequate secretory endometrium. Of these genes, 39 were up-regulated at days 21–23 versus day 13, and 69 were down-regulated. Genes up-regulated in P-dominant tissue included: secretoglobin (uteroglobin, histone 2A, polo-like kinase (PLK, spermidine/spermine acetyltransferase 2 (SAT2, secretory leukocyte protease inhibitor (SLPI and metallothionein 1G (MT1G, all of which have been previously documented as elevated in the Rhesus monkey or human endometrium during the secretory phase. Genes down-regulated included: transforming growth factor beta-induced (TGFBI or BIGH3, matrix metalloproteinase 11 (stromelysin 3, proenkephalin (PENK, cysteine/glycine-rich protein 2 (CSRP2, collagen type VII alpha 1 (COL7A1, secreted frizzled-related protein 4 (SFRP4, progesterone receptor membrane component 1 (PGRMC1, chemokine (C-X-C ligand 12 (CXCL12 and biglycan (BGN. In addition, many novel/unknown genes were also identified. Validation of array data

  18. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process.

    Science.gov (United States)

    Xu, Jidi; Xu, Haidan; Liu, Yuanlong; Wang, Xia; Xu, Qiang; Deng, Xiuxin

    2015-01-01

    In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses.

  19. A conservative region of the mercuric reductase gene (merA as a molecular marker of bacterial mercury resistance Região conservada do gene da mercúrio redutase (merA como marcador molecular da resistência bacteriana ao mercúrio

    Directory of Open Access Journals (Sweden)

    Adriana Sotero-Martins

    2008-06-01

    Full Text Available The most common bacterial mercury resistance mechanism is based on the reduction of Hg(II to Hg0, which is dependent of the mercuric reductase enzyme (MerA activity. The use of a 431 bp fragment of a conservative region of the mercuric reductase (merA gene was applied as a molecular marker of this mechanism, allowing the identification of mercury resistant bacterial strains.O mecanismo de resistência bacteriana ao mercúrio mais comum é baseada na redução do Hg(II a Hg0, através da atividade da enzima mercúrio redutase (MerA. O uso do fragmento de 431 pb amplificado de uma região conservada do gene merA, que codifica a enzima MerA,foi utilizado como marcador molecular deste mecanismo, permitindo a identificação de bactérias resistentes ao mercúrio.

  20. Genes e epilepsia I: epilepsia e alterações genéticas Genes and epilepsy I: epilepsy and genetic alterations

    Directory of Open Access Journals (Sweden)

    Daniel L. G. Gitaí

    2008-06-01

    Full Text Available INTRODUÇÃO: Epilepsia é uma desordem neurológica caracterizada por crises espontâneas e recorrentes, que afeta de 2% a 3 % da população mundial. As crises epilépticas refletem atividade elétrica anormal e paroxística, preferencialmente em uma ou várias áreas do córtex cerebral, que podem ser causadas por inúmeras patologias estruturais ou neuroquímicas. Dentre os importantes estudos das últimas décadas no campo da epileptologia, destaca-se a identificação de genes associados a certos tipos de epilepsia. OBJETIVO: Nesta revisão, descrevemos as principais alterações genéticas associadas ao processo epileptogênico, discutindo as mais recentes descobertas e suas contribuições para a compreensão das bases genéticas das epilepsias idiopáticas monogênicas (EIM e das epilepsias geneticamente complexas. RESULTADOS E CONCLUSÃO: Estudos de ligação e associação mostram que alterações em genes que codificam canais iônicos são as principais causas genéticas das epilepsias idiopáticas monogênicas e de predisposição nas epilepsias geneticamente complexas. Além disso, as síndromes nas quais a epilepsia é um aspecto importante do quadro clínico podem ser provocadas por genes envolvidos em diferentes vias celulares, tais como: migração neuronal, metabolismo de glicogênio e cadeia respiratória. Portanto, acredita-se que diferentes categorias de genes possam atuar na determinação do traço epiléptico. A identificação de tais famílias de geneso apenas nos ajudará a entender as vias moleculares associadas à hiperexcitabilidade neuronal e ao processo epileptogênico, mas também poderá conduzir ao desenvolvimento de novas e mais precisas estratégias de tratamento da epilepsia.INTRODUCTION: Epilepsy is a neurological disorder characterized by spontaneous and recurrent seizures with an estimated prevalence of 2-3 % in the world population. Epileptic seizures are the result of paroxystic and

  1. ATM Mediates pRB Function To Control DNMT1 Protein Stability and DNA Methylation

    Science.gov (United States)

    Suzuki, Misa; Hayashi, Naoyuki; Kobayashi, Masahiko; Sasaki, Nobunari; Nishiuchi, Takumi; Doki, Yuichiro; Okamoto, Takahiro; Kohno, Susumu; Muranaka, Hayato; Kitajima, Shunsuke; Yamamoto, Ken-ichi

    2013-01-01

    The retinoblastoma tumor suppressor gene (RB) product has been implicated in epigenetic control of gene expression owing to its ability to physically bind to many chromatin modifiers. However, the biological and clinical significance of this activity was not well elucidated. To address this, we performed genetic and epigenetic analyses in an Rb-deficient mouse thyroid C cell tumor model. Here we report that the genetic interaction of Rb and ATM regulates DNMT1 protein stability and hence controls the DNA methylation status in the promoters of at least the Ink4a, Shc2, FoxO6, and Noggin genes. Furthermore, we demonstrate that inactivation of pRB promotes Tip60 (acetyltransferase)-dependent ATM activation; allows activated ATM to physically bind to DNMT1, forming a complex with Tip60 and UHRF1 (E3 ligase); and consequently accelerates DNMT1 ubiquitination driven by Tip60-dependent acetylation. Our results indicate that inactivation of the pRB pathway in coordination with aberration in the DNA damage response deregulates DNMT1 stability, leading to an abnormal DNA methylation pattern and malignant progression. PMID:23754744

  2. Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction.

    Science.gov (United States)

    Tetteh, Antonia Y; Sun, Katherine H; Hung, Chiu-Yueh; Kittur, Farooqahmed S; Ibeanu, Gordon C; Williams, Daniel; Xie, Jiahua

    2014-01-01

    Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se(0)), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼ 50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼ 30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.

  3. Fluxo gênico em soja na Região Oeste do Paraná Soybean gene flow in the Western Region of Paraná

    Directory of Open Access Journals (Sweden)

    Ivan Schuster

    2007-04-01

    Full Text Available Este trabalho teve o objetivo de avaliar o fluxo gênico em soja, na Região Oeste do Paraná. Foram semeados cinco círculos concêntricos, com a cultivar CD 219RR, que contém o gene CP4 EPSPS. Os círculos foram espaçados em 50 cm, com círculo interno de diâmetro de 50 cm. Externamente a estes, foi semeada a cultivar CD 211 (convencional, também em cinco círculos concêntricos, espaçados em 1 m. As plantas da cultivar CD 211 foram colhidas e trilhadas individualmente, e as sementes semeadas novamente no campo. Após a emergência, foram obtidas 151.772 plântulas, as quais, com 15 dias, foram pulverizadas com 900 g ha-1 de i.a. de glifosato. Após uma semana, plantas sobreviventes foram submetidas à análise de PCR, para verificar a presença do gene CP4 EPSPS. A taxa de fecundação cruzada foi de 0,61, 0,29, 0,23, 0,22 e 0,23% respectivamente a 1, 2, 3, 4 e 5 m de distância das plantas geneticamente modificadas.The objective of this work was to evaluate soybean gene flow in the Western Region of Paraná. Five concentric circles were sowed with the CD 219RR cultivar, which contains the CP4 EPSPS gene. The circles were spaced in 50 cm and the central circle had 50 cm in diameter. Externally to the CD 219RR circles, five concentric circles were sowed with CD 211 cultivar, a no genetically modified soybean, spaced of 1 m. The CD 211 plants were harvested and threshed separately and the seeds were sowed again. After the emergency, 151,772 seedlings were obtained, which with 15 days were sprayed with 900 g ha-1 a.i. of glyphosate. After one week, the surviving plants were analysed by PCR to verify the CP4 EPSPS gene presence. The cross-pollinating rate was 0.61, 0.29, 0.23, 0.22 and 0.23% in 1, 2, 3, 4 and 5 m distance of the genetically modified plants, respectively.

  4. Murillo y los orígenes de la iconografía del Niño Jesús dormido sobre la cruz

    Directory of Open Access Journals (Sweden)

    Nerea V. Pérez López

    2015-01-01

    Full Text Available Murillo realizó varias pinturas del Niño Jesús dormido sobre la cruz, creando una serie de modelos iconográficos que fueron muy seguidos. Aunque es un tema en auge en la Contrarreforma, sus orígenes se encuentran en las visiones de santas, en los textos religiosos y literarios y en la adaptación de otras tipologías iconográficas de origen pagano, alegórico y religioso. En este artículo se rastrean los orígenes de la iconografía del Niño Jesús dormido y su presencia en la obra del pintor español Murillo.

  5. Importância de polimorfismos de genes reguladores de citocinas em transplantes de células progenitoras hematopoiéticas Importance of regulatory cytokine gene polymorphisms in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Jeane Eliete Laguila Visentainer

    2008-12-01

    Full Text Available A compatibilidade genética HLA entre doador e receptor é um fator importante para o sucesso do transplante de células progenitoras hematopoiéticas (TCPH. No entanto, outros geneso-HLA estão sendo investigados em relação ao seu papel na incidência e gravidade da doença do enxerto contra o hospedeiro e na sobrevida, por modularem a intensidade da inflamação e os danos teciduais. Estes genes, não-HLA, incluem os genes de citocinas com polimorfismos dentro das seqüências 5' ou 3' regulatórias dos genes. Os polimorfismos ou microssatélites podem alterar a ligação dos fatores de transcrição aos sítios dentro dos genes promotores e a quantidade de citocina produzida. Este estudo revisa o papel potencial destes polimorfismos genéticos relativos às citocinas em prever o curso do TCPH.HLA genetic matching of donor and recipient is an important requirement for optimizing outcome following hematopoietic stem cell transplantation (HSCT. However, other non-HLA genes are being investigated for their role in graft-versus-host disease incidence and severity and in survival, by modulating the intensity of inflammation and tissue injury. These non-HLA-encoded genes include cytokine genes with polymorphisms within the 5' or 3' regulatory sequences of the genes. The polymorphisms or microsatellites may alter the transcription factor binding sites within the gene promoters and the amount of cytokine produced. This chapter summarizes the potential role of these genetic polymorphisms regarding the cytokines in predicting outcome of HSCT.

  6. Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba.

    Science.gov (United States)

    Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T

    1999-11-05

    The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

  7. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum.

    Science.gov (United States)

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder; Milton, Debra L

    2011-12-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ(54) and the σ(54)-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment.

  8. A genetic screen identifies interferon-α effector genes required to suppress hepatitis C virus replication.

    Science.gov (United States)

    Fusco, Dahlene N; Brisac, Cynthia; John, Sinu P; Huang, Yi-Wen; Chin, Christopher R; Xie, Tiao; Zhao, Hong; Jilg, Nikolaus; Zhang, Leiliang; Chevaliez, Stephane; Wambua, Daniel; Lin, Wenyu; Peng, Lee; Chung, Raymond T; Brass, Abraham L

    2013-06-01

    Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon-α (IFNα) is an important component of anti-HCV therapy; it up-regulates transcription of IFN-stimulated genes, many of which have been investigated for their antiviral effects. However, all of the genes required for the antiviral function of IFNα (IFN effector genes [IEGs]) are not known. IEGs include not only IFN-stimulated genes, but other nontranscriptionally induced genes that are required for the antiviral effect of IFNα. In contrast to candidate approaches based on analyses of messenger RNA (mRNA) expression, identification of IEGs requires a broad functional approach. We performed an unbiased genome-wide small interfering RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with small interfering RNAs incubated with IFNα and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. The screen identified 120 previously unreported IEGs. From these, we more fully evaluated the following: asparagine-linked glycosylation 10 homolog (yeast, α-1,2-glucosyltransferase); butyrylcholinesterase; dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2); glucokinase (hexokinase 4) regulator; guanylate cyclase 1, soluble, β 3; MYST histone acetyltransferase 1; protein phosphatase 3 (formerly 2B), catalytic subunit, β isoform; peroxisomal proliferator-activated receptor-γ-DBD-interacting protein 1; and solute carrier family 27 (fatty acid transporter), member 2; and demonstrated that they enabled IFNα-mediated suppression of HCV at multiple steps of its life cycle. Expression of these genes had more potent effects against flaviviridae because a subset was required for IFNα to suppress dengue virus but not influenza A virus. In addition, many of the host genes detected in this

  9. Physical mapping and cloning of RAD56

    DEFF Research Database (Denmark)

    Mathiasen, David P; Gallina, Irene; Germann, Susanne Manuela

    2013-01-01

    Here we report the physical mapping of the rad56-1 mutation to the NAT3 gene, which encodes the catalytic subunit of the NatB N-terminal acetyltransferase in Saccharomyces cerevisiae. Mutation of RAD56 causes sensitivity to X-rays, methyl methanesulfonate, zeocin, camptothecin and hydroxyurea...

  10. HDAC Inhibition Modulates Hippocampus-Dependent Long-Term Memory for Object Location in a CBP-Dependent Manner

    Science.gov (United States)

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation…

  11. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake.

    Science.gov (United States)

    Nikonova, Elena V; Gilliland, Jason DA; Tanis, Keith Q; Podtelezhnikov, Alexei A; Rigby, Alison M; Galante, Raymond J; Finney, Eva M; Stone, David J; Renger, John J; Pack, Allan I; Winrow, Christopher J

    2017-06-01

    To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Alexandra Dumitriu

    2012-06-01

    Full Text Available Parkinson disease (PD is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9 of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1 transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes, suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs selected from a recent meta-analysis of PD genome-wide association studies (GWAS were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK gene and a probe in the spermine oxidase (SMOX gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.

  13. Experimental study of vascularized nerve graft: evaluation of nerve regeneration using choline acetyltransferase activity.

    Science.gov (United States)

    Iwai, M; Tamai, S; Yajima, H; Kawanishi, K

    2001-01-01

    A comparative study of nerve regeneration was performed on vascularized nerve graft (VNG) and free nerve graft (FNG) in Fischer strain rats. A segment of the sciatic nerve with vascular pedicle of the femoral artery and vein was harvested from syngeneic donor rat for the VNG group and the sciatic nerve in the same length without vascular pedicle was harvested for the FNG group. They were transplanted to a nerve defect in the sciatic nerve of syngeneic recipient rats. At 2, 4, 6, 8, 12, 16, and 24 weeks after operation, the sciatic nerves were biopsied and processed for evaluation of choline acetyltransferase (CAT) activity, histological studies, and measurement of wet weight of the muscle innervated by the sciatic nerve. Electrophysiological evaluation of the grafted nerve was also performed before sacrifice. The average CAT activity in the distal to the distal suture site was 383 cpm in VNG and 361 cpm in FNG at 2 weeks; 6,189 cpm in VNG and 2,264 cpm in FNG at 4 weeks; and 11,299 cpm in VNG and 9,424 cpm in FNG at 6 weeks postoperatively. The value of the VNG group was statistically higher than that of the FNG group at 4 weeks postoperatively. Electrophysiological and histological findings also suggested that nerve regeneration in the VNG group was superior to that in the FNG group during the same period. However, there was no significant difference between the two groups after 6 weeks postoperatively in any of the evaluations. The CAT measurement was useful in the experiments, because it was highly sensitive and reproducible. Copyright 2001 Wiley-Liss, Inc.

  14. Co-composting of municipal solid waste mixed with matured sewage sludge: The relationship between N2O emissions and denitrifying gene abundance.

    Science.gov (United States)

    Bian, Rongxing; Sun, Yingjie; Li, Weihua; Ma, Qiang; Chai, Xiaoli

    2017-12-01

    Aerobic composting is an alternative measure to the disposal of municipal solid waste (MSW). However, it produces nitrous oxide (N 2 O), a highly potent greenhouse via microbial nitrification and denitrification. In this study, the effects of matured sewage sludge (MSS) amendment on N 2 O emissions and the inter-relationships between N 2 O emissions and the abundance of denitrifying bacteria were investigated during aerobic composting of MSW. The results demonstrated that MSW composting with MSS amendments (C1, and C2, with a MSW to MSS ratio of 2:1 and 4:1, (v/v), respectively) significantly increased N 2 O emissions during the initial stage, yet contributed to the mitigation of N 2 O emissions during the cooling and maturation stage. MSS amended composting emitted a total of 18.4%-25.7% less N 2 O than the control treatment without MSS amendment (CK). Matured sewage sludge amendment also significantly altered the abundance of denitrifying bacteria. The quantification of denitrifying functional genes revealed that the N 2 O emission rate had a significant positive correlation with the abundance of the nirS, nirK genes in both treatments with MSS amendment. The nosZ/(nirS + nirK) ratio could be a good indicator for predicting N 2 O emissions. The higher N 2 O emission rate during the initial stage of composting mixed with MSS was characterized by lower nosZ/(nirS + nirK) ratios, compared to CK treatment. Higher ratios of nosZ/(nirS + nirK) were measured during the cooling and maturation stage in treatments with MSS which resulted in a reduction of the N 2 O emissions. These results demonstrated that MSS amendment could be a valid strategy for mitigating N 2 O emissions during MSW composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. FoxO1 and HNF-4 are involved in regulation of hepatic glucokinase gene expression by resveratrol.

    Science.gov (United States)

    Ganjam, Goutham Kumar; Dimova, Elitsa Y; Unterman, Terry G; Kietzmann, Thomas

    2009-11-06

    Resveratrol, a polyphenol derived from grapes, exerts important effects on glucose and lipid metabolism, yet detailed mechanisms mediating these effects remain unknown. The liver plays a central role in energy homeostasis, and glucokinase (GK) is a key enzyme involved in glucose utilization. Resveratrol activates SIRT1 (sirtuin 1), which promotes deacetylation of the forkhead transcription factor FoxO1. Previously, we reported that FoxO1 can suppress and that HNF-4 can stimulate GK expression in the liver. Here, we examined the role of FoxO1 and HNF-4 in mediating resveratrol effects on liver GK expression. Resveratrol suppressed hepatic GK expression in vivo and in isolated hepatocytes, and knocking down FoxO1 with shRNAs disrupted this effect. Reporter gene, gel shift, supershift assay, and chromatin immunoprecipitation studies show that FoxO1 binds to the GK promoter and that the interplay between FoxO1 and HNF-4 within the GK promoter is essential for mediating the effects of resveratrol. Resveratrol promotes deacetylation of FoxO1 and enhances its recruitment to the FoxO-binding element. Conversely, resveratrol suppresses recruitment of HNF-4 to its binding site, and knockdown of FoxO1 blocks this effect of resveratrol. Coprecipitation and chromatin immunoprecipitation studies show that resveratrol enhances interaction between FoxO1 and HNF-4, reduces binding of HNF-4 to its own site, and promotes its recruitment to the FoxO site in a FoxO1-dependent manner. These results provide the first evidence that resveratrol represses GK expression via FoxO1 and that the interaction between FoxO1 and HNF-4 contributes to these effects of resveratrol.

  16. Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction

    Directory of Open Access Journals (Sweden)

    Antonia Y. Tetteh

    2014-01-01

    Full Text Available Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se0, but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3 treatment and then used quantitative real-time PCR (qRT-PCR to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.

  17. H2O2-induced mild stress in relation with in vitro ovine oocyte developmental competence: implications for blastocyst apoptosis and related genes expression.

    Science.gov (United States)

    Nikdel, K; Aminafshar, M; Mohammadi-Sangcheshmeh, A; EmamJomeh-Kashan, N; Seyedjafari, E

    2017-05-20

    In this study, in vitro maturation was performed in presence of various concentrations (0, 10, 100, or 1000 µM) of H2O2. The intracellular glutathione (GSH) level, fertilization, cleavage, and blastocyst rates, total cell number, and apoptotic cell number and expression of Bax, Bcl-2, and p53 genes in blastocyst-stage embryos were studied. At 10 μM H2O2 concentration, a higher GSH level was detected in comparison to the other groups while oocytes exposed to 1000 μM H2O2 had the lowest GSH level. Treatment of oocytes with 1000 μM H2O2 decreased the rate of two pronuclei formation as compared with other groups. A higher rate of blastocyst formation was seen in 100 μM H2O2 group as compared with the control group. However, exogenous H2O2 in maturation medium did not affect total cell numbers and apoptotic cell ratio at the blastocyst stage. Moreover, mRNA transcript abundance of Bax, Bcl-2, and p53 genes was similar between blastocysts derived from H2O2-induced oocytes and control blastocysts. Treatment of oocytes with H2O2 at mild level during in vitro maturation had a positive effect on GSH level and this, in turn, may lead to improvement in preimplantation embryonic development.

  18. Análise de polimorfismos do gene da beta-lactoglobulina em vacas da raça Nelore e efeitos sobre o peso à desmama de suas progênies Polimorphism analisys of beta-lactoglobulin gene on Nellore cows and effects on weaning weight of the calves

    Directory of Open Access Journals (Sweden)

    F.J.C. Faria

    2000-06-01

    Full Text Available Informações sobre peso à desmama de bezerros Nelore foram utilizadas após ajuste para idade padrão aos 205 dias, sexo, idade da mãe, touro e mês de desmama, para separar as reprodutrizes em dois grupos, segundo o peso de suas crias. As médias de peso dos bezerros ajustadas pelo método dos quadrados mínimos e erros-padrão (LSM± SE foram para os grupos pesados (P e leves (L 163,21± 2,18kg e 134,44± 2,18kg, respectivamente, com 41 animais em cada grupo. Essas reprodutrizes foram submetidas a coleta de sangue para estudo de polimorfismos do gene da beta-lactoglobulina, por meio da técnica de PCR-RFLP. A amplificação e a digestão de um fragmento do gene da beta-lactoglobulina entre o éxon II e III identificou os genótipos 1AA, 24AB e 56BB, com as freqüências de 0,16 e 0,84 para os alelos A e B, respectivamente. Os 24 animais com genótipo AB apresentaram LSM± SE de peso de seus produtos de 149,50± 4,17kg, e os 56 animais de genótipo BB tiveram média de 148,44± 2,73kg. O teste do qui-quadrado não apresentou significância (P>0,05, isto é, os grupos P e L não diferiram entre si quanto às freqüências alélicas apresentadas para esse gene. O genótipo das reprodutrizes não afetou o peso à desmama de suas crias, o que sugere haver outros fatores genéticos e não genéticos de maior magnitude que afetam o peso à desmama.Weaning weights from a Nelore herd were used after adjustment of means for 205 days of age, sex, age of dam, sire and weaning month, and resulted into two groups of cows that differed by the weaning weight of their calves. The least square means (LSM and standard error (SE were for heavy group 163.21± 2.18kg and for light group 134.44± 2.18kg, with 41 animals in each group. These animals were genotyped by DNA polymorphisms of beta -lactoglobulin gene, using PCR-RFLP. After amplification and digestion of a beta-lactoglobulin gene fragment between II and III exon, genotypes 1AA, 24AB and 56BB were

  19. Dexamethasone protects RAW264.7 macrophages from growth arrest and apoptosis induced by H2O2 through alteration of gene expression patterns and inhibition of nuclear factor-kappa B (NF-κB) activity

    International Nuclear Information System (INIS)

    Fong, C.-C.; Zhang Yaou; Zhang Qi; Tzang, C.-H.; Fong, W.-F.; Wu, R.S.S.; Yang Mengsu

    2007-01-01

    In this study, the effect of dexamethasone, a synthetic glucocorticoid, on H 2 O 2 stimulated murine RAW264.7 macrophages was investigated. It was found that dexamethasone protected the cells from apoptosis induced by H 2 O 2 . A cDNA microarray, which consists of 1000 genes selected from a mouse clone set provided from NIA, was used to study the gene expression profiles involved in the protective effect. Our data show that dexamethasone exerts the anti-apoptosis function by changing the expression patterns of many genes involved inhibiting the up-regulation of apoptosis promoting genes and the down-regulation of cell cycle stimulating genes as well as keeping the up-regulation of cell survival related genes. Our study also revealed that dexamethasone protects RAW264.7 macrophages from H 2 O 2 induced apoptosis through blocking nuclear factor-kappa B (NF-κB) activity

  20. Alba from Thermoplasma volcanium belongs to α-NAT's: An insight into the structural aspects of Tv Alba and its acetylation by Tv Ard1.

    Science.gov (United States)

    Ma, Chao; Pathak, Chinar; Lee, Sang Jae; Lee, Ki-Young; Jang, Sun-Bok; Nam, Minjoo; Im, Hookang; Yoon, Hye-Jin; Lee, Bong-Jin

    2016-01-15

    The Alba superfamily proteins have been regarded as a conserved group of proteins in archaea and eukarya, which have shown to be important in nucleic acid binding, chromatic organization and gene regulation. These proteins often belong to the N-acetyltransferase (NAT) category (N(α)-acetyltransferases or N(ε)-acetyltransferases) and undergo post-translational modifications. Here, we report the crystal structure of Alba from Thermoplasma volcanium (Tv Alba) at 2.4 Å resolution. The acetylation of Tv Alba was monitored and the N-terminal of Tv Alba has been shown to interact with acetyl coenzyme A (Ac-CoA). The chemical shift perturbation experiments of Tv Alba were performed in the presence of Ac-CoA and/or Tv Ard1, another T. volcanium protein that treats Tv Alba as a substrate. To examine the DNA binding capabilities of Tv Alba alone and in the presence of Ac-CoA and/or Tv Ard1, EMSA experiments were carried out. It is shown that although Tv Alba binds to Ac-CoA, the acetylation of Tv Alba is not related with its binding to dsDNA, and the involvement of the N-terminus in Ac-CoA binding demonstrates that Tv Alba belongs to the N(α)-acetyltransferase family. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Lung cancer in Asian women - the environment and genes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, W.K. [University of Hong Kong, Pokfulam (China). Queen Mary Hospital

    2005-09-15

    The mortality rate of lung cancer in Asian women has increased significantly in the past few decades. Environmental factors include tobacco smoke (active and environmental), other indoor pollutions (cooking oil vapours, coal burning, fungus spores), diet, and infections. Active tobacco smoking is not the major factor. Cooking oil vapours associated with high temperature wok cooking and indoor coal burning for heating and cooking in unvented homes, particularly in rural areas, are risk factors for Chinese women. Chronic benign respiratory diseases due to the fungus Microsporum canis probably accounts for the high incidence of lung cancer in northern Thai women at Sarapee. Diets rich in fruits, leafy green vegetables, and vitamin A are protective, while cured meat (Chinese sausage, pressed duck and cured pork), deep-fried cooking, and chili increased the risk. Tuberculosis is associated with lung cancer. Also, a Taiwanese study showed that the odds ratio of papillomavirus (HPV) 16/18 infection in non-smoking female lung cancer patients was 10.1, strongly suggesting a causative role. Genetic factors have also been studied in Chinese women, including human leucocyte antigens, K-ras oncogene activation, p53 mutation, polymorphisms of phase I activating enzymes (cytochrome P450, N-acetyltransferase slow acetylator status), and phase II detoxifying enzymes (glutathione-S-transferases, N-acetyltransferase rapid acetylator status).

  2. Trans-activation function of a 3' truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues

    International Nuclear Information System (INIS)

    Takada, Shinako; Koike, Katsuro

    1990-01-01

    To investigate the expression and transactivation function of the X gene in integrated hepatitis B virus (HBV) DNA from chronic hepatitis tissues, a series of transfectants containing cloned integrated HBV DNAs was made and analyzed for X mRNA expression and trans-activation activity by using a chloramphenicol acetyltransferase assay. Most of the integrated HBV DNAs expressed X mRNA and encoded a product with trans-activation activity in spite of the loss of the 3' end region of the X gene due to integration. From cDNA cloning and sequence analysis of X mRNA transcribed from native or integrated HBV DNA, the X protein was found to be translated from the X open reading frame without splicing. For integrated HBV DNA, transcription was extended to a cellular flanking DNA and an X gene-cell fusion transcript was terminated by using a cellular poly(A) signal. The amino acid sequence deduced from an X-cell fusion transcript indicated truncation of the carboxyl-terminal five amino acids, but the upstream region of seven amino acids conserved among hepadnaviruses was retained in the integrated HBV DNA, suggesting that this conserved region is essential for the transactivation function of the X protein. These findings support the following explanation for hepatocarcinogenesis by HBV DNA integration: the expression of a cellular oncogene(s) is transactivated at the time of chronic infection by the increasing amounts of the integrated HBV gene product(s), such as the X-cell fusion product

  3. Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2H2O quantification.

    Science.gov (United States)

    Jensen, Kristian K; Previs, Stephen F; Zhu, Lei; Herath, Kithsiri; Wang, Sheng-Ping; Bhat, Gowri; Hu, Guanghui; Miller, Paul L; McLaren, David G; Shin, Myung K; Vogt, Thomas F; Wang, Liangsu; Wong, Kenny K; Roddy, Thomas P; Johns, Douglas G; Hubbard, Brian K

    2012-01-15

    The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.

  4. Functional roles of three cutin biosynthetic acyltransferases in cytokinin responses and skotomorphogenesis.

    Directory of Open Access Journals (Sweden)

    Lei Wu

    Full Text Available Cytokinins (CKs regulate plant development and growth via a two-component signaling pathway. By forward genetic screening, we isolated an Arabidopsis mutant named grow fast on cytokinins 1 (gfc1, whose seedlings grew larger aerial parts on MS medium with CK. gfc1 is allelic to a previously reported cutin mutant defective in cuticular ridges (dcr. GFC1/DCR encodes a soluble BAHD acyltransferase (a name based on the first four enzymes characterized in this family: Benzylalcohol O-acetyltransferase, Anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase and Deacetylvindoline 4-O-acetyltransferase with diacylglycerol acyltransferase (DGAT activity in vitro and is necessary for normal cuticle formation on epidermis in vivo. Here we show that gfc1 was a CK-insensitive mutant, as revealed by its low regeneration frequency in vitro and resistance to CK in adventitious root formation and dark-grown hypocotyl inhibition assays. In addition, gfc1 had de-etiolated phenotypes in darkness and was therefore defective in skotomorphogenesis. The background expression levels of most type-A Arabidopsis Response Regulator (ARR genes were higher in the gfc1 mutant. The gfc1-associated phenotypes were also observed in the cutin-deficient glycerol-3-phosphate acyltransferase 4/8 (gpat4/8 double mutant [defective in glycerol-3-phosphate (G3P acyltransferase enzymes GPAT4 and GPAT8, which redundantly catalyze the acylation of G3P by hydroxyl fatty acid (OH-FA], but not in the cutin-deficient mutant cytochrome p450, family 86, subfamily A, polypeptide 2/aberrant induction of type three 1 (cyp86A2/att1, which affects the biosynthesis of some OH-FAs. Our results indicate that some acyltransferases associated with cutin formation are involved in CK responses and skotomorphogenesis in Arabidopsis.

  5. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production.

    Science.gov (United States)

    Brueggeman, Andrew J; Kuehler, Daniel; Weeks, Donald P

    2014-09-01

    Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.7×-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, generated transgenic cells able to tolerate up to 136× higher levels of the PPO inhibitor, oxyfluorfen, than nontransformed cells. Genetic modification of the Chlamydomonas phytoene desaturase (PDS) gene-based gene sequences found in various norflurazon-resistant organisms allowed production of transgenic cells tolerant to 40× higher levels of norflurazon than nontransgenic cells. The high efficiency of all three herbicide resistance genes in producing transgenic cells demonstrated their suitability as dominant selectable markers for genetic transformation of Chlamydomonas and, potentially, other eukaryotic algae. However, the requirement for high concentrations of glyphosate and its associated negative effects on cell growth rates preclude its consideration for use in large-scale production facilities. In contrast, only low doses of norflurazon and oxyfluorfen (~1.5 μm and ~0.1 μm, respectively) are required for inhibition of cell growth, suggesting that these two herbicides may prove effective in large-scale algal production facilities in suppressing growth of organisms sensitive to these herbicides. © 2014 Society for Experimental Biology, Association of Applied Biologists and

  6. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Protic-Sabljic, M.; Kraemer, K.H.

    1985-01-01

    The authors have developed a host cell reactivation assay of DNA repair utilizing UV-treated plasmid vectors. The assay primarily reflects cellular repair of transcriptional activity of damaged DNA measured indirectly as enzyme activity of the transfected genes. They studied three plasmids (pSV2cat, 5020 base pairs; pSV2catSVgpt, 7268 base pairs; and pRSVcat, 5027 base pairs) with different sizes and promoters carrying the bacterial cat gene (CAT, chloramphenicol acetyltransferase) in a construction that permits cat expression in human cells. All human simian virus 40-transformed cells studied expressed high levels of the transfected cat gene. UV treatment of the plasmids prior to transfection resulted in differential decrease in CAT activity in different cell lines. With pSV2catSVgpt, UV inactivation of CAT expression was greater in the xeroderma pigmentosum group A and D lines than in the other human cell lines tested. The D 0 of the CAT inactivation curve was 50 J X m-2 for pSV2cat and for pRSVcat in the xeroderma pigmentosum group A cells. The similarity of the D0 data in the xeroderma pigmentosum group A cells for three plasmids of different size and promoters implies they all have similar UV-inactivation target size. UV-induced pyrimidine dimer formation in the plasmids was quantified by assay of the number of UV-induced T4 endonuclease V-sensitive sites. In the most sensitive xeroderma pigmentosum cells, with all three plasmids, one UV-induced pyrimidine dimer inactivates a target of about 2 kilobases, close to the size of the putative CAT mRNA

  7. Application of Ferriferous Oxide Modified by Chitosan in Gene Delivery

    Directory of Open Access Journals (Sweden)

    Yu Kuang

    2012-01-01

    Full Text Available New approaches to improve the traditional gene carriers are still required. Here we explore Fe3O4 modified with degradable polymers that enhances gene delivery and target delivery using permanent magnetic field. Two magnetic Fe3O4 nanoparticles coated with chitosan (CTS and polyethylene glycol (PEG were synthesized by means of controlled chemical coprecipitation. Plasmid pEGFP was encapsulated as a reported gene. The ferriferous oxide complexes were approximately spherical; surface charge of CTS-Fe3O4 and PEG-Fe3O4 was about 20 mv and 0 mv, respectively. The controlled release of DNA from the CTS-Fe3O4 nanoparticles was observed. Concurrently, a desired Fe3O4 concentration of less than 2 mM was verified as safe by means of a cytotoxicity test in vitro. Presence of the permanent magnetic field significantly increased the transfection efficiency. Furthermore, the passive target property and safety of magnetic nanoparticles were also demonstrated in an in vivo test. The novel gene delivery system was proved to be an effective tool required for future target expression and gene therapy in vivo.

  8. The O-antigen structure of bacterium Comamonas aquatica CJG.

    Science.gov (United States)

    Wang, Xiqian; Kondakova, Anna N; Zhu, Yutong; Knirel, Yuriy A; Han, Aidong

    2017-11-01

    Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1 H and 13 C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.

  9. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae

    Science.gov (United States)

    Mukherjee, Munmun; Kakarla, Prathusha; Kumar, Sanath; Gonzalez, Esmeralda; Floyd, Jared T.; Inupakutika, Madhuri; Devireddy, Amith Reddy; Tirrell, Selena R.; Bruns, Merissa; He, Guixin; Lindquist, Ingrid E.; Sundararajan, Anitha; Schilkey, Faye D.; Mudge, Joann; Varela, Manuel F.

    2015-01-01

    Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain, in order to identify novel genes potentially responsible for virulence. In this study, we compared the whole genome of the non-O1 PS15 strain to the whole genomes of toxigenic serotypes at the phylogenetic level, and found that the PS15 genome was distantly related to those of toxigenic V. cholerae. Thus we focused on a detailed gene comparison between PS15 and the distantly related O1 V. cholerae N16961. Based on sequence alignment we tentatively assigned chromosome numbers 1 and 2 to elements within the genome of non-O1 V. cholerae PS15. Further, we found that PS15 and O1 V. cholerae N16961 shared 98% identity and 766 genes, but of the genes present in N16961 that were missing in the non-O1 V. cholerae PS15 genome, 56 were predicted to encode not only for virulence–related genes (colonization, antimicrobial resistance, and regulation of persister cells) but also genes involved in the metabolic biosynthesis of lipids, nucleosides and sulfur compounds. Additionally, we found 113 genes unique to PS15 that were predicted to encode other properties related to virulence, disease, defense, membrane transport, and DNA metabolism. Here, we identified distinctive and novel genomic elements between O1 and non-O1 V. cholerae genomes as potential virulence factors and, thus, targets for future therapeutics. Modulation of such novel targets may eventually enhance eradication efforts of endemic and pandemic disease cholera in afflicted nations. PMID:25722857

  10. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Chao-Zeng Zhai

    Full Text Available Oxidative stress caused by accumulation of reactive oxygen species (ROS is capable of damaging effects on numerous cellular components. Glutathione peroxidases (GPXs, EC 1.11.1.9 are key enzymes of the antioxidant network in plants. In this study, W69 and W106, two putative GPX genes, were obtained by de novo transcriptome sequencing of salt-treated wheat (Triticum aestivum seedlings. The purified His-tag fusion proteins of W69 and W106 reduced H2O2 and t-butyl hydroperoxide (t-BHP using glutathione (GSH or thioredoxin (Trx as an electron donor in vitro, showing their peroxidase activity toward H2O2 and toxic organic hydroperoxide. GFP fluorescence assays revealed that W69 and W106 are localized in chloroplasts. Quantitative real-time PCR (Q-RT-PCR analysis showed that two GPXs were differentially responsive to salt, drought, H2O2, or ABA. Isolation of the W69 and W106 promoters revealed some cis-acting elements responding to abiotic stresses. Overexpression of W69 and W106 conferred strong tolerance to salt, H2O2, and ABA treatment in Arabidopsis. Moreover, the expression levels of key regulator genes (SOS1, RbohD and ABI1/ABI2 involved in salt, H2O2 and ABA signaling were altered in the transgenic plants. These findings suggest that W69 and W106 not only act as scavengers of H2O2 in controlling abiotic stress responses, but also play important roles in salt and ABA signaling.

  11. [Virulence markers of Escherichia coli O1 strains].

    Science.gov (United States)

    Makarova, M A; Kaftyreva, L A; Grigor'eva, N S; Kicha, E V; Lipatova, L A

    2011-01-01

    To detect virulence genes in clinical isolates of Escherichia coli O1 using polymerase chain reaction (PCR). One hundred and twenty strains of E.coli O1 strains isolated from faeces of patients with acute diarrhea (n = 45) and healthy persons (n = 75) were studied. PCR with primers for rfb and fliC genes, which control synthesis of O- and H- antigens respectively, was used. Fourteen virulence genes (pap, aaf, sfa, afa, eaeA, bfpA, ial, hly, cnf, stx1, stx2, lt, st, and aer) were detected by PCR primers. K1-antigen was determined by Pastorex Meningo B/E. coli O1 kit (Bio-Rad). rfb gene controlling O-antigen synthesis in serogroup O1 as well as fliC gene controlling synthesis of H7 and K1 antigens were detected in all strains. Thus all E. coli strains had antigenic structure O1:K1 :H-:F7. Virulence genes aafl, sfa, afa, eaeA, bfpA, ial, hly, cnf, stx1, stx2, lt, and st were not detected. All strains owned pap and aer genes regardless of the presence of acute diarrhea symptoms. It was shown that E. coli O1:KI:H-:F7 strains do not have virulence genes which are characteristic for diarrhea-causing Escherichia. In accordance with the presence of pap and aer genes they could be attributed to uropathogenic Escherichia (UPEC) or avian-pathogenic Escherichia (APEC). It is necessary to detect virulence factors in order to determine E. coli as a cause of intestinal infection.

  12. Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting.

    Science.gov (United States)

    Wang, Ke; Wu, Yiqi; Li, Weiguang; Wu, Chuandong; Chen, Zhiqiang

    2018-03-01

    Mature compost recycling is widely used to reduce the dosage of organic bulking agent in actual composting process. In this study, the effects of mature compost amendment on N 2 O emission and denitrification genes were investigated in 47 days composting of sewage sludge and rice husks. The results showed that mature compost amendment dramatically augmented N 2 O emission rate in mesophilic phase and CO 2 emission rate in thermophilic phase of composting, respectively. The cumulative amount of N 2 O emission increased by more than 23 times compared to the control. Mature compost amendment not only reduced moisture and pH, but also significantly increased NO 3 - -N and NO 2 - -N concentrations. The correlation matrices indicated that NO 3 - -N, narG and norB were the main factors influencing N 2 O emission rate in sludge composting with mature compost recycling, but the N 2 O emission rate was significantly correlated to NO 2 - -N, nirK and norB in the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. FoxO1 and HNF-4 Are Involved in Regulation of Hepatic Glucokinase Gene Expression by Resveratrol*

    Science.gov (United States)

    Ganjam, Goutham Kumar; Dimova, Elitsa Y.; Unterman, Terry G.; Kietzmann, Thomas

    2009-01-01

    Resveratrol, a polyphenol derived from grapes, exerts important effects on glucose and lipid metabolism, yet detailed mechanisms mediating these effects remain unknown. The liver plays a central role in energy homeostasis, and glucokinase (GK) is a key enzyme involved in glucose utilization. Resveratrol activates SIRT1 (sirtuin 1), which promotes deacetylation of the forkhead transcription factor FoxO1. Previously, we reported that FoxO1 can suppress and that HNF-4 can stimulate GK expression in the liver. Here, we examined the role of FoxO1 and HNF-4 in mediating resveratrol effects on liver GK expression. Resveratrol suppressed hepatic GK expression in vivo and in isolated hepatocytes, and knocking down FoxO1 with shRNAs disrupted this effect. Reporter gene, gel shift, supershift assay, and chromatin immunoprecipitation studies show that FoxO1 binds to the GK promoter and that the interplay between FoxO1 and HNF-4 within the GK promoter is essential for mediating the effects of resveratrol. Resveratrol promotes deacetylation of FoxO1 and enhances its recruitment to the FoxO-binding element. Conversely, resveratrol suppresses recruitment of HNF-4 to its binding site, and knockdown of FoxO1 blocks this effect of resveratrol. Coprecipitation and chromatin immunoprecipitation studies show that resveratrol enhances interaction between FoxO1 and HNF-4, reduces binding of HNF-4 to its own site, and promotes its recruitment to the FoxO site in a FoxO1-dependent manner. These results provide the first evidence that resveratrol represses GK expression via FoxO1 and that the interaction between FoxO1 and HNF-4 contributes to these effects of resveratrol. PMID:19740748

  14. Structure of the human gene encoding the protein repair L-isoaspartyl (D-aspartyl) O-methyltransferase.

    Science.gov (United States)

    DeVry, C G; Tsai, W; Clarke, S

    1996-11-15

    The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.

  15. Genes candidatos de suscetibilidade a pré-eclampsia: estudo de associação

    OpenAIRE

    Ferreira, Leonardo Capistrano

    2010-01-01

    A pré-eclâmpsia é uma doença multifatorial de etiologia ainda desconhecida que apresenta um amplo espectro quanto à gravidade dos sintomas, podendo variar da forma mais branda (pré-eclâmpsia leve) às formas mais severas (eclâmpsia e síndrome HELLP). Atualmente sabe-se que a pré-eclâmpsia é influenciada tanto por fatores ambientais quanto por fatores genéticos. Com o propósito de identificar genes de suscetibilidade à doença, genotipamos um total de 22 marcadores genéticos distribuídos e...

  16. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat.

    Science.gov (United States)

    Luna, Celina M; Pastori, Gabriela M; Driscoll, Simon; Groten, Karin; Bernard, Stephanie; Foyer, Christine H

    2005-01-01

    Plants co-ordinate information derived from many diverse external and internal signals to ensure appropriate control of gene expression under optimal and stress conditions. In this work, the relationships between catalase (CAT) and H2O2 during drought in wheat (Triticum aestivum L.) are studied. Drought-induced H2O2 accumulation correlated with decreases in soil water content and CO2 assimilation. Leaf H2O2 content increased even though total CAT activity doubled under severe drought conditions. Diurnal regulation of CAT1 and CAT2 mRNA abundance was apparent in all conditions and day/night CAT1 and CAT2 expression patterns were modified by mild and severe drought. The abundance of CAT1 transcripts was regulated by circadian controls that persisted in continuous darkness, while CAT2 was modulated by light. Drought decreased abundance, and modified the pattern, of CAT1 and CAT2 mRNAs. It was concluded that the complex regulation of CAT mRNA, particularly at the level of translation, allows precise control of leaf H2O2 accumulation.

  17. Catechol-O-Methyltransferase (COMT) Gene (Val158Met) and Brain-Derived Neurotropic Factor (BDNF) (Val66Met) Genes Polymorphism in Schizophrenia: A Case-Control Study

    OpenAIRE

    Saravani, Ramin; Galavi, Hamid Reza; Lotfian Sargazi, Marzieh

    2017-01-01

    Objective: Several studies have shown that some polymorphisms of genes encoding catechol-O-methyltransferase (COMT), the key enzyme in degrading dopamine, and norepinephrine and the human brain-derived neurotropic factor (BDNF), a nerve growth factor, are strong candidates for risk of schizophrenia (SCZ). In the present study, we aimed at examining the effects of COMT Val158Met (G>A) and BDNF Val66Met (G>A) polymorphisms on SCZ risk in a sample of Iranian population. Method: This case- contro...

  18. Microorganisms screening for limonene oxidation Seleção de microrganismos para oxidação de limoneno

    Directory of Open Access Journals (Sweden)

    Lindomar Lerin

    2010-06-01

    Full Text Available Limonene is a monoterpene obtained in large amounts from essential oils and is used as a raw material for the synthesis of flavors and fine chemicals. Several pathways or routes for the microbial degradation of limonene making use of the cytochrome P450-dependent monooxygenases have been described. In this study, we present a fermentative screening of microorganisms in order to verify their ability to perform the desirable conversion. In parallel, the PCR technique was used to select the microorganisms that contain the limC gene, which is responsible for the conversion of carveol to carvone. The microorganisms selected by PCR were not able to bioconvert limonene. From this result, we can suppose that these strains do not have the gene that codifies the enzyme responsible for the transformation of limonene into carveol. The results obtained in the fermentative screening showed that 4 microorganisms were able to bioconvert limonene into carveol. In addition, the amplification results showed the presence of fragments of 800 pb, expected for the limC gene. Therefore, the results obtained in the bioconversion and evaluation of the limC gene did not allow a correlation showing that these strains do not contain all the enzymes responsible for the conversion of limonene to carvone.O limoneno é um monoterpeno obtido em grandes quantidades a partir de óleos essenciais, podendo ser utilizado como matéria-prima na síntese de flavours e compostos para química fina. Várias rotas para a degradação microbiológica do limoneno fazendo uso da monoxigenase dependente do citocromo P450 têm sido propostas. Neste trabalho, são apresentados dados obtidos no screening fermentativo de microrganismos visando verificar suas habilidades em realizar a conversão desejada. Em paralelo, a técnica do PCR foi também utilizada visando selecionar microrganismos que apresentam o gene limC, responsável pela conversão de carveol a carvona. Os microrganismos

  19. Detecção do gene mecA em estafilococos coagulase negativa resistentes à oxacilina isolados da saliva de profissionais da enfermagem Detection of mecA gene in oxacillin-resistant coagulase-negative staphylococci isolated from the saliva of nursing professionals

    Directory of Open Access Journals (Sweden)

    Juliana de Oliveira Rosa

    2009-08-01

    Full Text Available Estafilococos coagulase negativa estão frequentemente associados às infecções nosocomiais e os profissionais da saúde podem ser reservatório e dissemina-los no hospital e comunidade. O objetivo desse estudo foi identificar espécies de estafilococos coagulase negativa isolados da saliva de profissionais da enfermagem, determinar o perfil de resistência e detectar o gene mecA. Foram selecionados 100 estafilococos coagulase negativa, sendo 41 identificados como Staphylococcus epidermidis, 25 Staphylococcus saprophyticus, 18 Staphylococcus haemolyticus, 8 Staphylococcus cohnii, 4 Staphylococcus lugdunenses, 3 Staphylococcus capitis, e 1 Staphylococcus Simulans. Desses, 32% apresentaram resistência à oxacilina, 84,4% à mupirocina, 32% à cefoxitina, e todos sensíveis a vancomicina. Dos estafilococos coagulase negativa resistentes à oxacilina, 93,7% desenvolveram-se no agar oxacilina (6µg/ml e o gene mecA foi detectado em 75%. Os resultados sinalizam que maiores investimentos devem ser direcionados a identificação das espécies de estafilococos coagulase negativa nas instituições de saúde e na comunidade.Coagulase-negative staphylococci are frequently associated with nosocomial infections, and healthcare professionals can be reservoirs and spread them in hospitals and in the community. The aim of this study was to identify species of coagulase-negative staphylococci isolated from the saliva of nursing professionals, determine the resistance profile and detect the mecA gene. One hundred coagulase-negative staphylococci were selected: 41 were identified as Staphylococcus epidermidis, 25 as Staphylococcus saprophyticus, 18 as Staphylococcus haemolyticus, eight as Staphylococcus cohnii, four as Staphylococcus lugdunenses, three as Staphylococcus capitis and one as Staphylococcus simulans. Of these, 32% presented oxacillin resistance, 84.4% mupirocin resistance and 32% cefoxitin resistance, and all were vancomycin sensitive. Among the

  20. O genoma humano e as perspectivas para o estudo da esquizofrenia

    Directory of Open Access Journals (Sweden)

    Elida P. Benquique Ojopi

    2004-01-01

    Full Text Available O seqüenciamento de nosso genoma representa um passo essencial no entendimento da biologia humana e no planejamento racional de pesquisas biomédicas. Contudo, é importante notar que o seqüenciamento de um dado genoma é apenas uma parte de um complexo quebra-cabeças. A informação genética deve ser usada como um "mapa", a partir do qual começamos a compreender a base das doenças e a importância da variação genética através da análise da complexidade e do comportamento das regiões reguladoras, genes e proteínas, funções gênicas e sistemas celulares. Apesar dos enormes esforços para identificar genes de susceptibilidade, os resultados de estudos de genética molecular de esquizofrenia até o momento têm sido modestos. O uso apropriado da genômica poderá ajudar imensamente na elucidação das causas da esquizofrenia, permitindo avaliar o papel de novos genes, das variações genéticas, das formas de splicing alternativo, das variações de expressão gênica e de vias metabólicas de interesse. A convergência de dados bioquímicos, de imagem, de neuroanatomia, farmacológicos, clínicos e genéticos permite prever que estamos muito próximos de uma melhor compreensão das bases biológicas da esquizofrenia. A disponibilidade desses avanços terá um enorme impacto na pesquisa desta doença.The sequencing of our genome represents an essential step in the comprehension of the human biology and in the rational planning of biomedical research. However, it is important to realize that the sequencing of a genome is only a piece of a complex puzzle. The genetic information must be used as a "map", the starting-point to understand the basis of the diseases and the importance of the genetic variation through the analysis of the complexity and behavior of the regulatory regions, genes and proteins, gene functions and cellular systems. Despite the enormous efforts made towards the identification of susceptibility genes for

  1. Characterization of Acinetobacter baumannii clinical isolates carrying bla(OXA-23) carbapenemase and 16S rRNA methylase armA genes in Yemen.

    Science.gov (United States)

    Bakour, Sofiane; Alsharapy, Samer Ahmed; Touati, Abdelaziz; Rolain, Jean-Marc

    2014-12-01

    The aim of this study was to investigate the molecular support of resistance to carbapenems, aminoglycosides, and fluoroquinolones in Acinetobacter baumannii clinical isolates collected from Yemen hospital. Three A. baumannii were isolated in February 2013 from three patients hospitalized at Al-Thawra University Hospital in Sana'a, Yemen. Antibiotic susceptibility testing was performed using the disk diffusion and E-test methods. Carbapenemase production was carried out by the modified Hodge test (MHT) and imipenem-ethylenediaminetetraacetic acid (EDTA) methods. Carbapenem, aminoglycoside, and fluoroquinolone resistance determinants were studied by polymerase chain reaction and sequencing. The epidemiological relatedness of the three strains was studied using multilocus sequence typing (MLST). The isolates were resistant to almost all antibiotics tested with very high imipenem, amikacin, and ciprofloxacin minimum inhibitory concentrations (>32, >256, and >32 mg/L, respectively). The microbiological tests showed that the three A. baumannii were MHT positive, besides, the activity of β-lactamases was not inhibited by EDTA. All the three isolates contained the naturally occurring bla(OXA-51)-like gene and the bla(OXA-23)-like carbapenemase-encoding gene. The 16S rRNA methylase armA gene was detected in the three isolates. In addition, screening for genes encoding the aminoglycoside-modifying enzymes (AMEs) demonstrated that one isolate contained the acetyltransferase gene aac(6')-Ib. Fluoroquinolone resistance was associated with a single mutation Ser83Leu in the quinolone resistance determining region of the gyrA gene in all isolates. The MLST showed that the sequence type (ST) obtained corresponds to ST2 for the three strains. Here we report the first identification of multidrug-resistant A. baumannii isolates harboring the bla(OXA-23)-like gene, AMEs [aac(6')-Ib], and the 16S rRNA methylase (armA) in the Yemen hospital.

  2. Expressão de genes relacionados à função adrenocortical no estado de caquexia neoplásica - DOI: 10.4025/actascihealthsci.v31i2.6759 Expression of genes related to the adrenocortical function in the neoplastic cachexia process- DOI: 10.4025/actascihealthsci.v31i2.6759

    Directory of Open Access Journals (Sweden)

    Maria Angélica Ehara Watanabe

    2009-09-01

    Full Text Available A glândula adrenal tem papel fundamental na resposta neuroendócrina, especialmente em situações em que há comprometimento da homeostasia. No processo de caquexia neoplásica, há prejuízo da homeostasia por alterações nutricionais e metabólicas do câncer em estágio avançado, envolvendo a resposta do eixo hipotálamo-hipófise-adrenal. Neste trabalho, foi utilizado um modelo animal de caquexia induzida pelo tumor de Walker-256 em ratos Wistar. Os animais (n=4 foram sacrificados dez dias após a inoculação de células tumorais e a glândula adrenal foi removida. O RNA foi extraído para o estudo da expressão de genes relacionados ao controle da esteroidogênese por RT-PCR semiquantitativa. A análise dos dados demonstrou expressão significativamente reduzida dos genes MC2R (receptor tipo 2 para melacortina, 3ßHSD I (3ß-hidroxiesteroide-desidrogenase tipo I e TSPO (proteína translocadora em animais com caquexia neoplásica (valores de P=0,037; 0,0097 e 0,052, respectivamente, revelando falência do córtex da adrenal.The adrenal gland plays a crucial role in the neuroendocrine response, especially in situations where homeostasis is disturbed. In the neoplastic cachexia process, there is homeostasis impairment by nutritional and metabolic alterations of advanced-stage cancer, involving hypothalamus-pituitary-adrenal axis response. In this assignment, an experimental model of cachexia induced by Walker-256 tumor was performed in Wistar rats. Animals (n=4 were sacrificed 10 days after inoculation of tumor cells, and the adrenal glands were excised. The RNA was isolated for the study of gene expression related to the steroidogenesis control by semi-quantitative RT-PCR. Data analysis showed a significant reduced expression of MC2R (melancortin type 2 receptor, 3ßHSD I (3-beta-hydroxysteroid dehydrogenase type I and TSPO (translocator protein genes in animals with neoplastic cachexia (P=0.037, 0.0097 and 0.052, respectively, revealing

  3. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens.

    Science.gov (United States)

    Yang, Qin; He, Yijian; Kabahuma, Mercy; Chaya, Timothy; Kelly, Amy; Borrego, Eli; Bian, Yang; El Kasmi, Farid; Yang, Li; Teixeira, Paulo; Kolkman, Judith; Nelson, Rebecca; Kolomiets, Michael; L Dangl, Jeffery; Wisser, Randall; Caplan, Jeffrey; Li, Xu; Lauter, Nick; Balint-Kurti, Peter

    2017-09-01

    Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr 9.02 , associated with resistance to three important foliar maize diseases-southern leaf blight, gray leaf spot and northern leaf blight-has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr 9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death.

  4. Phenotypic and molecular detection of the bla KPC gene in clinical isolates from inpatients at hospitals in São Luis, MA, Brazil.

    Science.gov (United States)

    Ribeiro, Patricia Cristina Saldanha; Monteiro, Andrea Souza; Marques, Sirlei Garcia; Monteiro, Sílvio Gomes; Monteiro-Neto, Valério; Coqueiro, Martina Márcia Melo; Marques, Ana Cláudia Garcia; de Jesus Gomes Turri, Rosimary; Santos, Simone Gonçalves; Bomfim, Maria Rosa Quaresma

    2016-12-07

    Bacteria that produce Klebsiella pneumoniae carbapenemases (KPCs) are resistant to broad-spectrum β-lactam antibiotics. The objective of this study was to phenotypically and genotypically characterize the antibiotic susceptibility to carbapenems of 297 isolates recovered from clinical samples obtained from inpatients at 16 hospitals in São Luis (Maranhão, Brazil). The study was conducted using phenotypic tests and molecular methods, including polymerase chain reaction (PCR), sequencing and enterobacterial repetitive intergenic consensus (ERIC)-PCR. The nonparametric chi-square test of independence was used to evaluate the associations between the bacterial bla KPC gene and the modified Hodge test, and the chi-square adherence test was used to assess the frequency of carbapenemases and their association with the bla KPC gene. The most frequently isolated species were Acinetobacter baumannii (n = 128; 43.0%), K. pneumoniae (n = 75; 25.2%), and Pseudomonas aeruginosa (n = 42; 14.1%). Susceptibility assays showed that polymixin B was active against 89.3% of the bacterial isolates. The Acinetobacter spp. and K. pneumoniae strains were susceptible to amikacin and tigecycline, and Pseudomonas spp. were sensitive to gentamicin and amikacin. Among the 297 isolates, 100 (33.7%) were positive for the bla KPC gene, including non-fermentative bacteria (A. baumannii) and Enterobacteriaceae species. Among the isolates positive for the bla KPC gene, K. pneumoniae isolates had the highest positivity rate of 60.0%. The bla KPC gene variants detected included KPC-2, which was found in all isolates belonging to species of the Enterobacteriaceae family. KPC-2 and KPC-3 were observed in A. baumannii isolates. Importantly, the bla KPC gene was also detected in three Raoultella isolates and one isolate of the Pantoea genus. ERIC-PCR patterns showed a high level of genetic diversity among the bacterial isolates; it was capable of distinguishing 34 clones among 100 strains

  5. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes

    International Nuclear Information System (INIS)

    Guo, Changsheng; Wang, Kai; Hou, Song; Wan, Li; Lv, Jiapei; Zhang, Yuan; Qu, Xiaodong; Chen, Shuyi; Xu, Jian

    2017-01-01

    Highlights: • TiO 2 thin film was successfully synthesized for treating ARB and ARGs from water. • More than 5.5 log units of ARB reduction was achieved by TiO 2 under UV irradiation. • With TiO 2 , ARGs were reduced by more than 5 log units under UV irradiation. • TiO 2 could remove both intracellular and extracellular forms of ARGs. - Abstract: Inactivating antibiotic resistant bacteria (ARB) and removing antibiotic resistance genes (ARGs) are very important to prevent their spread into the environment. Previous efforts have been taken to eliminate ARB and ARGs from aqueous solution and sludges, however, few satisfying results have been obtained. This study investigated whether photocatalysis by TiO 2 was able to reduce the two ARGs, mecA and ampC, within the host ARB, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, respectively. The addition of H 2 O 2 and matrix effect on the removal of ARB and ARGs were also studied. TiO 2 thin films showed great effect on both ARB inactivation and ARGs removal. Approximately 4.5-5.0 and 5.5–5.8 log ARB reductions were achieved by TiO 2 under 6 and 12 mJ/cm 2 UV 254 fluence dose, respectively. For ARGs, 5.8 log mecA reduction and 4.7 log ampC reduction were achieved under 120 mJ/cm 2 UV 254 fluence dose in the presence of TiO 2 . Increasing dosage of H 2 O 2 enhanced the removal efficiencies of ARB and ARGs. The results also demonstrated that photocatalysis by TiO 2 was capable of removing both intracellular and extracellular forms of ARGs. This study provided a potential alternative method for the removal of ARB and ARGs from aqueous solution.

  6. Vírus da artrite encefalite caprina: isolamento e caracterização de parte do gene gag

    Directory of Open Access Journals (Sweden)

    P.P. Lima

    2004-04-01

    Full Text Available Amostras de sangue de 12 animais soropositivos pelo teste de imunodifusão em gel de agarose e que não apresentavam sinais clínicos sugestivos de infecção pelo vírus da artrite-encefalite caprina (CAEV foram coletadas para isolamento viral. Mácrofagos derivados de monócitos foram co-cultivados com células de membrana sinovial caprina (MSC, resultando em cinco amostras que apresentaram efeito citopático característico do tipo persistente, semelhante ao observado para o CAEV. Uma técnica de reação em cadeia de polimerase (PCR foi padronizada para amplificar parte do gene gag do genoma pró-viral, codificante para a proteína do capsídeo viral (p25. As cinco amostras foram amplificadas pela PCR e três delas, BR-UFMG/PL1, BR-UFMG/PL2 e BR-UFMG/PL3, foram seqüenciadas diretamente dos seus produtos de PCR. O alinhamento múltiplo das seqüências obtidas com outras de lentivírus de pequenos ruminantes (LVPR, obtidas no GenBank, e o dendrograma revelaram que as novas amostras de CAEV são únicas e distintas das demais amostras de LVPR, possuindo maior identidade de nucleotídeos e aminoácidos entre si e com as amostras de CAEV do que com a do vírus maedi-visna.Blood samples from 12 seropositive animals by agar gel immunodifusion test (AGID showing no evident clinical signs of disease were taken to attempt caprine arthritis-encephalitis virus (CAEV isolation. Monocyte-derived macrophages were co-cultured with goat synovial membrane cells (GSM resulting in five virus isolations, which presented cytophatic effects of the persistent type, resembling those observed for CAEV. A polymerase chain reaction (PCR assay was designed to amplify a portion of the gag proviral gene coding for the major core protein (p25. All of the five isolates were amplified by this PCR and three of them named BR-UFMG/PL1, BR-UFMG/PL2 and BR-UFMG/PL3, were sequenced directly from their PCR products. Multiple sequence analysis and a dendrogram including other

  7. Genomic Variability of O Islands Encoding Tellurite Resistance in Enterohemorrhagic Escherichia coli O157:H7 Isolates

    Science.gov (United States)

    Taylor, Diane E.; Rooker, Michelle; Keelan, Monika; Ng, Lai-King; Martin, Irene; Perna, Nicole T.; Burland, N. T. Valerie; Blattner, Fredrick R.

    2002-01-01

    Strains of Escherichia coli causing enterohemorrhagic colitis belonging to the O157:H7 lineage are reported to be highly related. Fifteen strains of E. coli O157:H7 and 1 strain of E. coli O46:H− (nonflagellated) were examined for the presence of potassium tellurite resistance (Ter). Ter genes comprising terABCDEF were shown previously to be part of a pathogenicity island also containing integrase, phage, and urease genes. PCR analysis, both conventional and light cycler based, demonstrated that about one-half of the Ter E. coli O157:H7 strains (6 of 15), including the Sakai strain, which has been sequenced, carried a single copy of the Ter genes. Five of the strains, including EDL933, which has also been sequenced, contained two copies. Three other O157:H7 strains and the O46:H− strain did not contain the Ter genes. In strains containing two copies, the Ter genes were associated with the serW and serX tRNA genes. Five O157:H7 strains resembled the O157 Sakai strain whose sequence contained one copy, close to serX, whereas in one isolate the single copy was associated with serW. There was no correlation between Ter and the ability to produce Shiga toxin ST1 or ST2. The Ter MIC for most strains, containing either one or two copies, was 1,024 μg/ml, although for a few the MIC was intermediate, 64 to 128 μg/ml, which could be increased to 512 μg/ml by pregrowth of strains in subinhibitory concentrations of potassium tellurite. Reverse transcriptase PCR analysis confirmed that in most strains Ter was constitutive but that in the rest it was inducible and involved induction of terB and terC genes. Only the terB, -C, -D, and -E genes are required for Ter. The considerable degree of homology between the ter genes on IncH12 plasmid R478, which originated in Serratia marcescens, and pTE53, from an E. coli clinical isolate, suggests that the pathogenicity island was acquired from a plasmid. This work demonstrates diversity among E. coli O157:H7 isolates, at least as

  8. "Avaliação do envolvimento dos genes PAX8 e rTSH no hipotireoidismo congênito em pacientes com disgenesia tireoidiana"

    OpenAIRE

    Denise Perone

    2005-01-01

    Estudamos 32 crianças com HC devido à agenesia ou ectopia tireoideana para mutações no PAX8 e 30 crianças com hipoplasia da tireóide para mutações no rTSH. Todos os exons de ambos os genes foram amplificados a partir do DNA genômico, seguido por seqüenciamento direto. Encontramos, em dois pacientes com ectopia, duas alterações no gene PAX8, uma no promotor, e outra no exon um. Os outros indivíduos estudados apresentaram as seqüências codificáveis dos genes PAX8 e rTSH normais. Em relação ao c...

  9. Low-P tolerance mechanisms and differential gene expression in contrasting wheat genotypes Mecanismos de tolerância à deficiência de fósforo e expressão diferenciada de genes em genótipos de trigo contrastantes

    Directory of Open Access Journals (Sweden)

    Laize Fraga Espindula

    2009-09-01

    Full Text Available The objectives of this study were to determine low-P tolerance mechanisms in contrasting wheat genotypes and to evaluate the association of these mechanisms to differential gene expression. Wheat seedlings of cultivars Toropi (tolerant to low-P availability and Anahuac (sensitive were evaluated. Seedlings were hydroponically grown in the absence or presence of P (1.0 mmol L-1 during three different time periods: 24, 120 and 240 hours. Free phosphate (Pi and total P contents were measured in shoots and roots. The experiment's design was in randomized blocks with three replicates, each formed by ten plants. The relative expression of genes encoding the malate transporter TaALMT1 and the transcription factor PTF1 was evaluated. Phosphorus starvation beyond ten days increased the expression of TaALMT1 only in 'Toropi'. PTF1's expression was early induced in both genotypes under P starvation, but remained significant after ten days only in 'Toropi'. Shoot Pi concentration in 'Toropi' was independent from P availability; under starvation, 'Toropi' favored the maintenance of shoot Pi concentration. The low-P tolerance of Toropi cultivar at initial growth stages is mainly due to its ability to maintain constant the Pi shoot level.Os objetivos deste estudo foram determinar os mecanismos da tolerância à deficiência de P em genótipos de trigo contrastantes e avaliar a associação desses mecanismos à expressão diferenciada de genes. Foram avaliadas plântulas das cultivares de trigo Toropi (tolerante à deficiência de P e Anahuac (sensível. As plântulas foram cultivadas em hidroponia, na ausência ou presença (1,0 mmol L-1 de P, durante três períodos de tempo: 24, 120 e 240 horas. Os teores de fosfato livre (Pi e P total foram medidos na parte aérea e nas raízes. O delineamento experimental foi em blocos ao acaso com três repetições, cada uma formada por dez plantas. Foi avaliada a expressão relativa dos genes que codificam o

  10. WRKY transcription factor genes in wild rice Oryza nivara.

    Science.gov (United States)

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  11. Structure, evolution and functional inference on the Mildew Locus O (MLO) gene family in three cultivated Cucurbitaceae spp.

    Science.gov (United States)

    Iovieno, Paolo; Andolfo, Giuseppe; Schiavulli, Adalgisa; Catalano, Domenico; Ricciardi, Luigi; Frusciante, Luigi; Ercolano, Maria Raffaella; Pavan, Stefano

    2015-12-29

    The powdery mildew disease affects thousands of plant species and arguably represents the major fungal threat for many Cucurbitaceae crops, including melon (Cucumis melo L.), watermelon (Citrullus lanatus L.) and zucchini (Cucurbita pepo L.). Several studies revealed that specific members of the Mildew Locus O (MLO) gene family act as powdery mildew susceptibility factors. Indeed, their inactivation, as the result of gene knock-out or knock-down, is associated with a peculiar form of resistance, referred to as mlo resistance. We exploited recently available genomic information to provide a comprehensive overview of the MLO gene family in Cucurbitaceae. We report the identification of 16 MLO homologs in C. melo, 14 in C. lanatus and 18 in C. pepo genomes. Bioinformatic treatment of data allowed phylogenetic inference and the prediction of several ortholog pairs and groups. Comparison with functionally characterized MLO genes and, in C. lanatus, gene expression analysis, resulted in the detection of candidate powdery mildew susceptibility factors. We identified a series of conserved amino acid residues and motifs that are likely to play a major role for the function of MLO proteins. Finally, we performed a codon-based evolutionary analysis indicating a general high level of purifying selection in the three Cucurbitaceae MLO gene families, and the occurrence of regions under diversifying selection in candidate susceptibility factors. Results of this study may help to address further biological questions concerning the evolution and function of MLO genes. Moreover, data reported here could be conveniently used by breeding research, aiming to select powdery mildew resistant cultivars in Cucurbitaceae.

  12. Structure and genetics of the O-specific polysaccharide of Escherichia coli O27.

    Science.gov (United States)

    Perepelov, Andrei V; Chen, Tingting; Senchenkova, Sofya N; Filatov, Andrei V; Song, Jingjie; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2018-02-01

    The O-specific polysaccharide (O-antigen) is a part of the lipopolysaccharide on the cell surface of Gram-negative bacteria. The O-polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O27 and studied by sugar analysis and Smith degradation along with 1 H and 13 C NMR spectroscopy. The following structure of the branched hexasaccharide repeating unit was established, which is unique among known structures of bacterial polysaccharides:where GlcA is non-stoichiometrically O-acetylated at position 3 (∼22%) or 4 (∼37%). Functions of genes in the O-antigen gene cluster of E. coli O27 were tentatively assigned by comparison with sequences in the available databases and found to be consistent with the O-polysaccharide structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat.

    Directory of Open Access Journals (Sweden)

    Linda Sterrenburg

    Full Text Available BACKGROUND: Although the higher prevalence of depression in women than in men is well known, the neuronal basis of this sex difference is largely elusive. METHODS: Male and female rats were exposed to chronic variable mild stress (CVMS after which immediate early gene products, corticotropin-releasing factor (CRF mRNA and peptide, various epigenetic-associated enzymes and DNA methylation of the Crf gene were determined in the hypothalamic paraventricular nucleus (PVN, oval (BSTov and fusiform (BSTfu parts of the bed nucleus of the stria terminalis, and central amygdala (CeA. RESULTS: CVMS induced site-specific changes in Crf gene methylation in all brain centers studied in female rats and in the male BST and CeA, whereas the histone acetyltransferase, CREB-binding protein was increased in the female BST and the histone-deacetylase-5 decreased in the male CeA. These changes were accompanied by an increased amount of c-Fos in the PVN, BSTfu and CeA in males, and of FosB in the PVN of both sexes and in the male BSTov and BSTfu. In the PVN, CVMS increased CRF mRNA in males and CRF peptide decreased in females. CONCLUSIONS: The data confirm our hypothesis that chronic stress affects gene expression and CRF transcriptional, translational and secretory activities in the PVN, BSTov, BSTfu and CeA, in a brain center-specific and sex-specific manner. Brain region-specific and sex-specific changes in epigenetic activity and neuronal activation may play, too, an important role in the sex specificity of the stress response and the susceptibility to depression.

  14. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes

    DEFF Research Database (Denmark)

    Pasini, Diego; Malatesta, Martina; Jung, Hye Ryung

    2010-01-01

    Polycomb group (PcG) proteins are transcriptional repressors, which regulate proliferation and cell fate decisions during development, and their deregulated expression is a frequent event in human tumours. The Polycomb repressive complex 2 (PRC2) catalyzes trimethylation (me3) of histone H3 lysine...... are poorly understood. To gain insight into these mechanisms, we have determined the global changes in histone modifications in embryonic stem (ES) cells lacking the PcG protein Suz12 that is essential for PRC2 activity. We show that loss of PRC2 activity results in a global increase in H3K27 acetylation....... The methylation to acetylation switch correlates with the transcriptional activation of PcG target genes, both during ES cell differentiation and in MLL-AF9-transduced hematopoietic stem cells. Moreover, we provide evidence that the acetylation of H3K27 is catalyzed by the acetyltransferases p300 and CBP. Based...

  15. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.

    Science.gov (United States)

    Yu, Guoqin; Olsen, Kenneth M; Schaal, Barbara A

    2011-01-01

    The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, and starch is a trait that has evolved in response to strong selection during rice domestication. In this study, we have examined six key genes (AGPL2, AGPS2b, SSIIa, SBEIIb, GBSSI, ISA1) in the rice endosperm starch biosynthesis pathway to investigate the evolution of these genes before and after rice domestication. Genome-wide sequence tagged sites data were used as a neutral reference to overcome the problems of detecting selection in species with complex demographic histories such as rice. Five variety groups of Oryza sativa (aus, indica, tropical japonica, temperate japonica, aromatic) and its wild ancestor (O. rufipogon) were sampled. Our results showed evidence of purifying selection at AGPL2 in O. rufipogon and strong evidence of positive selection at GBSSI in temperate japonica and tropical japonica varieties and at GBSSI and SBEIIb in aromatic varieties. All the other genes showed a pattern consistent with neutral evolution in both cultivated rice and its wild ancestor. These results indicate the important role of positive selection in the evolution of starch genes during rice domestication. We discuss the role of SBEIIb and GBSSI in the evolution of starch quality during rice domestication and the power and limitation of detecting selection using genome-wide data as a neutral reference.

  16. A new piece of the Shigella Pathogenicity puzzle: spermidine accumulation by silencing of the speG gene [corrected].

    Directory of Open Access Journals (Sweden)

    Marialuisa Barbagallo

    Full Text Available The genome of Shigella, a gram negative bacterium which is the causative agent of bacillary dysentery, shares strong homologies with that of its commensal ancestor, Escherichia coli. The acquisition, by lateral gene transfer, of a large plasmid carrying virulence determinants has been a crucial event in the evolution towards the pathogenic lifestyle and has been paralleled by the occurrence of mutations affecting genes, which negatively interfere with the expression of virulence factors. In this context, we have analysed to what extent the presence of the plasmid-encoded virF gene, the major activator of the Shigella regulon for invasive phenotype, has modified the transcriptional profile of E. coli. Combining results from transcriptome assays and comparative genome analyses we show that in E. coli VirF, besides being able to up-regulate several chromosomal genes, which potentially influence bacterial fitness within the host, also activates genes which have been lost by Shigella. We have focused our attention on the speG gene, which encodes spermidine acetyltransferase, an enzyme catalysing the conversion of spermidine into the physiologically inert acetylspermidine, since recent evidence stresses the involvement of polyamines in microbial pathogenesis. Through identification of diverse mutations, which prevent expression of a functional SpeG protein, we show that the speG gene has been silenced by convergent evolution and that its inactivation causes the marked increase of intracellular spermidine in all Shigella spp. This enhances the survival of Shigella under oxidative stress and allows it to better face the adverse conditions it encounters inside macrophage. This is supported by the outcome of infection assays performed in mouse peritoneal macrophages and of a competitive-infection assay on J774 macrophage cell culture. Our observations fully support the pathoadaptive nature of speG inactivation in Shigella and reveal that the accumulation

  17. Identification of a novel prophage-like gene cluster actively expressed in both virulent and avirulent strains of Leptospira interrogans serovar Lai.

    Science.gov (United States)

    Qin, Jin-Hong; Zhang, Qing; Zhang, Zhi-Ming; Zhong, Yi; Yang, Yang; Hu, Bao-Yu; Zhao, Guo-Ping; Guo, Xiao-Kui

    2008-06-01

    DNA microarray analysis was used to compare the differential gene expression profiles between Leptospira interrogans serovar Lai type strain 56601 and its corresponding attenuated strain IPAV. A 22-kb genomic island covering a cluster of 34 genes (i.e., genes LA0186 to LA0219) was actively expressed in both strains but concomitantly upregulated in strain 56601 in contrast to that of IPAV. Reverse transcription-PCR assays proved that the gene cluster comprised five transcripts. Gene annotation of this cluster revealed characteristics of a putative prophage-like remnant with at least 8 of 34 sequences encoding prophage-like proteins, of which the LA0195 protein is probably a putative prophage CI-like regulator. The transcription initiation activities of putative promoter-regulatory sequences of transcripts I, II, and III, all proximal to the LA0195 gene, were further analyzed in the Escherichia coli promoter probe vector pKK232-8 by assaying the reporter chloramphenicol acetyltransferase (CAT) activities. The strong promoter activities of both transcripts I and II indicated by the E. coli CAT assay were well correlated with the in vitro sequence-specific binding of the recombinant LA0195 protein to the corresponding promoter probes detected by the electrophoresis mobility shift assay. On the other hand, the promoter activity of transcript III was very low in E. coli and failed to show active binding to the LA0195 protein in vitro. These results suggested that the LA0195 protein is likely involved in the transcription of transcripts I and II. However, the identical complete DNA sequences of this prophage remnant from these two strains strongly suggests that possible regulatory factors or signal transduction systems residing outside of this region within the genome may be responsible for the differential expression profiling in these two strains.

  18. RELAÇÃO ENTRE A PERFORMANCE MUSCULAR E A PRÉ-DISPOSIÇÃO GENÉTICA

    Directory of Open Access Journals (Sweden)

    Marcelo Romanovitch Ribas

    2014-04-01

    Full Text Available A capacidade física humana é influenciada por fatores ambientais e genéticos, estes influenciam em 50% as várias características fenotípicas relacionadas ao desempenho físico. Assim, ao associar à genética e o esporte existe a possibilidade de se identificar os indivíduos com a fisiologia e morfologia ideal. O atual mapa genético humano apresenta uma lista de mais de 200 genes candidatos e suas regiões genéticas associadas com o desempenho físico humano. Sendo assim, o objetivo desta revisão foi determinar a incidência dos genes alfa actina3 (ACTN3 e a enzima conversa de angiotensina (ACE nos esportes que contemplam a solicitação de níveis maiores de força e velocidade para realizar a prática esportiva com melhor desempenho. O presente estudo denotou que o gene ACTN3 e seu polimorfismo R577X, os atletas com a predominância do genótipo ACTN3 RR são mais propensos a competir em esportes de velocidade e força. Em relação ao gene ACE e seus polimorfismos homozigotos II e DD, verificou-se que o polimorfismo do alelo II, esta relacionado a exercícios de resistência muscular e a atividades aeróbicas e o polimorfismo do alelo DD, voltado ao desempenho físico da força e potência muscular. Contudo, novas pesquisas com outros esportes, fazem-se necessárias a fim de elucidar algumas questões ainda não esclarecidas.

  19. Dual role for the O-acetyltransferase OatA in peptidoglycan modification and control of cell septation in Lactobacillus plantarum.

    Directory of Open Access Journals (Sweden)

    Elvis Bernard

    Full Text Available Until now, peptidoglycan O-acetyl transferases (Oat were only described for their peptidoglycan O-acetylating activity and for their implication in the control of peptidoglycan hydrolases. In this study, we show that a Lactobacillus plantarum mutant lacking OatA is unable to uncouple cell elongation and septation. Wild-type cells showed an elongation arrest during septation while oatA mutant cells continued to elongate at a constant rate without any observable pause during the cell division process. Remarkably, this defect does not result from a default in peptidoglycan O-acetylation, since it can be rescued by wild-type OatA as well as by a catalytic mutant or a truncated variant containing only the transmembrane domain of the protein. Consistent with a potential involvement in division, OatA preferentially localizes at mid-cell before membrane invagination and remains at this position until the end of septation. Overexpression of oatA or its inactive variants induces septation-specific aberrations, including asymmetrical and dual septum formation. Overproduction of the division inhibitors, MinC or MinD, leads to cell filamentation in the wild type while curved and branched cells are observed in the oatA mutant, suggesting that the Min system acts differently on the division process in the absence of OatA. Altogether, the results suggest that OatA plays a key role in the spatio-temporal control of septation, irrespective of its catalytic activity.

  20. Analysis of gene expression of myo1c and inpp5k genes involved in endometrial adenocarcinoma

    International Nuclear Information System (INIS)

    Koul, A.M.; Nadeem, A.; Baryalai, P.

    2012-01-01

    Abstract: Inpp5k gene encodes a protein which plays a very vital role in a number of metabolic pathways. It is very significant in the glucose metabolism where it regulates the signalling of the insulin pathway. But the full molecular details of the pathways regulated by Inpp5k encoded protein are not known. It is speculated that Inpp5k gene expression is altered in case of endometrial adenocarcinoma. Myolc gene encodes for a protein called Myosin-lc which acts an actin-based molecular motor in the cells. II has been studied that this gene down-regulates during endometrial adenocarcinoma and colorectal cancers. In this study the expression analysis of these two was carried out using multiplex PCR. An endogenous control was used for this PCR. ACTS gene served as the endogenous control because of it being a house keeping gene. It thus shows a universal expression in all cells. Thus in this study the gene expression of Inpp5k and Myulc genes was comparatively analysed with ACTS gene. The results that came out of this study showed an over-expression of Inpp5k gene and down-regulation of myolc gene with respect to ACTS gene in cancer cell lines as was indicated by the previous studies with these genes. Expression of both genes i.e. Inpp5k and Myolc was statistically compared between normal and cancerous cell lines and was found statistically significant at a value of P< O.O I in most of the cases. (author)