WorldWideScience

Sample records for nutrition soil management

  1. Use of isotope and radiation methods in soil and water management and crop nutrition. Manual

    International Nuclear Information System (INIS)

    2001-01-01

    This publication is a replacement for the IAEA Training Course Series No. 2 'Use of Nuclear Techniques in Studies of Soil-Plant Relationships' published in 1990. This edition, prepared by staff of the Soil Science Unit, Seibersdorf, and the Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, differs in many respects from its predecessor both in terms of content and objectives. The earlier publication provided basic information for use in interregional training courses held at regular intervals at the Seibersdorf Laboratories. Since the discontinuation of these training courses in 1996, the need for dissemination of up to date information to Member States has become more acute, particularly in view of the evolution of new methodologies during the past decade and new applications of existing methodologies to monitor the dynamics of soil, water and nutrients in cropping systems, and to pilot test interventions to conserve the natural resource base and optimize the availability of water and nutrients to crops. The present publication attempts to fulfill a part of this need. The manual provides an overview of the use of nuclear techniques in soil science and plant nutrition, balancing the need for a comprehensive coverage of a multitude of techniques involving isotopic tracers and sealed or unsealed sources, while giving sufficient depth to be of practical value to the end-users - students, technicians, scientists in national agricultural research systems and fellowship trainees. In this respect it is important to emphasize that nuclear techniques do not in themselves provide solutions to real world problems - they provide tools which when used in conjunction with other techniques, provide precise and specific information necessary to understand system dynamics and hence the value of alternative management practices to improve system productivity and resource conservation. This publication

  2. Use of isotope and radiation methods in soil and water management and crop nutrition. Manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    This publication is a replacement for the IAEA Training Course Series No. 2 'Use of Nuclear Techniques in Studies of Soil-Plant Relationships' published in 1990. This edition, prepared by staff of the Soil Science Unit, Seibersdorf, and the Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, differs in many respects from its predecessor both in terms of content and objectives. The earlier publication provided basic information for use in interregional training courses held at regular intervals at the Seibersdorf Laboratories. Since the discontinuation of these training courses in 1996, the need for dissemination of up to date information to Member States has become more acute, particularly in view of the evolution of new methodologies during the past decade and new applications of existing methodologies to monitor the dynamics of soil, water and nutrients in cropping systems, and to pilot test interventions to conserve the natural resource base and optimize the availability of water and nutrients to crops. The present publication attempts to fulfill a part of this need. The manual provides an overview of the use of nuclear techniques in soil science and plant nutrition, balancing the need for a comprehensive coverage of a multitude of techniques involving isotopic tracers and sealed or unsealed sources, while giving sufficient depth to be of practical value to the end-users - students, technicians, scientists in national agricultural research systems and fellowship trainees. In this respect it is important to emphasize that nuclear techniques do not in themselves provide solutions to real world problems - they provide tools which when used in conjunction with other techniques, provide precise and specific information necessary to understand system dynamics and hence the value of alternative management practices to improve system productivity and resource conservation. This publication

  3. Cover crops for managing weeds, soil chemical fertility and nutritional status of organically grown orange orchard in Sicily

    Directory of Open Access Journals (Sweden)

    Rosario Paolo Mauro

    2015-06-01

    Full Text Available Cover crops can offer significant advantages in the agronomic management of citrus orchards in Mediterranean environments. Therefore, a three-year research was conducted in eastern Sicily aimed at studying the effects of four cover crop sequences (Sinapis arvensis-Trigonella foenum-graecum-T. foenum-graecum; Medicago scutellata-Avena sativa-Lolium perenne; Vicia faba minor-A. sativa-A. sativa; A. sativa-V. faba. minor-L. perenne on weeds, major soil chemical properties and nutritional status of an organically grown orange orchard. The results highlighted that, among the studied cover crop sequences, Vicia faba-Avena-Avena was the most beneficial for weeds control within the orchard (92%, of cover crop cover, and 586 and 89 g DW m–2 of cover crop aboveground biomass and weeds aboveground biomass, respectively. Overall, the chemical fertility of the soil was positively influenced. In particular, it was observed an increase of the content of total nitrogen and available phosphorus in the soil by both Sinapis-Trigonella-Trigonella (0.75 g kg–1 and 59.0 mg kg–1, respectively and Vicia faba-Avena-Avena (0.70 g kg–1 and 56.0 mg kg–1, respectively cover crop sequences. Medicago-Avena-Lolium sequence seemed to be the most useful to ensure a better nutritional status of the orange orchard.

  4. Soil fertility and plant nutrition

    International Nuclear Information System (INIS)

    Menzel, R.G.; Smith, S.J.

    1984-01-01

    The applications of isotopic and related techniques, including autoradiography, radiation absorption, radiation scattering and activation analysis, in investigations on soil fertility and plant nutrition are discussed. The unique information that can be obtained with isotopes and radiation techniques is indicated. The advantages and disadvantages of these techniques are discussed in relation to other methods of obtaining similar information. (U.K.)

  5. Soil management, fertilization and plant nutrition in organic systems in Spain: A review of the research in last 20 years

    Science.gov (United States)

    Gonzalvez, Victor; Raigon Jiménez, M.° Dolores

    2016-04-01

    organic plant health and plant protection. In total 12 % of the papers presented in these events were devoted to soil conservation, soil fertility and plant nutrition management. We have analyzed this papers contributions dividing in five categories: a) organic and mineral fertilization; b) general evaluation of soil fertility under organic management; c) compost making and compost types; d) soil conservation and fertilization; e) crop fertilization and food quality The results shows that over 20 % of the total papers presented were related to general aspects of crop fertilization in 16% types of vegetables crops, 14% on arable crops and pastures and 8% on perennial crops (almonds, citrus, vineyards, olive trees, and banana) have been presented. Most studies were done on vegetables and very few on nutrient balance have been published. Some papers deal with cover crops. The soil fertility impact of organic farming compared with conventional is focused is included in nearly 30 % of all the scientific papers presented. Compost from different crop residues and the effects on soil and on different crops, including waste sludge (not allowed in organic farming) have been researched. Also some studies deal with how to use the residues of the olive oil mills or residues of vineyards as organic fertilizer. Some of the most recent studies are focused on how compost can control pest and diseases in crop cultivation. Another type of study has analyzed the soil disinfection potential of manure with high exposition to the sun (high temperature) to be used in greenhouses. Few studies are concentrated in the application of mycorrhizae to enhance the capacity of the plants to absorber nutrients from soil. We found some few studies on biofertilisers, but there are many different inputs being offered to organic farmers as natural fertilizer. Soil conservation and organic fertilisation studies are scarce and not sufficiently detailed. Finally we found a five category of very few studies on

  6. [Nutritional management in geriatric traumatology].

    Science.gov (United States)

    Singler, K; Goisser, S; Volkert, D

    2016-08-01

    The prevalence of malnutrition or the risk of malnourishment is high among orthogeriatric patients and a poor nutritional status is associated with a negative outcome. A comprehensive management of preoperative and postoperative nutritional and fluid intake in these patients can help to improve the situation. The management includes identification of patients affected, a thorough assessment of the nutritional status, work-up of possible underlying causes, documentation of nutritional and fluid intake and, most importantly, procedures to improve the preoperative and postoperative nutritional situation. This article gives an overview of the recently updated recommendations on nutritional management in orthogeriatric patients as published by the orthogeriatric working group of the German Geriatric Society.

  7. Enteral nutrition - child - managing problems

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000164.htm Enteral nutrition - child - managing problems To use the sharing features ... trouble breathing, call 911. References Mcclave SA. Enteral nutrition. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  8. Plant nutrition and soil fertility manual

    National Research Council Canada - National Science Library

    Jones, J. Benton

    2012-01-01

    .... With over 70 percent new material, the second edition of the Plant Nutrition and Soil Fertility Manual discusses the principles determining how plants grow and the elements essential for successful...

  9. Soil use and management

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Volume 3 on Soil Use and Management covers: - Soil evaluation and land use planning - Soil and

  10. Isotopes in soil-plant nutrition studies

    International Nuclear Information System (INIS)

    1962-01-01

    Radioisotopes have greatly facilitated investigating the characteristics of plant nutrients in the soil, in measuring soil moisture, in studying the uptake of nutrients by plants and in devising efficient methods of fertilizer application, and are now being widely used in soil-plant nutrition research. A recent international symposium on the use of radioisotopes in soil-plant nutrition studies showed the varied ways in which isotopes can contribute to agricultural production by helping to investigate soil characteristics and soil-plant relationships. The symposium, jointly sponsored by the International Atomic Energy Agency and the Food and Agriculture Organization of the United Nations, was held in Bombay from 26 February to 2 March 1962, at the invitation of the Government of India

  11. Soil water management

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Cassel, D.K.

    1984-01-01

    The use of radiation and tracer techniques in investigations into soil water management in agriculture, hydrology etc. is described. These techniques include 1) neutron moisture gauges to monitor soil water content and soil water properties, 2) gamma radiation attenuation for measuring the total density of soil and soil water content, 3) beta radiation attenuation for measuring changes in the water status of crop plants and 4) radioactive and stable tracers for identifying pathways, reactions and retention times of the constituents in soils and groundwater aquifers. The number and spacing of soil observations that should be taken to represent the management unit are also considered. (U.K.)

  12. Update on 13C-labelling of plant materials through the use of walk-in growth chambers [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Mayr, Leo; Resch, Christian; Weltin, Georg; Dercon, Gerd

    2014-01-01

    In 2013, the Soil and Water Management & Crop Nutrition Laboratory installed a pair of walk-in growth chambers with an effective volume of about 12 m 3 each. These growth chambers with temperature, relative humidity and carbon dioxide (CO 2 ) control, are being used within the framework of research activities for improving climate-smart agriculture in Member States

  13. Update on {sup 13}C-labelling of plant materials through the use of walk-in growth chambers [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Leo; Resch, Christian; Weltin, Georg; Dercon, Gerd [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria)

    2014-07-15

    In 2013, the Soil and Water Management & Crop Nutrition Laboratory installed a pair of walk-in growth chambers with an effective volume of about 12 m{sup 3} each. These growth chambers with temperature, relative humidity and carbon dioxide (CO{sub 2}) control, are being used within the framework of research activities for improving climate-smart agriculture in Member States.

  14. Isotopic studies in soil and plant nutrition

    International Nuclear Information System (INIS)

    Pasricha, N.S.

    2001-01-01

    One of the most important peaceful applications of isotopes is in research for the enhancement of our understanding for increased crop production and better management of resources with higher economic efficiency and environmental safety. Nuclear techniques helped in generating useful information on such aspects as use-efficiency of fertilizer nutrients, quantifying their losses from soil and their biological transformations. Such information was, hitherto, obtained indirectly by conventional methods. Radio and stable isotopes have also been successfully employed for getting information in such diverse fields as soil erosion, turnover of soil organic matter, pesticide retention in soil ground water recharge etc. The property of 137 Cs adhering tightly to certain exchange surface in soil and its chemically inert nature has made it a useful tool for soil erosion studies. In this paper, applications of isotopes in the research and other such studies as degradation, movement and retention of pesticides, movement of nitrate in soil, biological and ammoniacal nitrogen fixation in soil is discussed

  15. Nutritional Aspects of Dysphagia Management.

    Science.gov (United States)

    Gallegos, C; Brito-de la Fuente, E; Clavé, P; Costa, A; Assegehegn, G

    This chapter describes the nutritional aspects of dysphagia management by starting with the definition of these two conditions (dysphagia and malnutrition) that share three main clinical characteristics: (a) their prevalence is very high, (b) they can lead to severe complications, and (c) they are frequently underrecognized and neglected conditions. From an anatomical standpoint, dysphagia can result from oropharyngeal and/or esophageal causes; from a pathophysiological perspective, dysphagia can be caused by organic or structural diseases (either benign or malignant) or diseases causing impaired physiology (mainly motility and/or perception disorders). This chapter gathers up-to-date information on the screening and diagnosis of oropharyngeal dysphagia, the consequences of dysphagia (aspiration pneumonia, malnutrition, and dehydration), and on the nutritional management of dysphagic patients. Concerning this last topic, this chapter reviews the rheological aspects of swallowing and dysphagia (including shear and elongational flows) and its influence on the characteristics of the enteral nutrition for dysphagia management (solid/semisolid foods and thickened liquids; ready-to-use oral nutritional supplements and thickening powders), with special focus on the real characteristics of the bolus after mixing with human saliva. © 2017 Elsevier Inc. All rights reserved.

  16. Managing soil natural capital

    DEFF Research Database (Denmark)

    Cong, Ronggang; Termansen, Mette; Brady, Mark

    2017-01-01

    Farmers are exposed to substantial weather and market related risks. Rational farmers seek to avoid large losses. Future climate change and energy price fluctuations therefore make adaptating to increased risks particularly important for them. Managing soil natural capital—the capacity of the soil...... to generate ecosystem services of benefit to farmers—has been proven to generate the double dividend: increasing farm profit and reducing associated risk. In this paper we explore whether managing soil natural capital has a third dividend: reducing the downside risk (increasing the positive skewness of profit......). This we refer to as the prudence effect which can be viewed as an adaptation strategy for dealing with future uncertainties through more prudent management of soil natural capital. We do this by developing a dynamic stochastic portfolio model to optimize the stock of soil natural capital—as indicated...

  17. Climate Strategic Soil Management

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2014-02-01

    Full Text Available The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing frequency of extreme events, the decreasing resilience of agroecosystems, an increasing income and affluent lifestyle with growing preference towards meat-based diet and a decreasing soil quality and use efficiency of inputs. Reversing these downward spirals implies the implementation of proven technologies, such as conservation agriculture, integrated nutrient management, precision agriculture, agroforestry systems, etc. Restoration of degraded soil and desertified ecosystems and the creation of positive soil and ecosystem C budgets are important. Urban agriculture and green roofs can reduce the energy footprint of production chains for urban and non-urban areas and enhance the recycling of by-products. Researchable priorities include sustainable land use and soil/water management options, judicious soil governance and modus operandi towards payments to land managers for the provisioning of ecosystem services.

  18. Nutritional management of encapsulating peritoneal sclerosis with ...

    African Journals Online (AJOL)

    Keywords: intradialytic parenteral nutrition, nutritional management, encapsulating peritoneal sclerosis ... reflection of fluid retention and the underlying inflammatory process, ... The patient appeared weak and frail, with severe generalised muscle ... was recommended on diagnosis of EPS to prevent further peritoneal.

  19. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  20. Soil Management for Hardwood Production

    Science.gov (United States)

    W. M. Broadfoot; B. G. Blackmon; J. B. Baker

    1971-01-01

    Soil management is the key to successful hardwood management because soil properties are probably the most important determinants of forest productivity. Because of the lack of soil uniformity, however, many foresters have become frustrated with attempts to relate soil to satisfactory growth. Since soil scientists have been unable to predict site quality for trees in...

  1. Determinants of the adoption of integrated soil fertility management ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... focused approach to achieve sustainable soil fertility management among smallholder farmers. ... entry points that can help in developing innovative ISFM technologies.

  2. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    management strategies, which consider the site- and field-specific parameters and agricultural machinery’s improvements, it is possible to maximize production and income, while reducing negative environmental impacts and human health issues induced by agricultural activities as well as improving food......Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  3. Soil management practices under organic farming

    Science.gov (United States)

    Aly, Adel; Chami Ziad, Al; Hamdy, Atef

    2015-04-01

    Organic farming methods combine scientific knowledge of ecology and modern technology with traditional farming practices based on naturally occurring biological processes. Soil building practices such as crop rotations, intercropping, symbiotic associations, cover crops, organic fertilizers and minimum tillage are central to organic practices. Those practices encourage soil formation and structure and creating more stable systems. In farm nutrient and energy cycling is increased and the retentive abilities of the soil for nutrients and water are enhanced. Such management techniques also play an important role in soil erosion control. The length of time that the soil is exposed to erosive forces is decreased, soil biodiversity is increased, and nutrient losses are reduced, helping to maintain and enhance soil productivity. Organic farming as systematized and certifiable approach for agriculture, there is no surprise that it faces some challenges among both farmers and public sector. This can be clearly demonstrated particularly in the absence of the essential conditions needed to implement successfully the soil management practices like green manure and composting to improve soil fertility including crop rotation, cover cropping and reduced tillage. Those issues beside others will be fully discussed highlighting their beneficial impact on the environmental soil characteristics. Keywords: soil fertility, organic matter, plant nutrition

  4. Supervision of Nutrition, From Soil to Kitchen

    Science.gov (United States)

    Daei, Mohammad Ali; Daei, Manizheh; Daei, Bijan

    2017-04-01

    While soil science, agronomy, animal husbandry, and human nutrition have all the same goal, "human nourishment" surprisingly, this unique goal is tracked by separate groups at different sections without mutual understanding and cooperation. Although, plants are autotrophic and animals, including human are heterotrophic creatures, the principle of absorption, metabolism, excretion, and genetics, essentially are the same. At least in the domain of nutrition, there are much experiences and data; we can share to avoid recurrent mistakes. Agriculturists have a unique opportunity to do several experiments without much concern, what in the field of medicine is impossible. Results of such explorations may help doctors a lot. For example, thanks to vast investigation in soil science and agronomy, now, we are clearly aware of the unique role which minerals, play in gen regulation and expression. All plants need seventeen elements. Many years of research in hydroponic cultures showed that deficiency or excess of each element causes a special defect or disease. For instance, boron deficiency in plants, block the pollen tub formation and prevent fruit set and boron excess causes a radical change in flower buds and transformed them to vegetative buds. These changes are impossible without suppressing some and activating other groups of gens. As you see minor manipulation in minerals may have huge consequences. Fluctuations of minerals, work through enzymes and hormones to activate or inactivate some gens. This is a common rule for all multi cellular creatures. Human beings are more susceptible to mineral imbalances, because they contain thousands of inactive ancestral genes that have to be suppressed forever. Awakening of these types of genes (animal genes) can leads to bizarre perception, thinking and behaviors, what currently we are facing with! On the other hand recent investigations have showed that intestinal flora in human being is in close contact with our brain. Land

  5. Nutritional management in Ebola haemorrhagic fever

    Directory of Open Access Journals (Sweden)

    Kamon Chaiyasit

    2015-06-01

    Full Text Available Ebola haemorrhagic fever is a viral infection causing a major health problem worldwide. In this short article, the authors briefly review and discuss on the nutritional management (energy, protein, fat and micronutrient in management of Ebola infection.

  6. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  7. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    NARCIS (Netherlands)

    Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna

  8. Ruminant Nutrition Symposium: Modulation of metabolism through nutrition and management

    Science.gov (United States)

    The primary role of the dairy cow is to help provide high-quality protein and other nutrients through lactation to the human diet. It is clear that these high-producing and long lactations are stressful on the cows, and minor changes in nutrition and management can have significant impacts on profi...

  9. Assessment of nutritional status of soil supporting coconut (Cocus ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... Assessment of nutritional status of soil supporting coconut ... Infact coconut plays a vital role in the ... A high fertility status of the supporting soils is required for high .... the amount/concentration of basic fertility elements of the.

  10. Managing Agricultural Biodiversity for Nutrition, Health, Livelihoods ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Agricultural Biodiversity for Nutrition, Health, Livelihoods and ... on local ecosystems and human resources can provide sustainable solutions to ... and health among the rural and urban poor through increased dietary diversity.

  11. FAO/IAEA Training Course on Integrated Nutrient-Water Management at Field and Area-wide Scale, 19 May–27 June 2014, Seibersdorf, Austria [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Wahbi, Ammar; Weltin, Georg; Dercon, Gerd

    2014-01-01

    The main focus of the training course was on: (i) improving nutrient management in rainfed and irrigated agriculture, (ii) monitoring nutrient balances and water use efficiency at the field scale, (iii) increasing the efficiency of water management in rainfed and irrigated agriculture at field and area-wide scales, (iv) monitoring soil moisture at both field and area-wide scales, (v) assessing soil water balance and crop water relations, and (vi) training on the use of FAAO’s AquaCrop model to improve soil water management and irrigation scheduling

  12. FAO/IAEA Training Course on Integrated Nutrient-Water Management at Field and Area-wide Scale, 19 May–27 June 2014, Seibersdorf, Austria [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Wahbi, Ammar; Weltin, Georg; Dercon, Gerd [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria); others, and

    2014-07-15

    The main focus of the training course was on: (i) improving nutrient management in rainfed and irrigated agriculture, (ii) monitoring nutrient balances and water use efficiency at the field scale, (iii) increasing the efficiency of water management in rainfed and irrigated agriculture at field and area-wide scales, (iv) monitoring soil moisture at both field and area-wide scales, (v) assessing soil water balance and crop water relations, and (vi) training on the use of FAAO’s AquaCrop model to improve soil water management and irrigation scheduling.

  13. Nutritional management of gastrointestinal malignancies ...

    African Journals Online (AJOL)

    The evidence connecting food and gastrointestinal cancers from epidemiological studies, case-control studies, and prospective observational studies, indicates that determining the independent effects of specific nutrients is extremely diffi cult, given the many potential environmental factors to consider. The nutritional ...

  14. Nuclear techniques used in soil fertility and plant nutrition

    International Nuclear Information System (INIS)

    Halitligil, M.B.

    2004-01-01

    Nuclear techniques, which include the usage of radioactive and stable isotopes, had been used in soil fertility, plant nutrition, plant breeding, plant protection and food preservation research works after 1950s. Ultimately these nuclear techniques contributed greatly in increased plant production. In general, it is possible to separate the nuclear techniques used in soil fertility and plant nutrition into two groups. The first group is the use of radioactive and stable isotopes as a tracer in order to find out the optimum fertilization rate of plants precisely. The second group is the use of neutron probe in determining the soil moisture at different periods of the growing season and at various soil depths precisely without any difficulty. In research works where conventional techniques are used, it is not possible to identify how much of the nutrient taken up by the plant came from applied fertilizer or soil. However, when tracer techniques are used in research works it is possible to identify precisely which amount of the nutrient taken from fertilizer or from soil. Therefore, the nuclear techniques are very important in finding out which variety of fertilizer and how much of it must be used. The determination of the soil moisture is very important in finding the water needs of the plants for a good growth. Soil moisture contents changes often during the growth period, so it must be determined very frequently in order to determine the amount of irrigation that has to be done. Conventional soil moisture determination (gravimetric method) is very laborious especially when it has to be done frequently. However, by using neutron probe soil moisture determinations can be done very easily any time during the plant growth period. (author)

  15. Nuclear techniques used in soil fertility and plant nutrition

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    Full text: Nuclear techniques, which include the usage of radioactive and stable isotopes, had been used in soil fertility, plant nutrition, plant breeding, plant protection and food preservation research works after 1950s. Ultimately these nuclear techniques contributed greatly in increased plant production. In general, it is possible to separate the nuclear techniques used in soil fertility and plant nutrition into two groups. The first group is the use of radioactive and stable isotopes as a tracer in order to find out the optimum fertilization rate of plants precisely. The second group is the use of neutron probe in determining the soil moisture at different periods of the growing season and at various soil depths precisely without any difficulty. In research works where conventional techniques are used, it is not possible to identify how much of the nutrient taken up by the plant came from applied fertilizer or soil. However, when tracer techniques are used in research works it is possible to identify precisely which amount of the nutrient taken from fertilizer or from soil. Therefore, the nuclear techniques are very important in finding out which variety of fertilizer and how much of it must be used. The determination of the soil moisture is very important in finding the water needs of the plants for a good growth. Soil moisture contents changes often during the growth period, so it must be determined very frequently in order to determine the amount of irrigation that has to be done. Conventional soil moisture determination (gravimetric method) is very laborious especially when it has to be done frequently. However, by using neutron probe soil moisture determinations can be done very easily any time during the plant growth period

  16. Improving Soil Seed Bank Management.

    Science.gov (United States)

    Haring, Steven C; Flessner, Michael L

    2018-05-08

    Problems associated with simplified weed management motivate efforts for diversification. Integrated weed management uses fundamentals of weed biology and applied ecology to provide a framework for diversified weed management programs; the soil seed bank comprises a necessary part of this framework. By targeting seeds, growers can inhibit the propagule pressure on which annual weeds depend for agricultural invasion. Some current management practices affect weed seed banks, such as crop rotation and tillage, but these tools are often used without specific intention to manage weed seeds. Difficulties quantifying the weed seed bank, understanding seed bank phenology, and linking seed banks to emerged weed communities challenge existing soil seed bank management practices. Improved seed bank quantification methods could include DNA profiling of the soil seed bank, mark and recapture, or 3D LIDAR mapping. Successful and sustainable soil seed bank management must constrain functionally diverse and changing weed communities. Harvest weed seed controls represent a step forward, but over-reliance on this singular technique could make it short-lived. Researchers must explore tools inspired by other pest management disciplines, such as gene drives or habitat modification for predatory organisms. Future weed seed bank management will combine multiple complementary practices that enhance diverse agroecosystems. This article is protected by copyright. All rights reserved.

  17. Exploring Nutrition Literacy and Knowledge among a National Sample of School Nutrition Managers

    Science.gov (United States)

    Zoellner, Jamie; Carr, Deborah

    2010-01-01

    Purpose/Objectives: The purpose of this national study was to describe nutrition literacy levels and nutrition knowledge among school nutrition (SN) managers, and explore if barriers to seeking SN information, perceived role in school wellness, and confidence in SN decision making varied by nutrition literacy and knowledge scores. Methods: An…

  18. Irritable bowel syndrome: contemporary nutrition management strategies.

    Science.gov (United States)

    Mullin, Gerard E; Shepherd, Sue J; Chander Roland, Bani; Ireton-Jones, Carol; Matarese, Laura E

    2014-09-01

    Irritable bowel syndrome is a complex disorder whose pathophysiology involves alterations in the enteric microbiota, visceral hypersensitivity, gut immune/barrier function, hypothalamic-pituitary-adrenal axis regulation, neurotransmitters, stress response, psychological factors, and more. The importance of diet in the management of irritable bowel syndrome has taken center stage in recent times as the literature validates the relationship of certain foods with the provocation of symptoms. Likewise, a number of elimination dietary programs have been successful in alleviating irritable bowel syndrome symptoms. Knowledge of the dietary management strategies for irritable bowel syndrome will help guide nutritionists and healthcare practitioners to deliver optimal outcomes. This tutorial reviews the nutrition management strategies for irritable bowel syndrome. © 2014 American Society for Parenteral and Enteral Nutrition.

  19. [Nutritional management of kidney diseases in children].

    Science.gov (United States)

    Borovik, T E; Kutafina, E K; Tsygin, A N; Sergeeva, T V; Baranov, A A; Namazova-Baranova, L S; Voznesenskaya, T S; Zakharova, I N; Semenova, N N; Zvonkova, N G; Yatsyk, S P

    2016-01-01

    The prevalence of various kidney diseases in children remains high in recent decades. Adequate nutrition management can enhance the effectiveness of drug treatment, slow the frequency of relapses andprevent the progression of the disease. The article is devoted to modern approaches to diet therapy in various kidney diseases in children with the defeat of tubular and glomerular appa ratus. For the first time the therapeutic diets for children with various kidney diseases are presented. Particular attention is paid to diet therapy in nephrotic syndrome (steroid-responsive and steroid-refractory). Dietary approaches with modern formulas for enteral nutrition in cases of steroid therapy complications in children with renal insufficiency (in predialysis stage and on dialysis) are described. Differentiated nutritional approaches for patients with different types of crystalluria are separately presented.

  20. Crops nutrition management as measures for climate change adaptation

    Science.gov (United States)

    Hladkikh, Yevheniia

    2017-04-01

    The main feature of climate change in most countries worldwide is the increasing frequency of extreme weather events such as unpredictable floods, droughts and another abiotic stress for crops. It is not surprising that most countries are interested in technologies for adapting agriculture to climate change, and Ukraine is no exception. But traditional measures which exist in the world practice do not sufficiently take into account the importance of interactions between soil and plants. For example, from 138 projects of the European Climate Adaption Platform only 16 are correlated with the soil, but only one of them investigates the interaction in "soil-plant" system. In this connection, the main aim of our research was to determine the effectiveness of agrochemical techniques in plant nutrition management for crops adaptation to extreme weather fluctuations. The influence of different agrochemical measures in "soil-plant" system on the resilience of crops to different climate conditions of the growing season were investigated in a long-term field experiment that was started in 1969. The experiment was on a Chernozem at the Grakivske Experimental Station in Kharkiv region, Ukraine. Soil samples were taken during the growing season from field under different crops. Soil and plant samples analyses included macro- and micronutrients content, soil moisture. Research in the field experiment has demonstrated a close correlation between the average annual rainfall and content of available forms of macronutrients in the soil (especially for nitrate nitrogen the correlation coefficient was 0.98). Studies have shown that increasing the annual rainfall by 100 mm increases the content of nitrate nitrogen in the soil at 7 mg per kg. Another correlation has shown that the decrease amount of precipitation reduces the range of the N:P and consequently the availability of these elements to crops. Thus, in drought conditions, efficiency of the use of available nutrients by crops

  1. Nutrition training improves health workers' nutrition knowledge and competence to manage child undernutrition: a systematic review.

    Science.gov (United States)

    Sunguya, Bruno F; Poudel, Krishna C; Mlunde, Linda B; Urassa, David P; Yasuoka, Junko; Jimba, Masamine

    2013-09-24

    Medical and nursing education lack adequate practical nutrition training to fit the clinical reality that health workers face in their practices. Such a deficit creates health workers with poor nutrition knowledge and child undernutrition management practices. In-service nutrition training can help to fill this gap. However, no systematic review has examined its collective effectiveness. We thus conducted this study to examine the effectiveness of in-service nutrition training on health workers' nutrition knowledge, counseling skills, and child undernutrition management practices. We conducted a literature search on nutrition interventions from PubMed/MEDLINE, CINAHL, EMBASE, ISI Web of Knowledge, and World Health Organization regional databases. The outcome variables were nutrition knowledge, nutrition-counseling skills, and undernutrition management practices of health workers. Due to heterogeneity, we conducted only descriptive analyses. Out of 3910 retrieved articles, 25 were selected as eligible for the final analysis. A total of 18 studies evaluated health workers' nutrition knowledge and showed improvement after training. A total of 12 studies with nutrition counseling as the outcome variable also showed improvement among the trained health workers. Sixteen studies evaluated health workers' child undernutrition management practices. In all such studies, child undernutrition management practices and competence of health workers improved after the nutrition training intervention. In-service nutrition training improves quality of health workers by rendering them more knowledge and competence to manage nutrition-related conditions, especially child undernutrition. In-service nutrition training interventions can help to fill the gap created by the lack of adequate nutrition training in the existing medical and nursing education system. In this way, steps can be taken toward improving the overall nutritional status of the child population.

  2. Soil management practices for sustainable crop production

    International Nuclear Information System (INIS)

    Abalos, E.B.

    2005-01-01

    In a sustainable system, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. However, due to high demand for food brought about by high population as well as the decline in agricultural lands, the soil is being exploited beyond its limit thus, leading to poor or sick soils. Sound soil management practices in the Philippines is being reviewed. The technologies, including the advantages and disadvantages are hereby presented. This includes proper cropping systems, fertilizer program, soil erosion control and correcting soil acidity. Sound soil management practices which conserve organic matter for long-term sustainability includes addition of compost, maintaining soil cover, increasing aggregates stability, soil tilt and diversity of soil microbial life. A healthy soil is a key component to sustainability as a health soil produce healthy crop plants and have optimum vigor or less susceptible to pests. (author)

  3. Integrated management in calcareous soils

    International Nuclear Information System (INIS)

    Castilla, Luis A; Salive, A

    2001-01-01

    Rice growing is developed in different kinds of soils, and some of the have high bases saturation, especially calcium and magnesium, as well as medium to high carbonate contents. This causes negative effects in the development and growth of the rice plant. As a consequence, several researching actions have been under-taken, and they are aimed at becoming this problem in economically manageable. Among the strategies we have, some of them are as follows: evaluating rice varieties presenting tolerance to these soils; using inorganic fertilizers looking for a response to elements, sources, dose and application times; evaluating organic fertilizers, mainly the green ones; using amendments, and physical soil management. According to the results, we have the fertilization response with major and minor elements and with the statistical differences at a 0.05% level. A response was found with elements such as zinc, copper, boron, iron, phosphorus and potassium. However, the efficiency of these elements depends on the addition of amendments as sulfur, the use of green fertilizers and farming systems that eliminate the superficial compaction of these soils, besides the use of varieties which are more tolerant to alkalinity, just like Fedearroz-50

  4. RAF/5/071: Enhancing Crop Nutrition and Soil and Water Management and Technology Transfer in Irrigated Systems for Increased Food Production and Income Generation (AFRA)

    International Nuclear Information System (INIS)

    Sijali, I.

    2017-01-01

    The overall objective is to enhance food security, income and the resilience of smallholder farmers through climate change adaptive, mitigation and coping strategies and specific objective to Improve water and nitrogen use efficiency under different irrigated cropping systems using quantifying nuclear technique. Technologies perfected at KALRO transferred to pastoral communities (Maasai land). Technologies included drip irrigation systems for vegetables and orchards, water harvesting ponds dam lining, Solar pump, greenhouse management techniques and introduction of new crops such as sweet potatoes, green grams and sorghums. A low-cost solar-powered irrigation pump has been developed by on-station testing and demonstration was done for a small solar pump

  5. Managing for soil health can suppress pests

    Directory of Open Access Journals (Sweden)

    Amanda Hodson

    2016-08-01

    Full Text Available A “healthy” soil can be thought of as one that functions well, both agronomically and ecologically, and one in which soil biodiversity and crop management work in synergy to suppress pests and diseases. UC researchers have pioneered many ways of managing soil biology for pest management, including strategies such as soil solarization, steam treatment and anaerobic soil disinfestation, as well as improvements on traditional methods, such as reducing tillage, amending soil with organic materials, and cover cropping. As managing for soil health becomes more of an explicit focus due to restrictions on the use of soil fumigants, integrated soil health tests will be needed that are validated for use in California. Other research needs include breeding crops for disease resistance and pest suppressive microbial communities as well as knowledge of how beneficial organisms influence plant health.

  6. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    Youngs, E.G.

    1983-01-01

    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  7. Preliminary investigations to assess the usefulness of Be-7 as a radiotracer in soil covered by vegetation [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Iurian, Andra-Rada; Dercon, Gerd; Adu-Gyamfi, Joseph; Mabit, Lionel; Kis-Benedek, Gyula; Ceccatelli, Alessia; Tarjan, Sandor; Blake, William

    2014-01-01

    Different factors may affect the extent of radionuclides’ interception by plants and therewith their inventories in soil covered areas. In particular, there is interest in assessing the impact of the vegetation factor for different soil coverage conditions, when using 7 Be as radiotracer of soil redistribution in cropped farmland. Our results suggest that 7 Be foliar interception of bean plants is likely to affect the radionuclide inventories and their spatial uniformity in covered soil. Reliable results on short-term erosion using 7 Be can be obtained in cropped farmland with limited cover, but only when taking into account the interception factor. The impact of the interception factor is highly dependent on rainfall intensity and duration, crop species and the growing stage of the plants. Further investigations into these variables are required

  8. Preliminary investigations to assess the usefulness of Be-7 as a radiotracer in soil covered by vegetation [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Iurian, Andra-Rada [Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca (Romania); Dercon, Gerd; Adu-Gyamfi, Joseph; Mabit, Lionel [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria); Kis-Benedek, Gyula; Ceccatelli, Alessia; Tarjan, Sandor [3Terrestrial Environment Laboratory, IAEA Environment Laboratories, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Seibersdorf (Austria); Blake, William [School of Geography, University of Plymouth, Plymouth (United Kingdom); others, and

    2014-07-15

    Different factors may affect the extent of radionuclides’ interception by plants and therewith their inventories in soil covered areas. In particular, there is interest in assessing the impact of the vegetation factor for different soil coverage conditions, when using {sup 7}Be as radiotracer of soil redistribution in cropped farmland. Our results suggest that {sup 7}Be foliar interception of bean plants is likely to affect the radionuclide inventories and their spatial uniformity in covered soil. Reliable results on short-term erosion using {sup 7}Be can be obtained in cropped farmland with limited cover, but only when taking into account the interception factor. The impact of the interception factor is highly dependent on rainfall intensity and duration, crop species and the growing stage of the plants. Further investigations into these variables are required.

  9. Nutrition in peri-operative esophageal cancer management.

    Science.gov (United States)

    Steenhagen, Elles; van Vulpen, Jonna K; van Hillegersberg, Richard; May, Anne M; Siersema, Peter D

    2017-07-01

    Nutritional status and dietary intake are increasingly recognized as essential areas in esophageal cancer management. Nutritional management of esophageal cancer is a continuously evolving field and comprises an interesting area for scientific research. Areas covered: This review encompasses the current literature on nutrition in the pre-operative, peri-operative, and post-operative phases of esophageal cancer. Both established interventions and potential novel targets for nutritional management are discussed. Expert commentary: To ensure an optimal pre-operative status and to reduce peri-operative complications, it is key to assess nutritional status in all pre-operative esophageal cancer patients and to apply nutritional interventions accordingly. Since esophagectomy results in a permanent anatomical change, a special focus on nutritional strategies is needed in the post-operative phase, including early initiation of enteral feeding, nutritional interventions for post-operative complications, and attention to long-term nutritional intake and status. Nutritional aspects of pre-optimization and peri-operative management should be incorporated in novel Enhanced Recovery After Surgery programs for esophageal cancer.

  10. Management of Hyperglycemia During Enteral and Parenteral Nutrition Therapy

    Science.gov (United States)

    Umpierrez, Guillermo E.

    2013-01-01

    Hyperglycemia is a frequent complication of enteral and parenteral nutrition in hospitalized patients. Extensive evidence from observational studies indicates that the development of hyperglycemia during parenteral and enteral nutrition is associated with an increased risk of death and infectious complications. There are no specific guidelines recommending glycemic targets and effective strategies for the management of hyperglycemia during specialized nutritional support. Managing hyperglycemia in these patients should include optimization of carbohydrate content and administration of intravenous or subcutaneous insulin therapy. The administration of continuous insulin infusion and insulin addition to nutrition bag are efficient approaches to control hyperglycemia during parenteral nutrition. Subcutaneous administration of long-acting insulin with scheduled or corrective doses of short-acting insulin is superior to the sliding scale insulin strategy in patients receiving enteral feedings. Randomized controlled studies are needed to evaluate safe and effective therapeutic strategies for the management of hyperglycemia in patients receiving nutritional support. PMID:23065369

  11. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  12. Ideal and saturated soil fertility as bench marks in nutrient management; 1 outline of the framework

    NARCIS (Netherlands)

    Janssen, B.H.; Willigen, de P.

    2006-01-01

    This paper presents a framework for nutrient management that takes sustainable soil fertility, environmental protection and balanced plant nutrition as starting points, and integrates concepts from plant physiology, soil chemistry and agronomy. The framework is meant as a tool that can be applied

  13. Soil management in rainfed olive orchards may result in conflicting effects on olive production and soil fertility

    Directory of Open Access Journals (Sweden)

    I. Q. Ferreira

    2013-03-01

    Full Text Available The adoption of a sustainable soil management system is essential for the steep slopes and low fertility soils still supporting rainfed olive orchards in the Mediterranean basin. The effect of the soil management on olive yield, tree nutritional status and soil fertility was studied in a rainfed olive orchard located in NE Portugal that had been managed since its earliest days as a sheep-walk. In 2001, three different soil management systems were established: Sheep-walk, in which the vegetation was managed with a flock of sheep; Tillage, where the vegetation was controlled by conventional tillage; and Glyphosate, where a glyphosate-based herbicide was applied. The soil management systems had a pronounced effect on olive yield. The accumulated olive yields between 2002 and 2011 were 187.2, 142.9 and 89.5 kg tree-1, respectively in the Glyphosate, Tillage and Sheep-walk treatments. However, the effect of soil management on tree nutritional status was not so clear. On the other hand, the pools of organic carbon and N in the soil, and also the soil available N and phosphorus (P, were found to be less in the Glyphosate and Tillage treatments in comparison with the Sheep-walk. In these soils, N appeared as a much more limiting factor for crop growth than P. In rainfed orchards, the tolerance to herbaceous vegetation appears to be a determining factor in sustainability, which regulates annual crop yields and soil fertility. The higher the tolerance to herbaceous species, the lower the olive yields, but the better are the soil fertility parameters.

  14. Colloid Release From Differently Managed Loess Soil

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Schjønning, Per; Møldrup, Per

    2012-01-01

    The content of water-dispersible colloids (WDC) in a soil can have a major impact on soil functions, such as permeability to water and air, and on soil strength, which can impair soil fertility and workability. In addition, the content of WDC in the soil may increase the risk of nutrient loss...... and of colloid-facilitated transport of strongly sorbing compounds. In the present study, soils from the Bad Lauchsta¨dt longterm static fertilizer experiment with different management histories were investigated to relate basic soil properties to the content of WDC, the content of water-stable aggregates (WSA......), and aggregate tensile strength. Our studies were carried out on soils on identical parent material under controlled management conditions, enabling us to study the long-term effects on soil physical properties with few explanatory variables in play. The content of WDC and the amount of WSA were measured...

  15. Modelling the Impact of Soil Management on Soil Functions

    Science.gov (United States)

    Vogel, H. J.; Weller, U.; Rabot, E.; Stößel, B.; Lang, B.; Wiesmeier, M.; Urbanski, L.; Wollschläger, U.

    2017-12-01

    Due to an increasing soil loss and an increasing demand for food and energy there is an enormous pressure on soils as the central resource for agricultural production. Besides the importance of soils for biomass production there are other essential soil functions, i.e. filter and buffer for water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these functions have a direct feed back to biogeochemical cycles and climate. To render agricultural production efficient and sustainable we need to develop model tools that are capable to predict quantitatively the impact of a multitude of management measures on these soil functions. These functions are considered as emergent properties produced by soils as complex systems. The major challenge is to handle the multitude of physical, chemical and biological processes interacting in a non-linear manner. A large number of validated models for specific soil processes are available. However, it is not possible to simulate soil functions by coupling all the relevant processes at the detailed (i.e. molecular) level where they are well understood. A new systems perspective is required to evaluate the ensemble of soil functions and their sensitivity to external forcing. Another challenge is that soils are spatially heterogeneous systems by nature. Soil processes are highly dependent on the local soil properties and, hence, any model to predict soil functions needs to account for the site-specific conditions. For upscaling towards regional scales the spatial distribution of functional soil types need to be taken into account. We propose a new systemic model approach based on a thorough analysis of the interactions between physical, chemical and biological processes considering their site-specific characteristics. It is demonstrated for the example of soil compaction and the recovery of soil structure, water capacity and carbon stocks as a result of plant growth and biological

  16. Assessing nurses’ knowledge levels in the nutritional management of diabetes

    Directory of Open Access Journals (Sweden)

    Victor Mogre

    2015-01-01

    Full Text Available Although nutrition education for diabetes patients is the responsibility of dieticians and/or nutritionist, nurses have an important role to play. This study measured the knowledge level of nurses’ and associated factors in the nutritional management of diabetes. In this cross-sectional study a sample of 200 nurses completed a 21-item nutritional management of diabetes knowledge test developed based on the ADA and WHO guidelines for the nutritional management of diabetes. Using Cronbach's alpha, reliability was 0.62. The nurses (n = 200 had almost a 1:1 male to female ratio (n = 99, 49.5% and n = 101, 50.5% and a mean age of 27.24 ± 3.66 years. Total mean score was 12.13 ± 3.17 (44.9% correct. Over 70% of the nurses said diabetes patients could exclude any of the major nutrients from their meals. Almost 90% (n = 179 of the nurses did not know the recommended daily caloric intake of carbohydrates for diabetes patients. Higher mean scores were found in nurses who have ever had a refresher course in nutrition, ever counseled a diabetes patient and took 2–3 nutrition courses during school. Nurses’ knowledge in the nutritional management of diabetes was poor. It raises questions about the adequacy of nurses’ knowledge in the nutritional management of diabetes.

  17. Efeitos de algumas práticas de cultivo do solo, na nutrição mineral dos citros Effect of soil management practices on mineral nutrition of citrus tree

    Directory of Open Access Journals (Sweden)

    J. Romano Gallo

    1960-01-01

    Full Text Available Diferentes sistemas de cultivo do solo no pomar cítrico foram comparados no presente trabalho, por meio da análise foliar. Os tratamentos estudados fazem parte de um experimento com plantas da variedade Hamlin sôbre laranjeira caipira (Citrus sinensis Osbeck instalodo no Estação Experimental de Limeira, do Instituto Agronômico. Amostras de fôlhas do ciclo vegetativo da primavera foram colhidas a intervalos regulares, desde outubro de 1957 a março de 1959 e analisadas para os seguintes elementos: N, P, K, Ca, Mg, Fe e Mn. São apresentados os tendências das curvas de concentração dos elementos nutritivos nas fôlhas e os resultados de produção correspondentes a quatro onos de colheita. Como observação mais importante foi verificado que a cobertura morta de capim e a adubação verde de mucuna aumentaram de modo sensível o teor de fósforo nas fôlhas dos citros. As produções de laranja acompanharam a ordem dos níveis dêsse elemento na folhagem.The influence of several soil management systems on the mineral nutrition and production of citrus trees was studied. This study was mode in an experimental orchard installed in 1949 with Hamlin orange on sweet orange (Citrus sinensis Osbeck. Differential treatments were started in 1953. Since 1956 all plots received uniform fertilizer applications and liming. The cultural treatments employed are as follows: clean cultivation with herbicide; clean cultivation plus a cover crop of velvet bean (Stizolobium aterrimum Pip. & Trac. planted in the spring and cut down in the fall; clean cultivation plus a cover crop of pigeon pea (Cajanus cajan (L. Millsp. planted in the spring and cut down in the fall; molasses grass (Melinis minutiflora Béauv. mulch; and superficial soil plowing. Leaf samples of the spring cycle were collected from each treatment at regular intervals, from October, 1957 to March, 1959, and analysed for N, P, K, Ca, Mg, Fe, and Mn. The seasonal variations in mineral

  18. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  19. Nutritional-related diseases and management: newspaper ...

    African Journals Online (AJOL)

    The study showed that many people are ignorant of the importance of eating a balanced diet and eating right to prevent nutritional diseases. This is why the newspapers topics or health tips on diet and nutrition had the highest percentage frequency, because of its importance the needed emphasis it requires. Therefore, it is ...

  20. Thailand's National Nutritional Program : Lessons in Management and Capacity Development

    OpenAIRE

    Heaver, Richard; Kachondam, Yongyout

    2002-01-01

    Thailand's community nutrition program has been the most successful in Asia. This paper looks at what made it work from a management and capacity development point of view. Key lessons are identified in the following areas: Building a strong consensus at national and local levels about the importance of nutrition as an investment in the country's future, rather than as a welfare expenditur...

  1. Adaptive management for soil ecosystem services

    Science.gov (United States)

    Birge, Hannah E.; Bevans, Rebecca A.; Allen, Craig R.; Angeler, David G.; Baer, Sara G.; Wall, Diana H.

    2016-01-01

    Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services.

  2. Precision Nutrition: A Review of Personalized Nutritional Approaches for the Prevention and Management of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Juan de Toro-Martín

    2017-08-01

    Full Text Available The translation of the growing increase of findings emerging from basic nutritional science into meaningful and clinically relevant dietary advices represents nowadays one of the main challenges of clinical nutrition. From nutrigenomics to deep phenotyping, many factors need to be taken into account in designing personalized and unbiased nutritional solutions for individuals or population sub-groups. Likewise, a concerted effort among basic, clinical scientists and health professionals will be needed to establish a comprehensive framework allowing the implementation of these new findings at the population level. In a world characterized by an overwhelming increase in the prevalence of obesity and associated metabolic disturbances, such as type 2 diabetes and cardiovascular diseases, tailored nutrition prescription represents a promising approach for both the prevention and management of metabolic syndrome. This review aims to discuss recent works in the field of precision nutrition analyzing most relevant aspects affecting an individual response to lifestyle/nutritional interventions. Latest advances in the analysis and monitoring of dietary habits, food behaviors, physical activity/exercise and deep phenotyping will be discussed, as well as the relevance of novel applications of nutrigenomics, metabolomics and microbiota profiling. Recent findings in the development of precision nutrition are highlighted. Finally, results from published studies providing examples of new avenues to successfully implement innovative precision nutrition approaches will be reviewed.

  3. Nutritional evaluation and management of AKI patients.

    Science.gov (United States)

    Fiaccadori, Enrico; Maggiore, Umberto; Cabassi, Aderville; Morabito, Santo; Castellano, Giuseppe; Regolisti, Giuseppe

    2013-05-01

    Protein-energy wasting is common in patients with acute kidney injury (AKI) and represents a major negative prognostic factor. Nutritional support as parenteral and/or enteral nutrition is frequently needed because the early phases of this are often a highly catabolic state, although the optimal nutritional requirements and nutrient intake composition remain a partially unresolved issue. Nutrient needs of patients with AKI are highly heterogeneous, depending on different pathogenetic mechanisms, catabolic rate, acute and chronic comorbidities, and renal replacement therapy (RRT) modalities. Thus, quantitative and qualitative aspects of nutrient intake should be frequently evaluated in this clinical setting to achieve better individualization of nutritional support, to integrate nutritional support with RRT, and to avoid under- and overfeeding. Moreover, AKI is now considered a kidney-centered inflammatory syndrome; indeed, recent experimental data indicate that specific nutrients with anti-inflammatory effects could play an important role in the prevention of renal function loss after an episode of AKI. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  4. Rehabilitation nutrition for sarcopenia with disability: a combination of both rehabilitation and nutrition care management

    OpenAIRE

    Wakabayashi, Hidetaka; Sakuma, Kunihiro

    2014-01-01

    Malnutrition and sarcopenia often occur in rehabilitation settings. The prevalence of malnutrition and sarcopenia in older patients undergoing rehabilitation is 49–67 % and 40–46.5 %, respectively. Malnutrition and sarcopenia are associated with poorer rehabilitation outcome and physical function. Therefore, a combination of both rehabilitation and nutrition care management may improve outcome in disabled elderly with malnutrition and sarcopenia. The concept of rehabilitation nutrition as a c...

  5. Nutrition and Hyperglycemia Management in the Inpatient Setting (Meals on Demand, Parenteral, or Enteral Nutrition).

    Science.gov (United States)

    Drincic, Andjela T; Knezevich, Jon T; Akkireddy, Padmaja

    2017-08-01

    The goal of this paper is to provide the latest evidence and expert recommendations for management of hospitalized patients with diabetes or hyperglycemia receiving enteral (EN), parenteral (PN) nutrition support or, those with unrestricted oral diet, consuming meals on demand. Patients with and without diabetes mellitus commonly develop hyperglycemia while receiving EN or PN support, placing them at increased risk of adverse outcomes, including in-hospital mortality. Very little new evidence is available in the form of randomized controlled trials (RCT) to guide the glycemic management of these patients. Reduction in the dextrose concentration within parenteral nutrition as well as selection of an enteral formula that diminishes the carbohydrate exposure to a patient receiving enteral nutrition are common strategies utilized in practice. No specific insulin regimen has been shown to be superior in the management of patients receiving EN or PN nutrition support. For those receiving oral nutrition, new challenges have been introduced with the most recent practice allowing patients to eat meals on demand, leading to extreme variability in carbohydrate exposure and risk of hypo and hyperglycemia. Synchronization of nutrition delivery with the astute use of intravenous or subcutaneous insulin therapy to match the physiologic action of insulin in patients receiving nutritional support should be implemented to improve glycemic control in hospitalized patients. Further RCTs are needed to evaluate glycemic and other clinical outcomes of patients receiving nutritional support. For patients eating meals on demand, development of hospital guidelines and policies are needed, ensuring optimization and coordination of meal insulin delivery in order to facilitate patient safety.

  6. Nutritional management of a critically injured patient

    African Journals Online (AJOL)

    of the right leg were considered borderline in terms of viability, and fasciotomies ..... lymphoid tissue, are affected by the type and route of nutrition.8,9 The adverse ... formulations as an effective means of stress ulcer prophylaxis.8. Optimal ...

  7. Introduction to Soil Fumigant Management Plans

    Science.gov (United States)

    Soil fumigant pesticide labels require users to prepare a site-specific fumigation management plan (FMP) before the application begins. EPA has developed templates that outline the elements required by the labels.

  8. RADIOISOTOPES IN SOIL-PLANT NUTRITION STUDIES. Proceedings of the Symposium held in Bombay, 26 February-2 March 1962

    Energy Technology Data Exchange (ETDEWEB)

    None

    1962-06-01

    A symposium on Radioisotopes in Soil-Plant Nutrition Studies was held at Bombay, Feb. 26 to March 2, 1962. Separate abstracts were prepared for 8 papers. abstracts of 2 papers have appeared previously in NSA. Other papers presented covered various aspects of soil chemistry, soil physics, ion uptake and translocation in soils, biological measurement of soil characteristics, and fertilizer usage. (C.H.)

  9. Nutritional Management of Acute Diarrhea in Infants and Children.

    Science.gov (United States)

    National Academy of Sciences-National Research Council, Washington, DC. Food and Nutrition Board.

    Written primarily for health professionals advising on programs and policy related to nutrition and diarrhea therapy, this report is aimed at management of diarrhea in less-developed countries, but its information and technical insights are relevant to an understanding of diarrhea and its management throughout the world. Technical in orientation…

  10. Adult classical homocystinuria requiring parenteral nutrition: Pitfalls and management.

    Science.gov (United States)

    Tran, Christel; Bonafé, Luisa; Nuoffer, Jean-Marc; Rieger, Julie; Berger, Mette M

    2017-07-25

    Homocystinuria due to cystathionine beta synthase (CBS) deficiency presents with a wide clinical spectrum. Treatment by the enteral route aims at reducing homocysteine levels by using vitamin B6, possibly methionine-restricted diet, betaine and/or folate and vitamin B 12 supplementation. Currently no nutritional guidelines exist regarding parenteral nutrition (PN) under acute conditions. Exhaustive literature search was performed, in order to identify the relevant studies describing the pathogenesis and nutritional intervention of adult classical homocystinuria requiring PN. Description of an illustrative case of an adult female with CBS deficiency and intestinal perforation, who required total PN due to contraindication to enteral nutrition. Nutritional management of decompensated classical homocystinuria is complex and currently no recommendation exists regarding PN composition. Amino acid profile and monitoring of total homocysteine concentration are the main tools enabling a precise assessment of the severity of metabolic alterations. In case of contraindication to enteral nutrition, compounded PN will be required, as described in this paper, to ensure adequate low amounts of methionine and others essential amino acids and avoid potentially fatal toxic hypermethioninemia. By reviewing the literature and reporting successful nutritional management of a decompensated CBS deficiency using tailored PN with limited methionine intake and n-3 PUFA addition, we would like to underscore the fact that standard PN solutions are not adapted for CBS deficient critical ill patients: new solutions are required. High methionine levels (>800 μmol/L) being potentially neurotoxic, there is an urgent need to improve our knowledge of acute nutritional therapy. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. New soil water sensors for irrigation management

    Science.gov (United States)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  12. Assessing Cross-disciplinary Efficiency of Soil Amendments for Agro-biologically, Economically, and Ecologically Integrated Soil Health Management

    Science.gov (United States)

    2010-01-01

    Preventive and/or manipulative practices will be needed to maintain soil's biological, physiochemical, nutritional, and structural health in natural, managed, and disturbed ecosystems as a foundation for food security and global ecosystem sustainability. While there is a substantial body of interdisciplinary science on understanding function and structure of soil ecosystems, key gaps must be bridged in assessing integrated agro-biological, ecological, economical, and environmental efficiency of soil manipulation practices in time and space across ecosystems. This presentation discusses the application of a fertilizer use efficiency (FUE) model for assessing agronomic, economic, ecological, environmental, and nematode (pest) management efficiency of soil amendments. FUE is defined as increase in host productivity and/or decrease in plant-parasitic nematode population density in response to a given fertilizer treatment. Using the effects of nutrient amendment on Heterodera glycines population density and normalized difference vegetative index (indicator of physiological activities) of a soybean cultivar ‘CX 252’, how the FUE model recognizes variable responses and separates nutrient deficiency and toxicity from nematode parasitism as well as suitability of treatments designed to achieve desired biological and physiochemical soil health conditions is demonstrated. As part of bridging gaps between agricultural and ecological approaches to integrated understanding and management of soil health, modifications of the FUE model for analyzing the relationships amongst nematode community structure, soil parameters (eg. pH, nutrients, %OM), and plant response to soil amendment is discussed. PMID:22736840

  13. Nutritional management of a patient with an open abdomen

    African Journals Online (AJOL)

    2014-08-14

    Aug 14, 2014 ... Keywords: nutritional, management, open abdomen. Introduction ... lower than required energy intake (25 kCal/kg), and increasing it to target over the ..... Trauma and surgery lead to an intense inflammatory response and possible ... state, characterised by muscle breakdown, acute protein malnutrition ...

  14. Managing Food Allergies at School: School Nutrition Professionals

    Centers for Disease Control (CDC) Podcasts

    2015-01-13

    This podcast highlights the role of school nutrition professionals in the management of food allergies in schools. It also identifies CDC food allergy resources for schools.  Created: 1/13/2015 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 1/13/2015.

  15. Soil aggregation under different management systems

    Directory of Open Access Journals (Sweden)

    Cibele Mascioli Rebello Portella

    2012-12-01

    Full Text Available Considering that the soil aggregation reflects the interaction of chemical, physical and biological soil factors, the aim of this study was evaluate alterations in aggregation, in an Oxisol under no-tillage (NT and conventional tillage (CT, since over 20 years, using as reference a native forest soil in natural state. After analysis of the soil profile (cultural profile in areas under forest management, samples were collected from the layers 0-5, 5-10, 10-20 and 20-40 cm, with six repetitions. These samples were analyzed for the aggregate stability index (ASI, mean weighted diameter (MWD, mean geometric diameter (MGD in the classes > 8, 8-4, 4-2, 2-1, 1-0.5, 0.5-0.25, and < 0.25 mm, and for physical properties (soil texture, water dispersible clay (WDC, flocculation index (FI and bulk density (Bd and chemical properties (total organic carbon - COT, total nitrogen - N, exchangeable calcium - Ca2+, and pH. The results indicated that more intense soil preparation (M < NT < PC resulted in a decrease in soil stability, confirmed by all stability indicators analyzed: MWD, MGD, ASI, aggregate class distribution, WDC and FI, indicating the validity of these indicators in aggregation analyses of the studied soil.

  16. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets.

    Science.gov (United States)

    Munns, Craig F; Shaw, Nick; Kiely, Mairead; Specker, Bonny L; Thacher, Tom D; Ozono, Keiichi; Michigami, Toshimi; Tiosano, Dov; Mughal, M Zulf; Mäkitie, Outi; Ramos-Abad, Lorna; Ward, Leanne; DiMeglio, Linda A; Atapattu, Navoda; Cassinelli, Hamilton; Braegger, Christian; Pettifor, John M; Seth, Anju; Idris, Hafsatu Wasagu; Bhatia, Vijayalakshmi; Fu, Junfen; Goldberg, Gail; Sävendahl, Lars; Khadgawat, Rajesh; Pludowski, Pawel; Maddock, Jane; Hyppönen, Elina; Oduwole, Abiola; Frew, Emma; Aguiar, Magda; Tulchinsky, Ted; Butler, Gary; Högler, Wolfgang

    2016-02-01

    Vitamin D and calcium deficiencies are common worldwide, causing nutritional rickets and osteomalacia, which have a major impact on health, growth, and development of infants, children, and adolescents; the consequences can be lethal or can last into adulthood. The goals of this evidence-based consensus document are to provide health care professionals with guidance for prevention, diagnosis, and management of nutritional rickets and to provide policy makers with a framework to work toward its eradication. A systematic literature search examining the definition, diagnosis, treatment, and prevention of nutritional rickets in children was conducted. Evidence-based recommendations were developed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system that describe the strength of the recommendation and the quality of supporting evidence. Thirty-three nominated experts in pediatric endocrinology, pediatrics, nutrition, epidemiology, public health, and health economics evaluated the evidence on specific questions within five working groups. The consensus group, representing 11 international scientific organizations, participated in a multiday conference in May 2014 to reach a global evidence-based consensus. This consensus document defines nutritional rickets and its diagnostic criteria and describes the clinical management of rickets and osteomalacia. Risk factors, particularly in mothers and infants, are ranked, and specific prevention recommendations including food fortification and supplementation are offered for both the clinical and public health contexts. Rickets, osteomalacia, and vitamin D and calcium deficiencies are preventable global public health problems in infants, children, and adolescents. Implementation of international rickets prevention programs, including supplementation and food fortification, is urgently required.

  17. Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation

    OpenAIRE

    Tao, Hsiao-Hang; Slade, Eleanor M.; Willis, Katherine J.; Caliman, Jean Pierre; Snaddon, Jake Lanion

    2016-01-01

    Optimizing the use of available soil management practices in oil palm plantations is crucial to enhance long-term soil fertility and productivity. However, this needs a thorough understanding of the functional responses of soil biota to these management practices. To address this knowledge gap, we used the bait lamina method to investigate the effects of different soil management practices on soil fauna feeding activity, and whether feeding activity was associated with management-mediated cha...

  18. Exploring differences of soil quality as related to management in ...

    African Journals Online (AJOL)

    soil, vegetation and biodiversity) and productivity. Vegetation condition in contrasting land-use management systems is well documented in semiarid rangelands, but relatively little information is available on soil quality. This study explores soil ...

  19. Managing children and adolescents on parenteral nutrition: Challenges for the nutritional support team.

    Science.gov (United States)

    Johnson, Tracey; Sexton, Elaine

    2006-08-01

    Managing infants, children and adolescents, ranging from premature infants to 18-year-old adolescents, on parenteral nutrition (PN) is a challenge. The ability of children to withstand starvation is limited and, unlike adults, children require nutrition for growth. PN in children is often required secondary to a congenital bowel problem rather than because of an acquired condition. Conditions requiring PN include motility disorders, congenital disorders of the intestinal epithelium and short-bowel syndrome (SBS). Intestinal failure may be temporary and children with SBS may be weaned from PN. However, other children require permanent PN. There are no comprehensive guidelines for the nutritional requirements of children and adolescents requiring PN. Practice in individual centres is based on clinical experience rather than clinical trials. Requirements are assessed on an individual basis according to age, nutritional status and clinical condition. These requirements need regular review to ensure that they remain appropriate for the changing age and weight of the child. Assessments of intakes use different methods, e.g. reference tables and predictive equations. Complications of PN include infection, accidental damage to, or removal of, the line and cholestatic liver disease. Home parenteral nutrition (HPN) is associated with fewer line infections and allows continuation of nutritional support in a more normal environment, encouraging normal development and participation in family activities. However, having a child at home on HPN is associated with physical and psychological stresses. A feeling of depression, loneliness and social isolation is common amongst children and their families. Home-care services are essential to supporting children at home and should be tailored to, and sensitive to, the individual needs of each family.

  20. Coffee farming and soil management in Rwanda

    NARCIS (Netherlands)

    Nzeyimana, I.; Hartemink, A.E.; Graaff, de J.

    2013-01-01

    Agriculture is the cornerstone of Rwanda's economy. The authors review how the sector has changed and specifically what soil management practices are now being implemented to enhance coffee production. Coffee covers around 2.3% of total cultivated arable land, and is grown mainly by smallholder

  1. Nutritional management of Eosinophilic Gastroenteropathies: Case series from the community

    Directory of Open Access Journals (Sweden)

    Basilious Alfred

    2011-05-01

    Full Text Available Abstract Eosinophilic gastroenteropathies, such as eosinophilic esophagitis and eosinophilic colitis, have classically been treated with swallowed inhaled corticosteroids or oral corticosteroids. More recent studies have found elimination and elemental diets to be effective treatment alternatives to steroids. In this case series we describe the treatment of three children using nutritional management in a community setting. Elimination diets and elemental diets based on patch testing and skin prick tests reduced the eosinophil counts to normal levels in all three children. Food items which tested positive were then reintroduced while symptoms and eosinophil counts were monitored. Nutritional management of eosinophilic esophagitis and eosinophilic colitis was found to be effective in reducing symptoms. However, obstacles facing patients who choose this type of therapy include limitations due to the cost of repeated endoscopies, palatability of elimination/elemental diets and the availability of subspecialists trained in management (e.g. Allergy, Gastroenterology, and Pathology. It may be a worthwhile endeavour to overcome these obstacles as nutritional management minimizes the potential long-term effects of chronic steroid therapy.

  2. Division S-4-soil fertility and plant nutrition

    International Nuclear Information System (INIS)

    Norman, R.J.; Gilmour, J.T.

    1987-01-01

    A portion of anhydrous NH 3 fertilizer applied to soil can be rendered nonexchangeable through fixation by clay minerals and soil organic matter. The plant availability of anhydrous NH 3 fixed by these two soil fractions can be important agronomically if such fixation limits plant uptake of the fertilizer N. In this study, three soils with clay and organic C contents ranging from 120 to 310 and 7.8 to 30.1 g kg -1 , respectively, were injected with 15 N-labeled (2 atom % 15 N) liquid anhydrous NH 3 at a rate equivalent to 245 kg N ha -1 . Soluble and exchangeable N were removed by leaching and the soil was cropped to rye grass (Lolium multiflorum Lam.) in pots. Soils were analyzed before and after cropping for clay fixed N and organic matter fixed N. Four cuttings (harvests) were made at 3- to 4-week intervals and roots were collected at the termination of the experiment. Above ground dry matter, total N uptake, and fertilizer-derived fixed N uptake (mg N pot -1 ) increased from the first to the second harvest and declined thereafter. Nitrogen recovered in the roots accounted for <11% of the total N and <7% of the fixed N utilized, and root dry matter accounted for 13 to 14% of the total dry matter produced. The ratio of fertilizer-derived fixed N uptake to total N uptake declined with harvest suggesting that the fixed N became less available to the rye grass with time. Fertilizer-derived fixed N recovered in the rye grass ranged from 19 to 26% of that originally fixed by the soil. The percentages of fertilizer-derived clay fixed N removed from the soils during cropping (35-72%) were much larger than those of the fertilizer-derived organic matter fixed N (<12%) suggesting that a majority of the plant uptake of fixed N originated in the clay fraction. Overall, fertilizer-derived fixed N removal from the soils (21-30%) agreed well with plant uptake data

  3. Advances in the nutritional and pharmacological management of phenylketonuria

    Science.gov (United States)

    Ney, Denise M.; Blank, Robert D.; Hansen, Karen E.

    2014-01-01

    Structural Abstract Purpose of review The purpose is to discuss advances in the nutritional and pharmacological management of phenylketonuria (PKU). Recent findings Glycomacropeptide (GMP), a whey protein produced during cheese production, is a low-phe intact protein that represents a new dietary alternative to synthetic amino acids (AAs) for people with PKU. Skeletal fragility is a long-term complication of PKU that based on murine research, appears to result from both genetic and nutritional factors. Skeletal fragility in murine PKU is attenuated with the GMP diet, compared with an AA diet, allowing greater radial bone growth. Pharmacologic therapy with tetrahydrobiopterin (BH4), acting as a molecular chaperone for phenylalanine hydroxylase, increases tolerance to dietary phe in some individuals. Large neutral AAs (LNAA) inhibit phe transport across the intestinal mucosa and blood brain barrier; LNAA are most effective for individuals unable to comply with the low-phe diet. Summary Although a low-phe synthetic AA diet remains the mainstay of PKU management, new nutritional and pharmacological treatment options offer alternative approaches to maintain lifelong low phe concentrations. GMP medical foods provide an alternative to AA formula that may improve bone health, and BH4 permits some individuals with PKU to increase tolerance to dietary phe. Further research is needed to characterize the long-term efficacy of these new approaches for PKU management. PMID:24136088

  4. Organization of managed clinical networking for home parenteral nutrition.

    Science.gov (United States)

    Baxter, Janet P; McKee, Ruth F

    2006-05-01

    Home parenteral nutrition (HPN) is an established treatment for intestinal failure, and organization of HPN is variable throughout the UK and Europe. Managed clinical networking is the single most important feature of the UK National Health Service strategy for acute services in Scotland and has the potential to improve the management of HPN patients. This review addresses the role of managed clinical networking in HPN and compares outcome data between centres. The Scottish HPN Managed Clinical Network has published the main body of the current literature supporting the concept of managed clinical networking in this context. The Network is responsible for the organization and quality assurance of HPN provision in Scotland, and has been established for 5 years. It has captured significant patient data for the purpose of clinical audit and illustrates that this is an effective model for the management of this patient population. This review provides advice for other areas wishing to improve equity of access, and to smooth the patient journey between primary, secondary and tertiary health care in the context of artificial nutrition support.

  5. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome.

    Science.gov (United States)

    Pii, Youry; Borruso, Luigimaria; Brusetti, Lorenzo; Crecchio, Carmine; Cesco, Stefano; Mimmo, Tanja

    2016-02-01

    Plant-associated microorganisms can stimulate plants growth and influence both crops yield and quality by nutrient mobilization and transport. Therefore, rhizosphere microbiome appears to be one of the key determinants of plant health and productivity. The roots of plants have the ability to influence its surrounding microbiology, the rhizosphere microbiome, through the creation of specific chemical niches in the soil mediated by the release of phytochemicals (i.e. root exudates) that depends on several factors, such as plants genotype, soil properties, plant nutritional status, climatic conditions. In the present research, two different crop species, namely barley and tomato, characterized by different strategies for Fe acquisition, have been grown in the RHIZOtest system using either complete or Fe-free nutrient solution to induce Fe starvation. Afterward, plants were cultivated for 6 days on two different calcareous soils. Total DNA was extracted from rhizosphere and bulk soil and 454 pyrosequencing technology was applied to V1-V3 16S rRNA gene region. Approximately 5000 sequences were obtained for each sample. The analysis of the bacterial population confirmed that the two bulk soils showed a different microbial community. The presence of the two plant species, as well as the nutritional status (Fe-deficiency and Fe-sufficiency), could promote a differentiation of the rhizosphere microbiome, as highlighted by non-metric multidimensional scaling (NMDS) analysis. Alphaproteobacteria, Actinobacteria, Chloracidobacteria, Thermoleophilia, Betaproteobacteria, Saprospirae, Gemmatimonadetes, Gammaproteobacteria, Acidobacteria were the most represented classes in all the samples analyzed even though their relative abundance changed as a function of the soil, plant species and nutritional status. To our knowledge, this research demonstrate for the first time that different plants species with a diverse nutritional status can promote the development of a peculiar

  6. Stable isotopes in plant nutrition, soil fertility and environmental studies

    International Nuclear Information System (INIS)

    1991-01-01

    The individual contributions in these proceedings are indexed separately. Main topics covered include the measurement of biological nitrogen fixation, studies of soil organic matter, investigations of nutrient uptake and use by plants, studies of plant metabolism and new methodologies in the analysis of stable isotopes. Refs, figs and tabs

  7. Nutritive potential of some 'edible' soils in Blantyre city, Malawi

    African Journals Online (AJOL)

    mineral in which that individual is deficient. The timing of ... The Environmental Protection Agency (EPA) estimates that in the U.S. ... The Centre for Disease Control and Prevention (CDCP) in California ... nutrients and possibly more toxic substances). But most .... The soil samples were treated and spread on sterilized Petri.

  8. Soil fertility, nutrition and yield of maize and barley with gypsum application on soil surface in no-till

    Directory of Open Access Journals (Sweden)

    Leandro Michalovicz

    2014-10-01

    Full Text Available Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol, as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2- up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.

  9. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  10. Comparing organic versus conventional soil management on soil respiration [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bence Mátyás

    2018-03-01

    Full Text Available Soil management has great potential to affect soil respiration. In this study, we investigated the effects of organic versus conventional soil management on soil respiration.  We measured the main soil physical-chemical properties from conventional and organic managed soil in Ecuador. Soil respiration was determined using alkaline absorption according to Witkamp.  Soil properties such as organic matter, nitrogen, and humidity, were comparable between conventional and organic soils in the present study, and in a further analysis there was no statically significant correlation with soil respiration. Therefore, even though organic farmers tend to apply more organic material to their fields, but this did not result in a significantly higher CO2 production in their soils in the present study.

  11. Isotope techniques in soil fertility and plant nutrition studies

    International Nuclear Information System (INIS)

    Zapata, F.

    1990-01-01

    Fertilizers are one of the essential inputs which have to be used for maintaining and/or increasing the soil fertility level in intensive agricultural systems. The purpose of applying fertilizers is primarily to supply the crop with essential plant nutrients. The major plant nutrients (N, P and K) have to be applied regularly to compensate for the amounts exported from the soil by the harvested plant parts. Other plant nutrients such as Ca, Mg, S and the microelements also need to be added to maintain adequate levels of these nutrients or to correct deficiencies. The best combination of fertilizer practices can be established for each crop by carrying out field experiments under different environmental conditions. Methods which can be used to assess the effect of fertilizer practices are described in the article. 39 refs, 2 figs, 5 tabs

  12. Waste management of actinide contaminated soil

    International Nuclear Information System (INIS)

    Navratil, J.D.; Thompson, G.H.; Kochen, R.L.

    1978-01-01

    Waste management processes have been developed to reduce the volume of Rocky Flats soil contaminated with plutonium and americium and to prepare the contaminated fraction for terminal storage. The primary process consists of wet-screening. The secondary process uses attrition scrubbing and wet screening with additives. The tertiary process involves volume reduction of the contaminated fraction by calcination, or fixation by conversion to glass. The results of laboratory scale testing of the processes are described

  13. Nutritional therapy for the management of diabetic gastroparesis: clinical review

    Directory of Open Access Journals (Sweden)

    Sadiya A

    2012-09-01

    Full Text Available Amena SadiyaLifestyle Clinic, Rashid Centre for Diabetes and Research, Ministry of Health, Ajman, United Arab EmiratesAbstract: Diabetic gastroparesis (DGP, or slow emptying of the stomach, is a well-established complication of diabetes mellitus and is typically considered to occur in individuals with long-standing type 1 and type 2 diabetes mellitus. Clinical consequences of DGP include induction of gastrointestinal (GI symptoms (early satiety, abdominal distension, reflux, stomach spasm, postprandial nausea, vomiting, alteration in drug absorption, and destabilization of glycemic control (due to mismatched postprandial glycemic and insulin peaks. Effective nutritional management not only helps in alleviating the symptoms, but also in facilitating better glycemic control. Although there have been no evidence-based guidelines pertaining to the nutrition care process of the DGP, the current dietary recommendations are based on expert opinions or observational studies. The dietary management of gastroparesis needs to be tailored according to the severity of malnutrition and kind of upper GI symptom by changing the volume, consistency, frequency, fiber, fat, and carbohydrates in the meal. Small frequent meals, using more liquid calories, reducing high fat or high fiber, consuming bezoar forming foods, and adjusting meal carbohydrates based on medications or insulin helps in improving the upper GI symptoms and glycemic control. Enteral nutrition can be an option for patients who fail to stabilize their weight loss, or for those who cannot gain weight with oral feedings, while total parenteral nutrition is rarely necessary for the patient with gastroparesis.Keywords: diabetic gastroparesis, delayed gastric emptying, diabetes mellitus, bezoar, GI symptoms, glycemic control

  14. soil fertility management practices by smallholder farmers in vhembe ...

    African Journals Online (AJOL)

    p2333147

    constraints associated with soil fertility management practices used by the farmers. ... nutrients. In addition, these drier areas often have highly degradable soils that are susceptible to soil erosion and eventual decline in soil fertility, especially under ... cases where the selected farm was a “community garden” (a group of.

  15. The nutritional management of gastrointestinal tract disorders in companion animals.

    Science.gov (United States)

    Guilford, W G; Matz, M E

    2003-12-01

    Dietary protein, carbohydrates, fats and fibre have marked influences on gastrointestinal tract function and dysfunction. This article reviews the nutritional management of common gastrointestinal disorders in companion animals and introduces some of the current areas of research including probiotics, prebiotics, protein-hydrolysate diets, immunonutrition and dietary fibre. Nutritional management of oesophageal disease revolves around varying the consistency of the diet and feeding the animal from an elevated container. Provision of bowel rest remains the mainstay of the management of acute gastroenteritis but food-based oral rehydration solutions are a useful adjunct. The recommended diet for chronic small bowel diarrhoea is a highly digestible, hypoallergenic, gluten-free, low-lactose and low-fat diet with modest amounts of fermentable fibre. The use of probiotics in the management of diarrhoea in companion animals has not yet been shown to be beneficial. It is likely that prebiotics will prove more effective than probiotics in the prevention of enteropathogenic infections. Approximately 50% of cats in New Zealand that suffer from chronic idiopathic vomiting or diarrhoea will respond to a novel-protein-elimination diet and approximately 30% meet the diagnostic criteria for food sensitivity. Growing evidence supports the use of protein-hydrolysate diets in the management of inflammatory bowel disease and further advances in immunonutrition are expected. The dietary management of colitis should include a hypoallergenic diet with a fermentable fibre source. Manipulation of the diet provides clinicians a powerful therapeutic strategy to be used alone or concurrently with drug therapy in the management of gastrointestinal disorders.

  16. Managing soil nutrients with compost in organic farms of East Georgia

    Science.gov (United States)

    Ghambashidze, Giorgi

    2013-04-01

    Soil Fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture. Increasing soil organic matter content through the addition of organic amendments has proven to be a valuable practice for maintaining or restoring soil quality. Organic agriculture relies greatly on building soil organic matter with compost typically replacing inorganic fertilizers and animal manure as the fertility source of choice. In Georgia, more and more attention is paid to the development of organic farming, occupying less than 1% of total agricultural land of the country. Due to increased interest towards organic production the question about soil amendments is arising with special focus on organic fertilizers as basic nutrient supply sources under organic management practice. In the frame of current research two different types of compost was prepared and their nutritional value was studied. The one was prepared from organic fraction municipal solid waste and another one using fruit processing residues. In addition to main nutritional properties both composts were tested on heavy metals content, as one of the main quality parameter. The results have shown that concentration of main nutrient is higher in municipal solid waste compost, but it contains also more heavy metals, which is not allowed in organic farming system. Fruit processing residue compost also has lower pH value and is lower in total salt content being is more acceptable for soil in lowlands of East Georgia, mainly characterised by alkaline reaction. .

  17. An overview of soil water sensors for salinity & irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  18. Potassium fertilization for pineapple: effects on soil chemical properties and plant nutrition

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Junqueira Teixeira

    2011-06-01

    Full Text Available A field experiment was carried out on an Ultisol located at the city of Agudos (22º30'S; 49º03'W, in the state of São Paulo, Brazil, in order to determine the effects of rates and sources of potassium fertilizer on nutritional status of 'Smooth Cayenne' pineapple and on some soil chemical properties. The experiment was a complete factorial design with four rates (0, 175, 350, and 700 kg ha-1 of K2O and three combinations of K sources (100% KCl, 100% K2SO4 and 40% K2SO4 + 60% KCl. Soil samples were taken from the depths 0-20 cm, 20-40 cm and 40-60 cm at planting and 14 months after. Nutritional status of pineapple plants was assessed by means of tissue analysis. Soil K availability increased with application of K fertilizer, regardless of K sources. Soil chlorine and Cl concentration in pineapple leaves increased with application of KCl or K2SO4+KCl. Plant uptake of potassium was shaped by soil K availability and by the application rates of K fertilizer, independently of K sources.

  19. Clinical nutrition managers have access to sources of empowerment.

    Science.gov (United States)

    Mislevy, J M; Schiller, M R; Wolf, K N; Finn, S C

    2000-09-01

    To ascertain perceived access of dietitians to power in the workplace. The conceptual framework was Kanter's theory of organizational power. The Conditions for Work Effectiveness Questionnaire was used to measure perceived access to sources of power: information, support, resources, and opportunities. Demographic data were collected to identify factors that may enhance empowerment. The questionnaire was sent to a random sample of 348 dietitians chosen from members of the Clinical Nutrition Management dietetic practice group of the American Dietetic Association. Blank questionnaires were returned by 99 (28.4%) people not working as clinical nutrition managers, which left 249 in the sample. Descriptive statistics were used to organize and summarize data. One-way analysis of variance and t tests were performed to identify differences in responses based on levels of education, work setting, and information technology skills. Usable questionnaires were received from 178 people (71.5%). On a 5-point scale, scores for access to information (mean +/- standard deviation [SD] = 3.8 +/- 0.7), opportunity (mean +/- SD = 3.6 +/- 0.7), support (mean +/- SD = 3.2 +/- 0.9), and resources (mean +/- SD = 3.1 +/- 0.8) demonstrated that clinical nutrition managers perceived themselves as having substantial access to sources of empowerment. Those having higher levels of education, working in larger hospitals, having better-developed information technology skills, and using information technology more frequently had statistically significant higher empowerment scores (P = leadership roles in today's health care settings. Their power may be enhanced by asserting more pressure to gain greater access to sources of power: support, information, resources, and opportunities.

  20. Assessment and management of nutrition and growth in Rett syndrome

    Science.gov (United States)

    Leonard, Helen; Ravikumara, Madhur; Baikie, Gordon; Naseem, Nusrat; Ellaway, Carolyn; Percy, Alan; Abraham, Suzanne; Geerts, Suzanne; Lane, Jane; Jones, Mary; Bathgate, Katherine; Downs, Jenny

    2014-01-01

    Objectives We developed recommendations for the clinical management of poor growth and weight gain in Rett syndrome through evidence review and the consensus of an expert panel of clinicians. Methods Initial draft recommendations were created based upon literature review and 34 open-ended questions where the literature was lacking. Statements and questions were made available to an international, multi-disciplinary panel of clinicians in an online format and a Microsoft Word formatted version of the draft via email. Input was sought using a 2-stage modified Delphi process to reach consensus agreement. Items included clinical assessment of growth, anthropometry, feeding difficulties and management to increase caloric intake, decrease feeding difficulties and consideration of gastrostomy. Results Agreement was achieved on 101/112 statements. A comprehensive approach to the management of poor growth in Rett syndrome is recommended that takes into account factors such as feeding difficulties and nutritional needs. A BMI of approximately the 25th centile can be considered as a reasonable target in clinical practice. Gastrostomy is indicated for very poor growth, if there is risk of aspiration and if feeding times are prolonged. Conclusions These evidence- and consensus-based recommendations have the potential to improve care of nutrition and growth in a rare condition and stimulate research to improve the current limited evidence base. PMID:24084372

  1. A Conceptual Framework for Soil management and its effect on Soil Biodiversity in Organic and Low Input Farming

    OpenAIRE

    Koopmans, Dr. C.J.; Smeding, Dr. F.W.

    2008-01-01

    Learning how to manage beneficial soil biological processes may be a key step towards developing sustainable agricultural systems. We designed a conceptual framework linking soil management practices to important soil-life groups and soil fertility services like nutrient cycling, soil structure and disease suppression. We selected a necessary parameter set to gain insight between management, soil life and soil support services. The findings help to develop management practices that optimise y...

  2. Applicability Evaluation of Job Standards for Diabetes Nutritional Management by Clinical Dietitian.

    Science.gov (United States)

    Baek, Young Jin; Oh, Na Gyeong; Sohn, Cheong-Min; Woo, Mi-Hye; Lee, Seung Min; Ju, Dal Lae; Seo, Jung-Sook

    2017-04-01

    This study was conducted to evaluate applicability of job standards for diabetes nutrition management by hospital clinical dietitians. In order to promote the clinical nutrition services, it is necessary to present job standards of clinical dietitian and to actively apply these standardized tasks to the medical institution sites. The job standard of clinical dietitians for diabetic nutrition management was distributed to hospitals over 300 beds. Questionnaire was collected from 96 clinical dietitians of 40 tertiary hospitals, 47 general hospitals, and 9 hospitals. Based on each 5-point scale, the importance of overall duty was 4.4 ± 0.5, performance was 3.6 ± 0.8, and difficulty was 3.1 ± 0.7. 'Nutrition intervention' was 4.5 ± 0.5 for task importance, 'nutrition assessment' was 4.0 ± 0.7 for performance, and 'nutrition diagnosis' was 3.4 ± 0.9 for difficulty. These 3 items were high in each category. Based on the grid diagram, the tasks of both high importance and high performance were 'checking basic information,' 'checking medical history and therapy plan,' 'decision of nutritional needs,' 'supply of foods and nutrients,' and 'education of nutrition and self-management.' The tasks with high importance but low performance were 'derivation of nutrition diagnosis,' 'planning of nutrition intervention,' 'monitoring of nutrition intervention process.' The tasks of both high importance and high difficulty were 'derivation of nutrition diagnosis,' 'planning of nutrition intervention,' 'supply of foods and nutrients,' 'education of nutrition and self-management,' and 'monitoring of nutrition intervention process.' The tasks of both high performance and high difficulty were 'documentation of nutrition assessment,' 'supply of foods and nutrients,' and 'education of nutrition and self-management.'

  3. Nutrition services in managed care: new paradigms for dietitians.

    Science.gov (United States)

    Laramee, S H

    1996-04-01

    Managed care systems are transforming the health care system in the United States. Dietitians will need to review practice opportunities in new and different settings, and develop additional skills to make a successful transition to the transformed health care environment. The shift in health care financing from a fee-for-service model to a capitated system will have the most dramatic impact on the profession. Not all the answers are available, but the focus for the future is clear--customer satisfaction, outcomes research, and cost-effective nutrition services.

  4. Effect of organic matter, irrigation and soil mulching on the nutritional ...

    African Journals Online (AJOL)

    The elevation of soil organic matter level until 5.08% in conjunction with the implementation of 100% of Evapotranspiration (ETc) water depth and the use of mulch on the soil favored the greatest absorption of nutrients and increased the productivity of okra plant. Keywords: Cattle manure, nutrient absorption, management of ...

  5. Effects of soil management techniques on soil water erosion in apricot orchards.

    Science.gov (United States)

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-05-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide

  6. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    Science.gov (United States)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  7. Soil Management Plan for the Y-12 Plant

    International Nuclear Information System (INIS)

    1993-01-01

    Construction activities at the US Department of Energy (DOE) Y-12 Plant have often required the excavation or other management of soil within the facility. Because some of this soil may be contaminated, Martin Marietta Energy Systems, Inc. (Energy Systems) adopted specific policies to ensure the proper management of contaminated or potentially contaminated soil at the plant. Five types of contaminated or potentially contaminated soil are likely to be present at the Y-12 Plant: Soil that is within the boundaries of a Comprehensive Response, Compensation, and Liability Act (CERCLA) Area of Contamination (AOC) or Operable Unit (OU); Soil that contains listed hazardous wastes; Soil that is within the boundaries of a RCRA Solid Waste Management Unit (SWMU); Soil that contains polychlorinated biphenyls (PCBS); Soil that contains low-level radioactive materials. The regulatory requirements associated with the five types of contaminated soil listed above are complex and will vary according to site conditions. This Soil Management Plan provides a standardized method for managers to determine the options available for selecting soil management scenarios associated with construction activities at the Y-12 Plant

  8. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  9. Nutritional Management of Overweight and Obesity in Dogs and Cats

    Directory of Open Access Journals (Sweden)

    Sorana Teodora MATEI

    2017-05-01

    Full Text Available Some of the most common nutritional disorders are overweight and obesity, a proportion of approximately 59% of dogs and cats being affected. A permanent challenge for vets is weight management, including the prevention and treatment of overweight and obesity. Corporeal score and body-weight loss in dogs and cats have been monitored by feeding various diets. The study was conducted on a total of 10 animals (6 dogs and 4 cats, monitoring the effect of three types of food for dogs and two types for cats suffering from overweight and obesity.  Cooked food, dry food diet and premium dry food were investigated. We determined the quality and gross chemical composition of food and we measured corporeal score, weekly weight loss percentage and the number of calories consumed daily. We also appreciated the quality of life and activity level of the animals at the beginning and at the end of the trial. Nutritional management of investigated diets for overweight and obesity in dogs and cats revealed that through the smallest caloric restriction, dry food diet presented the highest efficiency, dogs and cats loosing weight steadily without losing muscle mass. Although the satiety effect occurs when the animals reach their ideal weight, the Rebound effect was not present.

  10. EFFECT OF COVER CROPS ON SOIL ATTRIBUTES, PLANT NUTRITION, AND IRRIGATED TROPICAL RICE YIELD

    Directory of Open Access Journals (Sweden)

    ANDRE FROES DE BORJA REIS

    2017-01-01

    Full Text Available In flood plains, cover crops are able to alter soil properties and significantly affect rice nutrition and yield. The aims of this study were to determine soil properties, plant nutrition, and yield of tropical rice cultivated on flood plains after cover crop cultivation with conventional tillage (CT and no-tillage system (NTS at low and high nitrogen (N fertilization levels. The experimental design was a randomized block in a split-split-plot scheme with four replications. In the main plots were cover crops sunhemp (Crotalaria juncea and C. spectabilis, velvet bean (Mucuna aterrima, jackbean (Canavalia ensiformis, pigeon pea (Cajanus cajan, Japanese radish (Raphanus sativus, cowpea (Vigna unguiculata and a fallow field. In the subplots were the tillage systems (CT or NTS. The nitrogen fertilization levels in the sub-subplots were (10 kg N ha-1 and 45 kg N ha-1. All cover crops except Japanese radish significantly increased mineral soil nitrogen and nitrate concentrations. Sunhemp, velvet bean, and cowpea significantly increased soil ammonium content. The NTS provides higher mineral nitrogen and ammonium content than that by CT. Overall, cover crops provided higher levels of nutrients to rice plants in NTS than in CT. Cover crops provide greater yield than fallow treatments. Rice yield was higher in NTS than in CT, and greater at a higher rather than lower nitrogen fertilization level.

  11. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil.

    OpenAIRE

    FRANCHINI, J. C.; CRISPINO, C. C.; SOUZA, R. A.; TORRES, E.; HUNGRIA, M.

    2006-01-01

    Metadata only record This article attempts to recognize soil parameters that can be used to monitor soil quality under different crop and soil management systems. The rates of CO2 emissions (soil respiration) were affected by variations in the sampling period, as well as in soil management and crop rotation. Considering all samples, CO2 emissions were 21% greater in conventional tillage. Soil microbial biomass was also influenced by sampling period and soil management, but not by crop rota...

  12. History, achievements, and future challenges of Japanse Society of Soil Science and Plant Nutrition

    Science.gov (United States)

    Kosaki, Takashi

    2013-04-01

    Modern soil science was introduced just after the reformation of Japan in 1867 by Max Fesca, Oskar Kellner and other German teachers together with their Japanese students, who were traced back to Justus von Liebig and thus started studying and teaching soils based on agrogeology and agricultural chemistry. After the German teachers left, the graduates from agricultural colleges formed the Foundation of Agricultural Sciences in 1887, based on which the Society of the Science of Soil and Manure, Japan, was established in 1927. The research, education and extension activities then expanded to Korea, Manchuria and Inner Mongolia as well as Taiwan and Sakhalin in accordance with a military invasion to China and Southeast Asian countries until the end of WWII. After WWII together with the reformation guided by the General Headquarters (GHQ) of the Allied Forces, soils research and educational units increased in number in the universities and governmental institutions. The society started publication of the journal in English, "Soils and Plant Food" in 1955, which was renamed to "Soil Science and Plant Nutrition (SSPN)" in 1961. There formed a variety of discussion groups in the society such as soil microbiology, pedology, clay science, soil physics, plant physiology, and forest environment, which became independent in the 1960s. Economic growth of Japan in the 1970s accomplished self-sufficiency in rice production and extended the range of crop to grow, however, a variety of environmental issues came out. A new division was established in the society for solving soil-related environmental problems. The society became more involved in international activities and hosted a number of international conferences, workshops, etc., the most significant of which was the 14th International Congress of Soil Science at Kyoto in 1990. The society proposed there a regional organization to cope with the unique issues, e.g. improvement of paddy rice cultivation, for Asian countries and

  13. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    ... to control the crusting. The relationship between crust thickness and soil physical and chemical properties and management practices were assessed using stepwise regression analysis. Soil crusting was largely related to soil aggregation, infiltration, fine sand fraction, cotton monocropping and crop residue incorporation.

  14. Using soil water sensors to improve irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and som...

  15. Nutrition

    Science.gov (United States)

    ... of States, Districts, and Schools That Required Teaching Nutrition and Dietary Behavior, by School Level 100 80 60 40 20 0 72. ... no comparable variable existed in both survey years. Nutrition Services • 68.6% of schools offered breakfast to students and 63.0% participated ...

  16. Nutrition management for head and neck cancer patients improves clinical outcome and survival.

    Science.gov (United States)

    Müller-Richter, Urs; Betz, C; Hartmann, S; Brands, R C

    2017-12-01

    Up to 80% of patients with head and neck cancers are malnourished because of their lifestyle and the risk factors associated with this disease. Unfortunately, nutrition management systems are not implemented in most head and neck cancer clinics. Even worse, many head and neck surgeons as well as hospital management authorities disregard the importance of nutrition management in head and neck cancer patients. In addition, the often extensive resection and reconstruction required for tumors in the upper aerodigestive tract pose special challenges for swallowing and sufficient food intake, placing special demands on nutrition management. This article presents the basics of perioperative metabolism and nutrition management of head and neck cancer patients and makes recommendations for clinical practice. Implementing a nutrition management system in head and neck cancer clinics will improve the clinical outcome and the survival of the patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effects of plant urease inhibitor on crop nutrition and soil characters

    International Nuclear Information System (INIS)

    Wang Zhengyin; Xu Weihong; Huang Yun; Yuan Lujiang; Jia Zhongyuan; Zhou Jun; Ding Shuying

    2002-01-01

    A pot experiment was conducted to investigate the effects of 15 N-urea and 4 kinds of plant materials (P 1 , P 2 , P 3 and P 4 ) as urease inhibitor on sorghum and rice nutrition and soil characters. The results indicated that the growth, above-ground parts and roots weight of rice and sorghum were respectively promoted by 4 plant urease inhibitors and P 1 with little change of chl.a/chl.b ratios in these treatments. The content of amino acid in rice leaf and utilization rate of nitrogen by rice were enhanced by 12.9%-25.1% and 5.2%-7.7% respectively, and the utilization rate of nitrogen by sorghum was improved by urease inhibitor treatments (except P 1 ). Plant urease inhibitor could obviously increase the apparent utilization rate of nitrogen by 4.3%-19.2% for two crops and improve phosphorus and potassium uptake by rice plant but decrease phosphorus and potassium uptake by sorghum plant. The contents of soil alkali-hydrolyzable nitrogen were increased by plant urease inhibitor under two cultivated condition. The inhibition time of plant urease inhibitor to soil urease was short and it disappeared as 36 days of rice growth under flooded condition, while the activities of soil urease were decreased by 10.6%-18.3% at 48 days of sorghum growth in upland soil

  18. Impact of land management on soil structure and soil hydraulic properties

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Jirků, V.; Nikodem, A.; Mühlhanselová, M.; Žigová, Anna

    2010-01-01

    Roč. 12, - (2010) ISSN 1029-7006. [European Geosciences Union General Assembly 2010. 02.05.2010-07.05.2010, Wienna] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : land management * soil structure * soil hydraulic properties * micromorphology Subject RIV: DF - Soil Science

  19. Soil health: a comparison between organically and conventionally managed arable soils in the Netherlands

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Blok, W.J.; Korthals, G.W.; Bruggen, van A.H.C.; Ariena, H.C.

    2005-01-01

    A comparative study of 13 organic and 13 neighboring conventional arable farming systems was conducted in the Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils were analyzed using a polyphasic approach combining traditional

  20. Improving the management of infertile acid soils in Southeast Asia: The approach of the IBSRAM Acid-Soils network

    International Nuclear Information System (INIS)

    Lefroy, R.D.B.

    2000-01-01

    The IBSRAM ASIALAND Management of Acid Soils network aims to improve the understanding of the broad range of biophysical and socio-economic production limitations on infertile acid soils of Southeast Asia, and to lead to development and implementation of sustainable land-management strategies for these important marginal areas. The main activities of the network are in Indonesia, Myanmar, Philippines, and Vietnam, with associated activity in Thailand, and minor involvement in Brunei, Cambodia, Laos, and Malaysia. The main experimental focus is through researcher-managed on-farm trials, to improve the management of phosphorus nutrition with inorganic and organic amendments. A generic design is used across the eight well characterised sites that form the core of the network. The results will be analysed across time and across sites. Improved methods for laboratory analyses, experimental management, socio-economic data collection, and data analysis and interpretation are critical components. Three important initiatives are associated with the core activities. These aim to establish a broader network on maintenance of quality laboratory analyses, to assess the potential for implementation of improved strategies through farmer-managed on-farm trials, and to improve our understanding of, and ways of estimating, nutrient budgets for diverse farming systems. (author)

  1. Nutritional management of acute pancreatitis in a human ...

    African Journals Online (AJOL)

    2013-08-26

    Aug 26, 2013 ... one-day history of severe abdominal pain and difficulty breathing. In casualty, the ... parenteral nutrition (TPN) was made, and a central venous port (CVP) .... catheter-related sepsis and metabolic disturbances, if nutritional.

  2. [BALANCED SCORECARD AS A MANAGEMENT TOOL IN CLINICAL NUTRITION].

    Science.gov (United States)

    Gutiérrez López, Cristina; Mauriz, Jose L; Culebras, Jesús M

    2015-07-01

    Nowadays, balanced scorecards have updated traditional management systems in the business sector. In this way, Kaplan and Norton propose performance measurement through several perspectives with a logical sequence: internal processes and learning impact client services, so that financial performance is affected. The aim of the present paper is to analyze the main characteristics of balanced scorecard when it is applied to non-for-profit companies and, specifically to the health sector in the clinical nutrition field. This model improves the economic vision of management with clinical indicators that represent healthcare professional's perspective. The balanced scorecard would allow a proper monitoring and tracking system for the main healthcare indicators. This contributes to a better control in comparison with standards that are associated with adequate quality assistance. Owing to the role of management accounting and cost calculations, the definition of healthcare professionals as clients or users, and clinical results relevance, it is necessary to adapt the balanced scorecard to the specific characteristics of the clinical field, redefining both perspectives and indicators. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  4. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  5. Initial nutritional management during noninvasive ventilation and outcomes: a retrospective cohort study.

    Science.gov (United States)

    Terzi, Nicolas; Darmon, Michael; Reignier, Jean; Ruckly, Stéphane; Garrouste-Orgeas, Maïté; Lautrette, Alexandre; Azoulay, Elie; Mourvillier, Bruno; Argaud, Laurent; Papazian, Laurent; Gainnier, Marc; Goldgran-Toledano, Dan; Jamali, Samir; Dumenil, Anne-Sylvie; Schwebel, Carole; Timsit, Jean-François

    2017-11-29

    Patients starting noninvasive ventilation (NIV) to treat acute respiratory failure are often unable to eat and therefore remain in the fasting state or receive nutritional support. Maintaining a good nutritional status has been reported to improve patient outcomes. In the present study, our primary objective was to describe the nutritional management of patients starting first-line NIV, and our secondary objectives were to assess potential associations between nutritional management and outcomes. Observational retrospective cohort study of a prospective database fed by 20 French intensive care units. Adult medical patients receiving NIV for more than 2 consecutive days were included and divided into four groups on the basis of nutritional support received during the first 2 days of NIV: no nutrition, enteral nutrition, parenteral nutrition only, and oral nutrition only. Of the 16,594 patients admitted during the study period, 1075 met the inclusion criteria; of these, 622 (57.9%) received no nutrition, 28 (2.6%) received enteral nutrition, 74 (6.9%) received parenteral nutrition only, and 351 (32.7%) received oral nutrition only. After adjustment for confounders, enteral nutrition (vs. no nutrition) was associated with higher 28-day mortality (adjusted HR, 2.3; 95% CI, 1.2-4.4) and invasive mechanical ventilation needs (adjusted HR, 2.1; 95% CI, 1.1-4.2), as well as with fewer ventilator-free days by day 28 (adjusted relative risk, 0.7; 95% CI, 0.5-0.9). Nearly three-fifths of patients receiving NIV fasted for the first 2 days. Lack of feeding or underfeeding was not associated with mortality. The optimal route of nutrition for these patients needs to be investigated.

  6. Managing soil moisture on waste burial sites

    International Nuclear Information System (INIS)

    Anderson, J.E.; Ratzlaff, T.D.

    1991-11-01

    Shallow land burial is a common method of disposing of industrial, municipal, and low-level radioactive waste. The exclusion of water from buried wastes is a primary objective in designing and managing waste disposal sites. If wastes are not adequately isolated, water from precipitation may move through the landfill cover and into the wastes. The presence of water in the waste zone may promote the growth of plant roots to that depth and result in the transport of toxic materials to above-ground foliage. Furthermore, percolation of water through the waste zone may transport contaminants into ground water. This report presents results from a field study designed to assess the the potential for using vegetation to deplete soil moisture and prevent water from reaching buried wastes at the Idaho National Engineering Laboratory (INEL). Our results show that this approach may provide an economical means of limiting the intrusion of water on waste sites

  7. Nutritional and Microbial Parameters of Earthworm Cast, Termite Mound and Surrounding Bulk Soil

    OpenAIRE

    Kawaguchi, Sadao; Nishi, Shingo

    2007-01-01

    A comparative analysis of nutritional and microbial parameters was conducted on two types of biogenetic structures of earthworm cast (8.7 cm in height, 7 casts/1m×1m) formed by litter eating Pheretima sp., and mound (64 cm in height, 1.0 mounds/10m×50m) built by fungus growing termite, Macrotermes gilvus, and compared to the surrounding bulk soil as control in the tropical monsoon forest in Cu Chi National Park of Viet Nam. The proportion of the sand in the earthworm cast was higher than in t...

  8. Remote Sensing of Soils for Environmental Assessment and Management.

    Science.gov (United States)

    DeGloria, Stephen D.; Irons, James R.; West, Larry T.

    2014-01-01

    The next generation of imaging systems integrated with complex analytical methods will revolutionize the way we inventory and manage soil resources across a wide range of scientific disciplines and application domains. This special issue highlights those systems and methods for the direct benefit of environmental professionals and students who employ imaging and geospatial information for improved understanding, management, and monitoring of soil resources.

  9. Light fraction of soil organic matter under different management ...

    African Journals Online (AJOL)

    A study on light fraction organic matter was carried out on the soil from three different management systems namely; Gmelina arborea, Tectona grandis and Leucaena leucocephala plantations in the University of Agriculture, Abeokuta Nigeria. Soil samples were collected in each of the three management site at five auger ...

  10. Managing cultivated pastures for improving soil quality in South ...

    African Journals Online (AJOL)

    There are concerns that soils under pastures in certain regions of South Africa are degrading as a result of mismanagement, which include practising continuous tillage, improper grazing management, injudicious application of fertilisers and poor irrigation management. Soil quality indicators, which include physical, ...

  11. Survivel, growth, and nutrition of tree seedlings fertilized at planting on Andisol soils in Iceland

    DEFF Research Database (Denmark)

    Oskarsson, Hreinn; Sigurgeirsson, Adalsteinn; Raulund-Rasmussen, Karsten

    2006-01-01

    seedlings, compared to control seedlings. It is concluded that fertilization during afforestation in Iceland and other areas in the world with similar climatic and soil properties could make the difference between plantation success or failure. Growth; Survival; Foliar nutrient concentration; Frost heaving......A field trial was carried out in 1995 to study the effect of fertilization at planting on the survival, growth, and nutrition of tree seedlings planted on Andisol soils at two sites in South Iceland. Nine fertilizer treatments were tested on three tree species Betula pubescens Ehrh., Larix sibirica...... survival and growth. Larger amounts of N increased mortality during the first year. Fertilized trees were less subject to frost heaving than untreated trees. In the year following application of NPK fertilizer the effect was insignificant on the foliar concentration of macronutrients of the fertilized...

  12. Soil management planning for military installations: Strategy for identifying contaminated soils

    International Nuclear Information System (INIS)

    Makdisi, R.S.; Baskin, D.A.; Downey, D.; Taffinder, S.A.

    1992-01-01

    Numerous federal and state regulations mandate the proper handling and disposal and/or treatment of contaminated soils. The Land Disposal Ban and the increasing lack of new or proximal land disposal facilities, coupled with the increasing liability of off-site disposal, have created a need for altering the traditional methods of managing contaminated sods. To delineate soil management decisions, a Soil Management Plan (SMP) was developed which incorporates the substantive requirements of CERCLA/SARA and RCRA into the ongoing base activities (i.e., construction projects, utility repairs and maintenance) and other environmental projects (i.e., underground storage tank removals) that may involve contaminated soils. The decision-making process is developed to guide base personnel in recognizing contamination, following proper sampling and temporary storage procedures, preventing unnecessary human exposure and isolating soils for removal off-site or treatment on-site. The SMP also contains a comprehensive review of soil remediation technologies, such as biological treatment, soil vapor extraction, soil washing, biofiltering, thermal desorption, soil stabilization/solidification, chemical/physical treatment and incineration. Contaminant types expected at the federal military facility are cross-referenced to the appropriate remediation technologies to determine the specific base needs for a soil treatment unit. An example of a conceptual design for a hydrocarbon-contaminated soil treatment unit is presented for a base where underground fuel tanks are the principal source of soil contamination

  13. Use of nuclear techniques for developing integrated soil fertility management practices

    International Nuclear Information System (INIS)

    Serraj, R.; Nguyen, M.L.

    2006-01-01

    The use of isotopes such as 15 N and 13 C in the CRP on 'Integrated nutrient and water management practices for agroforestry Systems' allowed us to quantify the contribution of plant litter and N from N-fixing trees either through the root system or through the above-ground parts to increase N supply to crops and enriching soil organic matter. Through a CRP for tropical acid soils, isotopic and associated techniques have assisted us and Member States to: (i) identify crop genotypes that are tolerant to aluminium toxicity and P deficiency that are common in tropical acid soils; (ii) assess the effectiveness of a range of phosphatic fertilisers in providing phosphorus for crop requirements and (iii) quantify the enhancing effect of conservation tillage on soil quality. Significant progress is also being made in the use of isotopic techniques to assess the relative performance of traditional rice-wheat (RW) system (consisting of flooded anaerobic conditions for rice and then followed by the aerobic conditions for wheat) against various alternative technologies (e.g., rice on non-puddled soils or on raised beds, direct seeding, and zero tillage for wheat after rice) in terms of grain yield, nutrient uptake and crop water requirement. The objective is to develop isotope-based methodologies that can streamline selection of crop germplasm for high nutrient use efficiency and tolerance to nutritional deficiencies through: (i) screening of large collections of cereal and legume genotypes, their wild relatives and mutant lines for adaptation to low nutrient conditions (and/or Al toxicity), (ii) development and use of isotopic tracer techniques to evaluate crop germplasm and to understand the physiological basis for plant adaptation to nutritional stress (deficiency), and (iii) on-farm research to evaluate interactive effects of plant roots, soil nutrients and their relationship to soil micro-organisms in a series of soil-plant systems

  14. Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata.

    Science.gov (United States)

    Kamutando, Casper N; Vikram, Surendra; Kamgan-Nkuekam, Gilbert; Makhalanyane, Thulani P; Greve, Michelle; Roux, Johannes J Le; Richardson, David M; Cowan, Don; Valverde, Angel

    2017-07-26

    Invasiveness and the impacts of introduced plants are known to be mediated by plant-microbe interactions. Yet, the microbial communities associated with invasive plants are generally poorly understood. Here we report on the first comprehensive investigation of the bacterial and fungal communities inhabiting the rhizosphere and the surrounding bulk soil of a widespread invasive tree, Acacia dealbata. Amplicon sequencing data indicated that rhizospheric microbial communities differed significantly in structure and composition from those of the bulk soil. Two bacterial (Alphaproteobacteria and Gammaproteobacteria) and two fungal (Pezizomycetes and Agaricomycetes) classes were enriched in the rhizosphere compared with bulk soils. Changes in nutritional status, possibly induced by A. dealbata, primarily shaped rhizosphere soil communities. Despite a high degree of geographic variability in the diversity and composition of microbial communities, invasive A. dealbata populations shared a core of bacterial and fungal taxa, some of which are known to be involved in N and P cycling, while others are regarded as plant pathogens. Shotgun metagenomic analysis also showed that several functional genes related to plant growth promotion were overrepresented in the rhizospheres of A. dealbata. Overall, results suggest that rhizosphere microbes may contribute to the widespread success of this invader in novel environments.

  15. From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach

    Science.gov (United States)

    Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.

    2017-12-01

    Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.

  16. Using soil quality indicators for monitoring sustainable forest management

    Science.gov (United States)

    James A. Burger; Garland Gray; D. Andrew Scott

    2010-01-01

    Most private and public forest land owners and managers are compelled to manage their forests sustainably, which means management that is economically viable,environmentally sound, and socially acceptable. To meet this mandate, the USDA Forest Service protects the productivity of our nation’s forest soils by monitoring and evaluating management activities to ensure...

  17. Management and conservation of tropical acid soils for sustainable crop production. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    2000-06-01

    Forests of the tropics are invaluable ecosystems of global, regional and local importance, particularly in terms of protection and conservation of biodiversity and water resources. The indiscriminate conversion of tropical forests into agricultural land as a result of intense human activities - logging and modem shifting cultivation - continues to cause soil erosion and degradation. However, the acid savannahs of the world, such as the cerrado of Brazil, the Llanos in Venezuela and Colombia, the savannahs of Africa, and the largely anthropic savannahs of tropical Asia, encompass vast areas of potentially arable land. The acid soils of the savannahs are mostly considered marginal because of low inherent fertility and susceptibility to rapid degradation. These constraints for agricultural development are exacerbated by the poverty of new settlers who try to cultivate such areas after deforestation. Low- or minimum-input systems are not sustainable on these tropical acid soils but, with sufficient investment and adequate technologies, they can be highly productive. Thus, there is a need to develop management practices for sustainable agricultural production systems on such savannah acid soils. The Soil and Water Management and Crop Nutrition Sub-programme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture strongly supports an integrated approach to soil, water and nutrient management within cropping systems. In this context, nuclear and related techniques can be used to better understand the processes and factors influencing the productivity of agricultural production systems, and improve them through the use of better soil, water and nutrient management practices. A panel of experts actively engaged in field projects on acid soils of savannah agro-ecosystems in the humid and sub-humid tropics convened in March 1999 in Vienna to review and discuss recent research progress, along the following main lines of investigation: (i) utilization of

  18. Change in dry matter and nutritive composition of Brachiaria humidicola grown in Ban Thon soil series

    Directory of Open Access Journals (Sweden)

    Jeerasak Chobtang

    2008-11-01

    Full Text Available This experiment was conducted to determine the change in dry matter and nutritive composition of Humidicola grass (Brachiaria humidicola grown in Ban Thon soil series (infertility soil as a function of growth age. One rai (0.16 ha of two-year-old pasture of fertilised Humidicola grass was uniformly cut and the regrowth samples were collected every twenty days. The samples were subjected to analysis for dry matter content and nutritive composition, i.e. crude protein, ash, calcium, phosphorus, neutral detergent fibre, acid detergent fibre, and acid detergent lignin. The results showed that while the yields of available forage and leaves increased curvilinearly (quadratic, p<0.05, the stem yield increased linearly (p<0.05 over sampling dates. The highest biomass accumulation rate was numerically observed between 40-60 days of regrowth. The concentrations of crude protein, ash, calcium and phosphorus decreased curvilinearly (quadratic, p<0.05 with advancing maturity and reached the lowest flat after 60 days of regrowth. The cell wall components, i.e. NDF, ADF and ADL, increased over the experimental period and reached the highest plateau at 40 days of regrowth. It was concluded that Humidicola grass should be grazed or preserved at the regrowth age of not over 60 days to maximise the utilisation of the grass.

  19. A 100-Year Review: Calf nutrition and management.

    Science.gov (United States)

    Kertz, A F; Hill, T M; Quigley, J D; Heinrichs, A J; Linn, J G; Drackley, J K

    2017-12-01

    The first calf paper, published in the May 1919 issue of the Journal of Dairy Science (JDS), described factors affecting birth body weight of different breeds of calves. Other studies were done on nonmilk ingredients, growth charts were developed, and early weaning was followed to conserve milk fed to calves. Calf papers did not report use of statistics to control or record variation or to determine whether treatment means were different. Many experiments were more observational than comparative. Typically fewer than 5 calves, and sometimes 1 or 2 calves, were used per treatment. During the next 20 yr, calf studies increased and included colostrum feeding, milk and milk replacer feeding, minerals and vitamins, and fats and oils. Many concepts fundamental to current knowledge and understanding of digestion, rumen development, and milk replacer formulation were developed during this period. In addition, the concept of using antibiotic growth promoters in dairy calf diets was first evaluated and developed during the 1950s. During the 20-yr period of January 1957 through December 1976, a large number of universities in the United States and 1 in Canada contributed almost 150 papers on a variety of calf-related topics. These topics included genetics, physiology of the calf, review of calf immunity, antibiotic feeding, and milk replacer ingredients. This became the golden era of calf rumen development studies, which also engendered studies of calf starter rations and ingredients. A classic review of management, feeding, and housing studies summarized research related to calf feeding and management systems up to that point with an emphasis on maintaining calf growth and health while reducing labor and feed costs. It was also during this period that metric measurements replaced English units. In the 20-yr period from 1977 to 1996, more than 400 articles on calf nutrition and management were published in JDS. With the growing research interest in calves, a paper outlining

  20. Management techniques evaluation for sodic soils reclamation in the Valle Calido del Alto Magadalena

    International Nuclear Information System (INIS)

    Alfaro Rodriguez, Ricardo; Maria Caicedo, Antonio; Amezquita Collazos, Edgar

    1996-01-01

    An experiment was carried out at La Palmita farm, located within the irrigation district USOCOELLO, in El Espinal, Tolima, Vereda Guasimal-Pasoancho, on a soil classified as Typical Ustropept in advanced state of sodification, in order to reestablish its sustainable productive potential. Three techniques were evaluated as follows: drains spacing (50 and 100 meters), type of drains (pipes and gravel) and chemical correctives (sulfur and gypsum) plus a characteristic management in each stage of the reclamation process. After two semesters and by using rice as crop, the exchangeable sodium decreased in about 40% in the first layer, which brought the soil from a sodica condition to normal. Statistical differences were found between drains spacing and chemical correctives with best results or a spacing of 100 m and when sulfur was used as corrective. The process will continue until the hydrodynamic characteristics from 20 to 30 cm deep are reestablished as well as the nutritional balance throughout the soil profile

  1. Rational Application of Fertilizer Nitrogen to Soil in Combination With Foliar Zn Spraying Improved Zn Nutritional Quality of Wheat Grains

    Directory of Open Access Journals (Sweden)

    Haiyong Xia

    2018-05-01

    Full Text Available To alleviate human zinc (Zn deficiency, it is worthy to develop rational agronomic managements to achieve high yielding and high resource-use efficiency wheat (Triticum aestivum L. grains biofortified with Zn. Effects of application of three rates of nitrogen (N fertilizer (75,200 and 275 kg·ha−1 to soil in combination with three foliar applications (deionized water, Zn alone, and a combination of Zn and sucrose on grain yield, yield components, grain Zn concentration, protein, phytic acid (PA, phosphorus (P, calcium (Ca, and carbon (C, as well as on Zn bioavailability, were investigated in four wheat cultivars (“Jinan 17,” “Jimai 20,” “Jimai 22,” and “Luyuan 502” under field conditions. Enhanced N increased Zn and protein concentrations as well as bioavailability; excessive N input did not result in further improvements. Zinc spraying was more effective than soil fertilizer N application, the spray of Zn (with or without sucrose increased grain Zn concentrations by 11.1–15.6 mg·kg−1 (27.1–38.1%, and increased grain Zn bioavailability, estimated using total daily absorbed Zn (TAZ and molar ratios of PA/Zn and PA × Ca/Zn, by 0.4–0.6 mg d−1 (28.6–42.9%, 23.1–27.4% and 24.0–28.0%, respectively. Remarkably, increases caused by ‘Zn + sucrose’ were higher than spraying Zn alone. Grain Zn bioavailability was more sensitive to the selection of cultivar than Zn concentrations. Among cultivars, the higher the grain yields and concentrations of antinutritional compounds, the lower the grain Zn nutritional quality would be. 200 kg N ha−1 application rate in combination with foliar spraying of “Zn + sucrose” maximized grain Zn concentrations of “Jinan 17,” “Jimai 20,” “Jimai 22,” and “Luyuan 502” to be 59.4, 56.9, 55.8, and 60.9 mg kg−1, respectively, achieving the target value for biofortification. Additionally, PA/Zn and PA × Ca/Zn of “Jinan 17,” “Jimai 20,” and “Luyuan 502” were

  2. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  3. Nutritional support management in premature infant in a Mexican (Guanajuato) hospital.

    OpenAIRE

    Monroy-Torres, R.; Mendoza Hernández, A. N.; Ruiz González, S. R.

    2012-01-01

    Introduction: Premature infant has special nutritional and physiological recommendations. Nutritional support promotes an appropriate weight gain. While this support is monitored according to international guidelines, the metabolic and infectious complicationscan be reduced and prevented.Objective: To describe the management of nutritional support in premature infant in a Mexican (Guana juato) hospital.Methods: A descriptive cross-sectional study, where a survey of 22 questions was applied by...

  4. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests

    Directory of Open Access Journals (Sweden)

    Maren M. Grüning

    2017-06-01

    Full Text Available Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L. forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L. or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  5. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests.

    Science.gov (United States)

    Grüning, Maren M; Simon, Judy; Rennenberg, Heinz; L-M-Arnold, Anne

    2017-01-01

    Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15 N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine ( Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth ( Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  6. Assessing the dynamics of the upper soil layer relative to soil management practices

    Science.gov (United States)

    Hatfield, J.; Wacha, K.; Dold, C.

    2017-12-01

    The upper layer of the soil is the critical interface between the soil and the atmosphere and is the most dynamic in response to management practices. One of the soil properties most reflective to changes in management is the stability of the aggregates because this property controls infiltration of water and exchange of gases. An aggregation model has been developed based on the factors that control how aggregates form and the forces which degrade aggregates. One of the major factors for this model is the storage of carbon into the soil and the interaction with the soil biological component. To increase soil biology requires a stable microclimate that provides food, water, shelter, and oxygen which in turn facilitates the incorporation of organic material into forms that can be combined with soil particles to create stable aggregates. The processes that increase aggregate size and stability are directly linked the continual functioning of the biological component which in turn changes the physical and chemical properties of the soil. Soil aggregates begin to degrade as soon as there is no longer a supply of organic material into the soil. These processes can range from removal of organic material and excessive tillage. To increase aggregation of the upper soil layer requires a continual supply of organic material and the biological activity that incorporates organic material into substances that create a stable aggregate. Soils that exhibit stable soil aggregates at the surface have a prolonged infiltration rate with less runoff and a gas exchange that ensures adequate oxygen for maximum biological activity. Quantifying the dynamics of the soil surface layer provides a quantitative understanding of how management practices affect aggregate stability.

  7. Soil nitrate testing supports nitrogen management in irrigated annual crops

    Directory of Open Access Journals (Sweden)

    Patricia A. Lazicki

    2016-12-01

    Full Text Available Soil nitrate (NO3− tests are an integral part of nutrient management in annual crops. They help growers make field-specific nitrogen (N fertilization decisions, use N more efficiently and, if necessary, comply with California's Irrigated Lands Regulatory Program, which requires an N management plan and an estimate of soil NO3− from most growers. As NO3− is easily leached into deeper soil layers and groundwater by rain and excess irrigation water, precipitation and irrigation schedules need to be taken into account when sampling soil and interpreting test results. We reviewed current knowledge on best practices for taking and using soil NO3− tests in California irrigated annual crops, including how sampling for soil NO3− differs from sampling for other nutrients, how tests performed at different times of the year are interpreted and some of the special challenges associated with NO3− testing in organic systems.

  8. Values expressed through intergenerational family food and nutrition management systems among African American women.

    Science.gov (United States)

    Ahye, Brenda A; Devine, Carol M; Odoms-Young, Angela M

    2006-01-01

    This grounded theory investigation aimed to understand intergenerational family roles and the food management strategies of African American women from a social-ecological perspective. Thirty women from 10 low/moderate-income 3-generation urban families participated in interviews covering roles, health, nutrition, and food management strategies. Four dynamic family systems for managing food and nutrition emerged from qualitative data analysis. Participants expressed values of responsibility, social connections, caretaking, reward, and equal opportunity, and fulfilling responsibilities for family care, connections, and finances. These values and systems provide a basis for culturally appropriate, interpersonal-level nutrition interventions among African American women that build on family structures, needs, and resources.

  9. Soil Quality Evaluation Using the Soil Management Assessment Framework (SMAF in Brazilian Oxisols with Contrasting Texture

    Directory of Open Access Journals (Sweden)

    Maurício Roberto Cherubin

    Full Text Available ABSTRACT The Soil Management Assessment Framework (SMAF was developed in the U.S.A. and has been used as a tool for assessing and quantifying changes in soil quality/health (SQ induced by land uses and agricultural practices in that region and elsewhere throughout the world. An initial study using SMAF in Brazil was recently published, but additional research for a variety of soils and management systems is still needed. Our objective was to use data from five studies in southern Brazil to evaluate the potential of SMAF for assessing diverse land-use and management practices on SQ. The studies examined were: (i horizontal and vertical distribution of soil properties in a long-term orange orchard; (ii impacts of long-term land-use change from native vegetation to agricultural crops on soil properties; (iii effects of short-term tillage on soil properties in a cassava production area; (iv changes in soil properties due to mineral fertilizer and pig slurry application coupled with soil tillage practices; and (v row and inter-row sowing effects on soil properties in a long-term no-tillage area. The soils were classified as Oxisols, with clay content ranging from 180 to 800 g kg-1. Six SQ indicators [pH(H2O, P, K, bulk density, organic C, and microbial biomass] were individually scored using SMAF curves and integrated into an overall Soil Quality Index (SQI focusing on chemical, physical, and biological sectors. The SMAF was sensitive for detecting SQ changes induced by different land uses and management practices within this wide textural range of Brazilian Oxisols. The SMAF scoring curve algorithms properly transformed the indicator values expressed in different units into unitless scores ranging from 0-1, thus enabling the individual indicators to be combined into an overall index for evaluating land-use and management effects on soil functions. Soil sector scores (i.e., chemical, physical, and biological identify the principal soil limitations

  10. Some Soil Characters and Qualitative Traits of Sunflower Seeds to Different Nutritional Regimes

    Directory of Open Access Journals (Sweden)

    F Soleymani

    2018-05-01

    Full Text Available Introduction To achieve the high economic yield in crops, supplying enough nutrients for plants is important, that much of it, supplied by chemical fertilizers. But excessive use of chemical fertilizers led to environmental problems that these negative effects have caused attention to healthy and ecological sustainable farming systems. One solution to reduce dependence on chemical fertilizers is application of organic and biological products for plant nutrition. Bio-fertilizers are made from one or more species of beneficial microorganisms with preservatives and or their products. In addition, vermicompost is an organic fertilizer and mixed of very active biological bacteria, enzymes, plant residues, manure and earthworm capsule which leads to continued organic matter decomposition and development of microbial and enzymatic activities in soil. Several experiments have shown that the using of biological and organic fertilizers improve growth and quality of products. Materials and Methods To investigate the effect of various nutritional regimes on seed quality characteristics of sunflower (Euroflour cv. and some soil characters, an experiment was carried out as a randomized complete block design with 3 replications in 2015 at the Agricultural Faculty of Bu-Ali Sina University.Treatments included no biological or chemical fertilizer application, 100% of the recommended NP fertilizers (250 kg urea per hectare, 50 kg triple superphosphate per hectare, ½ recomended NP fertilizers, vermicompost (15 ton per hectare mixed with soil, phosphonitrokara (including Bacillus coagulans, Azotobacter chroococcum, Azospirillum lipoferum, 110 ml to inoculate 10 kg seeds, biosulfur (including Thiobacillus,mix 6 kg of fertilizer with 300 kg sulphur for 1 hectare, vermicompost+ phosphonitrokara, vermicompost+ biosulfur, vermicompost+½ NP fertilizers, phosphonitrokara+½ NP fertilizers, biosulfur+½ NP fertilizers, vermicompost+ phosphonitrokara+½ NP fertilizers

  11. Specialization to Extremely Low-Nutrient Soils Limits the Nutritional Adaptability of Plant Lineages.

    Science.gov (United States)

    Verboom, G Anthony; Stock, William D; Cramer, Michael D

    2017-06-01

    Specialization to extreme selective situations promotes the acquisition of traits whose coadaptive integration may compromise evolutionary flexibility and adaptability. We test this idea in the context of the foliar stoichiometry of plants native to the South African Cape. Whereas foliar concentrations of nitrogen, phosphorus (P), potassium (K), calcium, magnesium, and sodium showed strong phylogenetic signal, as did the foliar ratios of these nutrients to P, the same was not true of the corresponding soil values. In addition, although foliar traits were often related to soil values, the coefficients of determination were consistently low. These results identify foliar stoichiometry as having a strong genetic component, with variation in foliar nutrient concentrations, especially [P] and [K], being identified as potentially adaptive. Comparison of stoichiometric variation across 11 similarly aged clades revealed consistently low foliar nutrient concentrations in lineages showing specialization to extremely low-nutrient fynbos heathlands. These lineages also display lower rates of evolution of these traits as well as a reduced tendency for foliar [P] to track soil [P]. Reduced evolutionary lability and adaptability in the nutritional traits of fynbos-specialist lineages may explain the floristic distinctness of the fynbos flora and implies a reduced scope for edaphically driven ecological speciation.

  12. Dietary Management in Hyperlipidemia. Nutrition in Primary Care Series, Number 12.

    Science.gov (United States)

    Gallagher-Allred, Charlette R.; Townley, Nancy A.

    Nutrition is well-recognized as a necessary component of educational programs for physicians. This is to be valued in that of all factors affecting health in the United States, none is more important than nutrition. This can be argued from various perspectives, including health promotion, disease prevention, and therapeutic management. In all…

  13. Dietary Management in Obesity. Nutrition in Primary Care Series, Number 9.

    Science.gov (United States)

    Gallagher-Allred, Charlette R.; Townley, Nancy A.

    Nutrition is well-recognized as a necessary component of educational programs for physicians. This is to be valued in that of all factors affecting health in the United States, none is more important than nutrition. This can be argued from various perspectives, including health promotion, disease prevention, and therapeutic management. In all…

  14. Effect of Arbuscular Mycorrhizae on zinc nutrition of maize grow in calcareous soil amended with different phosphorus sources

    International Nuclear Information System (INIS)

    Aly, S.S.M.; EL-Ghandour, I. A.

    2001-01-01

    Arbuscular mycorrhizal fungi (AMF) are known to improve P nutrition of plants. The information of AMF effects on corn Zn nutrition under P fertilization in calcareous soil is limited. A greenhouse experiment was carried out using calcareous soil and two P-sources i.e single superphosphate and rock phosphate (with full and one third of recommended dose). to evaluate the ability of AMF on improving Zn nutrition in maize plants. Labelled 65 ZnSo 4 was added at rates of 0.10 and 20 mg Zn Kg -1 soil. Zinc uptake and dry mater of corn shoots were improved as a result of AMF inoculation. The maximum improvement was recorded with super-P fertilizer in combination with 10 or 20 mg Zn Kg -1 soil for non-inoculated and AMF inoculated plants. respectively. The amount of Zn in non-inoculated and AMF inoculated plants. respectively. The amount of ZnSo 4 utilized plant derived from fertilizer.(Zndff) and the percent of ZnSo 4 utilization by corn plants were increased when ZnSo 4 was added at rate of 10 mg Zn Kg -1 soil in the presence of super-P fertilizer. Inoculated plants with AMF had higher Zndff content and U% than non-inoculated ones and the greater Zndff and superphosphate fertilizer. It could be concluded that. AMF is useful method utilization by corn plants grown in calcareous soil

  15. Monitoring soil greenhouse gas emissions from managed grasslands

    Science.gov (United States)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  16. Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties

    NARCIS (Netherlands)

    Martínez-García, Laura B.; Korthals, Gerard; Brussaard, Lijbert; Jørgensen, Helene Bracht; Deyn, de Gerlinde B.

    2018-01-01

    It is well recognized that organic soil management stimulates bacterial biomass and activity and that including cover crops in the rotation increases soil organic matter (SOM). Yet, to date the relative impact of different cover crop species and organic vs. non-organic soil management on soil

  17. Effects of artificial soil surface management on changes of ...

    African Journals Online (AJOL)

    Studies of size distribution, stability of the aggregates, and other soil properties are very important due to their influence on tilth, water infiltration, and nutrient dynamics and more importantly on accelerated erosion but are affected by soil surface management. Both chemical e.g. pH, organic carbon, (OC), exchangeable ...

  18. An adaptive management process for forest soil conservation.

    Science.gov (United States)

    Michael P. Curran; Douglas G. Maynard; Ronald L. Heninger; Thomas A. Terry; Steven W. Howes; Douglas M. Stone; Thomas Niemann; Richard E. Miller; Robert F. Powers

    2005-01-01

    Soil disturbance guidelines should be based on comparable disturbance categories adapted to specific local soil conditions, validated by monitoring and research. Guidelines, standards, and practices should be continually improved based on an adaptive management process, which is presented in this paper. Core components of this process include: reliable monitoring...

  19. Evaluation Of Management Properties Of Wetland Soils Of Akwa ...

    African Journals Online (AJOL)

    Evaluation Of Management Properties Of Wetland Soils Of Akwa Ibom State, Nigeria For Sustainable Crop Production. ... Organic matter content values were high with mean of 12.59, 60.01, and 3.20 percent for Inland valley, Flood plain and mangrove soils respectively. Effective cation exchange capacity (ECEC) was below ...

  20. Effects of soil management in vineyard on soil physical and chemical characteristics

    Directory of Open Access Journals (Sweden)

    Linares Rubén

    2014-01-01

    Full Text Available Cover crops in Mediterranean vineyards are scarcely used due to water competition between the cover crop and the grapevine; however, bare soil management through tillage or herbicides tends to have negative effects on the soil over time (organic matter decrease, soil structure and soil fertility degradation, compaction, etc. The objective of this study was to understand how soil management affects soil fertility, compaction and infiltration over time. To this end, two bare soil techniques were compared, tillage (TT and total herbicide (HT with two cover crops; annual cereal (CT and annual grass (AGT, established for 8 years. CT treatment showed the highest organic matter content, having the biggest amount of biomass incorporated into the soil. The annual adventitious vegetation in TT treatment (568 kg dry matter ha-1 that was incorporated into the soil, kept the organic matter content higher than HT levels and close to AGT level, in spite of the greater aboveground annual biomass production of this treatment (3632 kg dry matter ha-1 whereas only its roots were incorporated into the soil. TT presented the highest bulk density under the tractor track lines and a greatest resistance to penetration (at 0.2 m depth. AGT presented bulk density values (upper 0.4 m lower than TT and penetration resistance in CT lower (at 0.20 m depth than TT too. The HT decreased water infiltration due to a superficial crust generated for this treatment. These results indicate that the use of annual grass cover can be a good choice of soil management in Mediterranean climate due to soil quality improvement, with low competition and simple management.

  1. Growth and nutrition of Tetraclinis articulata (Vahl Mast. cultivated in different rhizosphere soils collected from Tetraclinis stand

    Directory of Open Access Journals (Sweden)

    Abbas, Y.

    2013-01-01

    Full Text Available Five representative plant species (Withania frutescens Pauquy, Lavandula multifida L., Pistacia atlantica Desf., Olea europaea L. subsp. oleaster (Hoffmanns. & Link Negodi and Tetraclinis articulata [Vahl] Mast. were selected from Moroccan Tetraclinis woodland in order to evaluate their mycorrhizal potential and to compare the impact of their rhizosphere soil on growth and nutrition of Tetraclinis articulata seedlings. We observed that roots of selected plants were highly colonized by Arbuscular Mycorrhizal (AM fungi. Lavandula multifida roots showed the highest colonization percentage (100%. We recovered AM fungal spores from the rhizosphere soils of the five plant species and we found that the spores number from L. multifida and T. articulata rhizosphere was significantly different from that of other plants. We assessed the mycorrhizal potential of the indigenous soils by using the Most Probable Number (MPN approach. We found that MPN in soils collected near the five plant species was significantly higher than the one in the bare soil. The average of MPN per 100 g of dry soil was 11.8 (from 5.6 to 25.0 in the bare soil and 228.5 (from 108.0 to 476.0 in L. multifida rhizosphere. This result indicates that the soil surrounding the target plants can be used as inoculum for mycorrhization. We conducted a nursery experiment in which L. multifida soil yielded a high mycorrhizal percentage in T. articulata plants, thus contributing to improve the plant growth. However, the highest formation of arbuscules in T. articulata grown in Lavandula soil did not significantly affect the growth or the nutrition of plants compared to Tetraclinis soil, except for potassium concentration. Our investigation clearly showed that L. multifida soil can be used as biofertilizer to inoculate nurseries for T. articulata production. This will greatly contribute to sustain Tetraclinis woodland.

  2. Determinants of soil management practices among small-holder ...

    African Journals Online (AJOL)

    based farmers from six communities across the three agricultural zones in the State. ... education and institutional supports to the farmers for improved food production through sustainable and environmental friendly soil management measures.

  3. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil

    Science.gov (United States)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi

    2013-04-01

    Soil erosion is a major problem in the Mediterranean region due to the arid conditions and torrential rainfalls, which contribute to the degradation of agricultural land. New strategies must be developed to reduce soil losses and recover or maintain soil functionality in order to achieve a sustainable agriculture. An experiment was designed to evaluate the effect of different agricultural management on soil properties and soil quality. Ten different treatments (contact herbicide, systemic herbicide, ploughing, Oat mulch non-plough, Oats mulch plough, leguminous plant, straw rice mulch, chipped pruned branches, residual-herbicide and agro geo-textile, and three control plots including no tillage or control and long agricultural abandonment (shrub on marls and shrub on limestone) were established in 'El Teularet experimental station' located in the Sierra de Enguera (Valencia, Spain). The soil is a Typic Xerorthent developed over Cretaceous marls in an old agricultural terrace. The agricultural management can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) developed by Zornoza et al. (2007) are used to evaluate the effects of the different agricultural management along 4 years. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and ß-glucosidase activities, pH, EC, P and CEC). We use the

  4. Effects of soil management techniques on soil water erosion in apricot orchards

    NARCIS (Netherlands)

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C.; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-01-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these

  5. Proceedings of the California Forest Soils Council Conference on Forest Soils Biology and Forest Management

    Science.gov (United States)

    Robert F. Powers; Donald L. Hauxwell; Gary M. Nakamura

    2000-01-01

    Biotic properties of forest soil are the linkages connecting forest vegetation with an inert rooting medium to create a dynamic, functioning ecosystem. But despite the significance of these properties, managers have little awareness of the biotic world beneath their feet. Much of our working knowledge of soil biology seems anchored in myth and misunderstanding. To...

  6. SAJCN(V23_supp) p62-64 Nutritional manage.indd

    African Journals Online (AJOL)

    jenny

    Invited communication: Nutritional management of gastrointestinal malignancies ... 10% of initial body weight, and have shown a reduced oral energy ... due to the malignancy induced inflammatory response in advanced ... muscle mass.1.

  7. Laboratory experiments with growth potential of Cenangium ferruginosum tested on natural nutrition soils

    Directory of Open Access Journals (Sweden)

    Kunca Andrej

    2013-03-01

    Full Text Available Serious pine dieback was reported in early spring from several localities in Slovakia in 2012. Needle necrosis, bark necrosis and twig cankers were the most conspicuous symptoms on diseased trees. There were no or at least not significant damages caused by bark beetles, leaf eating insects, root rots neither tracheomycosis. We also excluded Sphaeropsis sapinea (Fr. Dyko & B. Sutton as the main pest agent, which played an important role in Pinus nigra Arnold dieback from 2000 to 2007 in Slovakia. Our laboratory inspections revealed Cenangium ferruginosum Fr. as the agent responsible for that dieback. We tested its growth capability on different natural nutrition soils in the laboratory to see the potential pathogenecity. This paper describes the pine dieback based on the field inspections and laboratory studies, and we discuss the role of predisposing factors involved in the dieback.

  8. Managing soil microbial communities in grain production systems through cropping practices

    Science.gov (United States)

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a

  9. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    Science.gov (United States)

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions

  10. Nutrition management in enhanced recovery after abdominal pancreatic surgery.

    Science.gov (United States)

    Márquez Mesa, Elena; Baz Figueroa, Caleb; Suárez Llanos, José Pablo; Sanz Pereda, Pablo; Barrera Gómez, Manuel Ángel

    Multimodal rehabilitation programs are perioperative standardized strategies with the objective of improving patient recovery, and decreasing morbidity, hospital stay and health cost. The nutritional aspect is an essential component of multimodal rehabilitation programs and therefore nutritional screening is recommended prior to hospital admission, avoiding pre-surgical fasting, with oral carbohydrate overload and early initiation of oral intake after surgery. However, there are no standardized protocols of diet progression after pancreatic surgery. A systematic review was been performed of papers published between 2006 and 2016, describing different nutritional strategies after pancreatic surgery and its possible implications in postoperative outcome. The studies evaluated are very heterogeneous, so conclusive results could not be drawn on the diet protocol to be implemented, its influence on clinical variables, or the need for concomitant artificial nutrition. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Effect of Management Practices on Soil Microstructure and Surface Microrelief

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno

    2012-01-01

    Full Text Available Soil surface roughness (SSR and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI was strip-tilled during early fall (May 2010, and the second site (JBP was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1 m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5 μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility.

  12. Nutrition in the management of cirrhosis and its neurological complications.

    Science.gov (United States)

    Bémeur, Chantal; Butterworth, Roger F

    2014-06-01

    Malnutrition is a common feature of chronic liver diseases that is often associated with a poor prognosis including worsening of clinical outcome, neuropsychiatric complications as well as outcome following liver transplantation. Nutritional assessment in patients with cirrhosis is challenging owing to confounding factors related to liver failure. The objectives of nutritional intervention in cirrhotic patients are the support of liver regeneration, the prevention or correction of specific nutritional deficiencies and the prevention and/or treatment of the complications of liver disease per se and of liver transplantation. Nutritional recommendations target the optimal supply of adequate substrates related to requirements linked to energy, protein, carbohydrates, lipids, vitamins and minerals. Some issues relating to malnutrition in chronic liver disease remain to be addressed including the development of an appropriate well-validated nutritional assessment tool, the identification of mechanistic targets or therapy for sarcopenia, the development of nutritional recommendations for obese cirrhotic patients and liver-transplant recipients and the elucidation of the roles of vitamin A hepatotoxicity, as well as the impact of deficiencies in riboflavin and zinc on clinical outcomes. Early identification and treatment of malnutrition in chronic liver disease has the potential to lead to better disease outcome as well as prevention of the complications of chronic liver disease and improved transplant outcomes.

  13. Enhancing the role of nutrition professionals in weight management: A cross-sectional survey.

    Science.gov (United States)

    Bleich, Sara N; Bandara, Sachini; Bennett, Wendy; Cooper, Lisa A; Gudzune, Kimberly A

    2015-02-01

    (1) To determine the nonphysician health profession perceived as best qualified to provide weight management. (2) To examine nutrition professionals' current practice characteristics and perceived challenges and solutions for obesity care. (3) To examine the association between nutrition professionals' quality of training and self-efficacy in weight management. A 2014 national cross-sectional online survey of 500 U.S. nonphysician health professionals (100 from each: nutrition, nursing, behavioral/mental health, exercise, pharmacy) was analyzed. Nutrition professionals most commonly self-identified as the most qualified group to help patients lose weight (92%), sentiments supported by other health professionals (57%). The most often cited challenge was lack of patient adherence (87%). Among nutrition professionals, 77% reported receiving high-quality training in weight loss counseling. Nutrition professionals who reported high-quality training were significantly more likely to report confidence (95% vs. 48%) and success (74 vs. 50%) in helping obese patients lose weight (Pweight management counseling to obese patients. Yet nutrition professionals' receipt of high-quality weight management training appears critical to their success in helping patients lose weight. © 2014 The Obesity Society.

  14. Evaluation of conservation-oriented management on grayish brown soil

    Directory of Open Access Journals (Sweden)

    Consuelo E. Hernández Rodríguez

    2015-03-01

    Full Text Available Conservation and improvement actions were taken to ensure the soil preservation in agricultural areas affected by erosion on a grayish brown soil of Sarduy farm in Cumanayagua, Cuba. The technology that was used included strip-till, crop rotation, live and/or dead barriers, channel terraces, contour farming and the addition of organic matter and biofertilizers. The implementation of the soil conservation-oriented management had an influence on the yield increase of 10.6% - 20.2%, on the decrease of the erosive processes with a retention of soils to 13.33 t.ha -1, on maintaining the soil pH and on the increment of the assimilable P2O5 contents and soil organic matter.

  15. Improvement of wine terroir management according to biogeochemical cycle of nitrogen in soil

    Science.gov (United States)

    Najat, Nassr; Aude, Langenfeld; Mohammed, Benbrahim; Lionel, Ley; Laurent, Deliere; Jean-Pascal, Goutouly; David, Lafond; Marie, Thiollet-Scholtus

    2015-04-01

    Good wine terroir production implies a well-balanced Biogeochemical Cycle of Nitrogen (BCN) at field level i.e. in soil and in plant. Nitrogen is very important for grape quality and soil sustainability. The mineralization of organic nitrogen is the main source of mineral nitrogen for the vine. This mineralization depends mainly on the soil microbial activity. This study is focused on the functional microbial populations implicated in the BCN, in particular nitrifying bacteria. An experimental network with 6 vine sites located in Atlantic coast (Loire valley and Bordeaux) and in North-East (Alsace) of France has been set up since 2012. These vine sites represent a diversity of environmental factors (i.e. soil and climate). The adopted approach is based on the measure of several indicators to assess nitrogen dynamic in soil, i.e. nitrogen mineralization, regarding microbial biomass and activity. Statistical analyses are performed to determine the relationship between biological indicator and nitrogen mineralisation regarding farmer's practices. The variability of the BCN indicators seems to be correlated to the physical and chemical parameters in the soil of the field. For all the sites, the bacterial biomass is correlated to the rate and kinetic of nitrogen in soil, however this bioindicator depend also on others parameters. Moreover, the functional bacterial diversity depends on the soil organic matter content. Differences in the bacterial biomass and kinetic of nitrogen mineralization are observed between the sites with clayey (Loire valley site) and sandy soils (Bordeaux site). In some tested vine systems, effects on bacterial activity and nitrogen dynamic are also observed depending on the farmer's practices: soil tillage, reduction of inputs, i.e. pesticides and fertilizers, and soil cover management between rows. The BCN indicators seem to be strong to assess the dynamics of the nitrogen in various sites underline the functional diversity of the soils. These

  16. SOIL AND WATER CONSERVATION MANAGEMENT THROUGH ...

    African Journals Online (AJOL)

    Osondu

    socio-cultural, economic system constraints for the implementation and maintenance of conservation .... Purpose of natural resource conservation is therefore ... the soil and water resources through traditional and ..... “Integrated Natural.

  17. Agroforestry management in vineyards: effects on soil microbial communities

    Science.gov (United States)

    Montagne, Virginie; Nowak, Virginie; Guilland, Charles; Gontier, Laure; Dufourcq, Thierry; Guenser, Josépha; Grimaldi, Juliette; Bourgade, Emilie; Ranjard, Lionel

    2017-04-01

    Some vineyard practices (tillage, chemical weeding or pest management) are generally known to impact the environment with particular negative effects on the diversity and the abundance of soil microorganisms, and cause water and soil pollutions. In an agro-ecological context, innovative cropping systems have been developed to improve ecosystem services. Among them, agroforestry offers strategies of sustainable land management practices. It consists in intercropping trees with annual/perennial/fodder crop on the same plot but it is weakly referenced with grapevine. The present study assesses the effects of intercropped and neighbouring trees on the soil of three agroforestry vineyards, in south-western France regions. More precisely soils of the different plots were sampled and the impact of the distance to the tree or to the neighbouring trees (forest) on soil microbial community has been considered. Indigenous soil microbial communities were characterized by a metagenomic approach that consisted in extracting the molecular microbial biomass, then in calculating the soil fungi/bacteria ratio - obtained by qPCR - and then in characterizing the soil microbial diversity - through Illumina sequencing of 16S and 18S regions. Our results showed a significant difference between the soil of agroforestry vineyards and the soil sampled in the neighbouring forest in terms of microbial abundance and diversity. However, only structure and composition of bacterial community seem to be influenced by the implanted trees in the vine plots. In addition, the comparison of microbial co-occurrence networks between vine and forest plots as well as inside vine plots according to distance to the tree allow revealing a more sensitive impact of agroforestry practices. Altogether, the results we obtained build up the first references for concerning the soil of agroforestry vineyards which will be interpreted in terms of soil quality, functioning and sustainability.

  18. Biological and biochemical soil quality indicators for agricultural management

    Science.gov (United States)

    Bongiorno, Giulia

    2017-04-01

    Soil quality is defined as the capacity of a soil to perform multiple functions. Agricultural soils can, in principle, sustain a wide range of functions. However, negative pressure exerted by natural and anthropogenic soil threats such as soil erosion, soil organic matter losses and soil compaction have the potential to permanently damage soil quality. Soil chemical, physical and biological parameters can be used as indicators of soil quality. The specific objective of this study is to assess the suitability of novel soil parameters as soil quality indicators. We focus on biological/biochemical parameters, due to the unique role of soil biota in soil functions and to their high sensitivity to disturbances. The novel indicators are assessed in ten European long-term field experiments (LTEs) with different agricultural land use (arable and permanent crops), management regimes and pedo-climatic characteristics. The contrasts in agricultural management are represented by conventional/reduced tillage, organic/mineral fertilization and organic matter addition/no organic matter addition. We measured two different pools of labile organic carbon (dissolved organic carbon (DOC), and permanganate oxidizable carbon (POXC)), and determined DOC quality through its fractionation in hydrophobic and hydrophilic compounds. In addition, total nematode abundance has been assessed with qPCR. These parameters will be related to soil functions which have been measured with a minimum data set of indicators for soil quality (including TOC, macronutrients, and soil respiration). As a preliminary analysis, the Sensitivity Index (SI) for a given LTE was calculated for DOC and POXC according to Bolinder et al., 1999 as the ratio of the soil attribute under modified practices (e.g. reduced tillage) compared to the conventional practices (e.g. conventional tillage). The overall effect of the sustainable management on the indicators has been derived by calculating an average SI for those LTEs

  19. Nutrition support team management of enterally fed patients in a community hospital is cost-beneficial.

    Science.gov (United States)

    Hassell, J T; Games, A D; Shaffer, B; Harkins, L E

    1994-09-01

    To determine whether nutrition support team (NST) management of enterally fed patients is cost-beneficial and to compare primary outcomes of care between team and nonteam management. A quasi-experimental study was conducted over a 7-month period. A 400-bed community hospital. A convenience sample of 136 subjects who had received enteral nutrition support for at least 24 hours. Forty-two patients died; only their mortality data were used. Ninety-six patients completed the study. Outcomes, including cost, for enterally fed patients in two treatment groups--those managed by the nutrition support team and those managed by nonteam staff--were compared. Severity of illness level was determined for patients managed by the nutrition support team and those managed by nonteam staff. For each group, the following measures were adjusted to reflect a significant difference in average severity of illness and then compared: length of hospital stay, readmission rates, and mortality rates. Complication rates between the groups were also compared. The cost benefit was determined based on savings from the reduction in adjusted length of hospital stay. Parametric and nonparametric statistics were used to evaluate outcomes between the two groups. Differences were statistically significant for both severity of illness, which was at a higher level in the nutrition support team group (P group (P team-managed group, there was a 23% reduction in adjusted mortality rate, an 11.6% reduction in the adjusted length of hospital stay, and a 43% reduction in adjusted readmission rate. Cost-benefit analysis revealed that for every $1 invested in nutrition support team management, a benefit of $4.20 was realized. Financial and humanitarian benefits are associated with nutrition support team management of enterally fed hospitalized patients.

  20. Education on sustainable soil management for the masses? The Soil4Life MOOC

    Science.gov (United States)

    Maroulis, Jerry; Demie, Moore; Riksen, Michel; Ritsema, Coen

    2017-04-01

    Although soil is one of our most important natural resources and the foundation for all life on Earth it remains one of the most neglected of our resources. We, in soil science know this, but what do we do to reach more people more quickly? MOOCs, 'Massive Open Online Courses', are a vehicle for offering learning to virtually unlimited audiences at little cost to the student. Could MOOCs be the format for introducing more people worldwide to the importance of soil and sustainable soil management? MOOCs have their limitations and critics. However, depending on your goals, expectations and resources, they are a means for getting information to a much broader population than is possible through conventional educational formats. Wageningen University (WU) agreed and approved the development of a MOOC on sustainable soil management entitled Soil4Life. This presentation reviews the format and results of Soil4Life, concluding with some observations and reflections about this approach to soil science education. The Soil4Life MOOC introduces the role of soil in life on earth, soil degradation, and socio-economic issues related to generating action for long-term sustainability of the many soil-related ecosystem services. The objectives of Soil4Life are to raise awareness about the many important aspects of soil and sustainable soil management, and to allow the educational materials we produced to be available for use by others. The process of creating the Soil4Life MOOC involved 18 academic staff across all WU soil-related groups plus a vital team of education and technical staff. This number of people posed various challenges. However, with clear guidelines, lots of encouragement and technical support, Soil4Life was started in late 2015 and launched on the edx platform in May 2016. Just over 5000 students from 161 countries enrolled in the first offer of the Soil4Life MOOC - a modest number for MOOCs, but not bad for soil science. The targeted audience was initially high

  1. MEDICAL NUTRITION THERAPY IN MANAGEMENT OF EATING DISORDERS

    Directory of Open Access Journals (Sweden)

    Miloš Pavlović

    2009-01-01

    Full Text Available The treatment of eating disorders demands a comprehensive medical approach, where a dietitian has an important role, primarily due to numerous instances of malnutrition. The objective of this paper was to recapitulate the research findings and clinical evidence which show the importance of medical nutrition therapy in the treatment of eating disorders; furthermore, they present significant guidelines for clinical practice. The research methods have entailed a thorough exploration of literature available at research data bases. The results of the research studies published so far have unambiguously pointed out that, when eating disorders are concerned, there is an urgent need for a diet therapy in order for the patient to restore the appropriate body weight as well as normal eating habits. On the one hand, certain authors suggest returning to normal nutritional habits immediately, whereas, on the other hand, certain others advocate a diet therapy program, that is, a gradual process of recovery. Patients incapable of oral food intake receive enteral nutrition. Parenteral nutrition is applied for recovering the lost electrolytes and fluids, but it should be applied rarely, primarily in states of urgency. For patients suffering from eating disorders the increase in weight indicates good chances of recovery; therefore, the patient’s nutritional status should be carefully and continuously noted. Finally, it is important that our country, too, should adopt a carefully prescribed and conducted diet therapy as an obligatory step in the treatment of patients with eating disorders.

  2. Relationships between soil-based management zones and canopy sensing for corn nitrogen management

    Science.gov (United States)

    Integrating soil-based management zones (MZ) with crop-based active canopy sensors to direct spatially variable nitrogen (N) applications has been proposed for improving N fertilizer management of corn (Zea mays L.). Analyses are needed to evaluate relationships between canopy sensing and soil-based...

  3. Nutritional support team vs nonteam management of enteral nutritional support in a Veterans Administration Medical Center teaching hospital.

    Science.gov (United States)

    Powers, D A; Brown, R O; Cowan, G S; Luther, R W; Sutherland, D A; Drexler, P G

    1986-01-01

    One hundred one patients receiving enteral nutritional support (ENS) by tube feeding during a 5-month period were prospectively studied. Fifty patients were managed by a nutritional support team (T) and 51 patients were managed by the nonteam approach (NT). Demographics, primary diagnosis, chronic diseases, medical service, calculated basal energy expenditure (BEE), duration of ENS, and final patient disposition were recorded. Enteral formula, formula modifications, results of laboratory tests and calories delivered were obtained daily. Results of nitrogen balance studies were obtained when available and each patient was monitored for pulmonary, mechanical, gastrointestinal, and metabolic abnormalities. No significant difference was found between the team and nonteam managed groups in regard to total feeding days, mean feeding days per patient, total laboratory tests, laboratory tests per patient or laboratory tests per day. Significantly more team patients attained 1.2 times BEE (T = 47, NT = 38, p less than 0.05) for a significantly greater period of time (T = 398 days, NT = 281 days, p less than 0.05). Significantly more team patients achieved a measured positive nitrogen balance than nonteam patients (T = 42, NT = 1, p less than 0.05). Formula modifications to correct nutritional or metabolic aberrations were made in 15 (30%) team patients and five (9.8%) nonteam patients (p less than 0.05). The number of individual abnormalities (pulmonary, mechanical, gastrointestinal, and metabolic), as well as total abnormalities occurring in the team-managed group, was significantly lower than in the nonteam managed group (160 vs 695, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Innovative Soil Management Practices (SMP) Assessment in Europe and China

    Science.gov (United States)

    Barão, Lúcia

    2017-04-01

    The growing world population poses a major challenge to global agricultural food and feed production through the pressure to increase agricultural outputs either by increasing the land area dedicated to agriculture or by productivity increases. Whether in developed or developing regions, agricultural intensification based on conventional approaches has resulted in severe environmental impacts and innovative soil management practices are needed to halter ongoing soil degradation and promote sustainable land management capable to produce more from less. The iSQAPER project - Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience - aims to develop a Soil Quality app (SQAPP) linking soil and agricultural management practices to soil quality indicators. This easy friendly tool will provide a direct and convenient way to advise farmers and other suitable actors in this area, regarding the best management practices to be adopted in very specific and local conditions. In this particular study from iSQAPER, we aimed to identify the most promising innovative soil management practices (SMP) currently used and its geographical distribution along different pedo-climatic regions in Europe (Boreal, Atlantic, Mediterranean Temperate, Mediterranean Semi-Arid, Southern Sub-Continental and Northern Sub-Continental) and China (Middle Temperate, Warm temperate and Central Asia Tropical). So far we have identified 155 farms where innovative SMP's are used, distributed along 4 study site regions located in China (Qiyang, Suining, Zhifanggou and Gongzhuling) and 10 study site regions located in Europe (The Netherlands, France, Portugal, Spain, Greece, Slovenia, Hungary, Romania, Poland and Estonia) and covering the major pedo-climatic regions. From this identification we concluded that the most used innovative SMP's in the study site regions in Europe are Manuring & Composting (14%), Min-till (14%), Crop rotation (12

  5. Practice makes perfect: participatory innovation in soil fertility management to improve rural livelihoods in East Africa

    OpenAIRE

    Jager, de, A.

    2007-01-01

    Keywords: soil nutrient balances, soil fertility degradation, East Africa , participatory innovation, experiential learning, farmer field schools, smallholder agriculture Maintaining and improving soil fertility is crucial for Africa to attain the Millennium Development Goals. Fertile soil and balanced soil nutrient management are major foundations for sustainable food production, contribute to a sound management of natural resources and assist in controlling environmental degradation such ...

  6. Nutritional management and growth in children with chronic kidney disease.

    Science.gov (United States)

    Rees, Lesley; Jones, Helen

    2013-04-01

    Despite continuing improvements in our understanding of the causes of poor growth in chronic kidney disease, many unanswered questions remain: why do some patients maintain a good appetite whereas others have profound anorexia at a similar level of renal function? Why do some, but not all, patients respond to increased nutritional intake? Is feed delivery by gastrostomy superior to oral and nasogastric routes? Do children who are no longer in the 'infancy' stage of growth benefit from enteral feeding? Do patients with protein energy wasting benefit from increased nutritional input? How do we prevent obesity, which is becoming so prevalent in the developed world? This review will address these issues.

  7. Soil sorting, new approach to site remediation management

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Woods, J.A.; Dillon, M.J.

    1996-01-01

    Soil sorting is the technology which conveys soil beneath contaminant detectors and, based on contaminant signal, automatically toggles a gate at the conveyor end to send soil with contamination above a guideline to a separate location from soil which meets the guideline. The technology was perfected for remediation of sites having soils with radioactive contamination, but it is applicable to other contaminants when instrumental methods exist for rapid contaminant detection at levels of concern. This paper examines the three methods for quantifying contamination in soil in support of site remediation management. Examples are discussed where the primary contaminant is plutonium, a radioactive substance and source of nuclear energy which can be hazardous to health when in the environment without controls. Field survey instruments are very sensitive to plutonium and can detect it in soil at levels below a part per billion, and there are a variety of soils which have been contaminated by plutonium and thoroughly investigated. The lessons learned with plutonium are applicable to other types of contaminants and site remediations. The paper concludes that soil sorting can be the most cost effective approach to site remediation, and it leads to the best overall cleanup

  8. [Effects of intensive management on soil C and N pools and soil enzyme activities in Moso bamboo plantations.

    Science.gov (United States)

    Yang, Meng; Li, Yong Fu; Li, Yong Chun; Xiao, Yong Heng; Yue, Tian; Jiang, Pei Kun; Zhou, Guo Mo; Liu, Juan

    2016-11-18

    In order to elucidate the effects of intensive management on soil carbon pool, nitrogen pool, enzyme activities in Moso bamboo (Phyllostachys pubescens) plantations, we collected soil samples from the soil surface (0-20 cm) and subsurface (20-40 cm) layers in the adjacent Moso bamboo plantations with extensive and intensive managements in Sankou Township, Lin'an City, Zhejiang Province. We determined different forms of C, N and soil invertase, urease, catalase and acid phosphatase activities. The results showed that long-term intensive management of Moso bamboo plantations significantly decreased the content and storage of soil organic carbon (SOC), with the SOC storage in the soil surface and subsurface layers decreased by 13.2% and 18.0%, respectively. After 15 years' intensive management of Masoo bamboo plantations, the contents of soil water soluble carbon (WSOC), hot water soluble carbon (HWSOC), microbial carbon (MBC) and readily oxidizable carbon (ROC) were significantly decreased in the soil surface and subsurface layers. The soil N storage in the soil surface and subsurface layers in intensively managed Moso bamboo plantations increased by 50.8% and 36.6%, respectively. Intensive management significantly increased the contents of nitrate-N (NO 3 - -N) and ammonium-N (NH 4 + -N), but decreased the contents of water-soluble nitrogen (WSON) and microbial biomass nitrogen (MBN). After 15 years' intensive management of Masoo bamboo plantations, the soil invertase, urease, catalase and acid phosphatase activities in the soil surface layer were significantly decreased, the soil acid phosphatase activity in the soil subsurface layer were significantly decreased, and other enzyme activities in the soil subsurface layer did not change. In conclusion, long-term intensive management led to a significant decline of soil organic carbon storage, soil labile carbon and microbial activity in Moso bamboo plantations. Therefore, we should consider the use of organic

  9. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    Science.gov (United States)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  10. Evaluating anaerobic soil disinfestation and other biological soil management methods for open-field tomato production in Florida

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD), amending the soil with composted poultry litter (CPL) and molasses (M), has been shown to be a potential alternative to chemical soil fumigation for tomato production, however, optimization of ASD and the use of other biologically-based soil management practices ...

  11. [Nutritional Assessment and Management for Patients with Chronic Liver Disease].

    Science.gov (United States)

    Lee, Tae Hee

    2018-04-25

    When liver disease is severe, the prognosis can be worse if the patient is malnourished. Adequate nutritional support for patients with liver diseases can improve the patient's condition and prognosis. In the case of liver cirrhosis, malnutrition can occur due to a variety of causes, including poor oral intake, maldigestion, malabsorption, associated renal disease, and metabolic abnormalities. For a nutritional assessment, it is important to check the dietary intake, change in body composition, including anthropometry, and a functional assessment of muscle. Counselling and oral or enteral nutrition is preferred over parenteral nutrition as in other diseases. If esophageal varices are present, care should be taken when installing a feeding tube, but if there are ascites, percutaneous endoscopic gastrostomy is contraindicated because of the risk of complications. Calories of 30-35 kcal/kg/day and protein from 1.2 to 1.5 g/kg/day are appropriate. Protein restriction is unnecessary unless the hepatic encephalopathy is severe. A late evening snack and branched chain amino acids can be helpful. In the case of cholestasis, the supply of manganese and copper should be restricted. Sarcopenia in patients with liver cirrhosis is also prevalent and associated with the prognosis.

  12. Food and Nutrition Services Quality Control Management Program.

    Science.gov (United States)

    Wimsatt-Fraim, Teresa S.

    A program was conducted to improve the quality of food service through the training of 44 food and nutrition service employees in a 200-bed hospital. A 12-week quality control program was implemented to address four key areas: food temperatures, food accuracy, food quality, and dietary personnel. Learning strategies, emphasizing critical thinking…

  13. Summer fallow soil management - impact on rainfed winter wheat

    DEFF Research Database (Denmark)

    Li, Fucui; Wang, Zhaohui; Dai, Jian

    2014-01-01

    Summer fallow soil management is an important approach to improve soil and crop management in dryland areas. In the Loess Plateau regions, the annual precipitation is low and varies annually and seasonally, with more than 60% concentrated in the summer months from July to September, which...... is the summer fallow period in the winter wheat-summer fallow cropping system. With bare fallow in summer as a control, a 3-year location-fixed field experiment was conducted in the Loess Plateau to investigate the effects of wheat straw retention (SR), green manure (GM) planting, and their combination on soil...... water retention (WR) during summer fallow, winter wheat yield, and crop water use and nitrogen (N) uptake. The results showed that SR increased soil WR during summer fallow by 20 mm on average compared with the control over 3 experimental years but reduced the grain yield by 8% in the third year...

  14. Engineered soil covers for management of salt impacted sites

    International Nuclear Information System (INIS)

    Sweeney, D.A.; Tratch, D.J.

    2005-01-01

    The use of engineered soil cover systems to mitigate environmental impacts from tailings and waste rock piles is becoming an accepted practice. This paper presented design concepts for soil covers related to reclamation practices in the mining industry as an effective risk management practice at salt impacted sites. Research and field programs have demonstrated that a layered engineered soil cover can reduce or eliminate infiltration. Key components of the system included re-establishing surface vegetation to balance precipitation fluxes with evapotranspiration potential, and design of a capillary break below the rooting zone to minimize deeper seated infiltration. It was anticipated that the incorporation of a vegetation cover and a capillary break would minimize infiltration into the waste rock or tailing pile and reduce the generation of acid rock drainage (ARD). Design of a layered soil cover requires the incorporation of meteorological data, moisture retention characteristics of the impacted soils, and proposed engineered cover materials. Performance of the soil cover was predicted using a finite element model combined with meteorological data from the site area, unsaturated soil properties of the parent sub-surface soils and potential covered materials. The soil cover design consisted of re-vegetation and a loose clay cover overlying a compacted till layer. The design was conducted for an off site release of salt impacted pasture land adjacent to a former highway maintenance yard. The model predicted minimal infiltration during high precipitation events and no infiltration during low precipitation events. Results indicated that the proposed soil cover would enable re-establishment of a productive agricultural ground cover, as well as minimizing the potential for additional salt migration. It was concluded that further research and development is needed to ensure that the cover system is an acceptable method for long-term risk management. 17 refs., 5 figs

  15. The management of perioperative nutrition in patients with end stage liver disease undergoing liver transplantation.

    Science.gov (United States)

    Zhang, Qi-Kun; Wang, Meng-Long

    2015-10-01

    Malnutrition is found in almost 100% of patients with end stage liver disease (ESLD) awaiting transplantation and malnutrition before transplantation leads to higher rates of post-transplant complications and worse graft survival outcomes. Reasons for protein energy malnutrition include several metabolic alterations such as inadequate intake, malabsorption, and overloaded expenditure. And also, stress from surgery, gastrointestinal reperfusion injury, immunosuppressive therapy and corticosteriods use lead to delayed bowl function recovery and disorder of nutrients absorption. In the pretransplant phase, nutritional goals include optimization of nutritional status and treatment of nutrition-related symptoms induced by hepatic decompensation. During the acute post-transplant phase, adequate nutrition is required to help support metabolic demands, replenish lost stores, prevent infection, arrive at a new immunologic balance, and promote overall recovery. In a word, it is extremely important to identify and correct nutritional deficiencies in this population and provide an adequate nutritional support during all phases of liver transplantation (LT). This study review focuses on prevalence, nutrition support, evaluation, and management of perioperative nutrition disorder in patients with ESLD undergoing LT.

  16. [Effects of management regime on soil respiration from agroecosystems].

    Science.gov (United States)

    Chen, Shu-tao; Zhu, Da-wei; Niu, Chuan-po; Zou, Jian-wen; Wang, Chao; Sun, Wen-juan

    2009-10-15

    In order to examine the effects of management regime, such as nitrogen application and plowing method, on soil respiration from farmland, the static opaque chamber-gas chromatograph method was used to measure soil CO2 fluxes in situ. The field measurement was carried out for 5 growing seasons, which were the 2002-2003 wheat, 2003 maize and soybean, 2003-2004 wheat, 2004 maize and 2004-2005 wheat seasons. Our results showed that soil respiration increased in fertilizer-applied treatments compared with no fertilizer treatment after 3 times of fertilizer application on 9 November 2002, 14 February and 26 March 2003. And the most obvious increase appeared following the third fertilizer application. No significant difference in soil respiration was found among several fertilizer application treatments. The effect of plowing depth on soil respiration was contingent on preceding cropping practice. Over the 2003-2004 wheat-growing seasons (its preceding cropping practice was rice paddy), mean soil respiration rates were not significant different (p > 0.05) between no plowing treatment and shallow plowing treatment. The shallow plowing treatment CT2 led to higher soil CO2 losses compared with no plowing treatment of NT2 in the 2004 maize-growing season, however, the significant higher (p soil respiration rates occurred with no plowing treatment of NT3 in the following 2004-2005 wheat-growing season. Intensive plowing (25 cm depth), compared with no plowing practice (NT4), increased soil respiration significantly during the 2004-2005 wheat-growing season. Regression analysis showed that the exponential function could be employed to fit the relationship between soil respiration and temperature. The exponential relationship yielded the Q10 values which were varied from 1.26 to 3.60, with a mean value of 2.08. To evaluate the effect of temperature on soil respiration, the CO2 emission fluxes were normalized for each treatment and each crop growing season. Plotting the

  17. Alpharma Beef Cattle Nutrition Symposium: implications of nutritional management for beef cow-calf systems.

    Science.gov (United States)

    Funston, R N; Summers, A F; Roberts, A J

    2012-07-01

    The beef cattle industry relies on the use of high-forage diets to develop replacement females, maintain the cow herd, and sustain stocker operations Forage quantity and quality fluctuate with season and environmental conditions Depending on class and physiological state of the animal, a forage diet may not always meet nutritional requirements, resulting in reduced ADG or BW loss if supplemental nutrients are not provided It is important to understand the consequences of such BW loss and the economics of providing supplementation to the beef production system Periods of limited or insufficient nutrient availability can be followed by periods of compensatory BW gain once dietary conditions improve This may have less impact on breeding animals, provided reproductive efficiency is not compromised, where actual BW is not as important as it is in animals destined for the feedlot A rapidly evolving body of literature is also demonstrating that nutritional status of cows during pregnancy can affect subsequent offspring development and production characteristics later in life The concept of fetal programming is that maternal stimuli during critical periods of fetal development have long-term implications for offspring Depending on timing, magnitude, and duration of nutrient limitation or supplementation, it is possible that early measures in life, such as calf birth BW, may be unaffected, whereas measures later in life, such as weaning BW, carcass characteristics, and reproductive traits, may be influenced This body of research provides compelling evidence of a fetal programming response to maternal nutrition in beef cattle Future competitiveness of the US beef industry will continue to be dependent on the use of high-forage diets to meet the majority of nutrient requirements Consequences of nutrient restriction or supplementation must be considered not only on individual animal performance but also the developing fetus and its subsequent performance throughout life.

  18. Distinct soil bacterial communities revealed under a diversely managed agroecosystem.

    Directory of Open Access Journals (Sweden)

    Raymon S Shange

    Full Text Available Land-use change and management practices are normally enacted to manipulate environments to improve conditions that relate to production, remediation, and accommodation. However, their effect on the soil microbial community and their subsequent influence on soil function is still difficult to quantify. Recent applications of molecular techniques to soil biology, especially the use of 16S rRNA, are helping to bridge this gap. In this study, the influence of three land-use systems within a demonstration farm were evaluated with a view to further understand how these practices may impact observed soil bacterial communities. Replicate soil samples collected from the three land-use systems (grazed pine forest, cultivated crop, and grazed pasture on a single soil type. High throughput 16S rRNA gene pyrosequencing was used to generate sequence datasets. The different land use systems showed distinction in the structure of their bacterial communities with respect to the differences detected in cluster analysis as well as diversity indices. Specific taxa, particularly Actinobacteria, Acidobacteria, and classes of Proteobacteria, showed significant shifts across the land-use strata. Families belonging to these taxa broke with notions of copio- and oligotrphy at the class level, as many of the less abundant groups of families of Actinobacteria showed a propensity for soil environments with reduced carbon/nutrient availability. Orders Actinomycetales and Solirubrobacterales showed their highest abundance in the heavily disturbed cultivated system despite the lowest soil organic carbon (SOC values across the site. Selected soil properties ([SOC], total nitrogen [TN], soil texture, phosphodiesterase [PD], alkaline phosphatase [APA], acid phosphatase [ACP] activity, and pH also differed significantly across land-use regimes, with SOM, PD, and pH showing variation consistent with shifts in community structure and composition. These results suggest that use of

  19. Nutritional management of anorexic patients with and without fluoxetine: 1-year follow-up.

    Science.gov (United States)

    Ruggiero, Giovanni M; Mauri, Massimo C; Omboni, Anna C; Volonteri, Lucia S; Dipasquale, Savina; Malvini, Lara; Redaelli, Gabriella; Pasqualinotto, Lucia; Cavagnini, Francesco

    2003-05-01

    This study evaluated the efficacy of nutritional management with and without fluoxetine (FLX) in anorexia nervosa diagnosed according to Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. Twenty-one patients, with a mean body mass index (BMI) of 15.21+/-2.33 kg/m(2), were treated with nutritional management and FLX at a mean dosage of 30.00+/-9.35 mg (pharmacological group); seventy-four patients, with a mean BMI of 14.24+/-2.16 kg/m(2), were treated only with nutritional management (nutritional group). Clinical evaluation was carried out under single-blind conditions at basal time and after 3, 6, and 12 months by a structured clinical interview, the Eating Disorder Interview based on Longitudinal Interval Follow-Up Evaluation (EDI-LIFE) and using a self-reported questionnaire, the Eating Disorder Inventory (EDI). BMI significantly increased in both the two treatment groups. In addition, the increase shown by the pharmacological group appeared near the beginning of treatment (i.e., at T1) and it was significantly higher than the increase shown by the nutritional group. Physical exercise showed a significant decrease in the pharmacological treatment group. On the other hand, fear of fatness and the scores of the subscales of the EDI significantly decreased in the nutritional treatment group. In terms of weight, the pharmacological group presented the higher amount of therapeutic success.

  20. Nutrition economics: an innovative approach to informed public health management.

    Science.gov (United States)

    Nuijten, Mark; Lenoir-Wijnkoop, Irene

    2011-09-01

    The role of nutrition to optimize the use of scarce resources through its linkage with health and welfare should be considered of interest by healthcare decision makers. A favorable impact of food on non-communicable disorders and general health status will improve healthcare expenditure and quality of life.In health economics, an analysis of the costs and effects of a healthcare technology by means of a cost-effectiveness analysis has become an established tool. Projections about the effectiveness and expected costs of an intervention can be modeled using realistic and explicit assumptions based on outcomes from randomized clinical studies. However, the use of health economic techniques to assess costs and effects is not solely restricted to classic healthcare products such as medicines. To illustrate this we used two published cost-effectiveness studies, which consider respectively a preventive treatment against severe respiratory syncytial virus infection in children at high risk of hospitalization and the use of prebiotics for the primary prevention of atopic dermatitis.These examples illustrate that there is a parallel between the methodologies for extrapolation of intermediate outcomes to long-term outcomes between a cost-effectiveness analysis for pharmaceutical or nutrition, as long as the clinical evidence for nutrition fulfils the requirements for pharmaceuticals. Another requirement is that there is clinical widely accepted evidence that matches a comparable level of epidemiological observations about the link between short-term and long-term outcomes.Better understanding of how nutritional status and behavior may interplay with the socioeconomic environment will ultimately contribute to preserving the sustainability of healthcare provisions. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Diabetes Nutrition Therapy: Effectiveness, Macronutrients, Eating Patterns and Weight Management.

    Science.gov (United States)

    Franz, Marion J

    2016-04-01

    Diabetes nutrition therapy provided for individuals with diabetes must be based on research documenting effectiveness. The roles of differing macronutrient percentages, eating patterns and weight loss interventions are controversial. A review of research related to these topics is summarized. Clinical trials as well as systematic reviews and Cochrane reviews report an approximately 1-2% lowering of hemoglobin A1c as well as other beneficial outcomes from nutrition therapy interventions, depending on the type and duration of diabetes and level of glycemic control. There are no ideal percentages of macronutrients or eating patterns or both that apply to all persons with diabetes. Clinical trials demonstrate the effectiveness of modest weight loss and physical activity for the prevention or delay of type 2 diabetes. However, as the disease progresses, weight loss interventions may or may not result in beneficial glycemic and other metabolic outcomes. To be effective, diabetes nutrition therapy must be individualized. Treatment goals, personal preferences (eg, tradition, culture, religion, health beliefs and economics) and the individual׳s ability and willingness to make lifestyle changes all must be considered when educating or counseling individuals with diabetes. A healthy eating pattern emphasizing nutrient-dense foods in appropriate portion sizes, regular physical activity and support are important. A reduced energy intake for persons with prediabetes or type 2 diabetes and matching insulin to planned carbohydrate intake for insulin users is nutrition therapy interventions shown to be effective in achieving glycemic and other metabolic outcomes. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  2. Pasture Management Strategies for Sequestering Soil Carbon - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Franzluebbers, Alan J.

    2006-03-15

    management indicated that soil organic carbon and nitrogen storage were greater with than without endophyte only under high soil fertility. This extra carbon and nitrogen in soil due to the presence of the endophyte was further found to be located in intermediately sized soil aggregates, which are important for reducing water runoff and improving water quality. These results suggest that well-fertilized tall fescue pastures with a high percentage of plants infected with the endophyte have the potential to help offset the rising carbon dioxide in the atmosphere. This research has also shown positive ecological implications of tall fescue-endophyte association.

  3. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    Science.gov (United States)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil

  4. Responses of soil respiration to soil management changes in an agropastoral ecotone in Inner Mongolia, China.

    Science.gov (United States)

    Xue, Haili; Tang, Haiping

    2018-01-01

    Studying the responses of soil respiration ( R s ) to soil management changes is critical for enhancing our understanding of the global carbon cycle and has practical implications for grassland management. Therefore, the objectives of this study were (1) quantify daily and seasonal patterns of R s , (2) evaluate the influence of abiotic factors on R s , and (3) detect the effects of soil management changes on R s . We hypothesized that (1) most of daily and seasonal variation in R s could be explained by soil temperature ( T s ) and soil water content ( S w ), (2) soil management changes could significantly affect R s , and (3) soil management changes affected R s via the significant change in abiotic and biotic factors. In situ R s values were monitored in an agropastoral ecotone in Inner Mongolia, China, during the growing seasons in 2009 (August to October) and 2010 (May to October). The soil management changes sequences included free grazing grassland (FG), cropland (CL), grazing enclosure grassland (GE), and abandoned cultivated grassland (AC). During the growing season in 2010, cumulative R s for FG, CL, GE, and AC averaged 265.97, 344.74, 236.70, and 226.42 gC m -2  year -1 , respectively. The T s and S w significantly influenced R s and explained 66%-86% of the variability in daily R s . Monthly mean temperature and precipitation explained 78%-96% of the variability in monthly R s . The results clearly showed that R s was increased by 29% with the conversion of FG to CL and decreased by 35% and 11% with the conversion of CL to AC and FG to GE. The factors impacting the change in R s under different soil management changes sequences varied. Our results confirm the tested hypotheses. The increase in Q 1 0 and litter biomass induced by conversion of FG to GE could lead to increased R s if the climate warming. We suggest that after proper natural restoration period, grasslands should be utilized properly to decrease R s .

  5. Anaerobic N mineralization in paddy soils in relation to inundation management, physicochemical soil fractions, mineralogy and soil properties

    Science.gov (United States)

    Sleutel, Steven; Kader, Mohammed Abdul; Ara Begum, Shamim; De Neve, Stefaan

    2013-04-01

    Anaerobic N mineralization measured from (saturated) repacked soil cores from 25 paddy fields in Bangladesh and was previously found to negatively related to soil N content on a relative basis. This suggests that other factors like soil organic matter (SOM) quality or abiotic factors instead control the anaerobic N mineralization process. We therefore assessed different physical and chemical fractions of SOM, management factors and various soil properties as predictors for the net anaerobic N mineralization. 1° First, we assessed routinely analyzed soil parameters (soil N and soil organic carbon, texture, pH, oxalate- and pyrophosphate-extractable Fe, Al, and Mn, fixed-NH4 content). We found no significant influences of neither soil mineralogy nor the annual length of inundation on soil N mineralization. The anaerobic N mineralization correlated positively with Na-pyrophosphate-extractable Fe and negatively with pH (both at Presistant OM fraction, followed by extraction of mineral bound OM with 10%HF thereby isolating the HF-resistant OM. None of the physicochemical SOM fractions were found useful predictors anaerobic N mineralization. The linkage between these chemical soil N fractions and N supplying processes actually occurring in the soil thus appears to be weak. Regardless, we hypothesize that variation in strength of N-mineral and N-OM linkages is likely to explain variation in bio-availability of organic N and proneness to mineralization. Yet, in order to separate kinetically different soil N fractions we then postulated that an alternative approach would be required, which instead isolates soil N fractions on the basis of bonding strength. In this respect bonding strength should be seen as opposite of proneness to dissolution of released N into water, the habitat of soil microorganisms mediating soil N mineralization. We hypothesize that soil N extracted by water at increasing temperatures would reflect such N fractions with increasing bonding strength, in

  6. [Consensus document about the nutritional evaluation and management of eating disorders: anorexia nervosa].

    Science.gov (United States)

    Gómez-Candela, Carmen; Palma Milla, Samara; Miján-de-la-Torre, Alberto; Rodríguez Ortega, Pilar; Matía Martín, Pilar; Loria Kohen, Viviana; Campos Del Portillo, Rocío; Martín-Palmero, Ángela; Virgili Casas, M ª Nuria; Martínez Olmos, Miguel Á; Mories Álvarez, M ª Teresa; Castro Alija, M ª José; Martín-Palmero, Ángela

    2018-03-07

    Anorexia nervosa is the most common psychiatric disease among young women and it is assumed to be of multifactorial origin. Diagnostic criteria have recently been modified; therefore amenorrhea has ceased to be a part of them. This disease shows a large variability in its presentation and severity which conditions different therapeutic approaches and the need to individualize the treatment, thus it is indispensable a multidisciplinary approach. The goals are to restore nutritional status (through an individualized diet plan based on a healthy consumption pattern), treat complications and comorbidities, nutritional education (based on healthy eating and nutritional patterns), correction of compensatory behaviors and relapse prevention. The treatment will vary according to the patient's clinical situation, and it may be performed in outpatient clinics (when there is clinical stability), in a day hospital or ambulatory clinic (intermediate mode between traditional outpatient treatment and hospitalization) or hospitalization (when there is outpatient management failure or presence of serious medical or psychiatric complications). Artificial nutrition using oral nutritional supplements, enteral nutrition and exceptionally parenteral nutrition may be necessary in certain clinical settings. In severely malnourished patients the refeeding syndrome should be avoided. Anorexia nervosa is associated with numerous medical complications which determines health status, life quality, and is closely related to mortality. There is little clinical evidence to assess the results of different treatments in anorexia nervosa, when most of the recommendations are being based on expert consensus.

  7. USDA soil classification system dictates site surface management

    International Nuclear Information System (INIS)

    Bowmer, W.J.

    1985-01-01

    Success or failure of site surface management practices greatly affects long-term site stability. The US Department of Agriculture (USDA) soil classification system best documents those parameters which control the success of installed practices for managing both erosion and surface drainage. The USDA system concentrates on soil characteristics in the upper three meters of the surface that support the associated flora both physically and physiologically. The USDA soil survey first identifies soil series based on detailed characteristics that are related to production potential. Using the production potential, land use capability classes are developed. Capability classes reveal the highest and best agronomic use for the site. Lower number classes are considered arable while higher number classes are best suited for grazing agriculture. Application of ecological principles based on the USDA soil survey reveals the current state of the site relative to its ecological potential. To assure success, site management practices must be chosen that are compatible with both production capability and current state of the site

  8. Vegetation management with fire modifies peatland soil thermal regime.

    Science.gov (United States)

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (management effects. Temperatures measured in soil plots burned vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Best management practices: Managing cropping systems for soil protection and bioenergy production

    Science.gov (United States)

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  10. Agricultural management explains historic changes in regional soil carbon stocks

    Science.gov (United States)

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark

    2010-01-01

    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. PMID:20679194

  11. Household Fertilizers Use and Soil Fertility Management Practices ...

    African Journals Online (AJOL)

    Household Fertilizers Use and Soil Fertility Management Practices in Vegetable Crops Production: The Case of Central Rift Valley of Ethiopia. ... rate, which could leads to pollution of the environment from over dose application and from runoff in to the water bodies and leaching in to the ground water with economic loss.

  12. Transformation towards more sustainable soil management on Dutch arable farms

    NARCIS (Netherlands)

    Claus, Sebastien; Egdom, van Ilona; Suter, Bruno; Sarpong, Clara; Pappa, Aikaterini; Miah, Imtiaz; Luppa, Caterina; Potters, J.I.

    2017-01-01

    Currently a debate is ongoing in the Netherlands on how to increase soil sustainable management in general and specifically in short term lease. Sustainable practices may not be adopted by farmers because of an interplay between EU, national and provincial legislation, short-term land lease system,

  13. Soil fertility management in organic greenhouses in Europe

    NARCIS (Netherlands)

    Tittatelli, Fabio; Bath, Brigitta; Ceglie, Francesco Giovanni; Garcia, M.C.; Moller, K.; Reents, H.J.; Vedie, Helene; Voogt, W.

    2016-01-01

    The management of soil fertility in organic greenhouse systems differs quite widely across Europe. The challenge is to identify and implement strategies which comply with the organic principles set out in (EC) Reg. 834/2007 and (EC) Reg. 889/2008 as well as supporting environmentally, socially and

  14. Huntington Disease - principles and practice of nutritional management.

    Science.gov (United States)

    Zukiewicz-Sobczak, Wioletta; Król, Renata; Wróblewska, Paula; Piątek, Jacek; Gibas-Dorna, Magdalena

    2014-01-01

    Huntington disease (HD) is a degenerative brain disease clinically manifested by the characteristic triad: physical symptoms including involuntary movements and poor coordination, cognitive changes with less ability to organize routine tasks, and some emotional and behavioral disturbances. For patients with HD, feeding is one of the problems they have to face. People with HD often have lower than average body weight and struggle with malnutrition. As a part of therapy, good nutrition is an intervention maintaining health and functional ability for maximally prolonged time. In the early stages of HD, small amounts of blenderized foods given orally are recommended. In more advanced stages, enteral nutrition is essential using gastric, or jejunal tubes for short term. Most severe cases require gastrostomy or gastrojejunostomy. Although enteral feeding is well tolerated by most of the patients, a number of complications may occur, including damage to the nose, pharynx, or esophagus, aspiration pneumonia, sinusitis, metabolic imbalances due to improper nutrient and fluid supply, adverse effects affecting gastrointestinal system, and refeeding syndrome. Copyright © 2014 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Soil quality indicator responses to row crop, grazed pasture, and agroforestry buffer management

    Science.gov (United States)

    Incorporation of trees and establishment of grass buffers within agroecosystems are management practices shown to enhance soil quality. Soil enzyme activities and water stable aggregates (WSA) have been identified as sensitive soil quality indicators to evaluate early responses to soil management. ...

  16. Soil fauna and its relation with environmental variables in soil management systems

    Directory of Open Access Journals (Sweden)

    Dilmar Baretta

    Full Text Available The present study aims to generate knowledge about the soil fauna, its relation to other explanatory environmental variables, and, besides it, to select edaphic indicators that more contribute to separate the land use systems (LUS. Five different LUS were chosen: conventional tillage with crop rotation (CTCR; no-tillage with crop rotation (NTCR; conventional tillage with crop succession (CTCS; no-tillage with crop succession (NTCS and minimum tillage with crop succession (MTCS. The samples were made in the counties Chapecó, Xanxerê and Ouro Verde located in the state of Santa Catarina, Brazil, and were considered the true replicates of the LUS. In each site, nine points were sampled in a sampling grid of 3 x 3. At the same points, soil was sampled for the physical, chemical and biological attributes (environmental variables. Pitfall traps were used to evaluate the soil fauna. Data were analyzed using principal component analysis (PCA and canonical discriminant analysis (CDA. The soil fauna presented potential to be used as indictors of soil quality, since some groups proved to be sensible to changes of the environmental variables and to soil management and tillage. The soil management using crop rotation (NTCR and CTCR presented higher diversity, compared to the systems using crop succession (NTCS, MTCS and NTCS, evidencing the importance of the soil tillage, independent of the season (summer or winter. The variable that better contributed to explain these changes were the chemical variables (potassium, pH, calcium, organic matter, available phosphorus, potential acidity, and biological variables (Shannon diversity index, Collembola, Pielou equitability index and microbial biomass carbon, respectively.

  17. Managing Agricultural Soils of Pakistan for Food and Climate

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2018-06-01

    Full Text Available Pakistan; a predominantly arid land region; has a large, growing, urbanizing and increasingly affluent population. Soil and water resources are finite, with per capita arable land area of 0.10 ha by 2050, and prone to degradation by inappropriate management, harsh environments and changing climate. Nonetheless, agriculture productivity increased strongly between 1960 and 2016. Whereas, the population of Pakistan increased by a factor of 4.5 between 1960 and 2018 (from 45 to 201 million, total cereal grain production increased by a factor of 6.5 (from 6.6 to 43.0 million ton. Despite the impressive gains in agricultural production since the Green Revolution era, there is no cause for complacency because even greater challenges lie ahead. Total food production may have to be doubled between 2015 and 2050 because of the growth in population along with rapidly urbanizing and increasingly affluent lifestyle. The national agronomic crop yield (2.8 Mg/ha for wheat, 3.8 Mg/ha for rice, and 4.6 Mg/ha for maize may have to be increased drastically, and that too in a changing and uncertain climate. Important among the challenges are the growing incidence of drought stress and heatwave, and increasing risks of soil degradation and desertification. Further, soil resources must also be managed to advance the Sustainable Development Goals (SDGs of the UN; achieve Land Degradation Neutrality proposed by the UNCCD; implement the “4 per Thousand” program of soil carbon sequestration initiated at COP21 in Paris in 2015; and fulfil the aspirations of better lifestyle for the people of Pakistan. The strategy is to restore degraded soils and desertified ecosystems through sustainable intensification. The goal is to produce more from less by reducing losses (i.e., water, nutrients, soil and enhancing eco-efficiency of inputs (i.e., fertilizer, irrigation water, energy. Vertical increase in agronomic yield, by restoring soil health and adopting best management

  18. Family physicians clinical aptitude for the nutritional management of type 2 diabetes mellitus in Guadalajara, Mexico.

    Science.gov (United States)

    Cabrera Pivaral, C E; Gutiérrez Roman, E A; Gonzalez Pérez, G; Gonzalez Reyes, F; Valadez Toscano, F; Gutiérrez Ruvalcaba, C; Rios Riebeling, C D

    2008-02-01

    There are 180,000 new Diabetes Mellitus cases in Mexico each year (1). This chronic, complex and multifactor disease requires an adequate nutritional management plan to be prescribed by family physicians. They should be trained to identify the potential difficulties in the patient's dietary schedule and orientate their management from an integrative point of view. The purpose of this study was to detect and measure family physician's clinical aptitudes for the nutritional management of Type 2 diabetes, in a representative family physician's sample from five Family Medicine Units of the Mexican Institute of Social Security in Guadalajara, Jalisco, Mexico. A structured and validated instrument was applied to 117 physicians from a total of 450 in Guadalajara, Jalisco. The main study variable was clinical aptitude for nutritional management of Type 2 diabetes. Aptitude levels were defined by an ordinal scale and related to the other variables using the median, Mann-Whitney's U test and Kruskal Wallis (KW) test. Global results showed a median of 30 points that relates to a low and a very low aptitude level for the 72% of physicians without statistical significance (KW: p>0.05) with the rest of variables. These results reflect family physician's difficulties to orientate the nutritional management of Type 2 diabetes, as well as the lack of work environments that facilitate case reflection and formative educational strategies.

  19. Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Jensen, Christian Richardt; Liu, Fulai

    2017-01-01

    signaling that regulates stomatal aperture. PRI induced soil DRW cycles and more soil water dynamics in the root zone enhance soil nutrient mineralization process and thus increase the bioavailability of soil nutrients, resulting in improved nitrogen (N) and phosphorus (P) uptake, in which soil microbial...... processes play a key role. Studies investigating how soil DRW cycles and water dynamics under PRI on nutrient transport in soil solution, soil microbe mediated P transformation, interactions between phytohormones and nutrient uptake, root morphological and architectural traits for nutrient acquisition......Abstract Repeated soil drying and rewetting (DRW) cycles occur in rainfed and irrigated agriculture. The intensity and frequency of DRW cycles regulate both microbial physiology and soil physical processes, hereby affecting the mineralization and immobilization of soil nutrients...

  20. Clinical nutrition and foodservice personnel in teaching hospitals have different perceptions of total quality management performance.

    Science.gov (United States)

    Chong, Y; Unklesbay, N; Dowdy, R

    2000-09-01

    To investigate the perceived total quality management (TQM) performance of their department by clinical nutrition managers and dietitians, and foodservice managers and supervisors, in hospital food and nutrition service departments. Using a 2-part questionnaire containing items about 3 constructs of TQM performance and demographic characteristics, participants rated their perceptions of TQM performance. Employees in 7 Council of Teaching Hospitals. Of the 128 possible respondents, 73 (57%) completed the study. Correlation analysis to identify relationships between demographic characteristics and TQM performance. Analysis of variance to investigate statistical differences among hospitals and between subject groups and types of employment positions. Three TQM constructs--organization, information, and quality management--were evaluated. The clinical nutrition manager and dietitian group had mean ratings between 3.1 and 4.7 (5-point Likert scale); the foodservice manager and supervisor group had mean ratings from 2.7 to 4.0. Education level was significantly correlated (r = 0.44) to performance of employee training in the clinical nutrition group. The number of employees directly supervised was negatively correlated (r = -0.21) to the performance of employee training in the foodservice group. As the dynamic roles of dietitians change, many dietitians will occupy management positions in organizations such as restaurants, health food stores, food processing/distribution companies, and schools. This study demonstrates how a TQM survey instrument could be applied to clinical nutrition and foodservice settings. Dietitians will need to assess TQM in their workplace facilities, especially because of the direct links of TQM to productivity and client satisfaction.

  1. A proposal for soil cover and management factor (C) for RUSLE in vineyards with different soil management across Europe

    Science.gov (United States)

    Gómez, José Alfonso; Biddoccu, Marcella; Guzman, Gema; Bauer, Thomas; Strauss, Peter; Winter, Silvia; Zaller, Johann; Cavallo, Eugenio

    2017-04-01

    The Revised Universal Soil Loss Equation RUSLE (Dabney et al., 2012) is commonly used to estimate rates of soil erosion caused by rainfall and its associated overland flow on cropland and many other disturbed and undisturbed lands. Several studies have been focused on the evaluation of erosion risk in vineyards across Europe, which has four countries, France, Italy, Spain and Portugal, among the world's top ten vine growers. Other European countries, such as Romania, Greece, Austria, Serbia and Hungary, also have significant surface devoted to vineyards (FAO, 2014). However, literature shows a wide variability among C factors from different sources (Auerswald and Schwab, 1999; Kouli et al., 2009; Novara et al., 2011; Pacheco et al., 2014; Rodrigo Comino et al., 2016) that complicates their interpretation and use outside the area where they were developed. Gómez et al. (2016) presented a simplified erosion prediction model based on RUSLE, ORUSCAL, to demonstrate the possibility to calibrate RUSLE for a broad range of management conditions in vineyards with limited datasets. This approach have already been pursued successfully in olives (Gómez et al. 2003, Vanwalleghem et al., 2011). This communication reports the results of an evaluation of the calibration strategies and model predictions of ORUSCAL using a long-term experiment dataset (Bidoccu et al., 2016) in a vineyard in Northern Italy, and its implementation to develop soil cover and management factors (C) in three different soil, climate and management conditions across Europe: Southern Spain, Northern Italy and Austria. The communication, furthermore, explores and discusses of the application of the ORUSCAL model to additional vineyards areas in France and Romania in the context of the Vinedivers project (www.vinedivers.eu). Keywords: vineyard, erosion, soil management, RUSLE, model. References Auerswald K., Schwab, S. 1999. Erosion risk (C factor) of different viticultural practices. Vitic. Enol. Sci.54

  2. In-Soil and Down-Hole Soil Water Sensors: Characteristics for Irrigation Management

    Science.gov (United States)

    The past use of soil water sensors for irrigation management was variously hampered by high cost, onerous regulations in the case of the neutron probe (NP), difficulty of installation or maintenance, and poor accuracy. Although many sensors are now available, questions of their utility still abound....

  3. Impact of set-aside management on soil mesofauna

    Science.gov (United States)

    Landi, Silvia; d'Errico, Giada; Mazza, Giuseppe; Mocali, Stefano; Bazzoffi, Paolo; Roversi, Pio Federico

    2014-05-01

    To contrast the biodiversity decline, the current Common Agricultural Policy (CAP) 2014-2020 responds to urgent environmental challenges and provides some new greening attempts as pastures, rotations, orchard grasses, ecological set-aside and organic farming. This study, supported by the Italian National Project MONACO (MIPAAF), aims to provide preliminary indications about the ecological impact of set-aside on soil biodiversity. Soil invertebrates, mainly nematodes and microarthropods, are excellent candidates to study the human activity impacts on the environment. Indeed, invertebrates are abundant, relatively easy to sample, and they can quickly respond to soil disturbance. Nematode assemblages offer several advantages for assessing the quality of terrestrial ecosystems because of their permeable cuticle through which they are in direct contact with solvents in the soil capillary water. Moreover, nematodes have high diversity and represent a trophically heterogeneous group. The Maturity Index (MI), based on the nematode fauna, represents a gauge of the conditions of the soil ecosystem. Edaphic microarthropods play an important role in the soil system in organic matter degradation and nutrient cycling. They show morphological characters that reveal adaptation to soil environments, such as reduction or loss of pigmentation and visual apparatus, streamlined body form with appendages reduction, reduction or loss of flying, jumping or running adaptations, thinner cuticle for reduced water-retention capacity. The "Qualità Biologica del Suolo" (QBS) index, namely "Biological Quality of Soil", is based on the types of edaphic microarthropods to assess soil biological quality. Three different set-aside managements were compared with a conventional annual crop in three Italian sites (Caorle, VE; Fagna, FI; Metaponto, MT). After five years the biological quality of soils using MI and QBS was evaluated. Regarding nematodes, the family richness and the biological quality

  4. Management of Parenteral Nutrition in Hospitalized Adult Patients [Formula: see text].

    Science.gov (United States)

    Mundi, Manpreet S; Nystrom, Erin M; Hurley, Daniel L; McMahon, M Molly

    2017-05-01

    Despite the high prevalence of malnutrition in adult hospitalized patients, surveys continue to report that many clinicians are undertrained in clinical nutrition, making targeted nutrition education for clinicians essential for best patient care. Clinical practice models also continue to evolve, with more disciplines prescribing parenteral nutrition (PN) or managing the cases of patients who are receiving it, further adding to the need for proficiency in general PN skills. This tutorial focuses on the daily management of adult hospitalized patients already receiving PN and reviews the following topics: (1) PN basics, including the determination of energy and volume requirements; (2) PN macronutrient content (protein, dextrose, and intravenous fat emulsion); (3) PN micronutrient content (electrolytes, minerals, vitamins, and trace elements); (4) alteration of PN for special situations, such as obesity, hyperglycemia, hypertriglyceridemia, refeeding, and hepatic/renal disease; (5) daily monitoring and adjustment of PN formula; and (6) PN-related complications (PN-associated liver disease and catheter-related complications).

  5. Chilean Nutrition Management Protocol for Patients With Phenylketonuria

    Directory of Open Access Journals (Sweden)

    Gabriela Castro

    2017-02-01

    Full Text Available Since neonatal screening and early nutritional treatment began, it has been possible to reverse the neurological damage that phenylketonuria (PKU causes. Scientific evidence gathered over more than 50 years on the monitoring of individuals with PKU indicates that a phenylalanine level of about 6 mg/dL (360 µmol/L is ideal and points to the necessity of starting a long-term phenylalanine-restricted diet in which blood phenylalanine level should stay between 2 and 6 mg/dL (120-360 µmol/L. This article aims to establish the general basis for proper monitoring of people with PKU and provide a useful tool for clinicians overseeing treatment. We hope to establish similar criteria throughout Latin America and create a uniform protocol in order to have comparative monitoring results for the region.

  6. Major intestinal complications of radiotherapy. Management and nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Deitel, M.; To, T.B.

    1987-12-01

    Hospitalization was required in 57 patients for intestinal injuries following radiotherapy for carcinoma of the cervix, endometrium, ovary, bladder, rectum, and other primary sites. Intestinal complications included stenosis, perforation, rectal ulcer, and rectovaginal, ileovaginal, and ileovesical fistula; 27 patients had multiple intestinal complications. Operation was necessary in 33 patients, as follows: bowel resections, 18; colostomy alone, five; adhesiolysis, five; ileocolic bypass, three; and Hartmann's procedure for sigmoid perforation, two. Five anastomotic leaks and six postoperative deaths occurred. Causes of death among the remaining patients included residual cancer (ten), de novo bowel cancer (two), radiation injury (four), and unrelated causes (six). Resection to uninvolved bowel, omental wrap of anterior resection anastomosis, avoidance of unnecessary adhesiolysis, and long-tube orientation seemed to contribute to successful operations. Nutritional support was used for repletion, post-operative fistulas, and short-gut syndrome.

  7. Major intestinal complications of radiotherapy. Management and nutrition

    International Nuclear Information System (INIS)

    Deitel, M.; To, T.B.

    1987-01-01

    Hospitalization was required in 57 patients for intestinal injuries following radiotherapy for carcinoma of the cervix, endometrium, ovary, bladder, rectum, and other primary sites. Intestinal complications included stenosis, perforation, rectal ulcer, and rectovaginal, ileovaginal, and ileovesical fistula; 27 patients had multiple intestinal complications. Operation was necessary in 33 patients, as follows: bowel resections, 18; colostomy alone, five; adhesiolysis, five; ileocolic bypass, three; and Hartmann's procedure for sigmoid perforation, two. Five anastomotic leaks and six postoperative deaths occurred. Causes of death among the remaining patients included residual cancer (ten), de novo bowel cancer (two), radiation injury (four), and unrelated causes (six). Resection to uninvolved bowel, omental wrap of anterior resection anastomosis, avoidance of unnecessary adhesiolysis, and long-tube orientation seemed to contribute to successful operations. Nutritional support was used for repletion, post-operative fistulas, and short-gut syndrome

  8. Resobio. Management of forest residues: preserving soils and biodiversity

    International Nuclear Information System (INIS)

    Rantien, Caroline; Charasse, Laurent; Wlerick, Lise; Landmann, Guy; Nivet, Cecile; Jallais, Anais; Augusto, Laurent; Bigot, Maryse; Thivolle Cazat, Alain; Bouget, Christophe; Brethes, Alain; Boulanger, Vincent; Richter, Claudine; Cornu, Sophie; Rakotoarison, Hanitra; Ulrich, Erwin; Deleuze, Christine; Michaud, Daniel; Cacot, Emmanuel; Pousse, Noemie; Ranger, Jacques; Saint-Andre, Laurent; Zeller, Bernd; Achat, David; Cabral, Anne-Sophie; Akroume, Emila; Aubert, Michael; Bailly, Alain; Fraysse, Jean-Yves; Fraud, Benoit; Gardette, Yves-Marie; Gibaud, Gwenaelle; Helou, Tammouz-Enaut; Pitocchi, Sophie; Vivancos, Caroline

    2014-03-01

    The Resobio project (management of forest slash: preservation of soils and biodiversity) aimed at updating knowledge available at the international level (with a focus on temperate areas) on the potential consequences of forest slash sampling on fertility and on biodiversity, and at identifying orientations for recommendations for a revision of the ADEME guide of 2006 on wise collecting of forest slash. The first part of this report is a synthesis report which gives an overview of results about twenty issues dealing with the nature of wood used for energy production and the role of slash, about the consequences of this type of collecting for soil fertility and species productivity, and about impacts on biodiversity. Based on these elements, recommendations are made for slash management and for additional follow-up and research. The second part contains five scientific and technical reports which more deeply analyse the issue of fertility, and technical documents on slash management (guides) published in various countries

  9. Soil and land management in a circular economy.

    Science.gov (United States)

    Breure, A M; Lijzen, J P A; Maring, L

    2018-05-15

    This article elaborates the role of soil and land management in a circular economy. The circular economy is highly dependent on the functioning of soils and land for the production of food and other biomass; the storage, filtration and transformation of many substances including water, carbon, and nitrogen; the provision of fresh mineral resources and fossil fuels; and the use of their functions as the platform for nature and human activities. Resource demand is increasing as a result of the growing human population. In addition to the shrinking availability of resources resulting from their unsustainable use in the past, our planet's diminishing potential for resource production, due to a range of reasons, is leading to resource scarcity, especially in the case of depletable resources. As an economic system that focuses on maximizing the reuse of resources and products and minimizing their depreciation, the circular economy greatly influences, and depends on, soil and land management. The concise management of the resources, land and soil is thus necessary, to make a circular economy successful. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The school nutrition program's role in weight management of 4th grade elementary students

    Science.gov (United States)

    We are attempting to uncover the school nutrition program's role in weight management of 4th grade elementary students. Data was collected within a time frame for the food frequency questionnaire (FFQ) set at two months at the WT Cheney Elementary School and South Wood Elementary for 4th grade stud...

  11. Nutritional management of acute kidney injury in the critically ill: A ...

    African Journals Online (AJOL)

    The primary goals of nutritional management of AKI patients are to attenuate protein (muscle) catabolism, and to replace micronutrient losses, specifically folic acid, thiamine and selenium, while being mindful of the potentially harmful effects of excessive vitamin C and vitamin A in retinol form. Hence, it is prudent, if standard ...

  12. Nutritional management of chronic renal failure by dietitians – the ...

    African Journals Online (AJOL)

    Nicky

    The objective of this descriptive study was to assess the practices of South African dietitians ... The most frequently used approaches in the management of protein-energy malnutrition ..... lower metabolic needs than lean body mass, and will.

  13. Application of Aspergillus niger-treated agrowaste residue and Glomus mosseae for improving growth and nutrition of Trifolium repens in a Cd-contaminated soil.

    Science.gov (United States)

    Medina, A; Vassilev, N; Barea, J M; Azcón, R

    2005-04-06

    The microbial transformation of sugar beet (SB) agrowaste with or without rock-phosphate (RP) has utility for the improvement of plant growth in a Cd (5 microg g-1) artificially contaminated soil, particularly when the soil is co-inoculated with arbuscular mycorrhizal (AM) fungus Glomus mosseae isolated from a Cd-polluted area. Under such Cd-polluted conditions, the limited growth, mineral nutrition, symbiotic developments (nodulation and AM-colonization) and soil enzymatic activities were stimulated using SB or SB+RP as soil amendments and G. mosseae as inoculant. G. mosseae enhanced plant establishment in a higher extent in amended soil; it is probably due to the interactive effect increasing the potential fertility of such compounds and its ability for decreasing Cd transfer from soil to plant. The amount of Cd transferred from soil solution to biomass of AM-colonized plants ranged from 0.09 microg Cd g-1 (in SB+RP-amended soil) to 0.6 microg Cd g-1 (in non-amended soil). Nodule formation was more sensitive to Cd than AM-colonization, and both symbioses were stimulated in amended soils. Not only AM-colonization but also amendments were critical for plant growth and nutrition in Cd-polluted soil. The high effectiveness of AM inoculum increasing nutrients and decreasing Cd in amended soil indicated the positive interaction of these treatments in increasing plant tolerance to Cd contamination.

  14. [IMPLEMENTATION OF A QUALITY MANAGEMENT SYSTEM IN A NUTRITION UNIT ACCORDING TO ISO 9001:2008].

    Science.gov (United States)

    Velasco Gimeno, Cristina; Cuerda Compés, Cristina; Alonso Puerta, Alba; Frías Soriano, Laura; Camblor Álvarez, Miguel; Bretón Lesmes, Irene; Plá Mestre, Rosa; Izquierdo Membrilla, Isabel; García-Peris, Pilar

    2015-09-01

    the implementation of quality management systems (QMS) in the health sector has made great progress in recent years, remains a key tool for the management and improvement of services provides to patients. to describe the process of implementing a quality management system (QMS) according to the standard ISO 9001:2008 in a Nutrition Unit. the implementation began in October 2012. Nutrition Unit was supported by Hospital Preventive Medicine and Quality Management Service (PMQM). Initially training sessions on QMS and ISO standards for staff were held. Quality Committee (QC) was established with representation of the medical and nursing staff. Every week, meeting took place among members of the QC and PMQM to define processes, procedures and quality indicators. We carry on a 2 months follow-up of these documents after their validation. a total of 4 processes were identified and documented (Nutritional status assessment, Nutritional treatment, Monitoring of nutritional treatment and Planning and control of oral feeding) and 13 operating procedures in which all the activity of the Unit were described. The interactions among them were defined in the processes map. Each process has associated specific quality indicators for measuring the state of the QMS, and identifying opportunities for improvement. All the documents associated with requirements of ISO 9001:2008 were developed: quality policy, quality objectives, quality manual, documents and records control, internal audit, nonconformities and corrective and preventive actions. The unit was certified by AENOR in April 2013. the implementation of a QMS causes a reorganization of the activities of the Unit in order to meet customer's expectations. Documenting these activities ensures a better understanding of the organization, defines the responsibilities of all staff and brings a better management of time and resources. QMS also improves the internal communication and is a motivational element. Explore the satisfaction

  15. Carbonate-silicate ratio for soil correction and influence on nutrition, biomass production and quality of palisade grass

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2011-10-01

    Full Text Available Silicates can be used as soil correctives, with the advantage of being a source of silicon, a beneficial element to the grasses. However, high concentrations of silicon in the plant would affect the digestibility of the forage. To evaluate the influence of the substitution of the calcium carbonate by calcium silicate on the nutrition, biomass production and the feed quality of the palisade grass [Urochloa brizantha (C. Hochstetter ex A. Rich. R. Webster], three greenhouse experiments were conducted in completely randomized designs with four replications. Experimental units (pots contained a clayey dystrophic Rhodic Haplustox, a sandy clay loam dystrophic Typic Haplustox and a sandy loam dystrophic Typic Haplustox. Each soil received substitution proportions (0, 25, 50, 75 and 100 % of the carbonate by calcium silicate. The increase in the proportion of calcium silicate elevated the concentrations and accumulations of Si, Ca, Mg, and B, reduced Zn and did not alter P in the shoot of plants. The effects of the treatments on the other nutrients were influenced by the soil type. Inclusion of calcium silicate also increased the relative nutritional value and the digestibility and ingestion of the forage, while the concentration and accumulation of crude protein and the neutral detergent and acid detergent fibers decreased. Biomass production and feed quality of the palisade grass were generally higher with the 50 % calcium silicate treatment.

  16. The Role of Teak Leaves (Tectona grandis), Rhizobium, and Vesicular-Arbuscular Mycorrhizae on Improving Soil Structure and Soil Nutrition

    Science.gov (United States)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.

  17. Contribution of soil-32P, fertilizer-32P and VA mycorrhizal fungi to phosphorus nutrition of corn plant

    International Nuclear Information System (INIS)

    Feng Gu; Yang Maoqiu; Bai Dengsha; Huang Quansheng

    1997-01-01

    32 P labelled fertilizer and five synthetic phosphates (dicalcium phosphate, octocalcium phosphate, iron phosphate, aluminium phosphate and apatite), which were used to simulate inorganic phosphates such as Ca 2 -P, Ca 8 -P, Fe P , Al-P and Ca 10 -P in calcareous soil, were applied to corn plants inoculating with and without vesicular-arbuscular (VA) mycorrhizal fungi in a calcareous soil. The results showed that VA mycorrhizal fungi and dicalcium phosphate, octocalcium phosphate, iron phosphate, aluminium phosphate promoted growth and increased phosphorus content of corn plant. The four synthetic phosphates except apatite had higher contributions to corn plant growth than VA mycorrhizal fungi. Contributions of fertilizer-P, soil-P and synthetic phosphates to phosphorus nutrition of corn plant were in order of synthetic phosphates (except apatite) > soil- P > fertilizer-P. Inoculating with VA mycorrhizal fungi increased the contribution of soil-P and decreased the contribution of synthetic phosphates, but did not affect the contribution of fertilizer-P

  18. From field to fingers: enriching soils and seeds to improve nutrition ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-06

    Jun 6, 2016 ... Improved food processing and preparation methods, coupled with education programs, have contributed to improved nutrition, with mothers learning to incorporate chickpeas into complementary foods. Hawassa University has become a center of excellence on nutrition in Ethiopia — the University of ...

  19. Chapter 14. Nutritive principles in restoration and management

    Science.gov (United States)

    Bruce L. Welch

    2004-01-01

    Most range management or revegetation programs are aimed at providing forage to support the needs of range animals. Among these needs are supplying the nutrients required to drive the physiological processes of the animal body. One major principle in this report is that there is no "perfect forage species" that will supply all the nutrients needed by any...

  20. Newer Nutritional basis in the management of Rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Sharat Agarwal

    2010-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory autoimmune disorder culminating in joint destruction with functional impairment & deformities. This disease is associated with poor nutritional status in relation to various nutrients due to not only because of increased requirements & reduction in their absorption but also due to disease modifying anti-rheumatoid drugs (DMARD’s, Non-steroidal Anti-inflammatory Drugs (NSAID’s & corticosteroids prescribed to alleviate symptoms of this disease. This results in associated side effects like gastrointestinal bleeding & bone loss (osteoporosis. Supplementation with long chain n-3 polyunsaturated fatty acids (PUFA has constantly demonstrated an improvement in symptoms & reduction in dosages of NSAID’s. Such a supplementation can be provided with the use of fish oils which have an anti-inflammatory potential. Vitamin C (ascorbic acid use has been found to augment the anti-oxidant defenses, so also the use of Vitamin E (tocopherol which has got antiinflammatory action. Beneficial effects of Vitamin B6 (pyridoxal 5-phosphate used in conjunction with folate & Vitamin B12 have been documented in those group of RA patients with high homocysteine metabolism, there by reducing the cardiovascular risk in these patients. In addition role of Selenium, Iron, Zinc, Calcium, and Vitamin D has been discussed in this review article. Besides adding certain nutrients in food, elimination of certain foods like red meat, dairy products, cereals & wheat gluten have shown improvement in progression of this disease. This article emphasizes the need for dietary supervision in the hands of expert dietician, of the Rheumatoid arthritis patients.

  1. Understanding the relationship between livelihood strategy and soil management

    DEFF Research Database (Denmark)

    Oumer, Ali Mohammed; Hjortsø, Carsten Nico Portefée; de Neergaard, Andreas

    2013-01-01

    help build livelihood strategies with high-economic return that in turn provide incentives to undertake improved soil management practices. The identified household types may guide entry points for development interventions targeting both food security and agricultural sustainability concerns......This paper aims to understand the relationship between households’ livelihood strategy and soil management using commonalities among rural households. We grouped households into four distinct types according to similar livelihood diversification strategies. For each household type, we identified...... the dominant income-generating strategies as well as the main agronomic activities pursued. The household types were: (I) households that pursue a cereal-based livelihood diversification strategy (23 %); (II) households predominantly engaged in casual off-farm-based strategy (15 %); (III) households...

  2. Analysis of the nutritional management practices in intensive care: Identification of needs for improvement.

    Science.gov (United States)

    Lázaro-Martín, N I; Catalán-González, M; García-Fuentes, C; Terceros-Almanza, L; Montejo-González, J C

    2015-12-01

    To analyze the nutritional management practices in Intensive Care (ICU) to detect the need for improvement actions. Re-evaluate the process after implementation of improvement actions. Prospective observational study in 3 phases: 1) observation; 2) analysis, proposal development and dissemination; 3) analysis of the implementation. ICU of a hospital of high complexity. Adult ICU forecast more than 48h of artificial nutrition. Parenteral nutrition (PN), enteral nutrition (EN) (type, average effective volume, complications) and average nutritional ratio. A total of 229 patients (phase 1: 110, phase 3: 119). After analyzing the initial results, were proposed: increased use and precocity of EN, increased protein intake, nutritional monitoring effectiveness and increased supplementary indication NP. The measures were broadcast at specific meetings. During phase 3 more patients received EN (55.5 vs. 78.2%, P=.001), with no significant difference in the start time (1.66 vs. 2.33 days), duration (6.82 vs. 10,12 days) or complications (37,7 vs. 47,3%).Use of hyperproteic diets was higher in phase 3 (0 vs. 13.01%, P<.05). The use of NP was similar (48.2 vs. 48,7%) with a tendency to a later onset in phase 3 (1.25±1.25 vs. 2.45±3.22 days). There were no significant differences in the average nutritional ratio (0.56±0.28 vs. 0.61±0.27, P=.56). The use of EN and the protein intake increased, without appreciating effects on other improvement measures. Other methods appear to be necessary for the proper implementation of improvement measures. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  3. Nutritional screening and dietitian consultation rates in a geriatric evaluation and management unit.

    Science.gov (United States)

    Dent, Elsa; Wright, Olivia; Hoogendijk, Emiel O; Hubbard, Ruth E

    2018-02-01

    Nutritional screening may not always lead to intervention. The present study aimed to determine: (i) the rate of nutritional screening in hospitalised older adults; (ii) whether nutritional screening led to dietitian consultation and (iii) factors associated with malnutrition. In this prospective study of patients aged ≥70 years admitted to a Geriatric Evaluation and Management Unit (GEMU), malnutrition was screened for using the Mini Nutritional Assessment Short Form (MNA-SF) and identified using the Mini Nutritional Assessment (MNA). Of the 172 patients participating in the study, 53 (30.8%) patients were malnourished, and 84 (48.8%) were at risk of malnutrition. Mean (SD) age was 85.2 (6.4 years), with 131 patients (76.2%) female. Nutritional screening was performed for all patients; however, it was incomplete in 59 (34.3%) because of omission of the anthropometric measurement. Overall, 62 (36.0%) of the total number of patients were seen by the dietitian, which included 26 (49%) of malnourished patients, 27 (32%) of at-risk patients and 9 (26%) of the well-nourished patients. No patients lost >1% of body weight during GEMU stay. Malnourished patients were more likely to be frail, have poor appetite, depression, and have lower levels of: albumin, cognition, physical function, grip strength and quality of life. The full benefits of nutritional screening by MNA-SF may not be realised if it does not result in malnourished patients receiving a dietitian consultation. However, it is possible that enrichment of the foodservice with high protein/high-energy options minimised patient weight loss in the GEMU. © 2017 Dietitians Association of Australia.

  4. A cost management model for hospital food and nutrition in a public hospital.

    Science.gov (United States)

    Neriz, Liliana; Núñez, Alicia; Ramis, Francisco

    2014-11-13

    In Chile, the use of costing systems in the public sector is limited. The Ministry of Health requires hospitals to manage themselves with the aim of decentralizing health care services and increasing their quality. However, self-management with a lack of accounting information is almost impossible. On the other hand, nutrition department costs have barely been studied before, and there are no studies specifically for activity based costing (ABC) systems. ABC focuses on the process and traces health care activities to gain a more accurate measurement of the object costs and the financial performance of an organization. This paper uses ABC in a nutrition unit of a public hospital of high complexity to determine costs associated with the different meals for inpatients. The paper also provides an activity based management (ABM) analysis for this unit. The results show positive effects on the reduction of costs for the nutrition department after implementing ABC/ABM. Therefore, there are opportunities to improve the profitability of the area and the results could also be replicated to other areas in the hospital. ABC shed light on the amount of nutritionist time devoted to completing paperwork, and as a result, system changes were introduced to reduce this burden and allow them to focus on more relevant activities. Additional efficiencies were achieved through the elimination of non-value adding activities and automation of reports. ABC reduced the cost of the nutrition department and could produce similar results in other areas of the hospital. This is a practical application of a financial management tool, ABC, which would be useful for hospital managers to reduce costs and improve the management of the unit. This paper takes ABC and examines its use in an area, which has had little exposure to the benefits of this tool.

  5. Soils Newsletter, Vol. 32, No. 1, July 2009

    International Nuclear Information System (INIS)

    2009-07-01

    In this Newsletter, one will see several developments in the Soil and Water Management and Crop Nutrition Section Subprogramme which provide information and technical support to Member States in the areas of land and water management for sustainable agriculture

  6. A Nursing Management Model to Increase Medication Adherence and Nutritional Status of Patients with Pulmonary TB

    Directory of Open Access Journals (Sweden)

    Eka Mishbahatul Mar’ah Has

    2015-04-01

    Full Text Available Introduction: High dropout rate, inadequate treatment, and resistance to medication, still become an obstacle in the treatment of pulmonary TB. Pulmonary TB patient care management at home can be done actively through telenursing. N-SMSI (Ners-Short Message Service Intervention is one of community nursing intervention, in which community nurses send short messages to remind patients to take medication and nutrition. The aim of this study was to analyze the effect of nursing management model N-SMSI to increased medication adherence and nutritional status of patients with pulmonary TB. Method: This study was used prospective design. The populations were new pulmonary TB patient at intensive phase, at Puskesmas Pegirian Surabaya. Samples were taken by purposive sampling technique; consist of 30 people, divided into treatment and control groups. The independent variable was N-SMSI. The dependent variables were medication adherence collected by using questionnaire and nutritional status by using measurement of body weight (kg. The data were then analyzed by using Wilcoxon Signed Rank Test, Mann Whitney, and Independent t-test with α ≤ 0.05 Result: The results of wilcoxon signed rank test had showed difference in the nutritional status of the treatment group before and after intervention, with p = 0.001. It’s similar with the control group, with p = 0.002. Mann whitney test results had showed no signifi cant difference in nutritional status between treatment and control group, as indicated by the value of p=0.589. While independent t-test had showed difference in compliance between treatment and control group, with p=0.031. Conslusion: N-SMSI can improve medication adherence of patient with Pulmonary TB. This model can be developed by nurse as alternative methods to improve medication adherence in patients with Pulmonary TB. Further research should modify nursing management model which can improve the nutritional status of patient with Pulmonary

  7. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Directory of Open Access Journals (Sweden)

    Marco Bittelli

    2010-05-01

    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  8. Local soil classification and crop suitability: Implications for the historical land use and soil management in Monti di Trapani (Sicily)

    Science.gov (United States)

    Garcia-Vila, Margarita; Corselli, Rocco; Bonet, María Teresa; Lopapa, Giuseppe; Pillitteri, Valentina; Fereres, Elias

    2017-04-01

    In the past, the lack of technologies (e.g. synthetic fertilizers) to overcome biophysical limitations has played a central role in land use planning. Thus, landscape management and agronomic practices are reactions to local knowledge and perceptions on natural resources, particularly soil. In the framework of the European research project MEMOLA (FP7), the role of local farmers knowledge and perceptions on soil for the historical land use through the spatial distribution of crops and the various management practices have been assessed in three different areas of Monti di Trapani region (Sicily). The identification of the soil classification systems of farmers and the criteria on which it is based, linked to the evaluation of the farmers' ability to identify and map the different soil types, was a key step. Nevertheless, beyond the comparison of the ethnopedological classification approach versus standard soil classification systems, the study also aims at understanding local soil management and land use decisions. The applied methodology was based on an interdisciplinary approach, combining soil science methods and participatory appraisal tools, particularly: i) semi-structured interviews; ii) soil sampling and analysis; iii) discussion groups; and iv) a workshop with local edafologists and agronomists. A rich local glossary of terms associated with the soil conditions and an own soil classification system have been identified in the region. Also, a detailed soil map, including process of soil degradation and soil capability, has been generated. This traditional soil knowledge has conditioned the management and the spatial distribution of the crops, and therefore the configuration of the landscape, until the 1990s. Acknowledgements This work has been funded by the European Union project MEMOLA (Grant agreement no: 613265).

  9. Soil Respiration at Dominant Patch Types within a Managed Northern Wisconsin Landscape

    Science.gov (United States)

    Eug& #233; nie Euskirchen; Jiquan Chen; Eric J. Gustafson; Siyan Ma; Siyan Ma

    2003-01-01

    Soil respiration (SR), a substantial component of the forest carbon budget, has been studied extensively at the ecosystem, regional, continental, and global scales, but little progress has been made toward understanding SR over managed forest landscapes. Soil respiration is often influenced by soil temperature (Ts), soil moisture (Ms...

  10. Effect of soil moisture management on the quality of wax apple | Lin ...

    African Journals Online (AJOL)

    Wax apple (Syzygium samarngense Merr.et Perry) was one of the economically planted fruits in Taiwan. This research was conducted to evaluate the effects of different soil moisture management on increasing wax apple quality. It was preceded at two different soil properties (shallow soil and alluvial soil) in Pingtung, ...

  11. Recycling Improves Soil Fertility Management in Smallholdings in Tanzania

    Directory of Open Access Journals (Sweden)

    Ariane Krause

    2018-02-01

    Full Text Available Residues from bioenergy and ecological sanitation (EcoSan can be utilized to sustain soil fertility and productivity. With regard to certain cooking and sanitation technologies used in smallholder households (hh, we systematically analyzed how utilization of the respective potentials to recover residues for farming affects (i soil nutrient balances, (ii the potential for subsistence production of composts, and (iii environmental emissions. On the example of an intercropping farming system in Karagwe, Tanzania, we studied specific farming practices including (1 current practices of using standard compost only; (2 a combination of using biogas slurry, urine, and standard compost; (3 a combination of using so-called “CaSa-compost” (containing biochar and sanitized human excreta, Project “Carbonization and Sanitation”, urine, and standard compost. The system analysis combines a soil nutrient balance (SNB with material flow analysis (MFA. Currently, nitrogen (N and phosphorus (P are depleted by −54 ± 3 and −8 ± 1 kg∙ha−1∙year−1, respectively. Our analysis shows, however, a clear potential to reduce depletion rates of N, and to reverse the SNB of P, to bring about a positive outcome. Composts and biogas slurry supply sufficient P to crops, while urine effectively supplements N. By using resources recovered from cooking and sanitation, sufficient compost for subsistence farming may be produced. Human excreta contribute especially to total N and total P in CaSa-compost, whilst biochar recovered from cooking with microgasifier stoves adds to total carbon (C and total P. We conclude that the combined recycling of household residues from cooking and from sanitation, and CaSa-compost in particular, is especially suitable for sustainable soil management, as it mitigates existing P-deficiency and soil acidity, and also restores soil organic matter.

  12. eHealth technologies to support nutrition and physical activity behaviors in diabetes self-management

    Directory of Open Access Journals (Sweden)

    Rollo ME

    2016-11-01

    Full Text Available Megan E Rollo,1 Elroy J Aguiar,2 Rebecca L Williams,1 Katie Wynne,3 Michelle Kriss,3 Robin Callister,4 Clare E Collins1 1School of Health Sciences, Faculty of Health and Medicine, Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia; 2Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA; 3Department of Diabetes and Endocrinology, John Hunter Hospital, Hunter New England Health, New Lambton, NSW, Australia;\t4School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia Abstract: Diabetes is a chronic, complex condition requiring sound knowledge and self-management skills to optimize glycemic control and health outcomes. Dietary intake and physical activity are key diabetes self-management (DSM behaviors that require tailored education and support. Electronic health (eHealth technologies have a demonstrated potential for assisting individuals with DSM behaviors. This review provides examples of technologies used to support nutrition and physical activity behaviors in the context of DSM. Technologies covered include those widely used for DSM, such as web-based programs and mobile phone and smartphone applications. In addition, examples of novel tools such as virtual and augmented reality, video games, computer vision for dietary carbohydrate monitoring, and wearable devices are provided. The challenges to, and facilitators for, the use of eHealth technologies in DSM are discussed. Strategies to support the implementation of eHealth technologies within practice and suggestions for future research to enhance nutrition and physical activity behaviors as a part of broader DSM are provided. Keywords: diabetes self-management, eHealth, nutrition, physical activity, smartphones, wearables

  13. Effect of behavioral stage-based nutrition education on management of osteodystrophy among hemodialysis patients, Lebanon.

    Science.gov (United States)

    Karavetian, Mirey; de Vries, Nanne; Elzein, Hafez; Rizk, Rana; Bechwaty, Fida

    2015-09-01

    Assess the effect of intensive nutrition education by trained dedicated dietitians on osteodystrophy management among hemodialysis patients. Randomized controlled trial in 12 hospital-based hemodialysis units equally distributed over clusters 1 and 2. Cluster 1 patients were either assigned to usual care (n=96) or to individualized intensive staged-based nutrition education by a dedicated renal dietitian (n=88). Cluster 2 patients (n=210) received nutrition education from general hospital dietitians, educating their patients at their spare time from hospital duties. Main outcomes were: (1) dietary knowledge(%), (2) behavioral change, (3) serum phosphorus (mmol/L), each measured at T0 (baseline), T1 (post 6 month intervention) and T2 (post 6 month follow up). Significant improvement was found only among patients receiving intensive education from a dedicated dietitian at T1; the change regressed at T2 without statistical significance: knowledge (T0: 40.3; T1: 64; T2: 63) and serum phosphorus (T0: 1.79; T1: 1.65; T2: 1.70); behavioral stages changed significantly throughout the study (T0: Preparation, T1: Action, T2: Preparation). The intensive protocol showed to be the most effective. Integrating dedicated dietitians and stage-based education in hemodialysis units may improve the nutritional management of patients in Lebanon and countries with similar health care systems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Job sharing in clinical nutrition management: a plan for successful implementation.

    Science.gov (United States)

    Visocan, B J; Herold, L S; Mulcahy, M J; Schlosser, M F

    1993-10-01

    While women continue to enter the American work force in record numbers; many experience difficulty in juggling career and family obligations. Flexible scheduling is one option used to ease work and family pressures. Women's changing work roles have potentially noteworthy implications for clinical nutrition management, a traditionally female-dominated profession where the recruitment and retention of valued, experienced registered dietitians can prove to be a human resources challenge. Job sharing, one type of flexible scheduling, is applicable to the nutrition management arena. This article describes and offers a plan for overcoming obstacles to job sharing, including determining feasibility, gaining support of top management, establishing program design, announcing the job share program, and using implementation, monitoring, and fine-tuning strategies. Benefits that can be derived from a successful job share are reduced absenteeism, decreased turnover, enhanced recruitment, improved morale, increased productivity, improved job coverage, and enhanced skills and knowledge base. A case study illustrates one method for achieving job sharing success in clinical nutrition management.

  15. Effects of variety, soil type and nitrogen fertilizer supply on the nutritive value of barley for growing pigs

    Directory of Open Access Journals (Sweden)

    Jarmo Valaja

    1997-12-01

    Full Text Available The effects of variety, soil type and nitrogen (N fertilizer supply on the nutritive value of barley were studied with chemical analysis, in vitro digestibility and a growth experiment on 240 growing/finishing pigs (live-weight 25-95 kg. Twelve barley batches were formed from three varieties (two-rowed Kustaa and six-rowed Arra and Pokko grown on mould or clay soil and fertilized with either a low or normal level of N (43 or 71 kg N/ha to mould soil and 76.5 or 110 kg N/ha to clay soil. In the growth experiment all the diets contained similar amounts of barley and soya bean meal (845/120 g/kg. Variety Arra contained 21 g/kg more CP than did Pokko or Kustaa. The N fertilizer supply slightly increased the CP content of the barley samples (133 vs. 141 g/kg but decreased the amount of lysine in the protein (31 vs. 29 g/ 160g N. Regression equation showed that CP and β-glucan were positively and neutral detergen fibre content negatively related to the in vitro digestibility of N in barley samples. The content of CP and the in vitro digestibilities of dry matter and N were highest in var. Arra. The daily gain and feed conversion ratio (FCR of the pigs on Arra-based diets was better than that of those on Kustaa or Pokko (P

  16. Nutritional approaches in the risk reduction and management of Alzheimer's disease.

    Science.gov (United States)

    Mi, Weiqian; van Wijk, Nick; Cansev, Mehmet; Sijben, John W C; Kamphuis, Patrick J G H

    2013-09-01

    Alzheimer's disease (AD) is a heterogeneous and devastating neurodegenerative disease with increasing socioeconomic burden for society. In the past 30 y, notwithstanding advances in the understanding of the pathogenesis of the disease and consequent development of therapeutic approaches to novel pathogenic targets, no cure has so far emerged. This contribution focuses on recent nutritional approaches in the risk reduction and management of AD with emphasis on factors providing a rationale for nutritional approaches in AD, including compromised nutritional status, altered nutrient uptake and metabolism, and nutrient requirements for synapse formation. Collectively these factors are believed to result in specific nutritional requirement in AD. The chapter also emphasizes investigated nutritional interventions in patients with AD, including studies with single nutrients and with the specific nutrient combination Fortasyn Connect and discusses the current shift of paradigm to intervene in earlier stages of AD, which offers opportunities for investigating nutritional strategies to reduce the risk for disease progression. Fortasyn Connect was designed to enhance synapse formation and function in AD by addressing the putative specific nutritional requirements and contains docosahexaenoic acid, eicosapentaenoic acid, uridine-5'-mono-phosphate, choline, phospholipids, antioxidants, and B vitamins. Two randomized controlled trials (RCTs) with the medical food Souvenaid, containing Fortasyn Connect, showed that this intervention improved memory performance in mild, drug-naïve patients with AD. Electroencephalography outcome in one of these clinical studies suggests that Souvenaid has an effect on brain functional connectivity, which is a derivative of changed synaptic activity. Thus, these studies suggest that nutritional requirements in AD can be successfully addressed and result in improvements in behavioral and neuro-physiological alterations that are characteristic to AD

  17. The Importance of the Microbial N Cycle in Soil for Crop Plant Nutrition.

    Science.gov (United States)

    Hirsch, Penny R; Mauchline, Tim H

    2015-01-01

    Nitrogen is crucial for living cells, and prior to the introduction of mineral N fertilizer, fixation of atmospheric N2 by diverse prokaryotes was the primary source of N in all ecosystems. Microorganisms drive the N cycle starting with N2 fixation to ammonia, through nitrification in which ammonia is oxidized to nitrate and denitrification where nitrate is reduced to N2 to complete the cycle, or partially reduced to generate the greenhouse gas nitrous oxide. Traditionally, agriculture has relied on rotations that exploited N fixed by symbiotic rhizobia in leguminous plants, and recycled wastes and manures that microbial activity mineralized to release ammonia or nitrate. Mineral N fertilizer provided by the Haber-Bosch process has become essential for modern agriculture to increase crop yields and replace N removed from the system at harvest. However, with the increasing global population and problems caused by unintended N wastage and pollution, more sustainable ways of managing the N cycle in soil and utilizing biological N2 fixation have become imperative. This review describes the biological N cycle and details the steps and organisms involved. The effects of various agricultural practices that exploit fixation, retard nitrification, and reduce denitrification are presented, together with strategies that minimize inorganic fertilizer applications and curtail losses. The development and implementation of new technologies together with rediscovering traditional practices are discussed to speculate how the grand challenge of feeding the world sustainably can be met. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Long-term effects of grazing management and buffer strips on soil erosion from pastures

    Science.gov (United States)

    High grazing pressure can lead to soil erosion in pastures by compacting soil and increasing runoff and sediment delivery to waterways. Limited information exists on the effects of grazing management and best management practices (BMPs), such as buffer strips, on soil erosion from pastures. The obje...

  19. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring

  20. Soil-surface CO2 flux and growth in a boreal Norway spruce stand: Effects of soil warming and nutrition

    International Nuclear Information System (INIS)

    Stroemgren, M.

    2001-01-01

    Global warming is predicted to affect the carbon balance of forests. A change in the carbon balance would give a positive or negative feedback to the greenhouse effect, which would affect global warming. The effects of long-term soil warming on growth, nutrient and soil-surface CO 2 flux (R) dynamics were studied in irrigated (I) and irrigated-fertilised (IL) stands of Norway spruce in northern Sweden. Soil temperature on heated plots (Ih and ILh) was maintained 5 deg C above that on unheated plots (Ic and ILc) from May to October, by heating cables. After six years' soil warming, stemwood production increased by 100% and 50% in the I and IL treatment, respectively. The main production increase occurred at the beginning of the season, probably as an effect of the earlier increase in soil temperature. In the 1h treatment, however, the growth increase was evident during the entire season. The effect of increased nitrogen (N) mineralisation on annual growth appeared to be stronger than the direct effect of warming. From 1995-2000, the total amount of N stored in aboveground tree parts increased by 100 and 475 kg N/ha on Ic and ILc plots, respectively. During the same period, 450 kg N fertiliser was added to the ILc plot. Soil warming increased the total amount of N stored in aboveground tree parts by 50 kg N/ha, independently of nutrient treatment. Soil warming did not significantly increase R, except in early spring, when R was 30-50% higher on heated compared to unheated plots. The extended growing season, however, increased annual respiration (RA) by 12-30% throughout. RA losses were estimated to be 0.6-0.7 kg C/ha/year. Use of relationships between R and soil temperature, derived from unheated plots, overestimated RA on heated plots by 50-80%. These results suggest that acclimation of root or microbial respiration or both to temperature had occurred, but the exact process(es) and their relative contribution are still unclear. In conclusion, the study showed that

  1. Dental and nutritional management of the head and neck cancer patient

    International Nuclear Information System (INIS)

    Lee, W. Robert; Sandow, Pamela L.; Moore, Giselle J.

    1997-01-01

    This course will examine the expected acute and late normal tissue toxicities associated with the delivery of high dose radiation therapy to the head and neck region. The purpose of this course will be to identify strategies to reduce radiotherapy-related toxicity without compromising adequate tumor treatment. A multidisciplinary approach will be emphasized and the following topics will be addressed: 1) Appropriate dental evaluation prior to the institution of treatment, oral care during radiation therapy and management of dental complications following completion of treatment. 2) Treatment techniques that accurately localize the target tissue, displace normal tissues from high dose volume and reduce the volume of normal tissue included in the radiation portals. 3) The investigative use of radioprotective agents. 4) The nutritional management of head and neck cancer patients including enteral and parenteral nutrition. 5) The use of medications to reduce the severity of acute symptomatology before, during and after radiation therapy

  2. Dental and nutritional management of the head and neck cancer patient

    International Nuclear Information System (INIS)

    Lee, W. Robert; Sandow, Pamela L.; Moore, Giselle J.

    1996-01-01

    This course will examine the expected acute and late normal tissue toxicities associated with the delivery of high dose radiation therapy to the head and neck region. The purpose of this course will be to identify strategies to reduce radiotherapy-related toxicity without compromising adequate tumor treatment. A multidisciplinary approach will be emphasized and the following topics will be addressed: 1) Appropriate dental evaluation prior to the institution of treatment, oral care during radiation therapy and management of dental complications following completion of treatment. 2) Treatment techniques that accurately localize the target tissue, displace normal tissues from high dose volume and reduce the volume of normal tissue included in the radiation portals. 3) The investigative use of radioprotective agents. 4) The nutritional management of head and neck cancer patients including enteral and parenteral nutrition. 5) The use of medications to reduce the severity of acute symptomatology before, during and after radiation therapy

  3. Soil Organic Carbon assessment on two different forest management

    Science.gov (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  4. Active microbial soil communities in different agricultural managements

    Science.gov (United States)

    Landi, S.; Pastorelli, R.

    2009-04-01

    We studied the composition of active eubacterial microflora by RNA extraction from soil (bulk and rhizosphere) under different environmental impact managements, in a hilly basin in Gallura (Sardinia). We contrasted grassy vineyard, in which the soil had been in continuous contact with plant roots for a long period of time, with traditional tilled vineyard. Moreover, we examined permanent grassland, in which plants had been present for some years, with temporary grassland, in which varying plants had been present only during the respective growing seasons. Molecular analysis of total population was carried out by electrophoretic separation by Denaturing Gradient Gel Electrophoresis (DGGE) of amplified cDNA fragments obtained from 16S rRNA. In vineyards UPGMA (Unweighted Pair Group Mathematical Average) analysis made up separate clusters depending on soil management. In spring both clusters showed similarity over 70%, while in autumn the similarity increased, 84% and 90% for grassy and conventional tilled vineyard respectively. Permanent and temporary grassland joined in a single cluster in spring, while in autumn a partial separation was evidenced. The grassy vineyard, permanent and temporary grassland showed higher richness and diversity Shannon-Weiner index values than vineyard with conventional tillage although no significant. In conclusion the expected effect of the rhizosphere was visible: the grass cover influenced positively the diversity of active microbial population.

  5. Enteral nutritional support management in a university teaching hospital: team vs nonteam.

    Science.gov (United States)

    Brown, R O; Carlson, S D; Cowan, G S; Powers, D A; Luther, R W

    1987-01-01

    Current hospital cost containment pressures have prompted a critical evaluation of whether nutritional support teams render more clinically effective and efficient patient care than nonteam management. To address this question with regard to enteral feeding, 102 consecutive hospitalized patients who required enteral nutritional support (ENS) by tube feeding during a 3 1/2-month period were prospectively studied. Fifty patients were managed by a nutritional support team; the other 52 were managed by their primary physicians. Choice of enteral formula, formula modifications, frequency of laboratory tests, and amounts of energy and protein received were recorded daily. In addition, each patient was monitored for pulmonary, mechanical, gastrointestinal, and metabolic abnormalities. Team-managed (T) and nonteam-managed (NT) patients received ENS for 632 and 398 days, respectively. The average time period for ENS was significantly longer in the team-managed patients (12.6 +/- 12.1 days vs 7.7 +/- 6.2 days, p less than 0.01). Significantly more of the team patients attained 1.2 X basal energy expenditure (BEE) (37 vs 26, p less than 0.05). Total number of abnormalities in each group was similar (T = 398, NT = 390); however, the abnormalities per day were significantly lower in the team group (T = 0.63 vs NT = 0.98, p less than 0.01). Mechanical (T = 0.05 vs NT = 0.11, p less than 0.01), gastrointestinal (T = 0.99 vs NT = 0.14, p less than 0.05), and metabolic (T = 0.49 vs NT = 0.72, p less than 0.01) abnormalities per day all were significantly lower in the team-managed patients.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. EFFECT OF MULCH AND MIXED CROPPING GRASS - LEGUME AT SALINE SOIL ON GROWTH, FORAGE YIELD AND NUTRITIONAL QUALITY OF GUINEA GRASS

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The research was conducted to evaluate the effect of mulch and mixed cropping grass – legume atsaline soil on growth, forage yield and nutritional quality of guinea grass. Saline soil used in thisresearch was classified into strongly saline soil with low soil fertility. The research was arrranged inrandomized complete block design with 3 blocks. The treatments were : M1 = guinea grassmonoculture, without mulch; M2 = guinea grass monoculture, 3 ton/ha mulch; M3 = guinea grassmonoculture, 6 ton/ha mulch, M4 = mixed cropping grass with Sesbania grandiflora, without mulch;M5 = mixed cropping grass with Sesbania grandiflora, 3 ton/ha mulch; M6 = mixed cropping grass withSesbania grandiflora, 6 ton/ha mulch. Data were analyzed using analysis of variance, then followed byDuncan's Multiple Range Test. The highest soil moisture content was achieved at mixed cropping grasslegumewith 6 ton/ha of mulch. The effect of mulch at saline soil significantly increased plant growth,forage yield and nutritional quality of guinea grass. Application of 3 ton/ha mulch increased plantgrowth, forage yield and nutritional quality of guinea grass. Plant growth, forage yield and nutritionalquality of guinea grass were not affected by monoculture or mixed cropping with Sesbania at saline soil.

  7. Effects of crop management, soil type, and climate on N2O emissions from Austrian Soils

    Science.gov (United States)

    Zechmeister-Boltenstern, Sophie; Sigmund, Elisabeth; Kasper, Martina; Kitzler, Barbara; Haas, Edwin; Wandl, Michael; Strauss, Peter; Poetzelsberger, Elisabeth; Dersch, Georg; Winiwarter, Wilfried; Amon, Barbara

    2015-04-01

    Within the project FarmClim ("Farming for a better climate") we assessed recent N2O emissions from two selected regions in Austria. Our aim was to deepen the understanding of Austrian N2O fluxes regarding region specific properties. Currently, N2O emissions are estimated with the IPCC default emission factor which only considers the amount of N-input as an influencing factor for N2O emissions. We evaluated the IPCC default emission factor for its validity under spatially distinct environmental conditions. For this two regions for modeling with LandscapeDNDC have been identified in this project. The benefit of using LandscapeDNDC is the detailed illustration of microbial processes in the soil. Required input data to run the model included daily climate data, vegetation properties, soil characteristics and land management. The analysis of present agricultural practices was basis for assessing the hot spots and hot moments of nitrogen emissions on a regional scale. During our work with LandscapeDNDC we were able to adapt specific model algorithms to Austrian agricultural conditions. The model revealed a strong dependency of N2O emissions on soil type. We could estimate how strongly soil texture affects N2O emissions. Based on detailed soil maps with high spatial resolution we calculated region specific contribution to N2O emissions. Accordingly we differentiated regions with deviating gas fluxes compared to the predictions by the IPCC inventory methodology. Taking region specific management practices into account (tillage, irrigation, residuals) calculation of crop rotation (fallow, catch crop, winter wheat, barley, winter barley, sugar beet, corn, potato, onion and rapeseed) resulted in N2O emissions differing by a factor of 30 depending on preceding crop and climate. A maximum of 2% of N fertilizer input was emitted as N2O. Residual N in the soil was a major factor stimulating N2O emissions. Interannual variability was affected by varying N-deposition even in case

  8. Soil macrofauna functional groups and their effects on soil structure, as related to agricultural management practices across agroecological zones of Sub-Saharan Africa

    NARCIS (Netherlands)

    Ayuke, F.O.

    2010-01-01

    This study aimed at understanding the effects of crop management practices on soil macrofauna and the links with soil aggregation and soil organic matter dynamics, which is key to the improvement of infertile or degrading soils in Sub-Sahara Africa. Soil macrofauna, especially earthworms and

  9. Effect of organic matter, irrigation and soil mulching on the nutritional ...

    African Journals Online (AJOL)

    Rukevwe S. Abraka

    2016-11-30

    Nov 30, 2016 ... necessary for the soil humidity to be in an adequate amount (Danso ... clay, with soil and particle density of: 1.51 and 2.76 g cm-3, respectively ..... fertilization and irrigation methods on nitrogen uptake, intercepted ŷ = 2373.4 + ...

  10. Water erosion under simulated rainfall in different soil management systems during soybean growth

    OpenAIRE

    Engel,Fernando Luis; Bertol,Ildegardis; Mafra,Álvaro Luiz; Cogo,Neroli Pedro

    2007-01-01

    Soil management influences soil cover by crop residues and plant canopy, affecting water erosion. The objective of this research was to quantify water and soil losses by water erosion under different soil tillage systems applied on a typical aluminic Hapludox soil, in an experiment carried out from April 2003 to May 2004, in the Santa Catarina highland region, Lages, southern Brazil. Simulated rainfall was applied during five soybean cropstages, at the constant intensity of 64.0 mm h-1. Treat...

  11. Management-induced Soil Structure Degradation: Organic Matter Depletion and Tillage

    OpenAIRE

    Kay, B.D.; Munkholm, L.J.

    2004-01-01

    Soil structure is an important element of soil quality since changes in structural characteristics can cause changes in the ability of soil to fulfil different functions and services. Emphasis in this chapter is placed on the role of soil structure in biological productivity of agroecosystems. Combinations of management practices in which the extent of the degradation of soil structure caused by one practice is balanced or exceeded by the extent of regeneration by other practices will help su...

  12. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils.

    Science.gov (United States)

    Jansa, Jan; Erb, Angela; Oberholzer, Hans-Rudolf; Smilauer, Petr; Egli, Simon

    2014-04-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi, forming mutualistic symbiosis with a majority of terrestrial plant species. They are abundant in nearly all soils, less diverse than soil prokaryotes and other intensively studied soil organisms and thus are promising candidates for universal indicators of land management legacies and soil quality degradation. However, insufficient data on how the composition of indigenous AMF varies along soil and landscape gradients have hampered the definition of baselines and effect thresholds to date. Here, indigenous AMF communities in 154 agricultural soils collected across Switzerland were profiled by quantitative real-time PCR with taxon-specific markers for six widespread AMF species. To identify the key determinants of AMF community composition, the profiles were related to soil properties, land management and site geography. Our results indicate a number of well-supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles. Site geography, especially the altitude and large geographical distance, strongly affected AMF communities. Unexpected was the apparent lack of a strong land management effect on the AMF communities as compared to the other predictors, which could be due to the rarity of highly intensive and unsustainable land management in Swiss agriculture. In spite of the extensive coverage of large geographical and soil gradients, we did not identify any taxon suitable as an indicator of land use among the six taxa we studied. © 2014 John Wiley & Sons Ltd.

  13. The public health nutrition intervention management bi-cycle: a model for training and practice improvement.

    Science.gov (United States)

    Hughes, Roger; Margetts, Barrie

    2012-11-01

    The present paper describes a model for public health nutrition practice designed to facilitate practice improvement and provide a step-wise approach to assist with workforce development. The bi-cycle model for public health nutrition practice has been developed based on existing cyclical models for intervention management but modified to integrate discrete capacity-building practices. Education and practice settings. This model will have applications for educators and practitioners. Modifications to existing models have been informed by the authors' observations and experiences as practitioners and educators, and reflect a conceptual framework with applications in workforce development and practice improvement. From a workforce development and educational perspective, the model is designed to reflect adult learning principles, exposing students to experiential, problem-solving and practical learning experiences that reflect the realities of work as a public health nutritionist. In doing so, it assists the development of competency beyond knowing to knowing how, showing how and doing. This progression of learning from knowledge to performance is critical to effective competency development for effective practice. Public health nutrition practice is dynamic and varied, and models need to be adaptable and applicable to practice context to have utility. The paper serves to stimulate debate in the public health nutrition community, to encourage critical feedback about the validity, applicability and utility of this model in different practice contexts.

  14. Soil composition and nutritional status of apple as affected by long-term application of gypsum

    Directory of Open Access Journals (Sweden)

    Gilberto Nava

    2012-02-01

    Full Text Available Gypsum does not affect the soil negative charges and maintains sulfate in the soil solution, making it one of the cheapest products to increase Ca activity in soil solution, especially in the deeper soil layers. Higher Ca levels in the soil solution can increase the uptake of this nutrient by apple trees, reducing the risk of physiological disorders caused by Ca deficiency. This study assessed the effect of long-term gypsum application on some soil properties and on the chemical composition of leaves and fruits of an apple cultivar susceptible to fruit disorders associated with low Ca. The experiment was conducted in São Joaquim, in the South of Brazil, from 2001 to 2009. Gypsum rates of 0, 1.0, 2.0 and 3.0 t ha-1 were annually broadcast over the soil surface, without incorporation, in an apple orchard with cultivar ´Catarina´, planted in 1997. Gypsum application over eight consecutive years had no effect on soil exchangeable K and Al to a depth of 80 cm, but increased exchangeable Ca in the sampled layers (0-10, 10-20, 40-60 and 60-80 cm, while exchangeable Mg decreased only in the surface layer (0-20 cm. Gypsum did not affect the concentration of any nutrient in the fruits, including Ca. The same was verified in the leaves, except for Mg which decreased with increased gypsum rate. Despite increasing the availability of Ca in the soil profile to a depth of 80 cm, gypsum was not effective to increase the Ca content in leaves and fruits of an apple cultivar susceptible to Ca deficiency grown in an appropriately limed soil.

  15. Delivery and Evaluation of Training for School Nutrition Administrators and Managers on Meeting Special Food and Nutrition Needs of Students in the School Setting

    Science.gov (United States)

    Oakley, Charlotte B.; Knight, Kathy; Hobbs, Margie; Dodd, Lacy M.; Cole, Janie

    2011-01-01

    Purpose/Objectives: The purpose of this investigation was to complete a formal evaluation of a project that provided specialized training for school nutrition (SN) administrators and managers on meeting children's special dietary needs in the school setting. Methods: The training was provided as part of the "Eating Good and Moving Like We…

  16. POTASSIUM FERTILIZATION AND SOIL MANAGEMENT SYSTEMS FOR COTTON CROPS

    Directory of Open Access Journals (Sweden)

    VITOR MARQUES VIDAL

    2017-01-01

    Full Text Available Cotton has great socio-economic importance due to its use in textile industry, edible oil and biodiesel production and animal feed. Thus, the objective of this work was to identify the best potassium rate and soil management for cotton crops and select among cultivars, the one that better develops in the climatic conditions of the Cerrado biome in the State of Goiás, Brazil. Thus, the effect of five potassium rates (100, 150, 200, 250 and 300 kg ha-1 of K2O and two soil management systems (no-till and conventional tillage on the growth, development and reproduction of four cotton cultivars (BRS-371, BRS-372, BRS-286 and BRS-201 was evaluated. The data on cotton growth and development were subjected to analysis of variance; the data on potassium rates were subjected to regression analysis; and the data on cultivars and soil management to mean test. The correlation between the vegetative and reproductive variables was also assessed. The conventional tillage system provides the best results for the herbaceous cotton, regardless of the others factors evaluated. The cultivar BRS-286 has the best results in the conditions evaluated. The cultivar BRS-371 under no-till system present the highest number of fruiting branches at a potassium rate of 105.5% and highest number of floral buds at a potassium rate of 96.16%. The specific leaf area was positively correlated with the number of bolls per plant at 120 days after emergence of the herbaceous cotton.

  17. Barriers to Enrollment in a Pharmacist-Led Fitness, Nutrition, and Weight Management Coaching Program

    Directory of Open Access Journals (Sweden)

    Matthew J Lengel

    2017-01-01

    Full Text Available Objectives: To investigate barriers to utilization of a pharmacist-led fitness, nutrition, and weight management coaching program, as well as describe patient reported expectations and explore the patient characteristics potentially associated with a higher willingness to participate in the future. Design: Cross-sectional, descriptive study using an anonymous, electronic survey. Setting: A large, national, grocery store chain. Participants: Employee benefit plan members, eligible for a pharmacist-led fitness, nutrition, and weight management (FNWM coaching program, who were not currently or previously enrolled in the program, and met coaching program qualifications. Intervention: Peer-reviewed, electronic survey administered and collected using an Internet survey analysis software. Main Outcome Measures: Barriers to enrollment in the pharmacist-led fitness, nutrition, and weight management coaching program. Results: Of 1,130 emailed employees, 352 responded and 133 met study inclusion criteria and completed the whole survey. Of those who fit inclusion criteria, the majority (53.4% of the respondents were aware of the coaching program (75.2% and expressed interest in future participation (53.4%. “I am already taking steps to improve my health” and “I do not have time to participate in the program” were the highest rated barriers for both those interested and not interested in participating in the coaching program. The majority of participants believed pharmacists were qualified to provide the coaching service (78.2% and preferred one-on-one coaching with the pharmacist (67.7%. Key topics respondents wanted the pharmacist to cover included general diet and nutrition, weight management strategies, and vitamins and supplements. Conclusion: The two major barriers reported in the study were lack of time and the use of other health improvement methods; however, a large number of respondents indicated future interest in participating. Future

  18. The Adjunctive Role of Nutritional Therapy in the Management of Phlegmon in Two Children with Crohn’s Disease

    Directory of Open Access Journals (Sweden)

    Andrew S. Day

    2017-09-01

    Full Text Available Crohn’s disease may be complicated by the development of penetrating (fistulizing or structuring complications. The presentation of an intra-abdominal phlegmon or abscess with or without an associated fistula has traditionally required surgical intervention. This series of two cases illustrates a beneficial role of non-surgical management, with parenteral and then enteral nutrition playing central roles. This report further elaborates the potential adjunctive role of enteral nutrition in the management of this complication of CD.

  19. Termite and earthworm abundance and taxonomic richness under long-term conservation soil management in Saria, Burkina Faso, West Africa

    NARCIS (Netherlands)

    Zida, Z.; Ouedraogo, E.; Mando, A.; Stroosnijder, L.

    2011-01-01

    Unsustainable crop and soil management practices are major causes of soil degradation and declining soil biodiversity in West Africa. Identifying soil management practices that favor macrofauna abundance is highly desirable for long-term soil health. This study investigates the effects of long-term

  20. Enchytraeids as indicator of soil quality in temporary organic grass-clover leys under contrasting management

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Schmelz, Rüdiger; Larsen, Thomas

    2015-01-01

    One objective in organic farming is to sustain the quality of the soil resource. Because enchytraeids are an important soil faunal component, they stand as bioindicators of soil quality. We tested this candidature in a field experiment on loamy sand soil with 1- and 4-year old grass-clover leys...... interactions among soil physical, chemical and biological properties suggest that enchytraeid abundance is not a feasible stand-alone indicator of management impacts on soil quality in temporary grass-clover leys but may candidate as one of several biological key parameters in more comprehensive soil quality...

  1. Integrating removal actions and remedial actions: Soil and debris management at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Goidell, L.C.; Hagen, T.D.; Strimbu, M.J.; Dupuis-Nouille, E.M.; Taylor, A.C.; Weese, T.E.; Yerace, P.J.

    1996-01-01

    Since 1991, excess soil and debris generated at the Fernald Environmental management Project (FEMP) have been managed in accordance with the principles contained in a programmatic Removal Action (RvA) Work Plan (WP). This plan provides a sitewide management concept and implementation strategy for improved storage and management of excess soil and debris over the period required to design and construct improved storage facilities. These management principles, however, are no longer consistent with the directions in approved and draft Records of Decision (RODs) and anticipated in draft RODs other decision documents. A new approach has been taken to foster improved management techniques for soil and debris that can be readily incorporated into remedial design/remedial action plans. Response, Compensation and Liability Act (CERCLA) process. This paper describes the methods that were applied to address the issues associated with keeping the components of the new work plan field implementable and flexible; this is especially important as remedial design is either in its initial stages or has not been started and final remediation options could not be precluded

  2. A process-based framework for soil ecosystem services study and management.

    Science.gov (United States)

    Su, Changhong; Liu, Huifang; Wang, Shuai

    2018-06-15

    Soil provides various indispensable ecosystem services for human society. Soil's complex structure and property makes the soil ecological processes complicated and brings about tough challenges for soil ecosystem services study. Most of the current frameworks on soil services focus exclusively on services per se, neglecting the links and underlying ecological mechanisms. This article put forward a framework on soil services by stressing the underlying soil mechanisms and processes, which includes: 1) analyzing soil natural capital stock based on soil structure and property, 2) disentangling the underlying complex links and soil processes, 3) soil services valuation based on field investigation and spatial explicit models, and 4) enacting soil management strategy based on soil services and their driving factors. By application of this framework, we assessed the soil services of sediment retention, water yield, and grain production in the Upper-reach Fenhe Watershed. Based on the ecosystem services and human driving factors, the whole watershed was clustered into five groups: 1) municipal area, 2) typical coal mining area, 3) traditional farming area, 4) unsustainable urbanizing area, and 5) ecological conservation area. Management strategies on soils were made according to the clustering based soil services and human activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Soil management effect on soil quality indicators in vineyards of the Appellation of Origin "Montilla-Moriles" in southern Spain

    Science.gov (United States)

    Guzmán, Gema; Cabezas, José Manuel; Bauer, Thomas; Strauss, Peter; Winter, Silvia; Zaller, Johann; Gómez, José Alfonso

    2017-04-01

    The effect soil management on several indicators frequently used in the assessment of soil quality it is not always reflected unambiguously when measured at the field although it is normally assumed that this relation is straightforward. Within the European project VineDivers (www.vinedivers.eu), sixteen commercial vineyards belonging to the Appellation of Origin "Montilla-Moriles" (Córdoba) and covering a wide range of textural classes were selected. These farms were classified 'a priori' under two soil management categories: temporal cover crop and bare soil during the whole year. In each of the vineyards one representative inter-row was selected in order to characterise different physical, chemical and biological parameters to evaluate some aspects related to soil quality. Results indicate that the studied indicators respond clearly to soil textural class and vegetation cover biomass. However, there was no clear difference in above-ground biomass of the two management categories (Guzmán et al., 2016). These results suggest that the interpretation and extrapolation of the indicators evaluated should incorporate complementary information to characterise small variations of soil management intensity among vineyards that are apparently managed under the same management category. The communication presents this analysis based on the number and type of soil disturbance events of all vineyards. The high variability found among vineyards under the same management highlights the relevance of measuring these soil parameters used as quality indicators, instead of extrapolating from other vineyards or agricultural systems, and interpreting them according to baseline levels. References: Guzmán G., Cabezas J.M., Gómez J.A. 2016. Evaluación preliminar del efecto del manejo del suelo en indicadores que determinan su calidad en viñedos de la Denominación de Origen Montilla Moriles. II Jornadas de Viticultura SECH. Madrid.

  4. Site Specific Waste Management Instruction for the 116-F-4 soil storage unit

    International Nuclear Information System (INIS)

    Hopkins, G.G.

    1996-08-01

    This Site Specific Waste Management Instruction provides guidance for management of waste generated during the excavation and remediation of soil and debris from the 116-4 soil storage unit located at the Hanford Site in Richland, Washington. This document outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements

  5. The Relationship Between Soils and Foliar Nutrition For Planted Royal Paulownia

    Science.gov (United States)

    James E. Johnson; David O. Mitchem; Richard E. Kreh

    2002-01-01

    Royal paulownia is becoming an important hardwood plantation species in the southern U.S. A study was done to investigate two novel site preparation techniques for aiding the establishment of royal paulownia seedlings in the Virginia Piedmont. The effects of these treatments on the foliar nutrition of first year seedlings was determined, as was the relationship...

  6. Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Timsina, J.

    2012-01-01

    Photosynthetic aquatic biomass (PAB – algae and other floodwater flora) is a significant source of organic carbon (C) in rice-based cropping systems. A portion of PAB is capable of fixing nitrogen (N), and is hence also a source of N for crop nutrition. To account for this phenomenon in long term

  7. MANAGEMENT OF NUTRITION FOR INFANTS WITHIN THE LIMITS OF MEDICO-SOCIAL PEDIATRIC SERVICE

    Directory of Open Access Journals (Sweden)

    A. Z. Farrakhov

    2013-01-01

    Full Text Available The questions of support of infants with complete and high-quality nutrition as a measure of national medico-social service when switching to artificial or mixed feeding are discussed in the article. The data on the main approaches to support of the infants of the first 3 years of life with specialized nutrition in the Russian Federation is represented. The authors describe such causes of inefficiency of activity of municipal «milk kitchens» as lack of standards for children food products, out of date production technologies, risk of contamination and of breaking the sanitary regulations, irrational usage of resources and low consumer qualities of the service. Necessity of development of new approaches to provide infants with free milk products is demonstrated. Branch target program «Bәlәkәch — Malysh» on free provision of infants of the first 3 years of life with special milk products and milk formulas on pediatrician prescriptions in order to improve the quality of life and health condition, patronized by the President of the Republic of Tatarstan, is characterized, as well as its first results are assessed in the article. The main directions of this program are listed. The comparative characteristic of certain indices of the new scheme of management of free milk nutrition for infants during the period of 2011–2013 are shown. The measures of this program aimed at widening of amount of children receiving free nutrition, increase of quantity of consumed milk products, ensuring of regularity of service, significant decrease of federal resources expenses and providing of precise compliance of standard expanses and improvement of the quality of milk nutrition for children through provision them with appropriate and high-quality products are proved to be very effective.

  8. Impact of nutrition management in patients with head and neck cancers treated with irradiation: is the nutritional intervention useful?

    International Nuclear Information System (INIS)

    Garabige, V.; Giraud, P.; Jaulerry, C.; Brunin, F.; Rycke, Y. de; Girod, A.; Jouffroy, T.; Rodriguez, J.

    2007-01-01

    Aims. The head and neck tumors are most often associated with a precarious nutritional status. Radiotherapy increases the risk of de-nutrition because of its secondary effects on the secretory and sensorial mucous membranes. The purpose of our retrospectively study was to evaluate the interest of a precocious and regular nutritional therapy on the ability to maintain the nutritional status of the patient during the radiotherapy. Patients and methods. The fifty-two patients included in the survey have been classified retrospectively in two different groups based on their observance to the nutritional therapy: group 1 'good observance', group 2 'bad observance'. Results. The 31 patients of group 1 have lost an average of 1.9 kg by the end of the irradiation, whereas the 21 patients of group 2 have lost an average of 6.1 kg (p < 0.001). The almost stability in weight of patients in group 1 was linked to a lower frequency of breaks in the radio-therapy (6 vs 33% p = 0.03) and in a decrease in grade of inflammatory, mucous membranes (10% of grade 3 in group 1 vs 52% in group 2, p = 0.006). The quantity of calories ingested in form of nutritional supplements was greater in group 1 and consequently enabled patients to stabilized their weight (1200 calories in group 1 versus 850 calories in group 2, p < 0.005). Conclusions. The given nutritional advice and the prescription of adapted nutritional supplements consequently allowed limiting efficiently the weight lost during the irradiation and the grade of mucositis. The systematization of a precocious nutritional therapy for patients irradiated for head and neck tumors seems absolutely essential. (authors)

  9. Perspectives on the Nutritional Management of Metabolic Syndrome in Asia: People, Practice and Programmes

    Directory of Open Access Journals (Sweden)

    Phing Chee Huei

    2017-03-01

    Full Text Available Numerous Asian countries have a high prevalence of metabolic syndrome, also associated with cardiovascular disease and diabetes mellitus. Healthcare expenditure varies among Asian countries, and is influenced by poverty factor and large populations. The effect of metabolic syndrome on nutritional management in Asia demonstrates the essential for clinicians to equalize the needs for higher standards of dietetics practice; as they execute optimal care processes with the aim of improving outcomes, alongside setting of workforce limitations, inadequate expertise in metabolic syndrome nutrition practice, as well as ethnic diversity among Asians. This paper presents some aspects of dietetics practice and the possibility that an alteration in practice is mandatory if dietitians are to play an active role in preventing or decelerating the evolution of the metabolic syndrome.

  10. Nutritional management of breastfeeding infants for the prevention of common nutrient deficiencies and excesses

    Directory of Open Access Journals (Sweden)

    Jin Soo Moon

    2011-07-01

    Full Text Available Breastfeeding is the best source of nutrition for every infant, and exclusive breastfeeding for 6 months is usually optimal in the common clinical situation. However, inappropriate complementary feeding could lead to a nutrient-deficient status, such as iron deficiency anemia, vitamin D deficiency, and growth faltering. The recent epidemic outbreak of obesity in Korean children emphasizes the need for us to control children’s daily sedentary life style and their intakes of high caloric foods in order to prevent obesity. Recent assessment of breastfeeding in Korea has shown that the rate is between 63% and 89%; thus, up-to-dated evidence-based nutritional management of breastfeeding infants to prevent common nutrient deficiencies or excesses should be taught to all clinicians and health care providers.

  11. Use of an esophagostomy tube as a method of nutritional management in raptors: a case series.

    Science.gov (United States)

    Huynh, Minh; Sabater, Mikel; Brandão, João; Forbes, Neil A

    2014-03-01

    We determined if esophagostomy tube placement is feasible for nutritional support in raptors. The clinical data were reviewed from 18 raptors admitted between 2006 and 2012, and in which esophagostomy tubes were placed. Indications for tube placement, complications associated with its placement and management, duration of treatment, and changes in patient body weight were evaluated. The most common indication was nutritional and medical support in stressed hospitalized animals, and intensive care cases. Complications were regurgitation, unexpected removal, and misplacement of the tube. The esophagostomy tube was well tolerated in all but 2 cases. A tube was replaced once in 2 patients. Five birds died during the treatment course. Mortality was not associated with the placement of the tube. Average duration of tube placement was 6.1 +/- 3.7 days. Most birds did not gain any weight with use of the feeding tubes. Esophagostomy tubes are well tolerated in raptors, but further studies are needed to demonstrate their efficiency.

  12. [Evaluation of the Food and Nutrition Surveillance System (SISVAN) in food and nutritional management services in the State of Minas Gerais, Brazil].

    Science.gov (United States)

    Rolim, Mara Diana; Lima, Sheyla Maria Lemos; de Barros, Denise Cavalcante; de Andrade, Carla Lourenço Tavares

    2015-08-01

    The scope of this article is to evaluate the SISVAN as a tool for planning, management and evaluation of food and nutrition actions in primary healthcare in the Unified Health System (SUS). It involved a cross-sectional study composed of a stratified random sample of the municipalities in the State of Minas Gerais. The subjects of the research were municipal officials of SISVAN who filled out a structured questionnaire. Descriptive analysis of the data was performed with the construction of simple and bivariate tables. It was observed that those responsible for SISVAN, collect (50%) and input (55%) weight, height, and food consumption data; whereas 53%, 59% and 71% do not analyze and do not recommend or perform nutrition actions, respectively. This being the case, most of those responsible do not use the information for planning, management and evaluation of food and nutrition traits. The findings show that the SISVAN is not used to its full potential; the data generated have not been used for planning, management and evaluation of nutrition services in primary healthcare in the SUS.

  13. Study of microarthopod communities to assess soil quality in different managed vineyards

    Science.gov (United States)

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-01-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly requested. The determination of communities' structures of edaphic fauna can represent an efficient tool. In this study, in some vineyards in Piedmont (Italy), the effects of two different management systems, organic and integrated pest management (IPM), on soil biota were evaluated. As microarthropods living in soil surface are an important component of soil ecosystem interacting with all the other system components, a multi disciplinary approach was adopted by characterizing also some soil physical and chemical characteristics (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate). Soil samplings were carried out on Winter 2011 and Spring 2012. All specimens were counted and determined up to the order level. The biological quality of the soil was defined through the determination of ecological indices, such as QBS-ar, species richness and indices of Shannon-Weaver, Pielou, Margalef and Simpson. The mesofauna abundance was affected by both the type of management and the soil texture. The analysis of microarthropod communities by QBS-ar showed higher values in organic than in IPM managed vineyards; in particular, the values registered in organic vineyards were similar to those characteristic of preserved soils.

  14. Effect of Nutritional Management on Yield and Yield Components of Roselle (Hibiscus sabdariffa as a Medicinal Plant in Mashhad Condition

    Directory of Open Access Journals (Sweden)

    P Rezvani Moghaddam

    2018-02-01

    Full Text Available Introduction Roselle (Hibiscus sabdariffa is an annual plant with a height of about 64 to 429 cm belongs to Malvaceae family. Roselle is self-pollinated and sensitive to cold. Sepals of Roselle are used in food and pharmaceutical industries. It has been reported that Roselle is not native to Iran but it is cultivated extensively in Sistan and Baluchistan province, Iran. In order to achieve high quality and quantity yield of Roselle sepal it is necessary to improve nutritional systems of plant. Proper management of soil fertility and plant nutrition can preserve environment, improve biodiversity and also increase inputs efficiency. Results showed that use of nutritional resources will improve plant growth. Organic fertilizers such as compost can improve soil fertility as an important source of food that increase yield of plants. Nabila and Aly (2002 observed that use of hen and cow manure increased plant height, number of lateral branches, numbers of fruit and sepal yield of Roselle. Each plant species has the maximum potential in favorable conditions. Therefore, evaluation the effect of climatic and agronomic factors and nutritional management for plants is essential. This experiment was conducted to evaluate the yield and yield components of Roselle in response to use of single and combined nutritional resources. Materials and Methods In order to study the effects of single and combined organic, biological and chemical fertilizers on yield and yield components of Roselle (Hibiscus sabdariffa, a field experiment was conducted with 12 treatments based on a Randomized Complete Block Design with three replications at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2013-2014. Treatments included: 1- mycorrhiza (Glomus intraradices, 2- cow manure, 3- chemical fertilizer, 4- vermicompost, 5- chemical fertilizer + cow manure, 6- chemical fertilizer + vermicompost, 7- chemical fertilizer + mycorrhiza, 8- cow manure

  15. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-03-02

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for

  16. The home management of Artificial Nutrition: a survey among doctors and nurses.

    Science.gov (United States)

    Gamberi, Sara; Calamassi, Diletta; Coletta, David; Dolenti, Silvia; Valoriani, Alice; Tarquini, Roberto

    2017-08-23

    The management of Artificial Nutrition (NA), especially in the home environment (HAN) requires specific skills in order to ensure the correct therapeutic education, prevention of complications and the provision of appropriate treatment to the person. The aim of this survey was to identify the perceptions of nurses and doctors, as well as comparing to their perceived competence in NA and the gap between their perceived versus actual knowledge and management methods. This observational study was conducted in a Tuscan health region of Italy, involving 50 Home Care Services nurses and 50 general practitioners. Participants were asked to complete an online questionnaire that was constructed for purpose. The results show that for the management of the person with NA, both for doctors and for nurses show great variability in responses. Less than half of those providing care make assessments of nutritional status and dysphagia as well as the possibility of re-feeding by natural means in NA patients. Care providers expressed uncertainty as to which professional should carry out such assessments. A mismatch was also evident between the skills possessed and the self-assessments performed regarding their knowledge base of NA. Almost all of doctors of nurses indicated a desire to participate in training events relating to NA. The results highlight the need for caregivers to have specific operating protocols. The results also highlight the need to aim to work as a team, emphasizing the importance of basic communication as well as the need for clarity as to the responsibilities and roles of the professionals involved.Key words: Artificial Nutrition, Nurses, Doctors, home management, skills, training, team.

  17. Effect of soil surface management on radiocesium concentrations in apple orchard and fruit

    International Nuclear Information System (INIS)

    Kusaba, Shinnosuke; Matsuoka, Kaori; Abe, Kazuhiro

    2016-01-01

    We investigated the effect of soil surface management on radiocesium accumulation in an apple orchard in Fukushima Prefecture over 4 years after Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident in mid-March 2011. Different types of soil surface management such as clean cultivation, intertillage management, intertillage with bark compost application, sod culture, and zeolite application were employed. The radiocesium concentrations in soil were higher in the surface layer (0–5 cm) than in the other layers. The radiocesium concentration in the surface layer soil with sod culture in 2014 increased non-significantly compared with that observed in 2011. The radiocesium concentration in the mid-layer soil (5–15 cm) managed with intertillage was higher than that in soil managed using other types of management. The radiocesium amount in the organic matter on the soil surface was the highest in sod culture, and was significantly lower in the management with intertillage. The radiocesium concentration in fruit decreased exponentially during the 4 years in each types of soil surface management. The decrease in radiocesium concentration showed similar trends with each type of soil surface management, even if the concentration in each soil layer varied according to the management applied. Furthermore, intertillage with bark compost application did not affect the radiocesium concentration in fruit. These results suggest that the soil surface management type that affected the radiocesium distribution in the soil or the compost application with conventional practice did not affect its concentration in fruit of apple trees for at least 4 years since the nuclear power plant accident, at a radiocesium deposition level similar to that recorded in Fukushima City. (author)

  18. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    water infiltration and accelerated soil erosion resulting from soil crusting ... in a smallholder farming area of the Zambezi metamorphic belt in northern Zimbabwe ...... beans (Ricinus communi L.) in the northeastern region of Brazil. Soil and ...

  19. Experiences and Perceptions of Adults Accessing Publicly Available Nutrition Behavior-Change Mobile Apps for Weight Management.

    Science.gov (United States)

    Lieffers, Jessica R L; Arocha, Jose F; Grindrod, Kelly; Hanning, Rhona M

    2018-02-01

    Nutrition mobile apps have become accessible and popular weight-management tools available to the general public. To date, much of the research has focused on quantitative outcomes with these tools (eg, weight loss); little is known about user experiences and perceptions of these tools when used outside of a research trial environment. Our aim was to understand the experiences and perceptions of adult volunteers who have used publicly available mobile apps to support nutrition behavior change for weight management. We conducted one-on-one semi-structured interviews with individuals who reported using nutrition mobile apps for weight management outside of a research setting. Twenty-four healthy adults (n=19 females, n=5 males) who had used publicly available nutrition mobile apps for weight management for ≥1 week within the past 3 to 4 months were recruited from the community in southern Ontario and Edmonton, Canada, using different methods (eg, social media, posters, and word of mouth). Interviews were audiorecorded, transcribed verbatim, and transcripts were verified against recordings. Data were coded inductively and organized into categories using NVivo, version 10 (QSR International). Participants used nutrition apps for various amounts of time (mean=approximately 14 months). Varied nutrition apps were used; however, MyFitnessPal was the most common. In the interviews, the following four categories of experiences with nutrition apps became apparent: food data entry (database, data entry methods, portion size, and complex foods); accountability, feedback, and progress (goal setting, accountability, monitoring, and feedback); technical and app-related factors; and personal factors (self-motivation, privacy, knowledge, and obsession). Most participants used apps without professional or dietitian support. This work reveals that numerous factors affect use and ongoing adherence to use of nutrition mobile apps. These data are relevant to professionals looking to

  20. Soil surface roughness decay in contrasting climates, tillage types and management systems

    Science.gov (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  1. Feasibility Study on UAV-assisted Construction Surplus Soil Tracking Control and Management Technique

    Science.gov (United States)

    Jieh Haur, Chen; Kuo, Lin Sheng; Fu, Chen Ping; Li Hsu, Yeh; Da Heng, Chen

    2018-01-01

    Construction surplus soil tracking management has been the key management issue in Taiwan since 1991. This is mainly due to the construction surplus soils were often regarded as disposable waste and were disposed openly without any supervision, leading to environmental pollution. Even though the surplus soils were gradually being viewed as reusable resources, some unscrupulous enterprises still dump them freely for their own convenience. In order to dispose these surplus soils, site offices are required to confirm with the soil treatment plant regarding the approximate soil volume for hauling vehicle dispatch. However, the excavated soil volume will transform from bank volume to loose volume upon excavation, which may differ by a certain speculative coefficient (1.3), depending on the excavation site and geological condition. For managing and tracking the construction surplus soils, local government authorities frequently performed on-site spot check, but the lack of rapid assessment tools for soil volume estimation increased the evaluation difficulty for on-site inspectors. This study adopted unmanned aerial vehicle (UAV) in construction surplus soil tracking and rapidly acquired site photography and point cloud data, the excavated soil volume can be determined promptly after post-processing and interpretation, providing references to future surplus soil tracking management.

  2. Soil phosphatase and urease activities impacted by cropping systems and water management

    Science.gov (United States)

    Soil enzymes can play an important role in nutrient availability to plants. Consequently, soil enzyme measurements can provide useful information on soil fertility for crop production. We examined the impact of cropping system and water management on phosphatase, urease, and microbial biomass C in s...

  3. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management

    Science.gov (United States)

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  4. Bio solids Application on Banana Production: Soil Chemical Properties and Plant Nutrition

    International Nuclear Information System (INIS)

    Teixeira, L.A.J; Berton, R.S.B; Coscione, A.R; Saes, L.A

    2011-01-01

    Bio solids are relatively rich in N, P, and S and could be used to substitute mineral fertilization for banana crop. A field experiment was carried out in a Yellow Oxisol to investigate the effects of bio solids application on soil chemical properties and on banana leaf's nutrient concentration during the first cropping cycle. Soil analysis (ph, organic matter, resin P, exchangeable Ca and K, available B, DTPA-extracted micro nutrients, and heavy metals) and index-leaf analysis (B, Cu, Fe, Mn, Zn, Cd, Cr, Ni, and Pb) were evaluated. Bio solids can completely substitute mineral N and P fertilizer to banana growth. Soil exchangeable K and leaf-K concentration must be monitored in order to avoid K deficiency in banana plants. No risk of heavy metal (Cr, Ni, Pb, and Cd) concentration increase in the index leaf was observed when bio solids were applied at the recommended N rate.

  5. Nutrition Advice and Recipes

    Science.gov (United States)

    ... Sign-Up Home Patient Information Nutrition Advice & Recipes Nutrition Advice & Recipes This is a very important section ... information on all aspects of daily life, including nutrition, medical treatments, pain management, and practical tips. For ...

  6. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  7. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.

    Science.gov (United States)

    Ohkama-Ohtsu, Naoko; Wasaki, Jun

    2010-08-01

    Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates, root architecture, transporters and their applications. Plants need to survive in soils with mineral concentrations that vary widely. Describing the relationships between nutrients and biological processes will enable us to understand the molecular basis for signaling, physiological damage and responses to mineral stresses.

  8. Analysis of soil characteristics, soil management and sugar yield on top and averagely managed farms growing sugar beet (Beta vulgaris L.) in the Netherlands

    NARCIS (Netherlands)

    Hanse, B.; Vermeulen, G.D.; Tijink, F.G.J.; Koch, H.J.; Märlander, B.

    2011-01-01

    Within the Speeding Up Sugar Yield (SUSY) project, soil management and soil characteristics were investigated as possible causes of yield differences in fields between 26 ‘type top’ and 26 ‘type average’ growers, ‘top’ and ‘average’ performance being based on past yield data. Growers were pairwise

  9. Assessment and management of nutrition in older people and its importance to health

    Directory of Open Access Journals (Sweden)

    Tanvir Ahmed

    2010-07-01

    Full Text Available Tanvir Ahmed, Nadim HaboubiAdult and Elderly Medicine, Nevill Hall Hospital, Abergavenny, Wales, UKAbstract: Nutrition is an important element of health in the older population and affects the aging process. The prevalence of malnutrition is increasing in this population and is associated with a decline in: functional status, impaired muscle function, decreased bone mass, immune dysfunction, anemia, reduced cognitive function, poor wound healing, delayed recovery from surgery, higher hospital readmission rates, and mortality. Older people often have reduced appetite and energy expenditure, which, coupled with a decline in biological and physiological functions such as reduced lean body mass, changes in cytokine and hormonal level, and changes in fluid electrolyte regulation, delay gastric emptying and diminish senses of smell and taste. In addition pathologic changes of aging such as chronic diseases and psychological illness all play a role in the complex etiology of malnutrition in older people. Nutritional assessment is important to identify and treat patients at risk, the Malnutrition Universal Screening Tool being commonly used in clinical practice. Management requires a holistic approach, and underlying causes such as chronic illness, depression, medication and social isolation must be treated. Patients with physical or cognitive impairment require special care and attention. Oral supplements or enteral feeding should be considered in patients at high risk or in patients unable to meet daily requirements.Keywords: malnutrition, older people, anorexia of aging, sarcopinia, nutritional assessment

  10. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    Science.gov (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  11. The effect of nutritional management of the dairy cow on reproductive efficiency.

    Science.gov (United States)

    Roche, James F

    2006-12-01

    that attenuate the production of F2alpha can improve CR. The increased metabolic clearance rate of progesterone (P4), which decreases blood concentrations during early embryo cleavage up to the blastocyst stage is associated with decreased CRs. In conclusion, poor nutritional management of the dairy cow, particularly before and after calving, is a key driver of infertility.

  12. Effects of winery wastewater on soil, grape nutrition, and wine quality

    Science.gov (United States)

    Many wineries are interested in recycling wastewater for irrigation. This project investigates the effects on winemaking when winery wastewater (WW) is recycledfor irrigation. Water samples and soils samples were collected from one Napa Valley and one Sonoma vineyard. Leaf and berry samples were col...

  13. The effects of boron management on soil microbial population and ...

    African Journals Online (AJOL)

    Soil microorganisms directly influence boron content of soil as maximum boron release corresponds with the highest microbial activity. The objective of this study is to determine the effects of different levels of boron fertilizer on microbial population, microbial respiration and soil enzyme activities in different soil depths in ...

  14. Oligotrophic bacteria and root disease suppression in organically managed soils

    NARCIS (Netherlands)

    Senechkin, I.V.

    2013-01-01

    The objective of this thesis was to obtain a better understanding of soil health in terms of microbial and chemical characteristics as well as suppression of soil borne plant pathogens. Organic soils were chosen as an appropriate model for studying soil health. Four different organic

  15. Soil chemistry and nutrition of North American spruce-fir stands: Evidence of recent change

    International Nuclear Information System (INIS)

    Joslin, J.D.; Kelly, J.M.; Van Miegroet, H.

    1992-01-01

    One set of hypotheses offered to explain the decline of red spruce (Picea rubens Sarg.) in eastern North America focuses on the effect of acidic deposition on soil chemistry changes that may affect nutrient availability and root function. Long-term soils data suggests that soil acidification has occurred in some spruce stands over the past 50 yr, with plant uptake and cation leaching both contributing to the loss of cations. Studies of tree ring chemistry also have indicated changes in Ca/Al and Mg/Al ratios in red spruce wood, suggesting increases in the ionic strength of soil solution. Irrigation studies using strong acid inputs have demonstrated accelerated displacement of base cations from upper horizons. Spruce-fir (Abies spp.) nutrient budgets indicate that current net Ca and Mg leaching loss rates are of the same order of magnitude as losses to whole tree harvest removals, spread out over a 50-yr rotation. For most cations, red spruce foliar nutrient levels decline with elevation, but it is difficult to assess the contribution of the elevational gradient in atmospheric deposition to this pattern. Compared to northeastern sites, spruce-fir soil solutions in the southern Appalachians have higher nitrate levels and higher Al concentrations, which at times approach the Al toxicity threshold for red spruce seedlings and frequently are at levels known to interfere with cation uptake. There is little evidence that either nutrient deficiencies or Al toxicity are primary causes of red spruce decline in the Northeast, though both may play a role in the Southeast

  16. Identification of quality indicators for the nutritional management of adult hospitalized patients by a modified Delphi process.

    Science.gov (United States)

    Verbanck, L; De Waele, J; Duysburgh, I; Van Looy, L; Ysebaert, D; Merckx, L; Ferdinande, P

    2015-01-01

    The aim of this study was to identify quality indicators (QI) that measure or evaluate the quality of nutritional management of the adult hospitalized patient irrespective of the primary disease or surgical condition. During a modified Delphi procedure consisting of three rounds a 48 member expert panel selected quality indicators applicable to the subject focusing on validity and feasibility from a list of 89 candidate indicators, retrieved from the literature and completed by expert opinion. The following top ten of QIs were selected (weight between brackets): (1) Priority use of enteral route in the absence of contra indications (.95); (2) Patients with malnutrition (risk) receive a nutrition care plan or Nutritional Support (NS) (.935); (3) The hospital has a formulary on enteral formulas, parenteral nutrition (PN) solutions and nutritional supplements (.93); (4) The hospital has a designated nutrition support service (or team) (.922); (5) The hospital has written policies and procedures for the provision of nutrition support therapy (.9); (6) In hospitalized patients on PN the plasma triglycerides are checked weekly (.894); (7) Presence of a protocol for enteral drug administration through a feeding tube (.885); (8) Frequency of periodic reassessment of patients on NS (.883); (9) Enteral and PN orders are regularly revised and adjusted (daily/weekly/twice a week)(.88); (10) There is a hospital wide consensus on the screening method(s) for malnutrition (.88). Using a three round modified Delphi approach a list of ten best scoring QIs for the management of the adult hospitalized patient was established.

  17. Does management intensity in inter rows effect soil physical properties in Austrian and Romanian vineyards?

    Science.gov (United States)

    Bauer, Thomas; Strauss, Peter; Stiper, Katrin; Klipa, Vladimir; Popescu, Daniela; Winter, Silvia; Zaller, Johann G.

    2016-04-01

    Successful viticulture is mainly influenced by soil and climate. The availability of water during the growing season highly influences wine quality and quantity. To protect soil from being eroded most of the winegrowers keep the inter row zones of the vineyards green. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, these greening strategies concerning the intensity of inter row management differ from farm to farm and are mainly based on personal experience of the winegrowers. However to what extent different inter row management practices affect soil physical properties are not clearly understood yet. To measure possible effects of inter row management in vineyards on soil physical parameters we selected paired vineyards with different inter row management in Austria and Romania. In total more than 7000 soil analysis were conducted for saturated and unsaturated hydraulic conductivity, soil water retention, water stable aggregates, total organic carbon, cation exchange capacity, potassium, phosphorous, soil texture, bulk density and water infiltration. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with one soil disturbance every second inter row per year and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not improve for the upper soil layer (3-8cm). This is in contrast to general perceptions of improved soil physical properties due to low intensity of inter row management, i.e. permanent vegetated inter rows. This may be attributed to long term and high frequency mechanical stress by agricultural machinery in inter rows.

  18. Risk factors for occurrence of displaced abomasum and their relation to nutritional management of Holstein dairy cattle

    OpenAIRE

    Behluli, Behlul; Musliu, Arben; Sherifi, Kurtesh; Youngs, Curtis R.; Rexhepi, Agim

    2017-01-01

    The aim of the present study was to identify nutritional risk factors for the occurrence of displaced abomasum (DA) in Holstein dairy cattle raised in regions with highly variable nutritional management. Feeding program data were collected from 30 dairy farms throughout Kosovo via use of a standardized questionnaire, and an AgriNIR™ Analyser was used to analyze the nutrient composition of forage (hay, corn silage) fed to cattle on those farms. A diagnosis of DA was made via auscultation/percu...

  19. Fungal Community Structure as an Indicator of Soil Agricultural Management Effects in the Cerrado

    Directory of Open Access Journals (Sweden)

    Alana de Almeida Valadares-Pereira

    2017-11-01

    Full Text Available ABSTRACT Forest-to-agriculture conversion and soil management practices for soybean cropping are frequently performed in the Cerrado (Brazilian tropical savanna. However, the effects of these practices on the soil microbial communities are still unknown. We evaluated and compared the fungal community structure in soil from soybean cropland with soil under native Cerrado vegetation at different times of the year in the Tocantins State. Soil samples were collected in two periods after planting (December and in two periods during the soybean reproductive growth stage (February. Concomitantly, soil samples were collected from an area under native Cerrado vegetation surrounding the agricultural area. The soil DNA was analyzed using a fingerprinting method termed Automated Ribosomal Intergenic Space Analysis (ARISA to assess the fungal community structure in the soil. Differences in the fungal community structure in the soil were found when comparing soybean cropland with the native vegetation (R = 0.932 for sampling 1 and R = 0.641 for sampling 2. Changes in the fungal community structure after management practices for soybean planting in Cerrado areas were related to changes in soil properties, mainly in copper, calcium, and iron contents, cation exchange capacity, base saturation, and calcium to magnesium ratio. These results show the changes in the fungal community structure in the soil as an effect of agricultural soil management in Cerrado vegetation in the state of Tocantins.

  20. Diagnosis tools useful in the management of nitrogen nutrition in Urochloa

    Directory of Open Access Journals (Sweden)

    Valdinei Tadeu Paulino

    2012-12-01

    Full Text Available The N management on pasture requires methods for analyzing and predicting the need for fertilization, aiming at greater efficiency of fertilizer application, adjusting the forage requirements for biomass productivity with quality and sustainability. Nitrogen Nutrition Index (NNI defined as the ratio between the actual N concentration and the N concentration critical, corresponding to the actual standing biomass. NNI is an indicator well connected with the physiological regulation of N concentration, but it cannot be used directly in farm conditions. Leaf N concentration has been shown to be with greenness (chlorophyll meter readings, as measured by SPAD 502, giving instantaneous values that could be used for estimating directly the N concentration and indirectly the NNI. The main of this work was to test the usefulness N concentration and SPAD to diagnose the N status of four genotypes Urochloa. The experimental design was a randomized block in a factorial 4 x 4, genotypes of Urochloa (U. brizantha cv. Piata, U. brizantha cv. Marandu, and two hybrids H69 and H12 and nitrogen levels (0, 75, 150 and 225 mg dm-3 whose source urea, with five replications, in pots (3.34 dm3 with Psament soil. Evaluations were performed on plants aged 52 days after sowing. Data were analyzed by the mixed procedure of SAS V. 9.2; average qualitative treatments were compared by Tukey test at 5% probability. The degrees of freedom related to N rates (quantitative treatment were decomposed into orthogonal polynomials; to obtain the best equation fits the data. It is known that chlorophyll meter readings express indirectly the amount of chlorophyll in the plant tissue, and as nitrogen is a component of the chlorophyll molecule, the concentration of this nutrient in the tissue is positively correlated with the SPAD values, several studies have confirmed this fact . The SPAD values were found to be in the range 17.4 to 36.0 for H69, 24.2 to 36.6 for H12, 28.2 to 44.89 to

  1. Soil erosion from harvested sites versus streamside management zone sediment deposition in the Piedmont of Virginia

    Science.gov (United States)

    William A. Lakel; W. Michael Aust; C. Andrew Dolloff; Amy W. Easterbrook

    2006-01-01

    Forestry best management practices were primarily developed to address two major issues related to soil erosion: water quality and site productivity. Sixteen watersheds managed as loblolly pine plantations in the piedmont region were monitored for soil erosion and water quality prior to treatment. Subsequently, all watersheds were harvested with clearcutting, ground-...

  2. On-farm impact of cattle slurry manure management on biological soil quality

    NARCIS (Netherlands)

    Goede, de R.G.M.; Brussaard, L.; Akkermans, A.D.L.

    2003-01-01

    The effects of dairy cattle slurry management on soil biota, soil respiration and nitrogen (N) mineralization were evaluated in a farm trial across 12 farms and a field experiment on 2 farms located in a dairy farming area in the north of the Netherlands. The slurry management consisted of slit

  3. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    Science.gov (United States)

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  4. Soil functional zone management: a vehicle for enhancing production and soil ecosystem services in row-crop agroecosystems

    Directory of Open Access Journals (Sweden)

    Alwyn eWilliams

    2016-02-01

    Full Text Available There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimetre-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services; and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage and moisture regulation (regulating and supporting services. These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown. We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple

  5. Soil friability - Concept, Assessment and Effects of Soil Properties and Management

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    Soil friability is a key soil physical property yielding valuable information on the ease of productin a favorable seed- and root beds during tillage operations. Therefore, soil friability is acrucial soil property in relation to the ability of soil to support plant growth and to minimzethe energy...... required for tillage. The topic has interested farmers and soil scientiest for centuries, but is was the paper by Utomo and Dexter (1981) that significantly put the topic on the soil science agenda. The awareness of soil friability is growing, both in practiceand in soil science. This must be viewed...... in the light of the present renewed focus on global food security together with a focus on fossil fuel consumption and greenhouse gas emissions in crop production. Certainly, the demand for well-functioning, arable soils is rising to meet the global challenges....

  6. Integrated Assessment of Pharmacological and Nutritional Cardiovascular Risk Management : Blood Pressure Control in the DIAbetes and LifEstyle Cohort Twente (DIALECT)

    NARCIS (Netherlands)

    Gant, Christina M.; Binnenmars, S. Heleen; van den Berg, Else; Bakker, Stephan J. L.; Navis, Gerjan; Laverman, Gozewijn D.

    2017-01-01

    Cardiovascular risk management is an integral part of treatment in Type 2 Diabetes Mellitus (T2DM), and requires pharmacological as well as nutritional management. We hypothesize that a systematic assessment of both pharmacological and nutritional management can identify targets for the improvement

  7. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soil

    NARCIS (Netherlands)

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil)

  8. Dental and nutritional management of the head and neck cancer patient

    International Nuclear Information System (INIS)

    Lee, W. Robert; Sandow, Pamela L.; Moore, Giselle J.

    1995-01-01

    This course will examine the expected acute and late normal tissue toxicities associated with the delivery of high dose radiation therapy to the head and neck region. The purpose of this course will be to identify strategies to reduce radiotherapy-related toxicity without compromising adequate tumor treatment. A multidisciplinary approach will be emphasized and the following topics will be addressed: 1) Appropriate dental evaluation prior to the institution of treatment, oral care during radiation therapy and management of dental complications following completion of treatment. 2) Treatment techniques that accurately localize the target tissue, displace normal tissues from high dose volume and reduce the volume of normal tissue included in the radiation portals. 3) The investigative use of radioprotective agents. 4) Optimal integration of radiotherapy with surgery and/or chemotherapy. 5) The nutritional management of head and neck cancer patients including enteral and parenteral nutrition. 6) The use of medications to reduce the severity of acute symptomatology before, during and after radiation therapy

  9. eHealth technologies to support nutrition and physical activity behaviors in diabetes self-management.

    Science.gov (United States)

    Rollo, Megan E; Aguiar, Elroy J; Williams, Rebecca L; Wynne, Katie; Kriss, Michelle; Callister, Robin; Collins, Clare E

    2016-01-01

    Diabetes is a chronic, complex condition requiring sound knowledge and self-management skills to optimize glycemic control and health outcomes. Dietary intake and physical activity are key diabetes self-management (DSM) behaviors that require tailored education and support. Electronic health (eHealth) technologies have a demonstrated potential for assisting individuals with DSM behaviors. This review provides examples of technologies used to support nutrition and physical activity behaviors in the context of DSM. Technologies covered include those widely used for DSM, such as web-based programs and mobile phone and smartphone applications. In addition, examples of novel tools such as virtual and augmented reality, video games, computer vision for dietary carbohydrate monitoring, and wearable devices are provided. The challenges to, and facilitators for, the use of eHealth technologies in DSM are discussed. Strategies to support the implementation of eHealth technologies within practice and suggestions for future research to enhance nutrition and physical activity behaviors as a part of broader DSM are provided.

  10. Enteral Nutrition in the Management of Pediatric and Adult Crohn’s Disease

    Directory of Open Access Journals (Sweden)

    Tawnya Hansen

    2018-04-01

    Full Text Available Genetic and environmental factors are thought to profoundly influence the pathophysiology of Crohn’s disease (CD. Changes in dietary and hygiene patterns affect the interactions between the immune system and environment. The gut microbiome is responsible for mediating host immune response with significant dysbiosis observed in individuals with CD. Diet therapy using exclusive enteral nutrition (EEN has been studied as primary therapy for the management of CD. EEN may cultivate the presence of beneficial microbiota, improve bile acid metabolism, and decrease the number of dietary microparticles possibly influencing disease and immune activity. In this review, we will address the current evidence on EEN in the management of adult and pediatric CD. In adults, EEN appears to be moderately beneficial for the induction of remission of CD; however, its use is understudied and underutilized. Stronger evidence is in place to support the use of EEN in pediatric CD with the added benefit of nutrition support and steroid-sparing therapy during the growth phase. Overall, EEN is an established therapy in inducing CD remission in the pediatric population while its role as primary therapy of adult Crohn’s disease remains to be defined.

  11. Nutrition management guideline for maple syrup urine disease: an evidence- and consensus-based approach.

    Science.gov (United States)

    Frazier, Dianne M; Allgeier, Courtney; Homer, Caroline; Marriage, Barbara J; Ogata, Beth; Rohr, Frances; Splett, Patricia L; Stembridge, Adrya; Singh, Rani H

    2014-07-01

    In an effort to increase harmonization of care and enable outcome studies, the Genetic Metabolic Dietitians International (GMDI) and the Southeast Regional Newborn Screening and Genetics Collaborative (SERC) are partnering to develop nutrition management guidelines for inherited metabolic disorders (IMD) using a model combining both evidence- and consensus-based methodology. The first guideline to be completed is for maple syrup urine disease (MSUD). This report describes the methodology used in its development: formulation of five research questions; review, critical appraisal and abstraction of peer-reviewed studies and unpublished practice literature; and expert input through Delphi surveys and a nominal group process. This report includes the summary statements for each research question and the nutrition management recommendations they generated. Each recommendation is followed by a standardized rating based on the strength of the evidence and consensus used. The application of technology to build the infrastructure for this project allowed transparency during development of this guideline and will be a foundation for future guidelines. Online open access of the full, published guideline allows utilization by health care providers, researchers, and collaborators who advise, advocate and care for individuals with MSUD and their families. There will be future updates as warranted by developments in research and clinical practice. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Nutrition of Tithonia diversifolia and attributes of the soil fertilized with biofertilizer in irrigated system

    Directory of Open Access Journals (Sweden)

    Matheus M. Reis

    Full Text Available ABSTRACT The fertilization with biofertilizer associated with the use of irrigation favors nutrient uptake by plants and soil chemical properties; however, these effects are little studied in Tithonia diversifolia in semiarid regions. This study evaluated the effect of doses of bovine biofertilizer and irrigation on accumulation of nutrients in the leaves of Tithonia diversifolia plants and on soil chemical attributes. The study was carried out from December 3, 2014 to November 28, 2015, and arranged in a 2 x 5 factorial scheme, consisting of five doses of bovine biofertilizer (0, 40, 80, 120 and 160 m3 ha-1, combined with and without irrigation. The experiment was set in a randomized block design, using three replicates. Irrigation promoted increased accumulation of N, P, K, Ca, Mg, S, Zn, Fe, Mn, Cu and B in leaves of Tithonia diversifolia in the first cutting. However, the high bicarbonate concentration in the irrigation water and the occurrence of rainfall during the second crop increased the accumulation of Cu in the leaves of Tithonia diversifolia under rainfed condition, compared with irrigated plants. The increase in biofertilizer doses contributed to the increment of base saturation and the contents of organic matter, P and K in soil.

  13. Sustainable agriculture, soil management and erosion from prehistoric times to 2100

    Science.gov (United States)

    Vanwalleghem, Tom; Gómez, Jose Alfonso; Infante Amate, Juan; González Molina, Manuel; Fernández, David Soto; Guzmán, Gema; Vanderlinden, Karl; Laguna, Ana; Giráldez, Juan Vicente

    2015-04-01

    The rational use of soil requires the selection of management practices to take profit of the beneficial functions of plant growth, water and nutrient storage, and pollutants removal by filtering and decomposition without altering its properties. However, the first evidence of important and widespread erosion peaks can generally be found with the arrival of the first farmers all over the world. In areas with a long land-use history such as the Mediterranean, clear signs indicating the advanced degradation status of the landscape, such as heavily truncated soils, are visible throughout. Soil conservation practices are then aimed at reducing erosion to geological rates, in equilibrium with long-term soil formation rates, while maximizing agricultural production. The adoption of such practices in most areas of the world are as old as the earliest soil erosion episodes themselves. This work firstly reviews historical evidence linking soil management and soil erosion intensity, with examples from N Europe and the Mediterranean. In particular, work by the authors in olive orchards will be presented that shows how significant variations in soil erosion rates between could be linked to the historical soil management. The potential of historical documents for calibrating a soil erosion model is shown as the model, in this case RUSLE-based and combining tillage and water erosion, adequately represents the measured erosion rate dynamics. Secondly, results from present-day, long-term farm experiments in the EU are reviewed to evaluate the effect of different soil management practices on physical soil properties, such as bulk density, penetration resistance, aggregate stability, runoff coefficient or sediment yield. Finally, we reflect upon model and field data that indicate how future global climate change is expected to affect soil management and erosion and how the examples used above hold clues about sustainable historical management practices that can be used successfully

  14. Effect of synthetic and natural water-absorbing soil amendments on photosynthesis characteristics and tuber nutritional quality of potato in a semi-arid region.

    Science.gov (United States)

    Xu, Shengtao; Zhang, Lei; McLaughlin, Neil B; Mi, Junzhen; Chen, Qin; Liu, Jinghui

    2016-02-01

    The effect of water-absorbing soil amendments on photosynthesis characteristics and tuber nutritional quality was investigated in a field experiment in a semi-arid region in northern China in 2010-2012. Treatments included two synthetic water-absorbing amendments, potassium polyacrylate (PAA) and polyacrylamide (PAM), and one natural amendment, humic acid (HA), both as single amendments and compound amendments (HA combined with PAA or PAM), and a no amendment control. Soil amendments had a highly significant effect (P ≤ 0.01) on photosynthesis characteristics, dry biomass, crop root/shoot (R/S) ratio and tuber nutritional quality. They improved both dry biomass above ground and dry biomass underground in the whole growing season by 4.6-31.2 and 1.1-83.1% respectively in all three years. Crop R/S ratio was reduced in the early growing season by 2.0-29.4% and increased in the later growing season by 2.3-32.6%. Soil amendments improved leaf soil plant analysis development value, net photosynthesis rate, stomatal conductance and transpiration rate by 1.4-17.0, 5.1-45.9, 2.4-90.6 and 2.0-22.6% respectively and reduced intercellular CO2 concentration by 2.1-19.5% in all three years. Amendment treatment with PAM + HA always had the greatest effect on photosynthesis characteristics and tuber nutritional quality among all amendment treatments and thus merits further research. © 2015 Society of Chemical Industry.

  15. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils

    International Nuclear Information System (INIS)

    Clarke, Lorraine Weller; Jenerette, G. Darrel; Bain, Daniel J.

    2015-01-01

    Heavy metals in urban soils can compromise human health, especially in urban gardens, where gardeners may ingest contaminated dust or crops. To identify patterns of urban garden metal contamination, we measured concentrations and bioavailability of Pb, As, and Cd in soils associated with twelve community gardens in Los Angeles County, CA. This included sequential extractions to partition metals among exchangeable, reducible, organic, or residual fractions. Proximity to road increased all metal concentrations, suggesting vehicle emissions sources. Reducible Pb increased with neighborhood age, suggesting leaded paint as a likely pollutant source. Exchangeable Cd and As both increased with road proximity. Only cultivated soils showed an increase in exchangeable As with road proximity, potentially due to reducing humic acid interactions while Cd bioavailability was mitigated by organic matter. Understanding the geochemical phases and metal bioavailability allows incorporation of contamination patterns into urban planning. - Highlights: • Road proximity, legacies, and management affect garden soil metal concentrations. • Soil near old houses had high reducible Pb, likely due to lead paint. • Pb, As, and Cd all increased with proximity to road. • As and Cd reacted with organic matter to become more or less bioavailable to crops. - Road proximity, legacies, and management affect garden soil metal concentrations. Soil near old houses had high reducible Pb due to lead paint, while all metals increased near the road

  16. Managing hyperglycaemia in patients with diabetes on enteral nutrition: the role of a specialized diabetes team.

    Science.gov (United States)

    Wong, V W; Manoharan, M; Mak, M

    2014-12-01

    Hyperglycaemia is commonly observed in patients with diabetes mellitus (DM) while receiving enteral nutrition (EN) in hospital, and hyperglycaemia has been shown to be associated with poor clinical outcomes. The aim of this study was to assess the glycaemic status of patients with DM who received EN during hospital admission and evaluate the impact of intervention by a specialist diabetes team (SDT) on glycaemic control and clinical outcomes of these patients. A retrospective review of patients with DM who required EN during hospital admission was conducted. We compared patient characteristics, glycaemic profile and clinical outcomes between patients who were managed by SDT and those who were managed by the admitting team. Seventy-four patients with DM on EN were included in this study, of whom 27 were managed by SDT while on EN. Compared with patients managed by the admitting team, those who were reviewed by SDT had better glycaemic control during the period of EN as well as during the 24 h after EN was ceased. These patients also had shorter length-of-stay in hospital and lower in-patient mortality. Our findings confirmed that there was a role for SDT in managing patients with DM who received EN during their hospital admission. These patients had improved glycaemic control while receiving EN and had better clinical outcomes. Further prospective studies will be required to validate the findings of this study.

  17. [Research progress and application prospect of near infrared spectroscopy in soil nutrition analysis].

    Science.gov (United States)

    Ding, Hai-quan; Lu, Qi-peng

    2012-01-01

    "Digital agriculture" or "precision agriculture" is an important direction of modern agriculture technique. It is the combination of the modern information technique and traditional agriculture and becomes a hotspot field in international agriculture research in recent years. As a nondestructive, real-time, effective and exact analysis technique, near infrared spectroscopy, by which precision agriculture could be carried out, has vast prospect in agrology and gradually gained the recognition. The present paper intends to review the basic theory of near infrared spectroscopy and its applications in the field of agrology, pointing out that the direction of NIR in agrology should based on portable NIR spectrograph in order to acquire qualitative or quantitative information from real-time measuring in field. In addition, NIRS could be combined with space remote sensing to macroscopically control the way crop is growing and the nutrition crops need, to change the current state of our country's agriculture radically.

  18. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    Science.gov (United States)

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  19. Soil-transmitted helminth infections and nutritional status in school-age children from rural communities in Honduras.

    Science.gov (United States)

    Sanchez, Ana Lourdes; Gabrie, Jose Antonio; Usuanlele, Mary-Theresa; Rueda, Maria Mercedes; Canales, Maritza; Gyorkos, Theresa W

    2013-01-01

    Soil-transmitted helminth (STH) infections are endemic in Honduras and efforts are underway to decrease their transmission. However, current evidence is lacking in regards to their prevalence, intensity and their impact on children's health. To evaluate the prevalence and intensity of STH infections and their association with nutritional status in a sample of Honduran children. A cross-sectional study was done among school-age children residing in rural communities in Honduras, in 2011. Demographic data was obtained, hemoglobin and protein concentrations were determined in blood samples and STH infections investigated in single-stool samples by Kato-Katz. Anthropometric measurements were taken to calculate height-for-age (HAZ), BMI-for-age (BAZ) and weight-for-age (WAZ) to determine stunting, thinness and underweight, respectively. Among 320 children studied (48% girls, aged 7-14 years, mean 9.76 ± 1.4) an overall STH prevalence of 72.5% was found. Children >10 years of age were generally more infected than 7-10 year-olds (p = 0.015). Prevalence was 30%, 67% and 16% for Ascaris, Trichuris and hookworms, respectively. Moderate-to-heavy infections as well as polyparasitism were common among the infected children (36% and 44%, respectively). Polyparasitism was four times more likely to occur in children attending schools with absent or annual deworming schedules than in pupils attending schools deworming twice a year (pHonduras and despite current efforts were highly prevalent in the studied community. The role of multiparasite STH infections in undermining children's nutritional status warrants more research.

  20. Integrated assessment of space, time, and management-related variability of soil hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Es, H.M. van; Ogden, C.B.; Hill, R.L.; Schindelbeck, R.R.; Tsegaye, T.

    1999-12-01

    Computer-based models that simulate soil hydrologic processes and their impacts on crop growth and contaminant transport depend on accurate characterization of soil hydraulic properties. Soil hydraulic properties have numerous sources of variability related to spatial, temporal, and management-related processes. Soil type is considered to be the dominant source of variability, and parameterization is typically based on soil survey databases. This study evaluated the relative significance of other sources of variability: spatial and temporal at multiple scales, and management-related factors. Identical field experiments were conducted for 3 yr. at two sites in New York on clay loam and silt loam soils, and at two sites in Maryland on silt loam and sandy loam soils, all involving replicated plots with plow-till and no-till treatments. Infiltrability was determined from 2054 measurements using parameters, and Campbell's a and b parameters were determined based on water-retention data from 875 soil cores. Variance component analysis showed that differences among the sites were the most important source of variability for a (coefficient of variation, CV = 44%) and b (CV = 23%). Tillage practices were the most important source of variability for infiltrability (CV = 10%). For all properties, temporal variability was more significant than field-scale spatial variability. Temporal and tillage effects were more significant for the medium- and fine-textured soils, and correlated to initial soil water conditions. The parameterization of soil hydraulic properties solely based on soil type may not be appropriate for agricultural lands since soil-management factors are more significant. Sampling procedures should give adequate recognition to soil-management and temporal processes at significant sources of variability to avoid biased results.

  1. Green Remediation Best Management Practices: Soil Vapor Extraction & Air Sparging

    Science.gov (United States)

    Historically, approximately one-quarter of Superfund source control projects have involved soil vapor extraction (SVE) to remove volatile organic compounds (VOCs) sorbed to soil in the unsaturated (vadose) zone.

  2. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Harden, Jennifer W.; Hugelius, Gustaf; Ahlstrom, Anders; Blankinship, Joseph; Bond-Lamberty, Benjamin; Lawrence, Corey; Loisel, Julie; Malhotra, Avni; Jackson, Robert B.; Ogle, S.M.; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine EO; Vargas, Rodrigo; Vergara, Sintana; Cotrufo, Francesca; Keiluweit, M.; Heckman, Katherine; Crow, Susan; Silver, Whendee; Delonge, Marcia; Nave, Lucas

    2018-02-01

    Over 75% of soil organic carbon (C) in the upper meter of earth’s terrestrial surface has been subjected to cropping, grazing, forestry, or urbanization. As a result, terrestrial C cycling cannot be studied out of land use context. Meanwhile, amendments by soil organic matter demonstrate reliable methodologies to restore and improve soils to a more productive state, therefore soil health and productivity cannot be understood without reference to soil C. Measurements for detecting changes in soil C are needed to constrain and monitor best practices and must reflect processes of C stabilization and destabilization over various timescales, soil types, and spatial scales in order to quantify C sequestration at regional to global scales. We have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil carbon and its management for sustained production and climate regulation.

  3. Nutrition management methods effective in increasing weight, survival time and functional status in ALS patients: a systematic review.

    Science.gov (United States)

    Kellogg, Jaylin; Bottman, Lindsey; Arra, Erin J; Selkirk, Stephen M; Kozlowski, Frances

    2018-02-01

    Poor prognosis and decreased survival time correlate with the nutritional status of patients with amyotrophic lateral sclerosis (ALS). Various studies were reviewed which assessed weight, body mass index (BMI), survival time and ALS functional rating scale revised (ALSFRS-R) in order to determine the best nutrition management methods for this patient population. A systematic review was conducted using CINAHL, Medline, and PubMed, and various search terms in order to determine the most recent clinical trials and observational studies that have been conducted concerning nutrition and ALS. Four articles met criteria to be included in the review. Data were extracted from these articles and were inputted into the Data Extraction Tool (DET) provided by the Academy of Nutrition and Dietetics (AND). Results showed that nutrition supplementation does promote weight stabilisation or weight gain in individuals with ALS. Given the low risk and low cost associated with intervention, early and aggressive nutrition intervention is recommended. This systematic review shows that there is a lack of high quality evidence regarding the efficacy of any dietary interventions for promoting survival in ALS or slowing disease progression; therefore more research is necessary related to effects of nutrition interventions.

  4. Effect of soil structures and nitrogen nutrition on yield and yield components of Barley: utilization of δC13 as an indicator of water deficit

    International Nuclear Information System (INIS)

    Wibawa, Gede; Menard, J.M.

    1995-01-01

    The objective of this study was to analyze the effect of combination between soil structures and nitrogen doses on the yield and its components. The treatments consisted of three soil structures: loose(O), block(B) and alternate between loose and compact(G) and five doses of nitrogen ranging from 0 to 200 kg/ha which were tested at TASS2, TASS3 and TASS4. Results showed that soil structures influenced nitrogen absorption and yield mainly through grain number/m2. The soil structure effect depends greatly on the climate. This study proved that carbon isotopic composition δC 1 3 related greatly to the carbon and water nutrition of the plant, therefore it can be used as an indicator of water deficit. (author), 17 refs, 2 tabs, 7 figs

  5. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils

    OpenAIRE

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Metadata only record The long-term effects of tillage system and residue management on soil organic carbon stabilization are studied in two tropical soils in Zimbabwe, a red clay and a sandy soil. The four tillage systems evaluated were conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR). Soil organic carbon (SOC) content was measured for each size fraction as well as total SOC. Based on the findings, the authors conclude that residue management - mainta...

  6. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Soil pH management without lime, a strategy to reduce greenhouse gas emissions from cultivated soils

    Science.gov (United States)

    Nadeem, Shahid; Bakken, Lars; Reent Köster, Jan; Tore Mørkved, Pål; Simon, Nina; Dörsch, Peter

    2015-04-01

    For decades, agricultural scientists have searched for methods to reduce the climate forcing of food production by increasing carbon sequestration in the soil and reducing the emissions of nitrous oxide (N2O). The outcome of this research is depressingly meagre and the two targets appear incompatible: efforts to increase carbon sequestration appear to enhance the emissions of N2O. Currently there is a need to find alternative management strategies which may effectively reduce both the CO2 and N2O footprints of food production. Soil pH is a master variable in soil productivity and plays an important role in controlling the chemical and biological activity in soil. Recent investigations of the physiology of denitrification have provided compelling evidence that the emission of N2O declines with increasing pH within the range 5-7. Thus, by managing the soil pH at a near neutral level appears to be a feasible way to reduce N2O emissions. Such pH management has been a target in conventional agriculture for a long time, since a near-neutral pH is optimal for a majority of cultivated plants. The traditional way to counteract acidification of agricultural soils is to apply lime, which inevitably leads to emission of CO2. An alternative way to increase the soil pH is the use of mafic rock powders, which have been shown to counteract soil acidification, albeit with a slower reaction than lime. Here we report a newly established field trail in Norway, in which we compare the effects of lime and different mafic mineral and rock powders (olivine, different types of plagioclase) on CO2 and N2O emissions under natural agricultural conditions. Soil pH is measured on a monthly basis from all treatment plots. Greenhouse gas (GHG) emission measurements are carried out on a weekly basis using static chambers and an autonomous robot using fast box technique. Field results from the first winter (fallow) show immediate effect of lime on soil pH, and slower effects of the mafic rocks. The

  8. Effects of golf course management on subsurface soil properties in Iowa

    Science.gov (United States)

    Streeter, Matthew T.; Schilling, Keith E.

    2018-05-01

    Currently, in the USA and especially in the Midwest region, urban expansion is developing turfgrass landscapes surrounding commercial sites, homes, and recreational areas on soils that have been agriculturally managed for decades. Often, golf courses are at the forefront of conversations concerning anthropogenic environmental impacts as they account for some of the most intensively managed soils in the world. Iowa golf courses provide an ideal location to evaluate whether golf course management is affecting the quality of soils at depth. Our study evaluated how soil properties relating to soil health and resiliency varied with depth at golf courses across Iowa and interpreted relationships of these properties to current golf course management, previous land use, and inherent soil properties. Systematic variation in soil properties including sand content, NO3, and soil organic matter (SOM) were observed with depth at six Iowa golf courses among three landform regions. Variability in sand content was identified between the 20 and 50 cm depth classes at all courses, where sand content decreased by as much as 37 %. Highest concentrations of SOM and NO3 were found in the shallowest soils, whereas total C and P variability was not related to golf course management. Sand content and NO3 were found to be directly related to golf course management, particularly at shallow depths. The effects of golf course management dissipated with depth and deeper soil variations were primarily due to natural geologic conditions. The two abovementioned soil properties were very noticeably altered by golf course management and may directly impact crop productivity, soil health, and water quality, and while NO3 may be altered relatively quickly in soil through natural processes, particle size of the soil may not be altered without extensive mitigation. Iowa golf courses continue to be developed in areas of land use change from historically native prairies and more recently agriculture to

  9. Study of microarthropod communities to assess soil quality in different managed vineyards

    Science.gov (United States)

    Gagnarli, Elena; Vignozzi, Nadia; Valboa, Giuseppe; Bouneb, Mabrouk; Corino, Lorenzo; Goggioli, Donatella; Guidi, Silvia; Lottero, Mariarosa; Tarchi, Franca; Simoni, Sauro

    2014-05-01

    Land use type influences the abundance and diversity of soil arthropods. The evaluation of the effects of different crop managements on soil quality is commonly requested; it can be pursued by means of the determination of communities' structure of edaphic fauna. The development and application of biological indices may represent an efficient mean to assess soil quality. We evaluated the effect of crop managements (organic and Integrated Pest Management-IPM) in some vineyards in Piedmont (Italy) on soil biota in relation to some physical and chemical characteristics of the soil. The study was performed in eleven sites, including seven organic and four IPM managed vineyards located in the Costigliole d'Asti area. Samplings were carried out during the winter 2011 and the spring 2012. Soil samples were collected using a cylindrical soil core sampler (3cm diameter x 30cm height): each sample was a cylindrical soil core which was equally subdivided to study arthropod communities at different depth ranges. Additional samples were collected and analyzed for the following soil physical and chemical properties: texture (sedigraph method), pH (1:2.5 soil/water), total organic carbon (TOC), total nitrogen (NT) and calcium carbonate (dry combustion by CN analyzer). The extraction of microarthropods was performed using the selector Berlese-Tullgren. All specimens were counted and determined up to the order level. The influence of soil properties and of agronomic practices on the abundance of mesofauna was evaluated by multivariate analysis (MANOVA). The biological soil quality was also defined through the determination of biotic indices such as the qualitative and quantitative QBSar (Quality Biological Soil - arthropods), and biodiversity indices such as species richness and indices of Shannon-Wiener (H') and Simpson (D). Overall, more than four thousands arthropods were collected and the highest abundance was in biological management with about 2:1 ratio (biological vs

  10. Soil Health Management under Hill Agroecosystem of North East India

    Directory of Open Access Journals (Sweden)

    R. Saha

    2012-01-01

    Full Text Available The deterioration of soil quality/health is the combined result of soil fertility, biological degradation (decline of organic matter, biomass C, decrease in activity and diversity of soil fauna, increase in erodibility, acidity, and salinity, and exposure of compact subsoil of poor physicochemical properties. Northeast India is characterized by high soil acidity/Al+3 toxicity, heavy soil, and carbon loss, severe water scarcity during most parts of year though it is known as high rainfall area. The extent of soil and nutrient transfer, causing environmental degradation in North eastern India, has been estimated to be about 601 million tones of soil, and 685.8, 99.8, 511.1, 22.6, 14.0, 57.1, and 43.0 thousand tones of N, P, K, Mn, Zn, Ca, and Mg, respectively. Excessive deforestation coupled with shifting cultivation practices have resulted in tremendous soil loss (200 t/ha/yr, poor soil physical health in this region. Studies on soil erodibility characteristics under various land use systems in Northeastern Hill (NEH Region depicted that shifting cultivation had the highest erosion ratio (12.46 and soil loss (30.2–170.2 t/ha/yr, followed by conventional agriculture system (10.42 and 5.10–68.20 t/ha/yr, resp.. The challenge before us is to maintain equilibrium between resources and their use to have a stable ecosystem. Agroforestry systems like agri-horti-silvi-pastoral system performed better over shifting cultivation in terms of improvement in soil organic carbon; SOC (44.8%, mean weight diameter; MWD (29.4%, dispersion ratio (52.9%, soil loss (99.3%, soil erosion ratio (45.9%, and in-situ soil moisture conservation (20.6% under the high rainfall, moderate to steep slopes, and shallow soil depth conditions. Multipurpose trees (MPTs also played an important role on soil rejuvenation. Michelia oblonga is reported to be a better choice as bioameliorant for these soils as continuous leaf litter and root exudates improved soil physical

  11. Soils newsletter. Vol. 28, no. 1, July 2005

    International Nuclear Information System (INIS)

    2005-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on Soil, Water and Nutrient Management and staff related news at the Soil and Water Management and Crop Nutrition Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  12. Soils newsletter. Vol. 29, no. 2, December 2006

    International Nuclear Information System (INIS)

    2006-12-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on Soil, Water and Nutrient Management and staff related news at the Soil and Water Management and Crop Nutrition Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  13. Soils newsletter. Vol. 28, no. 2, January 2006

    International Nuclear Information System (INIS)

    2006-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on Soil, Water and Nutrient Management and staff related news at the Soil and Water Management and Crop Nutrition Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  14. Soils newsletter. Vol. 29, no. 1, July 2006

    International Nuclear Information System (INIS)

    2006-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on Soil, Water and Nutrient Management and staff related news at the Soil and Water Management and Crop Nutrition Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  15. Soils newsletter. Vol. 30, no. 1, July 2007

    International Nuclear Information System (INIS)

    2007-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on Soil, Water and Nutrient Management and staff related news at the Soil and Water Management and Crop Nutrition Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  16. Soils newsletter. Vol. 26, no. 2, January 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on Soil, Water and Nutrient Management and staff related news at the Soil and Water Management and Crop Nutrition Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  17. Soils newsletter. Vol. 27, no. 2, December 2004

    International Nuclear Information System (INIS)

    2004-12-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on Soil, Water and Nutrient Management and staff related news at the Soil and Water Management and Crop Nutrition Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  18. Soils newsletter. Vol. 27, no. 1, June 2004

    International Nuclear Information System (INIS)

    2004-06-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on Soil, Water and Nutrient Management and staff related news at the Soil and Water Management and Crop Nutrition Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  19. A practical approach to the nutritional management of chronic kidney disease patients in Cape Town, South Africa.

    Science.gov (United States)

    Ameh, Oluwatoyin I; Cilliers, Lynette; Okpechi, Ikechi G

    2016-07-08

    The multi-racial and multi-ethnic population of South Africa has significant variation in their nutritional habits with many black South Africans undergoing a nutritional transition to Western type diets. In this review, we describe our practical approaches to the dietary and nutritional management of chronic kidney disease (CKD) patients in Cape Town, South Africa. Due to poverty and socio-economic constraints, significant challenges still exist with regard to achieving the nutritional needs and adequate dietary counselling of many CKD patients (pre-dialysis and dialysis) in South Africa. Inadequate workforce to meet the educational and counselling needs of patients, inability of many patients to effectively come to terms with changing body and metabolic needs due to ongoing kidney disease, issues of adherence to fluid and food restrictions as well as adherence to medications and in some cases the inability to obtain adequate daily food supplies make up some of these challenges. A multi-disciplinary approach (dietitians, nurses and nephrologists) of regularly reminding and educating patients on dietary (especially low protein diets) and nutritional needs is practiced. The South African Renal exchange list consisting of groups of food items with the same nutritional content has been developed as a practical tool to be used by dietitians to convert individualized nutritional prescriptions into meal plan to meet the nutritional needs of patients in South Africa. The list is currently utilized in counselling CKD patients and provides varied options for food items within the same group (exchangeable) as well as offering ease for the description of suitable meal portions (sizes) to our patients. Regular and continuous education of CKD patients by a multi-disciplinary team in South Africa enables our patients to meet their nutritional goals and retard CKD progression. The South African renal exchange list has proved to be a very useful tool in meeting this need.

  20. Nutritional management and follow up of infants and children with food allergy: Italian Society of Pediatric Nutrition/Italian Society of Pediatric Allergy and Immunology Task Force Position Statement.

    Science.gov (United States)

    Giovannini, Marcello; D'Auria, Enza; Caffarelli, Carlo; Verduci, Elvira; Barberi, Salvatore; Indinnimeo, Luciana; Iacono, Iride Dello; Martelli, Alberto; Riva, Enrica; Bernardini, Roberto

    2014-01-03

    Although the guidelines on the diagnosis and treatment of food allergy recognize the role of nutrition, there is few literature on the practical issues concerning the nutritional management of children with food allergies. This Consensus Position Statement focuses on the nutritional management and follow-up of infants and children with food allergy.It provides practical advices for the management of children on exclusion diet and it represents an evidence-based consensus on nutritional intervention and follow-up of infants and children with food allergy. Children with food allergies have poor growth compared to non-affected subjects directly proportional to the quantity of foods excluded and the duration of the diet. Nutritional intervention, if properly planned and properly monitored, has proven to be an effective mean to substantiate a recovery in growth. Nutritional intervention depends on the subject's nutritional status at the time of the diagnosis. The assessment of the nutritional status of children with food allergies should follow a diagnostic pathway that involves a series of successive steps, beginning from the collection of a detailed diet-history. It is essential that children following an exclusion diet are followed up regularly. The periodic re-evaluation of the child is needed to assess the nutritional needs, changing with the age, and the compliance to the diet. The follow- up plan should be established on the basis of the age of the child and following the growth pattern.

  1. Soil and Crop management: Lessons from the laboratory biosphere 2002-2004

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation with "Hoyt" Soy Beans, USU Apogee Wheat and TU-82-155 sweet potato using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching and returning crop residues to the soil after each experiment. Between experiment #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. Soil analyses for all three experiments are presented to show how the soils have changed with time and how the changes relate to crop selection and rotation, soil selection and management, water management and pest control. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth facility.

  2. Assessment and management of nutrition in older people and its importance to health.

    Science.gov (United States)

    Ahmed, Tanvir; Haboubi, Nadim

    2010-08-09

    Nutrition is an important element of health in the older population and affects the aging process. The prevalence of malnutrition is increasing in this population and is associated with a decline in: functional status, impaired muscle function, decreased bone mass, immune dysfunction, anemia, reduced cognitive function, poor wound healing, delayed recovery from surgery, higher hospital readmission rates, and mortality. Older people often have reduced appetite and energy expenditure, which, coupled with a decline in biological and physiological functions such as reduced lean body mass, changes in cytokine and hormonal level, and changes in fluid electrolyte regulation, delay gastric emptying and diminish senses of smell and taste. In addition pathologic changes of aging such as chronic diseases and psychological illness all play a role in the complex etiology of malnutrition in older people. Nutritional assessment is important to identify and treat patients at risk, the Malnutrition Universal Screening Tool being commonly used in clinical practice. Management requires a holistic approach, and underlying causes such as chronic illness, depression, medication and social isolation must be treated. Patients with physical or cognitive impairment require special care and attention. Oral supplements or enteral feeding should be considered in patients at high risk or in patients unable to meet daily requirements.

  3. Skin Lesions Associated with Nutritional Management of Maple Syrup Urine Disease

    Directory of Open Access Journals (Sweden)

    Jaraspong Uaariyapanichkul

    2017-01-01

    Full Text Available Introduction. Maple syrup urine disease (MSUD is an inborn error of branched chain amino acids (BCAAs metabolism. We report an infant with MSUD who developed 2 episodes of cutaneous lesions as a result of isoleucine deficiency and zinc deficiency, respectively. Case Presentation. A 12-day-old male infant was presented with poor milk intake and lethargy. The diagnosis of MSUD was made based on clinical and biochemical data. Management and Outcome. Specific dietary restriction of BCAAs was given. Subsequently, natural protein was stopped as the patient developed hospital-acquired infections which resulted in an elevation of BCAAs. Acrodermatitis dysmetabolica developed and was confirmed to be from isoleucine deficiency. At the age of 6 months, the patient developed severe lethargy and was on natural protein exclusion for an extended period. Despite enteral supplementation of zinc sulfate, cutaneous manifestations due to zinc deficiency occurred. Discussion. Skin lesions in MSUD patients could arise from multiple causes. Nutritional deficiency including isoleucine and zinc deficiencies can occur and could complicate the treatment course as a result of malabsorption, even while on enteral supplementation. Parenteral nutrition should be considered and initiated accordingly. Clinical status, as well as BCAA levels, should be closely monitored in MSUD patients.

  4. Soil carbon under perennial pastures; benchmarking the influence of pasture age and management

    Science.gov (United States)

    Orgill, Susan E.; Spoljaric, Nancy; Kelly, Georgina

    2015-07-01

    This paper reports baseline soil carbon stocks from a field survey of 19 sites; 8 pairs/triplet in the Monaro region of New South Wales. Site comparisons were selected by the Monaro Farming Systems group to demonstrate the influence of land management on soil carbon, and included: nutrient management, liming, pasture age and cropping history. Soil carbon stocks varied with parent material and with land management. The fertilised (phosphorus) native perennial pasture had a greater stock of soil carbon compared with the unfertilised site; 46.8 vs 40.4 Mg.C.ha to 0.50 m. However, the introduced perennial pasture which had been limed had a lower stock of soil carbon compared with the unlimed site; 62.8 vs 66.7 Mg.C.ha to 0.50 m. There was a greater stock of soil carbon under two of the three younger (35 yr old) pastures. Cropped sites did not have lower soil carbon stocks at all sites; however, this survey was conducted after three years of above average annual rainfall and most sites had been cropped for less than three years. At all sites more than 20% of the total carbon stock to 0.50 m was in the 0.30 to 0.50 m soil layer highlighting the importance of considering this soil layer when investigating the implications of land management on soil carbon. Our baseline data indicates that nutrient management may increase soil carbon under perennial pastures and highlights the importance of perennial pastures for soil carbon sequestration regardless of age.

  5. Effects of 10-Year Management Regimes on the Soil Seed Bank in Saline-Alkaline Grassland

    Science.gov (United States)

    Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K. J.

    2015-01-01

    Background Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. Methodology We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. Principal Findings Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). Conclusions Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target

  6. Soil mapping and process modeling for sustainable land use management: a brief historical review

    Science.gov (United States)

    Brevik, Eric C.; Pereira, Paulo; Muñoz-Rojas, Miriam; Miller, Bradley A.; Cerdà, Artemi; Parras-Alcántara, Luis; Lozano-García, Beatriz

    2017-04-01

    Basic soil management goes back to the earliest days of agricultural practices, approximately 9,000 BCE. Through time humans developed soil management techniques of ever increasing complexity, including plows, contour tillage, terracing, and irrigation. Spatial soil patterns were being recognized as early as 3,000 BCE, but the first soil maps didn't appear until the 1700s and the first soil models finally arrived in the 1880s (Brevik et al., in press). The beginning of the 20th century saw an increase in standardization in many soil science methods and wide-spread soil mapping in many parts of the world, particularly in developed countries. However, the classification systems used, mapping scale, and national coverage varied considerably from country to country. Major advances were made in pedologic modeling starting in the 1940s, and in erosion modeling starting in the 1950s. In the 1970s and 1980s advances in computing power, remote and proximal sensing, geographic information systems (GIS), global positioning systems (GPS), and statistics and spatial statistics among other numerical techniques significantly enhanced our ability to map and model soils (Brevik et al., 2016). These types of advances positioned soil science to make meaningful contributions to sustainable land use management as we moved into the 21st century. References Brevik, E., Pereira, P., Muñoz-Rojas, M., Miller, B., Cerda, A., Parras-Alcantara, L., Lozano-Garcia, B. Historical perspectives on soil mapping and process modelling for sustainable land use management. In: Pereira, P., Brevik, E., Muñoz-Rojas, M., Miller, B. (eds) Soil mapping and process modelling for sustainable land use management (In press). Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. 2016. Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274.

  7. The effect of different water managements on rice arsenic content in two arsenic-spiked soils

    Directory of Open Access Journals (Sweden)

    Chang H. Y.

    2013-04-01

    Full Text Available Growing rice on arsenic (As-contaminated paddy fields may induce high As level grain production. In order to reduce the food contamination risk, the pot experiments containing two As-spiked aging soils and four water managements were conducted to evaluate the effects of water managements on rice As content. The results indicated that As concentration of Erlin soil solution was 10 to 20 times (210-520 μg/L higher than that of Pinchen soil solution (5-20 μg/L at early stage of experiment (0-60 days. Aerobic water treatment will decrease As level to 30-50% (108-220 μg/L of original As concentration in Erlin soil solution. Statistic results indicated that water management was effective to reduce the rice grain As level in Erlin soil. However, the management impact was not obvious in Pinchen soil, which may be attributed to high clay or free Fe and Al content in the soil. This study suggested that keeping soil under aerobic condition for 3 weeks before rice heading can reduce the risk of rice grown at the As-contamination soil.

  8. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies.

    Science.gov (United States)

    Hu, Wenyou; Zhang, Yanxia; Huang, Biao; Teng, Ying

    2017-03-01

    Greenhouse vegetable production (GVP) has become an important source of public vegetable consumption and farmers' income in China. However, various pollutants can be accumulated in GVP soils due to the high cropping index, large agricultural input, and closed environment. Ecological toxicity caused by excessive pollutants' accumulation can then lead to serious health risks. This paper was aimed to systematically review the current status of soil environmental quality, analyze their impact factors, and consequently to propose integrated management strategies for GVP systems. Results indicated a decrease in soil pH, soil salinization, and nutrients imbalance in GVP soils. Fungicides, remaining nutrients, antibiotics, heavy metals, and phthalate esters were main pollutants accumulating in GVP soils comparing to surrounding open field soils. Degradation of soil ecological function, accumulation of major pollutants in vegetables, deterioration of neighboring water bodies, and potential human health risks has occurred due to the changes of soil properties and accumulation of pollutants such as heavy metals and fungicides in soils. Four dominant factors were identified leading to the above-mentioned issues including heavy application of agricultural inputs, outmoded planting styles with poor environmental protection awareness, old-fashion regulations, unreasonable standards, and ineffective supervisory management. To guarantee a sustainable GVP development, several strategies were suggested to protect and improve soil environmental quality. Implementation of various strategies not only requires the concerted efforts among different stakeholders, but also the whole lifecycle assessment throughout the GVP processes as well as effective enforcement of policies, laws, and regulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of Soil Management Practices on Water Erosion under Natural Rainfall Conditions on a Humic Dystrudept

    Directory of Open Access Journals (Sweden)

    Vinicius Ferreira Chaves de Souza

    Full Text Available ABSTRACT Water erosion is the main cause of soil degradation and is influenced by rainfall, soil, topography, land use, soil cover and management, and conservation practices. The objective of this study was to quantify water erosion in a Humic Dystrudept in two experiments. In experiment I, treatments consisted of different rates of fertilizer applied to the soil surface under no-tillage conditions. In experiment II, treatments consisted of a no-tillage in natural rangeland, burned natural rangeland and natural rangeland. Forage turnip, black beans, common vetch, and corn were used in rotation in the treatments with crops in the no-tillage during study period. The treatments with crops and the burned rangeland and natural rangeland were compared to a bare soil control, without cultivation and without fertilization. Increasing fertilization rates increased organic carbon content, soil resistance to disintegration, and the macropore volume of the soil, due to the increase in the dry mass of the crops, resulting in an important reduction in water erosion. The exponential model of the ŷ = ae-bx type satisfactorily described the reduction in water and soil losses in accordance with the increase in fertilization rate and also described the decrease in soil losses in accordance with the increase in dry mass of the crops. Water erosion occurred in the following increasing intensity: in natural rangeland, in cultivated natural rangeland, and in burned natural rangeland. Water erosion had less effect on water losses than on soil losses, regardless of the soil management practices.

  10. Soil management and conservation in the Prince of Songkla University, Surat Thani Campus, Surat Thani Province

    Directory of Open Access Journals (Sweden)

    Choengthong, S.

    2007-01-01

    Full Text Available The purposes of this study were to analyze soil properties and to find out a suitable soil conservation method for soil management in Surat Thani campus,Prince of Songkla University.Land in the area was dividedinto plots depending on different land use. Soil samples were collected from each plot and were analyzed for soil properties. The results from soil analysis revealed that soils in Surat Thani campus had pH between 4.53- 7.62. The quantitative levels of soil total N, available P and exchangeable K were low. Also the quantitative levels of Ca, Mg and S were low. Moreover, the quantitative levels of organic matter were low between 4.6-9.9gkg-1. There was no salty effect as the electrical conductivities (EC were low between 6.8 - 26.4 μS/cm. Furthermore, the cation exchange capacities (CEC were low, between 1.65 - 2.78 cmolckg-1 . In conclusion, soil inSurat Thani campus, Prince of Songkla University, had soil nutrients lower than those needed for plant growth and development. Therefore, there is a need for application of fertilizer to obtain good plant growth.Soil conservation experiment was done by studying soil loss from a control plot (no cover crop compared with the ones growing Peuraria phaseoloides , Wedelia trilobata and Vetiveria zizanioides. The results revealed that Peuraria phaseoloides was suitable to grow as cover crop for controlling soil erosion.Peurariacould reduce soil loss up to 87% compared to those with bare soil. Wedelia trilobata(Creeping daisy and Vetiveria zizanioides could reduce soil loss about 55% and 30 % respectively. In order to reduce soilleaching that can be as high as 38 kg from an area of only 8 m2, soil protection method by growing Peuraria phaseoloides, or Weddelia trilobata on sloping and bare land are highly recommended.

  11. Yields and Nutritional of Greenhouse Tomato in Response to Different Soil Aeration Volume at two depths of Subsurface drip irrigation

    Science.gov (United States)

    Li, Yuan; Niu, Wenquan; Dyck, Miles; Wang, Jingwei; Zou, Xiaoyang

    2016-01-01

    This study investigated the effects of 4 aeration levels (varied by injection of air to the soil through subsurface irrigation lines) at two subsurface irrigation line depths (15 and 40 cm) on plant growth, yield and nutritional quality of greenhouse tomato. In all experiments, fruit number, width and length, yield, vitamin C, lycopene and sugar/acid ratio of tomato markedly increased in response to the aeration treatments. Vitamin C, lycopene, and sugar/acid ratio increased by 41%, 2%, and 43%, respectively, in the 1.5 times standard aeration volume compared with the no-aeration treatment. An interaction between aeration level and depth of irrigation line was also observed with yield, fruit number, fruit length, vitamin C and sugar/acid ratio of greenhouse tomato increasing at each aeration level when irrigation lines were placed at 40 cm depth. However, when the irrigation lines were 15 cm deep, the trend of total fruit yields, fruit width, fruit length and sugar/acid ratio first increased and then decreased with increasing aeration level. Total soluble solids and titrable acid decreased with increasing aeration level both at 15 and 40 cm irrigation line placement. When all of the quality factors, yields and economic benefit are considered together, the combination of 40 cm line depth and “standard” aeration level was the optimum combination. PMID:27995970

  12. Soil mapping and processes modelling for sustainable land management: a review

    Science.gov (United States)

    Pereira, Paulo; Brevik, Eric; Muñoz-Rojas, Miriam; Miller, Bradley; Smetanova, Anna; Depellegrin, Daniel; Misiune, Ieva; Novara, Agata; Cerda, Artemi

    2017-04-01

    Soil maps and models are fundamental for a correct and sustainable land management (Pereira et al., 2017). They are an important in the assessment of the territory and implementation of sustainable measures in urban areas, agriculture, forests, ecosystem services, among others. Soil maps represent an important basis for the evaluation and restoration of degraded areas, an important issue for our society, as consequence of climate change and the increasing pressure of humans on the ecosystems (Brevik et al. 2016; Depellegrin et al., 2016). The understanding of soil spatial variability and the phenomena that influence this dynamic is crucial to the implementation of sustainable practices that prevent degradation, and decrease the economic costs of soil restoration. In this context, soil maps and models are important to identify areas affected by degradation and optimize the resources available to restore them. Overall, soil data alone or integrated with data from other sciences, is an important part of sustainable land management. This information is extremely important land managers and decision maker's implements sustainable land management policies. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. References Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. (2016) Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274. Depellegrin, D.A., Pereira, P., Misiune, I., Egarter-Vigl, L. (2016) Mapping Ecosystem Services in Lithuania. International Journal of Sustainable Development and World Ecology, 23, 441-455. Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B., Smetanova, A., Depellegrin, D., Misiune, I., Novara, A., Cerda, A. (2017) Soil mapping and process modelling for sustainable land management. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B

  13. Nutritional Management of Insulin Resistance in Nonalcoholic Fatty Liver Disease (NAFLD

    Directory of Open Access Journals (Sweden)

    Judith Wylie-Rosett

    2013-10-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is an emerging global health concern. It is the most common form of chronic liver disease in Western countries, affecting both adults and children. NAFLD encompasses a broad spectrum of fatty liver disease, ranging from simple steatosis (NAFL to nonalcoholic steatohepatitis (NASH, and is strongly associated with obesity, insulin resistance, and dyslipidemia. First-line therapy for NAFLD includes weight loss achieved through diet and physical activity. However, there is a lack of evidenced-based dietary recommendations. The American Diabetes Association’s (ADA recommendations that aim to reduce the risk of diabetes and cardiovascular disease may also be applicable to the NAFLD population. The objectives of this review are to: (1 provide an overview of NAFLD in the context of insulin resistance, and (2 provide a rationale for applying relevant aspects of the ADA recommendations to the nutritional management of NAFLD.

  14. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model].

    Science.gov (United States)

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan

    2002-08-01

    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  15. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management

    Science.gov (United States)

    Birnkrant, David J; Bushby, Katharine; Bann, Carla M; Apkon, Susan D; Blackwell, Angela; Brumbaugh, David; Case, Laura E; Clemens, Paula R; Hadjiyannakis, Stasia; Pandya, Shree; Street, Natalie; Tomezsko, Jean; Wagner, Kathryn R; Ward, Leanne M; Weber, David R

    2018-01-01

    Since the publication of the Duchenne muscular dystrophy (DMD) care considerations in 2010, multidisciplinary care of this severe, progressive neuromuscular disease has evolved. In conjunction with improved patient survival, a shift to more anticipatory diagnostic and therapeutic strategies has occurred, with a renewed focus on patient quality of life. In 2014, a steering committee of experts from a wide range of disciplines was established to update the 2010 DMD care considerations, with the goal of improving patient care. The new care considerations aim to address the needs of patients with prolonged survival, to provide guidance on advances in assessments and interventions, and to consider the implications of emerging genetic and molecular therapies for DMD. The committee identified 11 topics to be included in the update, eight of which were addressed in the original care considerations. The three new topics are primary care and emergency management, endocrine management, and transitions of care across the lifespan. In part 1 of this three-part update, we present care considerations for diagnosis of DMD and neuromuscular, rehabilitation, endocrine (growth, puberty, and adrenal insufficiency), and gastrointestinal (including nutrition and dysphagia) management. PMID:29395989

  16. Nutritional and Weight-Management Behaviors in Low-Income Women Trying to Conceive

    Science.gov (United States)

    Berenson, Abbey B.; Pohlmeier, Ali M.; Laz, Tabassum H.; Rahman, Mahbubur; McGrath, Christine J.

    2014-01-01

    Objective To evaluate the nutritional habits and weight management strategies of women trying to conceive as compared to women not trying to conceive. Methods This was a cross-sectional survey of health behaviors including nutritional habits and weight management strategies of women aged 16–40 years who were low-income, racially diverse, (n=1,711) and attending reproductive health clinics. Multivariable logistic regression analyses were performed to examine the association between pregnancy intention and various health behaviors after adjusting for demographic variables, gravidity, and obesity status. Results At total of 8.9% (n=153) of the participants stated they were trying to get pregnant. Women trying to conceive were more likely than those not trying to have participated in a number of unhealthy weight loss practices in the past year. These included taking diet pills, supplements or herbs (13.5% vs. 8.8%; adjusted odds ratio (aOR) 1.97, 95% confidence interval (CI) 1.11–3.49;), using laxatives or diuretics or inducing vomiting (7.7% vs. 3.0%; aOR 2.70, CI 1.23–5.91;), and fasting for 24 hours (10.7% vs. 5.5%; aOR 2.15, CI 1.03–4.51;). There were no significant differences between the two groups in amount of exercise, current smoking status or current alcohol consumption Further, fruit, green salad and other vegetables, and intake of soda and fast food were unrelated to pregnancy intention. Conclusion This study highlights that women trying to conceive are more likely to participate in unhealthy and potentially dangerous weight loss practices than women not trying to conceive. PMID:25162259

  17. Nutritional and weight management behaviors in low-income women trying to conceive.

    Science.gov (United States)

    Berenson, Abbey B; Pohlmeier, Ali M; Laz, Tabassum H; Rahman, Mahbubur; McGrath, Christine J

    2014-09-01

    To evaluate the nutritional habits and weight management strategies of women trying to conceive as compared with women not trying to conceive. This was a cross-sectional survey of health behaviors including nutritional habits and weight management strategies of women aged 16-40 years who were low income, racially diverse, (n=1,711), and attending reproductive health clinics. Multivariable logistic regression analyses were performed to examine the association between pregnancy intention and various health behaviors after adjusting for demographic variables, gravidity, and obesity status. A total of 8.9% (n=153) of the participants stated they were trying to get pregnant. Women trying to conceive were more likely than those not trying to have participated in a number of unhealthy weight loss practices in the past year. These included taking diet pills, supplements, or herbs (13.5% compared with 8.8%; adjusted odds ratio [OR] 1.97, 95% confidence interval [CI] 1.11-3.49), using laxatives or diuretics or inducing vomiting (7.7% compared with 3.0%; adjusted OR 2.70, CI 1.23-5.91), and fasting for 24 hours (10.7% compared with 5.5%; adjusted OR 2.15, CI 1.03-4.51). There were no significant differences between the two groups in amount of exercise, current smoking status, or current alcohol consumption Furthermore, fruit, green salad and other vegetables, and intake of soda and fast food were unrelated to pregnancy intention. This study highlights that women trying to conceive are more likely to participate in unhealthy and potentially dangerous weight loss practices than women not trying to conceive. II.

  18. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    Science.gov (United States)

    Mueller-Niggemann, Cornelia; Rahayu Utami, Sri; Marxen, Anika; Mangelsdorf, Kai; Bauersachs, Thorsten; Schwark, Lorenz

    2016-03-01

    Rice paddies constitute almost a fifth of global cropland and provide more than half of the world's population with staple food. At the same time, they are a major source of methane and therewith significantly contribute to the current warming of Earth's atmosphere. Despite their apparent importance in the cycling of carbon and other elements, however, the microorganisms thriving in rice paddies are insufficiently characterized with respect to their biomolecules. Hardly any information exists on human-induced alteration of biomolecules from natural microbial communities in paddy soils through varying management types (affecting, e.g., soil or water redox conditions, cultivated plants). Here, we determined the influence of different land use types on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs), which serve as molecular indicators for microbial community structures, in rice paddy (periodically flooded) and adjacent upland (non-flooded) soils and, for further comparison, forest, bushland and marsh soils. To differentiate local effects on GDGT distribution patterns, we collected soil samples in locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general, upland soil had higher crenarchaeol contents than paddy soil, which by contrast was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio, indicating the enhanced presence of methanogenic archaea, was 3-27 times higher in paddy soils compared to other soils and increased with the number of rice cultivation cycles per year. The index of tetraethers consisting of 86 carbons (TEX86) values were 1.3 times higher in upland, bushland and forest soils than in paddy soils, potentially due to differences in soil temperature. In all soils br

  19. Comparative evaluation of the effect of rock phosphate and monoammonium phosphate on plant P: Nutrition in Sod-podzolic and peat soils

    International Nuclear Information System (INIS)

    Bogdevitch, I.; Tarasiuk, S.; Putyatin, Yu.; Seraya, T.

    2002-01-01

    The direct application of finely ground rock phosphate (RP) imported from Russia has been suggested as an alternative to the almost twice more expensive water-soluble monoammonium phosphate (MAP) on acid (moderately limed) Sod-podzolic and peat soils. A pot experiment was conducted in 1997-1998 for a comparative evaluation of P availability from RP and MAP using the 32 P isotope dilution technique. The lupine was grown on Sod-podzolic silty clay loam soil with pH 6.0 and a medium level of available P. Ryegrass plants were grown on peat soil with pH 4.9 and a low level of native soil P fertility. Application of RP and MAP at a rate of 40 mg P/kg soil supplied similar moderate mount of P to lupine plants. The Pdff values, i.e. the fractions of P in the plants derived from the applied RP and MAP, were 7.4 and 8.4%, respectively. The application of the same P fertilizers to the peat soil had different effects on P nutrition of ryegrass plants. The Pdff values were 14.9% for RP and 22.1% for MAP. It may be concluded that for most annual crops water-soluble P forms such as MAP should be preferred. Direct application of RP is recommended for plants with an adequate rhizosphere ability to utilize P, such as lupine on acid Sod-podzolic silty clay loam soils (pH 137 Cs on contaminated, moderately limed Sod-podzolic silty clay loam and peat soils. These soils are widely spread in the radioactive contaminated area of Belarus after the Chernobyl accident. Direct application of RP may be one of the effective countermeasures for the decrease of 137 Cs transfer from the contaminated acid soils to crop production. (author)

  20. Soil management and application of agricultural gypsum in a Planosol for soybean cultivation

    OpenAIRE

    Marchesan, Enio; Tonetto, Felipe; Teló, Gustavo Mack; Coelho, Lucas Lopes; Aramburu, Bruno Behenck; Trivisiol, Vinicius Severo

    2017-01-01

    ABSTRACT: This study investigated the effects of soil management systems, tillage, and application of gypsum agricultural to soil, on soybean development in lowland areas. The experiment was carried out on an Alfisol in a randomized complete block design in a factorial arrangement. The two soil tillage practices were without deep tillage and with deep tillage. Gypsum treatments were no gypsum application, 500kg of gypsum ha-1, 1000kg of gypsum ha-1, and 1500kg of gypsum ha-1. Deep tillage res...

  1. Long-term effects of conservation soil management in Saria, Burkina Faso, West Africa

    OpenAIRE

    Zacharie, Z.

    2011-01-01

    The negative degradation spiral that currently leads to deteriorating soil properties in African drylands is a serious problem that limits food production and threatensthe livelihoods of the people. Nutrient depletion and water and wind erosion are the main factors in soil degradation in Africa. This thesis describes field research conducted from 2006 through 2008 to assess how changes in physical and hydrological soil properties, induced by differences in land management and macro-faunal bi...

  2. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Science.gov (United States)

    2012-01-01

    Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use

  3. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems.

    Science.gov (United States)

    Rachid, Caio T C C; Piccolo, Marisa C; Leite, Deborah Catharine A; Balieiro, Fabiano C; Coutinho, Heitor Luiz C; van Elsas, Jan Dirk; Peixoto, Raquel S; Rosado, Alexandre S

    2012-08-08

    Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under

  4. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Directory of Open Access Journals (Sweden)

    Rachid Caio TCC

    2012-08-01

    Full Text Available Abstract Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane, next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA and denitrifying (nirK genes, greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil

  5. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity

    OpenAIRE

    Pulleman, M M; Six, J; van Breemen, N; Jongmans, A G

    2005-01-01

    Stable microaggregates can physically protect occluded soil organic matter (SOM) against decomposition. We studied the effects of agricultural management on the amount and characteristics of microaggregates and on SOM distribution in a marine loam soil in the Netherlands. Three long-term farming systems were compared: a permanent pasture, a conventional-arable system and an organic-arable system. Whole soil samples were separated into microaggregates (53-250 mu m), 20-53 mu m and 20 mu m) ve...

  6. Environmental and management influences on temporal variability of near saturated soil hydraulic properties.

    Science.gov (United States)

    Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P

    2013-08-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (- 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r 2  = 0.43 to 0.59). Our results suggested that beside considering average

  7. Long-Term Soil Experiments: A Key to Managing Earth's Rapidly Changing Critical Zones

    Science.gov (United States)

    Richter, D., Jr.

    2014-12-01

    In a few decades, managers of Earth's Critical Zones (biota, humans, land, and water) will be challenged to double food and fiber production and diminish adverse effects of management on the wider environment. To meet these challenges, an array of scientific approaches is being used to increase understanding of Critical Zone functioning and evolution, and one amongst these approaches needs to be long-term soil field studies to move us beyond black boxing the belowground Critical Zone, i.e., to further understanding of processes driving changes in the soil environment. Long-term soil experiments (LTSEs) provide direct observations of soil change and functioning across time scales of decades, data critical for biological, biogeochemical, and environmental assessments of sustainability; for predictions of soil fertility, productivity, and soil-environment interactions; and for developing models at a wide range of temporal and spatial scales. Unfortunately, LTSEs globally are not in a good state, and they take years to mature, are vulnerable to loss, and even today remain to be fully inventoried. Of the 250 LTSEs in a web-based network, results demonstrate that soils and belowground Critical Zones are highly dynamic and responsive to human management. The objective of this study is to review the contemporary state of LTSEs and consider how they contribute to three open questions: (1) can soils sustain a doubling of food production in the coming decades without further impinging on the wider environment, (2) how do soils interact with the global C cycle, and (3) how can soil management establish greater control over nutrient cycling. While LTSEs produce significant data and perspectives for all three questions, there is on-going need and opportunity for reviews of the long-term soil-research base, for establishment of an efficiently run network of LTSEs aimed at sustainability and improving management control over C and nutrient cycling, and for research teams that

  8. Phosphorus fertilization in sugarcane cultivation under different soil managements

    OpenAIRE

    Sousa Junior, Paulo R. de; Brunharo, Caio A. C. G.; Furlani, Carlos E. A.; Prado, Renato de M.; Maldonado Júnior, Walter; Zerbato, Cristiano

    2017-01-01

    ABSTRACT Soil preparation along with its chemical adjustment is the most important step in sugarcane plantation, especially because it provides proper conditions for plant development. The objective of the present research was to evaluate sugarcane response to the application of different phosphorus doses and their location, associated with both minimum soil tillage and conventional soil tillage. The experiment was conducted in a split-split-plot randomized block design, where the main plots ...

  9. Effects of different soil management practices on soil properties and microbial diversity

    Science.gov (United States)

    Gajda, Anna M.; Czyż, Ewa A.; Dexter, Anthony R.; Furtak, Karolina M.; Grządziel, Jarosław; Stanek-Tarkowska, Jadwiga

    2018-01-01

    The effects of different tillage systems on the properties and microbial diversity of an agricultural soil was investigated. In doing so, soil physical, chemical and biological properties were analysed in 2013-2015, on a long-term field experiment on a loamy sand at the IUNG-PIB Experimental Station in Grabów, Poland. Winter wheat was grown under two tillage treatments: conventional tillage using a mouldboard plough and traditional soil tillage equipment, and reduced tillage based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as a mulch on both treatments. Reduced tillage resulted in increased water content throughout the whole soil profile, in comparison with conventional tillage. Under reduced tillage, the content of readily dispersible clay was also reduced, and, therefore, soil stability was increased in the toplayers, compared with conventional tillage. In addition, the beneficial effects of reduced tillage were reflected in higher soil microbial activity as measured with dehydrogenases and hydrolysis of fluorescein diacetate, compared with conventional tillage. Moreover, the polimerase chain reaction - denaturing gradient gel electrophoresis analysis showed that soil under reduced till-age had greater diversity of microbial communities, compared with conventionally-tilled soil. Finally, reduced tillage increased organic matter content, stability in water and microbial diversity in the top layer of the soil.

  10. Litter quality as driving factor for plant nutrition via grazing of protozoa on soil microorganisms.

    Science.gov (United States)

    Koller, Robert; Robin, Christophe; Bonkowski, Michael; Ruess, Liliane; Scheu, Stefan

    2013-08-01

    Plant residues provide a major source of nitrogen (N) for plant growth. Litter N mineralization varies with litter carbon-to-nitrogen (C-to-N) ratio and presence of bacterial-feeding fauna. We assessed the effect of amoebae, major bacterial feeders in soil, on mineralization of litter of low (high quality) and high C-to-N ratio (low quality) and evaluated consequences for plant growth. We used stable isotopes to determine plant N uptake from litter and plant C partitioning. Stable isotope probing of phospholipid fatty acids was used to follow incorporation of plant C into microorganisms. Amoebae increased plant N uptake independent of litter quality and thereby the biomass of shoots and roots by 33% and 66%, respectively. Plant allocation of total (13)C to roots in low (42%) exceeded that of high-quality litter treatments (26%). Amoebae increased plant allocation of (13)C to roots by 37%. Microbial community structure and incorporation of (13)C into PLFAs varied significantly with litter quality and in the low-quality litter treatment also with the presence of amoebae. Overall, the results suggest that in particular at low nutrient conditions, root-derived C fosters the mobilization of bacterial N by protozoa, thereby increasing plant growth when microorganisms and plants compete for nutrients. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Sustainable Soil Management: Its perception and the need for policy intervention

    Science.gov (United States)

    Basch, Gottlieb; Kassam, Amir; González-Sánchez, Emilio

    2017-04-01

    As stated in the strategic objectives of the Global Soil Partnership "healthy soils and sustainable soil management are the precondition for human well-being and economic welfare and therefore play the key role for sustainable development". Although the functional properties of a healthy soil are well understood, in practice it is easily overlooked what is necessary to achieve and sustain healthy agricultural soils. This contribution intends: to discuss the concept of sustainable soil management in agricultural production with regard to soil health, and to highlight its importance in the achievement of both Sustainable Development Goals and the 4 per mille objectives, as well as for the Common Agricultural Policy (CAP). In Europe, soil and the need for its conservation and stewardship gained visibility at the beginning of this century during the discussions related to the Soil Thematic Strategy. This higher level of awareness concerning the status of Europe's soils led to the introduction of soil conservation standards into the cross-compliance mechanism within the 1st Pillar of CAP. These standards were applied through the definition of Good Agricultural and Environmental Conditions (GAECs) which are compulsory for all farmers receiving direct payments, and in the last CAP reform in 2014, through the introduction of additional Greening Measures in Pilar 1. Despite these measures and the claim of some writers that they already contributed to significantly reducing soil erosion, the EC Joint Research Centre still reports water erosion in Europe amounting to almost one billion tonnes annually. Regarding soil conservation, soil carbon stocks or the provision of additional ecosystem services, measures called for in GAEC 4 (Minimum soil cover), in GAEC 5 (Minimum land management reflecting site specific conditions to limit soil erosion), and in GAEC 6 (Maintenance of soil organic matter level through appropriate practices, …), give the impression that a lot is being

  12. Management and re-use of contaminated soils

    International Nuclear Information System (INIS)

    Nowicki, V.K.; LeBlanc, M.

    1993-01-01

    The volume occupied by petroleum-contaminated soils in landfill facilities could be totally eliminated by treatment of these soils in separate facilities. Once treated, the soils could be recycled. In New Brunswick, one such treatment facility was opened in 1992 adjacent to the Fredericton regional landfill site; a second site was opened near Moncton in 1992. These facilities receive petroleum-contaminated soil from such users as gasoline stations, bulk plants, institutions, and transport companies, as well as from oil spill sites. The types of contaminants present range from gasoline to heavy fuel oils and greases, and the soils can vary from clays to gravels. Incoming soils are layered on treatment pads and treated by bioremediation. A bionutrient mixture containing fertilizers plus an amount of adapted, naturally-occurring petroleum hydrocarbon degrading microorganisms is sprayed onto the pile layer by layer. Aeration tubing is also installed during this layering process. When the piles are complete, they are covered with black plastic and aerated. Bioremediation times vary from 10 to 24 weeks. The facility has successfully decontaminated over 20,000 tonnes of soil to date. The resulting soil can be used for such purposes as soil cover and backfill. The bioremediation process itself is portable and can be initiated at landfill sites themselves to reduce transport and handling costs. 16 refs., 4 figs

  13. In situ assessment of phytotechnologies for multicontaminated soil management.

    Science.gov (United States)

    Ouvrard, S; Barnier, C; Bauda, P; Beguiristain, T; Biache, C; Bonnard, M; Caupert, C; Cébron, A; Cortet, J; Cotelle, S; Dazy, M; Faure, P; Masfaraud, J F; Nahmani, J; Palais, F; Poupin, P; Raoult, N; Vasseur, P; Morel, J L; Leyval, C

    2011-01-01

    Due to human activities, large volumes of soils are contaminated with organic pollutants such as polycyclic aromatic hydrocarbons, and very often by metallic pollutants as well. Multipolluted soils are therefore a key concern for remediation. This work presents a long-term evaluation of the fate and environmental impact of the organic and metallic contaminants of an industrially polluted soil under natural and plant-assisted conditions. A field trial was followed for four years according to six treatments in four replicates: unplanted, planted with alfalfa with or without mycorrhizal inoculation, planted with Noccaea caerulescens, naturally colonized by indigenous plants, and thermally treated soil planted with alfalfa. Leaching water volumes and composition, PAH concentrations in soil and solutions, soil fauna and microbial diversity, soil and solution toxicity using standardized bioassays, plant biomass, mycorrhizal colonization, were monitored. Results showed that plant cover alone did not affect total contaminant concentrations in soil. However, it was most efficient in improving the contamination impact on the environment and in increasing the biological diversity. Leaching water quality remained an issue because of its high toxicity shown by micro-algae testing. In this matter, prior treatment of the soil by thermal desorption proved to be the only effective treatment.

  14. Variation in Broccoli Cultivar Phytochemical Content under Organic and Conventional Management Systems: Implications in Breeding for Nutrition

    NARCIS (Netherlands)

    Renaud, E.N.C.; Lammerts Van Bueren, E.; Myers, J.R.; Caldas Paulo, M.J.; Eeuwijk, van F.A.; Zhu, N.; Juvik, J.A.

    2014-01-01

    Organic agriculture requires cultivars that can adapt to organic crop management systems without the use of synthetic pesticides as well as genotypes with improved nutritional value. The aim of this study encompassing 16 experiments was to compare 23 broccoli cultivars for the content of

  15. School Nutrition Employees' Perceptions of Farm to School (FTS) Activities Differ Based on Management Type and FTS Participation Length

    Science.gov (United States)

    Kang, Sangwook; Arendt, Susan W.; Stokes, Nathan M.

    2016-01-01

    Purpose: The purpose of this study was to explore school nutrition employees' perceptions of FTS activities and whether the numbers of activities differ based on management type of school foodservice operation and length of FTS participation. Methods: The state with the most FTS programs from each of the eight national FTS regions was selected. A…

  16. Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach.

    Science.gov (United States)

    Duan, Luchun; Naidu, Ravi; Thavamani, Palanisami; Meaklim, Jean; Megharaj, Mallavarapu

    2015-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are a family of contaminants that consist of two or more aromatic rings fused together. Soils contaminated with PAHs pose significant risk to human and ecological health. Over the last 50 years, significant research has been directed towards the cleanup of PAH-contaminated soils to background level. However, this achieved only limited success especially with high molecular weight compounds. Notably, during the last 5-10 years, the approach to remediate PAH-contaminated soils has changed considerably. A risk-based prioritization of remediation interventions has become a valuable step in the management of contaminated sites. The hydrophobicity of PAHs underlines that their phase distribution in soil is strongly influenced by factors such as soil properties and ageing of PAHs within the soil. A risk-based approach recognizes that exposure and environmental effects of PAHs are not directly related to the commonly measured total chemical concentration. Thus, a bioavailability-based assessment using a combination of chemical analysis with toxicological assays and nonexhaustive extraction technique would serve as a valuable tool in risk-based approach for remediation of PAH-contaminated soils. In this paper, the fate and availability of PAHs in contaminated soils and their relevance to risk-based management of long-term contaminated soils are reviewed. This review may serve as guidance for the use of site-specific risk-based management methods.

  17. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    Science.gov (United States)

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, a...

  18. Optimizing soil and water management in dryland farming systems in Cabo Verde

    NARCIS (Netherlands)

    Santos Baptista Costa, Dos I.

    2016-01-01

    “Optimizing Soil and Water Management in Dryland Farming Systems in Cabo Verde”

    Isaurinda Baptista

    Summary

    Soil and land degradation poses a great challenge for sustainable development worldwide and, in Cabo Verde, has strongly affected both

  19. Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain)

    NARCIS (Netherlands)

    Francia-Martinez, J.R.; Duran Zuazo, V.H.; Martinez-Raya, A.

    2006-01-01

    Soil erosion, runoff and nutrient-loss patterns over a two-year period (1999¿2000) were monitored in erosion plots on a mountainside with olive (Olea europaea cv. Picual) trees under three different types of soil management: (1) non-tillage with barley (Hordeum vulgare) strips of 4 m width (BS); (2)

  20. Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands

    Science.gov (United States)

    Lisa J. Samuelson; Kurt Johnsen; Tom Stokes; Weinlang Lu

    2004-01-01

    Intensive forestry may reduce net CO2 emission into atmosphere by storing carbon in living biomass, dead organic matter and soil, and durable wood products. Because quantification of belowground carbon dynamics is important for reliable estimation of the carbon sequestered by intensively managed plantations, we examined soil CO2...

  1. Case study of microarthropod communities to assess soil quality in different managed vineyards

    Science.gov (United States)

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-07-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly sought, and the determination of community structures of edaphic fauna can represent an efficient tool. In the area of Langhe (Piedmont, Italy), eight vineyards characterized for physical and chemical properties (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate) were selected. We evaluated the effect of two types of crop management, organic and integrated pest management (IPM), on abundance and biodiversity of microarthropods living at the soil surface. Soil sampling was carried out in winter 2011 and spring 2012. All specimens were counted and determined up to the order level. The biodiversity analysis was performed using ecological indexes (taxa richness, dominance, Shannon-Wiener, Buzas and Gibson's evenness, Margalef, equitability, Berger-Parker), and the biological soil quality was assessed with the BSQ-ar index. The mesofauna abundance was affected by both the type of management and sampling time. On the whole, a higher abundance was in organic vineyards (N = 1981) than in IPM ones (N = 1062). The analysis performed by ecological indexes showed quite a high level of biodiversity in this environment, particularly in May 2012. Furthermore, the BSQ-ar values registered were similar to those obtained in preserved soils.

  2. Effects of buffer strips and grazing management on soil loss from pastures

    Science.gov (United States)

    Intensive grazing pressure can cause soil erosion from pastures causing increased sediment loading to aquatic systems. The objectives of this work were to determine the long-term effects of grazing management and buffer strips on soil erosion from pastures fertilized with broiler litter. Field stud...

  3. Poor people and poor fields? : integrating legumes for smallholder soil fertility management in Chisepo, central Malawi

    NARCIS (Netherlands)

    Kamanga, B.

    2011-01-01

    Soil infertility undermines the agriculture-based livelihoods in Malawi, where it is blamed for poor crop yields and the creation of cycles of poverty. Although technologies and management strategies have been developed to reverse the decline in soil fertility, they are under-used by smallholder

  4. Weed management practice and cropping sequence impact on soil residual nitrogen

    Science.gov (United States)

    Inefficient N uptake by crops from N fertilization and/or N mineralized from crop residue and soil organic matter results in the accumulation of soil residual N (NH4-N and NO3-N) which increases the potential for N leaching. The objective of this study was to evaluate the effects of weed management ...

  5. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    Science.gov (United States)

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, ...

  6. A retrospective study on the influence of nutritional status on pain management in cancer patients using the transdermal fentanyl patch.

    Science.gov (United States)

    Takahashi, Hiroaki; Chiba, Takeshi; Tairabune, Tomohiko; Kimura, Yusuke; Wakabayashi, Go; Takahashi, Katsuo; Kudo, Kenzo

    2014-01-01

    It is unknown whether nutritional status influences pain intensity in cancer patients receiving a transdermal fentanyl patch (FP). This study aimed to determine whether nutritional status is associated with pain intensity and to evaluate the influence of changes in nutritional status on pain intensity in cancer patients receiving transdermal FP treatment. We included 92 patients receiving transdermal FP treatment for the first time with switching from oxycodone. The patients were classified into low- and normal-nutrition groups based on their nutritional status, which was assessed according to the Nutrition Risk Screening 2002 (NRS 2002) parameters. The pain intensity of each patient was evaluated by a numeric rating scale (11-point scale from 0 to 10). NRS 2002 score and pain intensity were obtained on day 3 after the FP was applied to the skin. Pain intensities were significantly higher among patients in the low-nutrition group than among patients in the normal-nutrition group. NRS 2002 scores showed a significant positive correlation with the pain intensities. In 52 of 92 patients, who were evaluated using the NRS 2002 score and pain intensity on day 30 after FP application, the changes in NRS 2002 scores were significantly related to changes in pain intensities (odds ratio, 30.0; 95% confidence interval, 4.48-200.97; p=0.0005). These results suggest that an increase in the NRS 2002 score is a risk factor for an increase in pain intensity in cancer patients receiving FP treatment. Malnutrition may lead to poor pain management in cancer patients receiving FP treatment.

  7. A Nutritional Management Analysis of the Transhumant Sheep and Goat Farms in the Region of Sterea Ellada-Greece

    Directory of Open Access Journals (Sweden)

    ANNA SIASIOU

    2015-05-01

    Full Text Available Transhumance is the seasonal movement of herds between different summer and winter pastures. The main reason of practice of this farming system is the need for a more efficient exploitation of vegetation to meet the nutritional needs of the reared animals. The aim of this paper is to investigate nutritional management practices of transhumant herds in the region of Sterea Ellada.  In the analysis, emphasis is given in the calculation of the coverage of nutritional needs of the reared animals by supplementary feed, translated as Metabolized energy (ME, Digestible Crude Protein (DGP and Dry Matter (DM. Nutritional management is studied in four basic productive stages of ewes and dams. All necessary data were collected from a sample of 140 transhumant herders, via an exhaustive questionnaire that covered all aspects of the production of the farms and managerial practices. Data were subsequently analyzed with descriptive statistic methods. Analysis reveals that grazing tends to be the main nutritional source as approximately 30-50% of the needs of the reared animals on lowlands and more than 90% on uplands is considered to be covered by grazing

  8. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2012-01-01

    carbon (CCCsoils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile strength...... the compression index and a proposed functional index,was significantly greater for theMFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles immediately after......To improve our understanding of how clay-organic carbon dynamics affect soil aggregate strength and physical resilience, we selected three nearby soils (MFC,Mixed Forage Cropping; MCC,Mixed Cash Cropping; CCC, Cereal Cash Cropping)with identical clay content and increasing contents of organic...

  9. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    Science.gov (United States)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter , gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less

  10. Agricultural management impact on physical and chemical functions of European peat soils.

    Science.gov (United States)

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph

    2017-04-01

    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which

  11. Managing soil moisture on waste burial sites in arid regions

    International Nuclear Information System (INIS)

    Anderson, J.E.; Ratzlaff, T.D.; Nowak, R.S.; Markham, O.D.

    1993-01-01

    In semiarid regions, where potential evapotranspiration greatly exceeds precipitation, it is theoretically possible to preclude water form reaching interred wastes by (i) providing a sufficient cap of soil to store precipitation that falls while plants are dormant and (ii) establishing sufficient plant cover to deplete soil moisture during the growing season, thereby emptying the water storage reservoir of the soil. Here the authors discuss the theory and rationale for such an approach and then present the results of a field study to test its efficacy at the Idaho National Engineering Laboratory (INEL). They examined the capacity of four species of perennial plants to deplete soil moisture on simulated waste trenches and determined the effective water storage capacity of the soil. Those data enabled them to estimate the minimum depth of fill soil required to prevent deep drainage. Any of the species studied can use all of the plant-available soil water, even during a very wet growing season. The water storage capacity of the soil studied is 17% by volume, so a trench cap of 1.6 m of soil should be adequate to store precipitation received at the INEL while plants are dormant. They recommend a fill soil depth of 2 m to provide a margin of safety in case water accumulates in local areas as a result of heavy snow accumulation, subsidence, or runoff. Fill soil requirements and choice of plant species will vary, but the concepts and general approach are applicable to other shallow land burial sites in arid or semiarid regions. 23 refs., 5 figs

  12. Management of soil physical properties of lowland puddled rice soil for sustainable food production

    International Nuclear Information System (INIS)

    Bhagat, R.M.

    2004-01-01

    About 3 billion people who rely on rice as their staple food today will have multiplied to some 4.4 billion by the middle of this century. With rice demand growing at an average rate of about 3 percent annually, 70 percent more rice has to be produced in next 30 years compared to present day production levels. More rice has to come from less favorable environments, with less water and nutrients. Agricultural population densities on Asia's rice producing lands are among the highest in the world and continue to increase at a remarkable rate. Rice has widely adapted itself: to the hot Australian and Egyptian deserts, to the cool Himalayan foothills of Nepal. Hill tribes in Southeast Asia plant it on slash-and-burned forest slopes; that's upland rice. However, low lying areas in Asia, which are subject to uncontrolled flooding, are home to more than 100 million poor farmers. Puddling or wet tillage in rice, decreases total soil porosity only slightly, but markedly changes porosity distribution with both storage and residual porosity increasing at the expanse of transmission porosity. Soil texture plays an important role in soil water retention following soil disturbance. Cracking pattern of the soils is studied after six years of different levels of regular addition of residue. Cracking pattern at a soil surface affects the hydrodynamic properties of soil. Cracking extends the soil-air interface into the soil profile and thereby may increase the moisture loss through evaporation

  13. Crop diversification, tillage, and management system influences on spring wheat yield and soil water use

    Science.gov (United States)

    Depleted soil quality, decreased water availability, and increased weed competition constrain spring wheat production in the northern Great Plains. Integrated crop management systems are necessary for improved crop productivity. We conducted a field experiment from 2004-2010 comparing productivity...

  14. Evaluation of Soil Media for Stormwater Infiltration Best Management Practices (BMPs)

    Science.gov (United States)

    This project will improve the performance of structural management practices, and provide guidance that will allow designers to balance infiltration rates with sorption capacity. This project will also perform a standard column test procedure for evaluating candidate soil media.

  15. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PLAT medium

    NARCIS (Netherlands)

    Salles, JF; Samyn, E; Vandamme, P; van Veen, JA; van Elsas, JD

    In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  16. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium

    NARCIS (Netherlands)

    Salles, J.F.; Samyn, E.; Vandamme, P.A.; Veen, van J.A.; Elsas, van J.D.

    2006-01-01

    In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize

  17. Carbon fractions and soil fertility affected by tillage and sugarcane residue management an Xanthic Udult

    Directory of Open Access Journals (Sweden)

    Iara Maria Lopes

    2017-10-01

    Full Text Available The gradual change in management practices in sugarcane (Saccharum spp. production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1 soil fertility parameters; (2 on physical carbon fractions; (3 and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT or minimum tillage (MT and subplots (residue burned or unburned at harvesting, with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.

  18. Arbuscular mycorrhiza and their effect on the soil structure in farms with agroecological and intensive management

    Directory of Open Access Journals (Sweden)

    Juan David Lozano Sánchez

    2015-10-01

    Full Text Available Arbuscular mycorrhizal fungi help to reduce the damage caused by erosion and maintain soil structure through the production of mycelium and adhering substances. This study evaluated the structural stability; estimated the diversity and density of mycorrhizal spores present in three systems of soil (eroded, forest and coffee plantations in the rural area of Dagua, Valle del Cauca, Colombia. The systems evaluated were classified as farms with intensive or agroecological management. There were 25 morphospecies of mycorrhiza grouped in 13 genera, being Glomus and Entrophospora the most representative. The mean index values of mean weight (DPM and geometric (DGM diameters and diversity of mycorrhizal spores were statistically higher in farms with agroecological management than in farms with intensive management. The aggregate stability analysis revealed that eroded soils have significantly lower stability than forest and crop soils. A statistically significant correlation was found between diversity (r = 0.579 and spore density (r = 0.66 regarding DGM, and DPM with Shannon diversity (r = 0.54. Differences in practices, use and soil management affect mycorrhizal diversity found on farms and its effect such as particle aggregation agent generates remarkable changes in the stability and soil structure of evaluated areas. It is concluded, that agroecological management tends to favour both mycorrhizae and the structure of soils.

  19. Effects of artificial soil surface management on changes of ...

    African Journals Online (AJOL)

    Studies of size distribution, stability of the aggregates, and other soil properties are very important due to their influence on tilth, water infiltration, and nutrient ... Data measured for eight years on induced erosion experiments on a Ferralsol covered by artificial soil netting locally called sombrite at Campinas, Brazil, were used ...

  20. Potentials and management of nutrient status of soils of Ikwuano ...

    African Journals Online (AJOL)

    The study was carried out to evaluate the nutrient status of the nine farming zones of Ikwuano local government Area of Abia State, to quantify in relation to their cassava crop production potentials. Free survey method was applied in a reconnaissance soil survey to collect soil samples at 0-30cm depth. Nine samples were ...

  1. Fertile ground? : soil fertility management and the African smallholder

    NARCIS (Netherlands)

    Misiko, M.

    2007-01-01

    Keywords: smallholder farmers, soil fertility, experimentation, "inconvenience", realist.The focus in this thesis is to form a view of how well soil fertility research performs within the ever shifting smallholder contexts. This study examined application of agro-ecological

  2. Assessing the role of organic soil amendments in management of ...

    African Journals Online (AJOL)

    ... was higher in organically amended soils than the control, with the highest figures being recorded on chicken manure. This is a clear demonstration of the potential of organic amendments in triggering the natural mechanisms that regulate plant nematodes in the soil. Journal of Tropical Microbiology Vol.3 2004: 14-23 ...

  3. Soil C and N storage and microbial biomass in US southern pine forests: Influence of forest management

    Science.gov (United States)

    J.A. Foote; T.W. Boutton; D.A. Scott

    2015-01-01

    Land management practices have strong potential to modify the biogeochemistry of forest soils, with implications for the long-term sustainability and productivity of forestlands. The Long-Term Soil Productivity (LTSP) program, a network of 62 sites across the USA and Canada, was initiated to address concerns over possible losses of soil productivity due to soil...

  4. [Effects of mulching management on biomass of Phyllostachys praecox and soil fertility].

    Science.gov (United States)

    Zhai, Wan Lu; Yang, Chuan Bao; Zhang, Xiao Ping; Gao, Gui Bin; Zhong, Zhe Ke

    2018-04-01

    We analyzed the dynamics of stand growth and soil nutrient availability during the degradation processes of Phyllostachys praecox plantation, taking the advantage of bamboo forest stands with different mulching ages (0, 3, 6, 9 and 12 a). The results showed the aboveground and belowground biomass of bamboo forest reached the maximum value when they were covered by three years, which was significantly increased by 14.6% and 146.6% compared with the control. The soil nutrient content was affected by the mulching age and soil layer. Soil nutrients gradually accumulated in upper layer. Soil organic carbon and total nitrogen content were increased with the increases of coverage years. The soil total phosphorus content at different soil layers showed a trend of decreasing first and then increasing. It was the lowest level in the surface layer (0-20 cm) and the bottom (40-60 cm) in 6 years, and the subsurface (20-40 cm) soil reached the lowest level in three years. The total potassium content kept increasing in 0-20 cm soil layer, but decreased during the first three years of mulching and then increased in 20-60 cm soil layer. The comprehensive index of soil fertility quality was greatly improved after nine years mulching, with fertility of subsurface soil being better than that of surface and bottom soils. There was no relationship between the soil fertility index and biomass of different organs in bamboo in the different mulching ages. In the subsurface, however, nitrogen content was negatively related to leaf biomass and potassium was negatively correlated with the biomass of leaves and whip roots. Our results indicated that excessive accumulation of soil nutrients seriously inhibited the propagation and biomass accumulation of P. praecox after long-term mulching management and a large amount of fertilizer, which further aggravated the degradation of bamboo plantation.

  5. An examination of the spatial variability of CO2 in the profile of managed forest soils

    International Nuclear Information System (INIS)

    Black, M.; Kellman, L.; Beltrami, H.

    2005-01-01

    Soil carbon dioxide (CO 2 ) profiles are typically used in soil-gas exchange studies. Although surface flux measuring methods may be more efficient for deriving surface soil CO 2 exchange budgets, they do not provide enough information about the generation of gas through depth. This poses a challenge in quantifying the CO 2 generated from different zones and soil carbon pools through time. The combination of subsurface concentration profiles and estimates of soil diffusivity reveal where CO 2 is being generated in the soil. This combined approach offers greater awareness into processes controlling CO 2 production in soils through depth, and clarifies how soil CO 2 exchange processes in these ecosystems can be changed by management regimes and climate change. Although information about spatial variability in subsurface concentrations within forested soils is limited, it is assumed to be high because of the high spatial variability in soil CO 2 flux estimates and the large variation in vegetation distribution and topography within sites. In this study, the soil CO 2 profile was monitored during the fall of 2004 at depths of 0, 5, 20 and 35 cm at 10 microsites of a clear-cut and an 80 year old intact mixed forest in Atlantic Canada. Microsites were about 10 meters apart and represented a range of microtopographical conditions that typically encompass extremes in soil CO 2 profile patterns. Preliminary results reveal predictable patterns in concentration profiles through depth, and increasing CO 2 concentration with depth, consistent with a large soil source of CO 2 . The significant variability in the soil carbon profile between microsites in the clear-cut and intact forest sites will be investigated to determine if distinct microsite patterns can be identified. The feasibility of using this method for providing process-based versus soil C exchange budgeting information at forested sites will also be examined

  6. Water management in sandy soil using neutron scattering method

    International Nuclear Information System (INIS)

    Mohamed, K.M.

    2011-01-01

    This study was carried out during 2008/2009 at the Experimental Field of Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas in a newly reclaimed sandy soil. The aims of this work are,- determine soil moisture tension within the active root zone and - detecting the behavior of soil moisture within the active root zoon by defines the total hydraulic potential within the soil profile to predict both of actual evapotranspiration and rate of moisture depletion This work also is aimed to study soil water distribution under drip irrigation system.- reducing water deep percolation under the active root depth.This study included two factors, the first one is the irrigation intervals, and the second one is the application rate of organic manure. Irrigation intervals were 5, 10 and 15 days, besides three application rates of organic manure (0 m 3 /fed, 20 m 3 /fed. and 30 m 3 /fed.) in -three replicates under drip irrigation system, Onion was used as an indicator plant. Obtained data show, generally, that neutron scattering technique and soil moisture retention curve model helps more to study the water behavior in the soil profile.Application of organic manure and irrigation to field capacity is a good way to minimize evapotranspiration and deep percolation, which was zero mm/day in the treated treatments.The best irrigation interval for onion plant, in the studied soil, was 5 days with 30m 3 /fad. an application rate of organic manure.Parameter α of van Genuchent's 1980 model was affected by the additions of organic manure, which was decreased by addition of organic manure decreased it. Data also showed that n parameter was decreased by addition of organic manure Using surfer program is a good tool to describe the water distribution in two directions (vertical and horizontal) through soil profile.

  7. Healthy sand : a farmers initiative on soil protection and ecosystem service management

    Science.gov (United States)

    Smit, Annemieke; Verzandvoort, Simone; Kuikman, Peter; Stuka, Jason; Morari, Francesco; Rienks, Willem; Stokkers, Jan; Hesselink, Bertus; Lever, Henk

    2015-04-01

    In a small region in the Netherlands a group of dairy farmers (cooperated in a foundation HOE Duurzaam) cooperates with the drinking water company and together aim for a more healthy soil. They farm a sandy soil, which is in most of the parcels low in organic matter. The local farmers perceive loss of soil fertility and blame loss of soil organic matter for that. All farmers expect that increasing the soil organic matter content will retain more nitrates in the soil, leading to a reduction in nitrate leaching and a higher nutrient availability for the crops, forage and grass and probably low urgency for grassland renewal. The drinking water company in the area also has high expectations that a higher SOM content does relate to higher quality of the (drinking) water and lower costs to clean and filter the water to meet drinking water quality requirements. Most farmers in the area face suboptimal moisture conditions and thrive for increasing the soil organic matter content and improving the soil structure as key factors to relieve, soil moisture problems both in dry (drought) and wet (flooding) periods. A better water holding capacity of the soil provides benefits for the regional water board as this reduces leaching and run-off. The case study, which is part of the Recare-project, at first glance deals with soil management and technology to improve soil quality. However, the casus in fact deals with social innovation. The real challenge to this group of neighbours, farmers within a small region, and to science is how to combine knowledge and experience on soil management for increasing the content of soil organic matter and how to recognize the ecosystem services that are provided by the adapted and more 'healthy' soils. And also how to formalize relations between costs and benefits of measures taken in the field and how these could be financially rewarded from an agreed and acceptable financial awarding scheme based on payments for securing soil carbon stocks and

  8. Visual Evaluation of the Soil Structure under Different Management Systems in Lowlands in Southern Brazil

    DEFF Research Database (Denmark)

    Tuchtenhagen, Ivana Kruger; de Lima, Cláudia Liane Rodrigues; Bamberg, Adilson Luís

    2018-01-01

    ), and total organic carbon (TOC). It was concluded that VESS was efficient in differentiating the management system. The management systems based on minimum soil disturbance and mulching with crop residues improved the soil quality, as evidenced by the VESS scores, bulk density, porosity, aggregation......, and organic carbon. The TOC content was inversely related with ATS. The quality of a typic eutrophic Albaqualf was benefitted by organic matter in the surface layer....

  9. Focus on metabolic and nutritional correlates of polycystic ovary syndrome and update on nutritional management of these critical phenomena.

    Science.gov (United States)

    Rondanelli, Mariangela; Perna, Simone; Faliva, Milena; Monteferrario, Francesca; Repaci, Erica; Allieri, Francesca

    2014-12-01

    Polycystic ovary syndrome (PCOS) is associated with numerous metabolic morbidities (insulin resistance (IR), central obesity) and various nutritional abnormalities (vitamin D deficit, mineral milieu alterations, omega6/omega3 PUFA ratio unbalance). We performed a systematic literature review to evaluate the till-now evidence regarding: (1) the metabolic and nutritional correlates of PCOS; (2) the optimum diet therapy for the treatment of these abnormalities. This review included 127 eligible studies. In addition to the well-recognized link between PCOS and IR, the recent literature underlines that in PCOS there is an unbalance in adipokines (adiponectin, leptin, visfatin) production and in omega6/omega3 PUFA ratio. Given the detrimental effect of overweight on these metabolic abnormalities, a change in the lifestyle must be the cornerstone in the treatment of PCOS patients. The optimum diet therapy for the PCOS treatment must aim at achieving specific metabolic goals, such as IR improvement, adipokines secretion and reproductive function. These goals must be reached through: accession of the patient to hypocaloric dietary program aimed at achieving and/or maintaining body weight; limiting the consumption of sugar and refined carbohydrates, preferring those with lower glycemic index; dividing the food intake in small and frequent meals, with high caloric intake at breakfast; increasing their intake of fish (4 times/week) or taking omega3 PUFA supplements; taking Vitamin D and chromium supplementation, if there are low serum levels. Lifestyle intervention remains the optimal treatment strategy for PCOS women. A relatively small weight loss (5 %) can improve IR, hyperandrogenism, menstrual function, fertility.

  10. The impact of agriculture management on soil quality in citrus orchards in Eastern Spain

    Science.gov (United States)

    Hondebrink, Merel; Cerdà, Artemi; Cammeraat, Erik

    2015-04-01

    Currently, the agricultural management of citrus orchard in the Valencia region in E Spain, is changing from traditionally irrigated and managed orchards to drip irrigated organic managed orchards. It is not known what is the effect of such changes on soil quality and hope to shed some light with this study on this transition. It is known that the drip-irrigated orchards built in sloping terrain increase soil erosion (Cerdà et al., 2009; Li et al., 2014) and that agricultural management such as catch crops and mulches reduce sediment yield and surface runoff (Xu et al., 2012; ), as in other orchards around the world (Wang et al., 2010; Wanshnong et al., 2013; Li et al., 2014; Hazarika et al., 2014): We hypothesize that these changes have an important impact on the soil chemical and physical properties. Therefor we studied the soil quality of 12 citrus orchards, which had different land and irrigation management techniques. We compared organic (OR) and conventional (CO) land management with either drip irrigation (DRP) or flood irrigation (FLD). Soil samples at two depths, 0-1 cm and 5-10 cm, were taken for studying soil quality parameters under the different treatments. These parameters included soil chemical parameters, bulk density, texture, soil surface shear strength and soil aggregation. Half of the studied orchards were organically managed and the other 6 were conventionally managed, and for each of these 6 study sites three fields were flood irrigated plots (FLD) and the other three drip irrigated systems (DRP) In total 108 soil samples were taken as well additional irrigation water samples. We will present the results of this study with regard to the impact of the studied irrigation systems and land management systems with regard to soil quality. This knowledge might help in improving citrus orchard management with respect to maintaining or improving soil quality to ensure sustainable agricultural practices. References Cerdà, A., Giménez-Morera, A. and

  11. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  12. Agroforestry: A second soil fertility paradigm? A case of soil fertility management in Western Kenya

    NARCIS (Netherlands)

    Mango, Nelson; Hebinck, Paul

    2016-01-01

    This paper explores the claim whether agro-forestry is a second soil fertility
    paradigm. The answer to this question, however, is not unequivocal. Farmers in
    Western Kenya generally do not apply fertiliser and rather rely on many soil fertility replenishment (SFR) strategies. Scientists

  13. Choosing soil management systems for rice production on lowland soils in South Brazil

    NARCIS (Netherlands)

    Lima, A.C.R.; Hoogmoed, W.B.

    2009-01-01

    Lowland soils are commonly found in the state of Rio Grande do Sul, Southern of Brazil, where they represent around 20% of the total area of the state. Deficient drainage is the most important natural characteristic of these soils which therefore are mainly in use for flood-irrigated rice (Oriza

  14. Main Parameters of Soil Quality and it's Management Under Changing Climate

    Science.gov (United States)

    László Phd, M., ,, Dr.

    2009-04-01

    Reviewing Paper Introduction: Malcolm summarised the topic of soil quality and it's management in a well synthetized form in 2000. So, the soils are fundamental to the well-being and productivity of agricultural and natural ecosystems. Soil quality is a concept being developed to characterize the usefulness and health of soils. Soil quality includes soil fertility, potential productivity, contaminant levels and their effects, resource sustainability and environmental quality. A general definition of soil quality is the degree of fitness of a soil for a specific use. The existence of multiple definitions suggests that the soil quality concept continues to evolve (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). Recent attention has focused on the sustainability of human uses of soil, based on concerns that soil quality may be declining (Boehn and Anderson, 1997). We use sustainable to mean that a use or management of soil will sustain human well-being over time. Lal (1995) described the land resources of the world (of which soil is one component) as "finite, fragile, and nonrenewable," and reported that only about 22% (3.26 billion ha) of the total land area on the globe is suitable for cultivation and at present, only about 3% (450 million ha) has a high agricultural production capacity. Because soil is in large but finite supply, and some soil components cannot be renewed within a human time frame, the condition of soils in agriculture and the environment is an issue of global concern (Howard, 1993; FAO, 1997). Concerns include soil losses from erosion, maintaining agricultural productivity and system sustainability, protecting natural areas, and adverse effects of soil contamination on human health (Haberern, 1992; Howard, 1993; Sims et al., 1997). Parr et al. (1992) state, "...soil degradation is the single most destructive force diminishing the world's soil resource base." Soil quality guidelines

  15. Spatial distribution of diuron sorption affinity as affected by soil, terrain and management practices in an intensively managed apple orchard.

    Science.gov (United States)

    Umali, Beng P; Oliver, Danielle P; Ostendorf, Bertram; Forrester, Sean; Chittleborough, David J; Hutson, John L; Kookana, Rai S

    2012-05-30

    We investigated how the sorption affinity of diuron (3'-(3,4-dichlorophenyl)-1,1-dimenthyl-urea), a moderately hydrophobic herbicide, is affected by soil properties, topography and management practices in an intensively managed orchard system. Soil-landscape analysis was carried out in an apple orchard which had a strong texture contrast soil and a landform with relief difference of 50 m. Diuron sorption (K(d)) affinity was successfully predicted (R(2)=0.79; pdiuron K(d) with TOC, pH(w), slope and WI as key variables. Mean diuron K(d) values were also significantly different (pdiuron than soil in the alleys. Younger stands, which were found to have lower TOC than in the older stands, also had lower diuron K(d) values. In intensively managed orchards, sorption affinity of pesticides to soils was not only affected by soil properties and terrain attributes but also by management regime. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    Science.gov (United States)

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  17. Management of soil-borne diseases of organic vegetables

    Directory of Open Access Journals (Sweden)

    Shafique Hafiza Asma

    2016-07-01

    Full Text Available With the rising awareness of the adverse effects of chemical pesticides, people are looking for organically grown vegetables. Consumers are increasingly choosing organic foods due to the perception that they are healthier than those conventionally grown. Vegetable crops are vulnerable to a range of pathogenic organisms that reduce yield by killing the plant or damaging the product, thus making it unmarketable. Soil-borne diseases are among the major factors contributing to low yields of organic produce. Apart from chemical pesticides there are several methods that can be used to protect crops from soil-borne pathogens. These include the introduction of biocontrol agents against soil-borne plant pathogens, plants with therapeutic effects and organic soil amendments that stimulate antagonistic activities of microorganisms to soil-borne diseases. The decomposition of organic matter in soil also results in the accumulation of specific compounds that may be antifungal or nematicidal. With the growing interest in organic vegetables, it is necessary to find non chemical means of plant disease control. This review describes the impact of soil-borne diseases on organic vegetables and methods used for their control.

  18. Prevalence and intensity of soil-transmitted helminthiasis, prevalence of malaria and nutritional status of school going children in honduras.

    Science.gov (United States)

    Mejia Torres, Rosa Elena; Franco Garcia, Dora Nelly; Fontecha Sandoval, Gustavo Adolfo; Hernandez Santana, Adriana; Singh, Prabhjot; Mancero Bucheli, Sandra Tamara; Saboya, Martha; Paz, Mirian Yolanda

    2014-10-01

    Many small studies have been done in Honduras estimating soil-transmitted helminthiasis (STH) prevalence but a country-wide study was last done in 2005. The country has the highest burden of malaria among all Central American countries. The present study was done to estimate country-wide STH prevalence and intensity, malaria prevalence and nutritional status in school going children. A cross-sectional study was conducted following PAHO/WHO guidelines to select a sample of school going children of 3rd to 5th grades, representative of ecological regions in the country. A survey questionnaire was filled; anthropometric measurements, stool sample for STH and blood sample for malaria were taken. Kato-Katz method was used for STH prevalence and intensity and rapid diagnostic tests, microscopy, and polymerase chain reaction (PCR) were used for malaria parasite detection. A total of 2554 students were studied of which 43.5% had one or more STH. Trichuriasis was the most prevalent (34%) followed by ascariasis (22.3%) and hookworm (0.9%). Ecological regions II (59.7%) and VI (55.6%) in the north had the highest STH prevalence rates while IV had the lowest (10.6%). Prevalence of one or more high intensity STH was low (1.6%). Plasmodium vivax was detected by PCR in only 5 students (0.2%), all of which belonged to the same municipality; no P. falciparum infection was detected. The majority of children (83%) had normal body mass index for their respective age but a significant proportion were overweight (10.42%) and obese (4.35%). Biannual deworming campaigns would be necessary in ecological regions II and VI, where STH prevalence is >50%. High prevalence of obesity in school going children is a worrying trend and portends of future increase in obesity related diseases. Malaria prevalence, both symptomatic and asymptomatic, was low and provides evidence for Honduras to embark on elimination of the disease.

  19. Changes in the Structure of a Nigerian Soil under Different Land Management Practices

    Directory of Open Access Journals (Sweden)

    Joshua Olalekan Ogunwole

    2015-06-01

    Full Text Available Quantification of soil physical quality (SPQ and pore size distribution (PSD can assist understanding of how changes in land management practices influence dynamics of soil structure, and this understanding could greatly improve the predictability of soil physical behavior and crop yield. The objectives of this study were to measure the SPQ index under two different land management practices (the continuous arable cropping system and natural bush fallow system, and contrast the effects of these practices on the structure of PSD using soil water retention data. Soil water retention curves obtained from a pressure chamber were fitted to van Genuchten’s equation, setting m (= 1-1/n. Although values for soil bulk density were high, soils under the continuous arable cropping system had good SPQ, and maintained the capacity to support root development. However, soils under the natural bush fallow system had a worse structure than the continuous arable system, with restrictions in available water capacity. These two management systems had different PSDs. Results showed the inferiority of the natural bush fallow system with no traffic restriction (which is the common practice in relation to the continuous arable cropping system in regard to physical quality and structure.

  20. Organic matter composition of soil macropore surfaces under different agricultural management practices

    Science.gov (United States)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  1. Soil physical properties and grape yield influenced by cover crops and management systems

    Directory of Open Access Journals (Sweden)

    Jaqueline Dalla Rosa

    2013-10-01

    Full Text Available The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L. in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS, black oat (Avena strigosa Schreb (BO, and a mixture of white clover (Trifolium repens L., red clover (Trifolium pratense L. and annual rye-grass (Lolium multiflorum L. (MC. Two management systems were applied: desiccation with herbicide (D and mechanical mowing (M. Soil under a native forest (NF area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.

  2. Soil physico-hydrical properties resulting from the management in Integrated Production Systems

    Directory of Open Access Journals (Sweden)

    André Carlos Auler

    Full Text Available Anthropic action, such as the soil use and management systems, promote changes in the soil structure. These changes might hamper the development of plants in soil management practices that involve its mobilization, and the negative effects might be increased due to intensive use. The aim of this study was to evaluate the physico-hydrical properties of a Haplohumox in integrated production systems under different soil managements. The soil superficial (0.0-0.10 m and sub-superficial (0.10-0.20 m layers were evaluated in the different systems: conventional tillage (CT, minimum tillage (MT, no-tillage (NT and chiseled no-tillage (CNT, taking into consideration the annual ryegrass cropped for different uses [cover crop (C, grazing (G and silage (S] during the winter. Soil bulk density (Db, total porosity (TP, macro (Ma and microporosity (Mi, water retention curves (SWRC and water retention due to pore size (r were determined. The annual ryegrass used as C produced lower Db and Mi and higher TP and Ma in CT, MT and CNT systems. No difference was verified between G and S in any of the management systems or soil layers. The superficial layer SWRC presented similar behavior regarding CT, MT and CNT. Under NT, C resulted in higher water retention. However, G and S provided higher water retention due to the pore size in this system.

  3. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Harden, Jennifer W. [Stanford Univ., Stanford, CA (United States); U.S. Geological Survey, Menlo Park, CA (United States); Hugelius, Gustaf [Stanford Univ., Stanford, CA (United States); Stockholm Univ., Stockholm (Sweden); Ahlstrom, Anders [Stanford Univ., Stanford, CA (United States); Department of Physical Geography and Ecosystem Science, Lund (Sweden); Blankinship, Joseph C. [Univ. of Arizona, Tucson, AZ (United States); Bond-Lamberty, Ben [Univ. of Maryland, College Park, MD (United States); Lawrence, Corey R. [U.S. Geological Survey, Denver, CO (United States); Loisel, Julie [Texas A & M Univ., College Station, TX (United States); Malhotra, Avni [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Robert B. [Stanford Univ., Stanford, CA (United States); Ogle, Stephen [Colorado State Univ., Fort Collins, CO (United States); Phillips, Claire [USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, OR (United States); Ryals, Rebecca [Univ. of Hawai' i at Manoa, Honolulu, HI (United States); Todd-Brown, Katherine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vargas, Rodrigo [Univ. of Delaware, Newark, DE (United States); Vergara, Sintana E. [Univ. of California, Berkeley, CA (United States); Cotrufo, M. Francesca [Colorado State Univ., Fort Collins, CO (United States); Keiluweit, Marco [Univ. of Massachusetts, Amherst, MA (United States); Heckman, Katherine A. [USDA Forest Service, Houghton, MI (United States); Crow, Susan E. [Univ. of Hawai' i at Manoa, Honolulu, HI (United States); Silver, Whendee L. [Univ. of California, Berkeley, CA (United States); DeLonge, Marcia [Union of Concerned Scientists, Washington, D.C. (United States); Nave, Lucas E. [Univ. of Michigan, Pellston, MI (United States)

    2017-10-05

    Here, soil organic matter supports the Earth’s ability to sustain terrestrial ecosystems, provide food and fiber, and retain the largest pool of actively cycling carbon (C). Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance land productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well-established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil organic matter and C and their management for sustained production and climate regulation.

  4. Toward Soil Spatial Information Systems (SSIS) for global modeling and ecosystem management

    Science.gov (United States)

    Baumgardner, Marion F.

    1995-01-01

    The general objective is to conduct research to contribute toward the realization of a world soils and terrain (SOTER) database, which can stand alone or be incorporated into a more complete and comprehensive natural resources digital information system. The following specific objectives are focussed on: (1) to conduct research related to (a) translation and correlation of different soil classification systems to the SOTER database legend and (b) the inferfacing of disparate data sets in support of the SOTER Project; (2) to examine the potential use of AVHRR (Advanced Very High Resolution Radiometer) data for delineating meaningful soils and terrain boundaries for small scale soil survey (range of scale: 1:250,000 to 1:1,000,000) and terrestrial ecosystem assessment and monitoring; and (3) to determine the potential use of high dimensional spectral data (220 reflectance bands with 10 m spatial resolution) for delineating meaningful soils boundaries and conditions for the purpose of detailed soil survey and land management.

  5. Moist Soil Management of Wetland Impoundments for Plants and Invertebrates

    Data.gov (United States)

    Department of the Interior — In year’s past an impoundment was drained (a drawdown) when floating-leaved plants covered more than 50% of the water area. Drawdowns encourage beneficial moist soil...

  6. The effects of boron management on soil microbial population and ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... germination, flowering and fruiting, water use, nitrogen assimilation and ... development of vascular plants, diatoms and species of marine algal ...... Classification for Making and Interpreting Soil Surveys 2nd ed. US. Dept. of ...

  7. Sustainable management of coastal saline soils in the Saloum river ...

    African Journals Online (AJOL)

    conductivity, pH, water soluble cations and anions) were analysed to estimate the salinity level at each .... (floodplain, low terrace), saline soils are now .... Apart from having a high salt content, ..... permeability and thereby promotes continuous.

  8. Ecosystem services in agricultural landscapes: a spatially explicit approach to support sustainable soil management.

    Science.gov (United States)

    Forouzangohar, Mohsen; Crossman, Neville D; MacEwan, Richard J; Wallace, D Dugal; Bennett, Lauren T

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km(2) in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.

  9. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    Pla-Sentis, I.

    1983-01-01

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  10. Effects of previous grazing nutrition and management on feedlot performance of cattle.

    Science.gov (United States)

    Drouillard, J S; Kuhl, G L

    1999-01-01

    Management strategies designed to improve grazing animal performance can influence feedlot performance and carcass traits both positively and negatively. In spite of the economic relevance of potential interactions between grazing and finishing performance, controlled experiments evaluating integrated production systems are limited in number. Effects of grazing treatments can result from, or be overshadowed by, changes in gut fill, thus making it difficult to assign precise costs to different phases of production. Published reports have considered the effects of stocking rate, duration of grazing, forage characteristics, supplementation, and growth-promoting implants on subsequent finishing performance. Improvements in cattle performance attributed to changes in stocking rate generally have been neutral to positive with respect to effects on finishing performance. Comparisons among forages have led to the suggestion that forage species may contribute to differences in gastrointestinal fill of grazing cattle, thereby influencing gain and efficiency during the subsequent finishing phase. Creep-feeding suckling calves generally has increased preweaning performance but has had relatively little influence on performance during the subsequent finishing phase. Grain supplementation of stocker cattle during the grazing period has improved grazing performance, but effects on subsequent feedlot performance have been inconsistent. Potential carryover effects from protein and mineral supplementation also have been inconclusive. Lack of congruence among studies is puzzling but may be the consequence of highly varied production systems, differences in experimental procedures, and changes in gut fill or mass of internal organs. Based on the studies reviewed, the expression or absence of compensatory growth during the finishing phase appears to be related to the nutritional quality of forages utilized in the grazing period, with higher quality forages tending to yield greater

  11. Risk characterization and remedial management of TPH-affected soils

    International Nuclear Information System (INIS)

    Smith, J.; Von Burg, R.; Preslo, L.; Lakin, M.

    1994-01-01

    A risk-based remedial program for petroleum hydrocarbon affected soils has been implemented at a large land parcel in California. The site is the former location of a manufacturing facility that had been in operation since the 1940s. As a result of various activities related to parts manufacturing, several large areas of soil were found to contain various petroleum products. The primary sources of petroleum hydrocarbons included cutting oils, lubricating oils, fuels, and hydraulic oils associated with the site operations. Concentrations of total petroleum hydrocarbons (TPH) as high as 100,000 mg/kg were identified in soil. These high concentrations of TPH were identified at depths up to 60 feet below ground surface (bgs), with the vadose zone extending to depths of more than 150 feet bgs. Within California, traditional cleanup levels for TPH-affected soils typically range from 100 to 1,000 mg/kg. Because of the client's desire to sell the property for rapid development, the remedial alternative of excavation and off-haul was deemed too time consuming and costly. The estimated costs associated with this remediation which potentially involved soil removal to 100--120 feet exceeded $20 million and could take up to one year to complete. To meet the schedule requirements for site remediations as well as significantly reduce the overall project cost, the authors undertook a risk-based approach to assess if remediation of the TPH-affected soils was required

  12. Impact of the post fire management in some soil chemical properties. First results.

    Science.gov (United States)

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Úbeda, Xavi

    2016-04-01

    Post-fire management after severe wildfires has impact on soil properties. In Mediterranean environments management of fire affected areas is a common practice. This intervention may change soil chemical properties of the soil such as major cations. The aim of this work is to study the impact of different types of forest management in soil extractable calcium, magnesium, sodium and potassium after a severe wildfire. The study area is located in Ódena (Catalonia, Spain). The wildfire occurred at July 27th of 2015 and burned 1235 ha. After the fire an experimental plot was designed 9 plots with 2x2 meters (4 square meters). The different managements were: a) clear-cuted area and wood removed, b) no treatment); and c) clear-cutted. The results of the first sampling showed significant differences among all treatments in extractable calcium, sodium and potassium. The amount of these extractable elements was high in clear-cutted treatment in comparison to the others. No differences were identified in extractable magnesium. Overall, in the immediate period after the fire, burned area management, changed the studied soil properties. We are currently studying the evolution of this soil properties in these plots with the time

  13. Deworming drugs for soil-transmitted intestinal worms in children: effects on nutritional indicators, haemoglobin, and school performance

    Science.gov (United States)

    Taylor-Robinson, David C; Maayan, Nicola; Soares-Weiser, Karla; Donegan, Sarah; Garner, Paul

    2015-01-01

    Background The World Health Organization (WHO) recommends treating all school children at regular intervals with deworming drugs in areas where helminth infection is common. As the intervention is often claimed to have important health, nutrition, and societal effects beyond the removal of worms, we critically evaluated the evidence on benefits. Objectives To summarize the effects of giving deworming drugs to children to treat soil-transmitted helminths on weight, haemoglobin, and cognition; and the evidence of impact on physical well-being, school attendance, school performance, and mortality. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register (14 April 2015); Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library (2015, Issue 4); MEDLINE (2000 to 14 April 2015); EMBASE (2000 to 14 April 2015); LILACS (2000 to 14 April 2015); the metaRegister of Controlled Trials (mRCT); and reference lists, and registers of ongoing and completed trials up to 14 April 2015. Selection criteria We included randomized controlled trials (RCTs) and quasi-RCTs comparing deworming drugs for soil-transmitted helminths with placebo or no treatment in children aged 16 years or less, reporting on weight, haemoglobin, and formal tests of intellectual development. We also sought data on school attendance, school performance, and mortality. We included trials that combined health education with deworming programmes. Data collection and analysis At least two review authors independently assessed the trials, evaluated risk of bias, and extracted data. We analysed continuous data using the mean difference (MD) with 95% confidence intervals (CIs). Where data were missing, we contacted trial authors. We used outcomes at time of longest follow-up. The evidence quality was assessed using GRADE. This edition of the Cochrane Review adds the DEVTA trial from India, and draws on an independent analytical replication of a trial from

  14. Cacao Crop Management Zones Determination Based on Soil Properties and Crop Yield

    Directory of Open Access Journals (Sweden)

    Perla Silva Matos de Carvalho

    Full Text Available ABSTRACT: The use of management zones has ensured yield success for numerous agricultural crops. In spite of this potential, studies applying precision agricultural techniques to cacao plantations are scarce or almost nonexistent. The aim of the present study was to delineate management zones for cacao crop, create maps combining soil physical properties and cacao tree yield, and identify what combinations best fit within the soil chemical properties. The study was conducted in 2014 on a cacao plantation in a Nitossolo Háplico Eutrófico (Rhodic Paleudult in Bahia, Brazil. Soil samples were collected in a regular sampling grid with 120 sampling points in the 0.00-0.20 m soil layer, and pH(H2O, P, K+, Ca2+, Mg2+, Na+, H+Al, Fe, Zn, Cu, Mn, SB, V, TOC, effective CEC, CEC at pH 7.0, coarse sand, fine sand, clay, and silt were determined. Yield was measured in all the 120 points every month and stratified into annual, harvest, and early-harvest cacao yields. Data were subjected to geostatistical analysis, followed by ordinary kriging interpolation. The management zones were defined through a Fuzzy K-Means algorithm for combinations between soil physical properties and cacao tree yield. Concordance analysis was carried out between the delineated zones and soil chemical properties using Kappa coefficients. The zones that best classified the soil chemical properties were defined from the early-harvest cacao yield map associated with the clay or sand fractions. Silt content proved to be an inadequate variable for defining management zones for cacao production. The delineated management zones described the spatial variability of the soil chemical properties, and are therefore important for site-specific management in the cacao crop.

  15. Potential Carbon Transport: Linking Soil Aggregate Stability and Sediment Enrichment for Updating the Soil Active Layer within Intensely Managed Landscapes

    Science.gov (United States)

    Wacha, K.; Papanicolaou, T.; Abban, B. K.; Wilson, C. G.

    2014-12-01

    Currently, many biogeochemical models lack the mechanistic capacity to accurately simulate soil organic carbon (SOC) dynamics, especially within intensely managed landscapes (IMLs) such as those found in the U.S. Midwest. These modeling limitations originate by not accounting for downslope connectivity of flowpathways initiated and governed by landscape processes and hydrologic forcing, which induce dynamic updates to the soil active layer (generally top 20-30cm of soil) with various sediment size fractions and aggregates being transported and deposited along the downslope. These hydro-geomorphic processes, often amplified in IMLs by tillage events and seasonal canopy, can greatly impact biogeochemical cycles (e.g., enhanced mineralization during aggregate breakdown) and in turn, have huge implications/uncertainty when determining SOC budgets. In this study, some of these limitations were addressed through a new concept, Potential Carbon Transport (PCT), a term which quantifies a maximum amount of material available for transport at various positions of the landscape, which was used to further refine a coupled modeling framework focused on SOC redistribution through downslope/lateral connectivity. Specifically, the size fractions slaked from large and small aggregates during raindrop-induced aggregate stability tests were used in conjunction with rainfall-simulated sediment enrichment ratio (ER) experiments to quantify the PCT under various management practices, soil types and landscape positions. Field samples used in determining aggregate stability and the ER experiments were collected/performed within the historic Clear Creek Watershed, home of the IML Critical Zone Observatory, located in Southeastern Iowa.

  16. Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas

    Directory of Open Access Journals (Sweden)

    José Camilo Bedano

    2016-07-01

    Full Text Available Soil is the most basic resource for sustainable agricultural production; it promotes water quality, is a key component of the biogeochemical cycles and hosts a huge diversity of organisms. However, we are not paying enough attention to soil degradation produced by land use. Modern agriculture has been successful in increasing yields but has also caused extensive environmental damage, particularly soil degradation. In the Argentine Pampas, agriculturization reached a peak with the generalized use of the no-till technological package: genetically modified soybeans tolerant to glyphosate, no-till, glyphosate, and inorganic fertilizers. This phenomenon has been widely spread in the country; the no-till package has been applied in large areas and has been used by tenants in a 60%–70% of cultivated lands. Thus, those who were involved in developing management practices may not be the same as those who will face degradation issues related to those practices. Indeed, most evidence reviewed in this paper suggests that the most widely distributed practices in the Pampas region are actually producing severe soil degradation. Biological degradation is particularly important because soil biota is involved in numerous soil processes on which soil functioning relies, affecting soil fertility and productivity. For example, soil meso- and macrofauna are especially important in nutrient cycling and in soil structure formation and maintenance, and they are key components of the network that links microbial process to the scale of fields and landscapes where ecosystem services are produced. However, the knowledge of the impact of different agricultural managements on soil meso- and macrofauna in Pampas agroecosystems is far from conclusive at this stage. The reason for this lack of definite conclusions is that this area has been given less attention than in other parts of the world; the response of soil fauna to agricultural practices is complex and taxa

  17. SPATIAL CORRELATION BETWEEN PHYSICAL PROPERTIES OF SOIL AND WEEDS IN TWO MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Valter Roberto Schaffrath

    2015-02-01

    Full Text Available The spatial correlation between soil properties and weeds is relevant in agronomic and environmental terms. The analysis of this correlation is crucial for the interpretation of its meaning, for influencing factors such as dispersal mechanisms, seed production and survival, and the range of influence of soil management techniques. This study aimed to evaluate the spatial correlation between the physical properties of soil and weeds in no-tillage (NT and conventional tillage (CT systems. The following physical properties of soil and weeds were analyzed: soil bulk density, macroporosity, microporosity, total porosity, aeration capacity of soil matrix, soil water content at field capacity, weed shoot biomass, weed density, Commelina benghalensis density, and Bidens pilosa density. Generally, the ranges of the spatial correlations were higher in NT than in CT. The cross-variograms showed that many variables have a structure of combined spatial variation and can therefore be mapped from one another by co-kriging. This combined variation also allows inferences about the physical and biological meanings of the study variables. Results also showed that soil management systems influence the spatial dependence structure significantly.

  18. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    Science.gov (United States)

    Sjøgaard, Kamilla S.; Treusch, Alexander H.; Valdemarsen, Thomas B.

    2017-09-01

    Permanent flooding of low-lying coastal areas is a growing threat due to climate change and related sea-level rise. An increasingly common solution to protect coastal areas lying below sea level is intentional flooding by "managed coastal realignment". However, the biogeochemical implications of flooding agricultural soils with seawater are still not well understood. We conducted a 1-year mesocosm experiment to investigate microbial carbon degradation processes in soils flooded with seawater. Agricultural soils were sampled on the northern coast of the island Fyn (Denmark) at Gyldensteen Strand, an area that was subsequently flooded in a coastal realignment project. We found rapid carbon degradation to TCO2 1 day after experimental flooding and onwards and microbial sulfate reduction established quickly as an important mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe-S compounds with Fe acting as a natural buffer, preventing toxic effects of free sulfide in soils flooded with seawater. Organic carbon degradation decreased significantly after 6 months, indicating that most of the soil organic carbon was refractory towards microbial degradation under the anoxic conditions created in the soil after flooding. During the experiment only 6-7 % of the initial soil organic carbon pools were degraded. On this basis we suggest that most of the organic carbon present in coastal soils exposed to flooding through sea-level rise or managed coastal realignment will be permanently preserved.

  19. Diet and Nutrition (Parkinson's Disease)

    Science.gov (United States)

    ... Living With Parkinson's › Managing Parkinson's › Diet & Nutrition Diet & Nutrition 1. Maintain Health 2. Ease PD Symptoms 3. ... your team Seek reliable information about diet and nutrition from your medical team and local resources. Please ...

  20. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    Science.gov (United States)

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (bank soil (bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport

  1. Evaluating management-induced soil salinization in golf courses in semi-arid landscapes

    Science.gov (United States)

    Young, J.; Udeigwe, T. K.; Weindorf, D. C.; Kandakji, T.; Gautam, P.; Mahmoud, M. A.

    2015-04-01

    Site-specific information on land management practices are often desired to make better assessments of their environmental impacts. A study was conducted in Lubbock, Texas, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alterations in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from a portable X-ray fluorescence (PXRF) spectrometer. Soil samples were collected from managed (well irrigated) and non-managed (non-irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were for the most part significantly (p < 0.05) higher in the managed areas. Water quality reports collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF-quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85% of the variability associated with soil salinity at these facilities.

  2. An update on diet and nutritional factors in systemic lupus erythematosus management.

    Science.gov (United States)

    Aparicio-Soto, Marina; Sánchez-Hidalgo, Marina; Alarcón-de-la-Lastra, Catalina

    2017-06-01

    Systemic lupus erythematosus (SLE) is a chronic inflammatory and autoimmune disease characterised by multiple organ involvement and a large number of complications. SLE management remains complicated owing to the biological heterogeneity between patients and the lack of safe and specific targeted therapies. There is evidence that dietary factors can contribute to the geoepidemiology of autoimmune diseases such as SLE. Thus, diet therapy could be a promising approach in SLE owing to both its potential prophylactic effects, without the side effects of classical pharmacology, and its contribution to reducing co-morbidities and improving quality of life in patients with SLE. However, the question arises as to whether nutrients could ameliorate or exacerbate SLE and how they could modulate inflammation and immune function at a molecular level. The present review summarises preclinical and clinical experiences to provide the reader with an update of the positive and negative aspects of macro- and micronutrients and other nutritional factors, including dietary phenols, on SLE, focusing on the mechanisms of action involved.

  3. A New Soil Water and Bulk Electrical Conductivity Sensor Technology for Irrigation and Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Evett, Steve; Schwartz, Robert; Casanova, Joaquin [Soil and Water Management Research Unit, Conservation and Production Research Laboratory, USDA-ARS, Bushland, Texas (United States); Anderson, Scott [Acclima, Inc., 2260 East Commercial Street, Meridian, Idaho 83642 (United States)

    2014-01-15

    Existing soil water content sensing systems based on electromagnetic (EM) properties of soils often over estimate and sometimes underestimate water content in saline and salt-affected soils due to severe interference from the soil bulk electrical conductivity (BEC), which varies strongly with temperature and which can vary greatly throughout an irrigation season and across a field. Many soil water sensors, especially those based on capacitance measurements, have been shown to be unsuitable in salt-affected or clayey soils (Evett et al., 2012a). The ability to measure both soil water content and BEC can be helpful for the management of irrigation and leaching regimes. Neutron probe is capable of accurately sensing water content in salt-affected soils but has the disadvantages of being: (1) labour-intensive, (2) not able to be left unattended in the field, (3) subject to onerous regulations, and (4) not able to sense salinity. The Waveguide-On-Access-Tube (WOAT) system based on time domain reflectometry (TDR) principles, recently developed by Evett et al. (2012) is a new promising technology. This system can be installed at below 3 m in 20-cm sensor segments to cover as much of the crop root zone as needed for irrigation management. It can also be installed to measure the complete soil profile from the surface to below the root zone, allowing the measurement of crop water use and water use efficiency - knowledge of which is key for irrigation and farm management, and for the development of new drought tolerant and water efficient crop varieties and hybrids, as well as watershed and environmental management.

  4. Mechanistic modeling of reactive soil nitrogen emissions across agricultural management practices

    Science.gov (United States)

    Rasool, Q. Z.; Miller, D. J.; Bash, J. O.; Venterea, R. T.; Cooter, E. J.; Hastings, M. G.; Cohan, D. S.

    2017-12-01

    The global reactive nitrogen (N) budget has increased by a factor of 2-3 from pre-industrial levels. This increase is especially pronounced in highly N fertilized agricultural regions in summer. The reactive N emissions from soil to atmosphere can be in reduced (NH3) or oxidized (NO, HONO, N2O) forms, depending on complex biogeochemical transformations of soil N reservoirs. Air quality models like CMAQ typically neglect soil emissions of HONO and N2O. Previously, soil NO emissions estimated by models like CMAQ remained parametric and inconsistent with soil NH3 emissions. Thus, there is a need to more mechanistically and consistently represent the soil N processes that lead to reactive N emissions to the atmosphere. Our updated approach estimates soil NO, HONO and N2O emissions by incorporating detailed agricultural fertilizer inputs from EPIC, and CMAQ-modeled N deposition, into the soil N pool. EPIC addresses the nitrification, denitrification and volatilization rates along with soil N pools for agricultural soils. Suitable updates to account for factors like nitrite (NO2-) accumulation not addressed in EPIC, will also be made. The NO and N2O emissions from nitrification and denitrification are computed mechanistically using the N sub-model of DAYCENT. These mechanistic definitions use soil water content, temperature, NH4+ and NO3- concentrations, gas diffusivity and labile C availability as dependent parameters at various soil layers. Soil HONO emissions found to be most probable under high NO2- availability will be based on observed ratios of HONO to NO emissions under different soil moistures, pH and soil types. The updated scheme will utilize field-specific soil properties and N inputs across differing manure management practices such as tillage. Comparison of the modeled soil NO emission rates from the new mechanistic and existing schemes against field measurements will be discussed. Our updated framework will help to predict the diurnal and daily variability

  5. Non-target impact of fungicide tetraconazole on microbial communities in soils with different agricultural management.

    Science.gov (United States)

    Sułowicz, Sławomir; Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2016-08-01

    Effect of the fungicide tetraconazole on microbial community in silt loam soils from orchard with long history of triazole application and from grassland with no known history of fungicide usage was investigated. Triazole tetraconazole that had never been used on these soils before was applied at the field rate and at tenfold the FR. Response of microbial communities to tetraconazole was investigated during 28-day laboratory experiment by determination of changes in their biomass and structure (phospholipid fatty acids method-PLFA), activity (fluorescein diacetate hydrolysis-FDA) as well as changes in genetic (DGGE) and functional (Biolog) diversity. Obtained results indicated that the response of soil microorganisms to tetraconazole depended on the management of the soils. DGGE patterns revealed that both dosages of fungicide affected the structure of bacterial community and the impact on genetic diversity and richness was more prominent in orchard soil. Values of stress indices-the saturated/monounsaturated PLFAs ratio and the cyclo/monounsaturated precursors ratio, were almost twice as high and the Gram-negative/Gram-positive ratio was significantly lower in the orchard soil compared with the grassland soil. Results of principal component analysis of PLFA and Biolog profiles revealed significant impact of tetraconazole in orchard soil on day 28, whereas changes in these profiles obtained for grassland soil were insignificant or transient. Obtained results indicated that orchards soil seems to be more vulnerable to tetraconazole application compared to grassland soil. History of pesticide application and agricultural management should be taken into account in assessing of environmental impact of studied pesticides.

  6. Using Multispectral and Elevation Data to Predict Soil Properties for a Better Management of Fertilizers at Field Scale

    Science.gov (United States)

    Drouin, Ariane; Michaud, Aubert; Sylvain, Jean-Daniel; N'Dayegamiye, Adrien; Gasser, Marc-Olivier; Nolin, Michel; Perron, Isabelle; Grenon, Lucie; Beaudin, Isabelle; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    This project aims at developing and validating an operational integrated management and localized approach at field scale using remote sensing data. It is realized in order to support the competitiveness of agricultural businesses, to ensure soil productivity in the long term and prevent diffuse contamination of surface waters. Our intention is to help agrienvironmental advisors and farmers in the consideration of spatial variability of soil properties in the management of fields. The proposed approach of soil properties recognition is based on the combination of elevation data and multispectral satellite imagery (Landsat) within statistical models. The method is based on the use of the largest possible number of satellite images to cover the widest range of soil moisture variability. Several spectral indices are calculated for each image (normalized brightness index, soil color index, organic matter index, etc.). The assignation of soils is based on a calibration procedure making use of the spatial soil database available in Canada. It includes soil profile point data associated to a database containing the information collected in the field. Three soil properties are predicted and mapped: A horizon texture, B horizon texture and drainage class. All the spectral indices, elevation data and soil data are combined in a discriminant analysis that produces discriminant functions. These are then used to produce maps of soil properties. In addition, from mapping soil properties, management zones are delineated within the field. The delineation of management zones with relatively similar soil properties is created to enable farmers to manage their fertilizers by taking greater account of their soils. This localized or precision management aims to adjust the application of fertilizer according to the real needs of soils and to reduce costs for farmers and the exports of nutrients to the stream. Mapping of soil properties will be validated in three agricultural regions in

  7. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US

    Science.gov (United States)

    Coeli M. Hoover

    2011-01-01

    The role of forests in the global carbon cycle has been the subject of a great deal of research recently, but the impact of management practices on forest soil dynamics at the stand level has received less attention. This study used six forest management experimental sites in five northern states of the US to investigate the effects of silvicultural treatments (light...

  8. Effect of agricultural management regimes on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, Joanna; van Elsas, J.D.; Van Veen, J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  9. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J.F.; Elsas, van J.D.; Veen, van J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  10. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J. F.; van Elsas, J. D.; van Veen, J. A.

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  11. Does grazing management matter for soil carbon sequestration in shortgrass steppe?

    Science.gov (United States)

    Considerable uncertainty remains regarding the potential of grazing management on semiarid rangelands to sequester soil carbon. Short-term (less than 1 decade) studies have determined that grazing management potentially influences fluxes of carbon, but such studies are strongly influenced by prevail...

  12. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Science.gov (United States)

    Harden, Jennifer W.; Hugelius, Gustaf; Ahlström, Anders; Blankinship, Joseph C.; Bond-Lamberty, Ben; Lawrence, Corey; Loisel, Julie; Malhotra, Avni; Jackson, Robert B.; Ogle, Stephen M.; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine; Vargas, Rodrigo; Vergara, Sintana E.; Cotrufo, M. Francesca; Keiluweit, Marco; Heckman, Katherine; Crow, Susan E.; Silver, Whendee L.; DeLonge, Marcia; Nave, Lucas E.

    2018-01-01

    Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.

  13. Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost.

    Science.gov (United States)

    Ramzani, Pia Muhammad Adnan; Shan, Lin; Anjum, Shazia; Khan, Waqas-Ud-Din; Ronggui, Hu; Iqbal, Muhammad; Virk, Zaheer Abbas; Kausar, Salma

    2017-07-01

    Quinoa (Chenopodium quinoa Willd.) is a traditional Andean agronomical resilient seed crop having immense significance in terms of high nutritional qualities and its tolerance against various abiotic stresses. However, finite work has been executed to evaluate the growth, physiological, chemical, biochemical, antioxidant properties, and mineral nutrients bioavailability of quinoa under abiotic stresses. Depending on the consistency in the stability of pH, intended rate of S was selected from four rates (0.1, 0.2, 0.3, 0.4 and 0.5% S) for the acidification of biochar and compost in the presence of Thiobacillus thiooxidans by pH value of 4. All three soils were amended with 1% (w/w) acidified biochar (BC A ) and compost (CO A ). Results revealed that selective plant growth, yield, physiological, chemical and biochemical improved significantly by the application of BC A in all stressed soils. Antioxidants in quinoa fresh leaves increased in the order of control > CO A  > BC A , while reactive oxygen species decreased in the order of control < CO A  < BC A . A significant reduction in anti-nutrients (phytate and polyphenols) was observed in all stressed soils with the application of BC A . Moreover, incorporation of CO A and BC A reduced the pH of rhizosphere soil by 0.4-1.6 units in all stressed soils, while only BC A in bulk soil decreased pH significantly by 0.3 units. These results demonstrate that BC A was more effective than CO A to enhance the bioavailability, translocation of essential nutrients from the soil to plant and their enhanced bioavailability in the seed. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Parenteral nutrition.

    Science.gov (United States)

    Inayet, N; Neild, P

    2015-03-01

    Over the last 50 years, parenteral nutrition has been recognised as an invaluable and potentially lifesaving tool in the physician's arsenal in the management of patients with intestinal failure or inaccessibility; however, it may also be associated with a number of potentially life-threatening complications. A recent NCEPOD report (2010) identified a number of inadequacies in the overall provision and management of parenteral nutrition and recommendations were made with the aim of improving clinical practice in the future. This paper focuses on the practical aspects relating to parenteral nutrition for adults, including important concepts, such as patient selection, as well as general management. We also explore the various pitfalls and potential complications and how these may be minimised.

  15. Changes in Nutritional and Functional Status in Longer Stay Patients Admitted to a Geriatric Evaluation and Management Unit.

    Science.gov (United States)

    Whitley, A; Skliros, E; Graven, C; McIntosh, R; Lasry, C; Newsome, C; Bowie, A

    2017-01-01

    Malnutrition and functional decline are common in older inpatients admitted to subacute care settings. However the association between changes in nutritional status and relevant functional outcomes remains under-researched. This study examined changes in nutritional status, function and mobility in patients admitted to a Geriatric Evaluation and Management (GEM) unit who had a length of stay (LOS) longer than 21 days. A prospective, observational study. Two GEM units at St Vincent's Hospital Melbourne, Australia. Patients admitted to the GEM units who stayed longer than 21 days were included in the study. Patients were assessed on admission and prior to discharge using the Subjective Global Assessment (SGA), Functional Independence Measure (FIM) motor domain and the Modified Elderly Mobility Scale (MEMS). Fifty-nine patients (Mean age 84.0 ± 7 years) met the required length of stay and were included in the study. Fifty-four per cent (n=32) were malnourished on admission (SGA B/C) and 44% (n=26) were malnourished on discharge. Twenty-two per cent (n=13) improved SGA category, 75% remained stable (n=44) and 3% deteriorated (n=2) from admission to discharge. Total Motor FIM scores significantly increased from admission to discharge in both the improved (pnutritional status groups. Subjects who improved in nutritional status had a significantly higher MEMS score at discharge (pnutritional status at the time of discharge. Improvement in nutritional status was associated with greater improvement in mobility scores. Further studies are required to investigate the effectiveness of nutrition interventions, which will inform models of care aiming to optimise nutritional, functional, and associated clinical outcomes in patients admitted to GEM units.

  16. Carbon stock and humification index of organic matter affected by sugarcane straw and soil management

    Directory of Open Access Journals (Sweden)

    Aline Segnini

    2013-10-01

    Full Text Available The maintenance of sugarcane (Saccharum spp. straw on a soil surface increases the soil carbon (C stocks, but at lower rates than expected. This fact is probably associated with the soil management adopted during sugarcane replanting. This study aimed to assess the impact on soil C stocks and the humification index of soil organic matter (SOM of adopting no-tillage (NT and conventional tillage (CT for sugarcane replanting. A greater C content and stock was observed in the NT area, but only in the 0-5 cm soil layer (p < 0.05. Greater soil C stock (0-60 cm was found in soil under NT, when compared to CT and the baseline. While C stock of 116 Mg ha-1 was found in the baseline area, in areas under CT and NT systems the values ranged from 120 to 127 Mg ha-1. Carbon retention rates of 0.67 and 1.63 Mg C ha-1 year-1 were obtained in areas under CT and NT, respectively. Laser-Induced Fluorescence Spectroscopy showed that CT makes the soil surface (0-20 cm more homogeneous than the NT system due to the effect of soil disturbance, and that the SOM humification index (H LIF is larger in CT compared to NT conditions. In contrast, NT had a gradient of increasing H LIF, showing that the entry of labile organic material such as straw is also responsible for the accumulation of C in this system. The maintenance of straw on the soil surface and the adoption of NT during sugarcane planting are strategies that can increase soil C sequestration in the Brazilian sugarcane sector.

  17. Prevalence and Intensity of Soil-Transmitted Helminthiasis, Prevalence of Malaria and Nutritional Status of School Going Children in Honduras

    Science.gov (United States)

    Mejia Torres, Rosa Elena; Franco Garcia, Dora Nelly; Fontecha Sandoval, Gustavo Adolfo; Hernandez Santana, Adriana; Singh, Prabhjot; Mancero Bucheli, Sandra Tamara; Saboya, Martha; Paz, Mirian Yolanda

    2014-01-01

    Background Many small studies have been done in Honduras estimating soil-transmitted helminthiasis (STH) prevalence but a country-wide study was last done in 2005. The country has the highest burden of malaria among all Central American countries. The present study was done to estimate country-wide STH prevalence and intensity, malaria prevalence and nutritional status in school going children. Methods and Findings A cross-sectional study was conducted following PAHO/WHO guidelines to select a sample of school going children of 3rd to 5th grades, representative of ecological regions in the country. A survey questionnaire was filled; anthropometric measurements, stool sample for STH and blood sample for malaria were taken. Kato-Katz method was used for STH prevalence and intensity and rapid diagnostic tests, microscopy, and polymerase chain reaction (PCR) were used for malaria parasite detection. A total of 2554 students were studied of which 43.5% had one or more STH. Trichuriasis was the most prevalent (34%) followed by ascariasis (22.3%) and hookworm (0.9%). Ecological regions II (59.7%) and VI (55.6%) in the north had the highest STH prevalence rates while IV had the lowest (10.6%). Prevalence of one or more high intensity STH was low (1.6%). Plasmodium vivax was detected by PCR in only 5 students (0.2%), all of which belonged to the same municipality; no P. falciparum infection was detected. The majority of children (83%) had normal body mass index for their respective age but a significant proportion were overweight (10.42%) and obese (4.35%). Conclusions Biannual deworming campaigns would be necessary in ecological regions II and VI, where STH prevalence is >50%. High prevalence of obesity in school going children is a worrying trend and portends of future increase in obesity related diseases. Malaria prevalence, both symptomatic and asymptomatic, was low and provides evidence for Honduras to embark on elimination of the disease. PMID:25330010

  18. Impacts of Nutrition and Feeding Programs on Farmers’ Management Decisions Affecting the Success of Dairy Farms with Culture Breed Cattle

    OpenAIRE

    Yavuz Topcu; Mehmet Toparlak; Muhlis Macit

    2016-01-01

    The aim of the study is to evaluate all the factors determining the milk production and yield decisions with regard to the nutrition and feeding programs affecting the integrated management strategies on the success of the dairy farms with culture breed cattle under the pasture-based and indoor barn-based production systems. For these aims, data obtained from the individual interviews conducted at the dairy farms with 100 culture breed cattle were used for Principal Component and Multiple Reg...

  19. Use of clay to remediate cadmium contaminated soil under different water management regimes.

    Science.gov (United States)

    Li, Jianrui; Xu, Yingming

    2017-07-01

    We examined in situ remediation of sepiolite on cadmium-polluted soils with diverse water regimes, and several variables including brown rice Cd, exchangeable Cd, pH, and available Fe/P. pH, available Fe/P in soils increased gradually during continuous flooding, which contributed to Cd absorption on colloids. In control group (untreated soils), compared to conventional irrigation, brown rice Cd in continuous flooding reduced by 37.9%, and that in wetting irrigation increased by 31.0% (psoils reduced by 44.4%, 34.5% and 36.8% under continuous flooding, conventional irrigation and wetting irrigation (psoils reduced by 27.5-49.0%, 14.3-40.5%, and 24.9-32.8% under three water management regimes (psoils were higher in continuous flooding than in conventional irrigation and wetting irrigation. Continuous flooding management promoted soil Cd immobilization by sepiolite. Copyright © 2017. Published by Elsevier Inc.

  20. Nitrogen management of switchgrass and miscanthus on marginal soils

    Science.gov (United States)

    Miscanthus × giganteus and switchgrass yield and fertilizer N requirements have been well studied in Europe and parts of the United States, but few reports have investigated their production on eroded claypan soils economically marginal for grain crops. This study was conducted to evaluate yield pot...

  1. Nitrous oxide emissions from fertilized soil: Can we manage it?

    Science.gov (United States)

    Cropped fields in the upper Midwest have the potential to emit nitrous oxide (N2O) and nitric oxide (NO) gases resulting from soil transformation of nitrogen (N) fertilizers applied to crops such as corn and potatoes. Nitrous oxide is a potent greenhouse and also an important in ozone depleting che...

  2. Economic evaluation of soil fertility management in groundnut fields ...

    African Journals Online (AJOL)

    This paper provides the economic evaluation of soil fertility replenishing technologies (use of inorganic fertilizers, organic manure, and rhizobium inoculant) that were tested and recommended. Data on groundnut technologies used, yields, resource availability and use, and farmers' characteristics were collected through ...

  3. Soil carbon management in large-scale Earth system modelling

    DEFF Research Database (Denmark)

    Olin, S.; Lindeskog, M.; Pugh, T. A. M.

    2015-01-01

    , carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land-use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. Our model experiments allow us...

  4. Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis

    International Nuclear Information System (INIS)

    Skinner, Colin; Gattinger, Andreas; Muller, Adrian; Mäder, Paul; Fließbach, Andreas; Stolze, Matthias; Ruser, Reiner; Niggli, Urs

    2014-01-01

    It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. A literature search on measured soil-derived greenhouse gas (GHG) (nitrous oxide and methane) fluxes under organic and non-organic management from farming system comparisons was conducted and followed by a meta-analysis. Up to date only 19 studies based on field measurements could be retrieved. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492 ± 160 kg CO 2 eq. ha −1 a −1 lower than from non-organically managed soils. For arable soils the difference amounts to 497 ± 162 kg CO 2 eq. ha −1 a −1 . However, yield-scaled nitrous oxide emissions are higher by 41 ± 34 kg CO 2 eq. t −1 DM under organic management (arable and use). To equalize this mean difference in yield-scaled nitrous oxide emissions between both farming systems, the yield gap has to be less than 17%. Emissions from conventionally managed soils seemed to be influenced mainly by total N inputs, whereas for organically managed soils other variables such as soil characteristics seemed to be more important. This can be explained by the higher bioavailability of the synthetic N fertilisers in non-organic farming systems while the necessary mineralisation of the N sources under organic management leads to lower and retarded availability. Furthermore, a higher methane uptake of 3.2 ± 2.5 kg CO 2 eq. ha −1 a −1 for arable soils under organic management can be observed. Only one comparative study on rice paddies has been published up to date. All 19 retrieved studies were conducted in the Northern hemisphere under temperate climate. Further GHG flux measurements in farming system comparisons are required to confirm the results and close the existing knowledge gaps. - Highlights: • Lower area-scaled nitrous oxide emissions from soils managed organically compared

  5. Quantifying differences in soil structure induced by farm management

    NARCIS (Netherlands)

    Droogers, P.

    1997-01-01

    Methodology for defining sustainable land management practices is increasingly needed to overcome environmental problems and to maintain production potentials. From the large amount of definitions for sustainable management the following was used here:

  6. The soil information system of Rwanda: a useful tool to identify guidelines towards sustainable land management

    OpenAIRE

    A. Verdoodt; E. Van Ranst

    2006-01-01

    On the steep lands of Rwanda, overpopulation and degradation of the land resources are acute problems, especially against the background of present and future populations, food and agricultural demands, and opportunities and constraints. The ability of the land to produce is limited with the limits to production being set by climate, soil and landform conditions, and the use and management applied. Knowledge of the soils, their properties and their spatial distribution, is indispensable for t...

  7. Enzyme activities and microbial indices of Mexican volcanic soils under different managements

    International Nuclear Information System (INIS)

    Pajares, S.; Gallardo, J. F.; Masciandaro, G.; Ceccanti, B.; Etchevers, J. D.; Marinari, S.

    2009-01-01

    Soils at the Mexican Trans-volcanic Belt are extremely important because the lack of agricultural land in overpopulated areas in Mexico. In addition, contents of soil organic matter (SOM) have been declining since the Mexican fields have been cultivated intensively. The aim of this work was to study how different agricultural management practices affect the SOM quality, using biochemical and microbiological parameters as indices. (Author)

  8. An assessment of alternative agricultural management practice impacts on soil carbon in the corn belt

    Energy Technology Data Exchange (ETDEWEB)

    Barnwell, T.O. Jr.; Jackson, R.B.; Mulkey, L.A. [Environmental Research Laboratory, Athens, GA (United States)

    1993-12-31

    This impact of alternative management practices on agricultural soil C is estimated by a soil C mass balance modeling study that incorporates policy considerations in the analysis. A literature review of soil C modeling and impacts of management practices has been completed. The models selected for use and/or modification to meet the needs of representing soil C cycles in agroecosystems and impacts of management practices are CENTURY and DNDC. These models share a common ability to examine the impacts of alternative management practices on soil organic C, and are readily accessible. An important aspect of this effort is the development of the modeling framework and methodology that define the agricultural production systems and scenarios (i.e., crop-soil-climate combinations) to be assessed in terms of national policy, the integration of the model needs with available databases, and the operational mechanics of evaluating C sequestration potential with the integrated model/database system. We are working closely with EPA`s Office of Policy and Program Evaluation to define a reasonable set of policy alternatives for this assessment focusing on policy that might be affected through a revised Farm Bill, such as incentives to selectively promote conservation tillage, crop rotations, and/or good stewardship of the conservation reserve. Policy alternatives are translated into basic data for use in soil C models through economic models. These data, including such elements as agricultural practices, fertilization rates, and production levels are used in the soil C models to produce net carbon changes on a per unit area basis. The unit-area emissions are combined with areal-extent data in a GIS to produce an estimate of total carbon and nitrogen changes and thus estimate greenhouse benefits.

  9. Almond tree and land management practices for soil erosion protection in mediterranean areas

    International Nuclear Information System (INIS)

    Doni, S.; Macci, C.; Peruzzi, E.; Masciandaro, G.; Ceccanti, B.; Mennone, C.; Garcia, C.; Hernandez, M. T.; Moreno-Ortega, J. L.

    2009-01-01

    The soils of many European regions are frequently exposed to erosion and desertification processes. These are particularly severe in areas with steep slopes and suffering dry periods followed by heavy rain such as the Mediterranean regions. This study is focused on demonstrating that the cultivation of almond trees suited to these conditions and a proper land management, may result in a sustainable sustainable system to prevent soil erosion. (Author)

  10. Moving methodologies : learning about integrated soil fertility management in sub-Saharan Africa

    OpenAIRE

    Defoer, T.

    2000-01-01

    Soil fertility management in sub-Saharan Africa is complex, diverse and dynamic. Farmers' investments are determined by a wide variety of factors, including bio-physical characteristics of the environment, access to resources and the institutional, and socio-economic context of farming and livelihood making. Within this context, defining soil fertility problems in general terms is not meaningful and proposing a limited number of standard interventions, aimed at the 'average' farmer i...

  11. Soil bioindicators as a usefull tools for land management and spatial planning processes: a case-study of prioritization of contaminated soil remediation

    Science.gov (United States)

    Grand, Cécile; Pauget, Benjamin; Villenave, Cécile; Le Guédard, Marina; Piron, Denis; Nau, Jean-François; Pérès, Guénola

    2017-04-01

    When setting up new land management, contaminated site remediation or soil use change are sometimes necessary to ensure soil quality and the restoration of the ecosystem services. The biological characterization of the soil can be used as complementary information to chemical data in order to better define the conditions for operating. Then, in the context of urban areas, elements on the soil biological quality can be taken into consideration to guide the land development. To assess this "biological state of soil health", some biological tools, called bioindicators, could provide comprehensive information to understand and predict the functioning of the soil ecosystem. In this context, a city of 200 thousand inhabitants has decided to integrate soil bioindicators in their soil diagnostic for their soil urban management. This city had to elaborate a spatial soil management in urban areas which presented soil contamination linked to a complex industrial history associated with bad uses of gardens not always safe for the environment. The project will lead to establish a Natural Urban Park (PNU) in order to develop recreational and leisure activities in a quality environment. In order to complete the knowledge of soil contamination and to assess the transfer of contaminants to the terrestrial e