WorldWideScience

Sample records for nutrient transport processes

  1. Nutrient transport within and between habitats through seed dispersal processes by woolly monkeys in north-western Amazonia.

    Science.gov (United States)

    Stevenson, Pablo R; Guzmán-Caro, Diana C

    2010-11-01

    The contribution of vertebrate animals to nutrient cycling has proven to be important in various ecosystems. However, the role of large bodied primates in nutrient transport in neotropical forests is not well documented. Here, we assess the role of a population of woolly monkeys (Lagothrix lagothricha lugens) as vectors of nutrient movement through seed dispersal. We estimated total seed biomass transported by the population within and between two habitats (terra firme and flooded forests) at Tinigua Park, Colombia, and quantified potassium (K), phosphorus (P) and nitrogen (N) content in seeds of 20 plant species from both forests. Overall, the population transported an estimated minimum of 11.5 (±1.2 SD) g of potassium, 13.2 (±0.7) g of phosphorus and 34.3 (±0.1) g nitrogen, within 22.4 (±2.0) kg of seeds ha(-1) y(-1). Approximately 84% of all nutrients were deposited in the terra firme forest mostly through recycling processes, and also through translocation from the flooded forest. This type of translocation represents an important and high-quality route of transport since abiotic mechanisms do not usually move nutrients upwards, and since chemical tests show that seeds from flooded forests have comparatively higher nutrient contents. The overall contribution to nutrient movement by the population of woolly monkeys is significant because of the large amount of biomass transported, and the high phosphorus content of seeds. As a result, the phosphorus input generated by these monkeys is of the same order of magnitude as other abiotic mechanisms of nutrient transport such as atmospheric deposition and some weathering processes. Our results suggest that via seed dispersal processes, woolly monkey populations can contribute to nutrient movement in tropical forests, and may act as important nutrient input vectors in terra firme forests. © 2010 Wiley-Liss, Inc.

  2. Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport

    Science.gov (United States)

    Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.

    2017-12-01

    In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.

  3. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NARCIS (Netherlands)

    Grift, B. van der; Broers, H.P.; Berendrecht, W.; Rozemeijer, J.; Osté, L.; Griffioen, J.

    2016-01-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream

  4. Plant nutrient transporter regulation in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen; Bechmann, I.E.

    2002-01-01

    of nutrition. Their down-regulation in mycorrhizal roots, therefore, would be predicted as a result of symbiotic function. A variety of studies on Pi- Zn- and ammonium- or nitrate-transporter genes from two plant species indirectly support this model. For example, one study showed that the expression...... of the high-affinity Pi-transporter MtPT2 within mycorrhizal roots of Medicago truncatula was inversely correlated with the concentration of P within the shoots, which suggested that P supply from the fungus influenced this gene's expression. However, there is some evidence that these plant nutrient...

  5. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    Science.gov (United States)

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling

  6. On the use of unsaturated flow and transport models in nutrient and pesticide management

    NARCIS (Netherlands)

    Vanclooster, M.; Boesten, J.J.T.I.; Tiktak, A.; Jarvis, N.; Kroes, J.G.; Muñoz-Carpena, R.; Clothier, B.E.; Green, S.R.

    2004-01-01

    In this paper, we show how flow and transport models are introduced in the nutrient and pesticide management decision-making process. Examples are given of the use of flow and transport models in (i) field-scale nutrient and pesticide management; (ii) the identification and evaluation of

  7. Placental Nutrient Transport in Gestational Diabetic Pregnancies

    Directory of Open Access Journals (Sweden)

    Marisol Castillo-Castrejon

    2017-11-01

    Full Text Available Maternal obesity during pregnancy is rising and is associated with increased risk of developing gestational diabetes mellitus (GDM, defined as glucose intolerance first diagnosed in pregnancy (1. Fetal growth is determined by the maternal nutrient supply and placental nutrient transfer capacity. GDM-complicated pregnancies are more likely to be complicated by fetal overgrowth or excess adipose deposition in utero. Infants born from GDM mothers have an increased risk of developing cardiovascular and metabolic disorders later in life. Diverse factors, such as ethnicity, age, fetal sex, clinical treatment for glycemic control, gestational weight gain, and body mass index among others, represent a challenge for studying underlying mechanisms in GDM subjects. Determining the individual roles of glucose intolerance, obesity, and other factors on placental function and fetal growth remains a challenge. This review provides an overview of changes in placental macronutrient transport observed in human pregnancies complicated by GDM. Improved knowledge and understanding of the alterations in placenta function that lead to pathological fetal growth will allow for development of new therapeutic interventions and treatments to improve pregnancy outcomes and lifelong health for the mother and her children.

  8. Physical nutrient transport in the North Atlantic Subtropical Gyre

    Science.gov (United States)

    Jenkins, W.; Lott, D. E.

    2009-04-01

    Use of the helium-3 flux gauge to estimate the physically mediated flux of new nutrients to the euphotic zone of the North Atlantic subtropical gyre broadly suggests a pathway whereby inorganic nutrients that have been remineralized within the main thermocline may be returned to the seasonally accessible layer in the Sargasso Sea: the so-called "Nutrient Spiral" (Jenkins and Doney (2003), Glob. Biog. Cyc., 17(4), doi:1110.1029/2003GB002085.) The challenge, however, is identifying the exact mechanism whereby this occurs. One possible process is that of "obduction", whereby the combination of strong advection and rapidly deepening winter mixed layers result in the effective outcropping of substantial amounts of thermocline nutrients and tritiugenic helium-3. We present here a quantitative estimate based on hydrographic sections and geostrophic transports of the fluxes and transformations of both tritugenic helium-3 and nitrate within the basin, and attempt to relate these estimates to the specific shallow-water behaviors of these tracers, and their global and regional physical transports. An important constraint for these estimates lies in the evolving distributions of the transient tracers tritium and helium-3. We compare these results with other tracer-based estimates of new, net-community, and export production.

  9. Watershed Simulation of Nutrient Processes

    Science.gov (United States)

    In this presentation, nitrogen processes simulated in watershed models were reviewed and compared. Furthermore, current researches on nitrogen losses from agricultural fields were also reviewed. Finally, applications with those models were reviewed and selected successful and u...

  10. Toward a transport-based analysis of nutrient spiraling and uptake in streams

    Science.gov (United States)

    Runkel, Robert L.

    2007-01-01

    Nutrient addition experiments are designed to study the cycling of nutrients in stream ecosystems where hydrologic and nonhydrologic processes determine nutrient fate. Because of the importance of hydrologic processes in stream ecosystems, a conceptual model known as nutrient spiraling is frequently employed. A central part of the nutrient spiraling approach is the determination of uptake length (SW), the average distance traveled by dissolved nutrients in the water column before uptake. Although the nutrient spiraling concept has been an invaluable tool in stream ecology, the current practice of estimating uptake length from steady-state nutrient data using linear regression (called here the "SW approach") presents a number of limitations. These limitations are identified by comparing the exponential SW equation with analytical solutions of a stream solute transport model. This comparison indicates that (1) SW, is an aggregate measure of uptake that does not distinguish between main channel and storage zone processes, (2) SW, is an integrated measure of numerous hydrologie and nonhydrologic processes-this process integration may lead to difficulties in interpretation when comparing estimates of SW, and (3) estimates of uptake velocity and areal uptake rate (Vf and U) based on S W, are not independent of system hydrology. Given these findings, a transport-based approach to nutrient spiraling is presented for steady-state and time-series data sets. The transport-based approach for time-series data sets is suggested for future research on nutrient uptake as it provides a number of benefits, including the ability to (1) separately quantify main channel and storage zone uptake, (2) quantify specific hydrologic and nonhydrologic processes using various model parameters (process separation), (3) estimate uptake velocities and areal uptake rates that are independent of hydrologic effects, and (4) use short-term, non-plateau nutrient additions such that the effects of

  11. Transport processes of the legume symbiosome membrane

    Directory of Open Access Journals (Sweden)

    Victoria C Clarke

    2014-12-01

    Full Text Available The symbiosome membrane (SM is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume-rhizobium symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologues of transporters of sulfate, calcium, peptides and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

  12. Atmospheric Transport of Nutrient Matter during a Red Tide Event

    Science.gov (United States)

    Tian, R.; Weng, H.; Lin, Q.

    2017-12-01

    Harmful algal blooms (HABs) resulting from an explosive increase in algae population have become a global problem in coastal marine environment. During 3rd -8th, May of 2006, large-scale, mixed prorocentrum dentatum stein and skeletonema costatum bloom developed in those water off the coast of Zhejiang province (Zhoushan city and Liuheng Island) of China. Using Global Nested Air Quality Prediction Modeling System (GNAQPMS), we find an atmospheric transport of considerable nutrient matter (nitrate, ammonium, Fe (Ⅱ)) to East China Sea (ECS) before the red tide event. It be inferred that the atmospheric transport of nutrient matter is a significant source of nutrient matter in the water of East China Sea whose hydrological setting is dominated by oligotrophic Taiwan Warm Current in spring. Such atmospheric transport of nutrient matter is likely a cause factor of red tide in the coast of East China Sea, especially during dust event. The study provides new information for discovering the occurring mechanism of the red tides in ECS and the essential parameters for the red tide research.

  13. Transport of biologically important nutrients by wind in an eroding cold desert

    Science.gov (United States)

    Sankey, Joel B.; Germino, Matthew J.; Benner, Shawn G.; Glenn, Nancy F.; Hoover, Amber N.

    2012-01-01

    Wind erosion following fire is an important landscape process that can result in the redistribution of ecologically important soil resources. In this study we evaluated the potential for a fire patch in a desert shrubland to serve as a source of biologically important nutrients to the adjacent, downwind, unburned ecosystem. We analyzed nutrient concentrations (P, K, Ca, Mg, Cu, Fe, Mn, Al) in wind-transported sediments, and soils from burned and adjacent unburned surfaces, collected during the first to second growing seasons after a wildfire that burned in 2007 in Idaho, USA in sagebrush steppe; a type of cold desert shrubland. We also evaluated the timing of potential wind erosion events and weather conditions that might have contributed to nutrient availability in downwind shrubland. Findings indicated that post-fire wind erosion resulted in an important, but transient, addition of nutrients on the downwind shrubland. Aeolian sediments from the burned area were enriched relative to both the up- and down-wind soil and indicated the potential for a fertilization effect through the deposition of the nutrient-enriched sediment during the first, but not second, summer after wildfire. Weather conditions that could have produced nutrient transport events might have provided increased soil moisture necessary to make nutrients accessible for plants in the desert environment. Wind transport of nutrients following fire is likely important in the sagebrush steppe as it could contribute to pulses of resource availability that might, for example, affect plant species differently depending on their phenology, and nutrient- and water-use requirements.

  14. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the classical transport theory in plasmas. Ch. 1 is a chapter of 'pure' hamiltonian mechanics and starts with the study of the motion of an individual charged particle in the presence of an electromagnetic field. Ch. 2 introduces the tools of statistical mechanics for the study of large collections of charged particles. A kinetic theory is derived as a basic tool for transport theory. In ch. 3 the hydro-dynamic - or plasmadynamic - balance equations are derived. The macroscopic dynamical equations have the structure of an infinite hierarchy. This introduces the necessity of construction of a transport theory, by which te infinite set of equations can be reduced to a finite, closed set. This can only be done by a detailed analysis of the kinetic equation under well defined conditions. The tools for such nan analysis are developed in ch. 4. In ch. 5 the transport equations, relating the unknown fluxes of matter, momentum, energy and electricity to the hydrodynamic variables, are derived and discussed. In ch. 6 the results are incorporated into the wider framework of non-equilibrium thermodynamics by connecting the transport processes to the central concept of entropy production. In ch. 7 the results of transport theory are put back into the equations of plasmadynamics

  15. Transport and Fate of Nutrients Along the U.S. East Coast

    Science.gov (United States)

    Hofmann, E. E.; Narvaez, D.; Friedrichs, M. A. M.; Najjar, R.; Tian, H.; Hyde, K.; Mannino, A.; Signorini, S. R.; Wilkin, J.; St-Laurent, P.

    2017-12-01

    As part of a NASA-funded multi-investigator project, a land-estuarine-ocean biogeochemical modeling system was implemented and verified with remote sensing and in situ data to examine processes controlling fluxes on land, their coupling to riverine systems, the delivery of materials to estuaries and the coastal ocean, and marine ecosystem responses to these changing riverine inputs and changing climate forcing. This modeling system is being used to develop nutrient budgets for the U.S. east coast continental shelf and to examine seasonal and interannual variability in nutrient fluxes. An important aspect of these nutrient budgets is the transport and fate of nutrients released along the inner shelf. Results from a five-year simulation (2004 to 2008) that used tracer releases from the main rivers along the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) provide insights into transport pathways that connect the inner and outer continental shelf. Tracers released along the inner MAB spread along the shelf with a general southward and offshore transport. Inner shelf inputs from the large estuarine systems are transported to the mid and outer MAB shelf. Tracers that reach the mid to outer shelf can be entrained in the Gulf Stream. Export from the MAB to the SAB occurs during periods of southerly winds. Transport processes along the SAB are similar, but Gulf Stream entrainment is a larger component of tracer transport. Superimposed on the MAB and SAB transport patterns is considerable seasonal and interannual variability. The results from these retrospective simulations improve understanding of the coupling at the land-water interface and shelf-wide transport patterns that advance the ability to predict the effects of localized human impacts and broader-scale climate-related impacts on the U.S. east coast continental shelf system.

  16. Near field transport processes

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1991-01-01

    In repositories for nuclear waste there are many processes which will be instrumental in corroding the canisters and releasing the nuclides. Based on experiences from studies on the performance of repositories and on an actual design the major mechanisms influencing the integrity and performance of a repository are described and discussed. The paper addresses only conditions in crystalline rock repositories. The low water flow rate in fractures and channels plays a dominant role in limiting the interaction between water and waste. Molecular diffusion in the backfill and rock matrix as well as in the mobile water is an important transport process but actually limits the exchange rate because diffusive transport is slow. Solubility limits of both waste matrix and of individual nuclides are also important. Complicating processes include gas generation by iron corrosion and alpha-radiolysis. (au) (19 refs., 2 figs.)

  17. Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin

    Science.gov (United States)

    Williams, Mark R.; Livingston, Stanley J.; Penn, Chad J.; Smith, Douglas R.; King, Kevin W.; Huang, Chi-hua

    2018-04-01

    Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key components driving nutrient delivery processes during storm events in four nested agricultural watersheds (298-19,341 ha) in the western Lake Erie basin with poorly drained soils and an extensive artificial drainage network typical of the Midwestern U.S. Concentration-discharge hysteresis patterns of nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP) occurring during 47 storm events over a 6 year period (2004-2009) were evaluated. An assessment of the factors producing nutrient hysteresis was completed following a factor analysis on a suite of measured environmental variables representing the fluvial and wider watershed conditions prior to, and during the monitored storm events. Results showed the artificial drainage network (i.e., surface tile inlets and subsurface tile drains) in these watersheds was the primary flow pathway for nutrient delivery to streams, but nutrient behavior and export during storm events was regulated by the flow paths to and the intensity of the drainage network, the availability of nutrients, and the relative contributions of upland and in-stream nutrient sources. Potential sources and flow pathways for transport varied among NO3-N, PP, and DRP with results underscoring the challenge of mitigating nutrient loss in these watersheds. Conservation practices addressing both nutrient management and hydrologic connectivity will likely be required to decrease nutrient loss in artificially drained landscapes.

  18. EPISODIC EVENTS: THE EFFECT OF FLOODS ON NUTRIENT TRANSPORT IN A NORTHWESTERN, USA ESTUARY

    Science.gov (United States)

    To estimate the effects of storms on nutrient transport, dissolved nutrients and suspended sediment loads were measured relative to stream discharge in the Yaquina River, OR for three storm events. Episodic events, particularly high rainfall or flood events may transport high di...

  19. Land Use, Climate and Transport of Nutrients: Evidence Emerging from the Lake Vicocase Study

    Science.gov (United States)

    Recanatesi, F.; Ripa, M. N.; Leone, A.; Luigi, Perini; Luca, Salvati

    2013-08-01

    Soil erosion is a Europe-wide problem, causing both loss of soil fertility and pollution due to nutrient transport into water bodies. This process is particularly important in the Mediterranean area, where the climate, characterised by long periods of drought followed by intense precipitation, favours soil erosion. Research carried out in this field has amply described this process, showing that climate and land use/land cover (LU/LC) are the two main factors regulating this phenomenon. However, the interaction between these factors is complex and experimental research is needed to understand the nutrient loads deriving from different land uses. This paper shows the results of a long-term monitoring project carried out in the Lake Vico basin (central Italy), using high resolution data and runoff samples to determine the phosphorus (P) export from four different LU/LC classes resulting from the same climatic event. The results highlight the fundamental role that LU/LC plays in terms of phosphorus load. Furthermore, the results appear to indicate that the maximum rainfall registered for 30' ( I 30, max), rather than the total quantity of precipitation, has the greatest effect on levels of erosion, and consequently on the migration of nutrients rather than the total quantity of precipitation can affect on erosion and therefore the migration of nutrients. These data could contribute to scientific planning support for land management choices aimed at controlling water pollution from non-point pollution sources.

  20. Nutrient transport and transformation beneath an infiltration basin

    Science.gov (United States)

    Sumner, D.M.; Rolston, D.E.; Bradner, L.A.

    1998-01-01

    Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10

  1. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg

  2. Modeling the Transport and Fate of Fecal Pollution and Nutrients of Miyun Reservoir

    Science.gov (United States)

    Liu, L.; Fu, X.; Wang, G.

    2009-12-01

    Miyun Reservoir, a mountain valley reservoir, is located 100 km northeast of Beijing City. Besides the functions of flood control, irrigation and fishery for Beijing area, Miyun Reservoir is the main drinking water storage for Beijing city. The water quality is therefore of great importance. Recently, the concentration of fecal pollution and nutrients in the reservoir are constantly rising to arrest the attention of Beijing municipality. Fecal pollution from sewage is a significant public health concern due to the known presence of human viruses and parasites in these discharges. To investigate the transport and fate of the fecal pollution and nutrients at Miyun reservoir and the health risks associated with drinking and fishery, the reservoir and two tributaries, Chaohe river and Baihe river discharging into it are being examined for bacterial, nutrients and other routine pollution. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, fecal pollution, nutrients and other routine contaminants) is used. The developed models are being verified by the observed water quality data including water temperature, conductivities and dissolved oxygen from the reservoir and its tributaries. Different factors impacting the inactivation of fecal pollution and the transport of nutrients such as water temperature, sedimentation, sunlight insolation are evaluated for Miyun reservoir by a sensitivity analysis analogized from the previous research of Lake Michigan (figure 1, indicating that solar insolation dominates the inactivation of E. Coli, an indicator of fecal pollution, Liu et al. 2006). The calibrated modeling system can be used to temporally and spatially simulate and predict the variation of the concentration of fecal pollution and nutrients of Miyun reservoir. Therefore this research can provide a forecasting tool for the

  3. Maternal–Fetal Nutrient Transport in Pregnancy Pathologies: The Role of the Placenta

    Directory of Open Access Journals (Sweden)

    Kendra Elizabeth Brett

    2014-09-01

    Full Text Available Appropriate in utero growth is essential for offspring development and is a critical contributor to long-term health. Fetal growth is largely dictated by the availability of nutrients in maternal circulation and the ability of these nutrients to be transported into fetal circulation via the placenta. Substrate flux across placental gradients is dependent on the accessibility and activity of nutrient-specific transporters. Changes in the expression and activity of these transporters is implicated in cases of restricted and excessive fetal growth, and may represent a control mechanism by which fetal growth rate attempts to match availability of nutrients in maternal circulation. This review provides an overview of placenta nutrient transport with an emphasis on macro-nutrient transporters. It highlights the changes in expression and activity of these transporters associated with common pregnancy pathologies, including intrauterine growth restriction, macrosomia, diabetes and obesity, as well as the potential impact of maternal diet. Molecular signaling pathways linking maternal nutrient availability and placenta nutrient transport are discussed. How sexual dimorphism affects fetal growth strategies and the placenta’s response to an altered intrauterine environment is considered. Further knowledge in this area may be the first step in the development of targeted interventions to help optimize fetal growth.

  4. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the neoclassical transport theory. Ch. 8 deals with toroidal magnetic confinement. Ch. 9 studies the motion of an individual particle in a toroidal field. Ch.'s 10 and 11 are devoted to the study of the kinetic equation appropriate to the situation that prevails in the neoclassical theory. Ch. 12 is devoted to the general study of the macroscopic moment equations in toroidal geometry. In ch. 13 the first new transport equations are derived. They include the strange Pfirsch-Schlueter effect. In ch. 14 the method of solution of the kinetic equation in the long free path regime is developed. In ch. 15 the typical long mean free path neoclassical transport equations are obtained and discussed; their very pecular differences with the classicial ones are emphasized. Ch. 16 introduces a mean free path regime as well as a method of interpolation of the results over the whole range of collisionalities. Ch. 17 provides the connection of the transport theory with non-equilibrium thermodynamics in a regime (long mean free path) where the applicability of the latter seems, at first sight, questionable. Nevertheless a complete and consistent thermodynamic theory can be set up, even in this regime. Finally, ch. 18 goes back to the hydrodynamical equations and treats the problem of their closure (in toroidal geometry)

  5. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics

    Science.gov (United States)

    Marcé, R.; Armengol, J.

    2009-07-01

    discharge range. This implies that both small and larger streams may be impacted by human activities in terms of nutrient retention capacity, suggesting that larger rivers located in human populated areas can exert considerable influence on phosphorus exports from watersheds. The role of biological activity in this efficiency loss showed by nutrient enriched streams remained uncertain, because the phosphorus mass transfer coefficient did not show consistent relationships with streamflow and phosphorus concentration in water. The heterogeneity of the compiled data and the possible role of additional inorganic processes on phosphorus in-stream dynamics may explain this. We suggest that more research on phosphorus dynamics at the reach scale is needed, specially in large, human impacted watercourses.

  6. Compost supplementation with nutrients and microorganisms in composting process.

    Science.gov (United States)

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  7. Crew Transportation Technical Management Processes

    Science.gov (United States)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  8. Effects of differently processed soybean substituted diets on nutrient ...

    African Journals Online (AJOL)

    Growth and nutrient studies was carried out on Clarias gariepinus Juveniles of mean weight 7.00-8.00g stocked into rectangular plastic aquarium tanks 30cm x 15cm for 120 days fed with differently processed soya bean meal. There were eight treatments labeled as diet T1-T8, diet T1 (control diet; contains no soybean meal ...

  9. Nutrient Distributions, Transports, and Budgets on the Inner Margin of a River-Dominated Continental Shelf

    Science.gov (United States)

    2013-10-02

    Nutrient distributions, transports, and budgets on the inner margin of a river-dominated continental shelf John C. Lehrter,1 Dong S. Ko,2 Michael C...and D. C. Biggs (1993), The influence of advec- tion on the spatial variability of nutrient concentrations on the Texas- Louisiana continental shelf

  10. Understanding Stoichiometric Controls in Nutrient Processing Along the River Continuum

    Science.gov (United States)

    Garayburu-Caruso, V. A.; Gonzalez-Pinzon, R.; Van Horn, D. J.; Covino, T. P.

    2016-12-01

    Eutrophication is the second most common cause of water impairment across the U.S. Nutrient retention in streams is controlled by physical and biochemical processes, including biomass availability and stoichiometric limitations. Decoupling the interactions between hydrology, nutrient supply and biogeochemical processes remains challenging for the scientific community due to lack of mechanistic understanding. Consequently, more knowledge regarding optimal controls for nutrient retention is needed to implement better management and restoration practices. We conducted column experiments to investigate how stoichiometric limitations influence nutrient spiraling in shallow sediment-water interactions along representative sites of the Jemez River-Rio Grande continuum (which spans eight stream orders), in New Mexico, USA. In each stream order we incubated six columns packed with different sediments (i.e., Silica Cone Density Sand ASTM D 1556 (0.075-2.00 mm), gravel (>2mm) and native sediments) from each site for three months. We performed two laboratory tracer experiments using columns of each substrate under identical flow conditions. In the first experiment we added a short-term pulse of reactive and conservative tracers (i.e. NaNO3 and NaBr). In the second experiment we added a short-term pulse of NaBr and nutrients following Redfield's ratio (106C:16N:1P). We estimated uptake kinetics using the Tracer Additions for Spiraling Curve Characterization (TASCC) method and evaluated how ideal stoichiometric conditions controlled efficient nutrient retention along fluvial networks. Our results suggest that biological uptake of nitrate is limited by nitrogen in headwater streams and by phosphorus and carbon in larger stream orders.

  11. Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell

    Science.gov (United States)

    Sun, Dongya; Gao, Yifan; Hou, Dianxun; Zuo, Kuichang; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Ren, Zhiyong Jason; Huang, Xia

    2018-04-01

    Recovery of nutrient resources from the wastewater is now an inevitable strategy to maintain the supply of both nutrient and water for our huge population. While the intensive energy consumption in conventional nutrient recovery technologies still remained as the bottleneck towards the sustainable nutrient recycle. This study proposed an enlarged microbial nutrient recovery cell (EMNRC) which was powered by the energy contained in wastewater and achieved multi-cycle nutrient recovery incorporated with in situ wastewater treatment. With the optimal recovery solution of 3 g/L NaCl and the optimal volume ratio of wastewater to recovery solution of 10:1, >89% of phosphorus and >62% of ammonium nitrogen were recovered into struvite. An extremely low water input ratio of water. It was proved the EMNRC system was a promising technology which could utilize the chemical energy contained in wastewater itself and energy-neutrally recover nutrient during the continuous wastewater purification process.

  12. Heterogeneity and loss of soil nutrient elements under aeolian processes in the Otindag Desert, China

    Science.gov (United States)

    Li, Danfeng; Wang, Xunming; Lou, Junpeng; Liu, Wenbin; Li, Hui; Ma, Wenyong; Jiao, Linlin

    2018-02-01

    The heterogeneity of the composition of surface soils that are affected by aeolian processes plays important roles in ecological evolution and the occurrence of aeolian desertification in fragile ecological zones, but the associated mechanisms are poorly understood. Using field investigation, wind tunnel experiments, and particle size and element analyses, we discuss the variation in the nutrient elements of surface soils that forms in the presence of aeolian processes of four vegetation species (Caragana microphylla Lam, Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel. and Stipa grandis P. Smirn) growing in the Otindag Desert, China. These four vegetation communities correspond to increasing degrees of degradation. A total of 40 macro elements, trace elements, and oxides were measured in the surface soil and in wind-transported samples. The results showed that under the different degradation stages, the compositions and concentrations of nutrients in surface soils differed for the four vegetation species. Aeolian processes may cause higher heterogeneity and higher loss of soil nutrient elements for the communities of Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel, and Stipa grandis P. Smirn than for the Caragana microphylla Lam community. There was remarkable variation in the loss of nutrients under different aeolian transportation processes. Over the past several decades, the highest loss of soil elements occurred in the 1970s, whereas the loss from 2011 to the present was generally 4.0% of that in the 1970s. These results indicate that the evident decrease in nutrient loss has played an important role in the rehabilitation that has occurred in the region recently.

  13. Radionuclide transport processes in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1983-01-01

    Some major principles and the status of knowledge concerning the transport of radionuclides through terrestrial ecosystems are reviewed. Fundamental processes which control the flow of radionuclides between ecosystem components such as air, soil, plants, and animals are described, with emphasis on deposition, resuspension, plant uptake, ingestion, and assimilation. Properties of radionuclides, organisms, and ecosystems are examined in relation to their influence on the accumulation of radioactive materials by plants and animals. The effects of the physicochemical nature of the radionuclide; morphology, physiology, and behavior of the organism; and soil, nutrient, and trophic characteristics of the ecosystem are highlighted. Observations in natural ecosystems on radionuclides such as 137 Cs, 90 Sr, 131 I, 3 H, and 239 Pu are used to illustrate current concepts. An assessment of the degree to which the processes controlling radionuclide behavior are understood and of our ability to simulate and predict such behavior with computerized models is offered. Finally, brief comments are made on research needs

  14. Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics.

    Science.gov (United States)

    Flynn, Kevin J; Skibinski, David O F; Lindemann, Christian

    2018-04-01

    Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment.

  15. Coupling ANIMO and MT3DMS for 3D regional-scale modeling of nutrient transport in soil and groundwater

    Science.gov (United States)

    Janssen, G.; Del Val Alonso, L.; Groenendijk, P.; Griffioen, J.

    2012-12-01

    We developed an on-line coupling between the 1D/quasi-2D nutrient transport model ANIMO and the 3D groundwater transport model code MT3DMS. ANIMO is a detailed, process-oriented model code for the simulation of nitrate leaching to groundwater, N- and P-loads on surface waters and emissions of greenhouse gasses. It is the leading nutrient fate and transport code in the Netherlands where it is used primarily for the evaluation of fertilization related legislation. In addition, the code is applied frequently in international research projects. MT3DMS is probably the most commonly used groundwater solute transport package worldwide. The on-line model coupling ANIMO-MT3DMS combines the state-of-the-art descriptions of the biogeochemical cycles in ANIMO with the advantages of using a 3D approach for the transport through the saturated domain. These advantages include accounting for regional lateral transport, considering groundwater-surface water interactions more explicitly, and the possibility of using MODFLOW to obtain the flow fields. An additional merit of the on-line coupling concept is that it preserves feedbacks between the saturated and unsaturated zone. We tested ANIMO-MT3DMS by simulating nutrient transport for the period 1970-2007 in a Dutch agricultural polder catchment covering an area of 118 km2. The transient groundwater flow field had a temporal resolution of one day and was calculated with MODFLOW-MetaSWAP. The horizontal resolution of the model grid was 100x100m and consisted of 25 layers of varying thickness. To keep computation times manageable, we prepared MT3DMS for parallel computing, which in itself is a relevant development for a large community of groundwater transport modelers. For the parameterization of the soil, we applied a standard classification approach, representing the area by 60 units with unique combinations of soil type, land use and geohydrological setting. For the geochemical parameterization of the deeper subsurface, however, we

  16. Upregulation of growth signaling and nutrient transporters in cotyledons of early to mid-gestational nutrient restricted ewes

    Science.gov (United States)

    Ma, Yan; Zhu, Mei J.; Uthlaut, Adam B.; Nijland, Mark J.; Nathanielsz, Peter W.; Hess, Bret W.; Ford, Stephen P.

    2011-01-01

    Multiparous ewes received 100% (control, C, n=13) or 50% (nutrient restricted, NR, n=14) of NRC dietary requirements from d28-d78 of gestation. On d78, 5 C and 6 NR ewes were necropsied. The remaining 8 C and 8 NR ewes were fed to 100% of NRC from d78-d135 and necropsied. Maternal blood was collected at both necropsies and at weekly intervals for assay of glucose, insulin and leptin. Fetal blood was collected at d78 and d135 necropsies for assay of glucose and lipids. Cotyledonary (COT) tissue was evaluated for protein and mRNA expression [fatty acid transporter (FATP)1, FATP4, CD36, glucose transporter (GLUT)1 and GLUT3], mRNA expression only [placenta fatty acid binding protein (FABPpm) and lipoprotein lipase (LPL)], or expression of phosphorylated and total protein forms [AMP kinase (AMPK)α, acetyl-CoA carboxylase (ACC), extracellular signal-regulated kinase (Erk)1/2, mammalian target of rapamycin (mTOR) and protein kinase B (Akt)]. On d78, but not d135, placental and fetal weights were reduced (P ewes. Maternal circulating glucose, insulin and leptin levels were decreased in NR vs. C ewes on d78 (P ewes (P ewes. AMPK, ACC, and Erk1/2 activities were also increased (P ewes on d135. These data demonstrate placental adaptation to maternal NR through increasing nutrient transporter production and growth signaling activity. PMID:21292322

  17. Expression of digestive enzymes and nutrient transporters in Eimeria-challenged broilers.

    Science.gov (United States)

    Su, S; Miska, K B; Fetterer, R H; Jenkins, M C; Wong, E A

    2015-03-01

    Avian coccidiosis is a disease caused by the intestinal protozoa Eimeria. The site of invasion and lesions in the intestine is species-specific, for example E. acervulina affects the duodenum, E. maxima the jejunum, and E. tenella the ceca. Lesions in the intestinal mucosa cause reduced feed efficiency and body weight gain. The growth reduction may be due to changes in expression of digestive enzymes and nutrient transporters in the intestine. The objective of this study was to compare the expression of digestive enzymes, nutrient transporters and an antimicrobial peptide in broilers challenged with either E. acervulina, E. maxima or E. tenella. The genes examined included digestive enzymes (APN and SI), peptide and amino acid transporters (PepT1, ASCT1, b(0,+)AT/rBAT, B(0)AT, CAT1, CAT2, EAAT3, LAT1, y(+)LAT1 and y(+)LAT2), sugar transporters (GLUT1, GLUT2, GLUT5 and SGLT1), zinc transporter (ZnT1) and an antimicrobial peptide (LEAP2). Duodenum, jejunum, ileum and ceca were collected 7 days post challenge. E. acervulina challenge resulted in downregulation of various nutrient transporters or LEAP2 in the duodenum and ceca, but not the jejunum or ileum. E. maxima challenge produced both downregulation and upregulation of nutrient transporters and LEAP2 in all three segments of the small intestine and ceca. E. tenella challenge resulted in the downregulation and upregulation of nutrient transporters and LEAP2 in the jejunum, ileum and ceca, but not the duodenum. At the respective target tissue, E. acervulina, E. maxima and E. tenella infection caused common downregulation of APN, b(0,+)AT, rBAT, EAAT3, SI, GLUT2, GLUT5, ZnT1 and LEAP2. The downregulation of nutrient transporters would result in a decrease in the efficiency of protein and polysaccharide digestion and uptake, which may partially explain the weight loss. The downregulation of nutrient transporters may also be a cellular response to reduced expression of the host defense protein LEAP2, which would

  18. Transport processes at fluidic interfaces

    CERN Document Server

    Reusken, Arnold

    2017-01-01

    There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplina...

  19. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).

    Science.gov (United States)

    Hu, Bo; Henry, Amelia; Brown, Kathleen M; Lynch, Jonathan P

    2014-01-01

    Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA. In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences. In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes. The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.

  20. Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins.

    Science.gov (United States)

    Montalbetti, Nicolas; Dalghi, Marianela G; Albrecht, Christiane; Hediger, Matthias A

    2014-03-01

    Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.

  1. Compositional variability of nutrients and phytochemicals in corn after processing.

    Science.gov (United States)

    Prasanthi, P S; Naveena, N; Vishnuvardhana Rao, M; Bhaskarachary, K

    2017-04-01

    The result of various process strategies on the nutrient and phytochemical composition of corn samples were studied. Fresh and cooked baby corn, sweet corn, dent corn and industrially processed and cooked popcorn, corn grits, corn flour and corn flakes were analysed for the determination of proximate, minerals, xanthophylls and phenolic acids content. This study revealed that the proximate composition of popcorn is high compared to the other corn products analyzed while the mineral composition of these maize products showed higher concentration of magnesium, phosphorus, potassium and low concentration of calcium, manganese, zinc, iron, copper, and sodium. Popcorn was high in iron, zinc, copper, manganese, sodium, magnesium and phosphorus. The xanthophylls lutein and zeaxanthin were predominant in the dent corn and the total polyphenolic content was highest in dent corn while the phenolic acids distribution was variable in different corn products. This study showed preparation and processing brought significant reduction of xanthophylls and polyphenols.

  2. 226Ra and 228Ra tracer study on nutrient transport in east coastal waters of Hainan Island, China

    Directory of Open Access Journals (Sweden)

    Ni Su

    2011-06-01

    Full Text Available Material fluxes (e.g., nutrients from coastal waters to offshore areas play an important role in controlling the water quality of the adjacent sea areas not only by increasing nutrient concentration but also by changing nutrient structures. In this study, naturally occurring isotopes, 226Ra and 228Ra, were measured with the alpha spectrometry in the Wenjiao-Wenchang and Wanquan estuaries and adjacent sea areas along the east coast of Hainan Island. The excess 226Ra and 228Ra activities were observed by comparison with the values derived from the conservative mixing of freshwater and seawater end-members in both estuaries. Using a one-dimensional diffusion model, the horizontal eddy diffusion coefficient of 3.16 x 105 cm2/s, for nutrients diffusing from their sources, was derived from 228Ra activities. Consequently, the corresponding nutrient fluxes flowing into the coastal waters were assessed. The results can provide useful information for the study of the mixing and exchange processes of coastal waters as well as dissoluble pollutant transport in this sea area.

  3. Regulation of Nutrient Transport in Quiescent, Lactating, and Neoplastic Mammary Epithelia.

    Science.gov (United States)

    1996-10-01

    comp... 96 0.93 emb X80301 NTAXI1G N.tabacum axi 1 gene 95 0.96 emb X12727 AOAMY3 Aspergillus oryzae amy3 gene for alph... 94 0.98 emb X56838 HSGSTMU3...transport properties, nutrient utilization, growth characteristics , and cellular morphology c. use of mammary epithelial cells transplanted into a cleared...the novel protein, but also effects on cellular phenotype, such as altered glucose transport, growth characteristics , or morphology. Expression in

  4. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    Science.gov (United States)

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in

  5. Interactions and feedbacks among phytobenthos, hydrodynamics, nutrient cycling and sediment transport in estuarine ecosystems

    Science.gov (United States)

    Bergamasco, A.; De Nat, L.; Flindt, M. R.; Amos, C. L.

    2003-11-01

    Phytobenthic communities can play an active role in modifying the environmental characteristics of the ecosystem in which they live so mediating the human impact on Coastal Zone habitats. Complicated feedbacks couple the establishment of phytobenthic communities with water quality and physical parameters in estuaries. Direct and indirect interactions between physical and biological attributes need to be considered in order to improve the management of these ecosystems to guarantee a sustainable use of coastal resources. Within the project F-ECTS ("Feedbacks of Estuarine Circulation and Transport of Sediments on phytobenthos") this issue was approached through a three-step strategy: (i) Monitoring: detailed fieldwork activities focusing on the measurement and evaluation of the main processes involving hydrodynamics, sediments, nutrients, light and phytobenthic biomass; (ii) Modeling: joint modeling of the suspended particulate matter erosion/transport/deposition and biological mediation of the hydrodynamics and (iii) GIS: development of GIS-based practical tools able to manage and exploit measured and modeled data on the basis of scientific investigation guidelines and procedures. The overall strategy is described by illustrating results of field measurements, providing details of model implementation and demonstrating the GIS-based tools.

  6. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology; Kautsky, Ulrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment.

  7. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    International Nuclear Information System (INIS)

    Kumblad, Linda

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment

  8. Identification of placental nutrient transporters associated with intrauterine growth restriction and pre-eclampsia.

    Science.gov (United States)

    Huang, Xiao; Anderle, Pascale; Hostettler, Lu; Baumann, Marc U; Surbek, Daniel V; Ontsouka, Edgar C; Albrecht, Christiane

    2018-03-02

    Gestational disorders such as intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are main causes of poor perinatal outcomes worldwide. Both diseases are related with impaired materno-fetal nutrient transfer, but the crucial transport mechanisms underlying IUGR and PE are not fully elucidated. In this study, we aimed to identify membrane transporters highly associated with transplacental nutrient deficiencies in IUGR/PE. In silico analyses on the identification of differentially expressed nutrient transporters were conducted using seven eligible microarray datasets (from Gene Expression Omnibus), encompassing control and IUGR/PE placental samples. Thereby 46 out of 434 genes were identified as potentially interesting targets. They are involved in the fetal provision with amino acids, carbohydrates, lipids, vitamins and microelements. Targets of interest were clustered into a substrate-specific interaction network by using Search Tool for the Retrieval of Interacting Genes. The subsequent wet-lab validation was performed using quantitative RT-PCR on placentas from clinically well-characterized IUGR/PE patients (IUGR, n = 8; PE, n = 5; PE+IUGR, n = 10) and controls (term, n = 13; preterm, n = 7), followed by 2D-hierarchical heatmap generation. Statistical evaluation using Kruskal-Wallis tests was then applied to detect significantly different expression patterns, while scatter plot analysis indicated which transporters were predominantly influenced by IUGR or PE, or equally affected by both diseases. Identified by both methods, three overlapping targets, SLC7A7, SLC38A5 (amino acid transporters), and ABCA1 (cholesterol transporter), were further investigated at the protein level by western blotting. Protein analyses in total placental tissue lysates and membrane fractions isolated from disease and control placentas indicated an altered functional activity of those three nutrient transporters in IUGR/PE. Combining bioinformatic analysis

  9. Insulin facilitates transport of macromolecules and nutrients to muscles

    DEFF Research Database (Denmark)

    Christensen, N J; Hilsted, J

    1993-01-01

    We previously showed that intravenous insulin increased plasma noradrenaline during euglycemia and without concomitant changes in plasma adrenaline. Insulin decreased plasma volume and increased the fractional escape rate of albumin from plasma. In normal subjects, oral glucose increased heart ra...... the blood to the extracellular space after food intake. This process may be greatly disturbed in insulin-dependent diabetic patients....

  10. Transport proteins of parasitic protists and their role in nutrient salvage.

    Science.gov (United States)

    Dean, Paul; Major, Peter; Nakjang, Sirintra; Hirt, Robert P; Embley, T Martin

    2014-01-01

    The loss of key biosynthetic pathways is a common feature of important parasitic protists, making them heavily dependent on scavenging nutrients from their hosts. This is often mediated by specialized transporter proteins that ensure the nutritional requirements of the parasite are met. Over the past decade, the completion of several parasite genome projects has facilitated the identification of parasite transporter proteins. This has been complemented by functional characterization of individual transporters along with investigations into their importance for parasite survival. In this review, we summarize the current knowledge on transporters from parasitic protists and highlight commonalities and differences in the transporter repertoires of different parasitic species, with particular focus on characterized transporters that act at the host-pathogen interface.

  11. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas

    Directory of Open Access Journals (Sweden)

    Tracy A. Villareal

    2014-03-01

    Full Text Available In oceanic subtropical gyres, primary producers are numerically dominated by small (1–5 µm diameter pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80–100 m into the surface layer (∼0–40 m to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (102–103 µm diameter phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia can mediate time-averaged transport of N (235 µmol N m-2 d-1 equivalent to eddy nitrate injections (242 µmol NO3− m

  12. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.

    Science.gov (United States)

    Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem

    2016-02-01

    Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Transport processes in space plasmas

    International Nuclear Information System (INIS)

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth's magnetosphere and associated waves, the Earth's magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth's magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior

  14. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    Science.gov (United States)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  15. Oxygen and diverse nutrients influence the water kefir fermentation process.

    Science.gov (United States)

    Laureys, David; Aerts, Maarten; Vandamme, Peter; De Vuyst, Luc

    2018-08-01

    Eight water kefir fermentation series differing in the presence of oxygen, the nutrient concentration, and the nutrient source were studied during eight consecutive backslopping steps. The presence of oxygen allowed the proliferation of acetic acid bacteria, resulting in high concentrations of acetic acid, and decreased the relative abundance of Bifidobacterium aquikefiri. Low nutrient concentrations resulted in slow water kefir fermentation and high pH values, which allowed the growth of Comamonas testosteroni/thiooxydans. Further, low nutrient concentrations favored the growth of Lactobacillus hilgardii and Dekkera bruxellensis, whereas high nutrient concentrations favored the growth of Lactobacillus nagelii and Saccharomyces cerevisiae. Dried figs, dried apricots, and raisins resulted in stable water kefir fermentation. Water kefir fermentation with dried apricots resulted in the highest pH and water kefir grain growth, whereas that with raisins resulted in the lowest pH and water kefir grain growth. Further, water kefir fermentation with raisins resembled fermentations with low nutrient concentrations, that with dried apricots resembled fermentations with normal nutrient concentrations, and that with fresh figs or a mixture of yeast extract and peptone resembled fermentations with high nutrient concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Transplacental Nutrient Transport Mechanisms of Intrauterine Growth Restriction in Rodent Models and Humans

    Directory of Open Access Journals (Sweden)

    Elke Winterhager

    2017-11-01

    Full Text Available Although the causes of intrauterine growth restriction (IUGR have been intensively investigated, important information is still lacking about the role of the placenta as a link from adverse maternal environment to adverse pregnancy outcomes of IUGR and preterm birth. IUGR is associated with an increased risk of cardiovascular, metabolic, and neurological diseases later in life. Determination of the most important pathways that regulate transplacental transport systems is necessary for identifying marker genes as diagnostic tools and for developing drugs that target the molecular pathways. Besides oxygen, the main nutrients required for appropriate fetal development and growth are glucose, amino acids, and fatty acids. Dysfunction in transplacental transport is caused by impairments in both placental morphology and blood flow, as well as by factors such as alterations in the expression of insulin-like growth factors and changes in the mTOR signaling pathway leading to a change in nutrient transport. Animal models are important tools for systematically studying such complex events. Debate centers on whether the rodent placenta is an appropriate tool for investigating the alterations in the human placenta that result in IUGR. This review provides an overview of the alterations in expression and activity of nutrient transporters and alterations in signaling associated with IUGR and compares these findings in rodents and humans. In general, the data obtained by studies of the various types of rodent and human nutrient transporters are similar. However, direct comparison is complicated by the fact that the results of such studies are controversial even within the same species, making the interpretation of the results challenging. This difficulty could be due to the absence of guidelines of the experimental design and, especially in humans, the use of trophoblast cell culture studies instead of clinical trials. Nonetheless, developing new therapy

  17. Transplacental Nutrient Transport Mechanisms of Intrauterine Growth Restriction in Rodent Models and Humans.

    Science.gov (United States)

    Winterhager, Elke; Gellhaus, Alexandra

    2017-01-01

    Although the causes of intrauterine growth restriction (IUGR) have been intensively investigated, important information is still lacking about the role of the placenta as a link from adverse maternal environment to adverse pregnancy outcomes of IUGR and preterm birth. IUGR is associated with an increased risk of cardiovascular, metabolic, and neurological diseases later in life. Determination of the most important pathways that regulate transplacental transport systems is necessary for identifying marker genes as diagnostic tools and for developing drugs that target the molecular pathways. Besides oxygen, the main nutrients required for appropriate fetal development and growth are glucose, amino acids, and fatty acids. Dysfunction in transplacental transport is caused by impairments in both placental morphology and blood flow, as well as by factors such as alterations in the expression of insulin-like growth factors and changes in the mTOR signaling pathway leading to a change in nutrient transport. Animal models are important tools for systematically studying such complex events. Debate centers on whether the rodent placenta is an appropriate tool for investigating the alterations in the human placenta that result in IUGR. This review provides an overview of the alterations in expression and activity of nutrient transporters and alterations in signaling associated with IUGR and compares these findings in rodents and humans. In general, the data obtained by studies of the various types of rodent and human nutrient transporters are similar. However, direct comparison is complicated by the fact that the results of such studies are controversial even within the same species, making the interpretation of the results challenging. This difficulty could be due to the absence of guidelines of the experimental design and, especially in humans, the use of trophoblast cell culture studies instead of clinical trials. Nonetheless, developing new therapy concepts for IUGR will

  18. A Process-Based Transport-Distance Model of Aeolian Transport

    Science.gov (United States)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  19. Implication of two in-stream processes in the fate of nutrients discharged by sewage system into a temporary river.

    Science.gov (United States)

    David, Arthur; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Picot, Bernadette; Tournoud, Marie-George

    2011-10-01

    The aim of this study was to better understand the fate of nutrients discharged by sewage treatment plants into an intermittent Mediterranean river, during a low-flow period. Many pollutants stored in the riverbed during the low-flow period can be transferred to the downstream environments during flood events. The study focused on two processes that affect the fate and the transport of nutrients, a physical process (retention in the riverbed sediments) and a biological process (denitrification). A spatial campaign was carried out during a low-flow period to characterize the nutrient contents of both water and sediments in the Vène River. The results showed high nutrient concentrations in the water column downstream of the treated wastewater disposal (up to 13,315 μg N/L for ammonium and 2,901 μg P/L for total phosphorus). Nutrient concentrations decreased rapidly downstream of the disposal whereas nutrient contents in the sediments increased (up to 1,898 and 784 μg/g for total phosphorus and Kjeldahl nitrogen, respectively). According to an in situ experiment using sediment boxes placed in the riverbed for 85 days, we estimated that the proportion of nutrients trapped in the sediments represents 25% (respectively 10%) of phosphorus (respectively nitrogen) loads lost from the water column. In parallel, laboratory tests indicated that denitrification occurred in the Vène River, and we estimated that denitrification likely coupled to nitrification processes during the 85 days of the experiment was significantly involved in the removal of nitrogen loads (up to 38%) from the water column and was greater than accumulation processes.

  20. Effect of heat stress on protein utilization and nutrient transporters in meat-type chickens

    Science.gov (United States)

    Habashy, Walid S.; Milfort, Marie C.; Fuller, Alberta L.; Attia, Youssef A.; Rekaya, Romdhane; Aggrey, Samuel E.

    2017-12-01

    The aim of this study was to investigate the effect of heat stress (HS) on digestibility of protein and fat and the expression of nutrient transporters in broilers. Forty-eight male Cobb500 chicks were used in this study. At day 14, birds were randomly divided into two groups and kept under either constant normal temperature (25 °C) or high temperature (35 °C) in individual cages. Five birds per treatment at 1 and 12 days post-treatment were euthanized, and Pectoralis major ( P. major) and ileum were sampled for gene expression analysis. At day 33, ileal contents were collected and used for digestibility analysis. The total consumption and retention of protein and fat were significantly lower in the HS group compared to the control group. Meanwhile, the retention of crude protein per BWG was significantly higher in the HS group compared to the control group. In P. major and ileum tissues at day 1, transporters FATP1 and SGLT1 were down-regulated in the HS group. Meanwhile, FABP1 and PepT1 were down-regulated only in the ileum of the HS group. The converse was shown in P. major. The nutrient transporter FABP1 at day 12 post-HS was down-regulated in the P. major and ileum, but GLUT1 and PepT2 were down-regulated only in the ileum, and PepT1 was down-regulated only in the P. major compared with the control group. These changes in nutrient transporters suggest that high ambient temperature might change the ileum and P. major lipids, glucose, and oligopeptide transporters.

  1. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and

  2. Modeling nutrient sources, transport and management strategies in a coastal watershed, Southeast China.

    Science.gov (United States)

    Zhou, Pei; Huang, Jinliang; Hong, Huasheng

    2018-01-01

    Integrated watershed management requires an analytical model capable of revealing the full range of impacts that would be caused by the uses and developments in the watershed. The SPAtially Referenced Regressions On Watershed Attributes (SPARROW) model was developed in this study to provide empirical estimates of the sources, transport of total nitrogen (TN) and total phosphorus (TP) and to develop nutrient management strategies in the Jiulong River Watershed, southeast China that has enormous influence on the region's ecological safety. We calibrated the model using data related to daily streamflow, monthly TN and TP concentrations in 2014 at 30 locations. The model produced R 2 values for TN with 0.95 and TP with 0.94. It was found that for the entire watershed, TN came from fertilizer application (43%), livestock breeding (39%) and sewage discharge (18%), while TP came from livestock breeding (46%), fertilizer application (46%), and industrial discharge (8%). Fifty-eight percent of the TN and 80% of the TP in upstream reaches are delivered to the outlets of North and West rivers. A scenario analysis with SPARROW was coupled to develop suitable management strategies. Results revealed that controlling nutrient sources was effective in improving water quality. Normally sharp reduction in nutrient sources is not operational feasible. Hence, it is recommended that preventing nutrient on land from entering into the river as a suitable strategy in watershed management. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A multiscale analysis of nutrient transport and biological tissue growth in vitro

    KAUST Repository

    O'Dea, R. D.

    2014-10-15

    © The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.

  4. A REVIEW ON DIAGNOSIS OF NUTRIENT DEFICIENCY SYMPTOMS IN PLANT LEAF IMAGE USING DIGITAL IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    S Jeyalakshmi

    2017-05-01

    Full Text Available Plants, for their growth and survival, need 13 mineral nutrients. Toxicity or deficiency in any one or more of these nutrients affects the growth of plant and may even cause the destruction of the plant. Hence, a constant monitoring system for tracking the nutrient status in plants becomes essential for increase in production as well as quality of yield. A diagnostic system using digital image processing would diagnose the deficiency symptoms much earlier than human eyes could recognize. This will enable the farmers to adopt appropriate remedial action in time. This paper focuses on the review of work using image processing techniques for diagnosing nutrient deficiency in plants.

  5. Microfluidics and microscale transport processes

    CERN Document Server

    Chakraborty, Suman

    2012-01-01

    With an intense focus on micro- and nanotechnology from a fluidic perspective, this book details the research activities in key directions on both the theoretical and experimental fronts. As part of the IIT Kharagpur Research Monograph series, the text discusses topics such as capillary transport in microchannels, fluid friction and heat transfer in microchannels, electrokinetics, and interfacial transport in nanochannels. It also covers nanoparticle transport in colloidal suspensions, bubble generation in microfluidic channels, micro-heat pipe, the lattice Boltzmann method for phase changing

  6. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    Science.gov (United States)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  7. Radon transport processes below the earth's surface

    International Nuclear Information System (INIS)

    Wilkening, M.

    1980-01-01

    Processes by which 222 Rn is transported from the soil to the earth's surface are reviewed. The mechanisms effective in transporting 222 Rn to the surface are related to the size and configuration of the spaces occupied by the soil gas which may vary from molecular interstices to large underground caverns. The near-surface transport processes are divided into two categories: (1) a microscopic process that includes molecular diffusion and viscous flow in fine capillaries and (2) macroscopic flow in fissures and channels. Underground air rich in 222 Rn can also reach the surface through cracks, fissures, and underground channels. This type of transport is shown for (1) a horizontal tunnel penetrating a fractured hillside, (2) a large underground cave, and (3) volcanic activity. Pressure differentials having various natural origins and thermal gradients are responsible for the transport in these examples. 222 Rn transport by ordinary molecular diffusion appears to be the dominant process

  8. Effect of dietary lead on intestinal nutrient transporters mRNA expression in broiler chickens.

    Science.gov (United States)

    Ebrahimi, Roohollah; Faseleh Jahromi, Mohammad; Liang, Juan Boo; Soleimani Farjam, Abdoreza; Shokryazdan, Parisa; Idrus, Zulkifli

    2015-01-01

    Lead- (Pb-) induced oxidative stress is known to suppress growth performance and feed efficiency in broiler chickens. In an attempt to describe the specific underlying mechanisms of such phenomenon we carried out the current study. Ninety-six one-day-old broiler chicks were randomly assigned to 2 dietary treatment groups of 6 pen replicates, namely, (i) basal diet containing no lead supplement (control) and (ii) basal diet containing 200 mg lead acetate/kg of diet. Following 3 weeks of experimental period, jejunum samples were collected to examine the changes in gene expression of several nutrient transporters, antioxidant enzymes, and heat shock protein 70 (Hsp70) using quantitative real-time PCR. The results showed that addition of lead significantly decreased feed intake, body weight gain, and feed efficiency. Moreover, with the exception of GLUT5, the expression of all sugar, peptide, and amino acid transporters was significantly downregulated in the birds under Pb induced oxidative stress. Exposure to Pb also upregulated the antioxidant enzymes gene expression together with the downregulation of glutathione S-transferase and Hsp70. In conclusion, it appears that Pb-induced oxidative stress adversely suppresses feed efficiency and growth performance in chicken and the possible underlying mechanism for such phenomenon is downregulation of major nutrient transporter genes in small intestine.

  9. Identification and quantification of nitrogen nutrient deficiency in the activated sludge process using respirometry

    NARCIS (Netherlands)

    Ning, Z.; Patry, G.G.; Spanjers, H.

    2000-01-01

    Experimental protocols to identify and quantify nitrogen nutrient deficiency in the activated sludge process were developed and tested using respirometry. Respirometric experiments showed that when a nitrogen nutrient deficient sludge is exposed to ammonia nitrogen, the oxygen uptake rate (OUR) of

  10. Novel male-biased expression in paralogs of the aphid slimfast nutrient amino acid transporter expansion

    Directory of Open Access Journals (Sweden)

    Nathanson Lubov

    2011-09-01

    Full Text Available Abstract Background A major goal of molecular evolutionary biology is to understand the fate and consequences of duplicated genes. In this context, aphids are intriguing because the newly sequenced pea aphid genome harbors an extraordinary number of lineage-specific gene duplications relative to other insect genomes. Though many of their duplicated genes may be involved in their complex life cycle, duplications in nutrient amino acid transporters appear to be associated rather with their essential amino acid poor diet and the intracellular symbiosis aphids rely on to compensate for dietary deficits. Past work has shown that some duplicated amino acid transporters are highly expressed in the specialized cells housing the symbionts, including a paralog of an aphid-specific expansion homologous to the Drosophila gene slimfast. Previous data provide evidence that these bacteriocyte-expressed transporters mediate amino acid exchange between aphids and their symbionts. Results We report that some nutrient amino acid transporters show male-biased expression. Male-biased expression characterizes three paralogs in the aphid-specific slimfast expansion, and the male-biased expression is conserved across two aphid species for at least two paralogs. One of the male-biased paralogs has additionally experienced an accelerated rate of non-synonymous substitutions. Conclusions This is the first study to document male-biased slimfast expression. Our data suggest that the male-biased aphid slimfast paralogs diverged from their ancestral function to fill a functional role in males. Furthermore, our results provide evidence that members of the slimfast expansion are maintained in the aphid genome not only for the previously hypothesized role in mediating amino acid exchange between the symbiotic partners, but also for sex-specific roles.

  11. Transport processes in pea seed coats

    NARCIS (Netherlands)

    Dongen, Joost Thomas van

    2001-01-01

    The research described in this thesis concerns transport processes in coats of developing pea seeds. The scope of the investigation ranges from seed coat anatomy, via transport studies to the cloning of cDNA encoding proteinaceous membrane pores, and the heterologous expression of these

  12. Continuous phosphorus measurements reveal catchment-scale transport processes

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.

    2012-01-01

    A small fraction of the nutrients used for agriculture is transported by rivers and artificial drainage networks to downstream waters. In lakes and coastal seas such as the Baltic Sea and the Gulf of Mexico these nutrients cause large-scale algal blooms and hypoxia and thus are a major

  13. Transport processes in multicomponent plasma

    International Nuclear Information System (INIS)

    Zissis, G.

    2002-01-01

    Full text: This book treats in detail, as indicated in the title, the transport phenomena in multicomponent plasmas. Here, the term 'transport' applies to the study of mass and energy transfer in plasmas due to the interactions between pairs of particles only. Radiation is legitimately omitted; anyway, radiative transfer is another field of study. As the author himself mentions in the introduction, 'the term multicomponent plasma implies a partially or fully ionized mixture of arbitrary number of species of neutral and charged particles satisfying the condition of quasi-neutrality'. In fact, this book treats a large variety of plasmas applying to different systems ranging from low-pressure systems which may be far from local thermodynamic equilibrium (LTE) conditions, to thermal plasmas in LTE or near-LTE states with special attention to two-temperature systems; partially ionized plasmas with low ionization degree for which electron-neutral interactions are predominant, to systems with higher ionization degrees in which charged particle interactions are no more negligible. In addition, for all the above stated situations, the author treats both plasmas which are subjected to an external electromagnetic field and those which are not (homogeneous and inhomogeneous cases). Furthermore, in the last chapters a special discussion concerning molecular plasmas is presented. Taking into account the evolution of plasma modelling in the last few years, the subject is of current interest and the reader will find in the book a large amount of information necessary for a good understanding of transport phenomena in plasmas: for a plasma simulation specialist, this book may be regarded as reference text, which includes all necessary mathematical relations for his work. However, it should not be considered a simple formulary; the reader will also find here an excellent description of the theoretical basis necessary for the derivation of all given expressions. To this point of view

  14. Increased placental nutrient transport in a novel mouse model of maternal obesity with fetal overgrowth.

    Science.gov (United States)

    Rosario, Fredrick J; Kanai, Yoshikatsu; Powell, Theresa L; Jansson, Thomas

    2015-08-01

    To identify possible mechanisms linking obesity in pregnancy to increased fetal adiposity and growth, a unique mouse model of maternal obesity associated with fetal overgrowth was developed, and the hypothesis that maternal obesity causes up-regulation of placental nutrient transporter expression and activity was tested. C57BL/6J female mice were fed a control (C) or a high-fat/high-sugar (HF/HS) pelleted diet supplemented by ad libitum access to sucrose (20%) solution, mated, and studied at embryonic day 18.5. HF/HS diet increased maternal fat mass by 2.2-fold (P Maternal circulating insulin, leptin, and cholesterol were increased (P maternal obesity. © 2015 The Obesity Society.

  15. THE EXPRESSION PROFILING OF INTESTINAL NUTRIENT TRANSPORTER GENES IN RATS WITH RENAL FAILURE

    Directory of Open Access Journals (Sweden)

    Hironori Yamamoto

    2012-06-01

    has been still unclear how different of the intestinal function in CKD. In this study, we demonstrated the microarray analysis of global gene expression in intestine of adenine-induced CKD rat. DNA microarray analysis using Affymextrix rat gene chip revealed that CKD caused great changes in gene expression in the rat duodenum: about 400 genes exhibited more than a two-fold change in expression level. Gene ontology analysis showed that a global regulation of genes by CKD involved in iron ion binding, alcoholic, organic acid and lipid metabolism. Furthermore, we found markedly changes of a number of intestinal transporters gene expression related to iron metabolism. These results suggest that CKD may alter some nutrient metabolism in the small intestine by modifying the expression of specific genes. The intestinal transcriptome database of CKD might be useful to develop the novel drugs or functional foods for CKD patients.

  16. Nutrient Canals of the Alveolar Process as an Anatomical Feature for Age and Gender Determination

    Directory of Open Access Journals (Sweden)

    Prashant Gupta

    2017-01-01

    Full Text Available Introduction: Nutrient canals are anatomic structures of the alveolar bone through which neurovascular elements transit to supply teeth and supporting structures. Dental identification using nutrient canal of the mandibular alveolar process as the most compelling anatomic feature for antemortem–postmortem radiographic comparison can be potentially used in forensic identification. Aim: The aim of the present study was to investigate the correlation between the appearance of nutrient canals as a potential clue to age and gender determination. Materials and Methods: One hundred and twenty patients, 60 males and 60 females, were selected in the 11–60-year age group. Systemic disease, especially hypertension, was ruled out in the patients. Periapical radiographs were taken from mandibular anterior cuspid central incisor region because nutrient canals are commonly observed in this area. Data obtained was analyzed by SPSS software and various statistical analysis were carried out. Results: Study revealed nutrient canals to be commonly seen in females compared to males. Males had maximum canals in the age group of 21–30-year whereas females in the age group of 31–40 years had the maximum canals. Conclusion: Significant correlation was seen between the gender and nutrient canals whereas no significant correlation existed between the age and presence of nutrient canals.

  17. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  18. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    Science.gov (United States)

    Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.

    2016-01-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  19. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.

    Science.gov (United States)

    García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory

    2016-07-05

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  20. Processed Food Contributions to Energy and Nutrient Intake Differ among US Children by Race/Ethnicity.

    Science.gov (United States)

    Eicher-Miller, Heather A; Fulgoni, Victor L; Keast, Debra R

    2015-12-02

    This study determined and compared the mean daily intake of energy and nutrients from processed foods by level of processing (minimally processed; processed for preservation, nutrient enhancement, and freshness; mixtures of combined ingredients; ready-to-eat processed foods; and prepared foods/meals) among non-Hispanic white, non-Hispanic black, and Mexican American US children. Data from participants 2-18 years old (n = 10,298) of the nationally representative cross-sectional National Health and Nutrition Examination Survey 2003-2008 with a complete one day, 24-h dietary recall were used to determine mean intake of energy and nutrients recommended for increase and decrease, as per the 2010 Dietary Guidelines for Americans, among child race/ethnic groups by category of food processing. Regression analysis was used to estimate and compare covariate-adjusted (gender, age, and poverty-income-level) least square means (p processed foods. Approximately 66% to 84% of total daily energy, saturated fat, cholesterol, fiber, total sugar, added sugars, calcium, vitamin D, potassium, and sodium intake are contributed by one of the five categories of processed foods. Clinicians and policy should primarily advise consideration of the energy and nutrient composition of foods, rather than the processing level, when selecting a healthy diet for children.

  1. Processed Food Contributions to Energy and Nutrient Intake Differ among US Children by Race/Ethnicity

    Directory of Open Access Journals (Sweden)

    Heather A. Eicher-Miller

    2015-12-01

    Full Text Available This study determined and compared the mean daily intake of energy and nutrients from processed foods by level of processing (minimally processed; processed for preservation, nutrient enhancement, and freshness; mixtures of combined ingredients; ready-to-eat processed foods; and prepared foods/meals among non-Hispanic white, non-Hispanic black, and Mexican American US children. Data from participants 2–18 years old (n = 10,298 of the nationally representative cross-sectional National Health and Nutrition Examination Survey 2003–2008 with a complete one day, 24-h dietary recall were used to determine mean intake of energy and nutrients recommended for increase and decrease, as per the 2010 Dietary Guidelines for Americans, among child race/ethnic groups by category of food processing. Regression analysis was used to estimate and compare covariate-adjusted (gender, age, and poverty-income-level least square means (p < 0.05/3 race/ethnic groups. All children, regardless of race or ethnicity consumed processed foods. Approximately 66% to 84% of total daily energy, saturated fat, cholesterol, fiber, total sugar, added sugars, calcium, vitamin D, potassium, and sodium intake are contributed by one of the five categories of processed foods. Clinicians and policy should primarily advise consideration of the energy and nutrient composition of foods, rather than the processing level, when selecting a healthy diet for children.

  2. Processed Food Contributions to Energy and Nutrient Intake Differ among US Children by Race/Ethnicity

    Science.gov (United States)

    Eicher-Miller, Heather A.; Fulgoni, Victor L.; Keast, Debra R.

    2015-01-01

    This study determined and compared the mean daily intake of energy and nutrients from processed foods by level of processing (minimally processed; processed for preservation, nutrient enhancement, and freshness; mixtures of combined ingredients; ready-to-eat processed foods; and prepared foods/meals) among non-Hispanic white, non-Hispanic black, and Mexican American US children. Data from participants 2–18 years old (n = 10,298) of the nationally representative cross-sectional National Health and Nutrition Examination Survey 2003–2008 with a complete one day, 24-h dietary recall were used to determine mean intake of energy and nutrients recommended for increase and decrease, as per the 2010 Dietary Guidelines for Americans, among child race/ethnic groups by category of food processing. Regression analysis was used to estimate and compare covariate-adjusted (gender, age, and poverty-income-level) least square means (p processed foods. Approximately 66% to 84% of total daily energy, saturated fat, cholesterol, fiber, total sugar, added sugars, calcium, vitamin D, potassium, and sodium intake are contributed by one of the five categories of processed foods. Clinicians and policy should primarily advise consideration of the energy and nutrient composition of foods, rather than the processing level, when selecting a healthy diet for children. PMID:26633491

  3. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA) : Field data and reactive transport modeling

    NARCIS (Netherlands)

    Spiteri, C.; Slomp, C.P.; Charette, M.A.; Tuncay, K.; Meile, C.

    2008-01-01

    A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient (NO3-, NH4+, PO4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction,

  4. Expression of an antimicrobial peptide, digestive enzymes and nutrient transporters in the intestine of E. praecox-infected chickens

    Science.gov (United States)

    Coccidiosis is a major intestinal disease of poultry, caused by several species of the protozoan Eimeria. The objective of this study was to examine changes in expression of digestive enzymes, nutrient transporters and an antimicrobial peptide following an Eimeria praecox challenge of chickens at d...

  5. External Carbon Source Addition as a Means to Control an Activated Sludge Nutrient Removal Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens; Søeberg, Henrik

    1994-01-01

    In alternating type activated sludge nutrient removal processes, the denitrification rate can be limited by the availability of readily-degradable carbon substrate. A control strategy is proposed by which an easily metabolizable COD source is added directly to that point in the process at which d...

  6. Analogous simulation of nutrient transformation processes in stream ...

    African Journals Online (AJOL)

    The main transformation processes effected by the natural microbial consortium of upper Iskar River with predominant participation of sediment biofilm were simulated in the laboratory by the use of portable devices (chambers). The dynamics of real heterotrophic respiration, organic matter oxidation, denitrification and ...

  7. Effect of Processing Methods on Nutrient Contents of Six Sweet ...

    African Journals Online (AJOL)

    in rural communities and was often given low priority. Currently ... (p≤0.05) differences between varieties in protein, fat, reducing sugars, carbohydrates, total carotenoids, calcium, iron ... maturity (about 5 months, average maturity rate for ... 630-12) (method. 968.08). ..... processing sweet potato by either boiling, roasting or.

  8. Coupled Spatio-Temporal Patterns of Solute Transport, Metabolism and Nutrient Uptake in Streams

    Science.gov (United States)

    Kurz, M. J.; Schmidt, C.

    2017-12-01

    Slower flow velocities and longer residence times within stream transient storage (TS) zones facilitate interaction between solutes and microbial communities, potentially increasing local rates of metabolic activity. Multiple factors, including channel morphology and substrate, variable hydrology, and seasonal changes in biological and physical parameters, result in changes in the solute transport dynamics and reactivity of TS zones over time and space. These changes would be expected to, in turn, influence rates of whole-stream ecosystem functions such as metabolism and nutrient uptake. However, the linkages between solute transport and ecosystem functioning within TS zones, and the contribution of TS zones to whole-stream functioning, are not always so straight forward. This may be due, in part, to methodological challenges. In this study we investigated the influence of stream channel hydro-morphology and substrate type on reach (103 m) and sub-reach (102 m) scale TS and ecosystem functioning. Patterns in solute transport, metabolism and nitrate uptake were tracked from April through October in two contrasting upland streams using several methods. The two streams, located in the Harz Mountains, Germany, are characterized by differing size (0.02 vs. 0.3 m3/s), dominant stream channel substrate (bedrock vs. alluvium) and sub-reach morphology (predominance of pools, riffles and glides). Solute transport parameters and respiration rates at the reach and sub-reach scale were estimated monthly from coupled pulse injections of the reactive tracer resazurin (Raz) and conservative tracers uranine and salt. Raz, a weakly fluorescent dye, irreversibly transforms to resorufin (Rru) under mildly reducing conditions, providing a proxy for aerobic respiration. Daily rates of primary productivity, respiration and nitrate retention at the reach scale were estimated using the diel cycles in dissolved oxygen and nitrate concentrations measured by in-situ sensors. Preliminary

  9. Influence of heat processing methods on the nutrient composition ...

    African Journals Online (AJOL)

    No significant difference (P > 0.05) was obtained in the saponification number of the three samples analyzed and values ranged from 161.3 ±2.92 in RS to 163.0 ± 2.60 in FS. Heat processing (boiling and frying) generally decreased significantly (p<0.05) the crude protein, crude fat, caloric value, Fe, Zn, vitamins A and C as ...

  10. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  11. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  12. Transport processes near coastal ocean outfalls

    Science.gov (United States)

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  13. Effect of egg storage duration and brooding temperatures on chick growth, intestine morphology and nutrient transporters.

    Science.gov (United States)

    Yalcin, S; Gursel, I; Bilgen, G; Horuluoglu, B H; Gucluer, G; Izzetoglu, G T

    2017-10-01

    The effects of egg storage duration (ESD) and brooding temperature (BT) on BW, intestine development and nutrient transporters of broiler chicks were investigated. A total of 396 chicks obtained from eggs stored at 18°C for 3 days (ESD3-18°C) or at 14°C for 14 days (ESD14-14°C) before incubation were exposed to three BTs. Temperatures were initially set at 32°C, 34°C and 30°C for control (BT-Cont), high (BT-High) and low (BT-Low) BTs, respectively. Brooding temperatures were decreased by 2°C each at days 2, 7, 14 and 21. Body weight was measured at the day of hatch, 2, 7, 14, 21, 28 and 42. Cloacal temperatures of broilers were recorded from 1 to 14 days. Intestinal morphology and gene expression levels of H+-dependent peptide transporter (PepT1) and Na-dependent glucose (SGLT1) were evaluated on the day of hatch and 14. Cloacal temperatures of chicks were affected by BTs from days 1 to 8, being the lowest for BT-Low chicks. BT-High resulted in the heaviest BWs at 7 days, especially for ESD14-14°C chicks. This result was consistent with longer villus and larger villus area of ESD14-14°C chicks at BT-High conditions. From 14 days to slaughter age, BT had no effect on broiler weight. ESD3-18°C chicks were heavier than ESD14-14°C chicks up to 28 days. The PepT1 and SGLT1 expression levels were significantly higher in ESD3-18°C chicks than ESD14-14°C on the day of hatch. There was significant egg storage by BT interaction for PepT1 and SGLT1 transporters at day 14. ESD14-14°C chicks had significantly higher expression of PepT1 and SGLT1 at BT-Low than those at BT-Cont. ESD14-14°C chicks upregulated PepT1 gene expression 1.15 and 1.57-fold at BT-High and BT-Low, respectively, compared with BT-Cont, whereas PepT1 expression was downregulated 0.67 and 0.62-fold in ESD3-18°C chicks at BT-High and BT-Low. These results indicated that pre-incubation egg storage conditions and BTs affected intestine morphology and PepT1 and SGLT1 nutrient transporters

  14. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  15. Direct Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Gérard Manière

    2016-09-01

    Full Text Available Dietary leucine has been suspected to play an important role in insulin release, a hormone that controls satiety and metabolism. The mechanism by which insulin-producing cells (IPCs sense leucine and regulate insulin secretion is still poorly understood. In Drosophila, insulin-like peptides (DILP2 and DILP5 are produced by brain IPCs and are released in the hemolymph after leucine ingestion. Using Ca2+-imaging and ex vivo cultured larval brains, we demonstrate that IPCs can directly sense extracellular leucine levels via minidiscs (MND, a leucine transporter. MND knockdown in IPCs abolished leucine-dependent changes, including loss of DILP2 and DILP5 in IPC bodies, consistent with the idea that MND is necessary for leucine-dependent DILP release. This, in turn, leads to a strong increase in hemolymph sugar levels and reduced growth. GDH knockdown in IPCs also reduced leucine-dependent DILP release, suggesting that nutrient sensing is coupled to the glutamate dehydrogenase pathway.

  16. Effect of delayed processing on nutrient composition, pH and ...

    African Journals Online (AJOL)

    Fish are a nutrient rich food but highly perishable due to its high water activity, protein content, neutral pH and presence of autolytic enzymes. This explains why fresh fish quality deteriorates rapidly if not properly stored after catch such as use of low temperature. The implication is that delayed processing of fresh fish ...

  17. Innovative wastewater treatment process with reduced energy consumption and regeneration of nutrients

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Fitsios, E.; Angelidaki, Irini

    Treatment of municipal wastewater by anaerobic digestion was investigated. A new process is described here, where anaerobic digestion of municipal wastewater is the main step for removal of organic matter, resulting in much lower sludge production. Steps for removal nutrients are also included. T...

  18. Processed and ultra-processed foods are associated with lower-quality nutrient profiles in children from Colombia.

    Science.gov (United States)

    Cornwell, Brittany; Villamor, Eduardo; Mora-Plazas, Mercedes; Marin, Constanza; Monteiro, Carlos A; Baylin, Ana

    2018-01-01

    To determine if processed and ultra-processed foods consumed by children in Colombia are associated with lower-quality nutrition profiles than less processed foods. We obtained information on sociodemographic and anthropometric variables and dietary information through dietary records and 24 h recalls from a convenience sample of the Bogotá School Children Cohort. Foods were classified into three categories: (i) unprocessed and minimally processed foods, (ii) processed culinary ingredients and (iii) processed and ultra-processed foods. We also examined the combination of unprocessed foods and processed culinary ingredients. Representative sample of children from low- to middle-income families in Bogotá, Colombia. Children aged 5-12 years in 2011 Bogotá School Children Cohort. We found that processed and ultra-processed foods are of lower dietary quality in general. Nutrients that were lower in processed and ultra-processed foods following adjustment for total energy intake included: n-3 PUFA, vitamins A, B12, C and E, Ca and Zn. Nutrients that were higher in energy-adjusted processed and ultra-processed foods compared with unprocessed foods included: Na, sugar and trans-fatty acids, although we also found that some healthy nutrients, including folate and Fe, were higher in processed and ultra-processed foods compared with unprocessed and minimally processed foods. Processed and ultra-processed foods generally have unhealthy nutrition profiles. Our findings suggest the categorization of foods based on processing characteristics is promising for understanding the influence of food processing on children's dietary quality. More studies accounting for the type and degree of food processing are needed.

  19. Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds

    Science.gov (United States)

    Kalkhoff, Stephen J.; Hubbard, Laura E.; Tomer, Mark D.; James, D.E.

    2016-01-01

    Precipitation patterns and nutrient inputs affect transport of nitrate (NO3-N) and phosphorus (TP) from Midwest watersheds. Nutrient concentrations and yields from two subsurface-drained watersheds, the Little Cobb River (LCR) in southern Minnesota and the South Fork Iowa River (SFIR) in northern Iowa, were evaluated during 1996–2007 to document relative differences in timings and amounts of nutrients transported. Both watersheds are located in the prairie pothole region, but the SFIR exhibits a longer growing season and more livestock production. The SFIR yielded significantly more NO3-N than the LCR watershed (31.2 versus 21.3 kg NO3-N ha− 1 y− 1). The SFIR watershed also yielded more TP than the LCR watershed (1.13 versus 0.51 kg TP ha− 1 yr− 1), despite greater TP concentrations in the LCR. About 65% of NO3-N and 50% of TP loads were transported during April–June, and < 20% of the annual loads were transported later in the growing season from July–September. Monthly NO3-N and TP loads peaked in April from the LCR but peaked in June from the SFIR; this difference was attributed to greater snowmelt runoff in the LCR. The annual NO3-N yield increased with increasing annual runoff at a similar rate in both watersheds, but the LCR watershed yielded less annual NO3-N than the SFIR for a similar annual runoff. These two watersheds are within 150 km of one another and have similar dominant agricultural systems, but differences in climate and cropping inputs affected amounts and timing of nutrient transport.

  20. Transformation mechanism of nutrient elements in the process of biochar preparation for returning biochar to soil

    Institute of Scientific and Technical Information of China (English)

    Shuangshuang Tian; Zhongxin Tan; Alfreda Kasiulienė; Ping Ai

    2017-01-01

    Returning biochar to soil is a heavily researched topic because biochar functions well for soil improvement. There is a significant loss of nutrients, which occurs during biochar preparation before biochar is returned to soil, thereby seriously undermining biochar's efficacy. Therefore, the transformation mechanisms of biochar pH, mass, nutrients and metals during pyrolysis under different atmospheres and temperatures were studied such that the best method for biochar preparation could be developed. Several conclusions can be reached: (1) a CO2 atmosphere is better than a N2 atmosphere for biochar preparation, although preparation in a CO2 atmosphere is not a common practice for biochar producers; (2) 350 ℃ is the best temperature for biochar preparation because the amount of nutrient loss is notably low based on the premise of straw transferred into biochar; and (3) transforming mechanisms of pH, N, P and K are also involved in the biochar preparation process.

  1. Effect of processing on nutrients and fatty acid composition of garden cress (Lepidium sativum) seeds.

    Science.gov (United States)

    Jain, Tanu; Grover, Kiran; Kaur, Gurpreet

    2016-12-15

    Garden cress seeds were undergone for different processing methods and analyzed for its nutritional composition. Effect of processing on nutrient retention was evaluated to attain the best processed form of seeds with maximum amount of nutrients. Soaking improved protein and ash by 2.10 and 2.48 percent respectively. Boiling improved fat and fibre by 1.66 and 8.32 percent respectively. Maximum retention of iron and zinc was found with roasting. It also improved calcium by 3.18 percent. Percent ionizable iron and bioavailability was found maximum with boiling (13.59 and 6.88% respectively). In vitro starch and protein digestibility were found maximum on boiling (57.98 and 32.39% respectively) with a decrease of 9.65 and 14.13 percent in phytin phosphorus and oxalate respectively. Amino acids and fatty acids were decreased with heat treatment and maximum retention was found with soaking. Overall improvement in nutrient composition and maximum nutrient retention was found with boiling method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. National Large-Scale Wetland Creation in Agricultural Areas—Potential versus Realized Effects on Nutrient Transports

    Directory of Open Access Journals (Sweden)

    Stefan E. B. Weisner

    2016-11-01

    Full Text Available During 2007–2013, the Swedish Board of Agriculture granted support within a national program to about 1000 wetlands, corresponding to a 5300-hectare wetland area, with the dual goal to remove nutrients from water and to improve biodiversity in agricultural landscapes. The aim of the present study was to compare the effects on nutrient transports that are realized within the national program to what could be obtained with the same area of wetlands if location and design of wetlands were optimized. In single, highly nutrient-loaded wetlands, a removal of around 1000 kg nitrogen and 100 kg phosphorus per hectare wetland area and year was estimated from monitoring data. Statistical models were developed to estimate the overall nutrient removal effects of wetlands created within the national program. Depending on model, the effect of the national program as a whole was estimated to between 27 and 38 kg nitrogen and between 2.7 and 4.5 kg phosphorus per hectare created wetland area and year. Comparison of what is achieved in individual wetlands to what was achieved in the national program indicates that nutrient removal effects could be increased substantially in future wetland programs by emphasising location and design of wetlands.

  3. Understanding Nutrient Processing Under Similar Hydrologic Conditions Along a River Continuum

    Science.gov (United States)

    Garayburu-Caruso, V. A.; Mortensen, J.; Van Horn, D. J.; Gonzalez-Pinzon, R.

    2015-12-01

    Eutrophication is one of the main causes of water impairment across the US. The fate of nutrients in streams is typically described by the dynamic coupling of physical processes and biochemical processes. However, isolating each of these processes and determining its contribution to the whole system is challenging due to the complexity of the physical, chemical and biological domains. We conducted column experiments seeking to understand nutrient processing in shallow sediment-water interactions along representative sites of the Jemez River-Rio Grande continuum (eight stream orders), in New Mexico (USA). For each stream order, we used a set of 6 columns packed with 3 different sediments, i.e., Silica Cone Density Sand ASTM D 1556 (0.075-2.00 mm), gravel (> 2mm) and native sediments from each site. We incubated the sediments for three months and performed tracer experiments in the laboratory under identical flow conditions, seeking to normalize the physical processes along the river continuum. We added a short-term pulse injection of NO3, resazurin and NaCl to each column and determined metabolism and NO3 processing using the Tracer Additions for Spiraling Curve Characterization method (TASCC). Our methods allowed us to study how changes in bacterial communities and sediment composition along the river continuum define nutrient processing.

  4. Expression of nutrient transporters in duodenum, jejunum, and ileum of Eimeria maxima-infected broiler chickens.

    Science.gov (United States)

    Fetterer, Raymond H; Miska, Katarzyna B; Jenkins, Mark C; Wong, Eric A

    2014-10-01

    The uptake of amino acids is mediated by active transporters located on the basolateral and brush border membranes of intestinal epithelial cells. The current study investigated the expression of amino acid transporters (AAT) and other genes in the intestine of chicks infected with Eimeria maxima. At 7-day postinfection (PI), tissue from each intestinal segment (duodenum, jejunum, and ileum) was taken from birds inoculated with 3 × 10(3) oocysts/bird and processed to recover RNA. Analysis of gene expression was performed using real-time reverse transcription polymerase chain reaction (qRT-PCR). Results were given as relative expression using β₂-microglobulin as an endogenous control. All the genes studied were expressed in three segments of the intestines, and expression of the genes was altered by infection with E. maxima. Even though the jejunum is considered the parasite's primary predilection site, there was no segment-related difference in expression of most of the genes studied. The antimicrobial peptide (LEAP2) was downregulated in all three segments of the intestine. The results also demonstrate that transporters associated with brush border membranes were downregulated while transporters associated with the basolateral membranes were upregulated and that E. maxima alters the expression of AAT and LEAP2 throughout the small intestine.

  5. Transport of dissolved nutrients and chlorophyll a in a tropical estuary, southwest coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Lallu, K.R.; Fausia, K.H.; Vinita, J.; Balachandran, K.K.; NaveenKumar, K.R.; Rehitha, T.V.

    .Spring-neap tides.Chlorophyll a 2    Introduction Estuaries are the intermediate zones of land-sea interactions contributing significantly to the nutrient fluxes in to the ocean on varying time scales (Simpson et al. 2001). The nutrient delivery...

  6. Assessing Sediment and Nutrient Transport in the Pra Basin of Ghana

    African Journals Online (AJOL)

    Regression analysis was used to establish relationships between suspended sediment yield and nutrient export coefficient as the dependent variable, and runoff and catchment area as the independent variables. The established regression equation can be used to estimate suspended sediment or nutrient yield at any ...

  7. Measuring nutrient spiralling in streams

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; O' Neill, R V; Van Winkle, W

    1981-01-01

    Nutrient cycling in streams involves some downstream transport before the cycle is completed. Thus, the path traveled by a nutrient atom in passing through the cycle can be visualized as a spiral. As an index of the spiralling process, we introduce spiralling length, defined as the average distance associated with one complete cycle of a nutrient atom. This index provides a measure of the utilization of nutrients relative to the available supply from upstream. Using /sup 32/p as a tracer, we estimated a spiralling length of 193 m for phosphorus in a small woodland stream.

  8. Summer nitrogenous nutrient transport and its fate in the Taiwan Strait: A coupled physical-biological modeling approach

    Science.gov (United States)

    Wang, Jia; Hong, Huasheng; Jiang, Yuwu; Chai, Fei; Yan, Xiao-Hai

    2013-09-01

    In order to understand the fate of nutrients in the Taiwan Strait during summer, we built a coupled physical-biological numerical ocean model, which can capture the basic hydrographic and biological features within the strait. The nutrient that we chose to model is dissolved inorganic nitrogen (DIN). The model includes individual reservoirs for nitrate (NO3) and ammonium (NH4). Both the observational evidence and model results show that NO3 in the strait originates primarily from the upwelling subsurface water in the northern South China Sea (SCS) that enters the strait via the eastern and western routes separated by the Taiwan Bank. The coupled physical and biological effects on the NO3 transport at these two routes are highlighted in the study. For the western route, the shallow topography and the coastal upwelling intensify the biological uptake of NO3 in the whole water column. Consequently, the nitrogenous contribution by this route is mainly in form of the particulate organic nitrogen (PON). In contrast, NO3 is transported conservatively below the nitricline at the deep eastern route, contributing the whole NO3 supply in the TWS. The model estimates the fluxes of DIN and PON into the TWS, from the northern SCS, are 1.8 and 4 kmol s-1, respectively. Over half (˜1 kmol s-1) of the DIN is synthesized into PON by the phytoplankton in the strait. Overall, this study estimates the physical and biological effects on the nutrient transport in the TWS during summer.

  9. Energy and Nutrient Intakes from Processed Foods Differ by Sex, Income Status, and Race/Ethnicity of US Adults.

    Science.gov (United States)

    Eicher-Miller, Heather A; Fulgoni, Victor L; Keast, Debra R

    2015-06-01

    The 2010 Dietary Guidelines for Americans (DGA) recommends nutrients to increase and to decrease for US adults. The contributions processed foods make to the US intake of nutrients to increase and decrease may vary by the level of processing and by population subgroup. The hypotheses that the intakes of nutrients to increase or decrease, as specified by the DGA, are contributed exclusively from certain processed food categories and consumed differentially by population subgroups by sex, poverty-income ratio (ratio of household income to poverty threshold), and race/ethnicity was tested along with the hypothesis that specific processed food categories are responsible for nutrient intake differences between the population subgroups. The 24-hour dietary recall data from the cross-sectional 2003-2008 National Health and Nutrition Examination Survey was used to determine population subgroup energy and nutrient intake differences among processed food categories defined by the International Food Information Council Foundation Continuum of Processed Foods. Fifteen thousand fifty-three US adults aged ≥19 years. The mean daily intake of energy and nutrients from processed food categories reported by population subgroups were compared using regression analysis to determine covariate-adjusted least square means. Processed food categories that contributed to energy and nutrient intake differences within subgroups did not uniformly or exclusively contribute nutrients to increase or decrease per DGA recommendations. The between-group differences in mean daily intake of both nutrients to increase and decrease contributed by the various processed food categories were diverse and were not contributed exclusively from specific processed food categories. Recommendations for a diet adhering to the DGA should continue to focus on the energy and nutrient content, frequency of consumption, and serving size of individual foods rather than the level of processing. Copyright © 2015

  10. Transport of water, bromide ion, nutrients and the pesticides bentazone and imidacloprid in a cracking, tile drained clay soil at Andelst, the Netherlands

    NARCIS (Netherlands)

    Smelt, J.H.; Hendriks, R.F.A.; Pas, van der L.J.T.; Matser, A.M.; Toorn, van den A.; Oostindie, K.; Dijk-Hooijer, van O.M.; Boesten, J.J.T.I.; Scorza Júnior, R.P.

    2003-01-01

    The aim of this study was to perform a field experiment to collect a high quality data set suitable for validating and improving pesticide leaching models and nutrient leaching models for drained and cracking clay soils. The transport of water, bromide, nutrients and the pesticides bentazone and

  11. Study of transport processes in soils and plants by microautoradiographic and radioabsorption methods

    International Nuclear Information System (INIS)

    Varro, T.; Gelencser, Judit; Somogyi, G.

    1987-01-01

    The concentration profiles of lead and boron in carrot root and potato tuber were determined at various diffusion times by microradiographic method. The transport process of nutrients, leaf-manures and plant-protecting agents in plants was investigated by radioabsorption method. The influence of the pH of soils and complex-forming agents on the effective diffusion coefficients of nutritives was studied by radioabsorption technique. In soils, the effective diffusion coefficient of the nutrients was found to change in the region of 10 -16 -10 -10 m 2 s -1 . The data of the measurements give valuable information about the transport processes in plants and soils. (author) 9 refs., 4 figs

  12. [Sediment-water flux and processes of nutrients and gaseous nitrogen release in a China River Reservoir].

    Science.gov (United States)

    Chen, Zhu-hong; Chen, Neng-wang; Wu, Yin-qi; Mo, Qiong-li; Zhou, Xing-peng; Lu, Ting; Tian, Yun

    2014-09-01

    The key processes and fluxes of nutrients (N and P) and gaseous N (N2 and N2O) across the sediment-water interface in a river reservoir (Xipi) of the Jiulong River watershed in southeast China were studied. Intact core sediment incubation of nutrients exchange, in-situ observation and lab incubation of excess dissolved N2 and N2O (products of nitrification, denitrification and Anammox), and determination of physiochemical and microbe parameters were carried out in 2013 for three representative sites along the lacustrine zone of the reservoir. Results showed that ammonium and phosphate were generally released from sediment to overlying water [with averaged fluxes of N (479.8 ± 675.4) mg. (m2. d)-1 and P (4. 56 ± 0.54) mg. (m2 d) -1] , while nitrate and nitrite diffused into the sediment. Flood events in the wet season could introduce a large amount of particulate organic matter that would be trapped by the dam reservoir, resulting in the high release fluxes of ammonium and phosphate observed in the following low-flow season. No clear spatial variation of sediment nutrient release was found in the lacustrine zone of the reservoir. Gaseous N release was dominated by excess dissolved N2 (98% of total), and the N2 flux from sediment was (15.8 ± 12. 5) mg (m2. d) -1. There was a longitudinal and vertical variation of excess dissolved N2, reflecting the combined results of denitrification and Anammox occurring in anoxic sediment and fluvial transport. Nitrification mainly occurred in the lower lacustrine zone, and the enrichment of N2O was likely regulated by the ratio of ammonium to DIN in water.

  13. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    International Nuclear Information System (INIS)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes

    2010-06-01

    The aim of the work was to provide supplementary input to the risk assessment of a planned final nuclear waste repository at Forsmark. The main deliverable was a computed water exchange between basins in the Forsmark marine area for the period 6500 BC to 9000 AD - based on the hydrodynamic modelling - to be used as input to the landscape dose model. In addition and what is described in this report, a second deliverable was development and application of high-resolution models for the marine ecosystem and radionuclide processes. The purpose of this deliverable was to illustrate the spatial and temporal variation in important processes and parameters, while constituting a complement to previous modelling approaches and providing supporting information to discussions of the marine ecosystem, parameters and variation (see Chapter 4 and 6).To this end, a hydrodynamic model of high temporal and spatial resolution was constructed and calibrated for the Forsmark area. An ecosystem model was then developed and coupled to the hydrodynamic model. In turn, a detailed radionuclide model was coupled to the ecosystem model to provide detailed predictions of radionuclide transport and accumulation in the coastal ecosystem. The ecosystem and radionuclide models were developed in the equation solver MIKE ECOLab that links seamless to the MIKE3 FM hydrodynamic model. The 'standard' ECOLab ecosystem model was extended with six biological state variables, perennial macroalgae, benthic herbivors, detritus feeders, planktivorus fish and, benthic predators representing the relict isopod Saduria and cod. In contrast to the ecosystem model, the radionuclide model was developed from scratch but building on the structure of the ecosystem model and using the output (process rates linking state variables) from the ecosystem model as input to the radionuclide model. Both the ecosystem model and the radionuclide model were run for several years (5-8 years) to bring state variables into quasi

  14. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    Energy Technology Data Exchange (ETDEWEB)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes [DHI, Hoersholm (Denmark)

    2010-06-15

    The aim of the work was to provide supplementary input to the risk assessment of a planned final nuclear waste repository at Forsmark. The main deliverable was a computed water exchange between basins in the Forsmark marine area for the period 6500 BC to 9000 AD - based on the hydrodynamic modelling - to be used as input to the landscape dose model. In addition and what is described in this report, a second deliverable was development and application of high-resolution models for the marine ecosystem and radionuclide processes. The purpose of this deliverable was to illustrate the spatial and temporal variation in important processes and parameters, while constituting a complement to previous modelling approaches and providing supporting information to discussions of the marine ecosystem, parameters and variation (see Chapter 4 and 6).To this end, a hydrodynamic model of high temporal and spatial resolution was constructed and calibrated for the Forsmark area. An ecosystem model was then developed and coupled to the hydrodynamic model. In turn, a detailed radionuclide model was coupled to the ecosystem model to provide detailed predictions of radionuclide transport and accumulation in the coastal ecosystem. The ecosystem and radionuclide models were developed in the equation solver MIKE ECOLab that links seamless to the MIKE3 FM hydrodynamic model. The 'standard' ECOLab ecosystem model was extended with six biological state variables, perennial macroalgae, benthic herbivors, detritus feeders, planktivorus fish and, benthic predators representing the relict isopod Saduria and cod. In contrast to the ecosystem model, the radionuclide model was developed from scratch but building on the structure of the ecosystem model and using the output (process rates linking state variables) from the ecosystem model as input to the radionuclide model. Both the ecosystem model and the radionuclide model were run for several years (5-8 years) to bring state variables into quasi

  15. Growth of embryo and gene expression of nutrient transporters in the small intestine of the domestic pigeon (Columba livia)*

    Science.gov (United States)

    Chen, Ming-xia; Li, Xiang-guang; Yang, Jun-xian; Gao, Chun-qi; Wang, Bin; Wang, Xiu-qi; Yan, Hui-chao

    2015-01-01

    The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b0,+AT, EAAT3, y+LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b0,+AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y+LAT2 had positive correlations with body weight (0.71

  16. Growth of embryo and gene expression of nutrient transporters in the small intestine of the domestic pigeon (Columba livia).

    Science.gov (United States)

    Chen, Ming-xia; Li, Xiang-guang; Yang, Jun-xian; Gao, Chun-qi; Wang, Bin; Wang, Xiu-qi; Yan, Hui-chao

    2015-06-01

    The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b(0,+)AT, EAAT3, y(+)LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b(0,+)AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y(+)LAT2 had positive correlations with body weight (0.71

  17. Howard Brenner's Legacy for Biological Transport Processes

    Science.gov (United States)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  18. Signal Processing Model for Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H

    2008-07-28

    This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.

  19. A Geographic Information System approach to modeling nutrient and sediment transport

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Hunsaker, C.T.; Beauchamp, J.J. [Oak Ridge National Lab., TN (United States); Timmins, S.P. [Analysas Corp., Oak Ridge, TN (United States)

    1993-02-01

    The objective of this study was to develop a water quality model to quantify nonpoint-source (NPS) pollution that uses a geographic information system (GIS) to link statistical modeling of nutrient and sediment delivery with the spatial arrangement of the parameters that drive the model. The model predicts annual nutrient and sediment loading and was developed, calibrated, and tested on 12 watersheds within the Lake Ray Roberts drainage basin in north Texas. Three physiographic regions are represented by these watersheds, and model success, as measured by the accuracy of load estimates, was compared within and across these regions.

  20. Ultra-processed Food Intake and Obesity: What Really Matters for Health-Processing or Nutrient Content?

    Science.gov (United States)

    Poti, Jennifer M; Braga, Bianca; Qin, Bo

    2017-12-01

    The aim of this narrative review was to summarize and critique recent evidence evaluating the association between ultra-processed food intake and obesity. Four of five studies found that higher purchases or consumption of ultra-processed food was associated with overweight/obesity. Additional studies reported relationships between ultra-processed food intake and higher fasting glucose, metabolic syndrome, increases in total and LDL cholesterol, and risk of hypertension. It remains unclear whether associations can be attributed to processing itself or the nutrient content of ultra-processed foods. Only three of nine studies used a prospective design, and the potential for residual confounding was high. Recent research provides fairly consistent support for the association of ultra-processed food intake with obesity and related cardiometabolic outcomes. There is a clear need for further studies, particularly those using longitudinal designs and with sufficient control for confounding, to potentially confirm these findings in different populations and to determine whether ultra-processed food consumption is associated with obesity independent of nutrient content.

  1. Expression of digestive enzymes and nutrient transporters in Eimeria acervulina-challenged layers and broilers

    Science.gov (United States)

    Avian coccidiosis is a disease caused by the intestinal protozoa Eimeria. Eimeria-infected chickens develop lesions in the intestinal mucosa, which result in reduced feed efficiency and body weight gain. This growth reduction may be due to changes in expression of digestive enzymes and nutrient tran...

  2. Transport of nutrients from land to sea: Global modeling approaches and uncertainty analyses

    NARCIS (Netherlands)

    Beusen, A.H.W.

    2014-01-01

    This thesis presents four examples of global models developed as part of the Integrated Model to Assess the Global Environment (IMAGE). They describe different components of global biogeochemical cycles of the nutrients nitrogen (N), phosphorus (P) and silicon (Si), with a focus on approaches to

  3. Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution

    KAUST Repository

    Chekli, Laura; Eun Kim, Jung; El Saliby, Ibrahim; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, NorEddine; Leiknes, TorOve; Kyong Shon, Ho

    2017-01-01

    This study investigated the sustainable reuse of wastewater using fertilizer drawn forward osmosis (FDFO) process through osmotic dilution of commercial nutrient solution for hydroponics, a widely used technique for growing plants without soil

  4. Contribution of mesoscale processes to nutrient budgets in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Resplandy, L; Levy, M.; Madec, G.; Pous, S.; Aumont, O.; DileepKumar, M.

    Contribution of mesoscale processes to nutrient1 budgets in the Arabian Sea2 L. Resplandy, 1 M. L´evy, 1 G. Madec, 1,2 S. Pous, 1 O. Aumont, 3 D. Kumar 4 L. Resplandy, LOCEAN, UPMC, BC100, 4 place Jussieu, F-75252 Paris cedex 05, France. (lrlod... is constant and set to 122/16 [Takahashi et al., 1985]. To ensure positive values, biogeo-141 chemical tracers are advected with the positive Monotone Upstream-centered Schemes for142 Conservation Laws [Van Leer, 1979; L´evy et al., 2001] and dissipated along...

  5. Physical processes and the maintenance of nutrient-rich euphotic zones

    International Nuclear Information System (INIS)

    Gargett, A.E.

    1991-01-01

    Oceanic euphotic zones characterized by high macronutrients but low primary productivity are found in the upwelling gyres of the world ocean. This paper reviews the physical processes which interact to maintain high nutrient concentrations in the near-surface ocean in such regions, illustrating the range of relevant forcing functions with regional examples. Predictions of the direction of change of the physical systems in these areas under increasing greenhouse gas concentrations can be based on the present generation of coupled ocean-atmosphere global circulation models, but these results have significant uncertainty

  6. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    Energy Technology Data Exchange (ETDEWEB)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes (DHI, Hoersholm (Denmark))

    2010-06-15

    The aim of the work was to provide supplementary input to the risk assessment of a planned final nuclear waste repository at Forsmark. The main deliverable was a computed water exchange between basins in the Forsmark marine area for the period 6500 BC to 9000 AD - based on the hydrodynamic modelling - to be used as input to the landscape dose model. In addition and what is described in this report, a second deliverable was development and application of high-resolution models for the marine ecosystem and radionuclide processes. The purpose of this deliverable was to illustrate the spatial and temporal variation in important processes and parameters, while constituting a complement to previous modelling approaches and providing supporting information to discussions of the marine ecosystem, parameters and variation (see Chapter 4 and 6).To this end, a hydrodynamic model of high temporal and spatial resolution was constructed and calibrated for the Forsmark area. An ecosystem model was then developed and coupled to the hydrodynamic model. In turn, a detailed radionuclide model was coupled to the ecosystem model to provide detailed predictions of radionuclide transport and accumulation in the coastal ecosystem. The ecosystem and radionuclide models were developed in the equation solver MIKE ECOLab that links seamless to the MIKE3 FM hydrodynamic model. The 'standard' ECOLab ecosystem model was extended with six biological state variables, perennial macroalgae, benthic herbivors, detritus feeders, planktivorus fish and, benthic predators representing the relict isopod Saduria and cod. In contrast to the ecosystem model, the radionuclide model was developed from scratch but building on the structure of the ecosystem model and using the output (process rates linking state variables) from the ecosystem model as input to the radionuclide model. Both the ecosystem model and the radionuclide model were run for several years (5-8 years) to bring state variables into

  7. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  8. Non-Specific Root Transport of Nutrient Gives Access to an Early Nutritional Indicator: The Case of Sulfate and Molybdate.

    Directory of Open Access Journals (Sweden)

    Anne Maillard

    Full Text Available Under sulfur (S deficiency, crosstalk between nutrients induced accumulation of other nutrients, particularly molybdenum (Mo. This disturbed balanced between S and Mo could provide a way to detect S deficiency and therefore avoid losses in yield and seed quality in cultivated species. Under hydroponic conditions, S deprivation was applied to Brassica napus to determine the precise kinetics of S and Mo uptake and whether sulfate transporters were involved in Mo uptake. Leaf contents of S and Mo were also quantified in a field-grown S deficient oilseed rape crop with different S and N fertilization applications to evaluate the [Mo]:[S] ratio, as an indicator of S nutrition. To test genericity of this indicator, the [Mo]:[S] ratio was also assessed with other cultivated species under different controlled conditions. During S deprivation, Mo uptake was strongly increased in B. napus. This accumulation was not a result of the induction of the molybdate transporters, Mot1 and Asy, but could be a direct consequence of Sultr1.1 and Sultr1.2 inductions. However, analysis of single mutants of these transporters in Arabidopsis thaliana suggested that other sulfate deficiency responsive transporters may be involved. Under field conditions, Mo content was also increased in leaves by a reduction in S fertilization. The [Mo]:[S] ratio significantly discriminated between the plots with different rates of S fertilization. Threshold values were estimated for the hierarchical clustering of commercial crops according to S status. The use of the [Mo]:[S] ratio was also reliable to detect S deficiency for other cultivated species under controlled conditions. The analysis of the leaf [Mo]:[S] ratio seems to be a practical indicator to detect early S deficiency under field conditions and thus improve S fertilization management.

  9. Real-time monitoring and analysis of nutrient transportation in a living plant using a positron emitting tracer imaging system (PETIS)

    International Nuclear Information System (INIS)

    Matsuhashi, Shinpei

    2005-01-01

    We visualized the uptake and transportation of nutrition in a living plant using positron-emitting tracers and mathematical analysis of the data. We have been developing a positron-imaging technique to visualize the uptake and transportation of nutrients in a plant by a positron-emitting tracer-imaging system (PETIS) using positron-emitting nuclide-labeled compounds. The PETIS data is analyzed mathematically to understand the physiological meaning of the physical parameters. In this study, the results on the uptake and transportation of nutrients, which were obtained with the use of a positron-imaging method, are introduced. (author)

  10. Do postlarval amphidromous fishes transport marine‐derived nutrients and pollutants to Caribbean streams?

    Science.gov (United States)

    Engman, Augustin C.; Kwak, Thomas J.; Cope, W. Gregory

    2018-01-01

    Diadromous fishes are known biotransport vectors that can move nutrients, energy and contaminants in an upstream direction in lotic ecosystems. This function has been demonstrated repeatedly in anadromous salmonids, but the role of other diadromous species, especially tropical taxa, as biotransport vectors is less studied. Amphidromous fish species exhibit potential to act as upstream vectors of nutrients and contaminants in their postlarval and juvenile stages, but this role is largely unknown because of limited understanding of larval growth habitats. Moreover, because some species are harvested in artisanal fisheries as postlarvae, and postlarvae are consumed by riverine and estuarine predators, heavy contaminant loads may present a human or wildlife health concern. This research incorporates stable isotope and contaminant analyses to infer larval habitats and contaminant accumulation of amphidromous fishes on the Caribbean island of Puerto Rico. The isotopic signatures of postlarval amphidromous fishes indicated marine basal sources and food web components, rather than those from riverine habitats. Additionally, postlarvae did not contain concentrations of anthropogenic pollutants that would be of ecological or human health concern. These findings are the first and strongest evidence that amphidromous fish postlarvae function as biotransport vectors of marine nutrients into and up river ecosystems without posing a health threat to the receiving food web or human consumers.

  11. Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues

    Science.gov (United States)

    Mackowiak, C. L.; Stutte, G. W.; Garland, J. L.; Finger, B. W.; Ruffe, L. M.

    1997-01-01

    Bioregenerative methods are being developed for recycling plant minerals from harvested inedible biomass as part of NASA's Advanced Life Support (ALS) research. Anaerobic processing produces secondary metabolites, a food source for yeast production, while providing a source of water soluble nutrients for plant growth. Since NH_4-N is the nitrogen product, processing the effluent through a nitrification reactor was used to convert this to NO_3-N, a more acceptable form for plants. Potato (Solanum tuberosum L.) cv. Norland plants were used to test the effects of anaerobically-produced effluent after processing through a yeast reactor or nitrification reactor. These treatments were compared to a mixed-N treatment (75:25, NO_3:NH_4) or a NO_3-N control, both containing only reagent-grade salts. Plant growth and tuber yields were greatest in the NO_3-N control and yeast reactor effluent treatments, which is noteworthy, considering the yeast reactor treatment had high organic loading in the nutrient solution and concomitant microbial activity.

  12. Preliminary physical, nutrients, biological, meteorological, and other data from bottle casts, CTD casts, ADCP casts, moored current meters, and meteorological sensors from the GYRE from as part of the Texas-Louisiana Shelf Circulation and Transport Processes Study (LATEX PART A) from 04 November 1992 to 05 August 1994 (NODC Accession 9500054)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary physical, nutrients, biological, meteorological, and other data from bottle casts, CTD casts, ADCP casts, and meteorological sensors from the GYRE from...

  13. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, S.H.

    2001-01-01

    had high reproducibility and reflected trends in gene expression as observed by Northern blotting. Using this technique, it was demonstrated that both the high-affinity phosphate transporter MtPt2 and a putative nitrate transporter from Medicago truncatula were down-regulated in roots when colonized...

  14. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1994-01-01

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  15. Charge Transport Processes in Molecular Junctions

    Science.gov (United States)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (chemically gated to modulate the transport. These results help advance our understanding of transport behavior in semiconducting molecular thin films, and open opportunities to engineer improved electronic functionality into molecular devices.

  16. Overview of medium heterogeneity and transport processes

    International Nuclear Information System (INIS)

    Tsang, Y.; Tsang, C.F.

    1993-11-01

    Medium heterogeneity can have significant impact on the behavior of solute transport. Tracer breakthrough curves from transport in a heterogeneous medium are distinctly different from that in a homogeneous porous medium. Usually the shape of the breakthrough curves are highly non-symmetrical with a fast rise at early times and very long tail at late times, and often, they consist of multiple peaks. Moreover, unlike transport in a homogeneous medium where the same transport parameters describe the entire medium, transport through heterogeneous media gives rise to breakthrough curves which have strong spatial dependence. These inherent characteristics of transport in heterogeneous medium present special challenge to the performance assessment of a potential high level nuclear waste repository with respect to the possible release of radio nuclides to the accessible environment. Since an inherently desirable site characteristic for a waste repository is that flow and transport should be slow, then transport measurements in site characterization efforts will necessarily be spatially small and temporally short compare to the scales which are of relevance to performance assessment predictions. In this paper we discuss the role of medium heterogeneity in site characterization and performance assessment. Our discussion will be based on a specific example of a 3D heterogeneous stochastic model of a site generally similar to, the Aespoe Island, the site of the Hard Rock Laboratory in Southern Sweden. For our study, alternative 3D stochastic fields of hydraulic conductivities conditioned on ''point'' measurements shall be generated. Results of stochastic flow and transport simulations would be used to address the issues of (1) the relationship of tracer breakthrough with the structure of heterogeneity, and (2) the inference from small scale testing results to large scale and long term predictions

  17. Identification and Control of Nutrient Removing Processes in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Nielsen, Marinus K.; Madsen, Henrik; Carstensen, Niels Jacob

    1994-01-01

    the possibility of using statistical methods for identifying dynamical models for the biological processes. These models can then be used for simulating various control strategies and the parameters of the controllers can be found by off-line optimization. Simulation studies have shown that considerable savings......Today the use of on-line control for wastewater treatment plants is very low. A main reason is the lack of quality of the data, and the fact that more sophisticated control strategies must be based on a model of the dynamics of the biological processes. This paper discusses the historical reasons...... for the limited use of modern control strategies for wastewater treatment plants. Today, however, on-line nutrient sensors are more reliable. In the present context the use of on-line monitored values of ammonia, nitrate and phosphate from a full scale plant are used as the background for discussing...

  18. Incorporating security into the transportation planning process.

    Science.gov (United States)

    2009-03-01

    The transportation system is an important network established to ensure the mobility of people and goods between destinations. In addition, it also serves a vital role in responding to disasters, and therefore deserves special attention when those di...

  19. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.

    Science.gov (United States)

    Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo

    2017-01-01

    Membrane bioreactor (MBR) technology is becoming increasingly popular as wastewater treatment due to the unique advantages it offers. However, membrane fouling is being given a great deal of attention so as to improve the performance of this type of technology. Recent studies have proven that the application of electrochemical processes to MBR represents a promising technological approach for membrane fouling control. In this work, two intermittent voltage gradients of 1 and 3 V/cm were applied between two cylindrical perforated electrodes, immersed around a membrane module, at laboratory scale with the aim of investigating the treatment performance and membrane fouling formation. For comparison purposes, the reactor also operated as a conventional MBR. Mechanisms of nutrient removal were studied and membrane fouling formation evaluated in terms of transmembrane pressure variation over time and sludge relative hydrophobicity. Furthermore, the impact of electrochemical processes on transparent exopolymeric particles (TEP), proposed as a new membrane fouling precursor, was investigated in addition to conventional fouling precursors such as bound extracellular polymeric substances (bEPS) and soluble microbial products (SMP). All the results indicate that the integration of electrochemical processes into a MBR has the advantage of improving the treatment performance especially in terms of nutrient removal, with an enhancement of orthophosphate (PO 4 -P) and ammonia nitrogen (NH 4 -N) removal efficiencies up to 96.06 and 69.34 %, respectively. A reduction of membrane fouling was also observed with an increase of floc hydrophobicity to 71.72 %, a decrease of membrane fouling precursor concentrations, and, thus, of membrane fouling rates up to 54.33 %. The relationship found between TEP concentration and membrane fouling rate after the application of electrochemical processes confirms the applicability of this parameter as a new membrane fouling indicator.

  20. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  1. The role of high frequency monitoring in understanding nutrient pollution processes to address catchment management issues

    Science.gov (United States)

    Quinn, Paul; Jonczyk, Jennine; Owen, Gareth; Barber, Nick; Adams, Russell; ODonnell, Greg; EdenDTC Team

    2015-04-01

    The process insights afforded to catchment scientists through the availability of high frequency time series of hydrological and nutrient pollution datasets are invaluable. However, the observations reveal both good and bad news for the WFD. Data for flow, N, P and sediment (taken at 30 min intervals) from the River Eden Demonstration Test Catchment and several other detailed UK studies, will be used to discuss nutrient fluxes in catchments between 1km2 and 10km2. Monitoring of the seasonal groundwater status and the forensic analysis of numerous storm events have identified dominant flow pathways and nutrient losses. Nonetheless, many of the management questions demanded by the WFD will not be resolved by collecting these datasets alone. Long term trends are unlikely to be determined from these data and even if trends are found they are unlikely to be accurately apportioned to the activities that have caused them. The impacts of where and when an action takes place will not be detected at the catchment scale and the cost effectiveness of any mitigation method is unlikely to be quantifiable. Even in small well instrumented catchments the natural variability in rainfall, antecedent patterns and the variability in farming practices will mask any identifiable catchment scale signal. This does not mean the cost of the data acquisition has been wasted, it just means that the knowledge and expertise gained from these data should be used in new novel ways. It will always be difficult to quantify the actual losses occurring at the farm or field scale, but the positive benefits of any mitigation may still be approximated. The evidence for the rate of nutrient removal from a local sediment trap, wetland and a pond can be shown with high resolution datasets. However, any quantifiable results are still highly localised and the transfer and upscaling of any findings must be done with care. Modelling these datasets is also possible and the nature of models have evolved in the

  2. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    Science.gov (United States)

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Role of environmental chemicals, processed food derivatives, and nutrients in the induction of carcinogenesis.

    Science.gov (United States)

    Persano, Luca; Zagoura, Dimitra; Louisse, Jochem; Pistollato, Francesca

    2015-10-15

    In recent years it has been hypothesized that cancer stem cells (CSCs) are the actual driving force of tumor formation, highlighting the need to specifically target CSCs to successfully eradicate cancer growth and recurrence. Particularly, the deregulation of physiological signaling pathways controlling stem cell proliferation, self-renewal, differentiation, and metabolism is currently considered as one of the leading determinants of cancer formation. Given their peculiar, slow-dividing phenotype and their ability to respond to multiple microenvironmental stimuli, stem cells appear to be more susceptible to genetic and epigenetic carcinogens, possibly undergoing mutations resulting in tumor formation. In particular, some animal-derived bioactive nutrients and metabolites known to affect the hormonal milieu, and also chemicals derived from food processing and cooking, have been described as possible carcinogenic factors. Here, we review most recent literature in this field, highlighting how some environmental toxicants, some specific nutrients and their secondary products can induce carcinogenesis, possibly impacting stem cells and their niches, thus causing tumor growth.

  4. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  5. Regulation of transport processes across the tonoplast

    Science.gov (United States)

    Neuhaus, H. Ekkehard; Trentmann, Oliver

    2014-01-01

    In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation. PMID:25309559

  6. Aflatoxin and nutrient contents of peanut collected from local market and their processed foods

    Science.gov (United States)

    Ginting, E.; Rahmianna, A. A.; Yusnawan, E.

    2018-01-01

    Peanut is succeptable to aflatoxin contamination and the sources of peanut as well as processing methods considerably affect aflatoxin content of the products. Therefore, the study on aflatoxin and nutrient contents of peanut collected from local market and their processed foods were performed. Good kernels of peanut were prepared into fried peanut, pressed-fried peanut, peanut sauce, peanut press cake, fermented peanut press cake (tempe) and fried tempe, while blended kernels (good and poor kernels) were processed into peanut sauce and tempe and poor kernels were only processed into tempe. The results showed that good and blended kernels which had high number of sound/intact kernels (82,46% and 62,09%), contained 9.8-9.9 ppb of aflatoxin B1, while slightly higher level was seen in poor kernels (12.1 ppb). However, the moisture, ash, protein, and fat contents of the kernels were similar as well as the products. Peanut tempe and fried tempe showed the highest increase in protein content, while decreased fat contents were seen in all products. The increase in aflatoxin B1 of peanut tempe prepared from poor kernels > blended kernels > good kernels. However, it averagely decreased by 61.2% after deep-fried. Excluding peanut tempe and fried tempe, aflatoxin B1 levels in all products derived from good kernels were below the permitted level (15 ppb). This suggests that sorting peanut kernels as ingredients and followed by heat processing would decrease the aflatoxin content in the products.

  7. Nutrient Status of Vermicompost of Urban Green Waste Processed by Three Earthworm Species Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus

    International Nuclear Information System (INIS)

    Pattnaik, S.; Vikram, M.

    2010-01-01

    Major nutrient status of vermicompost of vegetable market waste (MW) and floral waste (FW) processed by three species of earthworms namely, Eudrilus eugeniae, Eisenia fetida, and Perionyx excavatus and its simple compost were assessed across different periods in relation to their respective initiative substrates. Their physical parameters temperature, moisture, ph, and electrical conductivity were also recorded. The nutrients nitrogen, phosphorus, potassium, calcium, and magnesium increased in the vermicompost and compost while the organic carbon, C/N and C/P ratios decreased as the composting process progressed from 0 to 15, 30, 45, and 60 days. The nutrient statuses of vermicomposts of all earthworm species produced from both the wastes were more than that of the compost and that of their respective substrates. Moreover, the vermicompost produced by E. eugeniae possessed higher nutrient contents than that of E. fetida, P. excavatus, and compost. The MW showed higher nutrient contents than the FW. Thus, vermicomposting is the paramount approach of nutrient recovery of urban green waste.

  8. Management of the process of nuclear transport

    International Nuclear Information System (INIS)

    Requejo, P.

    2015-01-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  9. Theories of transporting processes of Cu in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Su, Chunhua; Zhu, Sixi; Wu, Yunjie; Zhou, Wei

    2018-02-01

    Many marine bays have been polluted along with the rapid development of industry and population size, and understanding the transporting progresses of pollutants is essential to pollution control. In order to better understanding the transporting progresses of pollutants in marine, this paper carried on a comprehensive research of the theories of transporting processes of Cu in Jiaozhou Bay. Results showed that the transporting processes of Cu in this bay could be summarized into seven key theories including homogeneous theory, environmental dynamic theory, horizontal loss theory, source to waters transporting theory, sedimentation transporting theory, migration trend theory and vertical transporting theory, respectively. These theories helpful to better understand the migration progress of pollutants in marine bay.

  10. Process & Quality procedures for transport & handling activities

    CERN Document Server

    Böttcher, O

    2002-01-01

    To respect the detailed and complex planning of the LHC installation project it is essential to reduce possible faults in every technical service that can cause delays in the schedule. In order to ensure proper execution of transport and handling activities it is important to get detailed information from the clients as early as possible in order to do the planning and the organisation of the required resources. One procedure that requires greater focus in the future is the preparation of the resources. The goal is to prevent equipment breakdowns and accidents while executing transport and handling activities. In the LEP dismantling project multiple breakdowns of important cranes caused serious problems in the project schedule. For the LHC installation project similar incidents in the reliability of the equipment cannot be accepted because of the high sensitivity of the whole schedule. This paper shall outline the efforts and methods that are put in place in order to meet the LHC installation requirements.

  11. Energetics of turbulent transport processes in tokamaks

    International Nuclear Information System (INIS)

    Haas, F.A.; Thyagaraja, A.

    1987-01-01

    The effect of electromagnetic turbulence on electrons and ions under Tokamak conditions is considered using a kinetic description. Taking the magnetic fluctuation spectrum as given, the density fluctuation spectrum is self-consistently calculated taking account of quasi-neutrality. The calculation is valid for arbitrary collisionality and appropriate to low frequencies typical of experiment. In addition to the usual enhancement of the radial electron energy transport, it is found that the turbulent fluctuations can heat the plasma at rates comparable to ordinary ohmic heating under well-defined conditions. Interestingly, electromagnetic turbulence appears to imply only an insignificant correction to the toroidal resistance of the plasma as estimated from Spitzer resistivity. The scalings of anomalous transport, fluctuations and heating with temperature and plasma volume are investigated. The assumption that the magnetic fluctuation spectrum of the turbulence is invariant under a wide range of conditions is shown to result in interesting consequences for JET-like plasmas. (author)

  12. Strategies for Processing Semen from Subfertile Stallions for Cooled Transport.

    Science.gov (United States)

    Varner, Dickson D

    2016-12-01

    Subfertility can be a confusing term because some semen of good quality can have reduced fertility following cooled transport if the semen is processed in an improper manner. General procedures aimed at processing stallion semen for cooled transport are well described. An array of factors could exist in reduced fertility of cool-transported semen. This article focuses on centrifugation techniques that can be used to maximize sperm quality of stallions whose semen is intended for cooled transport. Clinical cases are also provided for practical application of techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Novel MBR_based main stream biological nutrient removal process: high performance and microbial community.

    Science.gov (United States)

    Zhang, Chuanyi; Xu, Xinhai; Zhao, Kuixia; Tang, Lianggang; Zou, Siqi; Yuan, Limei

    2018-02-01

    For municipal wastewater treatment, main stream biological nutrient removal (BNR) process is becoming more and more important. This lab-scale study, novel MBR_based BNR processes (named A 2 N-MBR and A 2 NO-MBR) were built. Comparison of the COD removal, results obtained demonstrated that COD removal efficiencies were almost the same in three processes, with effluent concentration all bellowed 30 mg L -1 . However, the two-sludge systems (A 2 N-MBR and A 2 NO-MBR) had an obvious advantage over the A 2 /O for denitrification and phosphorus removal, with the average TP removal rates of 91.20, 98.05% and TN removal rates of 73.00, 79.49%, respectively, higher than that of 86.45 and 61.60% in A 2 /O process. Illumina Miseq sequencing revealed that Candidatus_Accumulibacter, which is capable of using nitrate as an electron acceptor for phosphorus and nitrogen removal simultaneously, was the dominant phylum in both A 2 N-MBR and A 2 NO-MBR process, accounting for 28.74 and 23.98%, respectively. Distinguishingly, major organism groups related to nitrogen and phosphorus removal in A 2 /O system were Anaerolineaceae_uncultured, Saprospiraceae_uncultured and Thauera, with proportions of 11.31, 8.56 and 5.00%, respectively. Hence, the diversity of dominant PAOs group was likely responsible for the difference in nitrogen and phosphorus removal in the three processes.

  14. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.

    Science.gov (United States)

    Kishida, Naohiro; Kim, Juhyun; Tsuneda, Satoshi; Sudo, Ryuichi

    2006-07-01

    In a biological nutrient removal (BNR) process, the utilization of denitrifying polyphosphate-accumulating organisms (DNPAOs) has many advantages such as effective use of organic carbon substrates and low sludge production. As a suitable process for the utilization of DNPAOs in BNR, an anaerobic/oxic/anoxic granular sludge (AOAGS) process was proposed in this study. In spite of performing aeration for nitrifying bacteria, the AOAGS process can create anaerobic/anoxic conditions suitable for the cultivation of DNPAOs because anoxic zones exist inside the granular sludge in the oxic phase. Thus, DNPAOs can coexist with nitrifying bacteria in a single reactor. In addition, the usability of DNPAOs in the reactor can be improved by adding the anoxic phase after the oxic phase. These characteristics enable the AOAGS process to attain effective removal of both nitrogen and phosphorus. When acetate-based synthetic wastewater (COD: 600 mg/L, NH4-N: 60 mg/L, PO(4)-P: 10 mg/L) was supplied to a laboratory-scale sequencing batch reactor under the operation of anaerobic/oxic/anoxic cycles, granular sludge with a diameter of 500 microm was successfully formed within 1 month. Although the removal of both nitrogen and phosphorus was almost complete at the end of the oxic phase, a short anoxic period subsequent to the oxic phase was necessary for further removal of nitrogen and phosphorus. As a result, effluent concentrations of NH(4)-N, NO(x)-N and PO(4)-P were always lower than 1 mg/L. It was found that penetration depth of oxygen inside the granular sludge was approximately 100 microm by microsensor measurements. In addition, from the microbiological analysis by fluorescence in situ hybridization, existence depth of polyphosphate-accumulating organisms was further than the maximum oxygen penetration depth. The water quality data, oxygen profiles and microbial community structure demonstrated that DNPAOs inside the granular sludge may be responsible for denitrification in the

  15. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  16. Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae.

    Science.gov (United States)

    Fochi, Valeria; Falla, Nicole; Girlanda, Mariangela; Perotto, Silvia; Balestrini, Raffaella

    2017-10-01

    Orchid mycorrhizal protocorms and roots are heterogeneous structures composed of different plant cell-types, where cells colonized by intracellular fungal coils (the pelotons) are close to non-colonized plant cells. Moreover, the fungal coils undergo rapid turnover inside the colonized cells, so that plant cells containing coils at different developmental stages can be observed in the same tissue section. Here, we have investigated by laser microdissection (LMD) the localization of specific plant gene transcripts in different cell-type populations collected from mycorrhizal protocorms and roots of the Mediterranean orchid Serapias vomeracea colonized by Tulasnella calospora. RNAs extracted from the different cell-type populations have been used to study plant gene expression, focusing on genes potentially involved in N uptake and transport and previously identified as up-regulated in symbiotic protocorms. Results clearly showed that some plant N transporters are differentially expressed in cells containing fungal coils at different developmental stages, as well as in non-colonized cells, and allowed the identification of new functional markers associated to coil-containing cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. IMPROVEMENT OF FREIGHT TRANSPORTATION PROCESS AND THEIR MANAGEMENT MECHANISM

    Directory of Open Access Journals (Sweden)

    L. V. Martsenyuk

    2014-03-01

    Full Text Available Purpose. For Ukraine as for a post-socialist state there is an objective need of reforming on railway transport. In order to meet the requirements of consumers both within the country and outside of it, it is necessary to solve transport problems in time and to introduce new technologies, without lagging behind the developed European states. The purpose of this article is identification of problems in the process of freight transportations and development of ways of their overcoming, formation of the principles of economic efficiency increase for the use of freight cars using the improvement of management mechanism of freight transportations in the conditions of reforming. Methodology. Methods of strategic planning, system approach for research on improvement of the management mechanism of freight transportations, as well as the organizational-administrative method for structure of management construction were used in this research. Findings. Authors have explored the problems arising in the process of transportation of goods and measures, which will increase the efficiency of goods transportation. Advanced mechanism of freight transportation management for its application in the conditions of the railway transport reforming was developed. It is based on management centralization. Originality. The major factors, which slow down process of cargo transportations, are investigated in the article. The principles of management mechanism improvement of freight transportations are stated. They are based on association of commercial and car-repair activity of depots. All this will allow reducing considerably a car turn by decrease in duration of idle times on railway transport, increasing the speed of freight delivery and cutting down a transport component in the price of delivered production. Practical value. The offered measures will improve the efficiency of rolling stock use and increase cargo volumes turnover, promote links of Ukraine with

  18. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    International Nuclear Information System (INIS)

    Ogunlaja, O.O.; Parker, W.J.

    2015-01-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD −1 d −1 for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD −1 d −1 . A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2

  19. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlaja, O.O., E-mail: oogunlaj@uwaterloo.ca; Parker, W.J., E-mail: wjparker@uwaterloo.ca

    2015-05-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD{sup −1} d{sup −1} for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD{sup −1} d{sup −1}. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2.

  20. Numerical studies of transport processes in Tokamak plasma

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.

    1984-09-01

    The paper contains the summary of a set of studies of the transport processes in tokamak plasma, performed with a one-dimensional computer code. The various transport models (which are implemented by the expressions of the transport coefficients) are presented in connection with the regimes of the dynamical development of the discharge. Results of studies concerning the skin effect and the large scale MHD instabilities are also included

  1. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways...

  2. Effects of acidic deposition on nutrient uptake, nutrient cycling and growth processes of vegetation in the spruce-fir ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, S.B.; Garten, C.T.; Wullschleger, S.D. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-16

    This report summarizes progress in three years of field research designed to evaluate biological and chemical indicators of the current and future health of the Southern Appalachian spruce-fir ecosystem. The emphasis of this research has been on the identification and understanding of mechanisms through which current levels of acidic deposition are impacting ecosystem processes. The identification of these principal mechanisms and key biological indicators of change was designed to improve our capabilities to detect, monitor, and assess the effects of air quality regulations and attendant future air quality changes on ecosystem response. Individual research tasks focused on the following research areas: (1) the significance of foliar uptake of atmospheric sources of nitrogen in relationship to plant utilization of N from available soil reserves; (2) linkages between atmospheric inputs to the soil surface, solution chemistry, and decomposition in the upper organic soil horizons; (3) effects of soil solution chemistry on uptake of cations and aluminum by fine roots; and (4) the effects of varying rates of calcium supply on carbon metabolism of Fraser fir and red spruce, and the relationship between calcium levels in wood cells and integrity of wood formed in bole and branches. Each of the individual tasks was designed to focus upon a mechanism or process that we consider critical to understanding chemical and biological linkages. These linkages will be important determinants in understanding the basis of past and potential future responses of the high elevation Southern Appalachian Forest to acidic deposition and other co-occurring environmental stresses. This report contains (1) background and rationale for the research undertaken in 1992-94; (2) a summary of principal research findings; (3) publications from this research; and (4) characterization of data sets produced by this research which will be the basis of future research, analyses and/or publications.

  3. Transport of sediments, carbon and nutrients in areas of reforestation and grassland based on simulated rainfall

    Directory of Open Access Journals (Sweden)

    Adilson Pinheiro

    2013-08-01

    Full Text Available The objective of this study was to evaluate the soil losses, as well as carbon and chemical samples in runoff through areas of pine (Pinus taeda, eucalyptus (Eucalyptus dunni and a consortium of pasture with oat (Avena stringosa and ryegrass (Lolium multiflorium in the Fragosos river basin, in Concordia, SC. For this, rainfall simulations with mean intensities of 94 mm h-1 were conducted in September and November 2011, in plots of 1 m2 established in the three areas. Runoff, loads carried of the sediment, and carbon and chemical concentrations were quantified in the experiment. The results showed that the concentrations of sediment and organic carbon were higher in the eucalyptus area. The largest concentrations of chemicals for all areas were nitrate, calcium, magnesium and potassium. Total carbon, organic carbon, sediment and nitrate were transported in higher loads in the eucalyptus area. With the exception of nitrate and chloride, the chemical loads carried were higher in the pasture area.

  4. Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution

    KAUST Repository

    Chekli, Laura

    2017-03-10

    This study investigated the sustainable reuse of wastewater using fertilizer drawn forward osmosis (FDFO) process through osmotic dilution of commercial nutrient solution for hydroponics, a widely used technique for growing plants without soil. Results from the bench-scale experiments showed that the commercial hydroponic nutrient solution (i.e. solution containing water and essential nutrients) exhibited similar performance (i.e., water flux and reverse salt flux) to other inorganic draw solutions when treating synthetic wastewater. The use of hydroponic solution is highly advantageous since it provides all the required macro- (i.e., N, P and K) and micronutrients (i.e., Ca, Mg, S, Mn, B, Zn and Mo) in a single balanced solution and can therefore be used directly after dilution without the need to add any elements. After long-term operation (i.e. up to 75% water recovery), different physical cleaning methods were tested and results showed that hydraulic flushing can effectively restore up to 75% of the initial water flux while osmotic backwashing was able to restore the initial water flux by more than 95%; illustrating the low-fouling potential of the FDFO process. Pilot-scale studies demonstrated that the FDFO process is able to produce the required nutrient concentration and final water quality (i.e., pH and conductivity) suitable for hydroponic applications. Coupling FDFO with pressure assisted osmosis (PAO) in the later stages could help in saving operational costs (i.e., energy and membrane replacement costs). Finally, the test application of nutrient solution produced by the pilot FDFO process to hydroponic lettuce showed similar growth pattern as the control without any signs of nutrient deficiency.

  5. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study

    Science.gov (United States)

    Morrison, J. M.; Codispoti, L. A.; Gaurin, S.; Jones, B.; Manghnani, V.; Zheng, Z.

    Between September 1994 and December 1995, the US JGOFS Arabian Sea Process Experiment collected extensive, high quality hydrographic data (temperature, salinity, dissolved oxygen and nutrients) during all seasons in the northern Arabian Sea. An analysis of this unique data suite suggests the presence of many features that are described in the canonical literature, but these new data provided the following insights. Although the seasonal evolution of mixed-layer depths was in general agreement with previous descriptions, the deepest mixed-layer depths in our data occurred during the late NE Monsoon instead of the SW Monsoon. The region exhibits considerable mesoscale variability resulting in extremely variable temperature-salinity (TS) distributions in the upper 1000 db. This mesoscale variability is readily observed in satellite imaging, in the high resolution data taken by a companion ONR funded project, and in underway ADCP data. The densest water reaching the sea surface during coastal upwelling appeared to have maximum offshore depths of ˜150 m and σθ's close to the core value (˜25) for the saline Arabian Sea Water (ASW), but salinities in these upwelling waters were relatively low. The densest water found at the sea surface during late NE Monsoon conditions has σθ's>24.8 and relatively high salinities, suggesting that they are a source for the ASW salinity maximum. Persian Gulf Water (PGW) with a core σθ of 26.6 forms a widespread salinity maximum. Despite the considerable extent of this feature, Persian Gulf outflow water, with a salinity (4) of ˜39 at its source, can only be a minor contributor. Within the standard US JGOFS sampling grid, maximum salinities on this surface are ˜36.8 at stations near the Gulf, falling to values as low as ˜35.3 at the stations farthest removed from its influence. Even at our standard stations closest to the Gulf (N-1 and N-2), the high-salinity, low-nutrient Persian Gulf water has only a modest direct effect on

  6. Transport processes in intertidal sand flats

    Science.gov (United States)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  7. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Tian, Hui; Yuan, Xiaolei; Duan, Jianfeng; Li, Wenhu; Zhai, Bingnian; Gao, Yajun

    2017-01-01

    Arbuscular mycorrhizal (AM) colonization of plant roots causes the down-regulation of expression of phosphate (Pi) or nitrogen (N) transporter genes involved in direct nutrient uptake pathways. The mechanism of this effect remains unknown. In the present study, we sought to determine whether the expression of Pi or N transporter genes in roots of winter wheat colonized by AM fungus responded to (1) Pi or N nutrient signals transferred from the AM extra-radical hyphae, or (2) carbon allocation changes in the AM association. A three-compartment culture system, comprising a root compartment (RC), a root and AM hyphae compartment (RHC), and an AM hyphae compartment (HC), was used to test whether the expression of Pi or N transporter genes responded to nutrients (Pi, NH4+ and NO3-) added only to the HC. Different AM inoculation density treatments (roots were inoculated with 0, 20, 50 and 200 g AM inoculum) and light regime treatments (6 hours light and 18 hours light) were established to test the effects of carbon allocation on the expression of Pi or N transporter genes in wheat roots. The expression of two Pi transporter genes (TaPT4 and TaPHT1.2), five nitrate transporter genes (TaNRT1.1, TaNRT1.2, TaNRT2.1, TaNRT2.2, and TaNRT2.3), and an ammonium transporter gene (TaAMT1.2) was quantified using real-time polymerase chain reaction. The expression of TaPT4, TaNRT2.2, and TaAMT1.2 was down-regulated by AM colonization only when roots of host plants received Pi or N nutrient signals. However, the expression of TaPHT1.2, TaNRT2.1, and TaNRT2.3 was down-regulated by AM colonization, regardless of whether there was nutrient transfer from AM hyphae. The expression of TaNRT1.2 was also down-regulated by AM colonization even when there was no nutrient transfer from AM hyphae. The present study showed that an increase in carbon consumption by the AM fungi did not necessarily result in greater down-regulation of expression of Pi or N transporter genes.

  8. The impact of transport processes standardization on supply chain efficiency

    Directory of Open Access Journals (Sweden)

    Maciej Stajniak

    2016-03-01

    Full Text Available Background: During continuous market competition, focusing on the customer service level, lead times and supply flexibility is very important to analyze the efficiency of logistics processes. Analysis of supply chain efficiency is one of the fundamental elements of controlling analysis. Transport processes are a key process that provides physical material flow through the supply chain. Therefore, in this article Authors focus attention on the transport processes efficiency. Methods: The research carried out in the second half of 2014 year, in 210 enterprises of the Wielkopolska Region. Observations and business practice studies conducted by the authors, demonstrate a significant impact of standardization processes on supply chain efficiency. Based on the research results, have been developed standard processes that have been assessed as being necessary to standardize in business practice. Results: Based on these research results and observations, authors have developed standards for transport processes by BPMN notation. BPMN allows authors to conduct multivariate simulation of these processes in further stages of research. Conclusions: Developed standards are the initial stage of research conducted by Authors in the assessment of transport processes efficiency. Further research direction is to analyze the use efficiency of transport processes standards in business practice and their impact on the effectiveness of the entire supply chain.

  9. Divide and conquer: processive transport enables multidrug transporters to tackle challenging drugs

    Directory of Open Access Journals (Sweden)

    Nir Fluman

    2014-09-01

    Full Text Available Multidrug transporters are membrane proteins that catalyze efflux of antibiotics and other toxic compounds from cells, thereby conferring drug resistance on various organisms. Unlike most solute transporters that transport a single type of compound or similar analogues, multidrug transporters are extremely promiscuous. They transport a broad spectrum of dissimilar drugs and represent a serious obstacle to antimicrobial or anticancer chemotherapy. Many challenging aspects of multidrug transporters, which are unique, have been studied in detail, including their ability to interact with chemically unrelated drugs, and how they utilize energy to drive efflux of compounds that are not only structurally but electrically different. A new and surprising dimension of the promiscuous nature of multidrug transporters has been described recently: they can move long molecules through the membrane in a processive manner.

  10. The ontogeny of nutrient transporter and digestive enzyme gene expression in domestic pigeon (Columba livia) intestine and yolk sac membrane during pre- and posthatch development.

    Science.gov (United States)

    Dong, X Y; Wang, Y M; Yuan, C; Zou, X T

    2012-08-01

    To better understand the digestive capacity in domestic pigeons (Columba livia), this study was conducted to evaluate nutrient transporters and digestive enzymes gene expression in small intestine and yolk sac membrane (YSM) during pre- and posthatch development. We investigated the oligopeptide transporter Pept1, sodium glucose transporter SGLT1, glucose transporter GLUT2, aminopeptidase-N (APN), and sucrase-isomaltase (SI). Intestine was collected at embryo d 12, 14, and 16, day of hatch, and d 1, 3, 5, 8, and 14 posthatch. The YSM was collected at embryo d 12, 14, 16, and day of hatch. The cDNA fragments for Pept1, SGLT1, GLUT2, APN, and SI were isolated and cloned using reverse-transcription PCR. The sequences data showed that these genes were highly identical to the gene of chicken. The mRNA expression of each gene was assayed using real-time PCR. Expression of intestinal nutrient transporters increased linearly (Ppigeons and establish a foundation for future research on the nutrients requirements for young pigeons.

  11. Statewide and Metropolitan Transportation Planning Processes : a TPCB Peer Exchange

    Science.gov (United States)

    2016-04-20

    This report highlights key recommendations and noteworthy practices identified at Statewide and Metropolitan Transportation Planning Processes Peer Exchange held on September 9-10, 2015 in Shepherdstown, West Virginia. This event was sponsored ...

  12. Interfacial fluid dynamics and transport processes

    CERN Document Server

    Schwabe, Dietrich

    2003-01-01

    The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by the many demands for applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.

  13. Extracellular Electron Transport Coupling Biogeochemical Processes Centimeters

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo

    2010-01-01

    of the oxygen uptake in laboratory incubations of initially homogenized and stabilized sediment. Using microsensors and process rate measurements we further investigated the effect of the electric currents on sediment biogeochemistry. Dissolved sulfide readily donated electrons to the networks and could...... confirmed the depth range of the electric communication and indicated donation of electrons directly from organotrophic bacteria. The separation of oxidation and reduction processes created steep pH gradients eventually causing carbonate precipitation at the surface. The results indicate that electron...... exchanging organisms have major biogeochemical importance as they allow widely separated electron donors and acceptors to react with one another....

  14. Intelligent Transportation Control based on Proactive Complex Event Processing

    OpenAIRE

    Wang Yongheng; Geng Shaofeng; Li Qian

    2016-01-01

    Complex Event Processing (CEP) has become the key part of Internet of Things (IoT). Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is p...

  15. Different hydrodynamic processes regulated on water quality (nutrients, dissolved oxygen, and phytoplankton biomass) in three contrasting waters of Hong Kong.

    Science.gov (United States)

    Zhou, Weihua; Yuan, Xiangcheng; Long, Aimin; Huang, Hui; Yue, Weizhong

    2014-03-01

    The subtropical Hong Kong (HK) waters are located at the eastern side of the Pearl River Estuary. Monthly changes of water quality, including nutrients, dissolved oxygen (DO), and phytoplankton biomass (Chl-a) were routinely investigated in 2003 by the Hong Kong Environmental Protection Department in three contrasting waters of HK with different prevailing hydrodynamic processes. The western, eastern, and southern waters were mainly dominated by nutrient-replete Pearl River discharge, the nutrient-poor coastal/shelf oceanic waters, and mixtures of estuarine and coastal seawater and sewage effluent of Hong Kong, respectively. Acting in response, the water quality in these three contrasting areas showed apparently spatial–temporal variation pattern. Nutrients usually decreased along western waters to eastern waters. In the dry season, the water column was strongly mixed by monsoon winds and tidal currents, which resulted in relatively low Chl-a (4 mg l(−1)), suggesting that mixing enhanced the buffering capacity of eutrophication in HK waters. However, in the wet season, surface Chl-a was generally >10 μg l(−1) in southern waters in summer due to halocline and thermohaline stratification, adequate nutrients, and light availability. Although summer hypoxia (DO waters induced by vertical stratification, the eutrophication impacts in HK waters were not as severe as expected owing to P limitation and short water residence time in the wet season.

  16. Intelligent Transportation Control based on Proactive Complex Event Processing

    Directory of Open Access Journals (Sweden)

    Wang Yongheng

    2016-01-01

    Full Text Available Complex Event Processing (CEP has become the key part of Internet of Things (IoT. Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is proposed as sequential decision model. A Q-learning method is proposed for this model. The experimental evaluations show that this method works well when used to control congestion in in intelligent transportation systems.

  17. Models of transport processes in concrete

    International Nuclear Information System (INIS)

    Pommersheim, J.M.; Clifton, J.R.

    1991-01-01

    An approach being considered by the US Nuclear Regulatory Commission for disposal of low-level radioactive waste is to place the waste forms in concrete vaults buried underground. The vaults would need a service life of 500 years. Approaches for predicting the service life of concrete of such vaults include the use of mathematical models. Mathematical models are presented in this report for the major degradation processes anticipated for the concrete vaults, which are corrosion of steel reinforcement, sulfate attack, acid attack, and leaching. The models mathematically represent rate controlling processes including diffusion, convection, and reaction and sorption of chemical species. These models can form the basis for predicting the life of concrete under in-service conditions. 33 refs., 6 figs., 7 tabs

  18. A round-trip ticket: the importance of release processes for in-stream nutrient spiraling

    OpenAIRE

    Schiller Calle, Daniel von; Bernal Berenguer, Susana; Sabater i Comas, Francesc; Martí, Eugènia

    2015-01-01

    Most nutrient-spiraling studies have focused on estimates of gross uptake (Ugross), which show that streams take up dissolved inorganic nutrients very efficiently. However, studies based on estimates of net uptake (Unet) emphasize that streams tend to be at biogeochemical steady state (i.e., Unet ≈ 0), at least on a time scale of hours. These findings suggest that streams can be highly reactive ecosystems but remain at short-term biogeochemical steady state if Ugross is counterbalanced by rel...

  19. Effect of Temperature and Nutrient Concentration on Survival of Foodborne Pathogens in Deciduous Fruit Processing Environments for Effective Hygiene Management.

    Science.gov (United States)

    Duvenage, Stacey; Korsten, Lise

    2016-11-01

    Temperature and good sanitation practices are important factors for controlling growth of microorganisms. Fresh produce is stored at various temperatures to ensure quality and to prolong shelf life. When foodborne pathogens survive and grow on fresh produce at storage temperatures, then additional control strategies are needed to inactivate these pathogens. The aim of this study was to determine how temperatures associated with deciduous fruit processing and storage facilities (0.5, 4, and 21°C) affect the growth and/or survival of Escherichia coli O157:H7, Listeria monocytogenes , Salmonella enterica subsp. enterica serovar Typhimurium, and Staphylococcus aureus under different nutrient conditions (nutrient rich and nutrient poor) and on simulated contact surfaces (vinyl coupons). Information on the growth and survival of foodborne pathogens at specific deciduous fruit processing and storage temperatures (0.5°C) is not available. All pathogens except E. coli O157:H7 were able to survive on vinyl coupons at all temperatures. L. monocytogenes proliferated under both nutrient conditions independent of temperature. S. aureus was the pathogen least affected by nutrient conditions. The survival of foodborne pathogens on the vinyl coupons, a model system for studying surfaces in fruit preparation and storage environments, indicates the potential for cross-contamination of deciduous fruit products under poor sanitation conditions. Foodborne pathogens that can proliferate and survive at various temperatures under different nutrient conditions could lead to fruit cross-contamination. Temperature mismanagement, which could allow pathogen proliferation in contaminated fruit packing houses and storage environments, is a concern. Therefore, proper hygiene and sanitation practices, removal of possible contaminants, and proper food safety management systems are needed to ensure food safety.

  20. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling

    Science.gov (United States)

    Spiteri, Claudette; Slomp, Caroline P.; Charette, Matthew A.; Tuncay, Kagan; Meile, Christof

    2008-07-01

    A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient ( NO3-, NH4+, PO 4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction, nitrification, Fe 2+ oxidation and sorption of PO 4 onto iron oxides. Porewater measurements from a well transect at Waquoit Bay, MA, USA indicate the presence of a reducing plume with high Fe 2+, NH4+, DOC (dissolved organic carbon) and PO 4 concentrations overlying a more oxidizing NO3--rich plume. These two plumes travel nearly conservatively until they start to overlap in the intertidal coastal sediments prior to discharge into the bay. In this zone, the aeration of the surface beach sediments drives nitrification and allows the precipitation of iron oxide, which leads to the removal of PO 4 through sorption. Model simulations suggest that removal of NO3- through denitrification is inhibited by the limited overlap between the two freshwater plumes, as well as by the refractory nature of terrestrial DOC. Submarine groundwater discharge is a significant source of NO3- to the bay.

  1. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  2. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table

  3. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false âTransporting [such] products to the mill, processing plant... EMPLOYED § 788.11 “Transporting [such] products to the mill, processing plant, railroad, or other transportation terminal.” The transportation or movement of logs or other forestry products to a “mill processing...

  4. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  5. Nutrient cycling for biomass: Interactive proteomic/transcriptomic networks for global carbon management processes within poplar-mycorrhizal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cseke, Leland [Univ. of Alabama, Huntsville, AL (United States)

    2016-08-30

    This project addresses the need to develop system-scale models at the symbiotic interface between ectomycorrhizal fungi (Laccaria bicolor) and tree species (Populus tremuloides) in response to environmental nutrient availability / biochemistry. Using our now well-established laboratory Laccaria x poplar system, we address the hypothesis that essential regulatory and metabolic mechanisms can be inferred from genomic, transcriptomic and proteomic-level changes that occur in response to environmental nutrient availability. The project addresses this hypothesis by applying state-of-the-art protein-level analytic approaches to fill the gap in our understanding of how mycorrhizal regulatory and metabolic processes at the transcript-level translate to nutrient uptake, carbon management and ultimate net primary productivity of plants. In most cases, these techniques were not previously optimized for poplar trees or Laccaria. Thus, one of the major contributions of this project has been to provide avenues for new research in these species by overcoming the pitfalls that had previously prevented the use of techniques such as ChIP-Seq and SWATH-proteomics. Since it is the proteins that sense and interact with the environment, participate in signal cascades, activate and regulate gene expression, perform the activities of metabolism and ultimately sequester carbon and generate biomass, an understanding of protein activities during symbiosis-linked nutrient uptake is critical to any systems-level approach that links metabolic processes to the environment. This project uses a team of experts at The University of Alabama in Huntsville (UAH), The University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL) to address the above hypothesis using a multiple "omics" approach that combines gene and protein expression as well as protein modifications, and biochemical analyses (performed at Brookhaven National Laboratory (BNL)) in poplar trees under mycorrhizal and

  6. Modeling transport of nutrients & sediment loads into Lake Tahoe under climate change

    Science.gov (United States)

    Riverson, John; Coats, Robert; Costa-Cabral, Mariza; Dettinger, Mike; Reuter, John; Sahoo, Goloka; Schladow, Geoffrey

    2013-01-01

    The outputs from two General Circulation Models (GCMs) with two emissions scenarios were downscaled and bias-corrected to develop regional climate change projections for the Tahoe Basin. For one model—the Geophysical Fluid Dynamics Laboratory or GFDL model—the daily model results were used to drive a distributed hydrologic model. The watershed model used an energy balance approach for computing evapotranspiration and snowpack dynamics so that the processes remain a function of the climate change projections. For this study, all other aspects of the model (i.e. land use distribution, routing configuration, and parameterization) were held constant to isolate impacts of climate change projections. The results indicate that (1) precipitation falling as rain rather than snow will increase, starting at the current mean snowline, and moving towards higher elevations over time; (2) annual accumulated snowpack will be reduced; (3) snowpack accumulation will start later; and (4) snowmelt will start earlier in the year. Certain changes were masked (or counter-balanced) when summarized as basin-wide averages; however, spatial evaluation added notable resolution. While rainfall runoff increased at higher elevations, a drop in total precipitation volume decreased runoff and fine sediment load from the lower elevation meadow areas and also decreased baseflow and nitrogen loads basin-wide. This finding also highlights the important role that the meadow areas could play as high-flow buffers under climatic change. Because the watershed model accounts for elevation change and variable meteorological patterns, it provided a robust platform for evaluating the impacts of projected climate change on hydrology and water quality.

  7. Mathematical modelling of the influenced of diffusion rate on macro nutrient availability in paddy field

    Science.gov (United States)

    Renny; Supriyanto

    2018-04-01

    Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.

  8. Mathematical Model of Ion Transport in Electrodialysis Process

    Directory of Open Access Journals (Sweden)

    F.S. Rohman

    2010-10-01

    Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ] 

  9. Modelling the Transport Process in Marine Container Technology

    Directory of Open Access Journals (Sweden)

    Serđo Kos

    2003-01-01

    Full Text Available The paper introduces a mathematical problem that occursin marine container technology when programming the transportof a beforehand established number of ISO containers effectedby a full container ship from several ports of departure toseveral ports of destination at the minimum distance (time innavigation or at minimum transport costs. The application ofthe proposed model may have an effect on cost reduction incontainer transport thereby improving the operation process inmarine transport technology. The model has been tested by usinga numerical example with real data. In particular, it describesthe application of the dual variables in the analysis ofoptimum solution.

  10. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  11. Role of glutathione transport processes in kidney function

    International Nuclear Information System (INIS)

    Lash, Lawrence H.

    2005-01-01

    The kidneys are highly dependent on an adequate supply of glutathione (GSH) to maintain normal function. This is due, in part, to high rates of aerobic metabolism, particularly in the proximal tubules. Additionally, the kidneys are potentially exposed to high concentrations of oxidants and reactive electrophiles. Renal cellular concentrations of GSH are maintained by both intracellular synthesis and transport from outside the cell. Although function of specific carriers has not been definitively demonstrated, it is likely that multiple carriers are responsible for plasma membrane transport of GSH. Data suggest that the organic anion transporters OAT1 and OAT3 and the sodium-dicarboxylate 2 exchanger (SDCT2 or NaDC3) mediate uptake across the basolateral plasma membrane (BLM) and that the organic anion transporting polypeptide OATP1 and at least one of the multidrug resistance proteins mediate efflux across the brush-border plasma membrane (BBM). BLM transport may be used pharmacologically to provide renal proximal tubular cells with exogenous GSH to protect against oxidative stress whereas BBM transport functions physiologically in turnover of cellular GSH. The mitochondrial GSH pool is derived from cytoplasmic GSH by transport into the mitochondrial matrix and is mediated by the dicarboxylate and 2-oxoglutarate exchangers. Maintenance of the mitochondrial GSH pool is critical for cellular and mitochondrial redox homeostasis and is important in determining susceptibility to chemically induced apoptosis. Hence, membrane transport processes are critical to regulation of renal cellular and subcellular GSH pools and are determinants of susceptibility to cytotoxicity induced by oxidants and electrophiles

  12. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process.

    Science.gov (United States)

    Leng, Lijian; Li, Jun; Wen, Zhiyou; Zhou, Wenguang

    2018-05-01

    Hydrothermal liquefaction (HTL) of microalgae biomass generates an aqueous phase (AP) byproduct with limited energy value. Recycling the AP solution as a source of nutrients for microalgae cultivation provides an opportunity for a cost-effective production of HTL based biofuel and algal biomass feedstock for HTL, allowing a closed-loop biofuel production in microalgae HTL biofuel system. This paper aims to provide a comprehensive overview of characteristics of AP and its nutrients recycling for algae production. Inhibitory effects resulted from the toxic compounds in AP and alleviation strategies are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  14. High Levels of Dietary Supplement Vitamins A, C and E are Absorbed in the Small Intestine and Protect Nutrient Transport Against Chronic Gamma Irradiation

    Science.gov (United States)

    Azzam, Edouard I.; Ferraris, Ronaldo P.; Howell, Roger W.

    2015-01-01

    We examined nutrient transport in the intestines of mice exposed to chronic low-LET 137Cs gamma rays. The mice were whole-body irradiated for 3 days at dose rates of 0, 0.13 and 0.20 Gy/h, for total dose delivery of 0, 9.6 or 14.4 Gy, respectively. The mice were fed either a control diet or a diet supplemented with high levels of vitamins A, C and E. Our results showed that nutrient transport was perturbed by the chronic irradiation conditions. However, no apparent alteration of the macroscopic intestinal structures of the small intestine were observed up to day 10 after initiating irradiation. Jejunal fructose uptake measured in vitro was strongly affected by the chronic irradiation, whereas uptake of proline, carnosine and the bile acid taurocholate in the ileum was less affected. D-glucose transport did not appear to be inhibited significantly by either 9.6 or 14.4 Gy exposure. In the 14.4 Gy irradiated groups, the diet supplemented with high levels of vitamins A, C and E increased intestinal transport of fructose compared to the control diet (day 10; t test, P = 0.032), which correlated with elevated levels of vitamins A, C and E in the plasma and jejunal enterocytes. Our earlier studies with mice exposed acutely to 137Cs gamma rays demonstrated significant protection for transport of fructose, glucose, proline and carnosine. Taken together, these results suggest that high levels of vitamins A, C and E dietary supplements help preserve intestinal nutrient transport when intestines are irradiated chronically or acutely with low-LET gamma rays. PMID:26484399

  15. Prenatal physical activity and diet composition affect the expression of nutrient transporters and mTOR signaling molecules in the human placenta.

    Science.gov (United States)

    Brett, K E; Ferraro, Z M; Holcik, M; Adamo, K B

    2015-02-01

    Adequate nutrient delivery to the fetus is essential for optimal growth. Differences in prenatal physical activity level and diet quality influence maternal energy balance and these factors may alter placental nutrient transport. We investigated the associations between meeting physical activity guidelines and the quality of maternal diet on the expression of genes involved in fatty acid, amino acid and glucose transport, and mammalian target of rapamycin (mTOR) and insulin signaling in the placenta from 16 term pregnancies. Physical activity was directly measured with accelerometry, diet composition was assessed with 24 h dietary recalls, and gene expression was measured with custom polymerase chain reaction (PCR) arrays. Women who met physical activity guidelines had lower gene expression of fatty acid transport protein 4 (FATP4), insulin-like growth factor 1 (IGF1), and the beta non-catalytic subunit of AMP-activated protein kinase (AMPK), and a higher expression of SNAT2. There was a strong positive correlation observed between total sugar intake and glucose transporter 1 (GLUT1) (r = 0.897, p = 0.000, n = 12), and inverse correlations between total sugar and mTOR and IGF1 expression. Percentage of total calories from protein was inversely related to insulin-like growth factor 1 receptor (IGF1R) (r = -0.605, p = 0.028, n = 13). Variations in maternal physical activity and diet composition altered the expression of genes involved in fatty acid, amino acid and glucose transport and mTOR signaling. Future research on placental nutrient transport should include direct measures of maternal PA and dietary habits to help eliminate confounding factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  17. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  18. Direct evidence of the feedback between climate and nutrient, major, and trace element transport to the oceans

    Science.gov (United States)

    Eiriksdottir, Eydis Salome; Gislason, Sigurður Reynir; Oelkers, Eric H.

    2015-10-01

    Climate changes affect weathering, denudation and riverine runoff, and therefore elemental fluxes to the ocean. This study presents the climate effect on annual fluxes of 28 dissolved elements, and organic and inorganic particulate fluxes, determined over 26-42 year period in three glacial and three non-glacial river catchments located in Eastern Iceland. Annual riverine fluxes were determined by generating robust correlations between dissolved element concentrations measured from 1998 to 2003 and suspended inorganic matter concentrations measured from 1962 to 2002 with instantaneous discharge measured at the time of sampling in each of these rivers. These correlations were used together with measured average daily discharge to compute daily elemental fluxes. Integration of these daily fluxes yielded the corresponding annual fluxes. As the topography and lithology of the studied glacial and non-glacial river catchments are similar, we used the records of average annual temperature and annual runoff to examine how these parameters and glacier melting influenced individual element fluxes to the oceans. Significant variations were found between the individual elements. The dissolved fluxes of the more soluble elements, such as Mo, Sr, and Na are less affected by increasing temperature and runoff than the insoluble nutrients and trace elements including Fe, P, and Al. This variation between the elements tends to be more pronounced for the glacial compared to the non-glacial rivers. These observations are interpreted to stem from the stronger solubility control on the concentrations of the insoluble elements such that they are less affected by dilution. The dilution of the soluble elements by increasing discharge in the glacial rivers is enhanced by a relatively low amount of water-rock interaction; increased runoff due to glacial melting tend to be collected rapidly into river channels limiting water-rock interaction. It was found that the climate effect on particle

  19. Using high-frequency nitrogen and carbon measurements to decouple temporal dynamics of catchment and in-stream transport and reaction processes in a headwater stream

    Science.gov (United States)

    Blaen, P.; Riml, J.; Khamis, K.; Krause, S.

    2017-12-01

    Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.

  20. The ALMT Family of Organic Acid Transporters in Plants and Their Involvement in Detoxification and Nutrient Security.

    Science.gov (United States)

    Sharma, Tripti; Dreyer, Ingo; Kochian, Leon; Piñeros, Miguel A

    2016-01-01

    About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance toward toxic aluminum ions in the soil. The efflux of Al 3+ -chelating malate anions through these channels is stimulated by external Al 3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT). Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes.

  1. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security

    Directory of Open Access Journals (Sweden)

    Tripti Sharma

    2016-10-01

    Full Text Available About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance towards toxic aluminum ions in the soil. The efflux of Al3+-chelating malate anions through these channels is stimulated by external Al3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT. Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes.

  2. Influence of cross-shelf water transport on nutrients and phytoplankton in the East China Sea: a model study

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2011-01-01

    Full Text Available A three dimensional coupled biophysical model was used to examine the supply of oceanic nutrients to the shelf of the East China Sea (ECS and its role in primary production over the shelf. The model consisted of two parts: the hydrodynamic module was based on a nested model with a horizontal resolution of 1/18 degree, whereas the biological module was a lower trophic level ecosystem model including two types of phytoplankton, three elements of nutrients, and biogenic organic material. The model results suggested that seasonal variations occurred in the distribution of nutrients and chlorophyll a over the shelf of the ECS. After comparison with available observed nutrients and chlorophyll a data, the model results were used to calculate volume and nutrients fluxes across the shelf break. The annual mean total fluxes were 1.53 Sv for volume, 9.4 kmol s−1 for DIN, 0.7 kmol s−1 for DIP, and 18.2 kmol s−1 for silicate. Two areas, northeast of Taiwan and southwest of Kyushu, were found to be major source regions of oceanic nutrients to the shelf. Although the onshore fluxes of nutrients and volume both had apparent seasonal variations, the seasonal variation of the onshore nutrient flux did not exactly follow that of the onshore volume flux. Additional calculations in which the concentration of nutrients in Kuroshio water was artificially increased suggested that the oceanic nutrients were distributed in the bottom layer from the shelf break to the region offshore of the Changjiang estuary from spring to summer and appeared in the surface layer from autumn to winter. The calculations also implied that the supply of oceanic nutrients to the shelf can change the consumption of pre-existing nutrients from rivers. The response of primary production over the shelf to the oceanic nutrients was confirmed not only in the surface layer (mainly at the outer shelf and shelf break in winter and in the region

  3. Gathering Information from Transport Systems for Processing in Supply Chains

    Science.gov (United States)

    Kodym, Oldřich; Unucka, Jakub

    2016-12-01

    Paper deals with complex system for processing information from means of transport acting as parts of train (rail or road). It focuses on automated information gathering using AutoID technology, information transmission via Internet of Things networks and information usage in information systems of logistic firms for support of selected processes on MES and ERP levels. Different kinds of gathered information from whole transport chain are discussed. Compliance with existing standards is mentioned. Security of information in full life cycle is integral part of presented system. Design of fully equipped system based on synthesized functional nodes is presented.

  4. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    Science.gov (United States)

    Rozemeijer, J. C.; Visser, A.; Borren, W.; Winegram, M.; van der Velde, Y.; Klein, J.; Broers, H. P.

    2016-01-01

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates and the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007-2008) and after (2009-2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. However, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P

  5. Features, Events, and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and

  6. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Houseworth, J.E.

    2001-01-01

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS MandO 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow

  7. The rate-limiting process of hydrogen transport in Mo

    Energy Technology Data Exchange (ETDEWEB)

    Ohkoshi, Keishiro; Chikazawa, Yoshitaka; Bandourko, V; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen isotope transport characteristics of Mo, whose refractory properties are considered to be suitable as plasma facing material, was investigated by applying 3 keV D{sub 2}{sup +} beam to the membrane specimen. The Arrhenius plot of deuterium permeation probability showed linear increase against the reciprocal temperature and its apparent activation energy was determined as 41.5 kJ/mol. The simultaneous irradiation of 3 keV Ar{sup +} onto backside surface of specimen had little effect on the deuterium permeation rate. According to these results, the rate-limiting process of deuterium transport in Mo was determined. (author)

  8. Haalbaarheidsstudie terugwinning van mestnutriënten : Fase 1: Processchema en nutriëntenstromen = Feasibility study on nutrient recovery from animal manure : Phase 1: Process scheme and nutrient flows

    NARCIS (Netherlands)

    Starmans, D.A.J.; Melse, R.W.; Sanders, J.P.M.

    2011-01-01

    A process scheme for a new manure treatment system for pig and cattle manure was formulated which aims to produce manure nutrient flows with added value. The basic process behind the treatment system is fermentation of manure, which is preceded by both stripping ammonia and chemical digestion of the

  9. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  10. Identification of wastewater treatment processes for nutrient removal on a full-scale WWTP by statistical methods

    DEFF Research Database (Denmark)

    Carstensen, Jakob; Madsen, Henrik; Poulsen, Niels Kjølstad

    1994-01-01

    of the processes, i.e. including prior knowledge, with the significant effects found in data by using statistical identification methods. Rates of the biochemical and hydraulic processes are identified by statistical methods and the related constants for the biochemical processes are estimated assuming Monod...... kinetics. The models only include those hydraulic and kinetic parameters, which have shown to be significant in a statistical sense, and hence they can be quantified. The application potential of these models is on-line control, because the present state of the plant is given by the variables of the models......The introduction of on-line sensors of nutrient salt concentrations on wastewater treatment plants opens a wide new area of modelling wastewater processes. Time series models of these processes are very useful for gaining insight in real time operation of wastewater treatment systems which deal...

  11. Short-term variability and transport of nutrients and Chlorophyll-a in Bertioga Channel, São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Sônia Maria Flores Gianesella

    2005-12-01

    Full Text Available Short-term variability of nutrients, chlorophyll-a (Chl-a and seston (TSS concentrations were followed up at a fixed station in the Bertioga Channel (BC, Southeastern Brazil, over two full tidal cycles of neap and spring tides, during the winter of 1991. Simultaneous data on hydrographic structure, tidal level and currents allowed the computation of the net transport of those properties. Tidal advection and freshwater flow were the main forcing agents on the water column structure, nutrient availability and Chl-a distribution. Dissolved inorganic nitrogen and phosphate average values were high (16.88 and 0.98 ¼M, respectively, at neap tide and 10.18 and 0.77¼M at spring tide. Despite N and P availability, Chl-a average values were low: 1.13 in the neap and 3.11 mg m-3 in the spring tide, suggesting that the renovation rate of BC waters limits phytoplankton accumulation inside the estuary. The highest Chl-a was associated with the entrance of saltier waters, while the high nutrient concentrations were associated with brackish waters. Nutrients were exported on both tides, TSS and Chl-a were exported on the spring tide and Chl-a was imported on the neap tide. The study of the main transport components indicated that this system is susceptible to the occasional introduction of pollutants from the coastal area, thus presenting a facet of potential fragility.Variações de curta escala das concentrações de nutrientes, clorofila-a (Cl-a e séston foram acompanhadas em uma estação fixa no canal de Bertioga (CB, sudeste do Brasil, em dois ciclos completos de maré de quadratura e sizígia, no inverno de 1991. Dados simultâneos da estrutura hidrográfica, marés e correntes permitiram calcular o transporte resultante daquelas propriedades. A advecção por maré e o fluxo de água doce foram as principais forçantes da estrutura hidrográfica e da distribuição de nutrientes e Cl-a. As concentrações médias de NID e fosfato foram altas

  12. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  13. Processing recommendations for using low-solids digestate as nutrient solution for poly-ß-hydroxybutyrate production with Synechocystis salina.

    Science.gov (United States)

    Meixner, K; Fritz, I; Daffert, C; Markl, K; Fuchs, W; Drosg, B

    2016-12-20

    Within the last decades, environmental pollution with persistent plastics steadily increased; therefore the production of biodegradable materials like poly-ß-hydroxybutyrate (PHB) is essential. Currently, PHB is produced with heterotrophic bacteria from crops. This leads to competition with food and feed production, which can be avoided by using photoautotrophic cyanobacteria, as Synechocystis salina, synthesizing PHB from CO 2 at nutrient limitation. This study aims to increase the economic efficiency of PHB production with cyanobacteria by using nutrients from anaerobic digestate. First, growth and PHB production of S. salina in digestate fractions (supernatant and permeate, with/without precipitating agents) and dilutions thereof and then the scale-up (photobioreactor, 200 L working volume) were evaluated. With precipitated and centrifuged digestate diluted 1/3 the highest biomass (1.55gL -1 ) and PHB concentrations (95.4mgL -1 ), being 78% of those in mineral media, were achieved. In the photobioreactor-experiments biomass (1.63gL -1 ) and PHB concentrations (88.7mgL -1 ), being 79% and 72% of those in mineral medium, were reached, but in a cultivation time 10days longer than in mineral medium. The possibility to use digestate as sustainable and low cost nutrient solution for microalgae cultivation and photoautotrophic PHB production, instead of applying it on fields or processing it to achieve discharge limits, makes this application a highly valid option. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    International Nuclear Information System (INIS)

    Sonnino, Giorgio; Peeters, Philippe

    2008-01-01

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10 2 . The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10 2 when the nonlinear contributions are duly taken into account but, there is still a factor of 10 2 to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work

  15. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    Science.gov (United States)

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. L-Theanine Administration Modulates the Absorption of Dietary Nutrients and Expression of Transporters and Receptors in the Intestinal Mucosa of Rats

    Directory of Open Access Journals (Sweden)

    Qiongxian Yan

    2017-01-01

    Full Text Available L-theanine has various advantageous functions for human health; whether or not it could mediate the nutrients absorption is unknown yet. The effects of L-theanine on intestinal nutrients absorption were investigated using rats ingesting L-theanine solution (0, 50, 200, and 400 mg/kg body weight per day for two weeks. The decline of insulin secretion and glucose concentration in the serum was observed by L-theanine. Urea and high-density lipoprotein were also reduced by 50 mg/kg L-theanine. Jejunal and ileac basic amino acids transporters SLC7a1 and SLC7a9, neutral SLC1a5 and SLC16a10, and acidic SLC1a1 expression were upregulated. The expression of intestinal SGLT3 and GLUT5 responsible for carbohydrates uptake and GPR120 and FABP2 associated with fatty acids transport were inhibited. These results indicated that L-theanine could inhibit the glucose uptake by downregulating the related gene expression in the small intestine of rats. Intestinal gene expression of transporters responding to amino acids absorption was stimulated by L-theanine administration.

  17. Freeze-thaw processes and intense winter rainfall: The one-two punch for high streambank legacy sediment and nutrient loads from Mid-Atlantic watersheds

    Science.gov (United States)

    Inamdar, S. P.; Johnson, E. R.; Rowland, R. D.; Walter, R. C.; Merritts, D.

    2017-12-01

    Historic and contemporary anthropogenic soil erosion combined with early-American milldams resulted in large deposits of legacy sediments in the valley bottoms of Piedmont watersheds of the eastern US. Breaching of milldams subsequently yielded highly incised streams with exposed vertical streambanks that are vulnerable to erosion. Streambank erosion is attributed to fluvial scouring, freeze-thaw processes and mass wasting. While streambanks represent a large reservoir of fine sediments and nutrients, there is considerable uncertainty about the contribution of these sources to watershed nonpoint source pollution. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze-thaw events followed by intense winter rainstorms can export unusually high concentrations of suspended sediment and particulate nutrients from watersheds. Data from a 12 ha forested, Piedmont, stream following an intense rain event (54 mm) on February 2016 yielded suspended sediment and particulate nutrient (organic carbon and nitrogen) concentrations and exports that exceeded those from tropical storms Irene, Lee, and Sandy that had much greater rainfall and discharge amounts, but which occurred later in the year. A similar response was also observed with regards to turbidity data for USGS stream monitoring locations at Brandywine Creek (813 km2) and White Clay Creek (153 km2). We hypothesize that much of the sediment export associated with winter storms is likely due to erosion of streambank sediments and was driven by the coupled occurrence of freeze-thaw conditions and intense rainfall events. We propose that freeze-thaw erosion represents an important and underappreciated mechanism in streams that "recharges" the sediment supply, which then is available for flushing by moderate to large storms. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze-thaw cycles coupled with winter rain events

  18. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  19. Nonlinear closure relations theory for transport processes in nonequilibrium systems

    International Nuclear Information System (INIS)

    Sonnino, Giorgio

    2009-01-01

    A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ('Onsager') transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.

  20. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  1. Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China.

    Directory of Open Access Journals (Sweden)

    Enqing Hou

    Full Text Available Nitrogen (N is considered the dominant limiting nutrient in temperate regions, while phosphorus (P limitation frequently occurs in tropical regions, but in subtropical regions nutrient limitation is poorly understood. In this study, we investigated N and P contents and N:P ratios of foliage, forest floors, fine roots and mineral soils, and their relationships with community biomass, litterfall C, N and P productions, forest floor turnover rate, and microbial processes in eight mature and old-growth subtropical forests (stand age >80 yr at Dinghushan Biosphere Reserve, China. Average N:P ratios (mass based in foliage, litter (L layer and mixture of fermentation and humus (F/H layer, and fine roots were 28.3, 42.3, 32.0 and 32.7, respectively. These values are higher than the critical N:P ratios for P limitation proposed (16-20 for foliage, ca. 25 for forest floors. The markedly high N:P ratios were mainly attributed to the high N concentrations of these plant materials. Community biomass, litterfall C, N and P productions, forest floor turnover rate and microbial properties were more strongly related to measures of P than N and frequently negatively related to the N:P ratios, suggesting a significant role of P availability in determining ecosystem production and productivity and nutrient cycling at all the study sites except for one prescribed disturbed site where N availability may also be important. We propose that N enrichment is probably a significant driver of the potential P limitation in the study area. Low P parent material may also contribute to the potential P limitation. In general, our results provided strong evidence supporting a significant role for P availability, rather than N availability, in determining ecosystem primary productivity and ecosystem processes in subtropical forests of China.

  2. The Effects of Different External Carbon Sources on Nitrous Oxide Emissions during Denitrification in Biological Nutrient Removal Processes

    Science.gov (United States)

    Hu, Xiang; Zhang, Jing; Hou, Hongxun

    2018-01-01

    The aim of this study was to investigate the effects of two different external carbon sources (acetate and ethanol) on the nitrous oxide (N2O) emissions during denitrification in biological nutrient removal processes. Results showed that external carbon source significantly influenced N2O emissions during the denitrification process. When acetate served as the external carbon source, 0.49 mg N/L and 0.85 mg N/L of N2O was produced during the denitrificaiton processes in anoxic and anaerobic/anoxic experiments, giving a ratio of N2O-N production to TN removal of 2.37% and 4.96%, respectively. Compared with acetate, the amount of N2O production is negligible when ethanol used as external carbon addition. This suggested that ethanol is a potential alternative external carbon source for acetate from the point of view of N2O emissions.

  3. Down-Regulation of Placental Transport of Amino Acids Precedes the Development of Intrauterine Growth Restriction in Maternal Nutrient Restricted Baboons.

    Science.gov (United States)

    Pantham, Priyadarshini; Rosario, Fredrick J; Weintraub, Susan T; Nathanielsz, Peter W; Powell, Theresa L; Li, Cun; Jansson, Thomas

    2016-11-01

    Intrauterine growth restriction (IUGR) is an important risk factor for perinatal complications and adult disease. IUGR is associated with down-regulation of placental amino acid transporter expression and activity at birth. It is unknown whether these changes are a cause or a consequence of human IUGR. We hypothesized that placental amino acid transport capacity is reduced prior to onset of reduced fetal growth in baboons with maternal nutrient restriction (MNR). Pregnant baboons were fed either a control (n = 8) or MNR diet (70% of control diet, n = 9) from Gestational Day 30. At Gestational Day 120 (0.65 of gestation), fetuses and placentas were collected. Microvillous (MVM) and basal (BM) plasma membrane vesicles were isolated. System A and system L transport activity was determined in MVM, and leucine transporter activity was assessed in BM using radiolabeled substrates. MVM amino acid transporter isoform expression (SNAT1, SNAT2, and SNAT4 and LAT1 and LAT2) was measured using Western blots. LAT1 and LAT2 expression were also determined in BM. Maternal and fetal plasma amino acids concentrations were determined using mass spectrometry. Fetal and placental weights were unaffected by MNR. MVM system A activity was decreased by 37% in MNR baboon placentas (P = 0.03); however MVM system A amino acid transporter protein expression was unchanged. MVM system L activity and BM leucine transporter activity were not altered by MNR. Fetal plasma concentrations of essential amino acids isoleucine and leucine were reduced, while citrulline increased (P growth trajectory. The reduction in plasma leucine and isoleucine in MNR fetuses may be caused by reduced activity of MVM system A, which is strongly coupled with system L essential amino acid uptake. Our findings indicate that reduced placental amino acid transport may be a cause rather than a consequence of IUGR due to inadequate maternal nutrition. © 2016 by the Society for the Study of Reproduction, Inc.

  4. Bioprocessing papaya processing waste for potential aquaculture feed supplement--economic and nutrient analysis with shrimp feeding trial.

    Science.gov (United States)

    Kang, H Y; Yang, P Y; Dominy, W G; Lee, C S

    2010-10-01

    Papaya processing waste (PPW), a major fruit processing waste in the Hawaii islands, served as substrate for yeast (Saccharomyces cerevisiae) growth. The fermented PPW products containing nutrients of 45% crude protein and various fat, fiber, lignin, cellulose, and minerals were advantages to nutrients of yeast alone. Three experimental diets controlled at 35% protein formulation containing different levels of inclusion of PPW products and a commercial control diet were fed to shrimps for 8 weeks. The 50% inclusion of PPW diets were comparable to commercial feed in weight, growth, feed conversion ratio (FCR) and survival rate. Such bioprocess treatment system would be economically feasible with the control of annual cost and increase of the amount of PPW treated. The selling price of PPW products and annual operation and maintenance cost were the most influential factors to additional profits. This study presented a promising alternative for environmental-friendly treatment of organic wastes as well as the sustainability of local agriculture and aquaculture industries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Optimization of induced crystallization reaction in a novel process of nutrients removal coupled with phosphorus recovery from domestic wastewater

    Directory of Open Access Journals (Sweden)

    Zou Haiming

    2017-12-01

    Full Text Available Phosphorus removal and recovery from domestic wastewater is urgent nowadays. A novel process of nutrients removal coupled with phosphorus recovery from domestic sewage was proposed and optimization of induced crystallization reaction was performed in this study. The results showed that 92.3% of phosphorus recovery via induced Hydroxyapatite crystallization was achieved at the optimum process parameters: reaction time of 80 min, seed crystal loads of 60 g/L, pH of 8.5, Ca/P mole ratio of 2.0 and 4.0 L/min aeration rate when the PO43--P concentration was 10 mg/L in the influent, displaying an excellent phosphorus recovery performance. Importantly, it was found that the effect of reaction temperature on induced Hydroxyapatite crystallization was slight, thus favoring practical application of phosphorus recovery method described in this study. From these results, the proposed method of induced HAP crystallization to recover phosphorus combined with nutrients removal can be an economical and effective technology, probably favoring the water pollution control and phosphate rock recycle.

  6. Saccharomyces cerevisiae–Based Platform for Rapid Production and Evaluation of Eukaryotic Nutrient Transporters and Transceptors for Biochemical Studies and Crystallography

    DEFF Research Database (Denmark)

    Scharff-Poulsen, Peter; Pedersen, Per Amstrup

    2013-01-01

    localization, quantification, quality control, and purification. Using this expression system we examined the production of a human glucose transceptor and 11 nutrient transporters and transceptors from S. cerevisiae that have not previously been overexpressed in S. cerevisiae and purified. Whole...... transporter pr. liter cell culture. A detergent screen showed that n-dodecyl-ß-D-maltopyranoside (DDM) is acceptable for solubilization of the membrane-integrated fusions. Extracts of solubilized membranes were prepared with this detergent and used for purifications by Ni-NTA affinity chromatography, which...... of the fusions solubilized in DDM in presence of cholesteryl hemisuccinate and specific substrates, yielded monodisperse preparations with only minor amounts of aggregated membrane proteins. In conclusion, we developed a new effective S. cerevisiae expression system that may be used for production of high...

  7. Spatial and temporal variation of nutrients in groundwater and associated processes in the coastal zone of the Pearl River Delta, China

    Science.gov (United States)

    Chen, J.

    2017-12-01

    Rapid urbanization has occurred in the Pearl River Delta since 1980s, resulting in tremendous accumulation of population and material in an area of around 1.1x104 km2. Massive nutrients were released to the coastal zone either via the Pearl River or the aquifer, and effects of these nutrients on ecosystem and drinking water supply are a big public concern. Field campaigns to collect groundwater samples were implemented in rainy (April- September) and dry seasons (October - March) during the period of 2005-2016, and samples were analyzed for major ions, nutrients, multiple isotopes, N2O and microbiological DNA. Seasonal and spatial pattern of nutrients from the recharge to the discharge zone in two case study areas were identified and compared regarding relevant N transformation processes. Main sources of nutrients in groundwater and major mechanisms, e.g. denitrification, nitrification and etc., involved in these processes were raised by integrating microbiological, isotopic and geochemical evidences. Driven forces of the change in nutrients in the past 10 years were investigated based on statistical data, and total nutrient load in groundwater in the delta was estimated.

  8. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  9. Condensation and transport in the totally asymmetric inclusion process (TASIP)

    Science.gov (United States)

    Knebel, Johannes; Weber, Markus F.; Krueger, Torben; Frey, Erwin

    Transport phenomena are often modeled by the hopping of particles on regular lattices or networks. Such models describe, e.g., the exclusive movement of molecular motors along microtubules: no two motors may occupy the same site. In our work, we study inclusion processes that are the bosonic analogues of the fermionic exclusion processes. In inclusion processes, many particles may occupy a single site and hopping rates depend linearly on the occupation of departure and arrival sites. Particles thus attract other particles to their own site. Condensation occurs when particles collectively cluster in one or multiple sites, whereas other sites become depleted.We showed that inclusion processes describe both the selection of strategies in evolutionary zero-sum games and the condensation of non-interacting bosons into multiple quantum states in driven-dissipative systems. The condensation is captured by the antisymmetric Lotka-Volterra equation (ALVE), which constitutes a nonlinearly coupled dynamical system. We derived an algebraic method to analyze the ALVE and to determine the condensates. Our approach allows for the design of networks that result in condensates with oscillating occupations, and yields insight into the interplay between network topology and transport properties. Deutsche Forschungsgemeinschaft (SFB-TR12), German Excellence Initiative (Nanosystems Initiative Munich), Center for NanoScience Munich.

  10. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  11. A model for growth of a single fungal hypha based on well-mixed tanks in series: simulation of nutrient and vesicle transport in aerial reproductive hyphae.

    Science.gov (United States)

    Balmant, Wellington; Sugai-Guérios, Maura Harumi; Coradin, Juliana Hey; Krieger, Nadia; Furigo Junior, Agenor; Mitchell, David Alexander

    2015-01-01

    Current models that describe the extension of fungal hyphae and development of a mycelium either do not describe the role of vesicles in hyphal extension or do not correctly describe the experimentally observed profile for distribution of vesicles along the hypha. The present work uses the n-tanks-in-series approach to develop a model for hyphal extension that describes the intracellular transport of nutrient to a sub-apical zone where vesicles are formed and then transported to the tip, where tip extension occurs. The model was calibrated using experimental data from the literature for the extension of reproductive aerial hyphae of three different fungi, and was able to describe different profiles involving acceleration and deceleration of the extension rate. A sensitivity analysis showed that the supply of nutrient to the sub-apical vesicle-producing zone is a key factor influencing the rate of extension of the hypha. Although this model was used to describe the extension of a single reproductive aerial hypha, the use of the n-tanks-in-series approach to representing the hypha means that the model has the flexibility to be extended to describe the growth of other types of hyphae and the branching of hyphae to form a complete mycelium.

  12. Nutrient recovery from the dry grind process using sequential micro and ultrafiltration of thin stillage.

    Science.gov (United States)

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2010-06-01

    The effectiveness of microfiltration (MF) and ultrafiltration (UF) for nutrient recovery from a thin stillage stream was determined. When a stainless steel MF membrane (0.1microm pore size) was used, the content of solids increased from 7.0% to 22.8% with a mean permeate flux rate of 45L/m(2)/h (LMH), fat increased and ash content decreased. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Permeate flux profiles were evaluated for regenerated cellulose membranes (YM1, YM10 and YM100) with molecular weight cut offs of 1, 10 and 100kDa. UF increased total solids, protein and fat and decreased ash in retentate stream. When permeate streams from MF were subjected to UF, retentate total solids concentrations similar to those of commercial syrup (23-28.8%) were obtained. YM100 had the highest percent permeate flux decline (70% of initial flux) followed by YM10 and YM1 membranes. Sequential filtration improved permeate flux rates of the YM100 membrane (32.6-73.4LMH) but the percent decline was also highest in a sequential MF+YM100 system. Protein recovery was the highest in YM1 retentate. Removal of solids, protein and fat from thin stillage may generate a permeate stream that may improve water removal efficiency and increase water recycling. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Effects of different processing methods of flaxseed on ruminal degradability and in vitro post-ruminal nutrient disappearance

    DEFF Research Database (Denmark)

    Lashkari, Saman

    2015-01-01

    The aim of the study was to determine the effects of different heat-processing methods of flaxseed on the in situ effective dry matter degradability (EDMD) and the in situ effective crude protein degradability (ECPD). The treatments included roasting, steep roasting, rolled roasting, rolled steep...... roasting, microwave irradiation and extrusion. Three rumen-fistulated sheep were used for in situ incubations. Furthermore, the effects of heat-processing methods on post-ruminal in vitro nutrient disappearance and total tract disappearance were measured by a three-step in vitro technique. The seeds were...... roasted and extruded at 140°C to 145°C. One lot of roasted seeds was gradually cooled for about 1 h (roasting) and another lot was held in temperature isolated barrels for 45 min (steep roasting). Moreover, roasted and steep roasted flaxseed was rolled in a roller mill. The lowest and highest EDMD...

  14. Simulation of business processes of processing and distribution of orders in transportation

    Directory of Open Access Journals (Sweden)

    Ольга Ігорівна Проніна

    2017-06-01

    Full Text Available Analyzing modern passenger transportation in Ukraine, we can conclude that with the increasing number of urban population the necessity to develop passenger traffic, as well as to improve the quality of transport services is increasing too. The paper examines the three existing models of private passenger transportation (taxi: a model with the use of dispatching service, without dispatching service model and a mixed model. An algorithm of getting an order, processing it, and its implementation according to the given model has been considered. Several arrangements schemes that characterize the operation of the system have been shown in the work as well. The interrelation of the client making an order and the driver who receives the order and executes it has been represented, the server being a connecting link between the customer and the driver and regulating the system as a whole. Business process of private passenger transportation without dispatching service was simulated. Basing on the simulation results it was proposed to supplement the model of private transportation by the making advice system, as well as improving the car selection algorithm. Advice system provides the optimum choice of the car, taking into account a lot of factors. And it will also make it possible to use more efficiently the specific additional services provided by the drivers. Due to the optimization of the order handling process it becomes possible to increase the capacity of the drivers thus increasing their profits. Passenger transportation without the use of dispatching service has some weak points and they were identified. Application of the system will improve transport structure in modern conditions, and improve the transportation basing on modern operating system

  15. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  16. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  17. Combined effects of drought stress and npk foliar spray on growth, physiological processes and nutrient uptake in wheat

    International Nuclear Information System (INIS)

    Shabir, R.N.; Waraocj, E.A.

    2015-01-01

    The present study investigated the effects of supplemental foliar nitrogen (N), phosphorous (P) and potassium (K) spray, alone or in various combinations, on physiological processes and nutrients uptake in wheat under water deficit conditions. The study comprised of two phases; during the first phase, ten local wheat (Triticum aestivum L.) genotypes were evaluated for their response to PEG-6000 induced osmotic stress. One drought tolerant (Bhakkar-2002) and sensitive (Shafaq-2006) genotype selected from screening experiments were used in the second phase to determine the individual and combined effects of N, P and K foliar spray on physiological mechanisms in wheat under drought stress. The results revealed that limited water supply significantly reduced germination, growth and uptake of N, P and K. Supplemental foliar fertilisation of these macronutrients alone or in different combinations significantly improved the water relations, gas exchange characteristics and nutrient contents in both the genotypes. Bhakkar-2002 maintained higher turgor, net CO/sub 2/ assimilation rate (Pn), transpiration rate (E), stomatal conductance (gs) and accumulated more N, P and K in shoot than Shafaq-2006. The foliar spray of NPK in combination was effective in improving wheat growth under both well-watered and water-deficit conditions. (author)

  18. Nutrient management via struvite precipitation and recovery from various agroindustrial wastewaters: Process feasibility and struvite quality.

    Science.gov (United States)

    Taddeo, Raffaele; Honkanen, Mari; Kolppo, Kari; Lepistö, Raghida

    2018-04-15

    Improving environmental protection and finding sustainable and renewable resources of nutrients are core issues in circular bioeconomy. Thus, this study evaluated the efficiency of recovering struvite, MgNH 4 PO 4 ·6H 2 O, from different agro-industrial wastewaters (four highly loaded reject waters of anaerobically co-digested agro-industrial waste and a raw swine slurry) and assessed the quality of recovered struvite crystals and their reusability as fertilizer. The efficiency of crystallization (E c 40-80%) and amount of struvite in the precipitate (P p 55-94%) highly varied due to the characteristics of influent wastewaters, particularly to the content of competing elements, such as alkaline and heavy metals and total solids (TS). In particular, E c (94, 75, 61%) and P p (76, 66, 48%) decreased at increasing TS (0.57, 0.73, 0.99%), demonstrating the hindering effect of solid content on struvite recovery and quality. According to X-ray diffraction analysis, the structure of all isolated samples corresponded to crystalline, orthorhombic struvite, which exhibited high purity (32-48 g/kg d N, 114-132 g/kg d P, and 99-116 g/kg d Mg) containing only a few foreign elements, whose amount depended on the characteristics of the influent wastewater. All struvite contained other plant macronutrients (K, Ca) and many micronutrients (Fe, Na, Cu, Mn, Co, Zn) that further enhance its agronomic value. Therefore, this study showed that struvite can be successfully recovered from a wide range of highly loaded agroindustrial wastewaters, and that the quality of the recovered struvite could be suitable for reuse in agriculture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. 23 CFR 450.320 - Congestion management process in transportation management areas.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Congestion management process in transportation... Programming § 450.320 Congestion management process in transportation management areas. (a) The transportation planning process in a TMA shall address congestion management through a process that provides for safe and...

  20. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing.

    Science.gov (United States)

    Wagenmakers, Anton J M; Strauss, Juliette A; Shepherd, Sam O; Keske, Michelle A; Cocks, Matthew

    2016-04-15

    This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF-B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  1. Integrating climate change into the transportation planning process : final report

    Science.gov (United States)

    2008-07-01

    The objective of this study is to advance the practice and application of transportation planning among state, regional, and local transportation planning agencies to successfully meet growing concerns about the relationship between transportation an...

  2. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  3. Transport Infrastructure in the Process of Cataloguing Brownfields

    Science.gov (United States)

    Kramářová, Zuzana

    2017-10-01

    To begin with, the identification and follow-up revitalisation of brownfields raises a burning issue in territorial planning as well as in construction engineering. This phenomenon occurs not only in the Czech Republic and Europe, but also world-wide experts conduct its careful investigation. These issues may be divided into several areas. First, it is identifying and cataloguing single territorial localities; next, it means a complex process of locality revitalisation. As a matter of fact, legislative framework represents a separate area, which is actually highly specific in individual countries in accordance with the existing law, norms and regulations (it concerns mainly territorial planning and territory segmentation into appropriate administrative units). Legislative base of the Czech Republic was analysed in an article at WMCAUS in 2016. The solution of individual identification and following cataloguing of brownfields is worked out by Form of Regional Studies within the Legislation of the Czech Republic. Due to huge the scale of issues to be tackled, their content is only loosely defined in regard to Building Act and its implementing regulations, e.g. examining the layout of future construction in the area, locating architecturally or otherwise interesting objects, transport or technical infrastructure management, tourism, socially excluded localities etc. Legislative base does not exist, there is no common method for identifying and cataloguing brownfields. Therefore, individual catalogue lists are subject to customer’s requirements. All the same, the relevant information which the database contains may be always examined. One of them is part about transport infrastructure. The information may be divided into three subareas - information on transport accessibility of the locality, information on the actual infrastructure in the locality and information on the transport accessibility of human resources.

  4. Features, Events and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    P. Persoff

    2005-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  5. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Persoff, P.

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  6. Features, Events and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  7. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  8. Reported Design Processes for Accessibility in Rail Transport

    DEFF Research Database (Denmark)

    Herriott, Richard; Cook, Sharon

    2014-01-01

    Accessibility is a fundamental requirement in public transport (PT) yet there exists little research on design for accessibility or inclusive design (ID) in this area. This paper sets out to discover what methods are used in the rail sector to achieve accessibility goals and to examine how far...... these methods deviate from user-centred and ID norms. Semi-structured interviews were conducted with nine rolling stock producers, operators and design consultancies. The purpose was to determine if ID design methods are used explicitly and the extent to which the processes used conformed to ID (if at all......). The research found that the role of users in the design process of manufacturers was limited and that compliance with industry standards was the dominant means to achieving accessibility goals. Design consultancies were willing to apply more user-centred design if the client requested it. Where operators were...

  9. Analysis of suspended solids transport processes in primary settling tanks.

    Science.gov (United States)

    Patziger, Miklós; Kiss, Katalin

    2015-01-01

    The paper shows the results of a long-term research comprising FLUENT-based numerical modeling, in situ measurements and laboratory tests to analyze suspended solids (SS) transport processes in primary settling tanks (PSTs). The investigated PST was one of the rectangular horizontal flow PSTs at a large municipal wastewater treatment plant (WWTP) of a capacity of 500,000 population equivalent. Many middle-sized and large WWTPs are equipped with such PSTs. The numerical PST model was calibrated and validated based on the results of comprehensive in situ flow and SS concentration measurements from low (5 m/h) up to quite high surface overflow rates of 9.5 and 13.0 m/h and on settling and other laboratory tests. The calibrated and validated PST model was also successfully used for evaluation of some slight modifications of the inlet geometry (removing lamellas, installing a flocculation 'box', shifting the inlet into a 'bottom-near' or into a 'high' position), which largely affect PST behavior and performance. The investigations provided detailed insight into the flow and SS transport processes within the investigated PST, which strongly contributes to hydrodynamically driven design and upgrading of PSTs.

  10. Putative sugar transporters of the mustard leaf beetle Phaedon cochleariae: their phylogeny and role for nutrient supply in larval defensive glands.

    Directory of Open Access Journals (Sweden)

    Magdalena Stock

    Full Text Available BACKGROUND: Phytophagous insects have emerged successfully on the planet also because of the development of diverse and often astonishing defensive strategies against their enemies. The larvae of the mustard leaf beetle Phaedon cochleariae, for example, secrete deterrents from specialized defensive glands on their back. The secretion process involves ATP-binding cassette transporters. Therefore, sugar as one of the major energy sources to fuel the ATP synthesis for the cellular metabolism and transport processes, has to be present in the defensive glands. However, the role of sugar transporters for the production of defensive secretions was not addressed until now. RESULTS: To identify sugar transporters in P. cochleariae, a transcript catalogue was created by Illumina sequencing of cDNA libraries. A total of 68,667 transcripts were identified and 68 proteins were annotated as either members of the solute carrier 2 (SLC2 family or trehalose transporters. Phylogenetic analyses revealed an extension of the mammalian GLUT6/8 class in insects as well as one group of transporters exhibiting distinctive conserved motifs only present in the insect order Coleoptera. RNA-seq data of samples derived from the defensive glands revealed six transcripts encoding sugar transporters with more than 3,000 counts. Two of them are exclusively expressed in the glandular tissue. Reduction in secretions production was accomplished by silencing two of four selected transporters. RNA-seq experiments of transporter-silenced larvae showed the down-regulation of the silenced transporter but concurrently the up-regulation of other SLC2 transporters suggesting an adaptive system to maintain sugar homeostasis in the defensive glands. CONCLUSION: We provide the first comprehensive phylogenetic study of the SLC2 family in a phytophagous beetle species. RNAi and RNA-seq experiments underline the importance of SLC2 transporters in defensive glands to achieve a chemical defense

  11. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    Science.gov (United States)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  12. High nutrient transport and cycling potential revealed in the microbial metagenome of Australian sea lion (Neophoca cinerea faeces.

    Directory of Open Access Journals (Sweden)

    Trish J Lavery

    Full Text Available Metagenomic analysis was used to examine the taxonomic diversity and metabolic potential of an Australian sea lion (Neophoca cinerea gut microbiome. Bacteria comprised 98% of classifiable sequences and of these matches to Firmicutes (80% were dominant, with Proteobacteria and Actinobacteria representing 8% and 2% of matches respectively. The relative proportion of Firmicutes (80% to Bacteriodetes (2% is similar to that in previous studies of obese humans and obese mice, suggesting the gut microbiome may confer a predisposition towards the excess body fat that is needed for thermoregulation within the cold oceanic habitats foraged by Australian sea lions. Core metabolic functions, including carbohydrate utilisation (14%, protein metabolism (9% and DNA metabolism (7% dominated the metagenome, but in comparison to human and fish gut microbiomes there was a significantly higher proportion of genes involved in phosphorus metabolism (2.4% and iron scavenging mechanisms (1%. When sea lions defecate at sea, the relatively high nutrient metabolism potential of bacteria in their faeces may accelerate the dissolution of nutrients from faecal particles, enhancing their persistence in the euphotic zone where they are available to stimulate marine production.

  13. High nutrient transport and cycling potential revealed in the microbial metagenome of Australian sea lion (Neophoca cinerea) faeces.

    Science.gov (United States)

    Lavery, Trish J; Roudnew, Ben; Seymour, Justin; Mitchell, James G; Jeffries, Thomas

    2012-01-01

    Metagenomic analysis was used to examine the taxonomic diversity and metabolic potential of an Australian sea lion (Neophoca cinerea) gut microbiome. Bacteria comprised 98% of classifiable sequences and of these matches to Firmicutes (80%) were dominant, with Proteobacteria and Actinobacteria representing 8% and 2% of matches respectively. The relative proportion of Firmicutes (80%) to Bacteriodetes (2%) is similar to that in previous studies of obese humans and obese mice, suggesting the gut microbiome may confer a predisposition towards the excess body fat that is needed for thermoregulation within the cold oceanic habitats foraged by Australian sea lions. Core metabolic functions, including carbohydrate utilisation (14%), protein metabolism (9%) and DNA metabolism (7%) dominated the metagenome, but in comparison to human and fish gut microbiomes there was a significantly higher proportion of genes involved in phosphorus metabolism (2.4%) and iron scavenging mechanisms (1%). When sea lions defecate at sea, the relatively high nutrient metabolism potential of bacteria in their faeces may accelerate the dissolution of nutrients from faecal particles, enhancing their persistence in the euphotic zone where they are available to stimulate marine production.

  14. Linking soil DOC production rates and transport processes from landscapes to sub-basin scales

    Science.gov (United States)

    Tian, Y. Q.; Yu, Q.; Li, J.; Ye, C.

    2014-12-01

    Recent research rejects the traditional perspective that dissolved organic carbon (DOC) component in global carbon cycle are simply trivial, and in fact evidence demonstrates that lakes likely mediate carbon dynamics on a global scale. Riverine and estuarine carbon fluxes play a critical role in transporting and recycling carbon and nutrients, not only within watersheds but in their receiving waters. However, the underlying mechanisms that drive carbon fluxes, from land to rivers, lake and oceans, remain poorly understood. This presentation will report a research result of the scale-dependent DOC production rate in coastal watersheds and DOC transport processes in estuarine regions. We conducted a series of controlled experiments and field measurements for examining biogeochemical, biological, and geospatial variables that regulate downstream processing on global-relevant carbon fluxes. Results showed that increased temperatures and raised soil moistures accelerate decomposition rates of organic matter with significant variations between vegetation types. The measurements at meso-scale ecosystem demonstrated a good correlation to bulk concentration of DOC monitored in receiving waters at the outlets of sub-basins (R2 > 0.65). These field and experimental measurements improved the model of daily carbon exports through below-ground processes as a function of the organic matter content of surface soils, forest litter supply, and temperature. The study demonstrated a potential improvement in modeling the co-variance of CDOM and DOC with the unique terrestrial sources. This improvement indicated a significant promise for monitoring riverine and estuarine carbon flux from satellite images. The technical innovations include deployments of 1) mini-ecosystem (mesocosms) with soil as replicate controlled experiments for DOC production and leaching rates, and 2) aquatic mesocosms for co-variances of DOC and CDOM endmembers, and an instrumented incubation experiment for

  15. Use of GIS technologies to facilitate the transportation project programming process.

    Science.gov (United States)

    2008-05-01

    Transportation project programming in a transportation agency is a process of matching : potential projects with available funds to accomplish the agencys mission and goals of a : given period of time. Result of this process is normally a transpor...

  16. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs.

    Science.gov (United States)

    Kim, Minwook; Farrell, Megan J; Steinberg, David R; Burdick, Jason A; Mauck, Robert L

    2017-08-01

    Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics

  17. Parallel processing of neutron transport in fuel assembly calculation

    International Nuclear Information System (INIS)

    Song, Jae Seung

    1992-02-01

    Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's

  18. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    Economy, K.

    2004-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  19. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    S. Kuzio

    2005-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  20. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  1. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  2. The influence of castanhão reservoir on nutrient and suspended matter transport during rainy season in the ephemeral Jaguaribe river (CE, Brazil Influência do açude Castanhão no transporte de nutrientes e materiais em suspensão durante a estação chuvosa no intermitente rio Jaguaribe (CE, Brasil

    Directory of Open Access Journals (Sweden)

    MM. Molisani

    2013-02-01

    Full Text Available Measurements of nutrient and suspended matter concentrations and loads entering and leaving the Castanhão reservoir during the rainy season were carried out to assess the influence of this large reservoir on land-sea fluvial transport in the ephemeral Jaguaribe river basin. Spatial variation indicated statistically significant attenuation of concentrations only for total phosphorous and suspended matter across the reservoir. Strong retention of nutrients and suspended matter loads by the reservoir was observed with average trapping efficiency of 89% for dissolved silicon, 98% of soluble reactive phosphorus, 71% for ammonium, 87% for total nitrogen, 98% for total phosphorus and 97% for suspended matter compared to the reservoir inflow. The dam operational procedure defined by the ephemeral conditions of the river reduced water releases compared to reservoir inflow and induced strong retention of nutrient and suspended matter loads within the reservoir when fluvial transfer occurs in this semiarid watershed.Medidas de concentrações e fluxos de nutrientes e material particulado em suspensão de entrada e saída do Açude Castanhão foram efetuadas para determinar a influência de um grande reservatório no transporte fluvial entre o continente e o oceano na bacia hidrográfica intermitente do Rio Jaguaribe. A variação espacial indicou uma atenuação estatisticamente significativa ao longo do reservatório somente para as concentrações de fósforo total e material particulado em suspensão. Os resultados indicam uma forte retenção de nutrientes e do material particulado em suspensão com eficiências de retenção de 89% para sílica dissolvida, 98% para fósforo solúvel reativo, 71% para amônia, 87% para nitrogênio total, 98% para fósforo total e 97% para o material particulado em suspensão em relação aos fluxos de entrada no reservatório. A rotina de operação da barragem definida pela condição intermitente do Rio Jaguaribe

  3. Biorefine: Recovery of nutrients and metallic trace elements from different wastes by chemical and biochemical processes

    OpenAIRE

    Tarayre, Cédric; Fischer, Christophe; De Clercq, Lies; Michels, Evi; Meers, Erik; Buysse, Jeroen; Delvigne, Frank; Thonart, Philippe

    2014-01-01

    At present, most waste processing operations are not oriented towards the valorization of valuable reusable components such as nitrogen, phosphorus, potassium and even Metallic Trace Elements (MTEs). Currently, sewage sludge, for example is usually used as a fertilizer in agriculture, in energy production or in the field of construction. Ashes originating from sludge incineration contain heavy metals and minerals in large quantities. Manure is mainly used in agriculture, although considerable...

  4. Analysis of the presence of nutrient claims on labels of ultra-processed foods directed at children and of the perception of kids on such claims

    Directory of Open Access Journals (Sweden)

    Natália Durigon ZUCCHI

    Full Text Available ABSTRACT Objective: To characterize the presence of nutrient claims on the front-of-pack labels of ultra-processed foods directed at children and gain insight on children' views about the presence of marketing strategies and nutrient claims on labels of ultra-processed foods. Methods: Analysis of images (front panel, nutrition facts table, and ingredients list of labels from 535 packaged foods with marketing strategies directed at children obtained in an audit-type survey conducted at a Brazilian large supermarket store. Food products with ultra-processed characteristics were identified, and the nutrient claims were quantified and described. Focus groups were conducted with children aged 8-10 years. Results: A total of 472 (88.0% of the 535 packaged foods directed at children were classified as ultra-processed. Of these, 220 (46.6% had one or more nutrient claims on their front-of-pack label (n=321, most (n=236, 73.5% claiming the presence/increased quantities of vitamins and minerals. The most common 'free/reduced' content claim regarded trans fat content (n=48. The focus groups allowed the identification of a noticeable influence of nutrition claims on children, who considered the emphasis important but were confused by the meaning and focus of such claims. Conclusion: Highlighted nutrient claims on the packages of ultra-processed foods were common and seemed to influence the children's perception of the products' quality as a whole. The results indicate the need of thoroughly reviewing the legislation on nutrient claims on the packages of ultra-processed foods.

  5. Engineering charge transport by heterostructuring solution-processed semiconductors

    Science.gov (United States)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  6. Hydrogen isotope analysis of amino acids and whole cells reflects biosynthetic processing of nutrient- and water-derived hydrogen

    Science.gov (United States)

    Griffin, P.; Newsome, S.; Steele, A.; Fogel, M. L.

    2011-12-01

    Hydrogen (H) isotopes serve as sensitive tracers of biochemical processes that can be exploited to answer critical questions in biogeochemistry, ecology, and microbiology. Despite this apparent utility, relatively little is known about the specific mechanisms of H isotope fractionation involved in biosynthesis. In order to understand how organisms incorporate hydrogen from their chemical milieu into biomass, we have cultured the model bacterium E. coli MG1655 in a variety of media composed of deuterium-labeled nutrients and waters. Isotopic analysis of bulk cell mass reveals that the H fractionation between media water and cell material varies as a function of the nutrient source, with commonly used organic food sources (glucose and tryptone) leading to far smaller fractionation signals than non-standard ones (such as formamide, adenine, and urea). In addition, we have completed compound specific isotope analysis of amino acids using combined GC-IRMS. Amino acids harvested from E. coli cultured on glucose in water of varied D/H composition posses an extraordinary range of isotopic compositions (400-600 %). Furthermore, these amino acids follow a systematic distribution of D/H where proline is always heaviest and glycine is always lightest. However, when the short-chain peptide tryptone is used in place of glucose, only the non-essential amino acids reflect media water D/H values, suggesting the direct incorporation of some media-borne amino acids into cellular protein. These observations provide a foundation for understanding the cellular routing of hydrogen obtained from food and water sources and indicate that D/H analysis can serve as a powerful probe of biological function.

  7. A Cloud Computing Model for Optimization of Transport Logistics Process

    Directory of Open Access Journals (Sweden)

    Benotmane Zineb

    2017-09-01

    Full Text Available In any increasing competitive environment and even in companies; we must adopt a good logistic chain management policy which is the main objective to increase the overall gain by maximizing profits and minimizing costs, including manufacturing costs such as: transaction, transport, storage, etc. In this paper, we propose a cloud platform of this chain logistic for decision support; in fact, this decision must be made to adopt new strategy for cost optimization, besides, the decision-maker must have knowledge on the consequences of this new strategy. Our proposed cloud computing platform has a multilayer structure; this later is contained from a set of web services to provide a link between applications using different technologies; to enable sending; and receiving data through protocols, which should be understandable by everyone. The chain logistic is a process-oriented business; it’s used to evaluate logistics process costs, to propose optimal solutions and to evaluate these solutions before their application. As a scenario, we have formulated the problem for the delivery process, and we have proposed a modified Bin-packing algorithm to improve vehicles loading.

  8. Hydrology in Lichens: How Biological Architecture is Used to Regulate Water Access to Support Drought Resilience and Nutrient Transport

    Science.gov (United States)

    Ten Veldhuis, M. C.; Dismukes, G. C.; Ananyev, G.

    2017-12-01

    Lichens are Nature's masters at controlling water and air flux within a symbiotic organism comprised of an algal photobiont and its fungal host. Here we investigated the equilibrium partitioning and kinetic transport of water between the symbionts in the lichen flavoparmelia species. Lichens have developed a unique strategy to recover after deep dehydration, that otherwise would kill the majority of free living phototrophs. By measuring both kinetics of water content and chlorophyll fluorescence emission (indicative of algal charge separation and water oxidation) during dehydration, we identified 3 distinct temporal stages and mapped these to physical zones by confocal microscopy using a combination of hydro-philic/-phobic dyes. Below a critical level of water content, controlled by the greater hydrophilicity of fungal tissues, algal photosynthesis rapidly turns off. We show that the distinct stages in dehydration mirror the 3D architecture of lichen tissue (the thallus). We provide evidence that control of water distribution is achieved by capillary forces within ordered zones of physical space possessing different hydro-phobic/-philic characteristics. This strategy ensures that photosynthetic capacity is protected from and can quickly recover after desiccation. The fungal host controls the onset and extent of photosynthesis in the enslaved alga, presumably to ensure transport of algal derived sugars and oxygen (O2) to the fungal host only when sufficient water exists for transport. Lichen architecture provides Nature's solution to gas-water transport that is self-regulated by humidity. It offers novel lessons for designing practical devices such as fuel cell membranes and dialysis membranes. Supported by the US Dept of Energy, Basic Energy Sciences, Physical Biosciences Division.

  9. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie

    2010-12-10

    Within the framework of this thesis, different problems arising in connection with impurities have been investigated. Collisional damping of zonal flows in tokamaks: Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods. In comparison with a pure plasma, the damping of the flows occurs, as expected, considerably faster; for experimentally relevant parameters, the enhancement exceeds the effective charge Z{sub eff} of the plasma. Impurity transport driven by microturbulence in tokamaks: With regard to impurities, it is especially important whether the resulting flows are directed inwards or outwards, since they are deleterious for core energy confinement on the one hand, but on the other hand help protecting plasma-facing components from too high energy fluxes in the edge region. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The main goal is to bridge the gap between, on the one hand, costly numerical simulations, which are applicable to a broad range of problems but yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the interpretation of the results but is so far rather rudimentary. The model is based on analytical formulae whenever possible but resorts to a numerical treatment when the approximations necessary for an analytical solution would lead to a substantial distortion of the results. Both the direction of the impurity flux and the stability boundary are found to depend sensitively on the plasma parameters such as the impurity density and the temperature gradient. Pfirsch-Schlueter transport in stellarators: Due to geometry effects, collisional transport plays a much more

  10. Features, Events, and Processes in UZ and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2004-11-06

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  11. Nutrient Status of Vermicompost of Urban Green Waste Processed by Three Earthworm Species—Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus

    Directory of Open Access Journals (Sweden)

    Swati Pattnaik

    2010-01-01

    Full Text Available Major nutrient status of vermicompost of vegetable market waste (MW and floral waste (FW processed by three species of earthworms namely, Eudrilus eugeniae, Eisenia fetida, and Perionyx excavatus and its simple compost were assessed across different periods in relation to their respective initiative substrates. Their physical parameters—temperature, moisture, pH, and electrical conductivity—were also recorded. The nutrients—nitrogen, phosphorus, potassium, calcium, and magnesium—increased in the vermicompost and compost while the organic carbon, C/N and C/P ratios decreased as the composting process progressed from 0 to 15, 30, 45, and 60 days. The nutrient statuses of vermicomposts of all earthworm species produced from both the wastes were more than that of the compost and that of their respective substrates. Moreover, the vermicompost produced by E. eugeniae possessed higher nutrient contents than that of E. fetida, P. excavatus, and compost. The MW showed higher nutrient contents than the FW. Thus, vermicomposting is the paramount approach of nutrient recovery of urban green waste.

  12. Particle transport model sensitivity on wave-induced processes

    Science.gov (United States)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  13. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.

    Science.gov (United States)

    Ohkama-Ohtsu, Naoko; Wasaki, Jun

    2010-08-01

    Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates, root architecture, transporters and their applications. Plants need to survive in soils with mineral concentrations that vary widely. Describing the relationships between nutrients and biological processes will enable us to understand the molecular basis for signaling, physiological damage and responses to mineral stresses.

  14. [Rainfall intensity effects on nutrients transport in surface runoff from farmlands in gentle slope hilly area of Taihu Lake Basin].

    Science.gov (United States)

    Li, Rui-ling; Zhang, Yong-chun; Liu, Zhuang; Zeng, Yuan; Li, Wei-xin; Zhang, Hong-ling

    2010-05-01

    To investigate the effect of rainfall on agricultural nonpoint source pollution, watershed scale experiments were conducted to study the characteristics of nutrients in surface runoff under different rainfall intensities from farmlands in gentle slope hilly areas around Taihu Lake. Rainfall intensity significantly affected N and P concentrations in runoff. Rainfall intensity was positively related to TP, PO4(3-) -P and NH4+ -N event mean concentrations(EMC). However, this study have found the EMC of TN and NO3- -N to be positively related to rainfall intensity under light rain and negatively related to rainfall intensity under heavy rain. TN and TP site mean amounts (SMA) in runoff were positively related to rainfall intensity and were 1.91, 311.83, 127.65, 731.69 g/hm2 and 0.04, 7.77, 2.99, 32.02 g/hm2 with rainfall applied under light rain, moderate rain, heavy rain and rainstorm respectively. N in runoff was mainly NO3- -N and NH4+ -N and was primarily in dissolved form from Meilin soils. Dissolved P (DP) was the dominant form of TP under light rain, but particulate P (PP) mass loss increased with the increase of rainfall intensity and to be the dominant form when the rainfall intensity reaches rainstorm. Single relationships were used to describe the dependence of TN and TP mass losses in runoff on rainfall, maximum rainfall intensity, average rainfall intensity and rainfall duration respectively. The results showed a significant positive correlation between TN mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01) and also TP mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01).

  15. Transport and mass exchange processes in sand and gravel aquifers (v.1)

    International Nuclear Information System (INIS)

    Moltyaner, G.

    1990-01-01

    The objectives of this conference were to exchange information on promising field measurement techniques used for the characterization of spatial variability of geologic formations and on new methods used for quantifying the effect of spatial variability on groundwater flow and transport of materials; to discuss novel developments in the theory of transport processes and simulation methods; and to present views and opinions on future initiatives and directions in the design of large-scale field tracer experiments and the development of conceptual and mathematical models of transport and mass exchange processes. The 46 papers presented in these proceedings are divided into six sections: field studies of transport processes; groundwater tracers and novel field measurement techniques; promising methods and field measurement techniques for quantifying the effect of geological heterogeneities on groundwater flow and transport; novel developments in the theory of transport processes; numerical modelling of transport and mass exchange processes; and field and modelling studies of mass exchange processes. (L.L.)

  16. 23 CFR Appendix A to Part 450 - Linking the Transportation Planning and NEPA Processes

    Science.gov (United States)

    2010-04-01

    ... quality, and biology). Senior managers at transportation and partner agencies can arrange a variety of... strengthened link of the transportation planning and NEPA processes. Formal and informal mentoring on an intra...

  17. Ultra-processed foods have the worst nutrient profile, yet they are the most available packaged products in a sample of New Zealand supermarkets

    NARCIS (Netherlands)

    Luiten, Claire M; Steenhuis, Ingrid Hm; Eyles, Helen; Ni Mhurchu, Cliona; Waterlander, Wilma E

    OBJECTIVE: To examine the availability of packaged food products in New Zealand supermarkets by level of industrial processing, nutrient profiling score (NPSC), price (energy, unit and serving costs) and brand variety. DESIGN: Secondary analysis of cross-sectional survey data on packaged supermarket

  18. Pelagic and benthic nutrient regeneration processes in mussel cultures (Mytilus edulis) in a eutrophic coastal area (Skive Fjord, Denmark)

    DEFF Research Database (Denmark)

    Holmer, Marianne; Thorsen, Sandra Walløe; Carlsson, Marita Sundstein

    2015-01-01

    Long-line mussel farming has been proposed as a mitigation tool in eutrophic coastal areas as nutrients are removed from the ecosystem upon harvest of the crops and transferred back to land. Further mussels filter the water and thereby increase water transparency and promote benthic plant growth...... of this study was to explore the environmental interactions of a long-line mussel farm located in a eutrophic coastal area (Skive Fjord, Denmark) by studying the nutrient cycling in the water column and sediments and assessing their contribution to the nutrient dynamics and oxygen conditions in the fjord...

  19. Modern 'junk food' and minimally-processed 'natural food' cafeteria diets alter the response to sweet taste but do not impair flavor-nutrient learning in rats.

    Science.gov (United States)

    Palframan, Kristen M; Myers, Kevin P

    2016-04-01

    Animals learn to prefer and increase consumption of flavors paired with postingestive nutrient sensing. Analogous effects have been difficult to observe in human studies. One possibility is experience with the modern, processed diet impairs learning. Food processing manipulates flavor, texture, sweetness, and nutrition, obscuring ordinary correspondences between sensory cues and postingestive consequences. Over time, a diet of these processed 'junk' foods may impair flavor-nutrient learning. This 'flavor-confusion' hypothesis was tested by providing rats long-term exposure to cafeteria diets of unusual breadth (2 or 3 foods per day, 96 different foods over 3 months, plus ad libitum chow). One group was fed processed foods (PF) with added sugars/fats and manipulated flavors, to mimic the sensory-nutrient properties of the modern processed diet. Another group was fed only 'natural' foods (NF) meaning minimally-processed foods without manipulated flavors or added sugars/fats (e.g., fresh fruits, vegetables, whole grains) ostensibly preserving the ordinary correspondence between flavors and nutrition. A CON group was fed chow only. In subsequent tests of flavor-nutrient learning, PF and NF rats consistently acquired strong preferences for novel nutrient-paired flavors and PF rats exhibited enhanced learned acceptance, contradicting the 'flavor-confusion' hypothesis. An unexpected finding was PF and NF diets both caused lasting reduction in ad lib sweet solution intake. Groups did not differ in reinforcing value of sugar in a progressive ratio task. In lick microstructure analysis the NF group paradoxically showed increased sucrose palatability relative to PF and CON, suggesting the diets have different effects on sweet taste evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Physical processes that control droplet transport in rock fracture systems

    Science.gov (United States)

    Hay, Katrina Moran

    Aquifer recharge is generally driven by fluids that move from the Earths surface to groundwater through the unsaturated zone, also known as the vadose zone. When the vadose zone is fractured, fluids, which may include contaminants, can move through the fracture network as well as the porous matrix. Such a network of fractures can provide a more rapid path, thereby reducing contact time between the fluid and the matrix. Contact time allows for exchange of solutes between the fluid and the porous matrix, thus being able to quantify contact time is important. In addition, the behavior of fluids within a fracture network has been found to be very complex; large-scale models are yet not able to predict transport paths or flux rates. Because, small-scale flow phenomena can strongly influence the large-scale behavior of fluid movement through systems of fractures, it is important that small-scale dynamics be properly understood in order to improve our predictive capabilities in these complex systems. Relevant flow dynamics includes the impact of boundary conditions, fluid modes that evolve in time and space and transitions between modes. This thesis presents three investigations aimed at understanding the physical processes governing fluid movement in unsaturated fractures, with the ultimate goal of improving predictive relationships for fluid transport in rock fracture systems. These investigations include a theoretical analysis of the wetting of a rough surface, an experimental study of the dynamics of fluid droplets (or liquid bridges) moving in a single fracture and a theoretical analysis of the movement of a fluid droplet encountering a fracture intersection. Each investigation is motivated by environmental applications. Development of an analytical equation for the wetting of a rough surface is based on a balance between capillary forces and frictional resistive forces. The resulting equation predicts movement of the liquid invasion front driven solely by the

  1. Evaluation of integrated ammonia recovery technology and nutrient status with an in-vessel composting process for swine manure.

    Science.gov (United States)

    Kim, Jung Kon; Lee, Dong Jun; Ravindran, Balsubramani; Jeong, Kwang-Hwa; Wong, Jonathan Woon-Chung; Selvam, Ammaiyappan; Karthikeyan, Obuli P; Kwag, Jung-Hoon

    2017-12-01

    The study investigated the effect of different initial moisture (IM) content (55, 60, 65, and 70%) of composting mixtures (swine manure and sawdust) for the production of nutrient rich manure, and the recovery of ammonia through a condensation process using a vertical cylindrical in-vessel composter for 56days. The composting resulted in a significant reduction in C:N ratio and electrical conductivity (EC), with a slight increase in pH in all products. The NH 3 were emitted notably, and at the same time the NO 3 - -N concentration gradually increased with the reduction of NH 4 + -N in the composting mixtures. The overall results confirmed, the 65% IM showed the maximum nutritional yield, maturity and non-phytotoxic effects (Lycopersicon esculentum L.), with the results of ideal compost product in the following order of IM: 65%>60%>70%>55%. Finally, the recovered condensed ammonia contained considerable ammonium nitrogen concentrations and could be used as fertilizer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  3. Space Transportation System Liftoff Debris Mitigation Process Overview

    Science.gov (United States)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  4. A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process.

    Science.gov (United States)

    Liu, Yindong; Su, Xiaomei; Lu, Lian; Ding, Linxian; Shen, Chaofeng

    2016-03-01

    A culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (SRpf) was used to enhance the biological nutrient removal of potentially functional bacteria. The obtained results suggest that SRpf accelerated the start-up process and significantly enhanced the biological nutrient removal in sequencing batch reactor (SBR). PO4 (3-)-P removal efficiency increased by over 12 % and total nitrogen removal efficiency increased by over 8 % in treatment reactor acclimated by SRpf compared with those without SRpf addition. The Illumina high-throughput sequencing analysis showed that SRpf played an essential role in shifts in the composition and diversity of bacterial community. The phyla of Proteobacteria and Actinobacteria, which were closely related to biological nutrient removal, were greatly abundant after SRpf addition. This study demonstrates that SRpf acclimation or addition might hold great potential as an efficient and cost-effective alternative for wastewater treatment plants (WWTPs) to meet more stringent operation conditions and legislations.

  5. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression

    DEFF Research Database (Denmark)

    Wang, Qian; Bailey, Charles G; Ng, Cynthia

    2011-01-01

    was sufficient to decrease cell growth and mTORC1 signaling in prostate cancer cells. These cells maintained levels of amino acid influx through androgen receptor-mediated regulation of LAT3 expression and ATF4 regulation of LAT1 expression after amino acid deprivation. These responses remained intact in primary......L-Type amino acid transporters such as LAT1 and LAT3 mediate the uptake of essential amino acids. Here, we report that prostate cancer cells coordinate the expression of LAT1 and LAT3 to maintain sufficient levels of leucine needed for mTORC1 signaling and cell growth. Inhibiting LAT function...... prostate cancer, as indicated by high levels of LAT3 in primary disease, and by increased levels of LAT1 after hormone ablation and in metastatic lesions. Taken together, our results show how prostate cancer cells respond to demands for increased essential amino acids by coordinately activating amino acid...

  6. Instantaneous transport of salt, nutrients, suspended matter and chlorophyll-a in the tropical estuarine system of Santos

    Directory of Open Access Journals (Sweden)

    Gleyci A. O. Moser

    2005-12-01

    Full Text Available The contribution of the polluted São Vicente and Santos estuarine channels to the eutrophication of Santos bay was assessed through the quantification of instantaneous transport of salt, dissolved inorganic nitrogen (DIN and phosphate, organic and inorganic matter (OSM and ISM and chlorophyll-a (Chl-a, during dry (austral winter- August/ 1999 and rainy (austral summer- January/2000 seasons. Samplings were carried out during spring and neap tides, in flood and ebb phases, in two transversal sections at the mouths of the São Vicente and Santos channels. Instantaneous transport values generally indicated importation of salt to the estuarine channels, exportation of DIN to the bay, mainly as N-NH4, at a maximum rate of 1155.1 g s-1 during the rainy season; importation of phosphate during the dry season (maximum of 385 g s-1 and exportation of ISM, OSM and Chl-a during periods of greater freshwater discharge. These results demonstrate the great contribution made by the Santos and São Vicente estuaries to the eutrophication of Santos bay, especially in the rainy season.A contribuição dos canais estuarinos de Santos e São Vicente para a eutrofização da baía de Santos foi avaliada quantificando-se o transporte instantâneo de sal, fosfato e nitrogênio inorgânico dissolvido (NID, material em suspensão orgânico (MSO e inorgânico (MSI e clorofila-a, durante a estação seca (inverno austral- Agosto/1999 e chuvosa (verão austral- Janeiro/ 2000. As amostragens foram realizadas em períodos de sizígia e quadratura, durante as marés enchentes e vazantes, nas secções transversais das bocas dos canais de São Vicente e Santos. Os valores de transporte instantâneo obtidos durante o período de amostragem indicaram exportação de NID, principalmente sobre a forma de N-NH4 (valor máximo de 1155,1 g s-1 na estação chuvosa; importação de fosfato durante a estação seca (máximo de 385,6 g s-1 e exportação de MSI, MSO e clorofila-a em per

  7. Milk processed by pulsed electric fields: evaluation of microbial quality, physicochemical characteristics, and selected nutrients at different storage conditions.

    Science.gov (United States)

    Bermúdez-Aguirre, Daniela; Fernández, Sulmer; Esquivel, Heracleo; Dunne, Patrick C; Barbosa-Cánovas, Gustavo V

    2011-01-01

    Pulsed electric fields (PEF) technology was used to pasteurize raw milk under selected treatments. Processing conditions were: temperature 20, 30, and 40 °C, electric field 30.76 to 53.84 kV/cm, and pulse numbers 12, 24, and 30 for skim milk (SM), and 12, 21, and 30 for whole milk (WM) (2 μs pulse width, monopolar). Physicochemical parameters (pH, electrical conductivity, density, color, solids nonfat [SNF]) and composition (protein and fat content) were measured after processing. Shelf life of SM and WM was assessed after processing at 46.15 kV/cm, combined with temperature (20 to 60 °C) and 30 pulses. Mesophilic and psychrophilic loads and pH were evaluated during storage at 4 and 21 °C. Results showed minor variations in physicochemical properties after processing. There was an interesting trend in SM in SNF, which decreased as treatment became stronger; similar behavior was observed for fat and protein, showing a 0.18% and 0.17% decrease, respectively, under the strongest conditions. Protein and fat content decreased in WM samples treated at 40 °C, showing a decrease in protein (0.11%), and an even higher decrease in fat content. During storage, PEF-treated milk samples showed higher stability at 4 °C with minor variations in pH; after 33 d, pH was higher than 6. However samples at 21 °C showed faster spoilage and pH dropped to 4 after 5 d. Growth of mesophilic bacteria was delayed in both milks after PEF processing, showing a 6- and 7-log cycles for SM and WM, respectively, after day 25 (4 °C); however, psychrophilic bacteria grew faster in both cases. Pulsed electric fields (PEF) technology in the pasteurization of liquid food products has shown positive results. Processing times can be reduced considerably, which in turn reduces the loss of nutrients and offers important savings in energy. PEF has been used successfully to pasteurize some liquid foods, but it is still not used commercially in milk pasteurization, although several trials have shown

  8. Delay functions in trip assignment for transport planning process

    Science.gov (United States)

    Leong, Lee Vien

    2017-10-01

    In transportation planning process, volume-delay and turn-penalty functions are the functions needed in traffic assignment to determine travel time on road network links. Volume-delay function is the delay function describing speed-flow relationship while turn-penalty function is the delay function associated to making a turn at intersection. The volume-delay function used in this study is the revised Bureau of Public Roads (BPR) function with the constant parameters, α and β values of 0.8298 and 3.361 while the turn-penalty functions for signalized intersection were developed based on uniform, random and overflow delay models. Parameters such as green time, cycle time and saturation flow were used in the development of turn-penalty functions. In order to assess the accuracy of the delay functions, road network in areas of Nibong Tebal, Penang and Parit Buntar, Perak was developed and modelled using transportation demand forecasting software. In order to calibrate the models, phase times and traffic volumes at fourteen signalised intersections within the study area were collected during morning and evening peak hours. The prediction of assigned volumes using the revised BPR function and the developed turn-penalty functions show close agreement to actual recorded traffic volume with the lowest percentage of accuracy, 80.08% and the highest, 93.04% for the morning peak model. As for the evening peak model, they were 75.59% and 95.33% respectively for lowest and highest percentage of accuracy. As for the yield left-turn lanes, the lowest percentage of accuracy obtained for the morning and evening peak models were 60.94% and 69.74% respectively while the highest percentage of accuracy obtained for both models were 100%. Therefore, can be concluded that the development and utilisation of delay functions based on local road conditions are important as localised delay functions can produce better estimate of link travel times and hence better planning for future

  9. Quantitative analysis of microtubule transport in growing nerve processes

    DEFF Research Database (Denmark)

    Ma*, Ytao; Shakiryanova*, Dinara; Vardya, Irina

    2004-01-01

    assumed that only a small fraction of MTs translocates along the axon by saltatory movement reminiscent of the fast axonal transport. Such intermittent "stop and go" MT transport has been difficult to detect or to exclude by using direct video microscopy methods. In this study, we measured...

  10. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  11. Progress in fuel processing for PEMFC systems for transport applications

    Energy Technology Data Exchange (ETDEWEB)

    Dams, A J; Hayter, P R; Moore, S C

    1998-07-01

    Wellman CJB Limited has been developing fuel processors for PEMFC systems for transport applications using a range of feedstocks. Feedstocks that can be processed to produce a hydrogen-rich gas stream suitable for use with a PEMFC include methanol, gasoline, diesel, LPG, dimethylether, marine diesel and aviation fuel. The basic fuel processor is a steam reformer combined with a selective carbon monoxide oxidation stage. Depending on the nature of the liquid feedstock, other process steps will be required such as vaporizer, desulfurizer, pre-reformer and high and low temperature shift reactors. Work on methanol reforming has been specifically targeted at a PEMFC driven passenger car as part of a multinational European Community JOULE programme called MERCATOX. The objective is to develop and test a compact and fast response methanol reformer and gas clean-up unit to meet a car manufacturer's specification. The method of construction is to coat a methanol reforming catalyst onto one side of a metal corrugated plate. On the other side is a coated combustion catalyst which burns fuel cell off-gas to provide the endothermic heat for the methanol reforming reaction. A number of these plates are assembled in a compact unit ensuring good heat transfer. The gas clean-up unit is similarly constructed with a selective oxidation catalyst on one side and a thermal fluid on the other. Initial tests have indicated a superior performance to conventional packed bed reformers in terms of response and start-up time. Steam reforming of gasoline, diesel, LPG, dimethylether, marine diesel and aviation fuel has been demonstrated on a bench scale (0.5kW). The process steps commence with vaporization (except for LPG), desulfurization (except for dimethylether), prereforming, reforming, low and high temperature shift and selective oxidation. A simple technology demonstrator has shown that a hydrogen-rich mixture (75% hydrogen, 25% carbon dioxide) with less than 2ppm carbon monoxide can be

  12. Spatial variability in nutrient transport by HUC8, state, and subbasin based on Mississippi/Atchafalaya River Basin SPARROW models

    Science.gov (United States)

    Robertson, Dale M.; Saad, David A.; Schwarz, Gregory E.

    2014-01-01

    Nitrogen (N) and phosphorus (P) loading from the Mississippi/Atchafalaya River Basin (MARB) has been linked to hypoxia in the Gulf of Mexico. With geospatial datasets for 2002, including inputs from wastewater treatment plants (WWTPs), and monitored loads throughout the MARB, SPAtially Referenced Regression On Watershed attributes (SPARROW) watershed models were constructed specifically for the MARB, which reduced simulation errors from previous models. Based on these models, N loads/yields were highest from the central part (centered over Iowa and Indiana) of the MARB (Corn Belt), and the highest P yields were scattered throughout the MARB. Spatial differences in yields from previous studies resulted from different descriptions of the dominant sources (N yields are highest with crop-oriented agriculture and P yields are highest with crop and animal agriculture and major WWTPs) and different descriptions of downstream transport. Delivered loads/yields from the MARB SPARROW models are used to rank subbasins, states, and eight-digit Hydrologic Unit Code basins (HUC8s) by N and P contributions and then rankings are compared with those from other studies. Changes in delivered yields result in an average absolute change of 1.3 (N) and 1.9 (P) places in state ranking and 41 (N) and 69 (P) places in HUC8 ranking from those made with previous national-scale SPARROW models. This information may help managers decide where efforts could have the largest effects (highest ranked areas) and thus reduce hypoxia in the Gulf of Mexico.

  13. CO2-ECBM related coupled physical and mechanical transport processes

    Science.gov (United States)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  14. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  15. Ultra-processed foods have the worst nutrient profile, yet they are the most available packaged products in a sample of New Zealand supermarkets.

    Science.gov (United States)

    Luiten, Claire M; Steenhuis, Ingrid Hm; Eyles, Helen; Ni Mhurchu, Cliona; Waterlander, Wilma E

    2016-02-01

    To examine the availability of packaged food products in New Zealand supermarkets by level of industrial processing, nutrient profiling score (NPSC), price (energy, unit and serving costs) and brand variety. Secondary analysis of cross-sectional survey data on packaged supermarket food and non-alcoholic beverages. Products were classified according to level of industrial processing (minimally, culinary and ultra-processed) and their NPSC. Packaged foods available in four major supermarkets in Auckland, New Zealand. Packaged supermarket food products for the years 2011 and 2013. The majority (84% in 2011 and 83% in 2013) of packaged foods were classified as ultra-processed. A significant positive association was found between the level of industrial processing and NPSC, i.e., ultra-processed foods had a worse nutrient profile (NPSC=11.63) than culinary processed foods (NPSC=7.95), which in turn had a worse nutrient profile than minimally processed foods (NPSC=3.27), Pprice measures and level of processing. The study observed many variations of virtually the same product. The ten largest food manufacturers produced 35% of all packaged foods available. In New Zealand supermarkets, ultra-processed foods comprise the largest proportion of packaged foods and are less healthy than less processed foods. The lack of significant price difference between ultra- and less processed foods suggests ultra-processed foods might provide time-poor consumers with more value for money. These findings highlight the need to improve the supermarket food supply by reducing numbers of ultra-processed foods and by reformulating products to improve their nutritional profile.

  16. Elucidating the Roles of Transport Processes in Glucosinolate Distribution

    DEFF Research Database (Denmark)

    Madsen, Svend Roesen

    Glucosinolates are plant defense compounds characteristic of the economically important plant family of Brassicaceae, which comprises crops as oilseed rape, cabbage, broccoli and the model plant Arabidopsis thaliana (Arabidopsis). Recently, two Arabidopsis glucosinolate transporters, GTR1 and GTR2...

  17. Hyperpolarized [1-(13) C]pyruvate MRI for noninvasive examination of placental metabolism and nutrient transport: A feasibility study in pregnant guinea pigs.

    Science.gov (United States)

    Friesen-Waldner, Lanette J; Sinclair, Kevin J; Wade, Trevor P; Michael, Banoub; Chen, Albert P; de Vrijer, Barbra; Regnault, Timothy R H; McKenzie, Charles A

    2016-03-01

    To test the feasibility of hyperpolarized [1-(13) C]pyruvate magnetic resonance imaging (MRI) for noninvasive examination of guinea pig fetoplacental metabolism and nutrient transport. Seven pregnant guinea pigs with a total of 30 placentae and fetuses were anesthetized and scanned at 3T. T1 -weighted (1) H images were obtained from the maternal abdomen. An 80 mM solution of hyperpolarized [1-(13) C]pyruvate (hereafter referred to as pyruvate) was injected into a vein in the maternal foot. Time-resolved 3D (13) C images were acquired starting 10 seconds after the beginning of bolus injection and every 10 seconds after to 50 seconds. The pregnant guinea pigs were recovered after imaging. Regions of interest (ROIs) were drawn around the maternal heart and each placenta and fetal liver in all slices in the (1) H images. These ROIs were copied to the (13) C images and were used to calculate the sum of the pyruvate and lactate signal intensities for each organ. The signal intensities were normalized by the volume of the organ and the maximum signal in the maternal heart. No adverse events were observed in the pregnant guinea pigs and natural pupping occurred at term (∼68 days). Pyruvate signal was observed in all 30 placentae, and lactate, a by-product of pyruvate metabolism, was also observed in all placentae. The maximum pyruvate and lactate signals in placentae occurred at 20 seconds. In addition to the observation of pyruvate and lactate signals in the placentae, both pyruvate and lactate signals were observed in all fetal livers. The maximum pyruvate and lactate signals in the fetal livers occurred at 10 seconds and 20 seconds, respectively. This work demonstrates the feasibility of using hyperpolarized [1-(13) C]pyruvate MRI to noninvasively examine fetoplacental metabolism and transport of pyruvate in guinea pigs. Hyperpolarized (13) C MRI may provide a novel method for longitudinal studies of fetoplacental abnormalities. © 2015 Wiley Periodicals, Inc.

  18. Return transport of processed radioactive waste from France and Great Britain

    International Nuclear Information System (INIS)

    2010-11-01

    The report on returning transport and interim storage of processed radioactive waste from France and Great Britain in vitrified block containers covers the following issues: German contracts with radioactive waste processing plants concerning the return of processed waste to Germany; optimized radioactive waste processing using vitrified block containers; the transport casks as basic safety with respect to radiation protection; interim storage of processes high-level waste by GNS in Gorleben; licensing, inspections and declarations; quality assurance and control.

  19. Regulation of transport processes across the tonoplast membrane

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2014-09-01

    Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.

  20. Reported Design Processes for Accessibility in Rail Transport

    DEFF Research Database (Denmark)

    Herriott, Richard; Cook, Sharon

    2014-01-01

    requirements with the aim of maximising accessibility in products and services. A review of ID literature has mainly developed in the arena of product design and design for assistive technology. Accessibility is a fundamental requirement in public transport (PT) yet there exists little research on design...... for accessibility or ID in this area. How is accessibility and the needs of users accounted for in rail transport design? This paper analyses interviews with rolling stock producers, operators and design consultancies. These conducted to determine if ID design methods are used explicitly and the extent to which...

  1. Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na+/K+-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes

    Directory of Open Access Journals (Sweden)

    Stefanie Klinger

    2018-03-01

    Full Text Available Background: Beneficial effects of Resveratrol (RSV have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the respective mechanisms. Methods: Porcine jejunum and ileum were incubated with RSV (300 µM, 30 min in Ussing chambers (functional studies and tissue bathes (detection of protein expression, phosphorylation, association with detergent resistant membranes (DRMs. Results: RSV reduced alanine and glucose-induced short circuit currents (ΔIsc and influenced forskolin-induced ΔIsc. The phosphorylation of sodium–glucose-linked transporter 1 (SGLT1, AMP-activated protein kinase (AMPK, protein kinase A substrates (PKA-S and liver kinase B1 (LKB1 increased but a causative relation to the inhibitory effects could not directly be established. The DRM association of SGLT1, peptide transporter 1 (PEPT1 and (phosphorylated Na+/H+-exchanger 3 (NHE3 did not change. Conclusion: RSV influences the intestinal transport of glucose, alanine and chloride and is likely to affect other transport processes. As the effects of protein kinase activation vary between the intestinal localizations, it would appear that increasing cyclic adenosine monophosphate (cAMP levels are part of the mechanism. Nonetheless, the physiological responses depend on cell type-specific structures.

  2. Organic matter iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland

    International Nuclear Information System (INIS)

    Heikkinen, K.

    1994-01-01

    Organic carbon and iron transport into the Gulf of Bothnia and the seasonal changes in the nature of dissolved organic matter (DOM) were studied in 1983 and 1984 at the mouth of the River Kiiminkijoki, which crosses an area of minerotrophic mires in northern Finland. Organic and inorganic transport within the drainage basin was studied in the summer and autumn of 1985 and 1986. The results indicate that the dissolved organic carbon (DOC) is mainly of terrestrial origin, leaching mostly from peatlands. The DOC concentrations decrease under low flow conditions. The proportion of drifting algae as a particulate organic carbon (POC) source seems to increase in summer. The changes in the ratio of Fe/DOC, the colour of the DOM and the ratio of Fe/DOC, the colour of the DOM and the ratio of fluorescence to DOC with discharge give indications of the origin, formation, nature and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of Fe-organic colloids seem to be important. Estimates are given for the amounts and transport rates of organic carbon and Fe discharged into the Gulf of Bothnia by river. High apparent molecular weight (HAMW) organic colloids are important for the organic, Fe and P transport in the basin. The DOM in the water consists mainly of fulvic acids, although humic acids are also important. The results indicate an increase in the mobilization of HAMW Fe-organic colloids in the peatlands following drainage and peat mining. The transport of inorganic nitrogen from the peatlands in the area and in the river is increasing due to peat mining. The changes in the transport of organic matter, Fe and P are less marked

  3. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gas ification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  4. Scaling and predicting solute transport processes in streams

    Science.gov (United States)

    R. González-Pinzón; R. Haggerty; M. Dentz

    2013-01-01

    We investigated scaling of conservative solute transport using temporal moment analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams located on five continents. The experiments span 7 orders of magnitude in discharge (10-3 to 103 m3/s), span 5 orders of magnitude in...

  5. Modeling field scale unsaturated flow and transport processes

    International Nuclear Information System (INIS)

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data

  6. System of business-processes management at motor-transport enterprise

    OpenAIRE

    Коgut, Y.

    2010-01-01

    The place of the system of business-processes management at motor-transport enterprise in the general system of management of the enterprise has been substantiated. The subsystems of strategic management, business-processes management of strategic orientation and current activity, processes of enterprise functioning management have been marked out. The system of motor-transport enterprise business-processes management has been formed, which, unlike the existing ones, is based on the system-cy...

  7. Influence of Silver nanoparticles on nutrient removal and microbial communities in SBR process after long-term exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhaohan [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China); Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No 43, Songfa Street, Daoli District, Harbin 150001 (China); Gao, Peng, E-mail: hitzzh@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China); Li, Moqing; Cheng, Jiaqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China); Liu, Wei [Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No 43, Songfa Street, Daoli District, Harbin 150001 (China); Feng, Yujie, E-mail: yujief@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China)

    2016-11-01

    The widespread utilization of silver nanoparticles (AgNPs) in industrial and commercial products inevitably raises the release into wastewater that might cause potential negative impacts on sewage treatment system. In this paper, long-term exposure experiments at four levels were conducted to determine whether AgNPs caused adverse impacts on nutrient removals in sequencing batch reactors (SBRs) and changes of microbial community structure. Compared with the control reactor (without AgNPs), carbon, nitrogen and phosphorus removal in presence of 0.1 mg/L AgNPs was no difference. However, presence of 1.0 and 10 mg/L AgNPs decreased the average removal efficiencies of COD from 95.4% to 85.2% and 68.3%, ammonia nitrogen from 98.8% to 71.2% and 49%, SOP from 97.6% to 75.5% and 54.1%, respectively. It was found that AgNPs could accumulate in sludge with the distribution coefficients of 39.2–114 L/g, inhibit the protein and polysaccharide production in EPS, reduce the SOUR of sludge, and greatly increase LDH release from microbial cells. The illumina high-throughput sequencing results indicated that AgNPs concentration changed the structures of bacterial communities, associating with the effects of AgNPs on reactor performance. Sequence analyses showed that Proteobacteria, Bacteroidetes and Acidobacteria were the dominant phyla. It was notable that AgNPs addition reduced the contents of several nitrifying bacteria at genera level in sludge, leading to the lower removal of nitrogen. - Highlights: • More than 1.0 mg/L AgNPs evidently reduce COD, NH{sub 4}{sup +}-N and SOP removal in SBR process. • AgNPs decrease the protein and polysaccharide contents of EPS. • AgNPs increase LDH release for 1.46–2.41 times. • AgNPs are apt to accumulate on surface and even into microbial cells. • AgNPs levels affect microbial community structure and composition.

  8. Influence of Silver nanoparticles on nutrient removal and microbial communities in SBR process after long-term exposure

    International Nuclear Information System (INIS)

    Zhang, Zhaohan; Gao, Peng; Li, Moqing; Cheng, Jiaqi; Liu, Wei; Feng, Yujie

    2016-01-01

    The widespread utilization of silver nanoparticles (AgNPs) in industrial and commercial products inevitably raises the release into wastewater that might cause potential negative impacts on sewage treatment system. In this paper, long-term exposure experiments at four levels were conducted to determine whether AgNPs caused adverse impacts on nutrient removals in sequencing batch reactors (SBRs) and changes of microbial community structure. Compared with the control reactor (without AgNPs), carbon, nitrogen and phosphorus removal in presence of 0.1 mg/L AgNPs was no difference. However, presence of 1.0 and 10 mg/L AgNPs decreased the average removal efficiencies of COD from 95.4% to 85.2% and 68.3%, ammonia nitrogen from 98.8% to 71.2% and 49%, SOP from 97.6% to 75.5% and 54.1%, respectively. It was found that AgNPs could accumulate in sludge with the distribution coefficients of 39.2–114 L/g, inhibit the protein and polysaccharide production in EPS, reduce the SOUR of sludge, and greatly increase LDH release from microbial cells. The illumina high-throughput sequencing results indicated that AgNPs concentration changed the structures of bacterial communities, associating with the effects of AgNPs on reactor performance. Sequence analyses showed that Proteobacteria, Bacteroidetes and Acidobacteria were the dominant phyla. It was notable that AgNPs addition reduced the contents of several nitrifying bacteria at genera level in sludge, leading to the lower removal of nitrogen. - Highlights: • More than 1.0 mg/L AgNPs evidently reduce COD, NH_4"+-N and SOP removal in SBR process. • AgNPs decrease the protein and polysaccharide contents of EPS. • AgNPs increase LDH release for 1.46–2.41 times. • AgNPs are apt to accumulate on surface and even into microbial cells. • AgNPs levels affect microbial community structure and composition.

  9. Transport processes in partially saturate concrete: Testing and liquid properties

    Science.gov (United States)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  10. Beyond nutrient-based food indices: a data mining approach to search for a quantitative holistic index reflecting the degree of food processing and including physicochemical properties.

    Science.gov (United States)

    Fardet, Anthony; Lakhssassi, Sanaé; Briffaz, Aurélien

    2018-01-24

    Processing has major impacts on both the structure and composition of food and hence on nutritional value. In particular, high consumption of ultra-processed foods (UPFs) is associated with increased risks of obesity and diabetes. Unfortunately, existing food indices only focus on food nutritional content while failing to consider either food structure or the degree of processing. The objectives of this study were thus to link non-nutrient food characteristics (texture, water activity (a w ), glycemic and satiety potentials (FF), and shelf life) to the degree of processing; search for associations between these characteristics with nutritional composition; search for a holistic quantitative technological index; and determine quantitative rules for a food to be defined as UPF using data mining. Among the 280 most widely consumed foods by the elderly in France, 139 solid/semi-solid foods were selected for textural and a w measurements, and classified according to three degrees of processing. Our results showed that minimally-processed foods were less hyperglycemic, more satiating, had better nutrient profile, higher a w , shorter shelf life, lower maximum stress, and higher energy at break than UPFs. Based on 72 food variables, multivariate analyses differentiated foods according to their degree of processing. Then technological indices including food nutritional composition, a w , FF and textural parameters were tested against technological groups. Finally, a LIM score (nutrients to limit) ≥8 per 100 kcal and a number of ingredients/additives >4 are relevant, but not sufficient, rules to define UPFs. We therefore suggest that food health potential should be first defined by its degree of processing.

  11. Review on Periphyton as Mediator of Nutrient Transfer in Aquatic Ecosystems

    Directory of Open Access Journals (Sweden)

    Surjya K. Saikia

    2011-12-01

    Full Text Available In the studies of aquatic ecology, periphyton has been uncared for despite its vital role in nutrient uptake and transfer to the upper trophic organisms. Being the component of food chain as attached organism it takes part in nutrient cycling in the ecosystem like that of suspended planktonic counterparts. The present review, with an aim to understand the role of periphyton in nutrient transfer from benthic environment to upper trophic level, focuses many aspects of periphyton-nutrient relationship based on available literatures. It also attempts to redefine periphyton, as a part of biofilm, harboring nutrient components like protein, fat and carbohydrate preferably in its extracellular polymeric substance (EPS, cyanobacteria, diatom and other algal communities. In addition to physical processes, nutrient uptake by periphyton is catalyzed by enzymes like Nitrogen Reductase and Alkaline Phosphatase from the environment. This uptake and transfer is further regulated by periphytic C: nutrient (N or P stoichiometry, colonization time, distribution of periphyton cover on sediments and macrophytes, macronutrient concentration, grazing, sloughing, temperature, and advective transport. The Carbon (C sources of periphyton are mainly dissolve organic matter and photosynthetic C that enters into higher trophic levels through predation and transfers as C-rich nutrient components. Despite of emerging interests on utilizing periphyton as nutrient transfer tool in aquatic ecosystem, the major challenges ahead for modern aquatic biologists lies on determining nutrient uptake and transfer rate of periphyton, periphytic growth and simulating nutrient models of periphyton to figure a complete energy cycle in aquatic ecosystem.

  12. Determination of Bruising Damages of Tomato during Road Transportation Process

    Directory of Open Access Journals (Sweden)

    A Mansouri Alam

    2018-03-01

    Full Text Available Introduction The most important post-harvest mechanical damage is bruising. Bruising occurs during the stages of handling, transporting and packaging due to quasi-static and dynamic loads. Vibrations of tomato fruits during transportation by truck will decrease their quality. More than 2.5 million tons damages have been reported during tomato transportation in Iran. Therefore, it is necessary to recognize different parameters of damages during road transportation in order to detect and prevent bruising injury. Materials and Methods In this study, healthy Super Queen verity of tomatoes devoid of any corrosion and mechanical damage multipliers were used. Aaverage of 7 and 5 pieces of fruit in each length and width, respectively in 13*25*37 cm boxes with a capacity of 8 kg were arranged. The boxes were divided into 2 types of truck suspension (model M2631 AIMCO, manufactured in 2010 with air suspension and Nissan trucks 2400, manufactured in 2010 with suspension spring. Boxes were established in three different heights truck, floor truck, height of middle and top of truck, in addition to two different situation boxes on the front axle (S1 and rear axle (S2. In each situation, three levels of height (H1, floor truck, the truck (H2 and the truck (H3 there. The location of each sample inside the fruit boxes bottom row (Loc1 and top (Loc2 boxes marked with marker. In this study, two types of road, highway asphalt and asphalt secondary road was used for transportation. Trucks and vans had the same distance route about 400 km. Fruits were transferred to Hamadan agricultural college. Rheology lab test was a hit with the pendulum. In this study, the amount of energy absorbed from the index (as a parameter to determine the sensitivity and the fruits bruises were used. Hit test was done after transportation of fruits and transferring those to the laboratory in less than 2 hours. Impact energy products were considered higher than the dynamic submission

  13. Magnetosheath excursion and the relevant transport process at the magnetopause

    Directory of Open Access Journals (Sweden)

    C. L. Cai

    2009-08-01

    Full Text Available A large-amplitude excursion of the magnetosheath (MS in quiet solar wind conditions on 17 March 2004 was recorded simultaneously by the Cluster and TC-1 spacecraft. During this period, the IMF Bz was entirely northward. The coherence between the bow shock motion and magnetopause (MP motion is revealed and the excursion velocities of the bow shock motion are analyzed. In addition, the relevant plasma transport phenomenon in the form of flux fluctuations below the ion gyrofrequency at the MP is exposed and is interpreted as manifestation of the drift instability. Correlated observations on charge accumulation and electrostatic potential perturbation are recorded by electron measurements in high energy regime, and also the eventual cross-field vortex motion in the nonlinear stage and the consequential mass exchange are exhibited. The present investigation gives some new insight into the MS plasma transport mechanism across the subsolar MP region in quiet solar wind conditions during a period of northward IMF.

  14. Modeling of coupled geochemical and transport processes: An overview

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1989-10-01

    Early coupled models associated with fluid flow and solute transport have been limited by assumed conditions of constant temperature, fully saturated fluid flow, and constant pore fluid velocity. Developments including coupling of chemical reactions to variable fields of temperature and fluid flow have generated new requirements for experimental data. As the capabilities of coupled models expand, needs are created for experimental data to be used for both input and validation. 25 refs

  15. Kinetic theory of transport processes in weakly ionized gases

    International Nuclear Information System (INIS)

    Odenhoven, F.J.F. van

    1984-01-01

    A consistent method for the treatment of a plasma of arbitrary degree of ionization is presented. This method consists of a perturbation expansion in the framework of the multiple time scales formalism. Here the results are presented for a weakly ionized gas where elastic electron-atom collisions dominate. It appears that an isotropic correction to the zeroth order Maxwellian electron distribution function is necessary. Calculated electron transport coefficients are compared with the Frost mixture rule and with other calculations. (orig.)

  16. Transport processes in magnetically confined plasmas in the nonlinear regime.

    Science.gov (United States)

    Sonnino, Giorgio

    2006-06-01

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  17. Management of the process of nuclear transport; Gestion del proceso de transporte nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Requejo, P.

    2015-07-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  18. Novel insight into the process of nutrients removal using an algal biofilm: The evaluation of mechanism and efficiency

    Czech Academy of Sciences Publication Activity Database

    Sukačová, Kateřina; Kočí, R.; Žídková, Milena; Vítěz, T.; Trtílek, M.

    2017-01-01

    Roč. 19, č. 10 (2017), s. 909-914 ISSN 1522-6514 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : microalgal biofilm * nutrients removal * X-ray diffraction analyses * wastewater treatment Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.770, year: 2016

  19. Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue

    International Nuclear Information System (INIS)

    Giridhar Babu, A.; Sudhakara Reddy, M.

    2011-01-01

    A nursery experiment was conducted to evaluate the potential role of arbuscular mycorrhizal (AM) fungi in encouraging the vegetation cover on bauxite residue (red mud) sites. An alkali tolerant bermudagrass (Cynodon dactylon) adapted to local conditions were grown in red mud with different amendments with and without AM fungi to assess mycorrhizal effects on plant growth, mineral nutrition, metal uptake and neutralization of bauxite residue. Inoculation of AM fungi significantly increased the plant growth, nutrient uptake and reduced Fe, Al accumulation in plant tissue and also improved the soil physico-chemical and biochemical properties. Gypsum and sludge amended treatments inoculated with AM fungi had maximum biomass, nutrient uptake and reduced accumulation of metals. The neutralization of red mud was significant in presence of AM fungi than control. The experiment provided evidence for the potential use of bermudagrass in combination with AM fungi for ecological restoration of bauxite residue sites. - Inoculation of red mud tolerant AM fungi enhanced the growth and nutrient status of bermudagrass and the physico-chemical properties of the bauxite residues amended with gypsum or sewage sludge.

  20. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    Science.gov (United States)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  1. Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue

    Energy Technology Data Exchange (ETDEWEB)

    Giridhar Babu, A., E-mail: anamgiri@gmail.co [Department of Biotechnology, Thapar University, Patiala 147 004 (India); Sudhakara Reddy, M., E-mail: msreddy@thapar.ed [Department of Biotechnology, Thapar University, Patiala 147 004 (India)

    2011-01-15

    A nursery experiment was conducted to evaluate the potential role of arbuscular mycorrhizal (AM) fungi in encouraging the vegetation cover on bauxite residue (red mud) sites. An alkali tolerant bermudagrass (Cynodon dactylon) adapted to local conditions were grown in red mud with different amendments with and without AM fungi to assess mycorrhizal effects on plant growth, mineral nutrition, metal uptake and neutralization of bauxite residue. Inoculation of AM fungi significantly increased the plant growth, nutrient uptake and reduced Fe, Al accumulation in plant tissue and also improved the soil physico-chemical and biochemical properties. Gypsum and sludge amended treatments inoculated with AM fungi had maximum biomass, nutrient uptake and reduced accumulation of metals. The neutralization of red mud was significant in presence of AM fungi than control. The experiment provided evidence for the potential use of bermudagrass in combination with AM fungi for ecological restoration of bauxite residue sites. - Inoculation of red mud tolerant AM fungi enhanced the growth and nutrient status of bermudagrass and the physico-chemical properties of the bauxite residues amended with gypsum or sewage sludge.

  2. Long Term Large Scale river nutrient changes across the UK

    Science.gov (United States)

    Bell, Victoria; Naden, Pam; Tipping, Ed; Davies, Helen; Davies, Jessica; Dragosits, Ulli; Muhammed, Shibu; Quinton, John; Stuart, Marianne; Whitmore, Andy; Wu, Lianhai

    2017-04-01

    During recent decades and centuries, pools and fluxes of Carbon, Nitrogen and Phosphorus (C, N and P) in UK rivers and ecosystems have been transformed by the spread and fertiliser-based intensification of agriculture (necessary to sustain human populations), by atmospheric pollution, by human waste (rising in line with population growth), and now by climate change. The principal objective of the UK's NERC-funded Macronutrients LTLS research project has been to account for observable terrestrial and aquatic pools, concentrations and fluxes of C, N and P on the basis of past inputs, biotic and abiotic interactions, and transport processes. More specifically, over the last 200 years, what have been the temporal responses of plant and soil nutrient pools in different UK catchments to nutrient enrichment, and what have been the consequent effects on nutrient transfers from land to the atmosphere, freshwaters and estuaries? The work described here addresses the second question by providing an integrated quantitative description of the interlinked land and water pools and annual fluxes of C, N and P for UK catchments over time. A national-scale modelling environment has been developed, combining simple physically-based gridded models that can be parameterised using recent observations before application to long timescales. The LTLS Integrated Model (LTLS-IM) uses readily-available driving data (climate, land-use, nutrient inputs, topography), and model estimates of both terrestrial and freshwater nutrient loads have been compared with measurements from sites across the UK. Here, the focus is on the freshwater nutrient component of the LTLS-IM, but the terrestrial nutrient inputs required for this are provided by models of nutrient processes in semi-natural and agricultural systems, and from simple models of nutrients arising from human waste. In the freshwater model, lateral routing of dissolved and particulate nutrients and within-river processing such as

  3. Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP)

    DEFF Research Database (Denmark)

    Scholz, C.; Parcej, D.; Ejsing, C. S.

    2011-01-01

    and structural analysis of this ATP-binding cassette complex, we established the overexpression of TAP in the methylotrophic yeast Pichia pastoris. Screening of optimal solubilization and purification conditions allowed the isolation of the heterodimeric transport complex, yielding 30 mg of TAP/liter of culture....... Detailed analysis of TAP function in the membrane, solubilized, purified, and reconstituted states revealed a direct influence of the native lipid environment on activity. TAP-associated phospholipids, essential for function, were profiled by liquid chromatography Fourier transform mass spectrometry...

  4. Identification of wastewater processes

    DEFF Research Database (Denmark)

    Carstensen, Niels Jacob

    The introduction of on-line sensors for monitoring of nutrient salts concentrations on wastewater treatment plants with nutrient removal, opens a wide new area of modelling wastewater processes. The subject of this thesis is the formulation of operational dynamic models based on time series...... of ammonia, nitrate, and phosphate concentrations, which are measured in the aeration tanks of the biological nutrient removal system. The alternatign operation modes of the BIO-DENITRO and BIO-DENIPHO processes are of particular interest. Time series models of the hydraulic and biological processes are very......-known theory of the processes with the significant effects found in data. These models are called grey box models, and they contain rate expressions for the processes of influent load of nutrients, transport of nutrients between the aeration tanks, hydrolysis and growth of biomass, nitrification...

  5. Open-ocean convection process: A driver of the winter nutrient supply and the spring phytoplankton distribution in the Northwestern Mediterranean Sea

    Science.gov (United States)

    Severin, Tatiana; Kessouri, Faycal; Rembauville, Mathieu; Sánchez-Pérez, Elvia Denisse; Oriol, Louise; Caparros, Jocelyne; Pujo-Pay, Mireille; Ghiglione, Jean-François; D'Ortenzio, Fabrizio; Taillandier, Vincent; Mayot, Nicolas; Durrieu De Madron, Xavier; Ulses, Caroline; Estournel, Claude; Conan, Pascal

    2017-06-01

    This study was a part of the DeWEX project (Deep Water formation Experiment), designed to better understand the impact of dense water formation on the marine biogeochemical cycles. Here, nutrient and phytoplankton vertical and horizontal distributions were investigated during a deep open-ocean convection event and during the following spring bloom in the Northwestern Mediterranean Sea (NWM). In February 2013, the deep convection event established a surface nutrient gradient from the center of the deep convection patch to the surrounding mixed and stratified areas. In the center of the convection area, a slight but significant difference of nitrate, phosphate and silicate concentrations was observed possibly due to the different volume of deep waters included in the mixing or to the sediment resuspension occurring where the mixing reached the bottom. One of this process, or a combination of both, enriched the water column in silicate and phosphate, and altered significantly the stoichiometry in the center of the deep convection area. This alteration favored the local development of microphytoplankton in spring, while nanophytoplankton dominated neighboring locations where the convection reached the deep layer but not the bottom. This study shows that the convection process influences both winter nutrients distribution and spring phytoplankton distribution and community structure. Modifications of the convection's spatial scale and intensity (i.e., convective mixing depth) are likely to have strong consequences on phytoplankton community structure and distribution in the NWM, and thus on the marine food web.Plain Language SummaryThe deep open-ocean convection in the Northwestern Mediterranean Sea is an important process for the formation and the circulation of the deep waters of the entire Mediterranean Sea, but also for the local spring phytoplankton bloom. In this study, we showed that variations of the convective mixing depth induced different supply in nitrate

  6. Serpentinization as a reactive transport process: The brucite silicification reaction

    Science.gov (United States)

    Tutolo, Benjamin M.; Luhmann, Andrew J.; Tosca, Nicholas J.; Seyfried, William E.

    2018-02-01

    Serpentinization plays a fundamental role in the biogeochemical and tectonic evolution of the Earth and perhaps many other rocky planetary bodies. Yet, geochemical models still fail to produce accurate predictions of the various modes of serpentinization, which limits our ability to predict a variety of related geological phenomena over many spatial and temporal scales. Here, we use kinetic and reactive transport experiments to parameterize the brucite silicification reaction and provide fundamental constraints on SiO2 transport during serpentinization. We show that, at temperatures characteristic of the sub-seafloor at the serpentinite-hosted Lost City Hydrothermal Field (150 °C), the assembly of Si tetrahedra onto MgOH2 (i.e., brucite) surfaces is a rate-limiting elementary reaction in the production of serpentine and/or talc from olivine. Moreover, this reaction is exponentially dependent on the activity of aqueous silica (a SiO2 (aq)), such that it can be calculated according to the rate law:

  7. Magnetic property effect on transport processes in resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Wei, P S [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424 (China); Wu, T H, E-mail: pswei@mail.nsysu.edu.tw, E-mail: wux0064@gmail.com [Department of Mechanical Engineering, Yung Ta Institute of Technology and Commerce, Pintong, Taiwan 909 (China)

    2011-08-17

    This study investigates the effects of the Curie temperature and magnetic permeability on transport variables, solute distribution and nugget shapes during resistance spot welding. The Curie temperature is the temperature below which a metal or alloy is ferromagnetic with a high magnetic permeability, and above which it is paramagnetic with a small magnetic permeability. The model proposed here accounts for electromagnetic force, heat generation and contact resistance at the faying surface and electrode-workpiece interfaces and bulk resistance in workpieces. Contact resistance includes constriction and film resistances, which are functions of hardness, temperature, electrode force and surface condition. The computed results show that transport variables and nugget shapes can be consistently interpreted from the delay of response time and jump of electric current density as a result of finite magnetic diffusion, rather than through the examination of the variations of dynamic electrical resistance with time. The molten nugget on the faying surface is initiated earlier with increasing magnetic permeability and Curie temperature. A high Curie temperature enhances convection and solute mixing, and readily melts through the workpiece surface near the electrode edge. Any means to reduce the Curie temperature or magnetic permeability, such as adjusting the solute content, can be a good way to control weld quality. This study can also be applied to interpret the contact problems encountered in various electronics and packaging technologies, and so on.

  8. Whole tree transportation system for timber processing depots

    Science.gov (United States)

    John Lancaster; Tom Gallagher; Tim  McDonald; Dana Mitchell

    2016-01-01

    The growing demand for alternative energy has led those who are interested in producing sustainable energy from renewable timber to devise new concepts to satisfy those demands. The concept of timber processing depots, where whole stem trees will be delivered for future processing into wood products and high quality energy fuel, has led to the re-evaluation of our...

  9. Integrated real-time control strategy in multi-tank A2O process for biological nutrient removal treating real domestic wastewater

    Directory of Open Access Journals (Sweden)

    Saad Abualhail

    2017-02-01

    Full Text Available An integrated real-time anaerobic–anoxic/oxic (A2O operated with multi-tank called IMT–A2O process was designed and operated with fluctuating influent loads for biological nutrient removal for treating real domestic wastewater. IMT–A2O process, a “phased isolation tank” technology, varies both aeration pattern and flow path in a continuous flow multi-tank system to force fluctuation of organic and nutrient concentrations in process reactors. Using an eight-phase cycle, desired biochemical transformations, are accomplished at different times in the same tank. On-line sensors (pH, ORP, and DO were used as real-time control parameters to adjust the duration of each operational phase in the IMT–A2O process. The control system is an algorithm that automatically adjusts the cycle length to the influent wastewater characteristics according to the end points. It was found that on-line sensor values of pH, ORP, and DO were somehow related with the dynamic behaviors of nutrient concentrations in IMT–A2O. The algorithm acts in the reaction phases of the IMT–A2O cycle using ORP and pH break points of tank one to distinguish the end of denitrification and the beginning of phosphorus release, pH break point of tank two to control the end of denitrification and beginning of phosphorus release and a sudden increase in DO pattern, pH break point and ORP to control phosphorus uptake and the end of the nitrification process. Although the fluctuations in raw wastewater concentration are extreme; an influent with a low C/N ratio is deficient in organic carbon, and a low carbon source level can limit the overall biological denitrification process, the average removal efficiencies achieved for COD, ammonia–nitrogen, total nitrogen and total phosphorus were not less than 76.11%, 87.78%, 76.45% and 83.75%, respectively, using the integrated real-time control strategy. The integrated IMT–A2O exhibited a better performance in nutrient removal than the

  10. Enabling nutrient security and sustainability through systems research.

    Science.gov (United States)

    Kaput, Jim; Kussmann, Martin; Mendoza, Yery; Le Coutre, Ronit; Cooper, Karen; Roulin, Anne

    2015-05-01

    Human and companion animal health depends upon nutritional quality of foods. Seed varieties, seasonal and local growing conditions, transportation, food processing, and storage, and local food customs can influence the nutrient content of food. A new and intensive area of investigation is emerging that recognizes many factors in these agri-food systems that influence the maintenance of nutrient quality which is fundamental to ensure nutrient security for world populations. Modeling how these systems function requires data from different sectors including agricultural, environmental, social, and economic, but also must incorporate basic nutrition and other biomedical sciences. Improving the agri-food system through advances in pre- and post-harvest processing methods, biofortification, or fortifying processed foods will aid in targeting nutrition for populations and individuals. The challenge to maintain and improve nutrient quality is magnified by the need to produce food locally and globally in a sustainable and consumer-acceptable manner for current and future populations. An unmet requirement for assessing how to improve nutrient quality, however, is the basic knowledge of how to define health. That is, health cannot be maintained or improved by altering nutrient quality without an adequate definition of what health means for individuals and populations. Defining and measuring health therefore becomes a critical objective for basic nutritional and other biomedical sciences.

  11. Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis.

    Science.gov (United States)

    Liang, Bowen; Li, Cuiying; Ma, Changqing; Wei, Zhiwei; Wang, Qian; Huang, Dong; Chen, Qi; Li, Chao; Ma, Fengwang

    2017-10-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, root system architecture, nutrient uptake, and responses to nutrient deficiencies in Malus hupehensis Rehd. Under a nutrient deficiency, plants showed significant reductions in growth, chlorophyll concentrations, and net photosynthesis, along with disruptions in nutrient uptake, transport, and distribution. However, pretreatment with 100 μM dopamine markedly alleviated such inhibitions. Supplementation with that compound enabled plants to maintain their photosynthetic capacity and development of the root system while promoting the uptake of N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B, altering the way in which those nutrients were partitioned throughout the plant. The addition of dopamine up-regulated genes for antioxidant enzymes involved in the ascorbate-glutathione cycle (MdcAPX, MdcGR, MdMDHAR, MdDHAR-1, and MdDHAR-2) but down-regulated genes for senescence (SAG12, PAO, and MdHXK). These results indicate that exogenous dopamine has an important antioxidant and anti-senescence effect that might be helpful for improving nutrient uptake. Our findings demonstrate that dopamine offers new opportunities for its use in agriculture, especially when addressing the problem of nutrient deficiencies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Is “Processed” a Four-Letter Word? The Role of Processed Foods in Achieving Dietary Guidelines and Nutrient Recommendations123

    Science.gov (United States)

    Dwyer, Johanna T.; Fulgoni, Victor L.; Clemens, Roger A.; Schmidt, David B.

    2012-01-01

    This paper, based on the symposium “Is ‘Processed’ a Four-Letter Word? The Role of Processed Foods in Achieving Dietary Guidelines and Nutrient Recommendations in the U.S.” describes ongoing efforts and challenges at the nutrition–food science interface and public health; addresses misinformation about processed foods by showing that processed fruits and vegetables made important dietary contributions (e.g., fiber, folate, potassium, vitamins A and C) to nutrient intake among NHANES 2003–2006 participants, that major sources of vitamins (except vitamin K) were provided by enrichment and fortification and that enrichment and fortification helped decrease the percentage of the population below the Estimated Average Requirement for vitamin A, thiamin, folate, and iron; describes how negative consumer perceptions and consumer confusion about processed foods led to the development of science-based information on food processing and technology that aligns with health objectives; and examines challenges and opportunities faced by food scientists who must balance consumer preferences, federal regulations, and issues surrounding food safety, cost, unintended consequences, and sustainability when developing healthful foods that align with dietary guidelines. PMID:22797990

  13. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    Science.gov (United States)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  14. Transport and redistribution of Chernobyl fallout radionuclides by fluvial processes: some preliminary evidence

    International Nuclear Information System (INIS)

    Walling, D.E.; Bradley, S.B.

    1988-01-01

    Several measurements of 137 Cs concentrations in suspended sediment transported by the River Severn during the post-Chernobyl period and in recent channel and floodplain deposits along the river emphasise the potential significance of fluvial processes in the transport and concentration of fallout radionuclides. (author)

  15. Production and cost of harvesting, processing, and transporting small-diameter (< 5 inches) trees for energy

    Science.gov (United States)

    Fei Pan; Han-Sup Han; Leonard R. Johnson; William J. Elliot

    2008-01-01

    Dense, small-diameter stands generally require thinning from below to improve fire-tolerance. The resulting forest biomass can be used for energy production. The cost of harvesting, processing, and transporting small-diameter trees often exceeds revenues due to high costs associated with harvesting and transportation and low market values for forest biomass....

  16. Nutrient assessment of olive leaf residues processed by solid-state fermentation as an innovative feedstuff additive.

    Science.gov (United States)

    Xie, P-J; Huang, L-X; Zhang, C-H; Zhang, Y-L

    2016-07-01

    Olive leaf residue feedstuff additives were prepared by solid-state fermentation (SSF), and its feeding effects on broiler chickens were examined. The fermentation's nutrient value, that is, protein enrichment, cellulase activity, tannic acid degradation and amino acid enhancement, was determined. The effect of different strains, including molds (Aspergillus niger, Aspergillus oryzae and Trichoderma viride) and yeasts (Candida utilis, Candida tropicalis and Geotrichum candidum), and the fermentation time on the nutrient values of the feedstuff additives was investigated. The experimental results showed that the optimal parameters for best performance were A. niger and C. utilis in a 1 : 1 ratio (v/v) in co-culture fermentation for 5 days. Under these conditions, the total content of amino acids in the fermented olive leaf residues increased by 22·0% in comparison with that in the raw leaf residues. Both Glutamic acid and Aspartic acid contents were increased by more than 25·4%. Broiler chickens fed with different amounts of feedstuff additives were assessed. The results demonstrated that the chicken weight gains increased by 120%, and normal serum biochemical parameters were improved significantly after 10% of the feedstuff additives were supplemented to the daily chicken feed for 28 days. The co-culture combination of A. niger and C. utilis with SSF for olive leaf residue had the best nutrient values. The addition of 10% fermented olive leaf residue facilitated the chicken growth and development. This study reveals that olive leaf residues fermented by SSF exhibited considerable potential as feed additives for feeding poultry. © 2016 The Society for Applied Microbiology.

  17. The exergy fields in transport processes: Their calculation and use

    Energy Technology Data Exchange (ETDEWEB)

    Lior, N.; Sarmiento-Darkin, W.; Al-Sharqawi, H.S. [University of Penn, Philadelphia, PA (United States). Dept. of Mechanical Engineering & Applied Mechanics

    2006-04-15

    This paper is a brief review of the method for analyzing the space and time dependent exergy and irreversibility fields in processes. It presents the basic equations, the method for their use, major literature sources, and three examples from the authors' work: flow desiccation, combustion of oil droplets, and combustion of pulverized coal. Conclusions from this Second Law analysis are used to attempt process improvement suggestions.

  18. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales.

    Science.gov (United States)

    Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A

    2017-07-01

    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry

  19. Evaluate transport processes in MERRA driven chemical transport models using updated 222Rn emission inventories and global observations

    Science.gov (United States)

    Zhang, B.; Liu, H.; Crawford, J. H.; Fairlie, T. D.; Chen, G.; Chambers, S. D.; Kang, C. H.; Williams, A. G.; Zhang, K.; Considine, D. B.; Payer Sulprizio, M.; Yantosca, R.

    2015-12-01

    Convective and synoptic processes play a major role in determining the transport and distribution of trace gases and aerosols in the troposphere. The representation of these processes in global models (at ~100-1000 km horizontal resolution) is challenging, because convection is a sub-grid process and needs to be parameterized, while synoptic processes are close to the grid scale. Depending on the parameterization schemes used in climate models, the role of convection in transporting trace gases and aerosols may vary from model to model. 222Rn is a chemically inert and radioactive gas constantly emitted from soil and has a half-life (3.8 days) comparable to synoptic timescale, which makes it an effective tracer for convective and synoptic transport. In this study, we evaluate the convective and synoptic transport in two chemical transport models (GMI and GEOS-Chem), both driven by the NASA's MERRA reanalysis. Considering the uncertainties in 222Rn emissions, we incorporate two more recent scenarios with regionally varying 222Rn emissions into GEOS-Chem/MERRA and compare the simulation results with those using the relatively uniform 222Rn emissions in the standard model. We evaluate the global distribution and seasonality of 222Rn concentrations simulated by the two models against an extended collection of 222Rn observations from 1970s to 2010s. The intercomparison will improve our understanding of the spatial variability in global 222Rn emissions, including the suspected excessive 222Rn emissions in East Asia, and provide useful feedbacks on 222Rn emission models. We will assess 222Rn vertical distributions at different latitudes in the models using observations at surface sites and in the upper troposphere and lower stratosphere. Results will be compared with previous models driven by other meteorological fields (e.g., fvGCM and GEOS4). Since the decay of 222Rn is the source of 210Pb, a useful radionuclide tracer attached to submicron aerosols, improved

  20. Nitrate transport and transformation processes in unsaturated porous media

    Science.gov (United States)

    Tindall, James A.; Petrusak, Robin L.; McMahon, Peter B.

    1995-01-01

    A series of experiments was conducted on two contrasting agricultural soils to observe the influence of soil texture, preferential flow, and plants on nitrate transport and denitrification under unsaturated conditions. Calcium nitrate fertilizer was applied to the surface of four large undisturbed soil cores (30 cm diameter by 40 cm height). Two of the cores were a structured clay obtained from central Missouri and two were an unstructured fine sand obtained from central Florida. The cores were irrigated daily and maintained at a matric potential of -20 kPa, representative of soil tension in the rooting zone of irrigated agricultural fields. Volumetric water content (θ), concentration of nitrate-N in the soil solution, and nitrous oxide flux at the surface, 10, 20, and 30 cm were monitored daily. Leaching loss of surface-applied N03− -N was significant in both the sand and the clay. In unplanted sand cores, almost all of the applied nitrate was leached below 30 cm within 10 days. Gaseous N loss owing to denitrification was no greater than 2% of the nitrate-N applied to the unplanted sand cores and, in general, was less than 1 %. Although leaching was somewhat retarded in the clay cores, about 60% of the applied nitrate-N was leached from the unplanted clay soil in 5–6 weeks. Under unsaturated conditions, the clay had little to no tendency to denitrify despite the greater moisture content of the clay and retarded leaching of nitrate in the clay. The planted sand cores had surprisingly large gaseous N loss owing to denitrification, as much as 17% of the nitrate-N. Results from both the clay and sand experiments show that the dynamics of nitrate transport and transformation in unsaturated soils are affected by small, localized variations in the soil moisture content profile, the gaseous diffusion coefficient of the soil, the rate at which the nitrate pulse passes through the soil, the solubility of N2O and N2 and the diffusion of the gasses through the soil

  1. Silver Nanoparticle Transport Through Soil: Illuminating the Pore-Scale Processes

    Science.gov (United States)

    Molnar, I. L.; Willson, C. S.; Gerhard, J.; O'Carroll, D. M.

    2015-12-01

    For nanoparticle transport through soil, the pore-scale (i.e., tens to hundreds of grains and pores) is a crucial intermediate scale which links nanoparticle-surface interactions with field-scale transport behaviour. However, very little information exists on how nanoparticles behave within real three-dimensional pore spaces. As a result, pore-scale processes are poorly characterized for nanoparticle systems and, subsequently, continuum-scale transport models struggle to describe commonly observed 'anomalous' behaviour such as extended tailing. This knowledge gap is due to two primary factors: an inability to experimentally observe nanoparticles within real pore spaces, and the computationally expensive models required to simulate nanoparticle movement. However, due to recent advances in Synchrotron X-Ray Computed Microtomography (SXCMT), it is now possible to quantify in-situ pore-scale nanoparticle concentrations during transport through real 3-dimensional porous media [1]. Employing this SXCMT quantification method to examine real nanoparticle/soil transport experiments has yielded new insights into the pore-scale processes governing nanoparticle transport. By coupling SXCMT nanoparticle quantification method with Computational Fluid Dynamics (CFD) simulations we are able to construct a better picture of how nanoparticles flow through real pore spaces. This talk presents SXCMT/CFD analyses of three silver nanoparticle transport experiments. Silver nanoparticles were flushed through three different sands to characterize the influence of grain distribution and retention rates on pore-scale flow and transport processes. These CFD/SXCMT analyses illuminate how processes such as temporary hydraulic retention govern nanoparticle transport. In addition, the observed distributions of pore water velocities and nanoparticle mass flow rates challenge the standard conceptual model of nanoparticle transport, suggesting that pore-scale processes require explicit consideration

  2. Formation of the Cycle of Business Processes of Management of Marketing Activity of a Transport Enterprise

    Directory of Open Access Journals (Sweden)

    Horielov Dmytro O.

    2014-02-01

    Full Text Available The article is devoted to problems of organisation of the process of management of marketing activity of an enterprise. It specifies the model of services of a transport enterprise and provides levels of services and their structure: basic, real, expanded, expected and prospective. The article offers to differentiate planning and realisation of the transportation service by its levels, each of which would correspond with a separate business process of management. It reveals specific features of use of instruments of the traditional, internal and interactive marketing in the market of transportation services. It identifies the structure of the object when managing marketing activity of a transportation enterprise. The article uses the Deming cycle to formulate general principles of formation of business processes of management of marketing activity: “Motivation – Plan – Do – Check – Act”. The proposed cycle would ensure continuous improvement of the said business processes of an enterprise in accordance with international quality standards (ISO.

  3. An evaluation of Mexican transportation planning, finance, implementation, and construction processes.

    Science.gov (United States)

    2009-10-01

    This research examined the legal, financial, institutional and policy processes that Mexico uses to plan, finance, : construct, and implement its transportation network. It documents through twelve case studies the state of the : practice in planning...

  4. Magnetic Processing of Structural Components for Transportation Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Ludtka, G. M.; Fleming, S. [Metalsa Roanoke, Inc.; del Prado Villasana, J. [Metalsa Roanoke, Inc.

    2011-09-30

    The specific goal of this project was to develop and evaluate the effect of magnetic processing as a viable and new technology to manufacture side‐rails for heavy trucks; and to demonstrate the applicability of this technology for an industrial truck/automotive process. The targeted performance enhancements for this project were to increase the hardness or strength of two families of alloys (comparable carbon contents but one alloy system incorporating hardenability improving additions of titanium and boron) by 15 to 20%. Thermomagnetic processing has been shown to make significant and unprecedented, simultaneous improvements in yield strength and ultimate tensile strength with no loss of ductility for the truck rail application investigated in this project. Improvements in the ultimate tensile strength and yield strength in the range 20 to 30% have been measured even for the lower hardenability alloy samples that only received a very low magnetic field tempering treatment at a tempering temperature that was 67% lower than the current non-magnetic field enhanced commercial process and for a brief tempering time of 20% of the time required in their current process at the higher temperature. These significant developments, that require further demonstration and investigation on current commercial and other alloy systems, promise the evolution of a much more energy efficient and lower-carbon footprint process to be used in the future to produce stronger, tougher, and lighter weight truck rails. The property increases in the truck rails themselves will enable lighter weight truck side-rails to be produced which will reduce the overall weight of heavy duty trucks which will reduce fuel consumption and be an enabler of the goals of the DOE EERE SuperTruck Program where fuel consumption reductions of 50% are targeted for the future generation of trucks.

  5. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, Wei

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane

  6. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    Science.gov (United States)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  7. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    CERN Document Server

    Brenner, Howard

    1992-01-01

    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  8. Transport description of intermediate processes in heavy ion collisions

    International Nuclear Information System (INIS)

    Ayik, S.; Shivakumar, B.; Shapira, D.

    1986-01-01

    An extension of the diffusion model is proposed in order to describe the intermediate processes and the compound nucleus formation in heavy ion collisions. The model describes the intermediate processes and fusion in terms of the formation and the evolution of a long-lived dinuclear molecular complex (DMC) and its subsequent decay by fragmentation. The colliding ions can be trapped into the pocket of the entrance channel nucleus-nucleus potential and a DMC is formed. This DMC acts as a doorway state towards formation of a completely equilibrated compound nucleus (CN). It evolves through the exchange of nucleons to different dinuclear configurations. At each stage of its evolution, there is a finite probability for direct fragmentation into outgoing channels by thermal penetration over the barrier. The doorway states that do not fragment relax into a CN configuration and are identified as the fusion yield. 8 refs

  9. Deformational mass transport and invasive processes in soil evolution

    Science.gov (United States)

    Brimhall, George H.; Chadwick, Oliver A.; Lewis, Chris J.; Compston, William; Williams, Ian S.; Danti, Kathy J.; Dietrich, William E.; Power, Mary E.; Hendricks, David; Bratt, James

    1992-01-01

    Channels left in soil by decayed roots and burrowing animals allow organic and inorganic precipitates and detritus to move through soil from above, to depths at which the minuteness of pores restricts further passage. Consecutive translocation-and-root-growth phases stir the soil, constituting an invasive, dilatational process which generates cumulative strains. Below the depths thus affected, mineral dissolution by descending organic acids leads to internal collapse; this softened/condensed precursor horizon is then transformed into soil via biological activity that mixes and expands the evolving residuum through root and micropore-network invasion.

  10. Transport processes investigation: A necessary first step in site scale characterization plans

    International Nuclear Information System (INIS)

    Roepke, C.; Glass, R.J.; Brainard, J.; Mann, M.; Kriel, K.; Holt, R.; Schwing, J.

    1995-01-01

    We propose an approach, which we call the Transport Processes Investigation or TPI, to identify and verify site-scale transport processes and their controls. The TPI aids in the formulation of an accurate conceptual model of flow and transport, an essential first step in the development of a cost effective site characterization strategy. The TPI is demonstrated in the highly complex vadose zone of glacial tills that underlie the Fernald Environmental Remediation Project (FEMP) in Fernald, Ohio. As a result of the TPI, we identify and verify the pertinent flow processes and their controls, such as extensive macropore and fracture flow through layered clays, which must be included in an accurate conceptual model of site-scale contaminant transport. We are able to conclude that the classical modeling and sampling methods employed in some site characterization programs will be insufficient to characterize contaminant concentrations or distributions at contaminated or hazardous waste facilities sited in such media

  11. High frequency longitudinal profiling reveals hydrologic controls on solute sourcing, transport and processing in a karst river

    Science.gov (United States)

    Hensley, R. T.; Cohen, M. J.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    The lower Santa Fe River is a large, karst river of north Florida, fed by numerous artesian springs and also containing multiple sink-rise systems. We performed repeated longitudinal profiles collecting very high frequency measurements of multiple stream parameters including temperature, dissolved oxygen, carbon dioxide, pH, dissolved organic matter, nitrate, ammonium, phosphate and turbidity. This high frequency dataset provided a spatially explicit understanding of solute sources and coupled biogeochemical processing rates along the 25 km study reach. We noted marked changes in river profiles as the river transitioned from low to high flow during the onset of the wet season. The role of lateral inflow from springs as the primary solute source was greatly reduced under high flow conditions. Effects of sink-rise systems, which under low flow conditions allow the majority of flow to bypass several kilometer long sections of the main channel, virtually disappeared under high flow conditions. Impeded light transmittance at high flow reduced primary production and by extension assimilatory nutrient uptake. This study demonstrates how high frequency longitudinal profiling can be used to observe how hydrologic conditions can alter groundwater-surface water interactions and modulate the sourcing, transport and biogeochemical processing of stream solutes.

  12. Scaling properties of rainfall-runoff generation processes and nutrient flushing mechanisms in the Oregon Cascade Mountain

    Science.gov (United States)

    Segura, C.; Nickolas, L. B.; Leshchinsky, B. A.

    2015-12-01

    Even though it is widely recognized that water quality and availability are crucial to society and wildlife sustainability, we are still not able to predict how much water is moved through a given catchment after a storm event nor what nutrients, solutes, and contaminates are mobilized. We will present preliminary results of a study incorporating of hydrometric information, water stable isotopes (δ18O), and concentrations of total nitrogen (TN), ammonia (NH3), and nitrate (NO3) within 4 sites in a nested framework at the HJ Andrews Experimental Forest (HJA), OR. Preliminary analysis of 2 storms (54mm and 145mm) indicate highly variable responses across space along with a positive relation between transit time of event water and storm magnitude in all catchments. In addition there appears to be a moisture threshold after which transit time scales with drainage area across the landscape likely related to higher degree of connectivity. We also found a strong correlation between transit times computed based on temporal variability of δ18O and electrical connectivity (EC). This lead to the analysis of over 50 storm across 10 catchments in the HJA during the last 3 years. In-stream NO3- during storm response are highest within the smaller catchments (1-5 km2) and tend to remain elevated throughout the response period. The larger catchments (15-64 km2) demonstrate smaller increases in NO3-, the response time lags behind that of the smaller catchments, and the concentration returns rapidly to baseflow conditions rather than remaining elevated. In contrast, in-stream NH3 show a higher degree of similarity between sites in terms of magnitude and timing of increases in concentration over the duration of the response period. Ultimately we found that fractions of inorganic nitrogen correlate with transit time and drainage area, opening the possibility of a catchment wide model of nutrient export prediction.

  13. Environmental impact assessment in urban transport planning: Exploring process-related barriers in Spanish practice

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Lara, Julio A., E-mail: j.a.sorialara@uva.nl; Bertolini, Luca, E-mail: l.bertolini@uva.nl; Brömmelstroet, Marco te, E-mail: M.C.G.teBrommelstroet@uva.nl

    2015-01-15

    The effectiveness of EIA for evaluating transport planning projects is increasingly being questioned by practitioners, institutions and scholars. The academic literature has traditionally focused more on solving content-related problems with EIA (i.e. the measurement of environmental effects) than on process-related issues (i.e. the role of EIA in the planning process and the interaction between key actors). Focusing only on technical improvements is not sufficient for rectifying the effectiveness problems of EIA. In order to address this knowledge gap, the paper explores how EIA is experienced in the Spanish planning context and offers in-depth insight into EIA process-related issues in the field of urban transport planning. From the multitude of involved actors, the research focuses on exploring the perceptions of the two main professional groups: EIA developers and transport planners. Through a web-based survey we assess the importance of process-related barriers to the effective use of EIA in urban transport planning. The analyses revealed process issues based fundamentally on unstructured stakeholders involvement and an inefficient public participation - Highlights: • Qualitative research on perceptions of EIA participants on EIA processes. • Web-based survey with different participants (EIA-developers; transport planners). • It was seen an inefficient participation of stakeholders during the EIA processes.

  14. Environmental impact assessment in urban transport planning: Exploring process-related barriers in Spanish practice

    International Nuclear Information System (INIS)

    Soria-Lara, Julio A.; Bertolini, Luca; Brömmelstroet, Marco te

    2015-01-01

    The effectiveness of EIA for evaluating transport planning projects is increasingly being questioned by practitioners, institutions and scholars. The academic literature has traditionally focused more on solving content-related problems with EIA (i.e. the measurement of environmental effects) than on process-related issues (i.e. the role of EIA in the planning process and the interaction between key actors). Focusing only on technical improvements is not sufficient for rectifying the effectiveness problems of EIA. In order to address this knowledge gap, the paper explores how EIA is experienced in the Spanish planning context and offers in-depth insight into EIA process-related issues in the field of urban transport planning. From the multitude of involved actors, the research focuses on exploring the perceptions of the two main professional groups: EIA developers and transport planners. Through a web-based survey we assess the importance of process-related barriers to the effective use of EIA in urban transport planning. The analyses revealed process issues based fundamentally on unstructured stakeholders involvement and an inefficient public participation - Highlights: • Qualitative research on perceptions of EIA participants on EIA processes. • Web-based survey with different participants (EIA-developers; transport planners). • It was seen an inefficient participation of stakeholders during the EIA processes

  15. Application of fuzzy neural network technologies in management of transport and logistics processes in Arctic

    Science.gov (United States)

    Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.

    2018-05-01

    The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.

  16. Impact of different vertical transport representations on simulating processes in the tropical tropopause layer (TTL)

    Energy Technology Data Exchange (ETDEWEB)

    Ploeger, Felix

    2011-07-06

    The chemical and dynamical processes in the tropical tropopause layer (TTL) control the amount of radiatively active species like water vapour and ozone in the stratosphere, and hence turn out to be crucial for atmospheric trends and climate change. Chemistry transport models and chemistry climate models are suitable tools to understand these processes. But model results are subject to uncertainties arising from the parametrization of model physics. In this thesis the sensitivity of model predictions to the choice of the vertical transport representation will be analysed. Therefore, backtrajectories are calculated in the TTL, based on different diabatic and kinematic transport representations using ERA-Interim and operational ECMWF data. For diabatic transport on potential temperature levels, the vertical velocity is deduced from the ERA-Interim diabatic heat budget. For kinematic transport on pressure levels, the vertical wind is used as vertical velocity. It is found that all terms in the diabatic heat budget are necessary to cause transport from the troposphere to the stratosphere. In particular, clear-sky heating rates alone miss very important processes. Many characteristics of transport in the TTL turn out to depend very sensitively on the choice of the vertical transport representation. Timescales for tropical troposphere-to-stratosphere transport vary between one and three months, with respect to the chosen representation. Moreover, for diabatic transport ascent is found throughout the upper TTL, whereas for kinematic transport regions of mean subsidence occur, particularly above the maritime continent. To investigate the sensitivity of simulated trace gas distributions in the TTL to the transport representation, a conceptual approach is presented to predict water vapour and ozone concentrations from backtrajectories, based on instantaneous freeze-drying and photochemical ozone production. It turns out that ozone predictions and vertical dispersion of the

  17. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  18. Nutrientes e propriedades funcionais em sementes de abóbora (Cucurbita maxima submetidas a diferentes processamentos Nutrients and functional properties in pumpkin seed (Cucurbita maxima submitted to different processings

    Directory of Open Access Journals (Sweden)

    Luciana de Paula Naves

    2010-05-01

    Full Text Available O objetivo deste trabalho foi verificar a influência dos processamentos térmicos sobre os nutrientes e propriedades funcionais das sementes da abóbora Cucurbita maxima. As sementes foram, em quatro repetições, submetidas aos seguintes processamentos: utilizadas na forma crua; cozidas em água em ebulição por três tempos: 5, 10 e 15 minutos; e cozidas no vapor por 10 minutos. Posteriormente foram liofilizadas, trituradas e armazenadas em temperatura ambiente até a realização das análises de composição centesimal, minerais e propriedades funcionais. Não houve diferença significativa entre os processamentos para os níveis de proteína bruta, fibra alimentar, extrato etéreo, cinzas, S, P, Mg, Ca, Cu, Zn, solubilidade do nitrogênio (nos pH 4, 5 e 6, absorção de água e óleo, volume de espuma e estabilidade de emulsão. O cozimento em água em ebulição reduziu o teor de K. Todos os processamentos térmicos diminuíram os níveis de Mn e Fe. As sementes cruas apresentaram a maior solubilidade do nitrogênio nos pH 2, 3, 7, 8 e 9. Conclui-se que os processamentos acarretaram diferença significativa apenas nos teores de K, Mn, Fe e solubilidade do nitrogênio; e que as sementes apresentam potencial para serem incorporadas, provavelmente, em alimentos que requeiram elevada taxa de absorção de óleo.The objective of this paper was to verify the influence of the thermal processings on the nutrients and functional properties of the pumpkin seeds Cucurbita maxima. Seeds were, in four repetitions, submitted to the following processings: used in the raw form; cooked in boiling water for three times: 5, 10 and 15 minutes; and cooked in steam for 10 minutes. Thereafter were freeze-dried, grinded and stored at room temperature up to accomplishment of the analyses of centesimal composition, minerals and functional properties. There wasn't significant difference among the processings to the levels of crude protein, dietary fiber, ether

  19. Ultra-Processed Food Consumption and Chronic Non-Communicable Diseases-Related Dietary Nutrient Profile in the UK (2008⁻2014).

    Science.gov (United States)

    Rauber, Fernanda; da Costa Louzada, Maria Laura; Steele, Eurídice Martínez; Millett, Christopher; Monteiro, Carlos Augusto; Levy, Renata Bertazzi

    2018-05-09

    We described the contribution of ultra-processed foods in the U.K. diet and its association with the overall dietary content of nutrients known to affect the risk of chronic non-communicable diseases (NCDs). Cross-sectional data from the U.K. National Diet and Nutrition Survey (2008⁻2014) were analysed. Food items collected using a four-day food diary were classified according to the NOVA system. The average energy intake was 1764 kcal/day, with 30.1% of calories coming from unprocessed or minimally processed foods, 4.2% from culinary ingredients, 8.8% from processed foods, and 56.8% from ultra-processed foods. As the ultra-processed food consumption increased, the dietary content of carbohydrates, free sugars, total fats, saturated fats, and sodium increased significantly while the content of protein, fibre, and potassium decreased. Increased ultra-processed food consumption had a remarkable effect on average content of free sugars, which increased from 9.9% to 15.4% of total energy from the first to the last quintile. The prevalence of people exceeding the upper limits recommended for free sugars and sodium increased by 85% and 55%, respectively, from the lowest to the highest ultra-processed food quintile. Decreasing the dietary share of ultra-processed foods may substantially improve the nutritional quality of diets and contribute to the prevention of diet-related NCDs.

  20. Controlling Salmonella infection in weanling pigs through water delivery of direct-fed microbials or organic acids: Part II. Effects on intestinal histology and active nutrient transport

    Science.gov (United States)

    The objective of this study was to evaluate the effects of water-delivered direct-fed microbials (DFM) or organic acids on intestinal morphology and active nutrient absorption in weanling pigs following deliberate Salmonella infection. Pigs (n = 88) were weaned at 19 ± 2 d of age and assigned to one...

  1. A Proactive Complex Event Processing Method for Large-Scale Transportation Internet of Things

    OpenAIRE

    Wang, Yongheng; Cao, Kening

    2014-01-01

    The Internet of Things (IoT) provides a new way to improve the transportation system. The key issue is how to process the numerous events generated by IoT. In this paper, a proactive complex event processing method is proposed for large-scale transportation IoT. Based on a multilayered adaptive dynamic Bayesian model, a Bayesian network structure learning algorithm using search-and-score is proposed to support accurate predictive analytics. A parallel Markov decision processes model is design...

  2. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay

    DEFF Research Database (Denmark)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana

    2015-01-01

    and transportation prior to processing and samples with immediate processing and freezing. METHODS: Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed...... and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. RESULTS: For samples taken in the winter, relative...... differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate...

  3. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed; Metzger, Swen; Steil, Benedikt; Klingmü ller, Klaus; Tost, Holger; Pozzer, Andrea; Stenchikov, Georgiy L.; Barrie, Leonard; Lelieveld, Jos

    2017-01-01

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux

  4. Nutrient balances in the forest energy cycle

    International Nuclear Information System (INIS)

    Olsson, Bengt

    2006-02-01

    or wood in fuel mixture). Losses of P at harvesting, fuel storage or transportation, and contamination (soil) or additions of lime are possible causes. To a less extent, also K losses seem to occur in the process. On average, the recommended highest dose of ash to forest (3000 kg d.w./ha) over-compensate for alkalinity but under-compensate for K and P. There is thus a risk that standard values of ash doses will not result in the target compensation, in particular if the aim is to compensate for specific elements. The nutrient compensation needs can be defined to two levels (compensate for slash, or for slash and stem harvesting, respectively), and to four aims: (1) improve forest tree nutrient status and growth, (2) increase base saturation of forest soils and increase soil nutrient pools, (3) increase alkalinity in run-off water to counteract acidification of surface waters, and (4) as a complement to nitrogen fertilisation. Increasing the alkalinity of soils and soil water is the aim that can be most easily reached by ash application, due to the relatively high Ca and Mg contents in ashes. Compensation of ash for K losses is complicated by the high mobility of K ion in ecosystems and because its high solubility even in stabilised ashes. K in logging residues and ashes tend to be leached out and lost. Management for maintaining high availability of K in forest ecosystems should include several aspects, in particular the de sign of clear-fellings, timing of ash recycling and handling of slash and ashes. Compensation for P by application of stabilised wood-ashes is normally in efficient in the short time perspective, due to low P content in ashes and the bonding of P into poorly soluble apatite. However, in the long run P in ashes may improve forest P nutrition. New research is needed to estimate P-fluxes associated with harvesting, storage and transport of forest biomass in realistic situations, and to evaluate if P availability will be deteriorated in the long run

  5. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  6. Availability Control for Means of Transport in Decisive Semi-Markov Models of Exploitation Process

    Science.gov (United States)

    Migawa, Klaudiusz

    2012-12-01

    The issues presented in this research paper refer to problems connected with the control process for exploitation implemented in the complex systems of exploitation for technical objects. The article presents the description of the method concerning the control availability for technical objects (means of transport) on the basis of the mathematical model of the exploitation process with the implementation of the decisive processes by semi-Markov. The presented method means focused on the preparing the decisive for the exploitation process for technical objects (semi-Markov model) and after that specifying the best control strategy (optimal strategy) from among possible decisive variants in accordance with the approved criterion (criteria) of the activity evaluation of the system of exploitation for technical objects. In the presented method specifying the optimal strategy for control availability in the technical objects means a choice of a sequence of control decisions made in individual states of modelled exploitation process for which the function being a criterion of evaluation reaches the extreme value. In order to choose the optimal control strategy the implementation of the genetic algorithm was chosen. The opinions were presented on the example of the exploitation process of the means of transport implemented in the real system of the bus municipal transport. The model of the exploitation process for the means of transports was prepared on the basis of the results implemented in the real transport system. The mathematical model of the exploitation process was built taking into consideration the fact that the model of the process constitutes the homogenous semi-Markov process.

  7. The Effect of Varying Speed Release of Nutrients from Fertilizers on Growth-production Process of Turf

    Directory of Open Access Journals (Sweden)

    Peter Hric

    2016-01-01

    Full Text Available The aim of this experiment was to compare the influence of fertilizers with different speed of nutrients release on growth–production indicators of turf under non–irrigated conditions. The experiment was carried in warm and dry conditions in area Nitra (Slovak Republic. In the experiment were followed 5 treatments (1. without fertilization, 2. Nitre with dolomite, Superphosphate, Potassium salt, 3. Turf fertilizer Travcerit®, 4. Slow release fertilizer SRF NPK 14–5–14 (+ 4CaO + 4MgO + 7S, 5. Controlled release fertilizer Duslocote® NPK (S 13–9–18 (+6S. The highest gain of height reached variant fertilized by fertilizer SRF NPK 14–5–14 (+ 4CaO + 4MgO + 7S. Comparison of the individual treatments for the whole period showed significantly lower average daily gains of height on control treatment compared to fertilizing treatments Nitre with dolomite, Superphosphate, Potassium salt, SRF NPK 14–5–14 (+ 4CaO + 4MgO + 7S and Duslocote® NPK (S 13–9–18 (+6S. During the reported period the highest gain of weight reached treatment by application fertilizer Duslocote® NPK (S 13– 9–18 (+ 6S. Comparison of the individual treatments for the whole period, were found significantly lower average daily production of phytomass on control treatment in comparison with fertilization turfs by Travcerit® and Duslocote® NPK (S 13–9–18 (+6S.

  8. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  9. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  10. Electronic repository and standardization of processes and electronic documents in transport

    Directory of Open Access Journals (Sweden)

    Tomasz DĘBICKI

    2007-01-01

    Full Text Available The article refers to the idea of the use of electronic repository to store standardised scheme of processes between a Logistics Service Provider and its business partners. Application of repository for automatic or semi-automatic configuration of interoperability in electronic data interchange between information systems of differentcompanies based on transport (road, rail, sea and combined related processes. Standardisation includes processes, scheme of cooperation and related to them, electronic messages.

  11. A vadose zone Transport Processes Investigation within the glacial till at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Schwing, J.; Roepke, Craig Senninger; Brainard, James Robert; Glass, Robert John Jr.; Mann, Michael J.A.; Holt, Robert M..; Kriel, Kelly

    2007-01-01

    This report describes a model Transport Processes Investigation (TPI) where field-scale vadose zone flow and transport processes are identified and verified through a systematic field investigation at a contaminated DOE site. The objective of the TPI is to help with formulating accurate conceptual models and aid in implementing rational and cost effective site specific characterization strategies at contaminated sites with diverse hydrogeologic settings. Central to the TPI are Transport Processes Characterization (TPC) tests that incorporate field surveys and large-scale infiltration experiments. Hypotheses are formulated based on observed pedogenic and hydrogeologic features as well as information provided by literature searches. The field and literature information is then used to optimize the design of one or more infiltration experiments to field test the hypothesis. Findings from the field surveys and infiltration experiments are then synthesized to formulate accurate flow and transport conceptual models. Here we document a TPI implemented in the glacial till vadose zone at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio, a US Department of Energy (DOE) uranium processing site. As a result of this TPI, the flow and transport mechanisms were identified through visualization of dye stain within extensive macro pore and fracture networks which provided the means for the infiltrate to bypass potential aquatards. Such mechanisms are not addressed in current vadose zone modeling and are generally missed by classical characterization methods

  12. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay.

    Science.gov (United States)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana; Bech, Bodil Hammer; Fuglsang, Jens; Olsen, Jørn; Nohr, Ellen Aagaard

    2015-01-01

    In studies of perfluoroalkyl acids, the validity and comparability of measured concentrations may be affected by differences in the handling of biospecimens. We aimed to investigate whether measured plasma levels of perfluoroalkyl acids differed between blood samples subjected to delay and transportation prior to processing and samples with immediate processing and freezing. Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. For samples taken in the winter, relative differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate there was no difference between the two setups [corresponding estimate 1% (0, 3)]. Differences were negligible in the summer for all compounds. Transport of blood samples and processing delay, similar to conditions applied in some large, population-based studies, may affect measured perfluoroalkyl acid concentrations, mainly when outdoor temperatures are low. Attention to processing conditions is needed in studies of perfluoroalkyl acid exposure in humans.

  13. The peculiarities of process-based approach realization in transport sector company management

    Science.gov (United States)

    Khripko, Elena; Sidorov, Gennadiy

    2017-10-01

    In the present article we study the phenomena of multiple meaning in understanding process-based management method in construction of transport infrastructure facilities. The idea of multiple meaning is in distortions which appear during reception of the management process paradigm in organizational environment of transport sector. The cause of distortion in process management is organizational resistance. The distortions of management processes are discovered at the level of diffusion among spheres of responsibility, collision in forms of functional, project and process interaction between the owner of the process and its participants. The level of distortion is affected by the attitude towards the result of work which means that process understanding of the result is replaced by the functional one in practice of management. This transfiguration is the consequence of regressive defensive mechanisms of the organizational environment. On the base of experience of forming process management in construction of transport infrastructure facilities company of the issues of diagnostics of various forms of organizational resistance and ways of reducing the destructive influence on managing processes are reviewed.

  14. Connected vehicle impacts on transportation planning technical memorandum #2 : connected vehicle planning processes and products and stakeholder roles and responsibilities.

    Science.gov (United States)

    2015-01-01

    The objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should : be considered across the range of transportation planning processes and products developed by Stat...

  15. Trace and major element pollution originating from coal ash suspension and transport processes.

    Science.gov (United States)

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  16. Trace and major element pollution originating from coal ash suspension and transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D.; Polic, P. [University of Belgrade, Belgrade (Yugoslavia). Faculty of Science, Dept. of Chemistry

    2001-07-01

    Coal ash obtained from Nikola Tesla A power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. It is concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  17. Spatial Evaluation Approach in the Planning Process of Transport Logistic Terminals

    Directory of Open Access Journals (Sweden)

    Mitja Pavliha

    2006-09-01

    Full Text Available The "state-of-the-art" of the present global European situationis in desperate need for a new approach to development ofurban and rural environment with an interdisciplinary approach,when introducing the elements of transport infrastructureand transport infrastructure landscape into space and environment.In order to reach a decision regarding the location of a certaintransport logistic terminal some constraints (technical andtechnological as well as financial should be considered. Aspart of the process trying to respond to these constraints, associatedprimarily with the traffic conditions at the appointed networklocations, a careful evaluation in respect to cargo flowsand infrastructure connections as well as spatial planningshould be performed.M01phological indicators, which directly and indirectly affectthe structure and the form of the transport infrastructure elements- transport logistic terminals, are extracted and presentedin the paper. At this point, the paper concludes that thelaying down and the evaluation of transport infrastructure elementsare based on two categories of morphological elements:Constructed morphological elements (all constntctionsand their elements, andNatural morphological elements (topography, climate, vegetation,etc..The presented spatial methodology deals with the interactionsbetween the constructed and natural morphological elements- the quality and the characteristics of the design areadded to both groups.Findings and projections acquired on the basis of a spatialevaluation and transport logistic analysis constitute, togetherwith financial-economic assumptions, the basis for elaboratinga business plan - a significant element in the decision-makingprocess regarding the development of a transport logistic terminal.

  18. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  19. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia.

    Science.gov (United States)

    van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J

    2016-09-30

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evaluation of transport safety analysis processes of radioactive material performed by a regulatory body

    International Nuclear Information System (INIS)

    Mattar, Patricia Morais

    2017-01-01

    Radioactive substances have many beneficial applications, ranging from power generation to uses in medicine, industry and agriculture. As a rule, they are produced in different places from where they are used, needing to be transported. In order for transport to take place safely and efficiently, national and international standards must be complied with. This research aims to assess the safety analysis processes for the transport of radioactive material carried out by the regulatory body in Brazil, from the point of view of their compliance with the International Atomic Energy Agency (IAEA) standards. The self-assessment methodology named SARIS, developed by the AIEA, was used. The following steps were carried out: evaluation of the Diagnosis and Processes Mapping; responses to the SARIS Question Set and complementary questions; SWOT analysis; interviews with stakeholders and evaluation of a TranSAS mission conducted by the IAEA in 2002. Considering only SARIS questions, processes are 100% adherent. The deepening of the research, however, led to the development of twenty-two improvement proposals and the identification of nine good practices. The results showed that the safety analysis processes of the transport of radioactive material are being carried out in a structured, safe and reliable way but also that there is much opportunity for improvement. The formulation of an action plan, based on the presented proposals, can bring to the regulatory body many benefits. This would be an important step towards convening an external evaluation, providing greater reliability and transparency to the regulatory body´s processes. (author)

  1. Contribution to the logistic evaluation system in the transportation process in Santo Domingo, Ecuador

    Directory of Open Access Journals (Sweden)

    Rodobaldo Martínez Vivar

    2018-02-01

    Full Text Available Purpose: The objective of the present research is to design and apply a methodology to evaluate the logistics system in the transportation process in a base vehicle fleet, which contributes to decrease the costs of distribution and to increase the performance of the logistics system of the organization. Design/methodology: The proposal of a holistic technology for the management of this process is carried out, which integrates indicators and tools that improve control and decision-making activities in this area. Findings: The application of the procedure developed in the selected organization contributed to the identification of deficiencies related to the availability of the equipment and the needs of the clients, the low technical availability of the automotive plant, the low utilization of the capacity of the freight vehicles, the absence of a plan of measures to diminish the empty routes of the transport and the overconsumption of fuel due to the accomplishment of extra trips. Aspects that contributed to the redesign of some of the main functions of physical distribution such as itinerary planning, selection of means of transport and analysis of operating indicators, aspects that favored the optimization of the number of trips and, consequently, the adequate use of the equipment and the loads to be transported, observing a saving of 15% in the fuel consumption per load transported. Originality: The originality of the present research lies in the combination of different theories and techniques that contribute from a holistic approach to the logistics evaluation of the transportation process, facilitating the optimization of transportation requirements, its operation and maintenance.

  2. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  3. The issue resolution process in the Civilian Radioactive Waste Transportation Program

    International Nuclear Information System (INIS)

    Holm, J.A.; Denny, S.

    1987-01-01

    The Civilian Radioactive Waste Management (OCRWM) Program consists of various technical and institutional program activities which engender concern from the general public and from policymakers at federal, state, and local levels. Most familiar are the concerns centered around selection of a site for a repository; however, the transportation portion of the OCRWM program also engenders similar concerns for safety, efficiency and effectiveness. The major Transportation institutional issues were detailed in the Institutional Plan, issued in 1986, and include topics such as liability, defense waste, routing, emergency response, risk identification and mitigation, cash integrity, inspection and enforcement of high-level waste shipments and use of overweight trucks as part of the modal mix. This paper will define the process being used to identify and resolve institutional issues, show how the technical and institutional issues interface and are addressed, and briefly describe four specific activities which illustrate the process of resolving institutional issues in the Transportation program

  4. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes

    Science.gov (United States)

    Von Puttkamer, J.

    1973-01-01

    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  5. Some issues of logistics management applied to the passenger transportation process on suburban routes

    Directory of Open Access Journals (Sweden)

    Тetyana М. Grigorova

    2014-12-01

    Full Text Available Considered are some questions that address the problem of logistic management of suburban transport services. Using the logistic approach to the passenger transportation process management we get possibility to determine the need for consideration of the transport process parameters’ impact on the passengers’ fatigability that affects their productivity in the workplace. Basing on the analysis of the results obtained in-field, we implemented a mathematical description of the functional link between the passenger’s regulatory systems activity index, and the negatively affecting factors. It is revealed that the change in the passenger’s regulatory systems activity index on approaching the suburban line terminal station is described with sufficient accuracy by a non-linear regression equation, which includes as variables the regulatory systems activity index value before approaching to the station, the age of the passenger, the pedestrian walking pace, the time of approaching to the stop station.

  6. A microcomputer controlled data acquisition and processing system to study material transport processes by means of radioactive nuclides

    International Nuclear Information System (INIS)

    Baetz, H.

    1991-01-01

    The availability of efficient and stout computer systems offers many opportunities for shaping measuring and evaluation techniques which are suitable also for studies of material transport processes. The dissertation shows that already with a relatively low expenditure of hardware, the share of software, however, should not be neglected, universal solutions for complex hardware systems are possible which are qualitatively superior to customary systems. In addition to studying material transport processes in industry, for which the presented MEAS has been developed, its suitability for use in radiochemical analyses for the development of new medicines is tested. Furthermore, its application for the continuous determination of surface density profiles is being worked on (stone resistance in power plants) or planned (thickness profiles of tubes for vehicle tires). (orig./HP) [de

  7. Energy and nutrient density of foods in relation to their carbon footprint.

    Science.gov (United States)

    Drewnowski, Adam; Rehm, Colin D; Martin, Agnes; Verger, Eric O; Voinnesson, Marc; Imbert, Philippe

    2015-01-01

    A carbon footprint is the sum of greenhouse gas emissions (GHGEs) associated with food production, processing, transporting, and retailing. We examined the relation between the energy and nutrient content of foods and associated GHGEs as expressed as g CO2 equivalents. GHGE values, which were calculated and provided by a French supermarket chain, were merged with the Composition Nutritionnelle des Aliments (French food-composition table) nutrient-composition data for 483 foods and beverages from the French Agency for Food, Environmental and Occupational Health and Safety. Foods were aggregated into 34 food categories and 5 major food groups as follows: meat and meat products, milk and dairy products, frozen and processed fruit and vegetables, grains, and sweets. Energy density was expressed as kcal/100 g. Nutrient density was determined by using 2 alternative nutrient-density scores, each based on the sum of the percentage of daily values for 6 or 15 nutrients, respectively. The energy and nutrient densities of foods were linked to log-transformed GHGE values expressed per 100 g or 100 kcal. Grains and sweets had lowest GHGEs (per 100 g and 100 kcal) but had high energy density and a low nutrient content. The more-nutrient-dense animal products, including meat and dairy, had higher GHGE values per 100 g but much lower values per 100 kcal. In general, a higher nutrient density of foods was associated with higher GHGEs per 100 kcal, although the slopes of fitted lines varied for meat and dairy compared with fats and sweets. Considerations of the environmental impact of foods need to be linked to concerns about nutrient density and health. The point at which the higher carbon footprint of some nutrient-dense foods is offset by their higher nutritional value is a priority area for additional research. © 2015 American Society for Nutrition.

  8. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    Science.gov (United States)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different

  9. Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard; Christensen, Thomas Højlund

    2002-01-01

    A biogeochemical transport code is used to simulate leachate attenuation. biogeochemical processes. and development of redox zones in a pollution plume downstream of the Vejen landfill in Denmark. Calibration of the degradation parameters resulted in a good agreement with the observed distribution...

  10. Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes

    CERN Document Server

    Nagnibeda, Ekaterina; Nagnibeda, Ekaterina

    2009-01-01

    This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.

  11. Method of processing dismantled products of radiation-contaminated equipments and transportation container therefor

    International Nuclear Information System (INIS)

    Komura, Shiro; Heki, Hideaki.

    1991-01-01

    In a method of decontaminating dismantled products of radiation-contaminated equipments removed at nuclear power facilities and classifying the dismantled products depending on their remaining radioactivity levels measured at a processing facility, the dismantled products are contained in a transportation container, to which decontamination liquids are injected and they are transferred to the processing facility. The decontaminated liquid wastes are drained from the transportation container, the dismantled products are washed while being contained in the transportation container as they are. Then, they are transferred to a step for measuring their remaining radioactivity level. This can shorten the time from the containment of the dismantled products to the transportation container to the completion of the decontamination, to improve the efficiency for the decontamination processing. Further, by separately containing the dismantled products on every kind of materials to respective containers, the processing time can be appropriately controlled respectively even if the dissolving efficiency to the decontamination liquids is different depending on the materials. (T.M.)

  12. Cost reductions of fuel cells for transport applications: fuel processing options

    Energy Technology Data Exchange (ETDEWEB)

    Teagan, W P; Bentley, J; Barnett, B [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-03-15

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R and D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under $150/kW in stationary applications and $30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories. (orig.)

  13. Database of full-scale laboratory experiments on wave-driven sand transport processes

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Schretlen, Johanna Lidwina Maria; Ribberink, Jan S.; O'Donoghue, Tom

    2009-01-01

    A new database of laboratory experiments involving sand transport processes over horizontal, mobile sand beds under full-scale non-breaking wave and non-breaking wave-plus-current conditions is described. The database contains details of the flow and bed conditions, information on which quantities

  14. Symposium on intermediate-range atmospheric-transport processes and technology assessment

    International Nuclear Information System (INIS)

    1981-10-01

    Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution

  15. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    NARCIS (Netherlands)

    van Breukelen, B.M.; Griffioen, J.; Roling, W.F.M.; van Verseveld, H.W.

    2004-01-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two

  16. Effect of nonequipotentiality of magnetic surfaces on the transport processes in a tokamak

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.; Shasharina, S.G.

    1987-01-01

    The effect of deflection of equipotential from the magnetic surfaces on the transport processes in a tokamak is considered. The values of radial and poloidal electric fields are determined self-consistently, particle and heat fluxes are calculated with regard to these fields. It is shown that in some cases the effect of the poloidal electric field on the current values is very substantial

  17. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Wulp, Simon A. van der; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J.

    2016-01-01

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377 m 3 s −1 entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174 tons and 14 to 60 tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. - Highlights: • Full overview of river discharges, nutrient flux and nutrient levels in Jakarta Bay • Important overview of nutrient flux from individual rivers • Simulations identify the principal drivers of water circulation and nutrient gradient. • Nutrient dispersion model includes the local effects of the Java Sea current system.

  18. Scale and legacy controls on catchment nutrient export regimes

    Science.gov (United States)

    Howden, N. J. K.; Burt, T.; Worrall, F.

    2017-12-01

    Nutrient dynamics in river catchments are complex: water and chemical fluxes are highly variable in low-order streams, but this variability declines as fluxes move through higher-order reaches. This poses a major challenge for process understanding as much effort is focussed on long-term monitoring of the main river channel (a high-order reach), and therefore the data available to support process understanding are predominantly derived from sites where much of the transient response of nutrient export is masked by the effect of averaging over both space and time. This may be further exacerbated at all scales by the accumulation of legacy nutrient sources in soils, aquifers and pore waters, where historical activities have led to nutrient accumulation where the catchment system is transport limited. Therefore it is of particular interest to investigate how the variability of nutrient export changes both with catchment scale (from low to high-order catchment streams) and with the presence of legacy sources, such that the context of infrequent monitoring on high-order streams can be better understood. This is not only a question of characterising nutrient export regimes per se, but also developing a more thorough understanding of how the concepts of scale and legacy may modify the statistical characteristics of observed responses across scales in both space and time. In this paper, we use synthetic data series and develop a model approach to consider how space and timescales combine with impacts of legacy sources to influence observed variability in catchment export. We find that: increasing space and timescales tend to reduce the observed variance in nutrient exports, due to an increase in travel times and greater mixing, and therefore averaging, of sources; increasing the influence of legacy sources inflates the variance, with the level of inflation dictated by the residence time of the respective sources.

  19. One possible method of mathematical modeling of turbulent transport processes in plasma

    International Nuclear Information System (INIS)

    Skvortsova, Nina N.; Batanov, German M.; Petrov, Alexander E.; Pshenichnikov, Anton A.; Sarksyan, Karen A.; Kharchev, Nikolay K.; Bening, Vladimir E.; Korolev, Victor Yu.

    2003-01-01

    It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in plasma of the L-2M stellarator and the TAU-1 linear device, the increments of the process of local fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians. (author)

  20. Ozone using outlook for efficiency increasing of transportation and processing of high viscous petroleum raw materials

    International Nuclear Information System (INIS)

    Nadirov, N.K.; Zajkina, R.F.; Mamonova, T.B.

    1997-01-01

    Main types of oxidation reactions preceding during petroleum feedstock ozonization are generalized. The slight ozone high paraffin-content petroleum processing sites in shown on the example will make possible to rise the pipe transport efficiency and to increase the light fraction contents in petroleums. The prospects are discussed to application of ozone forming as a by-product of radiation-chemical facilities action for petroleum feedstock processing. (author)

  1. LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State

    Directory of Open Access Journals (Sweden)

    Claus U. Pietrzik

    2017-04-01

    Full Text Available The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aβ secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 and APP caused a change of APP transport velocities, indicating that LRP1 recruits APP to a specific type of fast axonal transport vesicles. In contrast lowered levels of LRP1 facilitated APP transport. We further show that monomeric and dimeric APP exhibit similar transport characteristics and that both are affected by LRP1 in a similar way, by slowing down APP anterograde transport and increasing its endocytosis rate. In line with this, a knockout of LRP1 in CHO cells and in primary neurons caused an increase of monomeric and dimeric APP surface localization and in turn accelerated shedding by meprin β and ADAM10. Notably, a choroid plexus specific LRP1 knockout caused a much higher secretion of sAPP dimers into the cerebrospinal fluid compared to sAPP monomers. Together, our data show that LRP1 functions as a sorting receptor for APP, regulating its cell surface localization and thereby its processing by ADAM10 and meprin β, with the latter exhibiting a preference for APP in its dimeric state.

  2. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fred J. Molz, III

    2010-05-28

    to Pu uptake by corn roots and xylem transport. Plants were started in wet paper wrapped around each corn seed. When the tap roots were sufficiently long, the seedlings were transplanted to a soil container with the tap root extending out the container bottom. The soil container was then placed over a nutrient solution container, and the solution served as an additional medium for root growth. To conduct an uptake study, a radioactive substance, such as Pu complexed with the bacterial siderophore DFOB, was added to the nutrient solution. After a suitable elapsed time, the corn plant was sacrificed, cut into 10 cm lengths, and the activity distribution measured. Experimental results clarified the basic nature of Pu uptake and transport in corn plants, and resulting simulations suggested that each growing season Pu in the SRS lysimeters would move into the plant shoots and be deposited on the soil surface during the Fall dieback. Subsequent isotope ratio analyses showed that this did happen. OVERALL RESULTS AND CONCLUSIONS - (1) Pu transport downward from the source is controlled by advection, dispersion and adsorption, along with surface-mediated REDOX reactions. (2) Hysteresis, extreme root distribution functions, air-content dependent oxidation rate constants, and large evaporation rates from the soil surface were not able to explain the observed upward migration of Pu. (3) Small amounts of Pu uptake by plant roots and translocation in the transpiration stream creates a realistic mechanism for upward Pu migration (4) Realistic xylem cross-sectional areas imply high flow velocities under hot, wet conditions. Such flow velocities produce the correct shape for the observed activity distributions in the top 20 cm of the lysimeter soil. (5) Simulations imply that Pu should have moved into the above-ground grass tissue each year during the duration of the experiments, resulting in an activity residual accumulating on the soil surface. An isotope ratio analysis showed that

  3. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    International Nuclear Information System (INIS)

    Molz, Fred J. III

    2010-01-01

    to Pu uptake by corn roots and xylem transport. Plants were started in wet paper wrapped around each corn seed. When the tap roots were sufficiently long, the seedlings were transplanted to a soil container with the tap root extending out the container bottom. The soil container was then placed over a nutrient solution container, and the solution served as an additional medium for root growth. To conduct an uptake study, a radioactive substance, such as Pu complexed with the bacterial siderophore DFOB, was added to the nutrient solution. After a suitable elapsed time, the corn plant was sacrificed, cut into 10 cm lengths, and the activity distribution measured. Experimental results clarified the basic nature of Pu uptake and transport in corn plants, and resulting simulations suggested that each growing season Pu in the SRS lysimeters would move into the plant shoots and be deposited on the soil surface during the Fall dieback. Subsequent isotope ratio analyses showed that this did happen. OVERALL RESULTS AND CONCLUSIONS - (1) Pu transport downward from the source is controlled by advection, dispersion and adsorption, along with surface-mediated REDOX reactions. (2) Hysteresis, extreme root distribution functions, air-content dependent oxidation rate constants, and large evaporation rates from the soil surface were not able to explain the observed upward migration of Pu. (3) Small amounts of Pu uptake by plant roots and translocation in the transpiration stream creates a realistic mechanism for upward Pu migration (4) Realistic xylem cross-sectional areas imply high flow velocities under hot, wet conditions. Such flow velocities produce the correct shape for the observed activity distributions in the top 20 cm of the lysimeter soil. (5) Simulations imply that Pu should have moved into the above-ground grass tissue each year during the duration of the experiments, resulting in an activity residual accumulating on the soil surface. An isotope ratio analysis showed that

  4. Quantifying nutrient export and deposition with a dynamic landscape evolution model for the lake Bolsena watershed, Italy

    Science.gov (United States)

    Pelorosso, Raffaele; Temme, Arnoud; Gobattoni, Federica; Leone, Antonio

    2010-05-01

    Excessive nutrient loads from upstream watershed activities such as agriculture, hydrological modifications, and urban runoff, have been identified as the leading cause of deterioration in assessed lakes and reservoirs (USEPA, 2000; Leone et al., 2001; Leone et al., 2003). Excessive nutrient transport into lakes and reservoirs may accelerate eutrophication rates, causing negative impacts on aesthetic and water quality. As reservoirs become eutrophic, they are depleted in oxygen and enriched in suspended solids, with heavy consequences for ecosystems and natural habitats. Management of nutrient loads into reservoirs requires knowledge of nutrient transport and delivery from the watershed-stream system (Ripa, 2003). Managing uncultivated lands in watersheds may be a cost effective way to improve water quality in agricultural landscapes, and recent advances in landscape ecology highlight important relationships between the structural configuration of these lands and nutrient redistribution (e.g., Forman 1987; Barrett and others 1990). Many studies have been carried out to underline and explain how landscape characteristics and structure may affect these processes. In these studies, relations between land cover and nutrient storage were analyzed using geographic information systems (GIS) (e.g. Lucas, 2002). Nutrients are generally transported from the landscape into streams during runoff events; however, they may also enter stream flow from other sources such as groundwater recharge and point source effluent discharges (Lucas, 2002; Nielsen, 2007; Waldron, 2008; Castillo, 2009). Water moves nutrients and delivers them to downstream water bodies such as lakes and reservoirs so that erosion phenomena play an essential role in determining nutrients fluxes and deposition. On the one hand, several hydrological models take into account nutrients reactions, movements and deposition - coupling soil erosion processes with transport equations (Bartley, 2004; Lű, 2010). On the

  5. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater.

    Science.gov (United States)

    Huang, Xiao; Dong, Wenyi; Wang, Hongjie; Jiang, Shilong

    2017-10-01

    This study aimed to present an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater. The average COD, NH 4 + -N, TN, and TP removal efficiency were 91.81%, 96.26%, 83.73% and 94.49%, respectively. Temperature plunge and C/N decrease have a certain impact on the modified process. Characteristics of microbial community, function microorganism, and correlation of microbial community with environmental variables in five compartments were carried out by Illumina Miseq high-throughput sequencing. The differences of microbial community were observed and Blastocatella, Flavobacterium and Pseudomonas were the dominant genus. Nitrosomonas and Nitrospira occupied a dominant position in AOB and NOB, respectively. Rhodospirillaceae and Rhodocyclaceae owned a considerable proportion in phosphorus removal bacteria. DO and COD played significant roles on affecting the microbial components. The A-MAO process in this study demonstrated a high potential for nutrient removal from municipal wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Food safety and nutritional quality for the prevention of non communicable diseases: the Nutrient, hazard Analysis and Critical Control Point process (NACCP).

    Science.gov (United States)

    Di Renzo, Laura; Colica, Carmen; Carraro, Alberto; Cenci Goga, Beniamino; Marsella, Luigi Tonino; Botta, Roberto; Colombo, Maria Laura; Gratteri, Santo; Chang, Ting Fa Margherita; Droli, Maurizio; Sarlo, Francesca; De Lorenzo, Antonino

    2015-04-23

    The important role of food and nutrition in public health is being increasingly recognized as crucial for its potential impact on health-related quality of life and the economy, both at the societal and individual levels. The prevalence of non-communicable diseases calls for a reformulation of our view of food. The Hazard Analysis and Critical Control Point (HACCP) system, first implemented in the EU with the Directive 43/93/CEE, later replaced by Regulation CE 178/2002 and Regulation CE 852/2004, is the internationally agreed approach for food safety control. Our aim is to develop a new procedure for the assessment of the Nutrient, hazard Analysis and Critical Control Point (NACCP) process, for total quality management (TMQ), and optimize nutritional levels. NACCP was based on four general principles: i) guarantee of health maintenance; ii) evaluate and assure the nutritional quality of food and TMQ; iii) give correct information to the consumers; iv) ensure an ethical profit. There are three stages for the application of the NACCP process: 1) application of NACCP for quality principles; 2) application of NACCP for health principals; 3) implementation of the NACCP process. The actions are: 1) identification of nutritional markers, which must remain intact throughout the food supply chain; 2) identification of critical control points which must monitored in order to minimize the likelihood of a reduction in quality; 3) establishment of critical limits to maintain adequate levels of nutrient; 4) establishment, and implementation of effective monitoring procedures of critical control points; 5) establishment of corrective actions; 6) identification of metabolic biomarkers; 7) evaluation of the effects of food intake, through the application of specific clinical trials; 8) establishment of procedures for consumer information; 9) implementation of the Health claim Regulation EU 1924/2006; 10) starting a training program. We calculate the risk assessment as follows

  7. Some analytic diagnostic models for transport processes in estuarine and coastal waters

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-03-01

    Advection and dispersion processes in estuarine and coastal waters are briefly reviewed. Beginning from the basic macroscopic equations of transport for a substance diluted or suspended in the considered body of water,several levels of filtering in time and space are described and applied to obtain suitable diagnostic mathematical models both with scale effects and gaussian.The solutions of the aforementioned models,for initial distributions and boundary conditions with enough symmetry,are discussed, as well as their applications to a parameter characterization of the transport properties of the receiving body of water

  8. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Science.gov (United States)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  9. Transport processes and sound velocity in vibrationally non-equilibrium gas of anharmonic oscillators

    Science.gov (United States)

    Rydalevskaya, Maria A.; Voroshilova, Yulia N.

    2018-05-01

    Vibrationally non-equilibrium flows of chemically homogeneous diatomic gases are considered under the conditions that the distribution of the molecules over vibrational levels differs significantly from the Boltzmann distribution. In such flows, molecular collisions can be divided into two groups: the first group corresponds to "rapid" microscopic processes whereas the second one corresponds to "slow" microscopic processes (their rate is comparable to or larger than that of gasdynamic parameters variation). The collisions of the first group form quasi-stationary vibrationally non-equilibrium distribution functions. The model kinetic equations are used to study the transport processes under these conditions. In these equations, the BGK-type approximation is used to model only the collision operators of the first group. It allows us to simplify derivation of the transport fluxes and calculation of the kinetic coefficients. Special attention is given to the connection between the formulae for the bulk viscosity coefficient and the sound velocity square.

  10. A biophysical analysis of mitochondrial movement: differences between transport in neuronal cell bodies versus processes.

    Science.gov (United States)

    Narayanareddy, Babu Reddy Janakaloti; Vartiainen, Suvi; Hariri, Neema; O'Dowd, Diane K; Gross, Steven P

    2014-07-01

    There is an increasing interest in factors that can impede cargo transport by molecular motors inside the cell. Although potentially relevant (Yi JY, Ori-McKenney KM, McKenney RJ, Vershinin M, Gross SP, Vallee RB. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J Cell Biol 2011;195:193-201), the importance of cargo size and subcellular location has received relatively little attention. Here we address these questions taking advantage of the fact that mitochondria - a common cargo - in Drosophila neurons exhibit a wide distribution of sizes. In addition, the mitochondria can be genetically marked with green fluorescent protein (GFP) making it possible to visualize and compare their movement in the cell bodies and in the processes of living cells. Using total internal reflection microscopy coupled with particle tracking and analysis, we quantified the transport properties of GFP-positive mitochondria as a function of their size and location. In neuronal cell bodies, we find little evidence for significant opposition to motion, consistent with a previous study on lipid droplets (Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, Welte MA, Gross SP. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 2008;135:1098-1107). However, in the processes, we observe an inverse relationship between the mitochondrial size and velocity and the run distances. This can be ameliorated via hypotonic treatment to increase process size, suggesting that motor-mediated movement is impeded in this more-confined environment. Interestingly, we also observe local mitochondrial accumulations in processes but not in cell bodies. Such accumulations do not completely block the transport but do increase the probability of mitochondria-mitochondria interactions. They are thus particularly interesting in relation to mitochondrial exchange of elements.

  11. Fast method for the detection of transport process in plant tissues by radiotracing

    International Nuclear Information System (INIS)

    Antal, K.; Joo, P.

    1995-01-01

    The efficiency of nutrients, microelements and plant protective agents and additives applied on foliar and various aeriel parts of plants depends on the adsorption of their spray drops and the penetration of agents into tissues, cells and inner caves. The permeability of the cuticular membrane and the mode of entry of above substances through the cuticle and their mobility in other tissues are poorly understood but have been the subject of intensive research. The traditional methods in biological systems are the automicroradiography and sample taking methods. The radioactive tracer method developed by us is suitable for determining the effective diffusion coefficients characterizing the migration process and concentration distributions off these materials in plants by consumption of minimal amount of β-labelled radioactive isotopes in very short time. (author) 9 refs.; 3 figs

  12. Inhibiting Cadmium Transport Process in Root Cells of Plants: A Review

    Directory of Open Access Journals (Sweden)

    ZHAO Yan-ling

    2016-05-01

    Full Text Available Cadmium(Cd is the most common element found in the heavy-metal contaminated soils in China. Roots of rice and vegetables can concentrate Cd from acid soils, and then transport Cd to above-ground parts. Cd in edible part of plants directly influences the food safety. Cellwall, plasma membrane and organells of root cells in plant can discriminate Cd from other elements. A lot of Cd can be fixed in root cells by precipitation, complexation, compartmentation, and so on, to inhibit its transport from roots to shoot and guarantee the physiological activities in above-ground parts carrying out normally. This paper summarized recent advance on inhibiting Cd transport process in subcellular fractions of root cells of plants, which is in advantage of exploring excellent germplasms and gene resources in the future.

  13. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte

    2008-01-01

    of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate, the contributions of various gas transport processes on methane attenuation in landfill cover soils....... For this purpose, a reactive transport model that includes advection and the Dusty Gas Model for simulation of multicomponent gas diffusion was used. The simulations are constrained by data from a series of counter-gradient laboratory experiments. Diffusion typically accounts for over 99% of methane emission...... to the atmosphere. Oxygen supply into the soil column is driven exclusively by diffusion, whereas advection outward offsets part of the diffusive contribution. In the reaction zone, methane consumption reduces the pressure gradient, further decreasing the significance of advection near the top of the column...

  14. Environmental Transport of Plutonium: Biogeochemical Processes at Femtomolar Concentrations and Nanometer Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-10-05

    The major challenge in predicting the mobility and transport of plutonium (Pu) is determining the dominant geochemical processes that control its behavior in the subsurface. The reaction chemistry of Pu (i.e., aqueous speciation, solubility, sorptivity, redox chemistry, and affinity for colloidal particles, both abiotic and microbially mediated) is particularly complicated. It is generally thought that due to its low solubility and high sorptivity, Pu migration in the environment occurs only when facilitated by transport on particulate matter (i.e., colloidal particles). Despite the recognized importance of colloid-facilitated transport of Pu, very little is known about the geochemical and biochemical mechanisms controlling Pu-colloid formation and association, particularly at femtomolar Pu concentrations observed at DOE sites.

  15. Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Wenbin [General Motors LLC, Pontiac, MI (United States)

    2014-08-29

    This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused on cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.

  16. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  17. Discharge controls on the sediment and dissolved nutrient transport flux of the lowermost Mississippi River: Implications for export to the ocean and for delta restoration

    Science.gov (United States)

    Allison, Mead A.; Pratt, Thad C.

    2017-12-01

    Lagrangian longitudinal surveys and fixed station data are utilized from the lowermost Mississippi River reach in Louisiana at high and low discharge in 2012-2013 to examine the changing stream power, sediment transport capacity, and nitrate conveyance in this backwater reach of the river. Nitrate appears to remain conservative through the backwater reach at higher discharges (>15,000 m3/s), thus, nitrate levels supplied from the catchment are those exported to the Gulf of Mexico, fueling coastal hypoxia. At lower discharges, interaction with fine sediments and organic matter stored on the bed due to estuarine and tidal processes, likely elevates nitrate levels prior to entering the Gulf: a further 1-2 week long spike in nitrate concentrations is associated with the remobilization of this sediments during the rising discharge phase of the Mississippi. Backwater characteristics are clearly observed in the study reach starting at river kilometer 703 (Vicksburg) in both longitudinal study periods. Stream power at the lowermost station is only 16% of that at Vicksburg in the high discharge survey, and 0.6% at low flow. The high-to-low discharge study differential in unit stream power at a station increases between Vicksburg and the lowermost station from a factor of 3 to 47-50 times. At high discharge, ∼30% of this energy loss can be ascribed to the removal of water to the Atchafalaya at Old River Control. Suspended sediment flux decreases downstream in the studied reach in both studies: the lowermost station has 75% of the flux at Vicksburg in the high discharge study, and 0.9% in the low discharge study. The high discharge values, given that this study was conducted during the highest rising hydrograph of the water year, are augmented by sediment resuspended from the bed that was deposited in the previous low discharge phase. Examination of this first detailed field observation studies of the backwater phenomenon in a major river, shows that observed suspended

  18. Modelling of transport and biogeochemical processes in pollution plumes: Literature review of model development

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard

    2002-01-01

    A literature survey shows how biogeochemical (coupled organic and inorganic reaction processes) transport models are based on considering the complete biodegradation process as either a single- or as a two-step process. It is demonstrated that some two-step process models rely on the Partial...... Equilibrium Approach (PEA). The PEA assumes the organic degradation step, and not the electron acceptor consumption step, is rate limiting. This distinction is not possible in one-step process models, where consumption of both the electron donor and acceptor are treated kinetically. A three-dimensional, two......-step PEA model is developed. The model allows for Monod kinetics and biomass growth, features usually included only in one-step process models. The biogeochemical part of the model is tested for a batch system with degradation of organic matter under the consumption of a sequence of electron acceptors...

  19. Estimation of transported pollutant load in Ardila catchment using the SWAT model

    OpenAIRE

    DURÃO, A.; LEITÃO, P.; BRITO, D.; FERNANDES, R.M.; NEVES, R.; MORAIS, M.

    2011-01-01

    Excess of organic matter and nutrients in the water body promotes algae blooms, which can accelerate the eutrophication process, situation often observed in the Ardila river. This river was identified as very polluted and classified as critical for Alqueva-Pedrogão System. The aim of this study was to estimate the transported nutrients load in a transboundary catchment using the SWAT (Soil and Water Assessment Tool) model and to determine the contribution off nutrients load in the entire catc...

  20. Enhancement of the sludge disintegration and nutrients release by a treatment with potassium ferrate combined with an ultrasonic process.

    Science.gov (United States)

    Li, Wei; Yu, Najiaowa; Liu, Qian; Li, Yiran; Ren, Nanqi; Xing, Defeng

    2018-09-01

    Sludge disintegration by ultrasound is a promising sludge treatment method. In order to enhance the efficiency of the sludge reduction and hydrolysis, potassium ferrate (K 2 FeO 4 ) (PF) was used. A novel method was developed to improve the sludge disintegration-sludge pretreatment by using PF in combination with an ultrasonic treatment (PF + ULT). After a short-term PF + ULT treatment, 17.23% of the volatile suspended solids (VSS) were reduced after a 900-min reaction time, which is 61.3% higher than the VSS reduction for the raw sludge. The supernatant soluble chemical oxygen demand (SCOD), total nitrogen (TN), volatile fatty acids (VFAs), soluble protein and polysaccharides increased by 522.5%, 1029.4%, 878.4%, 2996.6% and 801.9%, respectively. The constituent parts of the dissolved organic matter of the sludge products were released efficiently, which demonstrated the positive effect caused by the PF + ULT. The enhanced sludge disintegration process further alleviates environmental risk and offers a more efficient and convenient method for utilizing sludge. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Disparate effects of p24alpha and p24delta on secretory protein transport and processing.

    Directory of Open Access Journals (Sweden)

    Jeroen R P M Strating

    Full Text Available BACKGROUND: The p24 family is thought to be somehow involved in endoplasmic reticulum (ER-to-Golgi protein transport. A subset of the p24 proteins (p24alpha(3, -beta(1, -gamma(3 and -delta(2 is upregulated when Xenopus laevis intermediate pituitary melanotrope cells are physiologically activated to produce vast amounts of their major secretory cargo, the prohormone proopiomelanocortin (POMC. METHODOLOGY/PRINCIPAL FINDINGS: Here we find that transgene expression of p24alpha(3 or p24delta(2 specifically in the Xenopus melanotrope cells in both cases causes an effective displacement of the endogenous p24 proteins, resulting in severely distorted p24 systems and disparate melanotrope cell phenotypes. Transgene expression of p24alpha(3 greatly reduces POMC transport and leads to accumulation of the prohormone in large, ER-localized electron-dense structures, whereas p24delta(2-transgenesis does not influence the overall ultrastructure of the cells nor POMC transport and cleavage, but affects the Golgi-based processes of POMC glycomaturation and sulfation. CONCLUSIONS/SIGNIFICANCE: Transgenic expression of two distinct p24 family members has disparate effects on secretory pathway functioning, illustrating the specificity and non-redundancy of our transgenic approach. We conclude that members of the p24 family furnish subcompartments of the secretory pathway with specific sets of machinery cargo to provide the proper microenvironments for efficient and correct secretory protein transport and processing.

  2. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1989-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the US Department of Energy (DOE) Hanford Waste Burial Site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulted in a programmatic decision to obtain a type B(U) Certificate of Compliance and abandon the originally planned US Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and US Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments. 2 figs

  3. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  4. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  5. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1990-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September, 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the U.S. Department of Energy (DOE) Hanford waste burial site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulting in a programmatic decision to obtain a Type B(U) Certification of Compliance and abandon the originally planned U.S. Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and U.S. Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments

  6. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  7. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams

    Science.gov (United States)

    Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen

    2010-01-01

    The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...

  8. Methane productivity and nutrient recovery from manure

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.B.

    2003-07-01

    The efficient recovery of energy and improvements in the handling of nutrients from manure have attracted increased research focus during recent decades. Anaerobic digestion is a key process in any strategy for the recovery of energy, while slurry separation is an important component in an improved nutrient-handling strategy. This thesis is divided into two parts: the first deals mainly with nutrient recovery strategies and the second examines biological degradation processes, including controlled anaerobic digestion. (au)

  9. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  10. Saccharomyces cerevisiae–Based Platform for Rapid Production and Evaluation of Eukaryotic Nutrient Transporters and Transceptors for Biochemical Studies and Crystallography

    DEFF Research Database (Denmark)

    Scharff-Poulsen, Peter; Pedersen, Per Amstrup

    2013-01-01

    transporter pr. liter cell culture. A detergent screen showed that n-dodecyl-ß-D-maltopyranoside (DDM) is acceptable for solubilization of the membrane-integrated fusions. Extracts of solubilized membranes were prepared with this detergent and used for purifications by Ni-NTA affinity chromatography, which...

  11. Reactive transport modeling of interaction processes between clay stone and cement

    International Nuclear Information System (INIS)

    Windt, L. de; van der Lee, J.; Pellegrini, D.

    2001-01-01

    The disposal of radioactive wastes in clayey formations may require the use of large amounts of concrete and cement. The chemical interactions between these industrial materials and the host rock are modeled with the reactive transport code HYTEC for time scales and a geometry representative of disposal projects. The pH evolution, a key parameter in element mobility, is studied more specifically. It depends on several interdependent processes: i) diffusion of highly alkaline cement pore solution, ii) strong buffering related to important mineral transformations both in the cement and in the clay, and iii) cation exchange processes, beyond the zone of intense mineral transformations. In addition, precipitation of secondary minerals may lead to a partial or complete clogging of the pore space, almost stopping the propagation of the high pH plume. In a second step, preliminary results on the migration of strontium and uranium in these strongly coupled systems are presented as an example of transport parameter derivation. (authors)

  12. An integrated methodology for characterizing flow and transport processes in fractured rock

    International Nuclear Information System (INIS)

    Wu, Yu-Shu

    2007-01-01

    To investigate the coupled processes involved in fluid and heat flow and chemical transport in the highly heterogeneous, unsaturated-zone (UZ) fractured rock of Yucca Mountain, we present an integrated modeling methodology. This approach integrates a wide variety of moisture, pneumatic, thermal, and geochemical isotopic field data into a comprehensive three-dimensional numerical model for modeling analyses. The results of field applications of the methodology show that moisture data, such as water potential and liquid saturation, are not sufficient to determine in situ percolation flux, whereas temperature and geochemical isotopic data provide better constraints to net infiltration rates and flow patterns. In addition, pneumatic data are found to be extremely valuable in estimating large-scale fracture permeability. The integration of hydrologic, pneumatic, temperature, and geochemical data into modeling analyses is thereby demonstrated to provide a practical modeling approach for characterizing flow and transport processes in complex fractured formations

  13. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    Science.gov (United States)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  14. Transport of the photodynamic therapy agent 5-aminolevulinic acid by distinct H+-coupled nutrient carriers coexpressed in the small intestine.

    Science.gov (United States)

    Anderson, Catriona M H; Jevons, Mark; Thangaraju, Muthusamy; Edwards, Noel; Conlon, Nichola J; Woods, Steven; Ganapathy, Vadivel; Thwaites, David T

    2010-01-01

    5-Aminolevulinic acid (ALA) is a prodrug used in photodynamic therapy, fluorescent diagnosis, and fluorescent-guided resection because it leads to accumulation of the photosensitizer protoporphyrin IX (PpIX) in tumor tissues. ALA has good oral bioavailability, but high oral doses are required to obtain selective PpIX accumulation in colonic tumors because accumulation is also observed in normal gut mucosa. Structural similarities between ALA and GABA led us to test the hypothesis that the H(+)-coupled amino acid transporter PAT1 (SLC36A1) will contribute to luminal ALA uptake. Radiolabel uptake and electrophysiological measurements identified PAT1-mediated H(+)-coupled ALA symport after heterologous expression in Xenopus oocytes. The selectivity of the nontransported inhibitors 5-hydroxytryptophan and 4-aminomethylbenzoic acid for, respectively, PAT1 and the H(+)-coupled di/tripeptide transporter PepT1 (SLC15A1) were examined. 5-Hydroxytryptophan selectively inhibited PAT1-mediated amino acid uptake across the brush-border membrane of the human intestinal (Caco-2) epithelium whereas 4-aminomethylbenzoic acid selectively inhibited PepT1-mediated dipeptide uptake. The inhibitory effects of 5-hydroxytryptophan and 4-aminomethylbenzoic acid were additive, demonstrating that both PAT1 and PepT1 contribute to intestinal transport of ALA. This is the first demonstration of overlap in substrate specificity between these distinct transporters for amino acids and dipeptides. PAT1 and PepT1 expression was monitored by reverse transcriptase-polymerase chain reaction using paired samples of normal and cancer tissue from human colon. mRNA for both transporters was detected. PepT1 mRNA was increased 2.3-fold in cancer tissues. Thus, increased PepT1 expression in colonic cancer could contribute to the increased PpIX accumulation observed. Selective inhibition of PAT1 could enhance PpIX loading in tumor tissue relative to that in normal tissue.

  15. Concentrations and transport of suspended sediment, nutrients, and pesticides in the lower Mississippi-Atchafalaya River subbasin during the 2011 Mississippi River flood, April through July

    Science.gov (United States)

    Welch, Heather L.; Coupe, Richard H.; Aulenbach, Brent T.

    2014-01-01

    High streamflow associated with the April–July 2011 Mississippi River flood forced the simultaneous opening of the three major flood-control structures in the lower Mississippi-Atchafalaya River subbasin for the first time in history in order to manage the amount of water moving through the system. The U.S. Geological Survey (USGS) collected samples for analysis of field properties, suspended-sediment concentration, particle-size, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and up to 136 pesticides at 11 water-quality stations and 2 flood-control structures in the lower Mississippi-Atchafalaya River subbasin from just above the confluence of the upper Mississippi and Ohio Rivers downstream from April through July 2011. Monthly fluxes of suspended sediment, suspended sand, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, simazine, metolachlor, and acetochlor were estimated at 9 stations and 2 flood-control structures during the flood period. Although concentrations during the 2011 flood were within the range of what has been observed historically, concentrations decreased during peak streamflow on the lower Mississippi River. Prior to the 2011 flood, high concentrations of suspended sediment and nitrate were observed in March 2011 at stations downstream of the confluence of the upper Mississippi and Ohio Rivers, which probably resulted in a loss of available material for movement during the flood. In addition, the major contributor of streamflow to the lower Mississippi-Atchafalaya River subbasin during April and May was the Ohio River, whose water contained lower concentrations of suspended sediment, pesticides, and nutrients than water from the upper Mississippi River. Estimated fluxes for the 4-month flood period were still quite high and contributed approximately 50 percent of the estimated annual suspended sediment, nitrate, and total phosphorus fluxes in 2011; the largest fluxes were estimated at

  16. Coupling of the spatial-temporal distributions of nutrients and physical conditions in the southern Yellow Sea

    Science.gov (United States)

    Wei, Qin-Sheng; Yu, Zhi-Gang; Wang, Bao-Dong; Fu, Ming-Zhu; Xia, Chang-Shui; Liu, Lu; Ge, Ren-Feng; Wang, Hui-Wu; Zhan, Run

    2016-04-01

    This study investigated the coupling of the spatial-temporal variations in nutrient distributions and physical conditions in the southern Yellow Sea (SYS) using data compiled from annual-cycle surveys conducted in 2006-2007 as well as satellite-derived sea-surface temperature (SST) images. The influence of physical dynamics on the distribution and transport of nutrients varied spatially and seasonally in the SYS. The Changjiang Diluted Water (CDW) plume (in summertime), the Subei Coastal Water (SCW) (year-round), and the Lubei Coastal Current (LCC) (in wintertime) served as important sources of nutrients in the inshore area in a dynamic environment. The saline Taiwan Warm Current (TWC) might transport nutrients to the northeast region of the Changjiang Estuary in the summer, and this nutrient source began to increase from spring to summer and decrease when autumn arrived. Three types of nutrient fronts, i.e., estuarine, offshore, and coastal, were identified. A circular nutrient front caused by cross-shelf transport of SCW in the southeast shelf bank area in the winter and spring was observed. The southeastward flow of western coastal cold water in the SYS might be an important conduit for cross-shelf nutrient exchange between the SYS and the East China Sea (ECS). The tongue-shaped low-nutrient region in the western study area in the wintertime was driven by the interaction of the southward Yellow Sea Western Coastal Current (YSWCC) and the biological activity. The vertically variable SCM (subsurface Chl-a maximum) in the central SYS was controlled by coupled physical-chemical processes that involved stratification and associated nutricline. The average nutrient fluxes into the euphotic zone due to upwelling near the frontal zone of the Yellow Sea Cold Water Mass (YSCWM) in the summer are estimated here for the first time: 1.4 ± 0.9 × 103 μmol/m2/d, 0.1 ± 0.1 × 103 μmol/m2/d, and 2.0 ± 1.3 × 103 μmol/m2/d for DIN, PO4-P, and SiO3-Si, respectively. The

  17. Interaction of Degradation, Deformation and Transport Processes in Municipal Solid Waste Landfills

    OpenAIRE

    Bente, Sonja

    2010-01-01

    In this thesis a model for the complex interactions between deformation, degradation and transport processe in municipal solid waste landfills is presented. Key aspects of the model are a joint continuum mechanical framework and a monolithic solution of the governing equations within the Theory of Porous Media. Interactions are considered by coupling the governing physical fields over the domain of a representative elementary volume via selected state variables. A simplified two-stage degrada...

  18. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  19. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  20. Size graded sediment dynamics: from the processes characterization to the transport modelling in the English Channel

    International Nuclear Information System (INIS)

    Blanpain, O.

    2009-10-01

    The purpose of this work is the implementation of a sediment transport model in the English Channel. The design of such a model requires the identification of the physical processes, their modelling and their in-situ validation. Because of the sedimentary particularities of the study area, modelling of the mechanical behaviour of a non uniform mixture of sediments and particularly of the fine grains within a coarse matrix is required. This study focused on the characterization of the relevant processes by acquisition of experimental and in-situ data. Data acquired in hydro-sedimentary conditions comparable to those found in the English Channel are scarce. A new instrument and image processing technique were specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected compared well with several existing formulations. One of these formulations was chosen to be adapted. The transfer dynamics of fine grains in coarse sediments and their depth of penetration were acquired from stratigraphic samples. The sediment transport model deals with multi-size grains and multi sedimentary layers, it is forced by swell and currents, and accounts for bead load and suspended load transports. It was applied to realistic scenarios for the English Channel. (author)

  1. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  2. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    Science.gov (United States)

    Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.

    2013-12-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.

  3. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    International Nuclear Information System (INIS)

    Lan, G; Jiang, J; Li, D D; Yi, W S; Zhao, Z; Nie, L N

    2013-01-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system

  4. NMTC/JAM, Simulates High Energy Nuclear Reactions and Nuclear-Meson Transport Processes

    International Nuclear Information System (INIS)

    Furihata, Shiori

    2002-01-01

    1 - Description of program or function: NMTC/JAM is an upgraded version of the code system NMTC/JAERI97. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes. It implements an intra-nuclear cascade model taking account of the in-medium nuclear effects and the pre-equilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the secondary particle transport in the intermediate energy region from 20 MeV to 3.5 GeV by the use of the Monte Carlo technique. The code has been employed in combination with the neutron-photon transport codes available to the energy region below 20 MeV for neutronics calculation of accelerator-based subcritical reactors, analyses of thick target spallation experimented and so on. 2 - Methods: High energy nuclear reactions induced by incident high energy protons, neutrons and pions are simulated with the Monte Carlo Method by the intra-nuclear nucleon-nucleon reaction probabilities based on an intra-nuclear nucleon cascade model followed by the particle evaporation including high energy fission process. Jet-Aa Microscopic transport model (JAM) is employed to simulate high energy nuclear reactions in the energy range of GeV. All reaction channels are taken into account in the JAM calculation. An intra-nuclear cascade model (ISOBAR code) taking account of the in-medium nuclear effects

  5. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    International Nuclear Information System (INIS)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  6. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  7. All-solution processed composite hole transport layer for quantum dot light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoli [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Synergetic Innovation Center of Chemical Science and Engineering, Tianjin (China); Dai, Haitao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Zhao, Junliang; Wang, Shuguo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Sun, Xiaowei [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Tangchang Road 1088, Shenzhen, Guangdong 518055 (China)

    2016-03-31

    In the present work, poly-TPD and TCTA composite hole transport layer (HTL) was employed in solution processed CdSe/ZnS quantum dot light emitting diodes (QLEDs). As the doping level of TCTA can determine the carriers transport efficiency of HTL, the proper mixing ratio of TCTA and poly-TPD should be found to optimize the performance of composite HTL for QLEDs. The doping of poly-TPD by low TCTA content can make its HOMO level lower and then reduce the energy barrier height from HTL to quantum dots (QDs), whereas the doping of poly-TPD by the concentrated TCTA results in the degraded performance of QLEDs due to its decreased hole transport mobility. By using the optimized composition with poly-TPD:TCTA (3:1) as the hole transport layer, the luminescence of the device exhibits about double enhancement compared with that of poly-TPD based device. The improvement of luminescence is mainly attributed to the lower energy barrier of hole injection. The Förster resonant energy transfer (FRET) mechanism in the devices was investigated through theoretical and experimental analysis and the results indicate that the TCTA doping makes no difference on FRET. Therefore, the charge injection mechanism dominates the improved performance of the devices. - Highlights: • Quantum dot light emitting diodes (QLEDs) were fabricated by all solution method. • The performance of QLEDs was optimized by varying the composite hole transport layer. • The blend HTL could promote hole injection by optimizing HOMO levels. • The energy transfer mechanism was analyzed by studying Förster resonant energy transfer process.

  8. Effect of nutrient supply on photosynthesis and pigmentation to short-term stress (UV radiation) in Gracilaria conferta (Rhodophyta)

    International Nuclear Information System (INIS)

    Figueroa, F.L.; Israel, A.; Neori, A.; Martinez, B.; Malta, E.J.; Put, A.; Inken, S.; Marquardt, R.; Abdala, R.; Korbee, N.

    2010-01-01

    The effects of increased photosynthetic active radiation (PAR), UV radiation (UVR), and nutrient supply on photosynthetic activity, pigment content, C:N ratio and biomass yield were studied in tank cultivated Gracilaria conferta (Rhodophyta). Electron transport rate (ETR) and biliprotein content were higher under high nutrient supply (HNS), obtained from fishpond effluents, compared to low nutrient supply (LNS), in contrast to mycosporine-like amino acids (MAAs) dynamic. The high MAA content in LNS-algae could be explained by higher UVR penetration in the thallus and by the competition for the use of nutrients with other processes. Effective quantum yield decreased after short-term exposure to high irradiance whereas full recovery in shade was produced only under slightly heat shock. UVA radiation provoked an additional decrease in photosynthesis under high water temperature. UVB radiation reversed UVA's negative effect mainly with HNS. Results support that nutrient-sufficiency help G. conferta to resist environmental changes as short-term temperature increase.

  9. Nutrient Sensing at the Plasma Membrane of Fungal Cells.

    Science.gov (United States)

    Van Dijck, Patrick; Brown, Neil Andrew; Goldman, Gustavo H; Rutherford, Julian; Xue, Chaoyang; Van Zeebroeck, Griet

    2017-03-01

    To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.

  10. Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process

    International Nuclear Information System (INIS)

    Tonini, Davide; Dorini, Gianluca; Astrup, Thomas Fruergaard

    2014-01-01

    Highlights: • We modeled material, substance, energy, and cost flows of a waste refinery process. • Ca. 56% of 1 Mg dry waste input can be recovered as bioliquid yielding 6.2 GJ biogas. • Nutrients and carbon recovery in the bioliquid was estimated to 81–89%. • The biogenic carbon in the input waste was 63% of total carbon based on 14 C analyses. • The quality of the digestate may be critical with respect to use on land. - Abstract: Energy, materials, and resource recovery from mixed household waste may contribute to reductions in fossil fuel and resource consumption. For this purpose, legislation has been enforced to promote energy recovery and recycling. Potential solutions for separating biogenic and recyclable materials are offered by waste refineries where a bioliquid is produced from enzymatic treatment of mixed waste. In this study, potential flows of materials, energy, and substances within a waste refinery were investigated by combining sampling, analyses, and modeling. Existing material, substance, and energy flow analysis was further advanced by development of a mathematical optimization model for determination of the theoretical recovery potential. The results highlighted that the waste refinery may recover ca. 56% of the dry matter input as bioliquid, yielding 6.2 GJ biogas-energy. The potential for nitrogen, phosphorous, potassium, and biogenic carbon recovery was estimated to be between 81% and 89% of the input. Biogenic and fossil carbon in the mixed household waste input was determined to 63% and 37% of total carbon based on 14 C analyses. Additional recovery of metals and plastic was possible based on further process optimization. A challenge for the process may be digestate quality, as digestate may represent an emission pathway when applied on land. Considering the potential variability of local revenues for energy outputs, the costs for the waste refinery solution appeared comparable with alternatives such as direct incineration

  11. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana

    2016-11-15

    Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a rangeemerging pollutants in the effluent were below 210ng/L. WWTP 2 showed high emerging pollutant removals, compared to those of WWTP 1, due to a greater activity of the simultaneous nitrification-denitrification processes, hydraulic retention time, and solids retention time. The compounds that were more persistent with removals below 50% in both effluents were: carbamazepine, dehydronifedipine, meprobamate, sertraline, propranolol, propoxyphene, norverapamil, diazepam, alprazolam, sulfamethoxazole, metoprolol, ofloxacin, norfloxacin, fluoxetine, erythromycin-H2O, diphenhydramine, dehydronifedipine, clarithromycin, hydrochlorothiazide, and albuterol. The application of neutral Fenton reaction as post-treatment for the two effluents from the WWTPs is promising for the removal of emerging pollutants (up to 100%) and for assuring high quality of treated water. Copyright © 2016 Elsevier B

  12. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    A numerical model coupling the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equationswith two-equation k−ω turbulence closure is presented and used to simulate a variety of turbulent wave boundary layer processes. The hydrodynamic model is additionally coupled...... with bed and suspended load descriptions, the latter based on an unsteady turbulent-diffusion equation, for simulation of sheet-flow sediment transport processes. In addition to standard features common within such RANS-based approaches, the present model includes: (1) hindered settling velocities at high...

  13. Reactive transport modeling of coupled inorganic and organic processes in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Adam

    1997-12-31

    The main goals of this project are to develop and apply a reactive transport code for simulation of coupled organic and inorganic processes in the pollution plume in the ground water down-gradient from the Vejen landfill, Denmark. The detailed field investigations in this aquifer have previously revealed a complex pattern of strongly interdependent organic and inorganic processes. These processes occur simultaneously in a flow and transport system where the mixing of reactive species is influenced by the rather complex geology in the vicinity of the landfill. The removal of organic matter is influenced by the presence of various electron acceptors that also are involved in various inorganic geochemical reactions. It was concluded from the investigations that degradation of organic matter, complexation, mineral precipitation and dissolution, ion-exchange and inorganic redox reactions, as a minimum, should be included in the formulation of the model. The coupling of the organic and inorganic processes is developed based on a literature study. All inorganic processes are as an approximation described as equilibriumm processes. The organic processes are described by a maximum degradation rate that is decreased according to the availability of the participants in the processes, the actual pH, and the presence of inhibiting species. The reactive transport code consists of three separate codes, a flow and transport code, a geochemical code, and a biodegradation code. An iterative solution scheme couples the three codes. The coupled code was successfully verified for simple problems for which analytical solutions exist. For more complex problems the code was tested on synthetic cases and expected plume behavior was successfully simulated. Application of the code to the Vejen landfill aquifer was successful to the degree that the redox zonation down-gradient from the landfill was simulated correctly and that several of the simulated plumes showed a reasonable agreement with

  14. Effect of ensiling process of total mixed ration on fermentation profile, nutrient loss and in situ ruminal degradation characteristics of diet.

    Science.gov (United States)

    Miyaji, Makoto; Matsuyama, Hiroki; Nonaka, Kazuhisa

    2017-01-01

    This experiment aimed to determine the changes in chemical composition, fermentation profile, in situ disappearance characteristics, and nutrient losses of ensiled total mixed ration (TMR) containing steam-flaked corn or brown rice (BR) during storage. TMRs for dairy cows, containing either steam-flaked corn or BR at 31.9% with 15.2% rye silage, 40.5% alfalfa silage, 5.0% beet pulp and 7.0% soybean meal, were prepared (dry matter (DM) basis). Each TMR was placed in a plastic drum silo, stored at 23°C in an air-conditioned room and sampled 0, 7, 14, 30, 90 and 210 days after preparation. In both grain sources, the fermentation products increased, while DM and starch storage losses increased and starch content greatly decreased during storage. The rapidly degradable fraction and effective ruminal degradability of DM, crude protein and starch increased during storage. These changes of dietary characteristics were large during 30 days of storage, but small after 90 days of storage. Replacing corn with BR led to increased fermentation products, starch loss and effective ruminal degradability of the ensiled TMR. These results indicate that the ensiling process of TMR changes the dietary characteristics and replacing corn with BR in TMR had a large impact on these dietary characteristics. © 2016 Japanese Society of Animal Science.

  15. Effects of different external carbon sources and electron acceptors on interactions between denitrification and phosphorus removal in biological nutrient removal processes.

    Science.gov (United States)

    Hu, Xiang; Sobotka, Dominika; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process biomass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS·h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO 2 -N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher denitrification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS·h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS·h)) for both anoxic electron acceptors (nitrate and nitrite).

  16. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Proton gradients and proton-dependent transport processes in the chloroplast

    Directory of Open Access Journals (Sweden)

    Ricarda eHöhner

    2016-02-01

    Full Text Available Proton gradients are fundamental to chloroplast function. Across thylakoid membranes, the light induced proton gradient is essential for ATP synthesis. As a result of proton pumping into the thylakoid lumen, an alkaline stromal pH develops, which is required for full activation of pH-dependent Calvin Benson cycle enzymes. This implies that a pH gradient between the cytosol (pH 7 and the stroma (pH 8 is established upon illumination. To maintain this pH gradient chloroplasts actively extrude protons. More than 30 years ago it was already established that these proton fluxes are electrically counterbalanced by Mg2+, K+ or Cl- fluxes, but only recently the first transport systems that regulate the pH gradient were identified. Notably several (Na+,K+/H+ antiporter systems where identified, that play a role in pH gradient regulation, ion homeostasis, osmoregulation, or coupling of secondary active transport. The established pH gradients are important to drive uptake of essential ions and solutes, but not many transporters involved have been identified to date. In this mini review we summarize the current status in the field and the open questions that need to be addressed in order to understand how pH gradients are maintained, how this is interconnected with other transport processes and what this means for chloroplast function.

  18. Mass transfer processes and field-scale transport of organic solutes

    International Nuclear Information System (INIS)

    Brusseau, M.L.

    1990-01-01

    The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)

  19. Process and appliance for determining the nature of transported substances by measuring the radiations transmitted

    International Nuclear Information System (INIS)

    Wykes, J.S.; Surzyn, P.M.; Croke, G.M.; Adsley, Ian.

    1980-01-01

    The invention relates to a process for determining the nature of a substance transported, comprising the collimation of the radiation of not less than two energies so that they form beams; the irradiation of the matter transported by the beams, the detection of the non-scattered radiations for the two energies at least, after passing in the transported matter, and the deduction of the nature of the transported matter according to the radiations detected. The radiations are collimated by placing a shield around the gamma source (americium 241 or cesium 137). The detector is protected by a shield so that it prevents any significant interference due to the reactions near the surface provoked by those radiations not of the lowest energy, with detection of those radiations of lesser energy. In a variation, a source of relatively higher energy radiations is placed at a distance from the source of relatively lesser energy radiations. The latter have a component taken from natural ionizing radiation and this component is withdrawn to a predetermined calibration [fr

  20. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    Science.gov (United States)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil. A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air and converted to

  1. Parallel processing of Monte Carlo code MCNP for particle transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Kawasaki, Takuji

    1996-06-01

    It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)

  2. Emotional voice processing: investigating the role of genetic variation in the serotonin transporter across development.

    Directory of Open Access Journals (Sweden)

    Tobias Grossmann

    Full Text Available The ability to effectively respond to emotional information carried in the human voice plays a pivotal role for social interactions. We examined how genetic factors, especially the serotonin transporter genetic variation (5-HTTLPR, affect the neurodynamics of emotional voice processing in infants and adults by measuring event-related brain potentials (ERPs. The results revealed that infants distinguish between emotions during an early perceptual processing stage, whereas adults recognize and evaluate the meaning of emotions during later semantic processing stages. While infants do discriminate between emotions, only in adults was genetic variation associated with neurophysiological differences in how positive and negative emotions are processed in the brain. This suggests that genetic association with neurocognitive functions emerges during development, emphasizing the role that variation in serotonin plays in the maturation of brain systems involved in emotion recognition.

  3. A reliable technique for transfer of radioactivity filled vial from transport container to the processing station

    International Nuclear Information System (INIS)

    Kothalkar, Chetan; Dey, A.C.

    2005-01-01

    In Technetium Column Generator Production Facility (TCGPF project) of BRIT, a facility for unloading vial containing radioactive liquid sodium molybdate- 99 Mo solution from the transport cask into the processing station and unsealing the vial to transfer the liquid to a storage bottle has been developed. This is specifically conceptualized for safe handling of radioactivity and minimizing the radiation dose exposure to the personnel working at the time of transferring the radioactivity from the transport cask to a place for further processing. The facility, designed to handle around 1850 GBq activity, has two cells enclosed in 102mm thick lead wall and connected by a gravity actuated trolley conveyor. The first cell handles the transport cask carrying the vial-containing radioactivity, which houses two types of vial lifting gadgets assisted by manually operatable tongs. Gadgets use compressed air. In an experiment, it is found that the HDPE vial lifting gadget using suction cup continue to function up to 30-40 minutes after power failure. The experience shows that gadget using 3-point radial gripper to lift the glass vial will remain in grab position, even if the compressed air supply stops. In this facility the dose receivable, while handling radioactivity by the operator, is likely to be negligibly small (approx. 3.15 x 10 -4 mSv per year at the rate four glass vials/week and 2.25 x 10 -4 mSv per year considering at the rate 1 vial/week for HOPE vial transfer). (author)

  4. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  5. Development of a Monte Carlo software to photon transportation in voxel structures using graphic processing units

    International Nuclear Information System (INIS)

    Bellezzo, Murillo

    2014-01-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)

  6. Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport

    Directory of Open Access Journals (Sweden)

    Martin Steuble

    2012-06-01

    Endocytosis of amyloid-β precursor protein (APP is thought to represent the major source of substrate for the production of the amyloidogenic Aβ peptide by the β-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aβ secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

  7. Indirect Transportation Cost in the border crossing process: The United States–Mexico trade

    Directory of Open Access Journals (Sweden)

    Carlos Obed Figueroa Ortiz

    2015-12-01

    Full Text Available Using a Social Accounting Matrix as database, a Computable General Equilibrium model is implemented in order to estimate the Indirect Transportations Costs (ITC present in the border crossing for the U.S.–Mexico bilateral trade. Here, an “iceberg–type” transportation function is assumed to determine the amount of loss that must be faced as a result of border crossing process through the ports of entry existing between the two countries. The study period covers annual data from 1995 to 2009 allowing the analysis of the trend of these costs considering the trade liberalisation that is experienced. Results show that the ITC have experienced a decrease of 12% during the period.Test

  8. Monte Carlo method for neutron transport calculations in graphics processing units (GPUs)

    International Nuclear Information System (INIS)

    Pellegrino, Esteban

    2011-01-01

    Monte Carlo simulation is well suited for solving the Boltzmann neutron transport equation in an inhomogeneous media for complicated geometries. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop PC. The interest in adopting Graphics Processing Units (GPUs) for Monte Carlo acceleration is rapidly growing. This is due to the massive parallelism provided by the latest GPU technologies which is the most promising solution to the challenge of performing full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem were developed for GPU environments in order to evaluate issues associated with computational speedup using GPUs. Results obtained in this work suggest that a speedup of several orders of magnitude is possible using the state-of-the-art GPU technologies. (author) [es

  9. Process of Judging Significant Modifications for Different Transportation Systems compared to the Approach for Nuclear Installations

    Directory of Open Access Journals (Sweden)

    Nicolas Petrek

    2015-12-01

    Full Text Available The implementation of the CSM regulation by the European Commission in 2009 which harmonizes the risk assessment process and introduces a rather new concept of judging changes within the European railway industry. This circumstance has risen the question how other technology sectors handle the aspect of modifications and alterations. The paper discusses the approaches for judging the significance of modifications within the three transport sectors of European railways, aviation and maritime transportation and the procedure which is used in the area of nuclear safety. We will outline the similarities and differences between these four methods and discuss the underlying reasons. Finally, we will take into account the role of the European legislator and the fundamental idea of a harmonization of the different approaches.

  10. Capillary hydrodynamics and transport processes during phase change in microscale systems

    Science.gov (United States)

    Kuznetsov, V. V.

    2017-09-01

    The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.

  11. Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica

    Science.gov (United States)

    Lind, P.; McDowell, P. F.

    2017-12-01

    Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport

  12. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts.

    Science.gov (United States)

    Varga, Gábor; Kerémi, Beáta; Bori, Erzsébet; Földes, Anna

    2015-07-01

    The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  13. Importance of 3D Processes Near the Ocean's Surface for Material Transport

    Science.gov (United States)

    Ozgokmen, T. M.

    2014-12-01

    There are a number of practical problems that demand an accurate knowledge of ocean currents near the surface of the ocean. It is known that oceanic coherent features transport heat and carry out vertical exchange of biogeochemical tracers. Ocean currents can affect biological primary production, air-sea gas exchanges and global tracer budgets. Ocean currents are also important for the dispersion of substances that pose a danger to society, economy and human health. Examples of such events include algal blooms, the Fukushima nuclear plant incident in the Pacific Ocean in 2011, and repeated large oil spills in the Gulf of Mexico, namely the IXTOC in 1978 and the Deepwater Horizon event in 2010. Such incidents demand accurate answers to questions such as ``where will the pollutant go?", ``how fast will it get there?" and ``how much pollutant will arrive there?", and in some instances ``where did the pollutant come from?". The answers to these questions are critical to the allocation of limited response resources, and in determining the overall impact of the events. We will summarize the efforts by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). One of the primary objectives of CARTHE is to improve predictive modeling capability for flows near the air-sea interface. In particular, two large experiments, Grand Lagrangian Deployment (GLAD) and Surf-zone and Coastal Oil Pathways Experiment (SCOPE), coordinated with real-time modeling were instructive on processes influencing near-surface material transport. Findings on submesoscale flows as well as model deficiencies to capture processes relevant to transport will be discussed. Insight into future modeling and observational plans will be provided.

  14. Evaluation and analysis method for natural gas hydrate storage and transportation processes

    International Nuclear Information System (INIS)

    Hao Wenfeng; Wang Jinqu; Fan Shuanshi; Hao Wenbin

    2008-01-01

    An evaluation and analysis method is presented to investigate an approach to scale-up a hydration reactor and to solve some economic problems by looking at the natural gas hydrate storage and transportation process as a whole. Experiments with the methane hydration process are used to evaluate the whole natural gas hydrate storage and transportation process. The specific contents and conclusions are as follows: first, batch stirring effects and load coefficients are studied in a semi-continuous stirred-tank reactor. Results indicate that batch stirring and appropriate load coefficients are effective in improving hydrate storage capacity. In the experiments, appropriate values for stirring velocity, stirring time and load coefficient were found to be 320 rpm, 30 min and 0.289, respectively. Second, throughput and energy consumption of the reactor for producing methane hydrates are calculated by mass and energy balance. Results show that throughput of this is 1.06 kg/d, with a product containing 12.4% methane gas. Energy consumption is 0.19 kJ, while methane hydrates containing 1 kJ heat are produced. Third, an energy consumption evaluation parameter is introduced to provide a single energy consumption evaluation rule for different hydration reactors. Parameter analyses indicate that process simplicity or process integration can decrease energy consumption. If experimental gas comes from a small-scale natural gas field and the energy consumption is 0.02 kJ when methane hydrates containing 1 kJ heat are produced, then the decrease is 87.9%. Moreover, the energy consumption evaluation parameter used as an economic criterion is converted into a process evaluation parameter. Analyses indicate that the process evaluation parameter is relevant to technology level and resource consumption for a system, which can make it applicable to economic analysis and venture forecasting for optimal capital utilization

  15. Water-quality observations of the San Antonio segment of the Edwards aquifer, Texas, with an emphasis on processes influencing nutrient and pesticide geochemistry and factors affecting aquifer vulnerability, 2010–16

    Science.gov (United States)

    Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.

    2018-06-07

    As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide

  16. Effect of feeding soybean meal and differently processed peas on intestinal morphology and functional glucose transport in the small intestine of broilers.

    Science.gov (United States)

    Röhe, I; Boroojeni, F Goodarzi; Zentek, J

    2017-09-01

    Peas are locally grown legumes being rich in protein and starch. However, the broad usage of peas as a feed component in poultry nutrition is limited to anti-nutritional factors, which might impair gut morphology and function. This study investigated the effect of feeding raw or differently processed peas compared with feeding a soybean meal-based control diet (C) on intestinal morphology and nutrient transport in broilers. A total of 360 day-old broiler chicks were fed with one of the following diets: The C diet, and 3 diets containing raw peas (RP), fermented peas (FP) and enzymatically pre-digested peas (EP), each supplying 30% of dietary crude protein. After 35 d, jejunal samples of broilers were taken for analyzing histomorphological parameters, active glucose transport in Ussing chambers and the expression of genes related to glucose absorption, intestinal permeability and cell maturation. Villus length (P = 0.017) and crypt depth (P = 0.009) of EP-fed broilers were shorter compared to birds received C. The villus surface area was larger in broilers fed C compared to those fed with the pea-containing feed (P = 0.005). Glucose transport was higher for broilers fed C in comparison to birds fed with the EP diet (P = 0.044). The sodium-dependent glucose co-transporter 1 (SGLT-1) expression was down-regulated in RP (P = 0.028) and FP (P = 0.015) fed broilers. Correlation analyses show that jejunal villus length negatively correlates with the previously published number of jejunal intraepithelial T cells (P = 0.014) and that jejunal glucose transport was negatively correlated with the occurrence of jejunal intraepithelial leukocytes (P = 0.041). To conclude, the feeding of raw and processed pea containing diets compared to a soybean based diet reduced the jejunal mucosal surface area of broilers, which on average was accompanied by lower glucose transport capacities. These morphological and functional alterations were associated with observed mucosal immune

  17. Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process

    International Nuclear Information System (INIS)

    Aiki, Toyohiko; Kumazaki, Kota

    2012-01-01

    From civil engineering point of view it is very important to construct and analyze a mathematical model for a mechanism of concrete carbonation process. On this subject there are several mathematical results concerned with a one-dimensional model, in which hysteresis effects are neglected. Our aim is to give a model with hysteresis effects appearing in carbonation process. In this paper, as the first step of this research we focus only on moisture transport in the process and propose an initial boundary value problem for a system of partial differential equations as a mathematical model. Also,