WorldWideScience

Sample records for numerous studies highlight

  1. Studies Highlight Biodiesel's Benefits

    Science.gov (United States)

    , Colo., July 6, 1998 — Two new studies highlight the benefits of biodiesel in reducing overall air Energy's National Renewable Energy Laboratory (NREL) conducted both studies: An Overview of Biodiesel and Petroleum Diesel Life Cycles and Biodiesel Research Progress, 1992-1997. Biodiesel is a renewable diesel

  2. Atmospheric Research 2011 Technical Highlights

    Science.gov (United States)

    2012-01-01

    The 2011 Technical Highlights describes the efforts of all members of Atmospheric Research. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  3. Experimental and numerical study of light gas dispersion in a ventilated room

    Energy Technology Data Exchange (ETDEWEB)

    Gelain, Thomas, E-mail: thomas.gelain@irsn.fr; Prévost, Corinne

    2015-11-15

    Highlights: • Presentation of many experimental local data for different configurations. • Highlight of the influence of numerical parameters used in the CFD code. • Validation of the CFD code ANSYS CFX on the basis of experimental data. - Abstract: The objective of this study is to validate the ANSYS CFX version 12 computational code on the basis of light gas dispersion tests performed in two ventilated rooms. It follows an initial study on heavy gas dispersion carried out by Ricciardi et al. (2008). First, a study of sensitivity to various numerical parameters allows a set of reference data to be developed and the influence of the numerical scheme of advection to be revealed. Second, two helium (simulating hydrogen) dispersion test grids are simulated for the two rooms studied, and the results of the calculations are compared with experimental results. The very good agreement between these results allows the code and its dataset to be validated for this application. In future, a study with higher levels of helium (on the order of 4% vol at equilibrium) is envisaged in the context of safety analyses related to the hydrogen risk, these levels representing the lower explosive limit (LEL) of hydrogen.

  4. Numerical study of a hybrid jet impingement/micro-channel cooling scheme

    International Nuclear Information System (INIS)

    Barrau, Jérôme; Omri, Mohammed; Chemisana, Daniel; Rosell, Joan; Ibañez, Manel; Tadrist, Lounes

    2012-01-01

    A new hybrid jet impingement/micro-channel cooling scheme is studied numerically for use in high-heat-flux thermal management of electronic and power devices. The device is developed with the objective of improving the temperature uniformity of the cooled object. A numerical model based on the k–ω SST turbulent model is developed and validated experimentally. This model is used to carry out a parametrical characterization of the heat sink. The study shows that variations in key parameters of jet impingement and micro-channel technologies allow for the cooling scheme to obtain a wide range of temperature profiles for the cooled object. - Highlights: ► A new hybrid cooling scheme is numerically studied. ► The cooling scheme combines the benefits of jet impingement and micro-channel flows. ► The numerical model is validated by comparison with experimental results. ► The temperature distribution can be adapted to the needs of the cooled system.

  5. Experimental and numerical study of guided wave propagation in a thin metamaterial plate

    International Nuclear Information System (INIS)

    Zhu, R.; Huang, G.L.; Huang, H.H.; Sun, C.T.

    2011-01-01

    In this Letter, both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. Through the numerical simulation, a new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. Experiments were conducted to validate the numerical design. In the experiment, piezoelectric transducers were used to generate and receive guided wave signals. The results show that the numerical predictions are in very good agreement with the experimental measurements. Specifically, the connection between the local resonance in the thin plate and its wave attenuation mechanism was discussed. -- Highlights: → Both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. → A new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. → Experiments were conducted to validate the numerical design. → The connection between the local resonance in the thin plate and its wave attenuation mechanism was investigated.

  6. Numerical and experimental study of blowing jet on a high lift airfoil

    Science.gov (United States)

    Bobonea, A.; Pricop, M. V.

    2013-10-01

    Active manipulation of separated flows over airfoils at moderate and high angles of attack in order to improve efficiency or performance has been the focus of a number of numerical and experimental investigations for many years. One of the main methods used in active flow control is the usage of blowing devices with constant and pulsed blowing. Through CFD simulation over a 2D high-lift airfoil, this study is trying to highlight the impact of pulsed blowing over its aerodynamic characteristics. The available wind tunnel data from INCAS low speed facility are also beneficial for the validation of the numerical analysis. This study intends to analyze the impact of the blowing jet velocity and slot geometry on the efficiency of an active flow control.

  7. The effect of saturation on resin flow in injection pultrusion: a preliminary numerical study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Larsen, Martin; R. Rodríguez, Rosa

    . The implemented saturation and relative permeability curves are adopted from relationships presented in the literature. The results of the numerical model highlights the importance of accurately determining thesaturation curve when included in a numerical solver that is used to predict the resin flow in injection...

  8. Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids

    International Nuclear Information System (INIS)

    Huminic, Gabriela; Huminic, Angel

    2013-01-01

    Highlights: • Numerical study of nanofluid heat transfer in thermosyphon heat pipes is performed. • Effect of nanoparticle concentration and operating temperature are studied. • Fe 2 O 3 –water nanofluid with 5.3% volume concentration shows the best performance. • Results show the improvement the thermal performances of thermosyphon heat pipe with nanofluids. - Abstract: In this work, a three-dimensional analysis is used to investigate the heat transfer of thermosyphon heat pipe using water and nanofluids as the working fluid. The study focused mainly on the effects of volume concentrations of nanoparticles and the operating temperature on the heat transfer performance of the thermosyphon heat pipe using the nanofluids. The analysis was performed for water and γ-Fe 2 O 3 nanoparticles, three volume concentrations of nanoparticles (0 vol.%, 2 vol.% and 5.3 vol.%) and four operating temperatures (60, 70, 80 and 90 °C). The numerical results show that the volume concentration of nanoparticles had a significant effect in reducing the temperature difference between the evaporator and condenser. Experimental and numerical results show qualitatively that the thermosyphon heat pipe using the nanofluid has better heat transfer characteristics than the thermosyphon heat pipe using water

  9. Experimental and numerical study of heat transfer across insulation wall of a refrigerated integral panel van

    International Nuclear Information System (INIS)

    Glouannec, Patrick; Michel, Benoit; Delamarre, Guillaume; Grohens, Yves

    2014-01-01

    This paper presents an experimental and numerical design study of an insulation wall for refrigerated vans. The thermophysical properties of the insulating multilayer panel, the external environment impact (solar irradiation, temperature, etc.) and durability are taken into account. Different tools are used to characterize the thermal performances of the insulation walls and the thermal properties of the insulation materials are measured. In addition, an experiment at the wall scale is carried out and a 2D FEM model of heat and mass transfer within the wall is formulated. Three configurations are studied with this design approach. Multilayer insulation walls containing reflective multi-foil insulation, aerogel and phase change materials (PCM) are tested. Promising results are obtained with these materials, especially the reduction of peak heat transfer and energy consumption during the daytime period. Furthermore, the major influence of solar irradiation is highlighted as it can increase the peak heat transfer crossing the insulation wall by up to 43%. Nevertheless, we showed that the use of reflective multi-foil insulation and aerogel layers allowed decreasing this impact by 27%. - Highlights: • A design study of an insulation wall for a refrigerated van is carried out. • Experimental and numerical studies of multilayer insulation walls are performed. • The major influence of solar irradiation is highlighted. • New insulation materials (reflective multi-foil, aerogel and PCM) are tested

  10. Institutional supporting research highlights in physics and mathematics, fiscal year 1983

    International Nuclear Information System (INIS)

    Vigil, J.C.

    1984-03-01

    Highlights of FY 1983 Institutional Supporting Research and Development activities within the six Physics and Mathematics divisions and the Center for Nonlinear Studies are presented. The highlights are but a fraction of the ISRD activities in the Directorate and are intended to be a representative sample of progress in the various research areas. FY 1983 ISRD activities within the Physics and Mathematics divisions included both basic and applied research and were divided into 11 research areas: mathematics and numerical methods, low-energy nuclear physics, medium- and high-energy nuclear physics, atomic and molecular physics, solid-state physics and materials science, fluid dynamics, plasma physics and intense particle beam theory, astrophysics and space physics, particle transport methods, accelerator and fusion technology, and biophysics. Highlights from each of these areas are presented

  11. Experimental and numerical studies on free surface flow of windowless target

    International Nuclear Information System (INIS)

    Su, G.Y.; Gu, H.Y.; Cheng, X.

    2012-01-01

    Highlights: ► Experimental and CFD studies on free surface flow have been performed in a scaled windowless target. ► Flow structure inside spallation area can be divided into three typical zones. ► Under large Reynolds number, large scale vortex can be observed. ► CFD studies have been conducted by using both LES and RANS (k-ω SST) turbulence models. ► LES model provides better numerical prediction on free surface behavior and flow transient. - Abstract: The formation and control method of the coolant free surface is one of the key technologies for the design of windowless targets in the accelerator driven system (ADS). In the recent study, experimental and numerical investigations on the free surface flow have been performed in a scaled windowless target by using water as the model fluid. The planar laser induced fluorescence technique has been applied to visualize the free surface flow pattern inside the spallation area. Experiments have been carried out with the Reynolds number in the range of 30,000–50,000. The structure and features of flow vortex have been investigated. The experimental results show that the free surface is vulnerable to the vortex movement. In addition, CFD simulations have been performed under the experimental conditions, using LES and RANS (k-ω SST) turbulence models, respectively. The numerical results of LES model agree qualitatively well with the experimental data related to both flow pattern and free surface behavior.

  12. Numerical study of particle filtration in an induction crucible furnace

    International Nuclear Information System (INIS)

    Asad, Amjad; Kratzsch, Christoph; Dudczig, Steffen; Aneziris, Christos G.; Schwarze, Rüdiger

    2016-01-01

    Highlights: • Removing particles from a melt in an induction furnace by using a filter is introduced. • The effect of filter and its permeability on the melt flow is shown. • The impact of filter permeability and particle diameter on filter efficiency is studied. • The filter efficiency depends on filter position and number of the used filter. - Abstract: The present paper deals with a numerical investigation of the turbulent melt flow driven by the electromagnetic force in an induction furnace. The main scope of the paper is to present a new principle to remove non-metallic particles from steel melt in an induction furnace by immersing a porous filter in the melt. The magnetic field acting on the melt is calculated by using the open source software MaxFEM"®, while the turbulent flow is simulated by means of the open source computational fluid dynamics library OpenFOAM"®. The validation of the numerical model is accomplished by using experimental results for the flow without the immersed filter. Here it is shown that the time-averaged flow, obtained numerically is in a good quantitive agreement with the experimental data. Then, the validated numerical model is employed to simulate the melt flow with the immersed filter in the induction furnace of a new type of real steel casting simulator investigated at Technische Universität Bergakademie Freiberg. The considerable effect of the filter on the flow pattern is indicated in the present work. Moreover, it is shown that the filter permeability and its position have a significant influence on the melt flow in the induction furnace. Additionally, particles are injected in the flow domain and tracked by using Lagrangian framework. In this case, the efficiency of the used filter is determined in the present investigation depending on its permeability, its position and the particles diameter.

  13. Complex blood flow patterns in an idealized left ventricle: A numerical study

    Science.gov (United States)

    Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio

    2017-09-01

    In this paper, we study the blood flow dynamics in a three-dimensional (3D) idealized left ventricle of the human heart whose deformation is driven by muscle contraction and relaxation in coordination with the action of the mitral and aortic valves. We propose a simplified but realistic mathematical treatment of the valves function based on mixed time-varying boundary conditions (BCs) for the Navier-Stokes equations modeling the flow. These switchings in time BCs, from natural to essential and vice versa, model either the open or the closed configurations of the valves. At the numerical level, these BCs are enforced by means of the extended Nitsche's method (Tagliabue et al., Int. J. Numer. Methods Fluids, 2017). Numerical results for the 3D idealized left ventricle obtained by means of Isogeometric Analysis are presented, discussed in terms of both instantaneous and phase-averaged quantities of interest and validated against those available in the literature, both experimental and computational. The complex blood flow patterns are analysed to describe the characteristic fluid properties, to show the transitional nature of the flow, and to highlight its main features inside the left ventricle. The sensitivity of the intraventricular flow patterns to the mitral valve properties is also investigated.

  14. Experimental and numerical study of a printed circuit heat exchanger

    International Nuclear Information System (INIS)

    Chen, Minghui; Sun, Xiaodong; Christensen, Richard N.; Shi, Shanbin; Skavdahl, Isaac; Utgikar, Vivek; Sabharwall, Piyush

    2016-01-01

    Highlights: • A dynamic model is developed for transient analysis of the straight-channel PCHE. • Transient scenarios of the straight-channel PCHE subject to helium temperature and mass flow rate variations are numerically investigated. • Steady-state temperature distribution inside the straight-channel PCHE is obtained in calculation. • Experiments are conducted to study the dynamic behavior of the straight-channel PCHE. - Abstract: Printed circuit heat exchangers (PCHEs) are promising to be employed in very-high-temperature gas-cooled reactors (VHTRs) due to their high robustness for high-temperature, high-pressure applications and high compactness. PCHEs typically serve as intermediate heat exchangers (IHXs) that isolate the secondary loop from the reactor’s primary system and hence must be sufficiently robust to maintain the system integrity during normal and off-normal conditions. In addition, the performance of the PCHE-type IHX could considerably affect the nuclear power plant overall operation since any transients on the secondary side would be propagated back to the reactor’s primary coolant system via the IHX. It is therefore imperative to understand how the PCHE would dynamically respond to a variety of transients. In the current study, experiments were first conducted to examine the steady-state thermal performance of a reduced-scale straight-channel PCHE. A dynamic model benchmarked in a previous study was then used to predict the steady-state and transient behavior of the PCHE. The steady-state temperature profiles of the working fluids on both the hot and cold sides and in the solid plates of the heat exchanger were obtained, which served as the initial condition for the transient simulations. The detailed dynamic response of the straight-channel PCHE, subject to inlet temperature variations, helium mass flow variations, and combinations of the two, was simulated and analyzed. In addition, two sets of transient tests, one for helium inlet

  15. Numerical studies of the linear theta pinch

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Menzel, M.T.; Barnes, D.C.

    1975-01-01

    Aspects of several physical problems associated with linear theta pinches were studied using recently developed numerical methods for the solution of the nonlinear equations for time-dependent magnetohydrodynamic flow in two- and three-dimensions. The problems studied include the propagation of end-loss produced rarefaction waves, the flow produced in a proposed injection experiment geometry, and the linear growth and nonlinear saturation of instabilities in rotating plasmas, all in linear geometries. The studies illustrate how numerical computations aid in flow visualization, and how the small amplitude behavior and nonlinear fate of plasmas in unstable equilibria can be connected through the numerical solution of the dynamical equations. (auth)

  16. Combustion Behaviour of Pulverised Wood - Numerical and Experimental Studies. Part 1 Numerical Study

    Energy Technology Data Exchange (ETDEWEB)

    Elfasakhany, A.; Xue-Song Bai [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering

    2002-12-01

    This report describes a theoretical/numerical investigation of the particle motion and the particle drying, pyrolysis, oxidation of volatile and char in a pulverised biofuel (wood) flame. This work, along with the experimental measurement of a pulverised wood flame in a vertical furnace at TPS, is supported by the Swedish Energy Agency, STEM. The fundamental combustion process of a pulverised wood flame with determined size distribution and anisotropy character is studied. Comprehensive submodels are studied and some models not available in the literature are developed. The submodels are integrated to a CFD code, previously developed at LTH. The numerical code is used to simulate the experimental flame carried out at TPS (as sub-task 2 within the project). The sub-models describe the drying, devolatilization, char formation of wood particles, and the oxidation reaction of char and the gas phase volatile. At the present stage, the attention is focused on the understanding and modelling of non-spherical particle dynamics and the drying, pyrolysis, and oxidation of volatile and char. Validation of the sub-models against the experimental data is presented and discussed in this study. The influence of different factors on the pulverised wood flame in the TPS vertical furnace is investigated. This includes shape of the particles, the effect of volatile release, as well as the orientation of the particles on the motion of the particles. The effect of particle size on the flame structure (distribution of species and temperature along the axis of the furnace) is also studied. The numerical simulation is in close agreement with the TPS experimental data in the concentrations of species O{sub 2}, CO{sub 2} as well as temperature. Some discrepancy between the model simulations and measurements is observed, which suggests that further improvement in our understanding and modeling the pulverised wood flame is needed.

  17. Numerical MHD study for plasmoid instability in uniform resistivity

    Science.gov (United States)

    Shimizu, Tohru; Kondoh, Koji; Zenitani, Seiji

    2017-11-01

    The plasmoid instability (PI) caused in uniform resistivity is numerically studied with a MHD numerical code of HLLD scheme. It is shown that the PI observed in numerical studies may often include numerical (non-physical) tearing instability caused by the numerical dissipations. By increasing the numerical resolutions, the numerical tearing instability gradually disappears and the physical tearing instability remains. Hence, the convergence of the numerical results is observed. Note that the reconnection rate observed in the numerical tearing instability can be higher than that of the physical tearing instability. On the other hand, regardless of the numerical and physical tearing instabilities, the tearing instability can be classified into symmetric and asymmetric tearing instability. The symmetric tearing instability tends to occur when the thinning of current sheet is stopped by the physical or numerical dissipations, often resulting in the drastic changes in plasmoid chain's structure and its activity. In this paper, by eliminating the numerical tearing instability, we could not specify the critical Lundquist number Sc beyond which PI is fully developed. It suggests that Sc does not exist, at least around S = 105.

  18. Spin glass transition in canonical AuFe alloys: A numerical study

    International Nuclear Information System (INIS)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Gui-Bin; Zhu, Yan

    2012-01-01

    Although spin glass transitions have long been observed in diluted magnetic alloys, e.g. AuFe and CuMn alloys, previous numerical studies are not completely consistent with the experiment results. The abnormal critical exponents of the alloys remain still puzzling. By employing parallel tempering algorithm with finite-size scaling analysis, we investigated the phase transitions in canonical AuFe alloys. Our results strongly support that spin glass transitions occur at finite temperatures in the alloys. The calculated critical exponents agree well with those obtained from experiments. -- Highlights: ► By simulation we investigated the abnormal critical exponents observed in canonical SG alloys. ► The critical exponents obtained from our simulations agree well with those measured from experiments. ► Our results strongly support that RKKY interactions lead to SG transitions at finite temperatures.

  19. Infants and young children modeling method for numerical dosimetry studies: application to plane wave exposure

    International Nuclear Information System (INIS)

    Dahdouh, S; Wiart, J; Bloch, I; Varsier, N; Nunez Ochoa, M A; Peyman, A

    2016-01-01

    Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties. (paper)

  20. Infants and young children modeling method for numerical dosimetry studies: application to plane wave exposure

    Science.gov (United States)

    Dahdouh, S.; Varsier, N.; Nunez Ochoa, M. A.; Wiart, J.; Peyman, A.; Bloch, I.

    2016-02-01

    Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.

  1. The measurement of statistical reasoning in verbal-numerical and graphical forms: a pilot study

    International Nuclear Information System (INIS)

    Agus, M; Penna, M P; Peró-Cebollero, M; Guàrdia-Olmos, J

    2013-01-01

    Numerous subjects have trouble in understanding various conceptions connected to statistical problems. Research reports how students' ability to solve problems (including statistical problems) can be influenced by exhibiting proofs. In this work we aim to contrive an original and easy instrument able to assess statistical reasoning on uncertainty and on association, regarding two different forms of proof presentation: pictorial-graphical and verbal–numerical. We have conceived eleven pairs of simple problems in the verbal–numerical and pictorial–graphical form and we have presented the proofs to 47 undergraduate students. The purpose of our work was to evaluate the goodness and reliability of these problems in the assessment of statistical reasoning. Each subject solved each pair of proofs in the verbal-numerical and in the pictorial–graphical form, in different problem presentation orders. Data analyses have highlighted that six out of the eleven pairs of problems appear to be useful and adequate to estimate statistical reasoning on uncertainty and that there is no effect due to the order of presentation in the verbal–numerical and pictorial–graphical form

  2. Experimental and numerical study of the pressure drop for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Min-Su; Kim, Sawoong; Jung, Hun-Chea; Shim, Hee-Jin; Ahn, Hee-Jae

    2016-11-01

    Highlights: • The results of the experiment and the numerical analysis are compared. • The numerical analysis results are lower than the experimental results. • The margin of the pressure drop is suggested. - Abstract: The blanket shield block (SB) is located inside the ITER vacuum chamber, and the main function is to provide the thermal and nuclear shielding to the vacuum vessel and external components. The SB is foreseen to undergo a significant heat load which is a body load throughout the whole thickness of the SB under normal operation conditions. Therefore, the cooling configuration in SB should be designed very carefully based on the various experiences. The pressure drop in the cooling design is one of the most important factors to balance a water distribution of overall blanket cooling system. In order to verify the pressure drop characteristic and validate the design methodology of SB, experiment and numerical analysis are performed and compared their results. These results would be a benchmarking of the numerical results with experimental results to assess the gap between calculations and experiments.

  3. Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes

    International Nuclear Information System (INIS)

    Deodhar, Subodh D.; Kothadia, Hardik B.; Iyer, K.N.; Prabhu, S.V.

    2015-01-01

    Capillary tubes are extensively used in several cooling applications like refrigeration, electronic cooling etc. Local pressure variation in adiabatic straight capillary tube (mini channel) is studied experimentally and numerically with R134a as the working fluid. Experiments are performed on two straight capillary tubes. It is found that the diameter is the most sensitive design parameter of the capillary tube. Experiments are performed on five helically coiled capillary tubes to quantify the effect of pitch and curvature of helically coiled capillary tube on the pressure drop. Non dimensionalized factor to account coiling of capillary tube is derived to calculate mass flow rate in helically coiled capillary tubes. Flow visualization in adiabatic capillary tube confirms the bubbly nature of two phase flow. Numerical and experimental investigations in diabatic capillary tube suggest that the use of positive displacement pump and choking at the exit of the channel ensures flow stability. - Highlights: • Model is developed to design capillary tube in adiabatic and diabatic condition. • Effect of coil curvature on pressure drop is studied experimentally. • Correlation is developed to predict mass flow rate in helical capillary tubes. • Flow visualization is carried out to check the type of two phase flow. • Effect of choked flow on diabatic capillary tubes is studied experimentally.

  4. Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies

    Science.gov (United States)

    Hong, Yang; Zhang, Jingchao; Zeng, Xiao Cheng

    2018-03-01

    The recently discovered two-dimensional (2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this article, we review the recent advances in numerical studies of the thermal properties of monolayer phosphorene and phosphorene-based heterostructures. We first briefly review the commonly used first-principles and molecular dynamics (MD) approaches to evaluate the thermal conductivity and interfacial thermal resistance of 2D phosphorene. Principles of different steady-state and transient MD techniques have been elaborated on in detail. Next, we discuss the anisotropic thermal transport of phosphorene in zigzag and armchair chiral directions. Subsequently, the in-plane and cross-plane thermal transport in phosphorene-based heterostructures such as phosphorene/silicon and phosphorene/graphene is summarized. Finally, the numerical research in the field of thermal transport in 2D phosphorene is highlighted along with our perspective of potentials and opportunities of 2D phosphorenes in electronic applications such as photodetectors, field-effect transistors, lithium ion batteries, sodium ion batteries, and thermoelectric devices.

  5. Numerical studies on helium cooled divertor finger mock up with sectorial extended surfaces

    International Nuclear Information System (INIS)

    Rimza, Sandeep; Satpathy, Kamalakanta; Khirwadkar, Samir; Velusamy, Karupanna

    2014-01-01

    Highlights: • Studies on heat transfer enhancement for divertor finger mock-up. • Heat transfer characteristics of jet impingement with extended surfaces have been investigated. • Effect of critical parameters that influence the thermal performance of the finger mock-up by CFD approach. • Effect of extended surface in enhancing heat removal potential with pumping power assessed. • Practicability of the chosen design is verified by structural analysis. - Abstract: Jet impinging technique is an advance divertor concept for the design of future fusion power plants. This technique is extensively used due to its high heat removal capability with reasonable pumping power and for safe operation. In this design, plasma-facing components are fabricated with numerous fingers cooled by helium jets to reduce the thermal stresses. The present study is focused towards finding an optimum performance of one such finger mock-up through systematic computational fluid dynamics (CFD) studies. Heat transfer characteristics of jet impingement have been numerically investigated with sectorial extended surfaces (SES). The result shows that addition of SES enhances heat removal potential with minimum pumping power. Detailed parametric studies on critical parameters that influence thermal performance of the finger mock-up have been analyzed. Thermo-mechanical analysis has been carried out through finite element based approach to know the state of stress in the assembly as a result of large temperature gradients. It is seen that the stresses are within the permissible limits for the present design. The whole numerical simulation has been carried out using general-purpose CFD software (ANSYS FLUENT, Release 14.0, User Guide, Ansys, Inc., 2011). Benchmark validation studies have been performed against high-heat flux experiments (B. Končar, P. Norajitra, K. Oblak, Appl. Therm. Eng., 30, 697–705, 2010) and a good agreement is noticed between the present simulation and the reported

  6. Numerical study on lithium titanate battery thermal response under adiabatic condition

    International Nuclear Information System (INIS)

    Sun, Qiujuan; Wang, Qingsong; Zhao, Xuejuan; Sun, Jinhua; Lin, Zijing

    2015-01-01

    Highlights: • The thermal behavior of lithium titanate battery during cycling was investigated. • The temperature rate in charging was less than that of discharging in the cycling. • The temperature difference was less than 0.02 °C at 0.5 C in adiabatic condition. • The temperature distribution and thermal runaway of the battery were predicted. - Abstract: To analyze the thermal behavior of 945 mA h lithium titanate battery during charging and discharging processes, the experimental and numerical studies are performed in this work. The cathode and anode of the 945 mA h lithium titanate soft package battery are the lithium nickel–cobalt–manganese-oxide and lithium titanate, respectively. In the experiment, an Accelerating Rate Calorimeter combined with battery cycler is employed to investigate the electrochemical–thermal behavior during charge–discharge cycling under the adiabatic condition. In numerical simulation, one electrochemical-thermal model is adopted to predict the thermal response and validated with the experimental results. From both experimental and simulated results, the profile of potential and current, the heat generation, the temperature, the temperature changing rate and the temperature distribution in the cell are obtained and thermal runaway is predicted. The analysis of the electrochemical and thermal behavior is beneficial for the commercial application of lithium titanate battery in the fields of electric vehicles and hybrid electric vehicles

  7. Analytic and numerical studies of Scyllac equilibrium

    International Nuclear Information System (INIS)

    Barnes, D.C.; Brackbill, J.U.; Dagazian, R.Y.; Freidberg, J.P.; Schneider, W.; Betancourt, O.; Garabedian, P.

    1976-01-01

    The results of both numerical and analytic studies of the Scyllac equilibria are presented. Analytic expansions are used to derive equilibrium equations appropriate to noncircular cross sections, and compute the stellarator fields which produce toroidal force balance. Numerical algorithms are used to solve both the equilibrium equations and the full system of dynamical equations in three dimensions. Numerical equilibria are found for both l = 1,0 and l= 1,2 systems. It is found that the stellarator fields which produce equilibria in the l = 1.0 system are larger for diffuse than for sharp boundary plasma profiles, and that the stability of the equilibria depends strongly on the harmonic content of the stellarator fields

  8. Numerical studies of fermionic field theories at large-N

    International Nuclear Information System (INIS)

    Dickens, T.A.

    1987-01-01

    A description of an algorithm, which may be used to study large-N theories with or without fermions, is presented. As an initial test of the method, the spectrum of continuum QCD in 1 + 1 dimensions is determined and compared to previously obtained results. Exact solutions of 1 + 1 dimensional lattice versions of the free fermion theory, the Gross-Neveu model, and QCD are obtained. Comparison of these exact results with results from the numerical algorithm is used to test the algorithms, and more importantly, to determine the errors incurred from the approximations used in the numerical technique. Numerical studies of the above three lattice theories in higher dimensions are also presented. The results are again compared to exact solutions for free fermions and the Gross-Neveu model; perturbation theory is used to derive expansions with which the numerical results for QCD may be compared. The numerical algorithm may also be used to study the euclidean formulation of lattice gauge theories. Results for 1 + 1 dimensional euclidean lattice QCD are compared to the exact solution of this model

  9. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  10. Numerical modelling of mine workings.

    CSIR Research Space (South Africa)

    Lightfoot, N

    1999-03-01

    Full Text Available to cover most of what is required for a practising rock mechanics engineer to be able to use any of these five programs to solve practical mining problems. The chapters on specific programs discuss their individual strengths and weaknesses and highlight... and applications of numerical modelling in the context of the South African gold and platinum mining industries. This includes an example that utilises a number of different numerical 3 modelling programs to solve a single problem. This particular example...

  11. Theoretical and numerical studies of TWR based on ESFR core design

    International Nuclear Information System (INIS)

    Zhang, Dalin; Chen, Xue-Nong; Flad, Michael; Rineiski, Andrei; Maschek, Werner

    2013-01-01

    Highlights: • The traveling wave reactor (TWR) is studied based on the core design of the European Sodium-cooled Fast Reactor (ESFR). • The conventional fuel shuffling technique is used to produce a continuous radial fuel movement. • A stationary self sustainable nuclear fission power can be established asymptotically by only loading natural or depleted uranium. • The multi-group deterministic neutronic code ERANOS is applied. - Abstract: This paper deals with the so-called traveling wave reactor (TWR) based on the core design of the European Sodium-cooled Fast Reactor (ESFR). The current concept of TWR is to use the conventional radial fuel shuffling technique to produce a continuous radial fuel movement so that a stationary self sustainable nuclear fission power can be established asymptotically by only loading fertile material consisting of natural or depleted uranium. The core design of ESFR loaded with metallic uranium fuel without considering the control mechanism is used as a practical application example. The theoretical studies focus mainly on qualitative feasibility analyses, i.e. to identify out in general essential parameter dependences of such a kind of reactor. The numerical studies are carried out more specifically on a certain core design. The multi-group deterministic neutronic code ERANOS with the JEFF3.1 data library is applied as a basic tool to perform the neutronics and burn-up calculations. The calculations are performed in a 2-D R-Z geometry, which is sufficient for the current core layout. Numerical results of radial fuel shuffling indicate that the asymptotic k eff parabolically varies with the shuffling period, while the burn-up increases linearly. Typical shuffling periods investigated in this study are in the range of 300–1000 days. The important parameters, e.g. k eff , the burn-up, the power peaking factor, and safety coefficients are calculated

  12. Numerical study of the heat transfer in wound woven wire matrix of a Stirling regenerator

    International Nuclear Information System (INIS)

    Costa, S.C.; Barrutia, Harritz; Esnaola, Jon Ander; Tutar, Mustafa

    2014-01-01

    Highlights: • A correlation equation to characterize regenerator heat transfer is proposed. • Proposed correlation can be used as a effective tool to optimize the heat transfer. • Thermal efficiency can be maximized by optimizing Stirling regenerator heat transfer. • The wound woven wire matrix provides lower Nusselt numbers compared to stacked. • The developed correlation can be used for Reynolds number range from 4 to 400. - Abstract: Nusselt number correlation equations are numerically derived by characterizing the heat transfer phenomena through porous medium of both stacked and wound woven wire matrices of a Stirling engine regenerator over a specified range of Reynolds number, diameter and porosity. A finite volume method (FVM) based numerical approach is proposed and validated against well known experimentally obtained empirical correlations for a random stacking woven wire matrix, the most widely used due to fabrication issues, for Reynolds number up to 400. The results show that the numerically derived correlation equation corresponds well with the experimentally obtained correlations with less than 6% deviation with the exception of low Reynolds numbers. Once the numerical approach is validated, the study is further extended to characterize the heat transfer in a wound woven wire matrix model for a diameter range from 0.08 to 0.11 mm and a porosity range from 0.60 to 0.68 within the same Reynolds number range. Thus, the new correlation equations are numerically derived for different flow configurations of the Stirling engine regenerator. It is believed that the developed correlations can be applied with confidence as a cost effective solution to characterize and hence to optimize stacked and wound woven wire Stirling regenerator in the above specified ranges

  13. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian

    2014-10-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  14. Numerical study of magnetic field effect on nano-fluid forced convection in a channel

    Energy Technology Data Exchange (ETDEWEB)

    Heidary, H., E-mail: Heidary_ha@aut.ac.ir [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Hosseini, R. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Pirmohammadi, M., E-mail: Pirmohamadi@pardisiau.ac.ir [Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis New City, Tehran (Iran, Islamic Republic of); Kermani, M.J. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)

    2015-01-15

    In this study heat transfer and fluid flow analysis in a straight channel utilizing nano-fluid is numerically studied, while flow field is under magnetic field. Usage of nano-particles in base fluid and also applying magnetic field transverse to fluid velocity are two ways recommended in this paper to enhance heat exchange in straight duct. The fluid temperature at the channel inlet (T{sub in}) is taken less than that of the walls (T{sub w}). With assuming thermal equilibrium state of both the fluid phase and nano-particles and ignoring the slip velocity between the phases, single phase approach is used for modeling of nano-fluid. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique. Numerical studies are performed over a range of Reynolds number, nano-fluid volume fraction and Hartmann number. The influence of these parameters is investigated on the local and average Nusselt numbers. Computations show excellent agreement with the literature. From this study, it is concluded that heat transfer in channels can enhance up to 75% due to the presence of nano-particles and magnetic field in channels. In industrial applications for cooling or heating purposes, the recommended ways in this paper, can provide helpful guidelines to the manufacturers to enhance efficiencies without heat exchanger area increase. - Highlights: • Addition of 10% nano-particles (copper here) can enhance the heat exchange by 26%. • Presence of magnetic field with Ha=30 in pure fluid can enhance the heat exchange by 50%. • Presence of magnetic field and nanofluid with Ha=30 and ϕ=0.1, can enhance the heat exchange by 76%. • Increasing Re{sub H} from 50 to 1000, the average Nu number can increase by a factor of ≈3.

  15. Failure of aluminium self-piercing rivets: An experimental and numerical study

    International Nuclear Information System (INIS)

    Hoang, N.-H.; Hopperstad, O.S.; Langseth, M.; Westermann, I.

    2013-01-01

    Highlights: ► We investigated the fracture mechanism of AA7278-T6 aluminium self-piercing rivets. ► Fracture of AA 7278-T6 rivets during the riveting process is a complex phenomenon. ► Microstructure of AA7278-T6 has significant influence on the fracture mechanism. ► Increasing friction will change the deformation mode of the rivet. - Abstract: The present paper investigates the fracture mechanisms of AA7278-T6 aluminium self-piercing rivets under compression during the riveting process. First, a microstructure investigation was conducted to disclose the grain structure and the particle distribution of the extruded aluminium alloy. Transmission electron micrographs revealed precipitate free zones along grain boundaries. Uniaxial tensile tests in three different directions with respect to the extrusion direction revealed anisotropy of the alloy in strength and ductility and a change in fracture mode with tensile direction. The behaviour of the alloy under compression was studied experimentally using upsetting tests and self-piercing riveting tests. Micrographs of the deformed specimens provided insight into the influence of the microstructure on the deformation and fracture of the alloy under compression. Second, numerical analyses were carried out using a 2-D axisymmetric model in LS–DYNA in an attempt to investigate the role of different physical variables on the final failure of the rivet. The numerical results revealed that constituent particles, precipitate free zones, and friction between the rivet and plates are important for strain localisation and fracture in the rivet

  16. Generalized Database Management System Support for Numeric Database Environments.

    Science.gov (United States)

    Dominick, Wayne D.; Weathers, Peggy G.

    1982-01-01

    This overview of potential for utilizing database management systems (DBMS) within numeric database environments highlights: (1) major features, functions, and characteristics of DBMS; (2) applicability to numeric database environment needs and user needs; (3) current applications of DBMS technology; and (4) research-oriented and…

  17. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  18. Numerical and experimental study of hydraulic dashpot used in the shut-off rod drive mechanism of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Narendra K., E-mail: nksingh_chikki@yahoo.com [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India); Badodkar, Deepak N. [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Singh, Manjit [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-07-01

    Highlights: • Hydraulic dashpot performance is studied numerically as well as experimentally. • Instantaneous pressure built-up in the dashpot is mainly contributing for damping of freely falling shut-off rod at the end of its travel. • At elevated temperature, dashpot pressure does not reduce in proportion to the reduction in viscosity. • ‘C’ grove in the dashpot shaft flattens the pressure peak and shifts it toward the end of operation. - Abstract: Hydraulic dashpot design for shut-off rod drive mechanism application in a nuclear reactor has been analyzed both numerically and experimentally in this paper. Finite element commercial code COMSOL Multiphysics 4.3 has been used for numerical analysis. Experimental validation has been done at two different cases. Experimental test set-ups and hydraulic dashpot constructions have been described in detail. Various combinations of dashpot oil viscosity and clearance thickness have been analyzed. Important experimental results are also presented and discussed. Pressure distributions in the dashpot chambers obtained from COMSOL are given for both the set-ups. Numerical and experimental results are compared. Dashpot designs have been qualified after detailed analysis and testing on full-scale test stations simulating actual reactor conditions (except radiation)

  19. Numerical and experimental study of hydraulic dashpot used in the shut-off rod drive mechanism of a nuclear reactor

    International Nuclear Information System (INIS)

    Singh, Narendra K.; Badodkar, Deepak N.; Singh, Manjit

    2014-01-01

    Highlights: • Hydraulic dashpot performance is studied numerically as well as experimentally. • Instantaneous pressure built-up in the dashpot is mainly contributing for damping of freely falling shut-off rod at the end of its travel. • At elevated temperature, dashpot pressure does not reduce in proportion to the reduction in viscosity. • ‘C’ grove in the dashpot shaft flattens the pressure peak and shifts it toward the end of operation. - Abstract: Hydraulic dashpot design for shut-off rod drive mechanism application in a nuclear reactor has been analyzed both numerically and experimentally in this paper. Finite element commercial code COMSOL Multiphysics 4.3 has been used for numerical analysis. Experimental validation has been done at two different cases. Experimental test set-ups and hydraulic dashpot constructions have been described in detail. Various combinations of dashpot oil viscosity and clearance thickness have been analyzed. Important experimental results are also presented and discussed. Pressure distributions in the dashpot chambers obtained from COMSOL are given for both the set-ups. Numerical and experimental results are compared. Dashpot designs have been qualified after detailed analysis and testing on full-scale test stations simulating actual reactor conditions (except radiation)

  20. Theoretical and numerical study of highly anisotropic turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.

    2004-01-01

    We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical

  1. Numerical Studies of Homogenization under a Fast Cellular Flow

    KAUST Repository

    Iyer, Gautam

    2012-09-13

    We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.

  2. Numerical Studies of Homogenization under a Fast Cellular Flow

    KAUST Repository

    Iyer, Gautam; Zygalakis, Konstantinos C.

    2012-01-01

    We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.

  3. Using an Electronic Highlighter to Eliminate the Negative Effects of Pre-Existing, Inappropriate Highlighting

    Science.gov (United States)

    Gier, Vicki; Kreiner, David; Hudnell, Jason; Montoya, Jodi; Herring, Daniel

    2011-01-01

    The purpose of the present experiment was to determine whether using an active learning technique, electronic highlighting, can eliminate the negative effects of pre-existing, poor highlighting on reading comprehension. Participants read passages containing no highlighting, appropriate highlighting, or inappropriate highlighting. We hypothesized…

  4. Probabilistic numerics and uncertainty in computations.

    Science.gov (United States)

    Hennig, Philipp; Osborne, Michael A; Girolami, Mark

    2015-07-08

    We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

  5. Biofouling in forward osmosis systems: An experimental and numerical study

    KAUST Repository

    Bucs, Szilard; Valladares Linares, Rodrigo; Vrouwenvelder, Johannes S.; Picioreanu, Cristian

    2016-01-01

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute

  6. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-12-26

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions

  7. Coincidental match of numerical simulation and physics

    Science.gov (United States)

    Pierre, B.; Gudmundsson, J. S.

    2010-08-01

    Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.

  8. Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part I

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this first lecture, we introduce the basic ideas of numerical relativity, highlighting the challenges that arise in simulating gravitational wave sources on a computer.

  9. Topographic attributes as a guide for automated detection or highlighting of geological features

    Science.gov (United States)

    Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves

    2015-04-01

    Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans

  10. Implementation and assessment of high-resolution numerical methods in TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dean, E-mail: wangda@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley RD 6167, Oak Ridge, TN 37831 (United States); Mahaffy, John H.; Staudenmeier, Joseph; Thurston, Carl G. [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-10-15

    Highlights: • Study and implement high-resolution numerical methods for two-phase flow. • They can achieve better numerical accuracy than the 1st-order upwind scheme. • They are of great numerical robustness and efficiency. • Great application for BWR stability analysis and boron injection. -- Abstract: The 1st-order upwind differencing numerical scheme is widely employed to discretize the convective terms of the two-phase flow transport equations in reactor systems analysis codes such as TRACE and RELAP. While very robust and efficient, 1st-order upwinding leads to excessive numerical diffusion. Standard 2nd-order numerical methods (e.g., Lax–Wendroff and Beam–Warming) can effectively reduce numerical diffusion but often produce spurious oscillations for steep gradients. To overcome the difficulties with the standard higher-order schemes, high-resolution schemes such as nonlinear flux limiters have been developed and successfully applied in numerical simulation of fluid-flow problems in recent years. The present work contains a detailed study on the implementation and assessment of six nonlinear flux limiters in TRACE. These flux limiters selected are MUSCL, Van Leer (VL), OSPRE, Van Albada (VA), ENO, and Van Albada 2 (VA2). The assessment is focused on numerical stability, convergence, and accuracy of the flux limiters and their applicability for boiling water reactor (BWR) stability analysis. It is found that VA and MUSCL work best among of the six flux limiters. Both of them not only have better numerical accuracy than the 1st-order upwind scheme but also preserve great robustness and efficiency.

  11. Implementation and assessment of high-resolution numerical methods in TRACE

    International Nuclear Information System (INIS)

    Wang, Dean; Mahaffy, John H.; Staudenmeier, Joseph; Thurston, Carl G.

    2013-01-01

    Highlights: • Study and implement high-resolution numerical methods for two-phase flow. • They can achieve better numerical accuracy than the 1st-order upwind scheme. • They are of great numerical robustness and efficiency. • Great application for BWR stability analysis and boron injection. -- Abstract: The 1st-order upwind differencing numerical scheme is widely employed to discretize the convective terms of the two-phase flow transport equations in reactor systems analysis codes such as TRACE and RELAP. While very robust and efficient, 1st-order upwinding leads to excessive numerical diffusion. Standard 2nd-order numerical methods (e.g., Lax–Wendroff and Beam–Warming) can effectively reduce numerical diffusion but often produce spurious oscillations for steep gradients. To overcome the difficulties with the standard higher-order schemes, high-resolution schemes such as nonlinear flux limiters have been developed and successfully applied in numerical simulation of fluid-flow problems in recent years. The present work contains a detailed study on the implementation and assessment of six nonlinear flux limiters in TRACE. These flux limiters selected are MUSCL, Van Leer (VL), OSPRE, Van Albada (VA), ENO, and Van Albada 2 (VA2). The assessment is focused on numerical stability, convergence, and accuracy of the flux limiters and their applicability for boiling water reactor (BWR) stability analysis. It is found that VA and MUSCL work best among of the six flux limiters. Both of them not only have better numerical accuracy than the 1st-order upwind scheme but also preserve great robustness and efficiency

  12. A numerical study on RCCI engine fueled by biodiesel/methanol

    International Nuclear Information System (INIS)

    Zhou, D.Z.; Yang, W.M.; An, H.; Li, J.; Shu, C.

    2015-01-01

    Highlights: • Numerical study is done to investigate RCCI engine fueled by biodiesel/methanol. • A new biodiesel/methanol dual-fuel chemical reaction mechanism is developed. • Engine performance is improved with fuel reactivity stratification formed. • Soot and NO x significant reduce with methanol induction and fuel reactivity stratification. - Abstract: A 3-D numerical simulation platform based on the KIVA4-CHEMKIN code was constructed by incorporating a newly developed skeletal chemical kinetics mechanism to study the reactivity controlled compression ignition (RCCI) engine performance, combustion and emission characteristics. In the present study, methanol is assumed to be induced into the engine through the intake port, while biodiesel is directly injected into the engine by the end of the compression stroke. The skeletal biodiesel and methanol dual fuel chemical reaction mechanism coupled with CO, NO x and soot formation mechanisms was developed and validated by comparing the ignition delay predicted by the developed mechanism with that of the detailed biodiesel and methanol mechanisms, and also by comparing the simulation results of KIVA-CHEMKIN with the experimental results under different engine operating conditions. A good agreement has been achieved in terms of ignition delay, in-cylinder pressure and heat release rate (HRR). The methanol mass fraction was varied from 0% to 80% at an interval of 20% to form different reactivity stratification. Simulation results revealed that under 10% load conditions, the increasing methanol reduced the peak pressure and heat release rate, whereas under 50% and 100% loads, the peak pressure both appeared at 60% methanol induction. Also, the reactivity distribution and ringing intensity were discussed, aiming at investigating the fuel gradient effects and knocking level, respectively. For the emissions, a general decreasing trend on CO emission was observed at both 50% and 100% loads while at 10% load, a slight

  13. Numerical study of fluid motion in bioreactor with two mixers

    Energy Technology Data Exchange (ETDEWEB)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  14. Intentional and Automatic Numerical Processing as Predictors of Mathematical Abilities in Primary School Children

    Directory of Open Access Journals (Sweden)

    Violeta ePina

    2015-03-01

    Full Text Available Previous studies have suggested that numerical processing relates to mathematical performance, but it seems that such relationship is more evident for intentional than for automatic numerical processing. In the present study we assessed the relationship between the two types of numerical processing and specific mathematical abilities in a sample of 109 children in grades 1 to 6. Participants were tested in an ample range of mathematical tests and also performed both a numerical and a size comparison task. The results showed that numerical processing related to mathematical performance only when inhibitory control was involved in the comparison tasks. Concretely, we found that intentional numerical processing, as indexed by the numerical distance effect in the numerical comparison task, was related to mathematical reasoning skills only when the task-irrelevant dimension (the physical size was incongruent; whereas automatic numerical processing, indexed by the congruency effect in the size comparison task, was related to mathematical calculation skills only when digits were separated by small distance. The observed double dissociation highlights the relevance of both intentional and automatic numerical processing in mathematical skills, but when inhibitory control is also involved.

  15. Numerical abilities in fish: A methodological review.

    Science.gov (United States)

    Agrillo, Christian; Miletto Petrazzini, Maria Elena; Bisazza, Angelo

    2017-08-01

    The ability to utilize numerical information can be adaptive in a number of ecological contexts including foraging, mating, parental care, and anti-predator strategies. Numerical abilities of mammals and birds have been studied both in natural conditions and in controlled laboratory conditions using a variety of approaches. During the last decade this ability was also investigated in some fish species. Here we reviewed the main methods used to study this group, highlighting the strengths and weaknesses of each of the methods used. Fish have only been studied under laboratory conditions and among the methods used with other species, only two have been systematically used in fish-spontaneous choice tests and discrimination learning procedures. In the former case, the choice between two options is observed in a biologically relevant situation and the degree of preference for the larger/smaller group is taken as a measure of the capacity to discriminate the two quantities (e.g., two shoals differing in number). In discrimination learning tasks, fish are trained to select the larger or the smaller of two sets of abstract objects, typically two-dimensional geometric figures, using food or social companions as reward. Beyond methodological differences, what emerges from the literature is a substantial similarity of the numerical abilities of fish with those of other vertebrates studied. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Guadalupe River, California, Sedimentation Study. Numerical Model Investigation

    National Research Council Canada - National Science Library

    Copeland, Ronald

    2002-01-01

    A numerical model study was conducted to evaluate the potential impact that the Guadalupe River flood-control project would have on channel stability in terms of channel aggradation and degradation...

  17. Numerical study of the flow conditioner for the IFMIF liquid lithium target

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S., E-mail: sergej.gordeev@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany); Gröschel, F. [KIT Fusion Program, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany); Heinzel, V.; Hering, W.; Stieglitz, R. [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    Highlights: • A detailed numerical analysis of the flow conditioner efficiency has been performed. • The calculations show that the present design of the flow conditioner cannot suppress swirl motions emerging from the bend. • The transient simulation reveals flow instabilities between the separation zone and the accelerated outer region. • Calculation shows that pitched guide vanes upstream the elbow reduces a generation of backflow areas downstream. - Abstract: IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based deuteron–lithium (D–Li) neutron source to simulate the neutron irradiation field in a fusion reactor. The target assembly of the IFMIF consists of the flow conditioners and the nozzle, which has to form a stable lithium jet. This work focuses on a numerical study of the flow conditioner efficiency, in which two different types of flow conditioners are compared by means of a detailed numerical analysis with respect to specific hydraulic effects in the pipe elbow and the inflow conditioners. The adequateness of three different turbulence models to simulate a flow through a 90° bend of circular cross section has been examined. The calculations show that a honeycomb-screen combination is not capable to suppress effectively large scale swirl motions emerging from the bend. An increasing number of screens improves the flow uniformity downstream, but increases the pressure drop. In order to detect any transient effects in the separation area a flow straightener configuration consisting of a honeycomb with a subsequent screen has been analyzed by means of a detached eddy simulation (DES). A frequency analysis of the normalized static pressure amplitude conducted by means of a detached eddy simulation (DES) reveals instabilities in the shear layer between the separation zone and the accelerated outer region, which additionally increase the inhomogeneity of the axial velocity distribution. A set of six circumferentially

  18. Numerical study on the thermal performance of a ventilated facade with PCM

    International Nuclear Information System (INIS)

    Gracia, Alvaro de; Navarro, Lidia; Castell, Albert; Cabeza, Luisa F.

    2013-01-01

    A new type of ventilated facade (VF) with macro-encapsulated phase change material (PCM) in its air cavity is presented in this paper. Two identical house-like cubicles located in Puigverd de Lleida (Spain) were monitored during 2012, and in one of them, the VF with PCM was implemented in the south wall. The versatility of the facade allows the system to reduce both heating and cooling loads. During winter, the PCM increases the heat storage capacity of the system exposed to solar radiation and during summer the system can be used as a cold storage unit or as a night free cooling device. From the experimental winter campaign, important net electrical energy savings were registered due to the use of the VF. On the other hand, no net energy savings were achieved during summer due to excessive use of mechanical ventilation. In this paper, an own developed numerical model, based on finite control volume approach, was validated against experimental data and it is used to select the operational schedule of both solidification and melting processes in order to achieve net electrical energy savings. During the mild summer period the system presents a net energy supply of 2.49 MJ/day. This value would be increased by 61.6% if a wooden structure would have been used instead of the current metallic structure. Moreover, the high hysteresis of the PCM limits strongly the potential of the system in supplying cooling during the severe summer period. -- Highlights: • Numerical study of the thermal performance of a ventilated facade with PCM. • The study considers cooling purposes. • Operational schedule and use of fans during solidification of PCM optimization. • Net energy supply of 2.49 MJ/day during mild summer from the ventilated facade. • Storage efficiency would maximize with more mechanical ventilation during less time

  19. Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface

    International Nuclear Information System (INIS)

    Xiong, Jianyin; Xie, Guo; Zheng, Hongfei

    2013-01-01

    Highlights: • A novel multi-effect solar still with enhanced condensation surface is designed. • The overall desalination efficiency and performance ratio can reach 0.91 and 1.86. • A numerical model characterizing the heat and mass transfer process is developed. - Abstract: A novel multi-effect solar desalination system with enhanced condensation surface is designed. Compared to traditional solar still, it has two main merits: (1) the application of corrugated shape stacked trays decreases the condensation resistance, thus improves the desalination performance and (2) the simultaneous heating both from the collector in the bottom and coating in the top efficiently uses the solar energy, which increases the freshwater yield. Field test is then carried out to study the temperature and freshwater yield characteristics. It is observed that the solar still can generate freshwater not only in the daytime but also in the night, with the latter taking up about 40% of the total freshwater yield. When the starting temperature is relatively high, the overall desalination efficiency and performance ratio of the equipment can reach 0.91 and 1.86, respectively. Furthermore, a numerical model characterizing the heat and mass transfer process in the solar still is developed. The good agreement between the model prediction and experimental data demonstrates the effectiveness of the proposed model. For the present solar still, a phenomenon of reverse temperature difference in the second stacked tray is emerged due to the special simultaneous heating pattern, which is also validated by the numerical model

  20. Numerical study of effect of oxygen fraction on local entropy ...

    Indian Academy of Sciences (India)

    This study considers numerical simulation of the combustion of methane with air, including oxygen and nitrogen, in a burner and the numerical solution of local entropy generation rate due to high temperature and velocity gradients in the combustion chamber. The effects of equivalence ratio () and oxygen percentage () ...

  1. Numerical study of electron-leakage power loss in a tri-plate transmission line

    International Nuclear Information System (INIS)

    Barker, R.J.; Goldstein, S.A.

    1982-01-01

    Numerical simulations have been conducted using NRL's DIODE2D computer code to model the steady-state behavior of electron flow in a radial diode and in its adjacent tri-plate transmission line (TTL). Particular attention was paid to the magnitude of the electron current flowing from the cathode to the anode surface in the TTL. A quantitative value for this effective power loss is given. The electron current is restricted mainly to the transition region in the TTL into which there is seepage of the B/sub z/ that is imposed in the diode gap. This finding highlights the importance of that region to diode designers

  2. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  3. Numerical and Experimental Study of Pump Sump Flows

    Directory of Open Access Journals (Sweden)

    Wei-Liang Chuang

    2014-01-01

    Full Text Available The present study analyzes pump sump flows with various discharges and gate submergence. Investigations using a three-dimensional large eddy simulation model and an acoustic Doppler velocimeter are performed. Flow patterns and velocity profiles in the approaching flow are shown to describe the flow features caused by various discharges and gate submergence. The variation of a large-scale spanwise vortex behind a sluice gate is examined and discussed. The suction effect on approaching flow near the pipe column is examined using numerical modeling. To gain more understanding of the vortices variation, a comparison between time-averaged and instantaneous flow patterns is numerically conducted. Additionally, swirl angle, a widely used index for evaluating pump efficiency, is experimentally and numerically examined under various flow conditions. The results indicate that the pump becomes less efficient with increasing discharge and gate submergence. The fluctuation of the free surface over the pump sump is also discussed.

  4. A review of recent advances in numerical modelling of local scour problems

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2014-01-01

    A review is presented of recent advances in numerical modelling of local scour problems. The review is organized in five sections: Highlights of numerical modelling of local scour; Influence of turbulence on scour; Backfilling of scour holes; Scour around complex structures; and Scour protection ...

  5. Numerical study of jets secondary instabilities

    International Nuclear Information System (INIS)

    Brancher, Pierre

    1996-01-01

    The work presented in this dissertation is a contribution to the study of the transition to turbulence in open shear flows. Results from direct numerical simulations are interpreted within the framework of hydrodynamic stability theory. The first chapter is an introduction to the primary and secondary instabilities observed in jets and mixing layers. The numerical method used in the present study is detailed in the second chapter. The dynamics of homogeneous circular jets subjected to stream wise and azimuthal perturbations are investigated in the third chapter. A complete scenario describing the evolution of the jet is proposed with emphasis on the dynamics of vorticity within the flow. In the fourth chapter a parametric study reveals a three-dimensional secondary instability mainly controlled in the linear regime by the Strouhal number of the primary instability. In the nonlinear regime the dynamics of the azimuthal harmonies are described by means of model equations and are linked to the formation of stream wise vortices in the braid. The fifth chapter is dedicated to the convective or absolute nature of the secondary instabilities in plane shear layers. It is shown that there are flow configurations for which the two-dimensional secondary instability (pairing) is absolute even though the primary instability (Kelvin-Helmholtz) is convective. Some preliminary results concerning the three-dimensional secondary instabilities arc presented at the end of this chapter. The last chapter summarizes the main results and examines possible extensions of this work. (author) [fr

  6. Numerical Simulations of Kinetic Alfvén Waves to Study Spectral ...

    Indian Academy of Sciences (India)

    Numerical Simulations of Kinetic Alfvén Waves to Study Spectral. Index in Solar Wind Turbulence and Particle Heating. R. P. Sharma. ∗. & H. D. Singh. Center for Energy Studies, Indian Institute of Technology, Delhi 110 016, India. ∗ e-mail: rpsharma@ces.iitd.ernet.in. Abstract. We present numerical simulations of the ...

  7. Analytical and numerical studies of creation probabilities of hierarchical trees

    Directory of Open Access Journals (Sweden)

    S.S. Borysov

    2011-03-01

    Full Text Available We consider the creation conditions of diverse hierarchical trees both analytically and numerically. A connection between the probabilities to create hierarchical levels and the probability to associate these levels into a united structure is studied. We argue that a consistent probabilistic picture requires the use of deformed algebra. Our consideration is based on the study of the main types of hierarchical trees, among which both regular and degenerate ones are studied analytically, while the creation probabilities of Fibonacci, scale-free and arbitrary trees are determined numerically.

  8. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology

    KAUST Repository

    Pathmanathan, Pras

    2010-06-01

    Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulations-discretisation, ODE-solution, linear system solution, and parallelisation-is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme. © 2010 Elsevier Ltd.

  9. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology

    KAUST Repository

    Pathmanathan, Pras; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Garny, Alan; Pitt-Francis, Joe M.; Whiteley, Jonathan P.; Gavaghan, David J.

    2010-01-01

    Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulations-discretisation, ODE-solution, linear system solution, and parallelisation-is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme. © 2010 Elsevier Ltd.

  10. Numerical study of nonspherical black hole accretion

    International Nuclear Information System (INIS)

    Hawley, J.F.

    1984-01-01

    This thesis describes in detail a two-dimensional, axisymmetric computer code for calculating fully relativistic ideal gas hydrodynamics around a Kerr black hole. The aim is to study fully dynamic inviscid fluid accretion onto black holes, as well as to study the evolution and development of nonlinear instabilities in pressure supported accretion disks. In order to fully calibrate and document the code, certain analytic solutions for shock tubes and special accretion flows are derived; these solutions form the basis for code testing. The numerical techniques used are developed and discussed. A variety of alternate differencing schemes are compared on an analytic test bed. Some discussion is devoted to general issues in finite differencing. The working code is calibrated using analytically solvable accretion problems, including the radial accretion of dust and of fluid with pressure (Bondi accretion). Two dimensional test problems include the spiraling infall of low angular momentum fluid, the formation of a pressure supported torus, and the stable evolution of a torus. A series of numerical models are discussed and illustrated with selected plots

  11. Numerical study of thermal test of a cask of transportation for radioactive material

    International Nuclear Information System (INIS)

    Vieira, Tiago A.S.; Santos, André A.C. dos; Vidal, Guilherme A.M.; Silva Junior, Geraldo E.

    2017-01-01

    In this study numerical simulations of a transport cask for radioactive material were made and the numerical results were compared with experimental results of tests carried out in two different opportunities. A mesh study was also made regarding the previously designed geometry of the same cask, in order to evaluate its impact in relation to the stability of numerical results for this type of problem. The comparison of the numerical and experimental results allowed to evaluate the need to plan and carry out a new test in order to validate the CFD codes used in the numerical simulations

  12. Highlights in emergency medicine medical education research: 2008.

    Science.gov (United States)

    Farrell, Susan E; Coates, Wendy C; Khun, Gloria J; Fisher, Jonathan; Shayne, Philip; Lin, Michelle

    2009-12-01

    The purpose of this article is to highlight medical education research studies published in 2008 that were methodologically superior and whose outcomes were pertinent to teaching and education in emergency medicine. Through a PubMed search of the English language literature in 2008, 30 medical education research studies were independently identified as hypothesis-testing investigations and measurements of educational interventions. Six reviewers independently rated and scored all articles based on eight anchors, four of which related to methodologic criteria. Articles were ranked according to their total rating score. A ranking agreement among the reviewers of 83% was established a priori as a minimum for highlighting articles in this review. Five medical education research studies met the a priori criteria for inclusion and are reviewed and summarized here. Four of these employed experimental or quasi-experimental methodology. Although technology was not a component of the structured literature search employed to identify the candidate articles for this review, 14 of the articles identified, including four of the five highlighted articles, employed or studied technology as a focus of the educational research. Overall, 36% of the reviewed studies were supported by funding; three of the highlighted articles were funded studies. This review highlights quality medical education research studies published in 2008, with outcomes of relevance to teaching and education in emergency medicine. It focuses on research methodology, notes current trends in the use of technology for learning in emergency medicine, and suggests future avenues for continued rigorous study in education.

  13. A numerical study on thermal behavior of a D-type water-cooled steam boiler

    International Nuclear Information System (INIS)

    Moghari, M.; Hosseini, S.; Shokouhmand, H.; Sharifi, H.; Izadpanah, S.

    2012-01-01

    To achieve a precise assessment on thermal performance of a D-type water-cooled natural gas-fired boiler the present paper was aimed at determining temperature distribution of water and flue gas flows in its different heat exchange equipment. Using the zonal method to predict thermal radiation treatment in the boiler furnace and a numerical iterative approach, in which heat and fluid flow relations associated with different heat surfaces in the boiler convective zone were employed to estimate heat transfer characteristics, enabled this numerical study to obtain results in good agreement with experimental data measured in the utility site during steady state operation. A constant flow rate for a natural gas fuel of specified chemical composition was assumed to be mixed with a given excess ratio of air flow at a full boiler load. Significant results attributed to distribution of heat flux on different furnace walls and that of flue gas and water/steam temperature in different convective stages including superheater, evaporating risers and downcomers modules, and economizer were obtained. Besides the rate of heat absorption in every stage and other essential parameters in the boiler design too, inherent thermal characteristics like radiative and convective heat transfer coefficients as well as overall heat transfer conductance and effectiveness of convective stages considered as cross-flow heat exchangers were eventually presented for the given operating condition. - Highlights: ► Detailed distribution of heat flux on all of the boiler furnace walls was obtained. ► Flue gas and water thermal behaviors in different heating sections were evaluated. ► A good agreement was made between numerical results and experimental data. ► Contribution of the boiler furnace to the total thermal absorption was 39%. ► Contribution of the boiler tube banks to the total thermal absorption was 61%.

  14. Experimental and numerical study of waste heat recovery characteristics of direct contact thermoelectric generator

    International Nuclear Information System (INIS)

    Kim, Tae Young; Negash, Assmelash; Cho, Gyubaek

    2017-01-01

    Highlights: • Energy harvesting performance of direct contact thermoelectric generator was studied. • Power-current and voltage-current curves were given for various operating conditions. • Output power prediction using numerical results and empirical correlation was verified. • A 1.0–2.0% conversion efficiency and 5.7–11.1% heat recovery efficiency were obtained. • A 0.25% increase in efficiency was found with a 10 K decrease in coolant temperature. - Abstract: In this study, waste heat recovery performance of a direct contact thermoelectric generator (DCTEG) is experimentally investigated on a diesel engine. In order to conduct an insightful analysis of the DCTEG characteristics, three experimental parameters—engine load, rotation speed, and coolant temperature—are chosen to vary over ranges during the experiments. Experimental results show that higher temperature differences across thermoelectric modules (TEM), larger engine loads, and rotation speeds lead to an improved energy conversion efficiency of the DCTEG, which lies in the range of approximately 1.0–2.0%, while the output power ranges approximately 12–45 W. The increase in the conversion efficiency for an increased engine load becomes more noticeable with a higher engine rotation speed. A 10 K decrease in the coolant temperature yields an approximately 0.25% increase in the conversion efficiency for the engine operating conditions tested. In addition, 3D numerical simulations were conducted to investigate the heat transfer and pressure characteristics of the DCTEG. Numerically obtained exhaust gas temperatures exiting the DCTEG were in good agreement with experimental results. It is also revealed that incorporation of the temperature fields from the numerical simulation and an empirical correlation for a temperature-power relationship provides a good predictor for output power from the DCTEG, especially at low engine load conditions, which deviates from experimental results as the

  15. Study on the groundwater sustainable problem by numerical ...

    Indian Academy of Sciences (India)

    Pengpeng Zhou

    2017-10-07

    Oct 7, 2017 ... system in Zhanjiang, China, this paper presents a numerical modelling study to research groundwater sustainability of ... bility is a feasible method for solving the sus- ...... Singh A 2010 Decision support for on-farm water man-.

  16. Numerical simulation of inertial two-phase flow in heterogenous media

    International Nuclear Information System (INIS)

    Ali Akbar ABBASIAN ARANI; Didier LASSEUX; Azita AHMADI

    2005-01-01

    In this work, we present the development of a 3 D numerical tool for simulation of non-Darcy two-phase flow in heterogeneous porous media. The physical model selected is the generalized Darcy-Forchheimer model. A validation is performed first by comparing numerical results with a semi-analytical solution of the Buckley-Leverett type. Secondly, numerical results obtained on 1 D and 2 D heterogeneous configurations are presented and we highlight the importance of the inertial terms according to a Reynolds number of the flow. (authors)

  17. BBG Highlights

    Data.gov (United States)

    Broadcasting Board of Governors — BBG Highlights is a monthly summary of the BBG's accomplishments and news and developments affecting the Agency's work. Now, for the first time, this monthly update...

  18. Experimental and numerical study on heat transfer and pressure drop performance of Cross-Wavy primary surface channel

    International Nuclear Information System (INIS)

    Ma, Ting; Du, Lin-xiu; Sun, Ning; Zeng, Min; Sundén, Bengt; Wang, Qiu-wang

    2016-01-01

    Highlights: • Naphthalene sublimation experiments were performed for Cross-Wavy channels. • Entrance region has a small effect on unit-averaged heat transfer coefficient of Cross-Wavy channels. • Correlations of Nusselt number and friction factor in Cross-Wavy channel were obtained. • Similar Cross-Wavy channels have similar thermal hydraulic performance. - Abstract: The Cross-Wavy primary surface heat exchanger is one of the most promising candidates for microturbine recuperators. In this paper, naphthalene sublimation experiments are performed for Cross-Wavy channels in a wind tunnel. The experimental results indicate that the entrance region has a small effect on the unit-averaged heat transfer coefficient of whole Cross-Wavy channels. Correlations of Nusselt number and friction factor in the Cross-Wavy channel are obtained. However, only the Cross-Wavy channel with a large equivalent diameter is tested because the actual Cross-Wavy channels are very complicated and small. Therefore, based on the similarity rules, five Cross-Wavy channels with similar structures but different equivalent diameters are further investigated by numerical simulations. The numerical results indicate that the Cross-Wavy channels with similar structures but different equivalent diameters have similar thermal-hydraulic performance in the studied Reynolds number range.

  19. AEB highlights

    International Nuclear Information System (INIS)

    1975-01-01

    AEB HIGHLIGHTS is a half-yearly report reflecting the most important recent achievements of the various Research and Technical Divisions of the Atomic Energy Board. It appears alternately in English and Afrikaans [af

  20. AEB highlights

    International Nuclear Information System (INIS)

    1977-01-01

    AEB HIGHLIGHTS is a half yearly report reflecting the most important recent achievements of the various Research and Technical Divisions of the Atomic Energy Board. It appears alternately in English and Afrikaans [af

  1. Current Highlights on ESA's Planetary Technology Reference Studies

    Science.gov (United States)

    Falkner, P.

    The concept of Technology Reference Studies has been introduced already at EGU05, where the Venus Entry Probe (VEP), the Jupiter Minisat Explorer (JME), the Deimos Sample Return (DSR) and the Interstellar Heliopause Probe (IHP) have been presented in detail. At the EGU06 the new studies in reaction to the Cosmic Vision exercise have been introduced. The formulation of themes and mapping into potential future missions has been taken as basis in the planning of additional new and adaptation of existing TRS's to cover areas, which have not yet been addressed by any TRS. These new ongoing studies are progressing well and current highlights will be presented in the paper in further detail as well as an overview on supporting technology studies and Concurrent Design Facility (CDF) sessions. The Jupiter System Explorer (JSE) study investigates mission concepts with up to two Magnetospheric Orbiters placed in a highly elliptical Jovian orbit and the possibility to deploy a Jovian Entry Probe. The mission profile is based on a solar powered concept launched on a Soyuz-Fregat launcher. Mission analysis and the application of a new Jovian radiation model are supporting the study activities. The Near-Earth Asteroid Sample Return (NEA-SR) concept explores the possibilities of sample return or in-situ mission profiles with visits to up to two NEA targets. Due to the assumed low cost cap a trade between a sample return and remote/in-situ exploration concept has a high attention in the study. The Cross Scale TRS (CS-TRS) is intended to simultaneously investigate magnetospheric and plasma processes in three spatial scales with a formation flight of up to 12 spacecraft, orbiting on deep elliptical orbits around Earth. One of the major challenges is the launch of that number of spacecraft on a single launcher and the collisionless deployment of the formation at the target orbit. The scope if the GeoSail TRS is to demonstrate deployment, attitude control and navigation concepts for a

  2. Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems

    International Nuclear Information System (INIS)

    Islam, M.R.; Jahangeer, K.A.; Chua, K.J.

    2015-01-01

    The performance of an air-conditioning unit with evaporately-cooled condenser coil is studied experimentally and numerically. An experimental setup is fabricated by retrofitting a commercially available air-conditioning unit and installing comprehensive measuring sensors and controllers. Experimental result shows that the COP (Coefficient of Performance) of the evaporately-cooled air-conditioning unit increases by about 28% compared to the conventional air cooled air-conditioning unit. To analyze the heat and mass transfer processes involved in the evaporately-cooled condenser, a detailed theoretical model has been developed based on the fluid flow characteristics of the falling film and the thermodynamic aspect of the evaporation process. Simulated results agree well with experimental data. The numerical model provides new insights into the intrinsic links between operating variables and heat transfer characteristics of water film in evaluating the performance of evaporatively-cooled condenser system. Two heat transfer coefficients, namely, wall to bulk and bulk to interface are introduced and computed from the simulation results under different operating conditions. Finally, the overall heat transfer coefficient for the water film is computed and presented as a function of dimensionless variables which can conveniently be employed by engineers to design and analyze high performance evaporatively-cooled heat exchangers. - Highlights: • Performance of evaporatively-cooled condenser is investigated. • Local convective heat transfer coefficients of water film are determined. • Thermal resistance of water film is negligible. • Heat transfer with evaporated vapor plays significant role on performance. • Better condenser performance translates to an improvement in COP

  3. Numerical study on discharge process of microcavity plasma

    International Nuclear Information System (INIS)

    Xia Guangqing; Xue Weihua; Wang Dongxue; Zhu Guoqiang; Zhu Yu

    2012-01-01

    The evolution of plasma parameters during high pressure discharge in the microcavity with a hollow anode was numerically studied, with a two-dimensional self-consistent fluid model. The simulations were performed with argon at 13.3 kPa. The numerical results show that during the discharge the electric field around the cathode transforms from an axial field to a radial field, the plasma density gets the maximum value on the central line of the cavity and the location of the maximum density moves from the region near anode at the initial stage to the cathode vicinity at the stable stage, and the maximum electron temperature occurs in the ring sheath of cathode. (authors)

  4. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet

    International Nuclear Information System (INIS)

    Ahmad, Rida; Mustafa, M.; Hayat, T.; Alsaedi, A.

    2016-01-01

    Recent advancements in nanotechnology have led to the discovery of new generation coolants known as nanofluids. Nanofluids possess novel and unique characteristics which are fruitful in numerous cooling applications. Current work is undertaken to address the heat transfer in MHD three-dimensional flow of magnetic nanofluid (ferrofluid) over a bidirectional exponentially stretching sheet. The base fluid is considered as water which consists of magnetite–Fe 3 O 4 nanoparticles. Exponentially varying surface temperature distribution is accounted. Problem formulation is presented through the Maxwell models for effective electrical conductivity and effective thermal conductivity of nanofluid. Similarity transformations give rise to a coupled non-linear differential system which is solved numerically. Appreciable growth in the convective heat transfer coefficient is observed when nanoparticle volume fraction is augmented. Temperature exponent parameter serves to enhance the heat transfer from the surface. Moreover the skin friction coefficient is directly proportional to both magnetic field strength and nanoparticle volume fraction. - Highlights: • Nanofluid flow due to exponentially stretching sheet. • Exponentially varying surface temperature distribution is accounted. • Sparrow–Gregg type Hills (SGH) for temperature distribution exist. • Numerical values of local Nusselt number are presented. • Cooling performance of ferrofluid is superior to pure water.

  5. Numerical simulation of gas metal arc welding parametrical study

    International Nuclear Information System (INIS)

    Szanto, M.; Gilad, I.; Shai, I.; Quinn, T.P.

    2002-01-01

    The Gas Metal Arc Welding (GMAW) is a widely used welding process in the industry. The process variables are usually determined through extensive experiments. Numerical simulation, reduce the cost and extends the understanding of the process. In the present work, a versatile model for numerical simulation of GMAW is presented. The model provides the basis for fundamental understanding of the process. The model solves the magneto-hydrodynamic equations for the flow and temperature fields of the molten electrode and the plasma simultaneously, to form a fully coupled model. A commercial CFD code was extended to include the effects of radiation, Lorentz forces, Joule heating and thermoelectric effects. The geometry of the numerical model assembled to fit an experimental apparatus. To demonstrate the method, an aluminum electrode was modeled in a pure argon arc. Material properties and welding parameters are the input variables in the numerical model. In a typical process, the temperature distribution of the plasma is over 15000 K, resulting high non-linearity of the material properties. Moreover, there is high uncertainty in the available property data, at that range of temperatures. Therefore, correction factors were derived for the material properties to adjust between the numerical and the experimental results. Using the compensated properties, parametric study was performed. The effects of the welding parameters on the process, such the working voltage, electrode feed rate and shielding gas flow, were derived. The principal result of the present work is the ability to predict, by numerical simulation, the mode, size and frequency of the metal transferred from the electrode, which is the main material and energy source for the welding pool in GMAW

  6. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections

    International Nuclear Information System (INIS)

    Gang, Wang; Kai-Xin, Liu; De-Liang, Zhang

    2010-01-01

    The critical wedge angle (CWA) for the transition from regular reflection (RR) to Mach reflection (MR) of a cellular detonation wave is studied numerically by an improved space-time conservation element and solution element method together with a two-step chemical reaction model. The accuracy of that numerical way is verified by simulating cellular detonation reflections at a 19.3° wedge. The planar and cellular detonation reflections over 45°–55° wedges are also simulated. When the cellular detonation wave is over a 50° wedge, numerical results show a new phenomenon that RR and MR occur alternately. The transition process between RR and MR is investigated with the local pressure contours. Numerical analysis shows that the cellular structure is the essential reason for the new phenomenon and the CWA of detonation reflection is not a certain angle but an angle range. (fundamental areas of phenomenology(including applications))

  7. Numerical studies on divertor experiments

    International Nuclear Information System (INIS)

    Ueda, N.; Itoh, K.; Itoh, S.-I.; Tanaka, M.; Hasegawa, M.; Shoji, T.; Sugihara, M.

    1988-04-01

    Numerical analysis on the divertor experiments such as JFT-2M tokamak is made by use of the two-dimensional time-dependent simulation code. The plasma in the scrape-off layer (SOL) and divertor region is solved for the given particle and heat sources from the main plasma, Γ p and Q T . Effect of the direction of the toroidal magnetic field is studied. It is found that the heat flux which is proportional to b vector x ∇T i has influences on the divertor plasmas, but has a small effect on the parameters on the midplane in the framework of the fluid model. Parameter survey on Γ p and Q T is made. The transient response of the SOL/divertor plasma to the sudden change of Γ p and Q T is studied. Time delay in the SOL and divertor region is calculated. (author)

  8. Numerical and experimental studies of droplet-gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Joesang, Aage Ingebret

    2002-07-01

    This thesis considers droplet-gas flow by the use of numerical methods and experimental verification. A commercial vane separator was studied both numerical and by experiment. In addition some efforts are put into the numerical analysis of cyclones. The experimental part contains detailed measurements of the flow field between a pair of vanes in a vane separator and droplet size measurements. LDA (Laser Doppler Anemometry) was used to measure the velocity in two dimensions and corresponding turbulence quantities. The results from the LDA measurements are considered to be of high quality and are compared to numerical results obtained from a CFD (Computational Fluid Dynamics) analysis. The simulation showed good agreement between the numerical and experimental results. Combinations of different turbulence models; the standard k-epsilon model and the Reynold Stress Mode, different schemes; first order and higher order scheme and different near wall treatment of the turbulence; the Law of the wall and the Two-Layer Zonal model were used in the simulations. The Reynold Stress Model together with a higher order scheme performed rather poorly. The recirculation in parts of the separator was overpredicted in this case. For the other cases the overall predictions are satisfactory. PDA (Phase Doppler Anemometry) measurements were used to study the changes in the droplet size distribution through the vane separator. The PDA measurements show that smaller droplets are found at the outlet than present at the inlet. In the literature there exists different mechanisms for explaining the re-entrainment and generation of new droplets. The re-entrainments mechanisms are divided into four groups where droplet-droplet interaction, droplet break-up, splashing of impinging droplet and re-entrainment from the film are defined as the groups of re-entrainment mechanisms. Models for these groups are found in the literature and these models are tested for re-entrainment using the operational

  9. Numerical and experimental characterization of a batch bread baking oven

    International Nuclear Information System (INIS)

    Ploteau, J.P.; Nicolas, V.; Glouannec, P.

    2012-01-01

    This study deals with the thermal characterization of an electrical static oven used for bread baking. The heating is provided by natural convection, infrared radiation and conduction with a cement slab. The paper describes a methodology to apprehend the heat flux which is applied to the products during baking. The oven was experimentally investigated and a finite element numerical model is established. The monitoring of temperatures at various points in the installation and of electrical power is carried out. Then, to characterize thermal exchanges around the bread during curing, thermal responses of a cylindrical sample is also measured. The numerical model made it possible to calculate the heat flux exchanges with the product, while separating the contributions of convection and radiation. The comparison of simulated responses with experimental data shows the relevance of the model. - Highlights: ► This study concerns the thermal characterization of an electric static oven used for bread baking. ► An original, experimental and numerical approach of thermal problem is proposed. ► Contributions by radiation and convection are separated. ► The goal is to provide boundary conditions for numerical models of bread baking. ► Results are encouraging to optimize energy consumption in industrial oven.

  10. The Adriatic response to the bora forcing. A numerical study

    International Nuclear Information System (INIS)

    Rachev, N.

    2001-01-01

    This paper deals with the bora wind effect on the Adriatic Sea circulation as simulated by a 3-D numerical code (the DieCAST model). The main result of this forcing is the formation of intense upwelling along the eastern coast in agreement with previous theoretical studies and observations. Different numerical experiments are discussed for various boundary and initial conditions to evaluate their influence on both circulation and upwelling patterns

  11. Numerical methods and computers used in elastohydrodynamic lubrication

    Science.gov (United States)

    Hamrock, B. J.; Tripp, J. H.

    1982-01-01

    Some of the methods of obtaining approximate numerical solutions to boundary value problems that arise in elastohydrodynamic lubrication are reviewed. The highlights of four general approaches (direct, inverse, quasi-inverse, and Newton-Raphson) are sketched. Advantages and disadvantages of these approaches are presented along with a flow chart showing some of the details of each. The basic question of numerical stability of the elastohydrodynamic lubrication solutions, especially in the pressure spike region, is considered. Computers used to solve this important class of lubrication problems are briefly described, with emphasis on supercomputers.

  12. Experimental and numerical study of an autonomous flap

    NARCIS (Netherlands)

    Bernhammer, L.O.; Navalkar, S.T.; Sodja, J.; De Breuker, R.; Karpel, M.

    2015-01-01

    This paper presents the experimental and numerical study of an autonomous load alleviation concept using trailing edge flaps. The flaps are autonomous units, which for instance can be used for gust load alleviation. The unit is self-powered and self-actuated through trailing edge tabs which are

  13. Biofouling in forward osmosis systems: An experimental and numerical study.

    Science.gov (United States)

    Bucs, Szilárd S; Valladares Linares, Rodrigo; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2016-12-01

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biofouling in forward osmosis systems: An experimental and numerical study

    KAUST Repository

    Bucs, Szilard

    2016-09-20

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling. © 2016 Elsevier Ltd

  15. Analytical and Numerical Studies of Sloshing in Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Solaas, F

    1996-12-31

    For oil cargo ship tanks and liquid natural gas carriers, the dimensions of the tanks are often such that the highest resonant sloshing periods and the ship motions are in the same period range, which may cause violent resonant sloshing of the liquid. In this doctoral thesis, linear and non-linear analytical potential theory solutions of the sloshing problem are studied for a two-dimensional rectangular tank and a vertical circular cylindrical tank, using perturbation technique for the non-linear case. The tank is forced to oscillate harmonically with small amplitudes of sway with frequency in the vicinity of the lowest natural frequency of the fluid inside the tank. The method is extended to other tank shapes using a combined analytical and numerical method. A boundary element numerical method is used to determine the eigenfunctions and eigenvalues of the problem. These are used in the non-linear analytical free surface conditions, and the velocity potential and free surface elevation for each boundary value problem in the perturbation scheme are determined by the boundary element method. Both the analytical method and the combined analytical and numerical method are restricted to tanks with vertical walls in the free surface. The suitability of a commercial programme, FLOW-3D, to estimate sloshing is studied. It solves the Navier-Stokes equations by the finite difference method. The free surface as function of time is traced using the fractional volume of fluid method. 59 refs., 54 figs., 37 tabs.

  16. Analytical and Numerical Studies of Sloshing in Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Solaas, F.

    1995-12-31

    For oil cargo ship tanks and liquid natural gas carriers, the dimensions of the tanks are often such that the highest resonant sloshing periods and the ship motions are in the same period range, which may cause violent resonant sloshing of the liquid. In this doctoral thesis, linear and non-linear analytical potential theory solutions of the sloshing problem are studied for a two-dimensional rectangular tank and a vertical circular cylindrical tank, using perturbation technique for the non-linear case. The tank is forced to oscillate harmonically with small amplitudes of sway with frequency in the vicinity of the lowest natural frequency of the fluid inside the tank. The method is extended to other tank shapes using a combined analytical and numerical method. A boundary element numerical method is used to determine the eigenfunctions and eigenvalues of the problem. These are used in the non-linear analytical free surface conditions, and the velocity potential and free surface elevation for each boundary value problem in the perturbation scheme are determined by the boundary element method. Both the analytical method and the combined analytical and numerical method are restricted to tanks with vertical walls in the free surface. The suitability of a commercial programme, FLOW-3D, to estimate sloshing is studied. It solves the Navier-Stokes equations by the finite difference method. The free surface as function of time is traced using the fractional volume of fluid method. 59 refs., 54 figs., 37 tabs.

  17. Current status of regional hydrogeological studies and numerical simulations on geological disposal

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Kikuchi, Tsuneo; Ishido, Tsuneo

    2004-01-01

    Current status of regional hydrogeological studies on geological disposal including hydrogeological modeling using numerical simulators is reviewed in this report. A regional scale and boundary conditions of numerical models are summarized mainly from the results of the RHS (regional hydrogeological study) project conducted by Japan Nuclear Cycle Development Institute (JNC) in the Tono area. We also refer to the current conceptual modes of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada, which is the arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Understanding behavior of a freshwater-saltwater transition zone seems to play a key role in the hydrogeological modeling in a coastal region. Technical features of a numerical simulator as a tool for geothermal reservoir modeling is also briefly described. (author)

  18. Towards numerical simulations of supersonic liquid jets using ghost fluid method

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2015-01-01

    Highlights: • A ghost fluid method based solver is developed for numerical simulation of compressible multiphase flows. • The performance of the numerical tool is validated via several benchmark problems. • Emergence of supersonic liquid jets in quiescent gaseous environment is simulated using ghost fluid method for the first time. • Bow-shock formation ahead of the liquid jet is clearly observed in the obtained numerical results. • Radiation of mach waves from the phase-interface witnessed experimentally is evidently captured in our numerical simulations. - Abstract: A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid

  19. On the Numerical and Experimental Study of Spray Cooling

    Directory of Open Access Journals (Sweden)

    M.R. Guechi

    2013-12-01

    Full Text Available The spraying of an impinging jet is an effective way to cool heated surfaces. The objective of this study is to develop a numerical model to predict the heat transfer with phase change between a hot plate surface and a two-phase impinging jet. Different two-phase modeling approaches (Lagrangian and Eulerian methods are compared. The influence of the spray nozzle operating conditions and of the distance between the nozzle exit and the surface impact is analyzed. The numerical results are compared with measurements obtained on an experimental test bench. The confrontation numerical/experimental is carried out by comparing the distribution of temperature at the surface of the plate and the heat transfer coefficient. This comparison shows that it is the Eulerian model which seems most capable to take into account the evaporation of the droplets in contact with the heated plate. However, the simulation performed with this model show a strong dependence of the results to the turbulence model used.

  20. Interdisciplinary Study of Numerical Methods and Power Plants Engineering

    Directory of Open Access Journals (Sweden)

    Ioana OPRIS

    2014-08-01

    Full Text Available The development of technology, electronics and computing opened the way for a cross-disciplinary research that brings benefits by combining the achievements of different fields. To prepare the students for their future interdisciplinary approach,aninterdisciplinary teaching is adopted. This ensures their progress in knowledge, understanding and ability to navigate through different fields. Aiming these results, the Universities introduce new interdisciplinary courses which explore complex problems by studying subjects from different domains. The paper presents a problem encountered in designingpower plants. The method of solvingthe problem isused to explain the numerical methods and to exercise programming.The goal of understanding a numerical algorithm that solves a linear system of equations is achieved by using the knowledge of heat transfer to design the regenerative circuit of a thermal power plant. In this way, the outcomes from the prior courses (mathematics and physics are used to explain a new subject (numerical methods and to advance future ones (power plants.

  1. Wildlife studies on the Hanford site: 1994 Highlights report

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. [ed.

    1995-04-01

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights of wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population.

  2. Wildlife studies on the Hanford site: 1994 Highlights report

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1995-04-01

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights of wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population

  3. Numerical study on anaerobic digestion of fruit and vegetable waste: Biogas generation

    Science.gov (United States)

    Wardhani, Puteri Kusuma; Watanabe, Masaji

    2016-02-01

    The study provides experimental results and numerical results concerning anaerobic digestion of fruit and vegetable waste. Experiments were carried out by using batch floating drum type digester without mixing and temperature setting. The retention time was 30 days. Numerical results based on Monod type model with influence of temperature is introduced. Initial value problems were analyzed numerically, while kinetic parameters were analyzed by using trial error methods. The numerical results for the first five days seems appropriate in comparison with the experimental outcomes. However, numerical results shows that the model is inappropriate for 30 days of fermentation. This leads to the conclusion that Monod type model is not suitable for describe the mixture degradation of fruit and vegetable waste and horse dung.

  4. Friction stir welding of AA6082-T6 sheets: Numerical analysis and experimental tests

    International Nuclear Information System (INIS)

    Buffa, G.; Fratini, L.

    2004-01-01

    3D numerical simulation of the Friction Stir Welding process is developed with the aim to highlight the process mechanics in terms of metal flux and temperature, strain and strain rate distributions. The numerical results have been validated though a set of experimental tests

  5. Comparative numerical study of kaolin clay with three drying methods: Convective, convective–microwave and convective infrared modes

    International Nuclear Information System (INIS)

    Hammouda, I.; Mihoubi, D.

    2014-01-01

    Highlights: • Modelling of drying of deformable media. • Theoretical study of kaolin clay with three drying methods: convective, convective–microwave and convective infrared mode. • The stresses generated during convective, microwave/convective drying and infrared/convective drying. • The combined drying decrease the intensity of stresses developed during drying. - Abstract: A mathematical model is developed to simulate the response of a kaolin clay sample when subjected to convective, convective–microwave and convective–infrared mode. This model is proposed to describe heat, mass, and momentum transfers applied to a viscoelastic medium described by a Maxwell model with two branches. The combined drying methods were investigated to examine whether these types of drying may minimize cracking that can be generated in the product and to know whether the best enhancement is developed by the use of infra-red or microwave radiation. The numerical code allowed us to determine, and thus, compare the effect of the drying mode on drying rate, temperature, moisture content and mechanical stress evolutions during drying. The numerical results show that the combined drying decrease the intensity of stresses developed during drying and that convective–microwave drying is the best method that gives a good quality of dried product

  6. Analytical and numerical study of graphite IG110 parts in advanced reactor under high temperature and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinling, E-mail: Jinling_Gao@yeah.net; Yao, Wenjuan, E-mail: wj_yao@yeah.net; Ma, Yudong

    2016-08-15

    Graphical abstract: An analytical model and a numerical procedure are developed to study the mechanical response of IG-110 graphite bricks in HTGR subjected to high temperature and irradiation. The calculation results show great accordance with each other. Rational suggestions on the calculation and design of the IG-110 graphite structure are proposed based on the sensitivity analyses including temperature, irradiation dimensional change, creep and Poisson’s ratio. - Highlights: • Analytical solution of stress and displacement of IG-110 graphite components in HTGR. • Finite element procedure developed for stress analysis of HTGR graphite component. • Parameters analysis of mechanical response of graphite components during the whole life of the reflector. - Abstract: Structural design of nuclear power plant project is an important sub-discipline of civil engineering. Especially after appearance of the fourth generation advanced high temperature gas cooled reactor, structural mechanics in reactor technology becomes a popular subject in structural engineering. As basic ingredients of reflector in reactor, graphite bricks are subjected to high temperature and irradiation and the stress field of graphite structures determines integrity of reflector and makes a great difference to safety of whole structure. In this paper, based on assumptions of elasticity, side reflector is regarded approximately as a straight cylinder structure and primary creep strain is ignored. An analytical study on stress of IG110 graphite parts is present. Meanwhile, a finite element procedure for calculating stresses in the IG110 graphite structure exposed in the high temperature and irradiation is developed. Subsequently, numerical solution of stress in IG110 graphite structure is obtained. Analytical solution agrees well with numerical solution, which indicates that analytical derivation is accurate. Finally, influence of temperature, irradiation dimensional change, creep and Poisson

  7. The Use of Numerical Applications in the Study of Dental Contacts

    Directory of Open Access Journals (Sweden)

    Rodica LUCA

    2010-06-01

    Full Text Available This paper seeks to explore the numerical analysis methods used in dentistry in general and those regarding teeth contacts, in particular. Typically, such an analysis consists of the following steps: modelling the actual object, mesh generation, numerical modelling and computer programming. The best known and mostly used of all is the finite element method. The paper also presents other more refined methods, for instance: CATIA and fast Fourier transform. The study of the living tissue based on numerical analysis exceeds the limitations of in vivo experiments but computers can never replicate the body adaptation capacity.

  8. Numerical study of circular synthetic jets at low Reynolds numbers

    International Nuclear Information System (INIS)

    Xia, Qingfeng; Lei, Shenghui; Ma, Jieyan; Zhong, Shan

    2014-01-01

    Highlights: • Parameter maps depicting different flow regimes of synthetic jets are produced. • Boundaries separating these regimes are defined using quantitative criteria. • The Reynolds number is most appropriate for classifying different flow regimes. • A use of high suction cycle factors enhances the effectiveness of synthetic jets. - Abstract: In this paper, the flow patterns of circular synthetic jets issuing into a quiescent flow at low Reynolds numbers are studied numerically. The results confirm the presence of the three jet flow regimes, i.e. no jet formation, jet flow without rollup and jet flow with rollup reported in the literature. The boundaries of the different jet flow regimes are determined by tracking the structures produced by the synthetic jets in the near field of the jet orifice over several actuation cycles and examining the cycle-averaged streamwise velocity profiles along the jet central axis. When the Stokes number is above a certain threshold value appropriate for the corresponding flow regime, a good correlation between the flow patterns and the jet Reynolds number defined using the jet orifice diameter, Re Do , is also found. Furthermore, the flow structures of synthetic jets with different suction duty cycle factors are compared. The use of a high suction duty cycle factor strengthens the synthetic jet resulting in a greater penetration depth into the surrounding fluid. Overall, the finding from this study enables the flow regimes, in which a synthetic jet actuator with a circular orifice operates, to be determined. It also provides a way of designing more effective synthetic jet actuators for enhancing mass and momentum transfer at very low Reynolds numbers

  9. Sexual Assault and Sexual Harassment in the U.S. Military: Highlights from the 2014 RAND Military Workplace Study

    Science.gov (United States)

    2015-01-01

    assault, sexual harassment , and gender discrimination in the military. The resulting study, the RAND Military Workplace Study (RMWS), invited close to...members are highlighted in this brief. Sexual Assault and Sexual Harassment in the U.S. Military HigHligHts from tHe 2014 rAND militAry WorkplAce stuDy...significantly higher rates than men : 22 percent of women and 7 percent of men experienced sexual harassment in the past year. In addition, we estimate

  10. Experimental and numerical study of the migration of gas bubbles through an interface between two liquids

    International Nuclear Information System (INIS)

    Bonhomme, R.

    2012-01-01

    In order to predict the evolution of a hypothetical accident in pressurized water nuclear reactors, this study aims to understand the dynamics of gas bubbles ascending in a stratified mixture made of two superimposed liquids. To this aim, an experimental device equipped with two high-speed video cameras was designed, allowing us to observe isolated air bubbles and bubble trains crossing a horizontal interface separating two Newtonian immiscible liquids initially at rest. The size of the bubbles and the viscosity contrast between the two liquids were varied by more than one and four orders of magnitude respectively, making it possible to observe a wide variety of flow regimes. In some situations, small millimetric bubbles remain trapped at the liquid-liquid interface, whereas larger bubbles succeed in crossing the interface and tow a significant column of lower fluid behind them. After the influence of the physical parameters was qualitatively established thanks to simple models, direct numerical simulations of several selected experimental situations were performed with two different approaches. These are both based on the incompressible Navier-Stokes equations, one making use of an interface capturing technique, the other of a diffuse Cahn-Hilliard description. Comparisons between experimental and numerical results confirmed the reliability of the computational approaches in most situations but also highlighted the need for improvements to capture small-scale physical phenomena especially those related to film drainage. (author)

  11. Numerical linear algebra a concise introduction with Matlab and Julia

    CERN Document Server

    Bornemann, Folkmar

    2018-01-01

    This book offers an introduction to the algorithmic-numerical thinking using basic problems of linear algebra. By focusing on linear algebra, it ensures a stronger thematic coherence than is otherwise found in introductory lectures on numerics. The book highlights the usefulness of matrix partitioning compared to a component view, leading not only to a clearer notation and shorter algorithms, but also to significant runtime gains in modern computer architectures. The algorithms and accompanying numerical examples are given in the programming environment MATLAB, and additionally – in an appendix – in the future-oriented, freely accessible programming language Julia. This book is suitable for a two-hour lecture on numerical linear algebra from the second semester of a bachelor's degree in mathematics.

  12. Experimental and numerical study of steel pipe with part-wall defect reinforced with fibre glass sleeve

    International Nuclear Information System (INIS)

    Mazurkiewicz, Lukasz; Tomaszewski, Michal; Malachowski, Jerzy; Sybilski, Kamil; Chebakov, Mikhail; Witek, Maciej; Yukhymets, Peter; Dmitrienko, Roman

    2017-01-01

    The paper presents numerical and experimental burst pressure evaluation of the gas seamless hot-rolled steel pipe. The main goal was to estimate mechanical toughness of pipe wrapped with composite sleeve and verify selected sleeve thickness. The authors used a nonlinear explicit FE code with constitutive models which allows for steel and composite structure failure modelling. Thanks to the achieved numerical and analytical results it was possible to perform the comparison with data received from a capacity test and good correlation between the results were obtained. Additionally, the conducted analyses revealed that local reduction of pipe wall thickness from 6 mm to 2.4 mm due to corrosion defect can reduce high pressure resistance by about 40%. Finally, pipe repaired by a fibre glass sleeve with epoxy resin with 6 mm thickness turned out more resistant than an original steel pipe considering burst pressure. - Highlights: • Numerical and experimental burst pressure evaluation of steel pipe was performed. • Seamless hot-rolled steel pipe with and without corrosion defect were considered. • Local reduction of pipe wall thickness from 6 to 2.4 mm reduces resistance by 40%. • Pipe repaired by a 6 mm fibre glass sleeve was more resistant than an original pipe.

  13. Numerical study of turbulent diffusion

    International Nuclear Information System (INIS)

    McCoy, M.G.

    1975-01-01

    The problem of the numerical simulation of turbulent diffusion is studied. The two-dimensional velocity fields are assumed to be incompressible, homogeneous and stationary, and they are represented as stochastic processes. A technique is offered which creates velocity fields accurately representing the input statistics once a two point correlation function or an energy spectrum is given. Various complicated energy spectra may be represented utilizing this model. The program is then used to extract information concerning Gaussian diffusion processes. Various theories of other workers are tested including Taylor's classical representation of dispersion for times long compared with the Lagrangian correlation time. Also, a study is made of the relation between the Lagrangian and the Eulerian correlation function and a hypothesis is advanced and successfully tested. Questions concerning the relation between small eddies and the energy spectrum are considered. A criterion is advanced and successfully tested to decide whether small scale flow can be detected within the large eddies for any given spectrum. A method is developed to determine whether this small scale motion is in any sense periodic. Finally, the relation between two particle dispersion and the energy spectrum is studied anew and various theories are tested

  14. Numerical modelling and experimental study of liquid evaporation during gel formation

    Science.gov (United States)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  15. Behavioral modeling of SRIM tables for numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Martinie, S., E-mail: sebastien.martinie@cea.fr; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L., E-mail: jean-luc.autran@univ-amu.fr

    2014-03-01

    Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits.

  16. Behavioral modeling of SRIM tables for numerical simulation

    International Nuclear Information System (INIS)

    Martinie, S.; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L.

    2014-01-01

    Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits

  17. Numerical and experimental study of two turbulent opposed plane jets

    Energy Technology Data Exchange (ETDEWEB)

    Besbes, Sonia; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, UNIMECA, Technopole de Chateau-Gombert, 60 rue Joliot-Curie, 13453 Marseille (France)

    2003-09-01

    The turbulent interaction between two opposed plane jets separated by a distance H is experimentally studied by using a PIV (Particle Image Velocimetry) method and numerically investigated by means of a finite volume code. Two turbulence models have been tested: the standard k-{epsilon} model and a second-order model. The validation of the numerical study was performed by comparing the results with experimental data obtained for the case of two interacting opposed jets at ambient temperature (isothermal case). The effect of the angle of inclination of the jets is studied. Conclusions of the validation are then used to study the interaction between two jets, one being maintained at ambient temperature whereas the other is heated. Results show that the stagnation point moves towards the heated jet. It is shown that the heating induces a stabilizing effect on the flow. (orig.)

  18. Experimental and numerical study of the flow field around a small car

    Directory of Open Access Journals (Sweden)

    Dobrev Ivan

    2017-01-01

    Full Text Available This paper presents the aerodynamic study of a small car, which participated in Shell Ecomarathon Europe competition in the Urban Concept Hydrogen class. The goal is to understand the flow field around the vehicle. First, the flow is studied numerically using computational aerodynamics. The numerical simulation is carried out by means of CFD Fluent in order to obtain the drag force experienced by the vehicle and also the flow field. Then the flow field around the car is studied in a wind tunnel by means of particle image velocimetry (PIV. The comparison of the flow fields obtained numerically and experimentally shows good correspondence. The obtained results are very helpful for future car development and permit to improve the drag and to obtain a good stability.

  19. Numerical simulation of bubble deformation in magnetic fluids by finite volume method

    International Nuclear Information System (INIS)

    Yamasaki, Haruhiko; Yamaguchi, Hiroshi

    2017-01-01

    Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field. - Highlights: • A magnetic field analysis is developed to simulate the bubble dynamics in magnetic fluid with two-phase interface. • The elongation of bubble increased with increasing magnetic flux intensities due to strong magnetic normal force. • Proposed technique explains the bubble dynamics, taking into account of the continuity of the magnetic flux density.

  20. Numerical study of droplet impact and rebound on superhydrophobic surface

    Science.gov (United States)

    Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina

    2017-11-01

    Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).

  1. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics

    KAUST Repository

    Sparber, Christof; Markowich, Peter; Huang, Zhongyi

    2010-01-01

    We numerically study the three dimensional Gross-Pitaevskii equation for dipolar quantum gases using a time-splitting algorithm. We are mainly concerned with numerical investigations of the possible blow-up of solutions, i.e. collapse of the condensate, and the dynamics of vortices. © American Institute of Mathematical Sciences.

  2. Numerical study of dense adjoint 2-color matter

    International Nuclear Information System (INIS)

    Hands, S.; Scorzato, L.; Oevers, M.

    2000-11-01

    We study the global symmetries of SU(2) gauge theory with N flavors of staggered fermions in the presence of a chemical potential. We motivate the special interest of the case N=1 (staggered) with fermions in the adjoint representation of the gauge group. We present results from numerical simulations with both hybrid Monte Carlo and the two-step multi-bosonic algorithm. (orig.)

  3. Numerical study of cosmic censorship in string theory

    International Nuclear Information System (INIS)

    Gutperle, Michael; Kraus, Per

    2004-01-01

    Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)

  4. Numerical study of cosmic censorship in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Gutperle, Michael E-mail: gutperle@physics.ucla.edu; Kraus, Per

    2004-04-01

    Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)

  5. Mathematical and numerical study of nonlinear hyperbolic equations: model coupling and nonclassical shocks

    International Nuclear Information System (INIS)

    Boutin, B.

    2009-11-01

    This thesis concerns the mathematical and numerical study of nonlinear hyperbolic partial differential equations. A first part deals with an emergent problematic: the coupling of hyperbolic equations. The pursued applications are linked with the mathematical coupling of computing platforms, dedicated to an adaptative simulation of multi-scale phenomena. We propose and analyze a new coupling formalism based on extended PDE systems avoiding the geometric treatment of the interfaces. In addition, it allows to formulate the problem in a multidimensional setting, with possible covering of the coupled models. This formalism allows in particular to equip the coupling procedure with viscous regularization mechanisms, useful in the selection of natural discontinuous solutions. We analyze existence and uniqueness in the framework of a parabolic regularization a la Dafermos. Existence of a solution holds true under very general conditions but failure of uniqueness may naturally arise as soon as resonance occurs at the interfaces. Next, we highlight that our extended PDE framework gives rise to another regularization strategy based on thick interfaces. In this setting, we prove existence and uniqueness of the solutions of the Cauchy problem for initial data in L ∞ . The main tool consists in the derivation of a flexible and robust finite volume method for general triangulation which is analyzed in the setting of entropy measure-valued solutions by DiPerna. The second part is devoted to the definition of a finite volume scheme for the computing of nonclassical solutions of a scalar conservation law based on a kinetic relation. This scheme offers the feature to be stricto sensu conservative, in opposition to a Glimm approach that is only statistically conservative. The validity of our approach is illustrated through numerical examples. (author)

  6. Numerical studies of film formation in context of steel coating

    Science.gov (United States)

    Aniszewski, Wojciech; Zaleski, Stephane; Popinet, Stephane

    2017-11-01

    In this work, we present a detailed example of numerical study of film formation in the context of metal coating. Liquid metal is drawn from a reservoir onto a retracting solid sheet, forming a coating film characterized by phenomena such as longitudinal thickness variation (in 3D) or waves akin to that predicted by Kapitza and Kapitza (visible in two dimensions as well). While the industry standard configuration for Zinc coating is marked by coexistence of medium Capillary number (Ca = 0.03) and film Reynolds number above 1000, we present also parametric studies in order to establish more clearly to what degree does the numerical method influence film regimes obtained in the target configuration. The simulations have been performed using Basilisk, a grid-adapting, strongly optimized code derived from Gerris . Mesh adaptation allows for arbitrary precision in relevant regions such as the contact line or the meniscus, while a coarse grid is applied elsewhere. This adaptation strategy, as the results indicate, is the only realistic approach for numerical method to cover the wide range of necessary scales from the predicted film thickness (hundreds of microns) to the domain size (meters).

  7. Numerical and experimental investigation of the self-inducing turbine aeration capacity

    International Nuclear Information System (INIS)

    Achouri, Ryma; Dhaouadi, Hatem; Mhiri, Hatem; Bournot, Philippe

    2014-01-01

    Highlights: • Numerical and experimental study of k L a coefficient of a self-inducing turbine. • Validation of experimental results. • Numerical study of k L a variation with the variation of impeller submersion and blade inclination. • Numerical study of the flow field and hydrodynamic parameters. - Abstract: Self-inducing turbines are a model of mixers that ensure the aeration of a fluid field without using a sparger and a surface aerator. Nevertheless, this type of turbines remain quite complicated in terms of behavior of the fluid within the tank, and its actual aeration capacity varies depending on the type of turbine used. The studied turbine is self-inducing and made of three blades and each blade contains five holes. In this work, we evaluated experimentally – using the technique of dynamic oxygenation and deoxygenating – the aeration capacity of our impeller by calculating the volumetric mass transfer coefficient k L a for various submergences and various inclination angles of the blade. This work was then validated by a numerical modeling using the commercial code Fluent, and the flow within the tank as well as the evolution of the hydrodynamic parameters was also studied. The simulation is steady state with a VOF multiphase model and the realizable k–ε turbulence model. We finally concluded that k L a decreases with the increase of the inclination angle and with the increase of the submergence of our turbine. We could also study the hydrodynamic parameters of the flow such as the power number, the aeration number and the shear rate

  8. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2008-09-01

    Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable

  9. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations

    KAUST Repository

    Pietschmann, Jan-Frederik; Markowich, Peter Alexander; Burger, Martin

    2011-01-01

    In this paper we study the continuum limit of a cellular automaton model used for simulating human crowds with herding behaviour. We derive a system of non-linear partial differential equations resembling the Keller-Segel model for chemotaxis, however with a non-monotone interaction. The latter has interesting consequences on the behaviour of the model's solutions, which we highlight in its analysis. In particular we study the possibility of stationary states, the formation of clusters and explore their connection to congestion. We also introduce an efficient numerical simulation approach based on an appropriate hybrid discontinuous Galerkin method, which in particular allows flexible treatment of complicated geometries. Extensive numerical studies also provide a better understanding of the strengths and shortcomings of the herding model, in particular we examine trapping effects of crowds behind nonconvex obstacles. © American Institute of Mathematical Sciences.

  10. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations

    KAUST Repository

    Pietschmann, Jan-Frederik

    2011-11-01

    In this paper we study the continuum limit of a cellular automaton model used for simulating human crowds with herding behaviour. We derive a system of non-linear partial differential equations resembling the Keller-Segel model for chemotaxis, however with a non-monotone interaction. The latter has interesting consequences on the behaviour of the model\\'s solutions, which we highlight in its analysis. In particular we study the possibility of stationary states, the formation of clusters and explore their connection to congestion. We also introduce an efficient numerical simulation approach based on an appropriate hybrid discontinuous Galerkin method, which in particular allows flexible treatment of complicated geometries. Extensive numerical studies also provide a better understanding of the strengths and shortcomings of the herding model, in particular we examine trapping effects of crowds behind nonconvex obstacles. © American Institute of Mathematical Sciences.

  11. Numerical Studies of a Fluidic Diverter for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  12. Highlights from the early (and pre-) history of reliability engineering

    International Nuclear Information System (INIS)

    Saleh, J.H.; Marais, K.

    2006-01-01

    Reliability is a popular concept that has been celebrated for years as a commendable attribute of a person or an artifact. From its modest beginning in 1816-the word reliability was first coined by Samuel T. Coleridge-reliability grew into an omnipresent attribute with qualitative and quantitative connotations that pervades every aspect of our present day technologically intensive world. In this short communication, we highlight key events and the history of ideas that led to the birth of Reliability Engineering, and its development in the subsequent decades. We first argue that statistics and mass production were the enablers in the rise of this new discipline, and the catalyst that accelerated the coming of this new discipline was the (unreliability of the) vacuum tube. We highlight the foundational role of AGREE report in 1957 in the birth of reliability engineering, and discuss the consolidation of numerous efforts in the 1950s into a coherent new technical discipline. We show that an evolution took place in the discipline in the following two decades along two directions: first, there was an increased specialization in the discipline (increased sophistication of statistical techniques, and the rise of a new branch focused on the actual physics of failure of components, Reliability Physics); second, there occurred a shift in the emphasis of the discipline from a component-centric to an emphasis on system-level attributes (system reliability, availability, safety). Finally, in selecting the particular events and highlights in the history of ideas that led to the birth and subsequent development of reliability engineering, we acknowledge a subjective component in this work and make no claims to exhaustiveness

  13. Intensification of transesterification via sonication numerical simulation and sensitivity study

    International Nuclear Information System (INIS)

    Janajreh, Isam; ElSamad, Tala; Noorul Hussain, Mohammed

    2017-01-01

    Highlights: • 3D numerical simulation of transesterification is accomplished. • A non-isothermal, reactive Navier–stokes was carried out. • Conventional and sonicated process was compared as far as reaction kinetics and yield. • Higher kinetic rates are achieved at lower molar ratios in sonicated process. • It validates feasibility of numerical simulation for transesterification assessment. - Abstract: Transesterification is known as slow reaction that can take over several hours to complete. The process involves two immiscible reactants to produce the biodiesel and the byproduct glycerol. Biodiesel commercialization has always been hindered by the long process times of the transesterification reaction. Catalyzing the process and increasing the agitation rate is the mode of intensifying the process additional to the increase of the molar ratio, temperature, circulation that all penalize the overall process metrics. Finding shorter path by reducing the reaction into a few minutes and ensures high quality biodiesel, in economically viable way is coming along with sonication. This drastic reduction moves the technology from the slow batch process into the high throughput continuous process. In a practical sense this means a huge optimization for the biodiesel production process which opens pathways for faster, voluminous and cheaper production. The mechanism of sonication assisted reaction is explained by the creation of microbubbles which increases the interfacial surface reaction areas and the presence of high localized temperature and turbulence as these microbubbles implode. As a result the reaction kinetics of sonicated transesterification as inferred by several authors is much faster. The aim of this work is to implement the inferred rates in a high fidelity numerical reactive flow simulation model while considering the reactor geometry. It is based on Navier–Stokes equations coupled with energy equation for non-isothermal flow and the transport

  14. Numerical study of two dimensional disordered systems in an external magnetic field

    International Nuclear Information System (INIS)

    Jana, Debnarayan

    2000-01-01

    We study here 2d tight-binding disordered model in an external magnetic field. By numerically diagonalizing the Hamiltonian, we characterize the eigenstates by Generalized Inverse Participation Ratio (GIPR). The properties of the eigenstates have been studied in case of random flux model as well as with the strength of disorder. Simple theoretical arguments are given in support of the numerical observation. Finally, we have also studied the multifractality of the eigenstates. All these study may shed light on the eigenstates in the center of the band in case of Integer Quantum Hall Effect (IQHE). (author)

  15. Numerical studies of unsteady coherent structures and transport in two-dimensional flows

    Energy Technology Data Exchange (ETDEWEB)

    Hesthaven, J.S.

    1995-08-01

    The dynamics of unsteady two-dimensional coherent structures in various physical systems is studied through direct numerical solution of the dynamical equations using spectral methods. The relation between the Eulerian and the Lagrangian auto-correlation functions in two-dimensional homogeneous, isotropic turbulence is studied. A simple analytic expression for the Eulerian and Lagrangian auto-correlation function for the fluctuating velocity field is derived solely on the basis of the one-dimensional power spectrum. The long-time evolution of monopolar and dipolar vortices in anisotropic systems relevant for geophysics and plasma physics is studied by direct numerical solution. Transport properties and spatial reorganization of vortical structures are found to depend strongly on the initial conditions. Special attention is given to the dynamics of strong monopoles and the development of unsteady tripolar structures. The development of coherent structures in fluid flows, incompressible as well as compressible, is studied by novel numerical schemes. The emphasis is on the development of spectral methods sufficiently advanced as to allow for detailed and accurate studies of the self-organizing processes. (au) 1 ill., 94 refs.

  16. Brookhaven highlights

    International Nuclear Information System (INIS)

    Rowe, M.S.; Belford, M.; Cohen, A.; Greenberg, D.; Seubert, L.

    1993-01-01

    This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications

  17. Numerical analysis of data in dynamic function studies

    International Nuclear Information System (INIS)

    Riihimaeki, E.

    1975-01-01

    Relations between tracer theories, models for organ function and the numerical solution of parameters from tracer experiments are reviewed. A unified presentation is given in terms of systems theory. Dynamic tracer studies should give the flow and volume of the tracer and, possibly, indications of the internal structure of the organ studied. Proper program writing will facilitate the exchange of the programs between the users and thereby avoid duplication of effort. An important attribute in this respect is machine independence of the programs which is achieved by the use of a high-level language. (author)

  18. Is Domain Highlighting Actually Helpful in Identifying Phishing Web Pages?

    Science.gov (United States)

    Xiong, Aiping; Proctor, Robert W; Yang, Weining; Li, Ninghui

    2017-06-01

    To evaluate the effectiveness of domain highlighting in helping users identify whether Web pages are legitimate or spurious. As a component of the URL, a domain name can be overlooked. Consequently, browsers highlight the domain name to help users identify which Web site they are visiting. Nevertheless, few studies have assessed the effectiveness of domain highlighting, and the only formal study confounded highlighting with instructions to look at the address bar. We conducted two phishing detection experiments. Experiment 1 was run online: Participants judged the legitimacy of Web pages in two phases. In Phase 1, participants were to judge the legitimacy based on any information on the Web page, whereas in Phase 2, they were to focus on the address bar. Whether the domain was highlighted was also varied. Experiment 2 was conducted similarly but with participants in a laboratory setting, which allowed tracking of fixations. Participants differentiated the legitimate and fraudulent Web pages better than chance. There was some benefit of attending to the address bar, but domain highlighting did not provide effective protection against phishing attacks. Analysis of eye-gaze fixation measures was in agreement with the task performance, but heat-map results revealed that participants' visual attention was attracted by the highlighted domains. Failure to detect many fraudulent Web pages even when the domain was highlighted implies that users lacked knowledge of Web page security cues or how to use those cues. Potential applications include development of phishing prevention training incorporating domain highlighting with other methods to help users identify phishing Web pages.

  19. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Oh, Kyeongmin; Won, Seongyeon; Ju, Hyunchul

    2015-01-01

    Highlights: • The effects of electrode compression on VRFB are examined. • The electronic conductivity is improved when the compression is increased. • The kinetic losses are similar regardless of the electrode compression level. • The vanadium distribution is more uniform within highly compressed electrode. - Abstract: The porous carbon felt electrode is one of the major components of all-vanadium redox flow batteries (VRFBs). These electrodes are necessarily compressed during stack assembly to prevent liquid electrolyte leakage and diminish the interfacial contact resistance among VRFB stack components. The porous structure and properties of carbon felt electrodes have a considerable influence on the electrochemical reactions, transport features, and cell performance. Thus, a numerical study was performed herein to investigate the effects of electrode compression on the charge and discharge behavior of VRFBs. A three-dimensional, transient VRFB model developed in a previous study was employed to simulate VRFBs under two degrees of electrode compression (10% vs. 20%). The effects of electrode compression were precisely evaluated by analysis of the solid/electrolyte potential profiles, transfer current density, and vanadium concentration distributions, as well as the overall charge and discharge performance. The model predictions highlight the beneficial impact of electrode compression; the electronic conductivity of the carbon felt electrode is the main parameter improved by electrode compression, leading to reduction in ohmic loss through the electrodes. In contrast, the kinetics of the redox reactions and transport of vanadium species are not significantly altered by the degree of electrode compression (10% to 20%). This study enhances the understanding of electrode compression effects and demonstrates that the present VRFB model is a valuable tool for determining the optimal design and compression of carbon felt electrodes in VRFBs.

  20. Force-controlled absorption in a fully-nonlinear numerical wave tank

    International Nuclear Information System (INIS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-01-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes

  1. Numerical algebra, matrix theory, differential-algebraic equations and control theory festschrift in honor of Volker Mehrmann

    CERN Document Server

    Bollhöfer, Matthias; Kressner, Daniel; Mehl, Christian; Stykel, Tatjana

    2015-01-01

    This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on ...

  2. Explicit appropriate basis function method for numerical solution of stiff systems

    International Nuclear Information System (INIS)

    Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling

    2015-01-01

    Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations

  3. Numerical study of ion thermal gradient driven modes

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Mourgues, F.; Samain, A.

    1987-01-01

    Anomalous ion thermal confinement has been observed in tokamaks (1). The ion temperature gradient driven modes could provide a possible explanation of this fact. The goal of this paper is to examine the stability of such modes by a linear, analytical and numerical study. The value of the threshold parameter and the radial profiles of the modes are computed. The effects of the particles vertical drift due to the field curvature are discussed

  4. Mathematical study and numerical simulations of bi-kinetic plasma sheaths

    International Nuclear Information System (INIS)

    Badsi, Mehdi

    2016-01-01

    This thesis focuses on the construction and the numerical simulation theoretical models of plasmas in interaction with an absorbing wall. These models are based on two species Vlasov-Poisson or Vlasov-Ampere systems in the presence of boundary conditions. The expected stationary solutions must verify the balance of the flux of charges in the orthogonal direction to the wall. This feature is called the ambi-polarity. Through the study of a non linear Poisson equation, we prove the well-posedness of 1d-1v stationary Vlasov-Poisson system, for which we determine incoming particles distributions and a wall potential that induces the ambi-polarity as well as a non negative charge density hold. We also give a quantitative estimates of the thickness of the boundary layer that develops at the wall. These results are illustrated numerically. We prove the linear stability of the electronic stationary solution for a non-stationary Vlasov-Ampere system. Finally, we study a 1d-3v stationary Vlasov-Poisson system in the presence of a constant and parallel to the wall magnetic field. We determine incoming particles distributions and a wall potential so that the ambi-polarity holds. We study a non linear Poisson equation through a non linear functional energy that admits minimizers. We established some bounds on the numerical parameters inside which, our model is relevant and we propose an interpretation of the results. (author)

  5. Symposium Highlights

    International Nuclear Information System (INIS)

    Owen-Whitred, K.

    2015-01-01

    Overview/Highlights: To begin, I'd like to take a moment to highlight some of the novel elements of this Symposium as compared to those that have been held in the past. For the first time ever, this Symposium was organized around five concurrent sessions, covering over 300 papers and presentations. These sessions were complemented by an active series of exhibits put on by vendors, universities, ESARDA, INMM, and Member State Support Programmes. We also had live demonstrations throughout the week on everything from software to destructive analysis to instrumentation, which provided the participants the opportunity to see recent developments that are ready for implementation. I'm sure you all had a chance to observe - and, more importantly, interact with - the electronic Poster, or ePoster format used this past week. This technology was used here for the first time ever by the IAEA, and I'm sure was a first for many of us as well. The ePoster format allowed participants to interact with the subject matter, and the subject matter experts, in a dynamic, engaging way. In addition to the novel technology used here, I have to say that having the posters strategically embedded in the sessions on the same topic, by having each poster author introduce his or her topic to the assembled group in order to lure us to the poster area during the breaks, was also a novel and highly effective technique. A final highlight I'd like to touch on in terms of the Symposium organization is the diversity of participation. This chart shows the breakdown by geographical distribution for the Symposium, in terms of participants. There are no labels, so don't try to read any, I simply wanted to demonstrate that we had great representation in terms of both the Symposium participants in general and the session chairs more specifically-and on that note, I would just mention here that 59 Member States participated in the Symposium. But what I find especially interesting and

  6. Advances in variational and hemivariational inequalities theory, numerical analysis, and applications

    CERN Document Server

    Migórski, Stanisław; Sofonea, Mircea

    2015-01-01

    Highlighting recent advances in variational and hemivariational inequalities with an emphasis on theory, numerical analysis and applications, this volume serves as an indispensable resource to graduate students and researchers interested in the latest results from recognized scholars in this relatively young and rapidly-growing field. Particularly, readers will find that the volume’s results and analysis present valuable insights into the fields of pure and applied mathematics, as well as civil, aeronautical, and mechanical engineering. Researchers and students will find new results on well posedness to stationary and evolutionary inequalities and their rigorous proofs. In addition to results on modeling and abstract problems, the book contains new results on the numerical methods for variational and hemivariational inequalities. Finally, the applications presented illustrate the use of these results in the study of miscellaneous mathematical models which describe the contact between deformable bodies and a...

  7. Numerical study comparing RANS and LES approaches on a circulation control airfoil

    International Nuclear Information System (INIS)

    Rumsey, Christopher L.; Nishino, Takafumi

    2011-01-01

    Highlights: → RANS compared with LES for circulation control airfoil. → RANS turbulence models need to account for streamline curvature. → RANS models yield higher lift than LES in spite of predicting similar jet separation. - Abstract: A numerical study over a nominally two-dimensional circulation control airfoil is performed using a large-eddy simulation code and two Reynolds-averaged Navier-Stokes codes. Different Coanda jet blowing conditions are investigated. In addition to investigating the influence of grid density, a comparison is made between incompressible and compressible flow solvers. The incompressible equations are found to yield negligible differences from the compressible equations up to at least a jet exit Mach number of 0.64. The effects of different turbulence models are also studied. Models that do not account for streamline curvature effects tend to predict jet separation from the Coanda surface too late, and can produce non-physical solutions at high blowing rates. Three different turbulence models that account for streamline curvature are compared with each other and with large eddy simulation solutions. All three models are found to predict the Coanda jet separation location reasonably well, but one of the models predicts specific flow field details near the Coanda surface prior to separation much better than the other two. All Reynolds-averaged Navier-Stokes computations produce higher circulation than large eddy simulation computations, with different stagnation point location and greater flow acceleration around the nose onto the upper surface. The precise reasons for the higher circulation are not clear, although it is not solely a function of predicting the jet separation location correctly.

  8. Numerical study comparing RANS and LES approaches on a circulation control airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Rumsey, Christopher L., E-mail: c.l.rumsey@nasa.gov [Computational AeroSciences Branch, NASA Langley Research Center, Hampton, VA 23681-2199 (United States); Nishino, Takafumi [Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States)

    2011-10-15

    Highlights: > RANS compared with LES for circulation control airfoil. > RANS turbulence models need to account for streamline curvature. > RANS models yield higher lift than LES in spite of predicting similar jet separation. - Abstract: A numerical study over a nominally two-dimensional circulation control airfoil is performed using a large-eddy simulation code and two Reynolds-averaged Navier-Stokes codes. Different Coanda jet blowing conditions are investigated. In addition to investigating the influence of grid density, a comparison is made between incompressible and compressible flow solvers. The incompressible equations are found to yield negligible differences from the compressible equations up to at least a jet exit Mach number of 0.64. The effects of different turbulence models are also studied. Models that do not account for streamline curvature effects tend to predict jet separation from the Coanda surface too late, and can produce non-physical solutions at high blowing rates. Three different turbulence models that account for streamline curvature are compared with each other and with large eddy simulation solutions. All three models are found to predict the Coanda jet separation location reasonably well, but one of the models predicts specific flow field details near the Coanda surface prior to separation much better than the other two. All Reynolds-averaged Navier-Stokes computations produce higher circulation than large eddy simulation computations, with different stagnation point location and greater flow acceleration around the nose onto the upper surface. The precise reasons for the higher circulation are not clear, although it is not solely a function of predicting the jet separation location correctly.

  9. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Najm, Habib N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phipps, Eric Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  10. Experimental and numerical studies on super-cavitating flow of axisymmetric cavitators

    Directory of Open Access Journals (Sweden)

    Byoung-Kwon Ahn

    2010-03-01

    Full Text Available Recently underwater systems moving at high speed such as a super-cavitating torpedo have been studied for their practical advantage of the dramatic drag reduction. In this study we are focusing our attention on super-cavitating flows around axisymmetric cavitators. A numerical method based on inviscid flow is developed and the results for several shapes of the cavitator are presented. First using a potential based boundary element method, we find the shape of the cavitator yielding a sufficiently large enough cavity to surround the body. Second, numerical predictions of supercavity are validated by comparing with experimental observations carried out in a high speed cavitation tunnel at Chungnam National University (CNU CT.

  11. A Numerical Study of Quantization-Based Integrators

    Directory of Open Access Journals (Sweden)

    Barros Fernando

    2014-01-01

    Full Text Available Adaptive step size solvers are nowadays considered fundamental to achieve efficient ODE integration. While, traditionally, ODE solvers have been designed based on discrete time machines, new approaches based on discrete event systems have been proposed. Quantization provides an efficient integration technique based on signal threshold crossing, leading to independent and modular solvers communicating through discrete events. These solvers can benefit from the large body of knowledge on discrete event simulation techniques, like parallelization, to obtain efficient numerical integration. In this paper we introduce new solvers based on quantization and adaptive sampling techniques. Preliminary numerical results comparing these solvers are presented.

  12. Numerical study of wave propagation around an underground cavity: acoustic case

    Science.gov (United States)

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz

    2015-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the

  13. A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

    Directory of Open Access Journals (Sweden)

    Sungwook Lee

    2015-05-01

    Full Text Available In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV is presented. Planar Motion Mechanism (PMM captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.

  14. Numerical Studies of Magnetohydrodynamic Activity Resulting from Inductive Transients. Final Report

    International Nuclear Information System (INIS)

    Sovinec, Carl R.

    2005-01-01

    This report describes results from numerical studies of transients in magnetically confined plasmas. The work has been performed by University of Wisconsin graduate students James Reynolds and Giovanni Cone and by the Principal Investigator through support from contract DE-FG02-02ER54687, a Junior Faculty in Plasma Science award from the DOE Office of Science. Results from the computations have added significantly to our knowledge of magnetized plasma relaxation in the reversed-field pinch (RFP) and spheromak. In particular, they have distinguished relaxation activity expected in sustained configurations from transient effects that can persist over a significant fraction of the plasma discharge. We have also developed the numerical capability for studying electrostatic current injection in the spherical torus (ST). These configurations are being investigated as plasma confinement schemes in the international effort to achieve controlled thermonuclear fusion for environmentally benign energy production. Our numerical computations have been performed with the NIMROD code (http://nimrodteam.org) using local computing resources and massively parallel computing hardware at the National Energy Research Scientific Computing Center. Direct comparisons of simulation results for the spheromak with laboratory measurements verify the effectiveness of our numerical approach. The comparisons have been published in refereed journal articles by this group and by collaborators at Lawrence Livermore National Laboratory (see Section 4). In addition to the technical products, this grant has supported the graduate education of the two participating students for three years

  15. Methods of numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1983-01-01

    Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)

  16. Experimental study and numerical modelling of geochemical reactions occurring during uranium in situ recovery (ISR) mining

    International Nuclear Information System (INIS)

    Ben Simon, R.

    2011-09-01

    The in situ Recovery (ISR) method consists of ore mining by in situ chemical leaching with acid or alkaline solutions. ISR takes place underground and is therefore limited to the analysis of the pumped solutions, hence ISR mine management is still empirical. Numerical modelling has been considered to achieve more efficient management of this process. Three different phenomena have to be taken into account for numerical simulations of uranium ISR mining: (1) geochemical reactions; (2) the kinetics of these reactions, and (3) hydrodynamic transport with respect to the reaction kinetics. Leaching tests have been conducted on ore samples from an uranium mine in Tortkuduk (Kazakhstan) where ISR is conducted by acid leaching. Two types of leaching experiments were performed: (1) tests in batch reactors; and (2) extraction in flow through columns. The assumptions deduced from the leaching tests were tested and validated by modelling the laboratory experiments with the numerical codes CHESS and HYTEC, both developed at the Geosciences research center of Mines ParisTech. A well-constrained 1D hydrogeochemical transport model of the ISR process at laboratory-scale was proposed. It enables to translate the chemical release sequence that is observed during experiments into a geochemical reaction sequence. It was possible to highlight the controlling factors of uranium dissolution, and the precipitation of secondary mineral phase in the deposit, as well as the determination of the relative importance of these factors. (author)

  17. Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2010-01-01

    We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.

  18. Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.

    Science.gov (United States)

    Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula

    2017-12-01

    Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.

  19. Numerical modeling of flow boiling instabilities using TRACE

    International Nuclear Information System (INIS)

    Kommer, Eric M.

    2015-01-01

    Highlights: • TRACE was used to realistically model boiling instabilities in single and parallel channel configurations. • Model parameters were chosen to exactly mimic other author’s work in order to provide for direct comparison of results. • Flow stability maps generated by the model show unstable flow at operating points similar to other authors. • The method of adjudicating when a flow is “unstable” is critical in this type of numerical study. - Abstract: Dynamic flow instabilities in two-phase systems are a vitally important area of study due to their effects on a great number of industrial applications, including heat exchangers in nuclear power plants. Several next generation nuclear reactor designs incorporate once through steam generators which will exhibit boiling flow instabilities if not properly designed or when operated outside design limits. A number of numerical thermal hydraulic codes attempt to model instabilities for initial design and for use in accident analysis. TRACE, the Nuclear Regulatory Commission’s newest thermal hydraulic code is used in this study to investigate flow instabilities in both single and dual parallel channel configurations. The model parameters are selected as to replicate other investigators’ experimental and numerical work in order to provide easy comparison. Particular attention is paid to the similarities between analysis using TRACE Version 5.0 and RELAP5/MOD3.3. Comparison of results is accomplished via flow stability maps non-dimensionalized via the phase change and subcooling numbers. Results of this study show that TRACE does indeed model two phase flow instabilities, with the transient response closely mimicking that seen in experimental studies. When compared to flow stability maps generated using RELAP, TRACE shows similar results with differences likely due to the somewhat qualitative criteria used by various authors to determine when the flow is truly unstable

  20. Editorial highlighting and highly cited papers

    Science.gov (United States)

    Antonoyiannakis, Manolis

    Editorial highlighting-the process whereby journal editors select, at the time of publication, a small subset of papers that are ostensibly of higher quality, importance or interest-is by now a widespread practice among major scientific journal publishers. Depending on the venue, and the extent to which editorial resources are invested in the process, highlighted papers appear as News & Views, Research Highlights, Perspectives, Editors' Choice, IOP Select, Editors' Summary, Spotlight on Optics, Editors' Picks, Viewpoints, Synopses, Editors' Suggestions, etc. Here, we look at the relation between highlighted papers and highly influential papers, which we define at two levels: having received enough citations to be among the (i) top few percent of their journal, and (ii) top 1% of all physics papers. Using multiple linear regression and multilevel regression modeling we examine the parameters associated with highly influential papers. We briefly comment on cause and effect relationships between citedness and highlighting of papers.

  1. Experimental and numerical study of the MYRRHA control rod system dynamics

    International Nuclear Information System (INIS)

    Kennedy, G.; Lamberts, D.; Van Tichelen, K.; Profir, M.; Moreau, V.

    2017-01-01

    This paper presents an experimental and numerical investigation of the buoyancy driven MYRRHA control rod (CR) insertion during an emergency SCRAM. The study aimed to support the MYRRHA reactor design and characterise the hydrodynamic behaviour of the CR system while demonstrating the proof-of-principle. A full-scale mock-up test section of the MYRRHA CR was constructed to test the hydrodynamics in Lead Bismuth Eutectic over a wide range of operating conditions, to provide experimental data for the qualification of the CR system. A numerical CFD model of the CR test section was also setup in STAR-CCM+. The simulations make use of the recently developed overset mesh method to simulate the dynamic two-way coupling between the moving CR bundle and the fluid domain. The numerical methodology and post-test simulation results are validated against the experimental results. The steady state hydraulic results and the transient insertion results from both the experimental and numerical efforts are presented. The influence of the global process conditions on the CR insertion time are presented as well. This investigation successfully demonstrates the CR insertion proof-of-principle during a SCRAM. (author)

  2. Numerical taxonomic studies of some tribes of Brassicaceae from Egypt

    NARCIS (Netherlands)

    Abdel Khalik, K.; Maesen, van der L.J.G.; Koopman, W.J.M.; Berg, van den R.G.

    2002-01-01

    A systematic study of 45 taxa belonging to 23 genera of tribes Arabideae, Euclidieae, Hesperideae, Lunarieae, Matthioleae and Sisymbrieae of Brassicaceae from Egypt was conducted by means of numerical analysis based on sixty two morphological characters, including vegetative parts, pollen grains and

  3. Numerical Modeling and Experimental Analysis of Scale Horizontal Axis Marine Hydrokinetic (MHK) Turbines

    Science.gov (United States)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2013-11-01

    We investigate, through a combination of scale model experiments and numerical simulations, the evolution of the flow field around the rotor and in the wake of Marine Hydrokinetic (MHK) turbines. Understanding the dynamics of this flow field is the key to optimizing the energy conversion of single devices and the arrangement of turbines in commercially viable arrays. This work presents a comparison between numerical and experimental results from two different case studies of scaled horizontal axis MHK turbines (45:1 scale). In the first case study, we investigate the effect of Reynolds number (Re = 40,000 to 100,000) and Tip Speed Ratio (TSR = 5 to 12) variation on the performance and wake structure of a single turbine. In the second case, we study the effect of the turbine downstream spacing (5d to 14d) on the performance and wake development in a coaxial configuration of two turbines. These results provide insights into the dynamics of Horizontal Axis Hydrokinetic Turbines, and by extension to Horizontal Axis Wind Turbines in close proximity to each other, and highlight the capabilities and limitations of the numerical models. Once validated at laboratory scale, the numerical model can be used to address other aspects of MHK turbines at full scale. Supported by DOE through the National Northwest Marine Renewable Energy Center.

  4. An Experimental and numerical Study for squeezing flow

    Science.gov (United States)

    Nathan, Rungun; Lang, Ji; Wu, Qianhong; Vucbmss Team

    2017-11-01

    We report an experimental and numerical study to examine the transient squeezing flow driven by sudden external impacts. The phenomenon is widely observed in industrial applications, e.g. squeeze dampers, or in biological systems, i.e. joints lubrication. However, there is a lack of investigation that captures the transient flow feature during the process. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. The heavy piston was released from rest, creating a fast compaction on the thin fluid gap underneath. The motion of the piston and the fluid pressure build-up was recorded. For this dynamic process, a CFD simulation was performed which shows excellent agreement with the experimental data. Both the numerical and experimental results show that, the squeezing flow starts with the inviscid limit when the viscous fluid effect has no time to appear, and thereafter becomes a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. The study presented herein, filling the gap in the literature, will have broad impacts in industrial and biomedical applications. This research was supported by the National Science Foundation under Award 1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  5. Using Highlighting to Train Attentional Expertise.

    Science.gov (United States)

    Roads, Brett; Mozer, Michael C; Busey, Thomas A

    2016-01-01

    Acquiring expertise in complex visual tasks is time consuming. To facilitate the efficient training of novices on where to look in these tasks, we propose an attentional highlighting paradigm. Highlighting involves dynamically modulating the saliency of a visual image to guide attention along the fixation path of a domain expert who had previously viewed the same image. In Experiment 1, we trained naive subjects via attentional highlighting on a fingerprint-matching task. Before and after training, we asked subjects to freely inspect images containing pairs of prints and determine whether the prints matched. Fixation sequences were automatically scored for the degree of expertise exhibited using a Bayesian discriminative model of novice and expert gaze behavior. Highlighted training causes gaze behavior to become more expert-like not only on the trained images but also on transfer images, indicating generalization of learning. In Experiment 2, to control for the possibility that the increase in expertise is due to mere exposure, we trained subjects via highlighting of fixation sequences from novices, not experts, and observed no transition toward expertise. In Experiment 3, to determine the specificity of the training effect, we trained subjects with expert fixation sequences from images other than the one being viewed, which preserves coarse-scale statistics of expert gaze but provides no information about fine-grain features. Observing at least a partial transition toward expertise, we obtain only weak evidence that the highlighting procedure facilitates the learning of critical local features. We discuss possible improvements to the highlighting procedure.

  6. Using Highlighting to Train Attentional Expertise.

    Directory of Open Access Journals (Sweden)

    Brett Roads

    Full Text Available Acquiring expertise in complex visual tasks is time consuming. To facilitate the efficient training of novices on where to look in these tasks, we propose an attentional highlighting paradigm. Highlighting involves dynamically modulating the saliency of a visual image to guide attention along the fixation path of a domain expert who had previously viewed the same image. In Experiment 1, we trained naive subjects via attentional highlighting on a fingerprint-matching task. Before and after training, we asked subjects to freely inspect images containing pairs of prints and determine whether the prints matched. Fixation sequences were automatically scored for the degree of expertise exhibited using a Bayesian discriminative model of novice and expert gaze behavior. Highlighted training causes gaze behavior to become more expert-like not only on the trained images but also on transfer images, indicating generalization of learning. In Experiment 2, to control for the possibility that the increase in expertise is due to mere exposure, we trained subjects via highlighting of fixation sequences from novices, not experts, and observed no transition toward expertise. In Experiment 3, to determine the specificity of the training effect, we trained subjects with expert fixation sequences from images other than the one being viewed, which preserves coarse-scale statistics of expert gaze but provides no information about fine-grain features. Observing at least a partial transition toward expertise, we obtain only weak evidence that the highlighting procedure facilitates the learning of critical local features. We discuss possible improvements to the highlighting procedure.

  7. Rayleigh-Benard convection in a Hele-Shaw cell - a numerical study

    International Nuclear Information System (INIS)

    Guenther, C.; Mueller, U.

    1987-05-01

    Free convection in narrow vertical gaps heated from below gives rise to several different flow patterns as has been demonstrated by previous experimental investigations. A numerical study is presented aimed at simulating the observed flow phenomena in Hele-Shaw cells of small lateral extend. The numerical study is based on the assumption that the flow is essentially two-dimensional. This allows an approach using a one-term Galerkin approximation with respect to the direction perpendicular to the gap and a finite difference scheme with regard to the coordinates in the plane of the gap. The calculations result in realistic values of the critical Rayleigh numbers for the onset of steady and oscillatory convection. Most of the observed unsteady flow patterns can be simulated numerically. It is shown that five different stable flow patterns can occur at one particular Rayleigh number. The different stable flow patterns are coupled by a variety of complex transitions. Moreover the calculations show that a realistic description of the observed flow phenomena can not be obtained by a simplified model using the Darcy law in the momentum equation and implying slip flow at the small confining boundaries. (orig.) [de

  8. A numerical study on the non-Boussinesq effect in the natural convection in horizontal annulus

    Science.gov (United States)

    Zhang, Yu; Cao, Yuhui

    2018-04-01

    In the present study, the non-Boussinesq effect in the thermal convection in an air-filled horizontal concentric annulus is studied numerically by using the variable property-based lattice Boltzmann flux solver (VPLBFS), with the radial temperature difference ratio of 1.0, the radius ratio of 2.0, and the Rayleigh number in the range 104 ≤ Ra ≤ 106. Several solutions are obtained by using the standard form or simplified versions of the VPLBFS, including the real solution with the total variation in fluid properties considered, named as the variable property solution (VPS), the constant property solution (CPS) based on the Boussinesq approximation, the solution with variable dynamic viscosity (VVS), the solution based on the partial Boussinesq approximation (PBAS), the solution with variable thermal conductivity (VCS) and the solution with variable fluid density (VDS). The discrepancy between these solutions is analyzed to illuminate the influence of the non-Boussinesq effects induced by partial or total variation in fluid properties on flow instability behaviors and heat transfer characteristics. The present study reveals the complicated flow instability behavior under non-Boussinesq conditions and its tight association with heat transfer characteristics. Also, it demonstrates the necessity of considering the integral effect of the total variation in fluid properties and highlights the essential role of the fluid density variation.

  9. A numerical study of the eigenvalues in the neutron diffusion theory

    International Nuclear Information System (INIS)

    Lima Bezerra, J. de.

    1982-12-01

    A systematic numerical study for the eigenvalue problem in one dimension was carried out. A computer code RED2G was developed to obtain and to discuss a number of numerical solutions concerning eigenvalues problems originating from the discretization of the two groups neutron diffusion equation in one dimension and steady state. The problem of eigenvalues was created from the discretization by the method of finite differences. The solutions were obtained by four different iterative methods, i.e. Power, Wielandt-1, Wielandt-2 and accelerated Power with the Chebyshev polinomials. The numerical results given by the solution of the two test-problems indicate that the RED2G code is fast and efficient in these calculations and the Wielandt-2 method has been found to be the best both in respect of rapidity of calculations as well as programation effort required. (E.G.) [pt

  10. A numerical study of the integral equations for the laser fields in free-electron lasers

    International Nuclear Information System (INIS)

    Yoo, J. G.; Park, S. H.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    The dynamics of the radiation fields in free-electron lasers is investigated on the basis of the integro-differential equations in the one-dimensional formulation. For simple cases we solved the integro-differential equations analytically and numerically to test our numerical procedures developed on the basis of the Filon method. The numerical results showed good agreement with the analytical solutions. To confirm the legitimacy of the numerical package, we carried out numerical studies on the inhomogeneous broadening effects, where no analytic solutions are available, due to the energy spread and the emittance of the electron beam.

  11. Numerical study of droplet evaporation in an acoustic levitator

    Science.gov (United States)

    Bänsch, Eberhard; Götz, Michael

    2018-03-01

    We present a finite element method for the simulation of all relevant processes of the evaporation of a liquid droplet suspended in an acoustic levitation device. The mathematical model and the numerical implementation take into account heat and mass transfer across the interface between the liquid and gaseous phase and the influence of acoustic streaming on this process, as well as the displacement and deformation of the droplet due to acoustic radiation pressure. We apply this numerical method to several theoretical and experimental examples and compare our results with the well-known d2-law for the evaporation of spherical droplets and with theoretical predictions for the acoustic streaming velocity. We study the influence of acoustic streaming on the distribution of water vapor and temperature in the levitation device, with special attention to the vapor distribution in the emerging toroidal vortices. We also compare the evaporation rate of a droplet with and without acoustic streaming, as well as the evaporation rates in dependence of different temperatures and sound pressure levels. Finally, a simple model of protein inactivation due to heat damage is considered and studied for different evaporation settings and their respective influence on protein damage.

  12. Numerical study of damage evolution and failure in an electromagnetic corner fill operation

    International Nuclear Information System (INIS)

    Imbert, J.M.; Winkler, S.L.; Worswick, M.J.; Oliveira, D.A.; Golovashchenko, S.

    2004-01-01

    A numerical study of an electromagnetic corner fill operation using AA5754 aluminum alloy sheet was performed. Conical parts with side angles of 40 and 45 deg. (included angles of 100 and 90 deg.) were modeled. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Damage evolution was predicted using a damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. Experiments were performed to validate the numerical results. Damage measurements were made using optical microscopy to determine the actual damage produced by the forming operations. Predicted final shape, failure and damage levels are presented and compared with experimental results. The numerical models were able to accurately predict damage trends. Failure was predicted in general agreement with the experiments

  13. Numerical study of extreme-ultra-violet generated plasmas in hydrogen

    NARCIS (Netherlands)

    Astakhov, Dmitry

    2016-01-01

    In this thesis, we present the development and study a numerical model of EUV-induced plasma. Understanding of behavior of low pressure low density plasmas is of industrial relevance, because of their potential use for on-line removal of different forms of contaminations from multilayer mirrors,

  14. Mathematical and numerical study of non-linear models used in plasma physics

    International Nuclear Information System (INIS)

    Ebrard, G.

    2005-12-01

    We study the interaction of several crossing beams with a plasma in the Laser-Megajoule context. We start from Euler-Maxwell. The formal asymptotic is the Zakharov system. For simplified systems of Klein-Gordon-wave type, we justify an approximation by a Zakharov equation for solutions of large amplitude. We construct a new system that simulates the interaction of 2 beams and present a whole hierarchy of models. We introduce a numerical scheme using the known results on Zakharov-wave equations which are valid for short pulses. We give a scheme which eliminate the backscattering wave. We give some numerical results. Finally, we do several numerical simulations of laser-plasma interaction for the initial value problem and the boundary value problem. (author)

  15. Study for discharge coefficient of flow nozzles. Prediction by using numerical simulation

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Sakai, Norio; Yamamoto, Yasushi; Arai, Kenji; Matsumoto, Masaaki

    2008-01-01

    In nuclear plant, as water feeding into reactor have much effect on thermal power of plant, it is important to measure accurately the flow rate of water. Flow nozzle is on of typical differential pressure type flow meters and the discharge coefficient is used to calculate the flow rate. This coefficient is given by actual experiment and theory. We studied the theoretical assumption of the discharge coefficient curve using numerical simulation and evaluated the effect of flow nozzle configuration on the coefficient numerically and experimentally. As the result, numerical simulation can predict the discharge coefficient of theoretical curve within 0.3%. And we found that the throat length and throat tapping location of flow nozzle have much effect on the coefficient. (author)

  16. Experimental and numerical study of the mechanical behaviour modelling of a metal-ceramic composite: MoTiC30%

    International Nuclear Information System (INIS)

    Cedat, D.

    2008-11-01

    In the scope of refractory materials development for structural applications in the core of the future nuclear reactors, several studies have been developed. The aim of this work is to increase the knowledge of the mechanical behaviour and the damage of the ceramic-metal composite Mo(TiC)x% under the temperature range [25-700 C]. The identification of the third phase, formed by diffusion during the sintering step was identified by microstructural characterization. Experimental study also revealed the percolation of the ceramic particles through the structure. Mechanical tests highlight the main characteristics of the material: the macroscopic behaviour depends on the strain rate on the first hand and the temperature on the other hand. These mechanisms are attributed to the thermally activated behaviour of molybdenum. Simulations have been made on several microstructures considering elastic-brittle inclusion in a viscoelastic matrix. A polycrystalline model was used to simulate the evolution of the mechanical behaviour of the composite. The numerical aggregate, used for the simulation, was built from a 3D reconstruction technique thanks to acquisition of FIB/EBSD/SEM data. (author)

  17. Research status and some results of numerical system to study regional environment: SPEEDI-MP

    International Nuclear Information System (INIS)

    Chino, Masamichi

    2004-01-01

    Research status and some results of 'Numerical system to study regional environment: SPEEDI-MP', which reproduces circulations of materials in the atmospheric, oceanic and terrestrial environments, are introduced. The purpose of this system are the development of various environmental models, the connection of atmospheric, oceanic and terrestrial models and the construction of research bases for numerical environmental studies. In addition to the accurate prediction of environmental behavior of radionuclides, the system has been applied to the non-nuclear fields, e.g., numerical analysis of environmental effects to volcanic gases from Miyake Jima, real-time prediction of the migration of rice planthoppers from Eastern Asia. (author)

  18. Recent results of seismic isolation study in CRIEPI: Numerical activities

    International Nuclear Information System (INIS)

    Shiojiri, Hiroo; Ishida, Katsuhiko; Yabana, Shurichi; Hirata, Kazuta

    1992-01-01

    Development of detailed numerical models of a bearing and the related isolation system Is necessary for establishing the rational design of the bearing and the system. The developed numerical models should be validated regarding the physical parameters and the basic assumption by comparing the experimental results with the numerical ones. The numerical work being conducted in CRIEPI consists of the following items: (1) Simple modeling of the behavior of the bearings capable of approximating the tests on bearings, and the validation of the model for the bearing by comparing the numerical results adopting the models with the shaking table tests results; (2) Detailed three-dimensional modeling of single bearings with finite-element codes, and the experimental validation of the model; (3)Simple and detailed three-dimensional modeling of isolation buildings and experimental validation

  19. Numerical simulation system for environmental studies: SPEEDI-MP

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Chino, Masamichi; Terada, Hiroaki; Harayama, Takaya; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok; Furuno, Akiko

    2006-09-01

    A numerical simulation system SPEEDI-MP has been developed to apply for various environmental studies. SPEEDI-MP consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical database for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. System utility GUIs are based on the Web technology, allowing users to manipulate all the functions on the system using their own PCs via the internet. In this system, the source estimation function in the atmospheric transport model can be executed on the grid computer system. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)

  20. A numerical study for global atmospheric transport-chemistry problems

    NARCIS (Netherlands)

    E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1998-01-01

    htmlabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  1. A numerical study for global atmospheric transport-chemistry problems

    NARCIS (Netherlands)

    E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1997-01-01

    textabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  2. Numerical and experimental study of a hydrodynamic cavitation tube

    Science.gov (United States)

    Hu, H.; Finch, J. A.; Zhou, Z.; Xu, Z.

    1998-08-01

    A numerical analysis of hydrodynamics in a cavitation tube used for activating fine particle flotation is described. Using numerical procedures developed for solving the turbulent k-ɛ model with boundary fitted coordinates, the stream function, vorticity, velocity, and pressure distributions in a cavitation tube were calculated. The calculated pressure distribution was found to be in excellent agreement with experimental results. The requirement of a pressure drop below approximately 10 m water for cavitation to occur was observed experimentally and confirmed by the model. The use of the numerical procedures for cavitation tube design is discussed briefly.

  3. Numerical investigations of passive scalar transport in Taylor-Couette flows: Counter-rotation effect

    Science.gov (United States)

    Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.

    2017-07-01

    Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.

  4. A numerical study of a supercritical fluid jet

    International Nuclear Information System (INIS)

    Sierra-Pallares, J.; Garcia-Serna, J.; Cocero, M.J.; Parra-Santos, M.T.; Castro-Ruiz, F.

    2009-01-01

    This study affords the numerical solution of the mixing of a submerged turbulent jet under supercritical conditions and near-critical conditions. Turbulence plays a very important role in the behaviour of chemical engineering equipment. An accurate prediction of the turbulence at supercritical conditions with low computational cost is crucial in designing new processes such as reactions in supercritical media, high pressure separation processes, nanomaterials processing and heterogeneous catalysis. At high-pressure, the flow cannot be modelled accurately using the ideal-gas assumption. Therefore, the real gas models must be used in order to solve accurately the fluid flow and heat transfer problems where the working fluid behaviour deviate seriously from the ideal-gas assumption. The jet structure has three parts clearly distinguished: the injection, the transition and the fully developed jet. Once the flow is dominated by the turbulent eddies of the shear layer, the flow is fully developed and the radial profiles match a similarity profile. This work reports the state of the project that is not completed and is being processed now. This work is devoted to establish the distance downstream from the injector where the jet become self-preserving and the shape of the similarity profiles. This system is of interest in the design of supercritical reactor inlets, where two streams should be mixed in the shortest length, or mixing conditions strongly affect the behaviour of the processes. The numerical results have been validated with experimental measurements made in the jet mixing region. The radial profiles for average velocity, density and temperature are analyzed. The parameters of the profile that match better the numerical results are summarized in Table 1. The density requires a lower value of n than these for velocity and temperature, which reflect smoother profiles. These conclusions are in good agreement with the results from Oschwald and Schik. (author)

  5. Gyrotactic trapping: A numerical study

    Science.gov (United States)

    Ghorai, S.

    2016-04-01

    Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.

  6. Study and simulation of a parallel numerical processing machine

    International Nuclear Information System (INIS)

    Bel Hadj, Slaheddine

    1981-12-01

    This study has been carried out in the perspective of the implementation on a minicomputer of the NEPTUNIX package (software for the resolution of very large algebra-differential equation systems). Aiming at increasing the system performance, a previous research work has shown the necessity of reducing the execution time of certain numerical computation tasks, which are of frequent use. It has also demonstrated the feasibility of handling these tasks with efficient algorithms of parallel type. The present work deals with the study and simulation of a parallel architecture processor adapted to the fast execution of these algorithms. A minicomputer fitted with a connection to such a parallel processor, has a greatly extended computing power. Then the architecture of a parallel numerical processor, based on the use of VLSI microprocessors and co-processors, is described. Its design aims at the best cost / performance ratio. The last part deals with the simulation processor with the 'CHAMBOR' program. Results show an increasing factor of 30 in speed, in comparison with the execution on a MITRA 15 minicomputer. Moreover the conflicts importance, mainly at the level of access to a shared resource is evaluated. Although this implementation has been designed having in mind a dedicated application, other uses could be envisaged, particularly for the simulation of nuclear reactors: operator guiding system, the behavioural study under accidental circumstances, etc. (author) [fr

  7. Numerical study of microphase separation in gels and random media

    International Nuclear Information System (INIS)

    Uchida, Nariya

    2004-01-01

    Microphase separation in gels and random media is numerically studied using a Ginzburg-Landau model. A random field destroys long-range orientational (lamellar) order and gives rise to a disordered bicontinuous morphology. The dependence of the correlation length on the field strength is distinct from that of random-field magnets

  8. Numerical study of hydrogen absorption in a LM-Ni5 hybride reactor

    International Nuclear Information System (INIS)

    Altinisik, K.; Tekin, M.; Mat, M. D.; Altinisik, A.; Veziroglu, T. N.

    2007-01-01

    Metal hydride formation in an Lm-Ni5 storage tank is numerically studied with a continuum mathematical model. The model considers complex heat, and mass transfer and chemical reaction in the reaction bed. It is found that hydride formation enhances at regions with lower equilibrium pressure. Absorbed hydrogen mass increases exponentially at earlier times of hydriding process and slow down after temperature of reaction bed increases due to the heat of reaction. Numerical results agree satisfactorily with the experimental data in the literature

  9. Development of numerical processing in children with typical and dyscalculic arithmetic skills—a longitudinal study

    Science.gov (United States)

    Landerl, Karin

    2013-01-01

    Numerical processing has been demonstrated to be closely associated with arithmetic skills, however, our knowledge on the development of the relevant cognitive mechanisms is limited. The present longitudinal study investigated the developmental trajectories of numerical processing in 42 children with age-adequate arithmetic development and 41 children with dyscalculia over a 2-year period from beginning of Grade 2, when children were 7; 6 years old, to beginning of Grade 4. A battery of numerical processing tasks (dot enumeration, non-symbolic and symbolic comparison of one- and two-digit numbers, physical comparison, number line estimation) was given five times during the study (beginning and middle of each school year). Efficiency of numerical processing was a very good indicator of development in numerical processing while within-task effects remained largely constant and showed low long-term stability before middle of Grade 3. Children with dyscalculia showed less efficient numerical processing reflected in specifically prolonged response times. Importantly, they showed consistently larger slopes for dot enumeration in the subitizing range, an untypically large compatibility effect when processing two-digit numbers, and they were consistently less accurate in placing numbers on a number line. Thus, we were able to identify parameters that can be used in future research to characterize numerical processing in typical and dyscalculic development. These parameters can also be helpful for identification of children who struggle in their numerical development. PMID:23898310

  10. Examining pitch and numerical magnitude processing in congenital amusia: A quasi-experimental pilot study.

    Science.gov (United States)

    Nunes-Silva, Marilia; Moura, Ricardo; Lopes-Silva, Júlia Beatriz; Haase, Vitor Geraldi

    2016-08-01

    Congenital amusia is a developmental disorder associated with deficits in pitch height discrimination or in integrating pitch sequences into melodies. This quasi-experimental pilot study investigated whether there is an association between pitch and numerical processing deficits in congenital amusia. Since pitch height discrimination is considered a form of magnitude processing, we investigated whether individuals with amusia present an impairment in numerical magnitude processing, which would reflect damage to a generalized magnitude system. Alternatively, we investigated whether the numerical processing deficit would reflect a disconnection between nonsymbolic and symbolic number representations. This study was conducted with 11 adult individuals with congenital amusia and a control comparison group of 6 typically developing individuals. Participants performed nonsymbolic and symbolic magnitude comparisons and number line tasks. Results were available from previous testing using the Montreal Battery of Evaluation of Amusia (MBEA) and a pitch change detection task (PCD). Compared to the controls, individuals with amusia exhibited no significant differences in their performance on both the number line and the nonsymbolic magnitude tasks. Nevertheless, they showed significantly worse performance on the symbolic magnitude task. Moreover, individuals with congenital amusia, who presented worse performance in the Meter subtest, also presented less precise nonsymbolic numerical representation. The relationship between meter and nonsymbolic numerical discrimination could indicate a general ratio processing deficit. The finding of preserved nonsymbolic numerical magnitude discrimination and mental number line representations, with impaired symbolic number processing, in individuals with congenital amusia indicates that (a) pitch height and numerical magnitude processing may not share common neural representations, and (b) in addition to pitch processing, individuals with

  11. A numerical study of bubble interactions in Rayleigh--Taylor instability for compressible fluids

    International Nuclear Information System (INIS)

    Glimm, J.; Li, X.L.; Menikoff, R.; Sharp, D.H.; Zhang, Q.

    1990-01-01

    The late nonlinear and chaotic stage of Rayleigh--Taylor instability is characterized by the evolution of bubbles of the light fluid and spikes of the heavy fluid, each penetrating into the other phase. This paper is focused on the numerical study of bubble interactions and their effect on the statistical behavior and evolution of the bubble envelope. Compressible fluids described by the two-fluid Euler equations are considered and the front tracking method for numerical simulation of these equations is used. Two major phenomena are studied. One is the dynamics of the bubbles in a chaotic environment and the interaction among neighboring bubbles. Another one is the acceleration of the overall bubble envelope, which is a statistical consequence of the interactions of bubbles. The main result is a consistent analysis, at least in the approximately incompressible case of these two phenomena. The consistency encompasses the analysis of experiments, numerical simulation, simple theoretical models, and variation of parameters. Numerical simulation results that are in quantitative agreement with laboratory experiment for one-and-one-half (1 1/2) generations of bubble merger are presented. To the authors' knowledge, computations of this accuracy have not previously been obtained

  12. Research and technology highlights, 1993

    Science.gov (United States)

    1994-01-01

    This report contains highlights of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate both the broad range of the research and technology activities supported by NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research. This report also describes some of the Center's most important research and testing facilities.

  13. Numerical and algebraic studies for the control of finite-dimensional quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Uwe

    2010-11-18

    In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)

  14. Numerical and algebraic studies for the control of finite-dimensional quantum systems

    International Nuclear Information System (INIS)

    Sander, Uwe

    2010-01-01

    In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)

  15. Experimental and numerical studies of pressure drop in PbLi flows in a circular duct under non-uniform transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.-C., E-mail: lifch@hit.edu.cn; Sutevski, D.; Smolentsev, S.; Abdou, M.

    2013-11-15

    Highlights: • An indirect DP measurement approach for high-temperature LM MHD flow is developed. • Experiments and numerical simulations of PbLi MHD flow are performed. • Characteristics of DP in LM MHD flow under fringing magnetic field are studied. • Pressure distributions in LM MHD flow at entry and exit of magnet are different. -- Abstract: Experiments and three-dimensional (3D) numerical simulations are performed to investigate the magnetohydrodynamic (MHD) characteristics of liquid metal (LM) flows of molten lead-lithium (PbLi) eutectic alloy in an electrically conducting circular duct subjected to a transverse non-uniform (fringing) magnetic field. An indirect measurement approach for differential pressure in high temperature LM PbLi is first developed, and then detailed data on pressure drop in this PbLi MHD flow are measured. The obtained experimental results for the pressure distribution are in good agreement with numerical simulations. Using the numerical simulation results, the 3D effects caused by fringing magnetic field on the LM flow are illustrated via distributions for the axial pressure gradients and transverse pressure differences. It has been verified that a simple approach for estimation of pressure drop in LM MHD flow in a fringing magnetic field proposed by Miyazaki et al. [22] i.e., a simple integral of pressure gradient along the fringing field zone using a quasi-fully-developed flow assumption, is also applicable to the conditions of the present experiment providing the magnetic interaction parameter is large enough. Furthermore, for two different sections of the LM flow at the entry to and at the exit from the magnet, it is found that the pressure distributions in the duct cross sections in these two regions are different.

  16. ATLAS Outreach Highlights

    CERN Document Server

    Cheatham, Susan; The ATLAS collaboration

    2016-01-01

    The ATLAS outreach team is very active, promoting particle physics to a broad range of audiences including physicists, general public, policy makers, students and teachers, and media. A selection of current outreach activities and new projects will be presented. Recent highlights include the new ATLAS public website and ATLAS Open Data, the very recent public release of 1 fb-1 of ATLAS data.

  17. Difference between highlight and object colors enhances glossiness.

    Science.gov (United States)

    Hanada, Mitsuhiko

    2012-06-01

    The effect of highlight and object colors on perception of glossiness was examined. Ten participants rated glossiness of object images. The color coordinates of objects and highlights were varied while luminance of each pixel was unchanged. Four colors were used for objects and highlights. Objects were perceived as glossier when the highlight color was different from the object color than when they were the same. Objects with some unnatural combinations of highlight and object colors were perceived to be as glossy as those with natural color combinations. The results suggested that differences between highlight and object colors enhance perceived glossiness and that perceived glossiness does not depend on naturalness of color combination for highlights and objects.

  18. Numerical Study of the Ghost-Ghost-Gluon Vertex on the Lattice

    International Nuclear Information System (INIS)

    Mihara, A.; Cucchieri, A.; Mendes, T.

    2004-01-01

    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z-tilde1 (p2) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β = 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16

  19. Numerical study of the ghost-ghost-gluon vertex on the lattice

    International Nuclear Information System (INIS)

    Mihara, A.; Cucchieri, A.; Mendes, T.

    2004-01-01

    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z∼ 1 1(p 2 ) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β= 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16. (author)

  20. Numerical analysis

    CERN Document Server

    Scott, L Ridgway

    2011-01-01

    Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...

  1. Numerical studies on the dynamics of the Northwestern Black Sea shelf

    Directory of Open Access Journals (Sweden)

    V. KOURAFALOU

    2004-06-01

    Full Text Available The Northwestern Black Sea shelf dynamics are studied with numerical simulations based on the Princeton Ocean Model. The study focus is on buoyancy and wind driven flows and on the transport and fate of low salinity waters that are introduced through riverine sources (the Danube, Dnestr and Dnepr Rivers, under the seasonal changes in atmospheric forcing. The study is part of the DANUBS project (NUtrient management in the DAnube basin and its impact on the Black Sea. The numerical simulations show that the coastal circulation is greatly influenced by river runoff and especially that of the Danube, which is dominant with monthly averaged values ranging from 5,000 m3 to 10,000 m3. The transport of low-salinity waters associated with the Danube runoff is greatly influenced by wind stress, topographic effects and basin-scale circulation patterns, such as changes in the position of the Rim Current.

  2. Numerical simulation of impact tests on reinforced concrete beams

    International Nuclear Information System (INIS)

    Jiang, Hua; Wang, Xiaowo; He, Shuanhai

    2012-01-01

    Highlights: ► Predictions using advanced concrete model compare well with the impact test results. ► Several important behavior of concrete is discussed. ► Two mesh ways incorporating rebar into concrete mesh is also discussed. ► Gives a example of using EPDC model and references to develop new constitutive models. -- Abstract: This paper focuses on numerical simulation of impact tests of reinforced concrete (RC) beams by the LS-DYNA finite element (FE) code. In the FE model, the elasto-plastic damage cap (EPDC) model, which is based on continuum damage mechanics in combination with plasticity theory, is used for concrete, and the reinforcement is assumed to be elasto-plastic. The numerical results compares well with the experimental values reported in the literature, in terms of impact force history, mid-span deflection history and crack patterns of RC beams. By comparing the numerical and experimental results, several important behavior of concrete material is investigated, which includes: damage variable to describe the strain softening section of stress–strain curve; the cap surface to describe the plastic volume change; the shape of the meridian and deviatoric plane to describe the yield surface as well as two methods of incorporating rebar into concrete mesh. This study gives a good example of using EPDC model and can be utilized for the development new constitutive models for concrete in future.

  3. Numerical study of traveling-wave solutions for the Camassa-Holm equation

    International Nuclear Information System (INIS)

    Kalisch, Henrik; Lenells, Jonatan

    2005-01-01

    We explore numerically different aspects of periodic traveling-wave solutions of the Camassa-Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied

  4. Numerical study of interfacial flows with immersed solids

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2003-01-01

    A numerical method is presented for computing unsteady incompressible two-phase flows with immersed solids. The method is based on a level set technique for capturing the phase interface, which is modified to satisfy a contact angle condition at the solid-fluid interface as well as to achieve mass conservation during the whole calculation procedure. The modified level set method is applied for numerical simulation of bubble deformation in a micro channel with a cylindrical solid block and liquid jet from a micro nozzle

  5. Numerical estimation of the effective electrical conductivity in carbon paper diffusion media

    International Nuclear Information System (INIS)

    Zamel, Nada; Li, Xianguo; Shen, Jun

    2012-01-01

    Highlights: ► Anisotropic effective electrical conductivity of the GDL is estimated numerically. ► The electrical conductivity is a key component in understanding the structure of the GDL. ► Expressions for evaluating the electrical conductivity were proposed. ► The tortuosity factor was evaluated as 1.7 and 3.4 in the in- and through-plane directions, respectively. - Abstract: The transport of electrons through the gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells has a significant impact on the optimal design and operation of PEM fuel cells and is directly affected by the anisotropic nature of the carbon paper material. In this study, a three-dimensional reconstruction of the GDL is used to numerically estimate the directional dependent effective electrical conductivity of the layer for various porosity values. The distribution of the fibers in the through-plane direction results in high electrical resistivity; hence, decreasing the overall effective electrical conductivity in this direction. This finding is in agreement with measured experimental data. Further, using the numerical results of this study, two mathematical expressions were proposed for the calculation of the effective electrical conductivity of the carbon paper GDL. Finally, the tortuosity factor was evaluated as 1.7 and 3.4 in the in- and through-plane directions, respectively.

  6. Experimental and numerical studies of rotating drum grate furnace

    Directory of Open Access Journals (Sweden)

    Basista Grzegorz

    2017-01-01

    Full Text Available Waste material from the meat industry can be taken into account as a biofuel. Studies confirm, that calorific value is higher and ash content is lower comparing to some conventional fuels. EU directives regulate details of thermal disposal of the waste material from the meat industry - especially in range of the process temperature and time of the particle presence in area of the combustion zone. The paper describes design of the rotating drum grate stove, dedicated to thermal disposal of the meat wastes as well as solid biomass (pellet, small bricket, wood chips combustion. Device has been developed in frames of cooperation between AGH University of Science and Technology (Krakow, Poland and producer focused on technologies of energy utilization of biomass in distributed generation. Results of measurements of selected operational parameters performed during startup of the furnace have been presented and discussed. Furthermore, numerical model of the combustion process has been developed to complement experimental results in range of the temperature and oxygen distribution in the area of the combustion chamber. ANSYS CFX solver has been applied to perform simulations including rotational domain related with specifics of operation of the device. Results of numerical modelling and experimental studies have been summarized and compared.

  7. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.

    Science.gov (United States)

    Thalhammer, Mechthild; Abhau, Jochen

    2012-08-15

    As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross-Pitaevskii equation arising in the description of Bose-Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross-Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter [Formula: see text], especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that

  8. Two-dimensional numerical study of ELMs-induced erosion of tungsten divertor target tiles with different edge shapes

    International Nuclear Information System (INIS)

    Huang, Yan; Sun, Jizhong; Hu, Wanpeng; Sang, Chaofeng; Wang, Dezhen

    2016-01-01

    Highlights: • Thermal performance of three edge-shaped divertor tiles was assessed numerically. • All the divertor tiles exposed to type-I ELMs like ITER's will melt. • The rounded edge tile thermally performs the best in all tiles of interest. • The incident energy flux density was evaluated with structural effects considered. - Abstract: Thermal performance of the divertor tile with different edge shapes was assessed numerically along the poloidal direction by a two-dimensional heat conduction model with considering the geometrical effects of castellated divertor tiles on the properties of its adjacent plasma. The energy flux density distribution arriving at the castellated divertor tile surface was evaluated by a two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo Collisions code and then the obtained energy flux distribution was used as input for the heat conduction model. The simulation results showed that the divertor tiles with any edge shape of interest (rectangular edge, slanted edge, and rounded edge) would melt, especially, in the edge surface region of facing plasma poloidally under typical heat flux density of a transient event of type-I ELMs for ITER, deposition energy of 1 MJ/m"2 in a duration of 600 μs. In comparison with uniform energy deposition, the vaporizing erosion was reduced greatly but the melting erosion was aggravated noticeably in the edge area of plasma facing diveror tile. Of three studied edge shapes, the simulation results indicated that the divertor plate with rounded edge was the most resistant to the thermal erosion.

  9. Numerical study for two phase flow in the near nozzle region of turbine combustors

    International Nuclear Information System (INIS)

    Pervez, K.; Mushtaq, S.

    1999-01-01

    In the present study flow conditions in the near nozzle region of the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion zone largely depends on the spray field in the near nozzle region the studies are conducted to determined the effects of multi jets on the flow pattern in the near nozzle region The phase doppler particle analyzer (PDPA) has been used to measure the velocities and sizes of the droplets. The flow field of two-phase liquid drop-air jets is formed from three injectors arranged in t line. Furthermore the two-phase flow field has been analyzed numerically also. The numerical analysis consists of two computational models, namely (i) 3 non-evaporating two-phase jets, (II) 3 evaporating two phase jets. The Eulerian-Eulerian approach in incorporated in both the numerical models. Since the flow is turbulent, a two-equation model (k-Epsilon) is implemented in the numerical analysis. Numerical solution of the conservation equation is obtained using PHOENICS computer code. Boundary conditions are provided from the experimental measurements. Numerical domain for the two models of the analysis starts at some distance (about 10 diameters of the injector orifice) where the atomization process is complete and droplet size and velocity could be measured experimentally. (author)

  10. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations

    Directory of Open Access Journals (Sweden)

    Yucong Miao

    2014-01-01

    Full Text Available The objective of this study is to numerically study flow and traffic exhaust dispersion in urban street canyons with different configurations to find out the urban-planning strategies to ease the air pollution. The Computational Fluid Dynamics (CFD model used in this study—Open Source Field Operation and Manipulation (OpenFOAM software package—was firstly validated against the wind-tunnel experiment data by using three different k-ε turbulence models. And then the patterns of flow and dispersion within three different kinds of street canyon configuration under the perpendicular approaching flow were numerically studied. The result showed that the width and height of building can dramatically affect the pollution level inside the street canyon. As the width or height of building increases, the pollution at the pedestrian level increases. And the asymmetric configuration (step-up or step-down street canyon could provide better ventilation. It is recommended to design a street canyon with nonuniform configurations. And the OpenFOAM software package can be used as a reliable tool to study flows and dispersions around buildings.

  11. Phase change material thermal storage for biofuel preheating in micro trigeneration application: A numerical study

    International Nuclear Information System (INIS)

    Wu, Dawei; Chen, Junlong; Roskilly, Anthony P.

    2015-01-01

    Highlights: • Engine exhaust heat driven phase change material thermal storage. • Fuel preheating for direct use of straight plant oil on diesel engine. • CFD aided design of the phase change material thermal storage. • Melting and solidification model considering natural convection. - Abstract: A biofuel micro trigeneration prototype has been developed to utilise local energy crop oils as fuel in rural areas and developing countries. Straight plant oils (SPOs) only leave behind very little carbon footprint during its simply production process compared to commercial biodiesels in refineries, but the high viscosity of SPOs causes difficulties at engine cold starts, which further results in poor fuel atomisation, compromised engine performance and fast engine deterioration. In this study, a phase change material (PCM) thermal storage is designed to recover and store engine exhaust heat to preheat SPOs at cold starts. High temperature commercial paraffin is selected as the PCM to meet the optimal preheating temperature range of 70–90 °C, in terms of the SPO property study. A numerical model of the PCM thermal storage is developed and validated by references. The PCM melting and solidification processes with the consideration of natural convection in liquid zone are simulated in ANSYS-FLUENT to verify the feasibility of the PCM thermal storage as a part of the self-contained biofuel micro trigeneration prototype

  12. Numerical Investigation of Flow Control Feasibility with a Trailing Edge Flap

    International Nuclear Information System (INIS)

    Zhu, W J; Shen, W Z; Sørensen, J N

    2014-01-01

    This paper concerns a numerical study of employing an adaptive trailing edge flap to control the lift of an airfoil subject to unsteady inflow conditions. The periodically varying inflow is generated by two oscillating airfoils, which are located upstream of the controlled airfoil. To establish the control system, a standard PID controller is implemented in a finite volume based incompressible flow solver. An immersed boundary method is applied to treat the problem of simulating a deformable airfoil trailing edge. The flow field is solved using a 2D Reynolds averaged Navier-Stokes finite volume solver. In order to more accurately simulate wall bounded flows around the immersed boundary, a modified boundary condition is introduced in the k- ω turbulence model. As an example, turbulent flow over a NACA 64418 airfoil with a deformable trailing edge is investigated. Results from numerical simulations are convincing and may give some highlights for practical implementations of trailing edge flap to a wind turbine rotor blade

  13. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  14. Numerical analysis of effects of transglottal pressure change on fundamental frequency of phonation.

    Science.gov (United States)

    Deguchi, Shinji; Matsuzaki, Yuji; Ikeda, Tadashige

    2007-02-01

    In humans, a decrease in transglottal pressure (Pt) causes an increase in the fundamental frequency of phonation (F0) only at a specific voice pitch within the modal register, the mechanism of which remains unclear. In the present study, numerical analyses were performed to investigate the mechanism of the voice pitch-dependent positive change of F0 due to Pt decrease. The airflow and the airway, including the vocal folds, were modeled in terms of mechanics of fluid and structure. Simulations of phonation using the numerical model indicated that Pt affects both the average position and the average amplitude magnitude of vocal fold self-excited oscillation in a non-monotonous manner. This effect results in voice pitch-dependent responses of F0 to Pt decreases, including the positive response of F0 as actually observed in humans. The findings of the present study highlight the importance of considering self-excited oscillation of the vocal folds in elucidation of the phonation mechanism.

  15. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  16. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    Energy Technology Data Exchange (ETDEWEB)

    Kako, T.; Watanabe, T. [eds.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  17. A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations

    Science.gov (United States)

    Thalhammer, Mechthild; Abhau, Jochen

    2012-01-01

    As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross–Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter 0Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the numerical approximation captures correctly the behaviour of the analytical solution. Further illustrations for Gross–Pitaevskii equations with a focusing nonlinearity or a sharp Gaussian as initial condition, respectively

  18. Wildlife studies on the Hanford Site: 1993 Highlights report

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. [ed.

    1994-04-01

    The Pacific Northwest Laboratory (PNL) Wildlife Resources Monitoring Project was initiated by DOE to track the status of wildlife populations to determine whether Hanford operations affected them. The project continues to conduct a census of wildlife populations that are highly visible, economically or aesthetically important, and rare or otherwise considered sensitive. Examples of long-term data collected and maintained through the Wildlife Resources Monitoring Project include annual goose nesting surveys conducted on islands in the Hanford Reach, wintering bald eagle surveys, and fall Chinook salmon redd (nest) surveys. The report highlights activities related to salmon and mollusks on the Hanford Reach of the Columbia River; describes efforts to map vegetation on the Site and efforts to survey species of concern; provides descriptions of shrub-steppe bird surveys, including bald eagles, Canada geese, and hawks; outlines efforts to monitor mule deer and elk populations on the Site; and describes development of a biological database management system.

  19. Reducing equifinality using isotopes in a process-based stream nitrogen model highlights the flux of algal nitrogen from agricultural streams

    Science.gov (United States)

    Ford, William I.; Fox, James F.; Pollock, Erik

    2017-08-01

    The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development.

  20. Role of vegetation in formation of radiation fog: A numerical study

    Czech Academy of Sciences Publication Activity Database

    Potužníková, Kateřina; Sedlák, Pavel

    2004-01-01

    Roč. 23, Suppl. 2 (2004), s. 39-45 ISSN 1335-342X Institutional research plan: CEZ:AV0Z3042911 Keywords : radiation fog * vegetation cover * numerical study Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.078, year: 2004

  1. Numerical Study of Corrosion Crack Opening

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan

    2008-01-01

    is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...... for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...

  2. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael

    2017-11-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  3. Contribution to the theoretical and numerical study of inertial confinement fusion

    International Nuclear Information System (INIS)

    Tran Trach-Minh

    1983-01-01

    After an overview of problems faced for numerical simulations of inertial fusion, this research thesis reports the study of the behaviour of suprathermal ions by using the transport equation as model. The problem is then to find an appropriate numerical method to solve this equation, inspired by well known methods related to the transport of neutral particles (photons and neutrons) which however cannot be directly applied. The calculation scheme is introduced in an existing hydrodynamic code. Models are then proposed to take the partial ionisation of some materials into account in the target thermodynamics and in the slowing down of fast ions. In the next part, the author discusses the ion transport equation, and the calculation of the different coefficients which characterise their interaction with particles of the host medium. Problems faced for numerical processing are addressed. The coupling of ion transport calculation model with a hydrodynamic code is described. Effects of alphas transport during target ignition are analysed, as well as the penetration of external ion beams during the compression phase

  4. Microfluidic emulsification at cross-junction: experimental and numerical study using Blue

    Science.gov (United States)

    Roumpea, Evangelia; Kovalchuk, Nina M.; Kahouadji, Lyes; Xie, Zhihua; Chinaud, Maxime; Simmons, Mark J. H.; Matar, Omar K.; Angeli, Panagiota

    2017-11-01

    Liquid-liquid drop formation in a cross-junction device is investigated both experimentally and numerically. Experiments are performed using 5 cSt silicone oil as the continuous phase and 52% glycerol/ 48% water mixture containing surfactants as the dispersed phase. Both a high-speed camera and a two-colour micro-PIV technique were used to obtain the different flow regimes i.e. squeezing, dripping, jetting and threading and to study the velocity fields of the two phases simultaneously. The dependence of the drop size on flow rate follows a power law with different exponents for small and large drops. Numerical simulations using the code Blue, a massive parallel solver for simulations of fully three-dimensional multiphase flows, were also performed taking into account the properties of the liquids used in the experiments and the precise geometry of the microfluidic chips. The simulation results agreed very well with the surfactant-free solution. The numerical simulations taking into account the surfactant are ongoing. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  5. Modeling and numerical study of two phase flow

    International Nuclear Information System (INIS)

    Champmartin, A.

    2011-01-01

    This thesis describes the modelization and the simulation of two-phase systems composed of droplets moving in a gas. The two phases interact with each other and the type of model to consider directly depends on the type of simulations targeted. In the first part, the two phases are considered as fluid and are described using a mixture model with a drift relation (to be able to follow the relative velocity between the two phases and take into account two velocities), the two-phase flows are assumed at the equilibrium in temperature and pressure. This part of the manuscript consists of the derivation of the equations, writing a numerical scheme associated with this set of equations, a study of this scheme and simulations. A mathematical study of this model (hyperbolicity in a simplified framework, linear stability analysis of the system around a steady state) was conducted in a frame where the gas is assumed baro-tropic. The second part is devoted to the modelization of the effect of inelastic collisions on the particles when the time of the simulation is shorter and the droplets can no longer be seen as a fluid. We introduce a model of inelastic collisions for droplets in a spray, leading to a specific Boltzmann kernel. Then, we build caricatures of this kernel of BGK type, in which the behavior of the first moments of the solution of the Boltzmann equation (that is mass, momentum, directional temperatures, variance of the internal energy) are mimicked. The quality of these caricatures is tested numerically at the end. (author) [fr

  6. Numerical analysis of rapid drawdown: Applications in real cases

    Directory of Open Access Journals (Sweden)

    Eduardo E. Alonso

    2016-07-01

    Full Text Available In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for calculating pore water pressure distributions during and after a drawdown. To do that, a single slope subjected to a drawdown was first analyzed under different calculation alternatives, and numerical results were discussed. Simple methods, such as undrained analysis and pure flow analysis, implicitly assuming a rigid soil skeleton, lead to significant errors in pore water pressure distributions when compared with coupled flow-deformation analysis. A similar analysis was performed for the upstream slope of the Glen Shira Dam, Scotland, and numerical results were compared with field measurements during a controlled drawdown. Field records indicate that classical undrained calculations are conservative but unrealistic. Then, a recent case of a major landslide triggered by a rapid drawdown in a reservoir was interpreted. A key aspect of the case was the correct characterization of permeability of a representative soil profile. This was achieved by combining laboratory test results and a back analysis of pore water pressure time records during a period of reservoir water level fluctuations. The results highlight the difficulty of predicting whether the pore water pressure is overestimated or underestimated when using simplified approaches, and it is concluded that predicting the pore water pressure distribution in a slope after a rapid drawdown requires a coupled flow-deformation analysis in saturated and unsaturated porous media.

  7. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik

    2014-01-01

    We present a numerical study of thermoviscous effects on the acoustic streaming flow generated by an ultrasound standing-wave resonance in a long straight microfluidic channel containing a Newtonian fluid. These effects enter primarily through the temperature and density dependence of the fluid...... viscosity. The resulting magnitude of the streaming flow is calculated and characterized numerically, and we find that even for thin acoustic boundary layers, the channel height affects the magnitude of the streaming flow. For the special case of a sufficiently large channel height, we have successfully...

  8. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    Science.gov (United States)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  9. Effect of alkali–silica reaction on the shear strength of reinforced concrete structural members. A numerical and statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Saouma, Victor E.; Hariri-Ardebili, Mohammad Amin [Department of Civil Engineering, University of Colorado, Boulder, CO 80305 (United States); Le Pape, Yann, E-mail: lepapeym@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Balaji, Rajagopalan [Department of Civil Engineering, University of Colorado, Boulder, CO 80305 (United States)

    2016-12-15

    Highlights: • Alkali–silica reaction (ASR) affects reinforced structures shear strength. • Statistical analysis indicates large scattering of post-ASR strength losses/gains. • Competitive structural and materials mechanisms affect the residual shear strength. - Abstract: The residual structural shear resistance of concrete members without shear reinforcement and subject to alkali–aggregate reaction (ASR) is investigated by finite element analysis. A parametric numerical study of 648 analyses considering various structural members’ geometries, boundary conditions, ASR-induced losses of materials properties, ASR expansions and reinforcement ratios is conducted. As a result of competitive mechanisms (e.g., ASR-induced prestressing caused by the longitudinal reinforcement) and loss of concrete materials properties, important scatter in terms of gain or loss of shear strength is observed: about 50% of the studied configurations lead to a degradation of structural performance. The range of variation in terms of post-ASR shear resistance is extremely scattered, in particular, when ASR results in out-of-plane expansion only. Influencing factors are derived by two methods: (i) visual inspection of boxplots and probability distributions, and (ii) information criteria within multiple-linear regression analysis.

  10. Numerical study of two-dimensional moist symmetric instability

    Directory of Open Access Journals (Sweden)

    M. Fantini

    2008-06-01

    Full Text Available The 2-D version of the non-hydrostatic fully compressible model MOLOCH developed at ISAC-CNR was used in idealized set-up to study the start-up and finite amplitude evolution of symmetric instability. The unstable basic state was designed by numerical integration of the equation which defines saturated equivalent potential vorticity qe*. We present the structure and growth rates of the linear modes both for a supersaturated initial state ("super"-linear mode and for a saturated one ("pseudo"-linear mode and the modifications induced on the base state by their finite amplitude evolution.

  11. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian; Sparber, Christof; Markowich, Peter A.

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass

  12. Effect of object functions on tomographic reconstruction a numerical study

    International Nuclear Information System (INIS)

    Babu Rao, C.; Baldev Raj; Ravichandran, V.S.; Munshi, P.

    1996-01-01

    Convolution back projection is the most widely used algorithm of computed tomography (CT). Theoretical studies show that under ideal conditions, the error in the reconstruction can be correlated with the second fourier space derivative of filter function and with the Laplacian of the object function. This paper looks into the second aspect of the error function. In this paper a systematic numerical study is presented on the effect to object functions on global and local errors. (author)

  13. Approximate numerical abilities and mathematics: Insight from correlational and experimental training studies.

    Science.gov (United States)

    Hyde, D C; Berteletti, I; Mou, Y

    2016-01-01

    Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test. © 2016 Elsevier B.V. All rights reserved.

  14. Highlights from NuFact05

    CERN Multimedia

    CERN. Geneva; Landua, Rolf

    2005-01-01

    The 7th International Workshop on Neutrino Factories and Superbeams was held in Frascati in June 2005 with nearly 200 participants. The most recent progress in the design of future neutrino facilities was described, including novel ideas in detectors, and many issues were raised. The International Scoping Study (ISS) for a future Neutrino Facility which would incorporate a Neutrino Factory and/or a high intensity Neutrino Superbeam was launched at that occasion. Built upon previous studies in the USA, Europe and Japan, it will aim to i) define the physics case and a baseline design for such a facility including the related neutrino detection systems, ii) identify the required research and development programme and iii) perform comparisons with other options such as beta beams. The highlights of the meeting and the upcoming studies will be presented.

  15. Numerical study on boiling heat transfer enhancement in a microchannel heat exchanger

    International Nuclear Information System (INIS)

    Jeon, Jin Ho; Suh, Young Ho; Son, Gi Hun

    2008-01-01

    Flow boiling in a microchannel heat exchanger has received attention as an effective heat removal mechanism for high power-density microelectronics. Despite extensive experimental studied, the bubble dynamics coupled with boiling heat transfer in a microchannel heat exchanger is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulations are performed to further clarify the dynamics of flow boiling in a microchannel heat exchanger. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle and to treat an immersed solid surface. Based on the numerical results, the effects of modified channel shape on the bubble growth and heat transfer are quantified

  16. Study of natural convection heat transfer characteristics. (2) Verification for numerical simulation

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Nakada, Kotaro; Ikeda, Tatsumi; Wakamatsu, Mitsuo; Iwaki, Chikako; Morooka, Shinichi; Masaki, Yoshikazu

    2008-01-01

    In the natural cooling system for waste storage, it is important to evaluate the flow by natural draft enough to remove the decay heat from the waste. In this study, we carried out the fundamental study of natural convection on vertical cylindrical heater by experiment and numerical simulation. The dimension of test facility is about 4m heights with single heater. Heating power is varied in the range of 33-110W, where Rayleigh number is over 10 10 . We surveyed the velocity distribution around heater by some turbulent models, mesh sizes around heated wall and turbulent Prandtl numbers. Results of numerical simulation of the velocity distribution and averaged heat transfer coefficient agreed well with experimental data and references. (author)

  17. The analytical and numerical study of the fluorination of uranium dioxide particles

    International Nuclear Information System (INIS)

    Sazhin, S.S.

    1997-01-01

    A detailed analytical study of the equations describing the fluorination of UO 2 particles is presented for some limiting cases assuming that the mass flowrate of these particles is so small that they do not affect the state of the gas. The analytical solutions obtained can be used for approximate estimates of the effect of fluorination on particle diameter and temperature but their major application, however, is probably in the verification of self-consistent numerical solutions. Computational results are presented and discussed for a self-consistent problem in which both the effects of gas on particles and particles on gas are accounted for. It has been shown that in the limiting cases for which analytical solutions have been obtained, the coincidence between numerical and analytical results is almost exact. This can be considered as a verification of both the analytical and numerical solutions. (orig.)

  18. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

  19. Numerical methods using Matlab

    CERN Document Server

    Lindfield, George

    2012-01-01

    Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of use

  20. A Numerical Study for Robust Active Portfolio Management with Worst-Case Downside Risk Measure

    Directory of Open Access Journals (Sweden)

    Aifan Ling

    2014-01-01

    Full Text Available Recently, active portfolio management problems are paid close attention by many researchers due to the explosion of fund industries. We consider a numerical study of a robust active portfolio selection model with downside risk and multiple weights constraints in this paper. We compare the numerical performance of solutions with the classical mean-variance tracking error model and the naive 1/N portfolio strategy by real market data from China market and other markets. We find from the numerical results that the tested active models are more attractive and robust than the compared models.

  1. Analytical and Numerical Studies of Several Fluid Mechanical Problems

    Science.gov (United States)

    Kong, D. L.

    2014-03-01

    In this thesis, three parts, each with several chapters, are respectively devoted to hydrostatic, viscous, and inertial fluids theories and applications. Involved topics include planetary, biological fluid systems, and high performance computing technology. In the hydrostatics part, the classical Maclaurin spheroids theory is generalized, for the first time, to a more realistic multi-layer model, establishing geometries of both the outer surface and the interfaces. For one of its astrophysical applications, the theory explicitly predicts physical shapes of surface and core-mantle-boundary for layered terrestrial planets, which enables the studies of some gravity problems, and the direct numerical simulations of dynamo flows in rotating planetary cores. As another application of the figure theory, the zonal flow in the deep atmosphere of Jupiter is investigated for a better understanding of the Jovian gravity field. An upper bound of gravity field distortions, especially in higher-order zonal gravitational coefficients, induced by deep zonal winds is estimated firstly. The oblate spheroidal shape of an undistorted Jupiter resulting from its fast solid body rotation is fully taken into account, which marks the most significant improvement from previous approximation based Jovian wind theories. High viscosity flows, for example Stokes flows, occur in a lot of processes involving low-speed motions in fluids. Microorganism swimming is such a typical case. A fully three dimensional analytic solution of incompressible Stokes equation is derived in the exterior domain of an arbitrarily translating and rotating prolate spheroid, which models a large family of microorganisms such as cocci bacteria. The solution is then applied to the magnetotactic bacteria swimming problem, and good consistency has been found between theoretical predictions and laboratory observations of the moving patterns of such bacteria under magnetic fields. In the analysis of dynamics of planetary

  2. A numeric-analytic method for approximating the chaotic Chen system

    International Nuclear Information System (INIS)

    Mossa Al-sawalha, M.; Noorani, M.S.M.

    2009-01-01

    The epitome of this paper centers on the application of the differential transformation method (DTM) the renowned Chen system which is described as a three-dimensional system of ODEs with quadratic nonlinearities. Numerical comparisons are made between the DTM and the classical fourth-order Runge-Kutta method (RK4). Our work showcases the precision of the DTM as the Chen system transforms from a non-chaotic system to a chaotic one. Since the Lyapunov exponent for this system is much higher compared to other chaotic systems, we shall highlight the difficulties of the simulations with respect to its accuracy. We wrap up our investigations to reveal that this direct symbolic-numeric scheme is effective and accurate.

  3. The Numerical Study on the Influence of Prandtl Number and Height of the Enclosure

    International Nuclear Information System (INIS)

    Moon, Je-Young; Chung, Bum-Jin

    2016-01-01

    This study investigated numerically the internal flow depending on Prandtl number of fluid and height of enclosure. The two-dimensional numerical simulations were performed for several heights of enclosure in the range between 0.01 m and 0.074 m. It corresponds to the aspect ratio (H/L) ranged from 0.07 to 0.5. Prandtl number was 0.2, 0.7 and 7. Rayleigh number based on the height of enclosure ranged between 8.49x10 3 and 1.20x10 8 . The numerical calculations were carried out using FLUENT 6.3. In order to confirm the influence of Prandtl number and height of side walls on the internal flow and heat transfer of the horizontal enclosure, the numerical study is carried out using the FLUENT 6.3. The numerical results for the condition of top cooling only agree well with Rayleigh-Benard natural convection. When the top and side walls were cooled, the internal flow of enclosure is more complex. The thickness of thermal and velocity boundary layer varies with Prandtl number. For Pr>1 the behavior of cells is unstable and irregular owing to the entrained plume, whereas the internal flow for Pr<1 is stable and regular. Also, the number of cells increases depending on decrease of height. As a result, the heat exchange increases

  4. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  5. Brookhaven highlights, 1986-1987

    International Nuclear Information System (INIS)

    Rowe, M.S.

    1988-01-01

    The highlights of research conducted between October 1985 and September 1987 at Brookhaven National Laboratory are reviewed in this publication. Also covered are the administrative and financial status of the laboratory and a brief mention of meetings held and honors received. (FI)

  6. Numerical studies of the influence of food ingestion on phytoplankton and zooplankton biomasses

    OpenAIRE

    Lidia Dzierzbicka-G³owacka

    2002-01-01

    This paper presents the numerical simulations of the influence of food ingestion by a herbivorous copepod on phytoplankton and zooplankton biomasses (PZB) in the sea. The numerical studies were carried out using the phytoplankton-zooplankton-nutrient-detritus PhyZooNuDe biological upper layer model. This takes account both of fully developed primary production and regeneration mechanisms and of daily migration of zooplankton. In this model the zooplankton is treated not as a 'biomass' but as ...

  7. Numerical study of the glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Zaccarelli, Emanuela; Sciortino, Francesco; Tartaglia, Piero

    2004-01-01

    We report extensive numerical simulations in the glass region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behaviour of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition

  8. Infragravity-wave dynamics in a barred coastal region, a numerical study

    NARCIS (Netherlands)

    Rijnsdorp, Dirk P.; Ruessink, Gerben; Zijlema, Marcel

    2015-01-01

    This paper presents a comprehensive numerical study into the infragravity-wave dynamics at a field site, characterized by a gently sloping barred beach. The nonhydrostatic wave-flow model SWASH was used to simulate the local wavefield for a range of wave conditions (including mild and storm

  9. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    De Bakker, A. T M; Tissier, M.F.S.; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

  10. STS-95 Day 02 Highlights

    Science.gov (United States)

    1998-01-01

    On this second day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, are seen preparing a glovebox device in the middeck area of Discovery, an enclosed research facility that will support numerous science investigations throughout the mission. Payload Specialist John Glenn, activates the Microgravity Encapsulation Process experiment (MEPS). This experiment will study the formation of capsules containing two kinds of anti-tumor drugs that could be delivered directly to solid tumors with applications for future chemotherapy treatments and the pharmaceutical industry.

  11. Development of numerical processing in children with typical and dyscalculic arithmetic skills – a longitudinal study

    Directory of Open Access Journals (Sweden)

    Karin eLanderl

    2013-07-01

    Full Text Available Numerical processing has been demonstrated to be closely associated with arithmetic skills, however, our knowledge on the development of the relevant cognitive mechanisms is limited. The present longitudinal study investigated the developmental trajectories of numerical processing in 42 children with age-adequate arithmetic development and 41 children with dyscalculia over a two-year period from beginning of Grade 2, when children were 7;6 years old, to beginning of Grade 4. A battery of numerical processing tasks (dot enumeration, non-symbolic and symbolic comparison of one- and two-digit numbers, physical comparison, number line estimation was given five times during the study (beginning and middle of each school year. Efficiency of numerical processing was a very good indicator of development in numerical processing while within-task effects remained largely constant and showed low long-term stability before middle of Grade 3. Children with dyscalculia showed less efficient numerical processing reflected in specifically prolonged response times. Importantly, they showed consistently larger slopes for dot enumeration in the subitizing range, an untypically large compatibility effect when processing two-digit numbers, and they were consistently less accurate in placing numbers on a number line. Thus, we were able to identify parameters that can be used in future research to characterize numerical processing in typical and dyscalculic development. These parameters can also be helpful for identification of children who struggle in their numerical development.

  12. The unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement.

    Science.gov (United States)

    Wong, Terry Tin-Yau

    2017-12-01

    The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Numerical study on visualization method for material distribution using photothermal effect

    International Nuclear Information System (INIS)

    Kim, Moo Joong; Yoo, Jai Suk; Kim, Dong Kwon; Kim, Hyun Jung

    2015-01-01

    Visualization and imaging techniques have become increasingly essential in a wide range of industrial fields. A few imaging methods such as X-ray imaging, computed tomography and magnetic resonance imaging have been developed for medical applications to materials that are basically transparent or X-ray penetrable; however, reliable techniques for optically opaque materials such as semiconductors or metallic circuits have not been suggested yet. The photothermal method has been developed mainly for the measurement of thermal properties using characteristics that exhibit photothermal effects depending on the thermal properties of the materials. This study attempts to numerically investigate the feasibility of using photothermal effects to visualize or measure the material distribution of opaque substances. For this purpose, we conducted numerical analyses of various intaglio patterns with approximate sizes of 1.2-6 mm in stainless steel 0.5 mm below copper. In addition, images of the intaglio patterns in stainless steel were reconstructed by two-dimensional numerical scanning. A quantitative comparison of the reconstructed results and the original geometries showed an average difference of 0.172 mm and demonstrated the possibility of application to experimental imaging.

  14. Genetic and cellular studies highlight that A Disintegrin and Metalloproteinase 19 is a protective biomarker in human prostate cancer

    International Nuclear Information System (INIS)

    Hoyne, Gerard; Rudnicka, Caroline; Sang, Qing-Xiang; Roycik, Mark; Howarth, Sarah; Leedman, Peter; Schlaich, Markus; Candy, Patrick; Matthews, Vance

    2016-01-01

    Prostate cancer is the second most frequently diagnosed cancer in men worldwide. Current treatments include surgery, androgen ablation and radiation. Introduction of more targeted therapies in prostate cancer, based on a detailed knowledge of the signalling pathways, aims to reduce side effects, leading to better clinical outcomes for the patient. ADAM19 (A Disintegrin And Metalloproteinase 19) is a transmembrane and soluble protein which can regulate cell phenotype through cell adhesion and proteolysis. ADAM19 has been positively associated with numerous diseases, but has not been shown to be a tumor suppressor in the pathogenesis of any human cancers. Our group sought to investigate the role of ADAM19 in human prostate cancer. ADAM19 mRNA and protein levels were assessed in well characterised human prostate cancer cohorts. ADAM19 expression was assessed in normal prostate epithelial cells (RWPE-1) and prostate cancer cells (LNCaP, PC3) using western blotting and immunocytochemistry. Proliferation assays were conducted in LNCaP cells in which ADAM19 was over-expressed. In vitro scratch assays were performed in PC3 cells over-expressing ADAM19. Immunohistochemical studies highlighted that ADAM19 protein levels were elevated in normal prostate tissue compared to prostate cancer biopsies. Results from the clinical cohorts demonstrated that high levels of ADAM19 in microarrays are positively associated with lower stage (p = 0.02591) and reduced relapse (p = 0.00277) of human prostate cancer. In vitro, ADAM19 expression was higher in RWPE-1 cells compared to LNCaP cells. In addition, human ADAM19 over-expression reduced LNCaP cell proliferation and PC3 cell migration. Taken together, our immunohistochemical and microarray results and cellular studies have shown for the first time that ADAM19 is a protective factor for human prostate cancer. Further, this study suggests that upregulation of ADAM19 expression could be of therapeutic potential in human prostate cancer

  15. Experimental-numerical study of heat flow in deep low-enthalpy geothermal conditions

    NARCIS (Netherlands)

    Saeid, S.; Al-Khoury, R.; Nick, H.M.; Barends, F.

    2014-01-01

    This paper presents an intensive experimental-numerical study of heat flow in a saturated porous domain. A temperature and a flow rate range compared to that existing in a typical deep low-enthalpy hydrothermal system is studied. Two main issues are examined: the effect of fluid density and

  16. Numerical Study of the Critical Impact Velocity in Shear. Appendix Number 1

    National Research Council Canada - National Science Library

    Klosak, M

    1996-01-01

    .... A numerical study of impact shearing of a layer has been performed by the FE code ABAQUS. It was intended to verify available experimental results for VAR 4340 steel 52 HRC, obtained by direct...

  17. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces

    KAUST Repository

    Zhong, Hua; Wang, Xiao-Ping; Sun, Shuyu

    2016-01-01

    We study numerically the three-dimensional droplets spreading on physically flat chemically patterned surfaces with periodic squares separated by channels. Our model consists of the Navier-Stokes-Cahn-Hilliard equations with the generalized Navier

  18. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.

    Science.gov (United States)

    Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier

    2018-01-01

    Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.

  19. Parametrical Numerical Study on Breakwater SSG Application

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Kofoed, Jens Peter

    The report presents numerical investigations on the performance of the SSG concept for different tide and wave conditions towards different levels of discretization to an optimal solution. Benefit of extra reservoir utilization and reservoir length has also been investigated. The report must be c...

  20. Monitoring and preventing numerical oscillations in 3D simulations with coupled Monte Carlo codes

    International Nuclear Information System (INIS)

    Kotlyar, D.; Shwageraus, E.

    2014-01-01

    Highlights: • Conventional coupling methods used in all MC codes can be numerically unstable. • Application of new stochastic implicit (SIMP) methods may be required. • The implicit methods require additional computational effort. • Monitoring diagnostic of the numerical stability was developed here. • The procedure allows to create an hybrid explicit–implicit coupling scheme. - Abstract: Previous studies have reported that different schemes for coupling Monte Carlo (MC) neutron transport with burnup and thermal hydraulic feedbacks may potentially be numerically unstable. This issue can be resolved by application of implicit methods, such as the stochastic implicit mid-point (SIMP) methods. In order to assure numerical stability, the new methods do require additional computational effort. The instability issue however, is problem-dependent and does not necessarily occur in all cases. Therefore, blind application of the unconditionally stable coupling schemes, and thus incurring extra computational costs, may not always be necessary. In this paper, we attempt to develop an intelligent diagnostic mechanism, which will monitor numerical stability of the calculations and, if necessary, switch from simple and fast coupling scheme to more computationally expensive but unconditionally stable one. To illustrate this diagnostic mechanism, we performed a coupled burnup and TH analysis of a single BWR fuel assembly. The results indicate that the developed algorithm can be easily implemented in any MC based code for monitoring of numerical instabilities. The proposed monitoring method has negligible impact on the calculation time even for realistic 3D multi-region full core calculations

  1. Field and numerical studies of flow structure in Lake Shira (Khakassia) in summer

    Science.gov (United States)

    Yakubaylik, Tatyana; Kompaniets, Lidia

    2014-05-01

    Investigations of Lake Shira are conducted within a multidisciplinary approach that includes the study of biodiversity, biochemistry, geology of lake sediments, as well as its hydrophysics. Our report focuses on field measurements in the lake during the 2009 - 2013 and numerical modeling of flow structure. The flow velocity, temperature and salinity distribution and fluctuations of the thermocline (density) were measured in summer. An analysis of spatial and temporal variability of the major hydrophysical characteristics leads us to conclusion that certain meteorological conditions may cause internal waves in this lake. Digital terrain model is constructed from measurements of Lake bathymetry allowing us to carry out numerical simulation. Three-dimensional primitive equation numerical model GETM is applied to simulate hydrophysical processes in Lake Shira. The model is hydrostatic and Boussinesq. An algorithm of high order approximation is opted for calculating the equations of heat and salt transfer. Temperature and salinity distributions resulting from field observations are taken as initial data for numerical simulations. Model calculations as well as calculations with appropriate real wind pattern being observed on Lake Shira have been carried out. In the model calculations we follow (1). Significant differences are observed between model calculations with constant wind and calculations with real wind pattern. Unsteady wind pattern leads to the appearance of horizontal vortexes and a significant increase of vertical fluctuations in temperature (density, impurities). It causes lifting of the sediments to the upper layers at the areas where the thermocline contacts the bottom. It is important for understanding the overall picture of the processes occurring in the lake in summer. Comparison of the results of numerical experiments with the field data shows the possibility of such a phenomena in Lake Shira. The work was supported by the Russian Foundation for

  2. Full-scale multi-ejector module for a carbon dioxide supermarket refrigeration system: Numerical study of performance evaluation

    International Nuclear Information System (INIS)

    Bodys, Jakub; Palacz, Michal; Haida, Michal; Smolka, Jacek; Nowak, Andrzej J.; Banasiak, Krzysztof; Hafner, Armin

    2017-01-01

    Highlights: • A numerical study of the full-scale multi-ejector module performance was presented. • The module was characterised by stable operation in each considered configuration. • The module showed a high total efficiency for all the operating conditions. - Abstract: The performance of fixed ejectors installed in a multi-ejector module in a carbon dioxide refrigeration system is discussed in this paper. To analyse the module operation, three-dimensional ejector models including the inlet and outlet collecting ducts were considered. The tests were performed for three of four vapour ejectors of different sizes that compose the multi-ejector pack. The testing modes included the serial and parallel operation of the fixed units in operating conditions that are characteristic for the supermarket refrigeration unit working at high ambient temperatures. All numerical simulations were performed using the validated Homogeneous Equilibrium Model implemented on the ejectorPL computational tool for typical transcritical parameters at the motive nozzle port. The detailed analysis was executed separately for the ejectors and the ducts of the module collectors. The results discussion concerned the crucial parameters for such an installation like the pressure and vapour quality distribution. Negligible influence of the motive nozzle collector and a crucial influence of the outlet collector shape was indicated. The global performance analysis showed that the multi-ejector pack provides high and stable performance of all installed ejectors over the entire range of the considered operating conditions for supermarket application. Areas of the possible pressure loss reduction and the uniformity growth in the vapour quality distribution were presented. Finally, according to the multi-ejector pack ducts analysis, the potential areas for module shape optimisation were indicated as well.

  3. Numerical Boron mixing studies for Loviisa Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Gango, P. [IVO International Ltd. (Finland)

    1995-09-01

    A program has been started for studying numerically boron mixing in the downcomer of Loviisa NPP (VVER-440). Mixing during the transport of a diluted slug from the loop to the core might serve as an inherent protection mechanism against severe reactivity accidents in inhomogenous boron dilution scenarios for PWRs. The commercial general purpose Computational Fluid Dynamics (CFD) core PHOENICS is used for solving the governing fluid flow equations in the downcomer geometry of VVER-440. So far numerical analyses have been performed for steady state operation conditions and two different pump driven transients. The steady state analyses focused on model development and validation against existing experimental data. The two pump driven transient scenarios reported are based on slug transport during the start of the sixth and first loop respectively. The results from the two transients show that mixing is case and plant specific; the high and open downcomer geometry of VVER-440 seems to be advantageous from mixing point of view. In addition the analyzing work for the {open_quotes}first pump start{close_quotes} scenario brought up some considerations about flow distribution in the existing experimental facilities.

  4. Numerical study of Taylor bubbles with adaptive unstructured meshes

    Science.gov (United States)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  5. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  6. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)

    2016-02-15

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable

  7. Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics

    International Nuclear Information System (INIS)

    Liu, Zhi; Hu, Jie; Zhao, Yimeng; Qu, Zhiguo; Xu, Feng

    2015-01-01

    Paper-based diagnostics have shown promising potential applications in human disease surveillance and food safety analysis at the point-of-care (POC). The liquid wicking behavior in diagnostic fibrous paper plays an important role in development of paper-based diagnostics. In the current study, we performed experimental and numerical research on the liquid wicking height and mass with three width strips into filter paper. The effective porosity could be conveniently measured in the light of the linear correlation between wicking height and mass by the experimental system. A modified model with considering evaporation effect was proposed to predict wicking height and mass. The predicted wicking height and mass using the evaporation model was much closer to the experimental data compared with the model without evaporation. The wicking speed initially decreased significantly and then maintained at a constant value at lower level. The evaporation effect tends to reduce the wicking flow speed. More wicking mass could be obtained at larger strip width but the corresponding reagent loss became significant. The proposed model with evaporation paved a way to understanding the fundamental of fluid flow in diagnostic paper and was essential to provide meaningful and useful reference for the research and development of paper-based diagnostics devices. - Highlights: • A model with considering evaporation was proposed to predict wicking height and mass. • Flow characteristics of filter paper were experimentally and theoretically studied. • Effective porosity could be conveniently measured by the experimental platform. • The evaporation effect tended to reduce the wicking flow speed

  8. Numerical study of pressure drop and heat transfer from circular and cam-shaped tube bank in cross-flow of nanofluid

    International Nuclear Information System (INIS)

    Mirabdolah Lavasani, Arash; Bayat, Hamidreza

    2016-01-01

    Highlights: • Flow around non-circular and circular shaped tube bank is studied. • Effect of using Al_2O_3-water nanofluid on flow and heat transfer is discussed. • Tubes are with in-line and staggered arrangement. • Pressure drop of non-circular tube is noticeably lower that circular tube. - Abstract: Flow and heat transfer of nanofluid inside circular and cam-shaped tube bank is studied numerically. Reynolds number for cam-shaped tube bank is defined based on equivalent diameter of circular tube and varies in range of 100 ⩽ Re_D ⩽ 400. Nanofluid is made by adding Al_2O_3 nanoparticle with volume fraction of 1–7% to pure water. Results show using nanofluid results in higher heat transfer rate for both circular tube bank and cam-shaped tube bank. Also, staggered arrangement has higher heat transfer for both circular and cam-shaped tube bank. Pressure drop from cam-shaped tube bank is substantially lower than circular tube bank for all range of Reynolds number and volume fraction.

  9. Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings

    International Nuclear Information System (INIS)

    Kheradmand, Mohammad; Azenha, Miguel; Aguiar, José L.B. de; Castro-Gomes, João

    2016-01-01

    This paper proposes a methodology for improvement of energy efficiency in buildings through the innovative simultaneous incorporation of three distinct phase change materials (here termed as hybrid PCM) in plastering mortars for façade walls. The thermal performance of a hybrid PCM mortar was experimentally evaluated by comparing the behaviour of a prototype test cell (including hybrid PCM plastering mortar) subjected to realistic daily temperature profiles, with the behaviour of a similar prototype test cell, in which no PCM was added. A numerical simulation model was employed (using ANSYS-FLUENT) to validate the capacity of simulating temperature evolution within the prototype containing hybrid PCM, as well as to understand the contribution of hybrid PCM to energy efficiency. Incorporation of hybrid PCM into plastering mortars was found to have the potential to significantly reduce heating/cooling temperature demands for maintaining the interior temperature within comfort levels when compared to normal mortars (without PCM), or even mortars comprising a single type of PCM. - Highlights: • New concept of incorporation of more than 1 type of PCM in plastering mortars (hybrid PCM). • Assessment of thermal performance of hybrid PCM plastering mortar. • Thermo-physical properties of plastering mortars modified with PCMs incorporation. • Experimental and numerical simulations of thermal behaviour on laboratory scale prototype.

  10. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  11. Case studies in the numerical solution of oscillatory integrals

    International Nuclear Information System (INIS)

    Adam, G.

    1992-06-01

    A numerical solution of a number of 53,249 test integrals belonging to nine parametric classes was attempted by two computer codes: EAQWOM (Adam and Nobile, IMA Journ. Numer. Anal. (1991) 11, 271-296) and DO1ANF (Mark 13, 1988) from the NAG library software. For the considered test integrals, EAQWOM was found to be superior to DO1ANF as it concerns robustness, reliability, and friendly user information in case of failure. (author). 9 refs, 3 tabs

  12. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2015-01-01

    Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system

  13. Numerical Study of Photoacoustic Pressure for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Thomas Grosges

    2016-11-01

    Full Text Available A commonly used therapy for cancer is based on the necrosis of cells induced by heating through the illumination of nanoparticles embedded in cells. Recently, the photoacoustic pressure shock induced by the illumination pulse was proved and this points to another means of cell destruction. The purpose of this study is to propose a model of the photoacoustic pressure in cells. The numerical resolution of the problem requires the accurate computation of the electromagnetism, the temperature and the pressure around the nanostructures embedded in a cell. Here, the problem of the interaction between an electromagnetic excitation and a gold nanoparticle embedded in a cell domain is solved. The variations of the thermal and photoacoustic pressures are studied in order to analyze the pressure shock wave inducing the collapse of the cell’s membrane in cancer therapy.

  14. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    Science.gov (United States)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  15. Numerical and experimental characterization of ceramic pebble beds under cycling mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Pupeschi, S., E-mail: pupeschi.simone@hotmail.it [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Knitter, R.; Kamlah, M. [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Gan, Y. [School of Civil Engineering, The University of Sydney, Sydney, NSW, 2006 (Australia)

    2016-11-15

    Highlights: • The effect of cyclic loading on the mechanical response of pebble beds was assessed. • Numerical simulations were performed with KIT-DEM code. • The numerical simulations were compared with the experimental outcomes. • A good qualitative agreement between experimental and simulation results was found. • The pebble size distribution affects the mechanical response of the assemblies. - Abstract: All solid breeder concepts considered to be tested in ITER (International Thermonuclear Experimental Reactor), make use of lithium-based ceramics in the form of pebble-packed beds as tritium breeder. A thorough understanding of the thermal and mechanical properties of the ceramic pebble beds under fusion relevant conditions is essential for the design of the breeder blanket modules of future fusion reactors. In this study, the effect of cyclic loading on the mechanical behaviour of pebble bed assemblies was investigated using a Discrete Element Method (DEM) code. The numerical simulations were compared with the experimental outcomes. The results of numerical simulations show that the pebble size distribution affects noticeably the stress-strain behaviour of the assemblies. A good qualitative agreement between experimental and simulation results was found in terms of difference between residual strains of consecutive cycles. An increase of the oedometric modulus with the compressive load was observed for all investigated compositions in both experimental and DEM simulations. The numerical results show an increase of the oedometric modulus (E) with progressive compaction of the assemblies due to the cycling loading, while no significant influence of the pebbles size distribution was observed.

  16. Numerical study of plasma-wall transition in an oblique magnetic field

    International Nuclear Information System (INIS)

    Valsaque, Fabrice; Manfredi, Giovanni

    2001-01-01

    The interaction of a plasma with a fixed wall is investigated numerically. The ions are described by a kinetic model, while the electrons are assumed to be at thermal equilibrium. Finite Debye length effects are taken into account. An Eulerian code is used for the ion dynamics, which enables us to obtain a fine resolution of both position and velocity space. First, we analyse the effect of ionization and collisions, which bring the ion flow to supersonic velocity at the entrance of the Debye sheath (Bohm's criterion). Second, we consider a collisionless sheath with an oblique magnetic field. A magnetic presheath, which has a width of several ion gyroradii, is located between the Debye sheath and the bulk plasma. We perform a systematic numerical study of these sheaths for different incidences of the magnetic field

  17. Experimental analysis with numerical comparison for different thermoelectric generators configurations

    International Nuclear Information System (INIS)

    Favarel, Camille; Bédécarrats, Jean-Pierre; Kousksou, Tarik; Champier, Daniel

    2016-01-01

    Highlights: • 3 experimental TE generators are tested and compared to a numerical model. • Different mass flow rates and temperatures ranges were used. • Maximum output electrical power is guaranty by the use of MPPT DC/DC controllers. • The importance of the occupancy rate for the design of TEG is demonstrated. • The importance of the location of the TE modules is shown. - Abstract: Thermoelectric (TE) energy harvesting is a promising perspective to use waste heat. Due to the low efficiency of thermoelectric materials many analytical and numerical optimization studies have been developed. To be validated, an optimization must necessarily be linked to the experience. There are a lot of results on thermoelectric generators (TEG) based on experiments or model validations. Nevertheless, the validated models concern most of the time one TE module but rarely an entire system. Moreover, these models of complete system mainly concern the optimization of fluid flow rates or of heat exchangers. Our choice is to optimize the number of these modules in a whole system point of view. A numerical model using a software for numerical computation, based on multi-physics equations such as heat transfer, fluid mechanics and thermoelectricity was developed to predict both thermal and electrical powers of TEG. This paper aims to present the experimental validation of this model and shows interesting experimental results on the location of the TE modules. In parallel, an experimental set-up was built to compare and validate this model. This set-up is composed of a thermal loop with a hot gas source, a cold fluid, a hot fin exchanger, a cold tubular exchanger and thermoelectric modules. The number and the place of these modules can be changed to study different configurations. A specific maximum power point tracker DC/DC converter charging a battery is added in order to study the electrical power produced by the TEG. The analysis of the influence of the number of

  18. Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space

    DEFF Research Database (Denmark)

    Elarga, Hagar; Fantucci, Stefano; Serra, Valentina

    2017-01-01

    portions, one, the bare roof, representing the reference case without PCMs, the other two integrating two PCM's typologies with different melting/solidification temperatures range. A numerical model was furthermore developed implementing the equivalent capacitance numerical method to describe the substance...... peak load between 13% and 59% depending on the PCM typology, highlighting that to reach the expected performance the proper PCM type should be carefully selected....

  19. A numerical study of a premixed flame on a slit burner

    NARCIS (Netherlands)

    Somers, L.M.T.; Goey, de L.P.H.

    1995-01-01

    A numerical study of a premixed methane/air flame on a 4 mm slit burner is presented. A local grid refinement technique is used to deal with large gradients and curvature of all variables encountered in the flame, keeping the number of grid points within reasonable bounds. The method used here leads

  20. New numerical method to study phase transitions and its applications

    International Nuclear Information System (INIS)

    Lee, Jooyoung; Kosterlitz, J.M.

    1991-11-01

    We present a powerful method of identifying the nature of transitions by numerical simulation of finite systems. By studying the finite size scaling properties of free energy barrier between competing states, we can identify unambiguously a weak first order transition even when accessible system sizes are L/ξ < 0.05 as in the five state Potts model in two dimensions. When studying a continuous phase transition we obtain quite accurate estimates of critical exponents by treating it as a field driven first order transition. The method has been successfully applied to various systems

  1. Interpretation of Results of Studies Evaluating an Intervention Highlighted in Google Health News: A Cross-Sectional Study of News.

    Directory of Open Access Journals (Sweden)

    Romana Haneef

    Full Text Available Mass media through the Internet is a powerful means of disseminating medical research. We aimed to determine whether and how the interpretation of research results is misrepresented by the use of "spin" in the health section of Google News. Spin was defined as specific way of reporting, from whatever motive (intentional or unintentional, to emphasize that the beneficial effect of the intervention is greater than that shown by the results.We conducted a cross-sectional study of news highlighted in the health section of US, UK and Canada editions of Google News between July 2013 and January 2014. We searched for news items for 3 days a week (i.e., Monday, Wednesday, and Friday during 6 months and selected a sample of 130 news items reporting a scientific article evaluating the effect of an intervention on human health.In total, 78% of the news did not provide a full reference or electronic link to the scientific article. We found at least one spin in 114 (88% news items and 18 different types of spin in news. These spin were mainly related to misleading reporting (59% such as not reporting adverse events that were reported in the scientific article (25%, misleading interpretation (69% such as claiming a causal effect despite non-randomized study design (49% and overgeneralization/misleading extrapolation (41% of the results such as extrapolating a beneficial effect from an animal study to humans (21%. We also identified some new types of spin such as highlighting a single patient experience for the success of a new treatment instead of focusing on the group results.Interpretation of research results was frequently misrepresented in the health section of Google News. However, we do not know whether these spin were from the scientific articles themselves or added in the news.

  2. A numerical study of external building walls containing phase change materials (PCM)

    International Nuclear Information System (INIS)

    Izquierdo-Barrientos, M.A.; Belmonte, J.F.; Rodríguez-Sánchez, D.; Molina, A.E.; Almendros-Ibáñez, J.A.

    2012-01-01

    Phase Change Materials (PCMs) have been receiving increased attention, due to their capacity to store large amounts of thermal energy in narrow temperature ranges. This property makes them ideal for passive heat storage in the envelopes of buildings. To study the influence of PCMs in external building walls, a one-dimensional transient heat transfer model has been developed and solved numerically using a finite difference technique. Different external building wall configurations were analyzed for a typical building wall by varying the location of the PCM layer, the orientation of the wall, the ambient conditions and the phase transition temperature of the PCM. The integration of a PCM layer into a building wall diminished the amplitude of the instantaneous heat flux through the wall when the melting temperature of the PCM was properly selected according to the season and wall orientation. Conversely, the results of the work show that there is no significant reduction in the total heat lost during winter regardless of the wall orientation or PCM transition temperature. Higher differences were observed in the heat gained during the summer period, due to the elevated solar radiation fluxes. The high thermal inertia of the wall implies that the inclusion of a PCM layer increases the thermal load during the day while decreasing the thermal load during the night. - Highlights: ► A comparative simulation of a building wall with and without PCMs has been conducted. ► PCM is selected according with the season, the wall orientation and the melting temperature. ► PCM in a building wall help to diminish the internal air temperature swings and to regulate the heat transfer.

  3. Numerical study of Q-ball formation in gravity mediation

    International Nuclear Information System (INIS)

    Hiramatsu, Takashi; Kawasaki, Masahiro; Takahashi, Fuminobu

    2010-01-01

    We study Q-ball formation in the expanding universe on 1D, 2D and 3D lattice simulations. We obtain detailed Q-ball charge distributions, and find that the distribution is peaked at Q 3D peak ≅ 1.9 × 10 −2 (|Φ in |/m) 2 , which is greater than the existing result by about 60%. Based on the numerical simulations, we discuss how the Q-ball formation proceeds. Also we make a comment on possible deviation of the charge distributions from what was conjectured in the past

  4. Numerical study of the grain growth and the thermal properties of ceramics

    International Nuclear Information System (INIS)

    Shahtahmasebi, N.; Shariaty ghleno, A.M.; Hosaini, M.

    2000-04-01

    The physical properties of ceramics strongly depends on the grain size, which itself depends on the sintering process. In this work we propose a model for sintering based on the gross features known experimental and the preform numerical study

  5. Numerical study of non-ideal Vlasov-BGK plasmas

    International Nuclear Information System (INIS)

    Levchenko, V.D.; Sigov, Y.S.; Premuda, F.

    1995-01-01

    A relatively simple quasi-classical description of quantum plasmas using as first approximation the Bhatnagar-Gross-Krook (BGK) collision integral, if combined with the modern numerical simulation methods, might be effective tool of a deep study of non-ideal plasma kinetics in a variety of urgent applications as inertial confinement and cold fusion, transport and collective properties of highly condensed plasmas in liquid metals, semi- and superconductors and others. Consider one-dimensional degenerate plasma consisting of thermal electrons and thermal bosons (deuterons) in the vicinity of the equilibrium Fermi- and Bose-type distributions respectively. In the frame of our rough mixed model we solve Vlasov-BGK-Poisson eqs using simplified version of the SUR code

  6. How Parents Read Counting Books and Non-numerical Books to Their Preverbal Infants: An Observational Study.

    Science.gov (United States)

    Goldstein, Alison; Cole, Thomas; Cordes, Sara

    2016-01-01

    Studies have stressed the importance of counting with children to promote formal numeracy abilities; however, little work has investigated when parents begin to engage in this behavior with their young children. In the current study, we investigated whether parents elaborated on numerical information when reading a counting book to their preverbal infants and whether developmental differences in numerical input exist even in the 1st year of life. Parents and their 5-10 months old infants were asked to read, as they would at home, two books to their infants: a counting book and another book that did not have numerical content. Parents' spontaneous statements rarely focused on number and those that did consisted primarily of counting, with little emphasis on labeling the cardinality of the set. However, developmental differences were observed even in this age range, such that parents were more likely to make numerical utterances when reading to older infants. Together, results are the first to characterize naturalistic reading behaviors between parents and their preverbal infants in the context of counting books, suggesting that although counting books promote numerical language in parents, infants still receive very little in the way of numerical input before the end of the 1st year of life. While little is known regarding the impact of number talk on the cognitive development of young infants, the current results may guide future work in this area by providing the first assessment of the characteristics of parental numerical input to preverbal infants.

  7. Numerical capacities as domain-specific predictors beyond early mathematics learning: a longitudinal study.

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3(rd) and 4(th) grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively "start-up" tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school.

  8. NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL

    Science.gov (United States)

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...

  9. Three-dimensional numerical study of heat transfer enhancement in separated flows

    Science.gov (United States)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  10. High energy gravitational scattering: a numerical study

    CERN Document Server

    Marchesini, Giuseppe

    2008-01-01

    The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.

  11. Preliminary Study of 1D Thermal-Hydraulic System Analysis Code Using the Higher-Order Numerical Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The existing nuclear system analysis codes such as RELAP5, TRAC, MARS and SPACE use the first-order numerical scheme in both space and time discretization. However, the first-order scheme is highly diffusive and less accurate due to the first order of truncation error. So, the numerical diffusion problem which makes the gradients to be smooth in the regions where the gradients should be steep can occur during the analysis, which often predicts less conservatively than the reality. Therefore, the first-order scheme is not always useful in many applications such as boron solute transport. RELAP7 which is an advanced nuclear reactor system safety analysis code using the second-order numerical scheme in temporal and spatial discretization is being developed by INL (Idaho National Laboratory) since 2011. Therefore, for better predictive performance of the safety of nuclear reactor systems, more accurate nuclear reactor system analysis code is needed for Korea too to follow the global trend of nuclear safety analysis. Thus, this study will evaluate the feasibility of applying the higher-order numerical scheme to the next generation nuclear system analysis code to provide the basis for the better nuclear system analysis code development. The accuracy is enhanced in the spatial second-order scheme and the numerical diffusion problem is alleviated while indicates significantly lower maximum Courant limit and the numerical dispersion issue which produces spurious oscillation and non-physical results in the higher-order scheme. If the spatial scheme is the first order scheme then the temporal second-order scheme provides almost the same result with the temporal firstorder scheme. However, when the temporal second order scheme and the spatial second-order scheme are applied together, the numerical dispersion can occur more severely. For the more in-depth study, the verification and validation of the NTS code built in MATLAB will be conducted further and expanded to handle two

  12. BARC highlights '88

    International Nuclear Information System (INIS)

    1989-01-01

    Highlights of research and development activities of the Bhabha Atomic Research Centre (BARC), Bombay during 1988 are presented in chapters entitled: Physical Sciences, Chemical Sciences, Materials and Materials Sciences, Radioisotopes, Reactors, Fuel Cycle, Radiological Safety and Protection, Electronics and Instrumentation, Engineering Services, and Life Sciences. Main thrust of the R and D activities of BARC is on nuclear power reactor technology and all stages of nuclear fuel cycle. Some activities are also in the frontier areas such as high temperature superconductivity and inertial confinement fusion. (M.G.B.). figs., tabs., coloured ills

  13. Numerical study of blow-up in the Davey-Stewartson system

    KAUST Repository

    Klein, Christian

    2013-03-01

    Nonlinear dispersive partial differential equations such as the nonlinear Schrödinger equations can have solutions that blow up. We numerically study the long time behavior and potential blow-up of solutions to the focusing Davey-Stewartson II equation by analyzing perturbations of the lump and the Ozawa solutions. It is shown in this way that both are unstable to blow-up and dispersion, and that blow-up in the Ozawa solution is generic.

  14. Numerical study of blow-up in the Davey-Stewartson system

    KAUST Repository

    Klein, Christian; Muite, Benson; Roidot, Kristelle

    2013-01-01

    Nonlinear dispersive partial differential equations such as the nonlinear Schrödinger equations can have solutions that blow up. We numerically study the long time behavior and potential blow-up of solutions to the focusing Davey-Stewartson II equation by analyzing perturbations of the lump and the Ozawa solutions. It is shown in this way that both are unstable to blow-up and dispersion, and that blow-up in the Ozawa solution is generic.

  15. A numerical study of variable density flow and mixing in porous media

    Science.gov (United States)

    Fan, Yin; Kahawita, René

    1994-10-01

    A numerical study of a negatively buoyant plume intruding into a neutrally stratified porous medium has been undertaken using finite different methods. Of particular interest has been to ascertain whether the experimentally observed gravitational instabilities that form along the lower edge of the plume are reproduced in the numerical model. The model has been found to faithfully reproduce the mean flow as well as the gravitational instabilities in the intruding plume. A linear stability analysis has confirmed the fact that the negatively buoyant plume is in fact gravitationally unstable and that the stability depends on two parameters: a concentration Rayleigh number and a characteristic length scale which is dependent on the transverse dispersivity.

  16. CAM Highlights (FY 80)

    Science.gov (United States)

    1980-10-01

    industrialized nations in almost every manufacturing market place. Many foreign nation’s manu- facturing advancements have resulted from...several computer languages available on the market to program numerically controlled machine tools. However, there was a need for a docu- ment showing...by contacting Mr. Richard Kotler , MICOM, Autovon 746-2065 or Commercial (205) 876-2065. 56 600 MANUFACTURING CONTROL Factory Management Control

  17. Quantitative study on the statistical properties of fibre architecture of genuine and numerical composite microstructures

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl

    2013-01-01

    A quantitative study is carried out regarding the statistical properties of the fibre architecture found in composite laminates and that generated numerically using Statistical Representative Volume Elements (SRVE’s). The aim is to determine the reliability and consistency of SRVE’s for represent......A quantitative study is carried out regarding the statistical properties of the fibre architecture found in composite laminates and that generated numerically using Statistical Representative Volume Elements (SRVE’s). The aim is to determine the reliability and consistency of SRVE...

  18. A numerical study of non-linear crack tip parameters

    Directory of Open Access Journals (Sweden)

    F.V. Antunes

    2015-07-01

    Full Text Available Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, different authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle, were investigated. It was demonstrated that: i LEFM concepts are applicable to the problem under study; ii the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; iii the Keff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; iv the analysis of remote compliance is the best numerical parameter to quantify the crack opening level; v without contact there is no effect of stress ratio on crack tip parameters. Therefore it is proved that the crack closure concept is valid.

  19. Experimental and Numerical Study of Twin Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru Yaga; Minoru Okano; Masumi Tamashiro; Kenyu Oyakawa

    2003-01-01

    In this paper, the dual underexpanded impinging jets are experimentally and numerically studied. The experiments were performed by measuring the unsteady and averaged wall static pressures and by visualizing density fields using schlieren method. Numerical calculations were also conducted by solving unsteady three dimensional compressible Navier-Stokes equations with Baldwin-Lomax turbulence model. The main parameters for the dual jets are the non-dimensional distance between the two nozzle centers H/D covering 1.5, 2.0, the nozzle to plate separation L/D 2.0, 3.0,4.0 and 5.0 and the pressure ratio defined by Po/Pb 1.0~6.0, where D is the diameter of each nozzle exit, Po the stagnation pressure and Pb the back pressure. It is found that the agreement between the experiments and the calculations is good. The fountain flow at the middle of the two jets is observed both in the experiments and the calculation. According to FFT analysis of the experiments for the twin jets,relatively low frequency (up to 5 kHz) is dominant for H/D =1.5, L/D =2.0 and pressure ratio Po/Pb =3.0 and 5.0,which is confirmed by the experiments.

  20. Computing the demagnetizing tensor for finite difference micromagnetic simulations via numerical integration

    International Nuclear Information System (INIS)

    Chernyshenko, Dmitri; Fangohr, Hans

    2015-01-01

    In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetizing tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii). - Highlights: • We study the accuracy of demagnetization in finite difference micromagnetics. • We introduce a new sparse integration method to compute the tensor more accurately. • Newell, sparse integration and asymptotic method are compared for all ranges

  1. Numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1982-01-01

    There are many recent developments in numerical relativity, but there remain important unsolved theoretical and practical problems. The author reviews existing numerical approaches to solution of the exact Einstein equations. A framework for classification and comparison of different numerical schemes is presented. Recent numerical codes are compared using this framework. The discussion focuses on new developments and on currently open questions, excluding a review of numerical techniques. (Auth.)

  2. Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case

    Directory of Open Access Journals (Sweden)

    Irina Carmen ANDREI

    2014-06-01

    Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.

  3. Numerical modeling for longwall pillar design: a case study from a typical longwall panel in China

    Science.gov (United States)

    Zhang, Guangchao; Liang, Saijiang; Tan, Yunliang; Xie, Fuxing; Chen, Shaojie; Jia, Hongguo

    2018-02-01

    This paper presents a new numerical modeling procedure and design principle for longwall pillar design with the assistance of numerical simulation of FLAC3D. A coal mine located in Yanzhou city, Shandong Province, China, was selected for this case study. A meticulously validated numerical model was developed to investigate the stress changes across the longwall pillar with various sizes. In order to improve the reliability of the numerical modeling, a calibration procedure is undertaken to match the Salamon and Munro pillar strength formula for the coal pillar, while a similar calibration procedure is used to estimate the stress-strain response of a gob. The model results demonstrated that when the coal pillar width was 7-8 m, most of the vertical load was carried by the panel rib, whilst the gateroad was overall in a relatively low stress environment and could keep its stability with proper supports. Thus, the rational longwall pillar width was set as 8 m and the field monitoring results confirmed the feasibility of this pillar size. The proposed numerical simulation procedure and design principle presented in this study could be a viable alternative approach for longwall pillar design for other similar projects.

  4. How Parents Read Counting Books and Non-Numerical Books to Their Preverbal Infants: An Observational Study

    Directory of Open Access Journals (Sweden)

    Alison Goldstein

    2016-07-01

    Full Text Available Studies have stressed the importance of counting with children to promote formal numeracy abilities; however little work has investigated when parents begin to engage in this behavior with their young children. In the current study, we investigated whether parents elaborated on numerical information when reading a counting book to their preverbal infants and whether developmental differences in numerical input exist even in the first year of life. Parents and their 5-10 month old infants were asked to read, as they would at home, two books to their infants: a counting book and another book that did not have numerical content. Parents’ spontaneous statements rarely focused on number and those that did consisted primarily of counting, with little emphasis on labeling the cardinality of the set. However, developmental differences were observed even in this age range, such that parents were more likely to make numerical utterances when reading to older infants. Together, results are the first to characterize naturalistic reading behaviors between parents and their preverbal infants in the context of counting books, suggesting that although counting books promote numerical language in parents, infants still receive very little in the way of numerical input before the end of the first year of life. While little is known regarding the impact of number talk on the cognitive development of young infants, the current results may guide future work in this area by providing the first assessment of the characteristics of parental numerical input to preverbal infants.

  5. Numerical and Experimental Study of Amplitude Modulated Positive Corona Discharge

    Directory of Open Access Journals (Sweden)

    Pablo Martín GOMEZ

    2014-12-01

    Full Text Available The electrical behavior of a modulated positive corona discharge loudspeaker was studied. A coaxial transducer in air was built using a central copper wire of 75 mm radius (inner electrode and a perforated tube of 11 mm (outer electrode. A high voltage DC supply provided the bias current and a sinusoidal signal was superimposed to measure the discharge admittance. The experimental results could not be matched to previously reported equivalent circuits with fixed components. Using the basic equations that describe the ion motion, a numerical model was proposed. The computed values matched well the experimental data and suggested an equivalent circuit composed of frequency dependent conductance and capacitance. This dependence is closely related to the ion travel time between electrodes (transit time. Simulations carried out at several inter-electrode distances could be synthesized in a single plot where the different results overlap and further emphasize the role of the transit time. This numerical model proved to be an efficient tool to simulate and design modulated corona transducers.

  6. Theoretical and numerical study of heat transfer deterioration in HPLWR

    International Nuclear Information System (INIS)

    Palko, D.; Anglart, H.

    2007-01-01

    A numerical investigation of the Heat Transfer Deterioration (HTD) phenomena is performed using the low-Re k - ω turbulence model. Steady state Reynolds-averaged Navier-Stokes equations are solved together with equations for the transport of enthalpy and turbulence. Equations are solved for the supercritical water flow at different pressures, using water properties from the standard IAPWS tables. All cases are extensively validated against experimental data. The influence of buoyancy on the HTD is demonstrated for different mass flow rates in the heated pipes. Numerical results prove that the RANS low-Re turbulence modeling approach is fully capable to simulate the heat transfer in pipes with the water flow at supercritical pressures. A study of buoyancy influence shows that for the low mass flow rates of coolant, the influence of buoyancy forces on the heat transfer in heated pipes is significant. For the high flow rates, buoyancy influence could be neglected and there are clearly other mechanisms causing the decrease in heat transfer at high coolant flow rates. (author)

  7. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations

    OpenAIRE

    Yucong Miao; Shuhua Liu; Yijia Zheng; Shu Wang; Yuan Li

    2014-01-01

    The objective of this study is to numerically study flow and traffic exhaust dispersion in urban street canyons with different configurations to find out the urban-planning strategies to ease the air pollution. The Computational Fluid Dynamics (CFD) model used in this study—Open Source Field Operation and Manipulation (OpenFOAM) software package—was firstly validated against the wind-tunnel experiment data by using three different k-ε turbulence models. And then the patterns of flow and dispe...

  8. Organized crime impact study highlights

    Energy Technology Data Exchange (ETDEWEB)

    Porteous, S D

    1998-10-01

    A study was conducted to address the issue of how organized crime impacts on Canadians and their communities both socially and economically. As far as environmental crime is concerned, three main areas of concern have been identified: (1) illicit trade in ozone depleting substances, (2) illicit hazardous waste treatment, and (3) disposal of illicit trade in endangered species. To gauge the magnitude of organized crime activity, the market value of worldwide illegal trafficking in illicit drugs was estimated to be as high as $100 billion worldwide (between $1.4 to 4 billion in Canada). It is suspected that Canada supplies a substantial portion of the U.S. black market in chlorofluorocarbons with most of the rest being supplied from Mexico. Another area of concern involves the disposal of hazardous wastes. Canada produces approximately 5.9 million tonnes of hazardous waste annually. Of these, 3.2 million tonnes are sent to off-site disposal facilities for specialized treatment and recycling. The treatment of hazardous waste is a very profitable business, hence vulnerable to fraudulent practices engaged in by organized crime groups. Environmental implications of this and other environmental crimes, as well as their economic, commercial, health and safety impact were examined. Other areas of organized crime activity in Canada (drugs, economic crimes, migrant trafficking, counterfeit products, motor vehicle theft, money laundering) were also part of the study.

  9. Numerical Capacities as Domain-Specific Predictors beyond Early Mathematics Learning: A Longitudinal Study

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3rd and 4th grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively “start-up” tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school. PMID:24255710

  10. Code-experiment comparison on wall condensation tests in the presence of non-condensable gases-Numerical calculations for containment studies

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Surete Nucleaire (IRSN), PSN-RES, SCA, BP 68, 91192 Gif-sur-Yvette (France); Porcheron, E.; Dumay, F.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), PSN-RES, SCA, BP 68, 91192 Gif-sur-Yvette (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Steam condensation on walls has been investigated in the TOSQAN vessel. Black-Right-Pointing-Pointer Experiments on 7 different tests have been performed. Black-Right-Pointing-Pointer Different steam injections and wall temperatures are used. Black-Right-Pointing-Pointer Simulations are performed in 2D using the TONUS code. Black-Right-Pointing-Pointer Code-experiments comparisons at many different locations show a good agreement. - Abstract: During the course of a severe Pressurized Water Reactor accident, pressurization of the containment occurs and hydrogen can be produced by the reactor core oxidation and distributed in the containment according to convection flows and wall condensation. Filmwise wall condensation in the presence of non-condensable gases is a subject of many interests and extensive studies have been performed in the past. Some empirical correlations have demonstrated their limit for extrapolation under different thermal-hydraulic conditions and at different geometries/scales. The French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a numerical tool and an experimental facility in order to investigate free convection flows in the presence of condensation. The objective of this paper is to present numerical results obtained on different wall condensation tests in 7 m{sup 3} volume vessel (TOSQAN facility), and to compare them with the experimental ones. Over eight tests are considered here, and code-experiment comparison is performed on many different locations, giving an extensive insight of the code assessment for air-steam mixture flows involving wall condensation in the presence of non-condensable gases.

  11. Numerical modeling of fires on gas pipelines

    International Nuclear Information System (INIS)

    Zhao Yang; Jianbo Lai; Lu Liu

    2011-01-01

    When natural gas is released through a hole on a high-pressure pipeline, it disperses in the atmosphere as a jet. A jet fire will occur when the leaked gas meets an ignition source. To estimate the dangerous area, the shape and size of the fire must be known. The evolution of the jet fire in air is predicted by using a finite-volume procedure to solve the flow equations. The model is three-dimensional, elliptic and calculated by using a compressibility corrected version of the k - ξ turbulence model, and also includes a probability density function/laminar flamelet model of turbulent non-premixed combustion process. Radiation heat transfer is described using an adaptive version of the discrete transfer method. The model is compared with the experiments about a horizontal jet fire in a wind tunnel in the literature with success. The influence of wind and jet velocity on the fire shape has been investigated. And a correlation based on numerical results for predicting the stoichiometric flame length is proposed. - Research highlights: → We developed a model to predict the evolution of turbulent jet diffusion flames. → Measurements of temperature distributions match well with the numerical predictions. → A correlation has been proposed to predict the stoichiometric flame length. → Buoyancy effects are higher in the numerical results. → The radiative heat loss is bigger in the experimental results.

  12. Numerical study of emergency cryogenics gas relief into confined spaces

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The presented work focuses on the risk analysis and the consequences of the unexpected leak to the tunnel of cryogenics gases. Formation of the gas mixture and its propagation along tunnels is an important issue for the safe operation of cryogenic machines, including superconducting accelerators or free electron lasers. As the cryogenics gas the helium and argon will be considered. A minimal numerical model will be presented and discussed. Series of numerical results related to emergency helium relief to the CERN tunnel and related to unexpected leak of the argon to an underground tunnel, will be shown. The numerical results will show temperature distribution, oxygen deficiency and gas cloud propagation in function of intensity of the leak and intensity of the ventilation.

  13. Asymptotic and numerical studies of a differential-delay system

    Science.gov (United States)

    Semak, Matthew Richard

    A singularly-perturbed differential-delay equation is studied the form of which is seen in various fields. Relaxation effects are combined with nonlinear driving from the past in this system. Having an infinite dimensional phase space, this flow is capable of very interesting behavior. Among the rich aspects of the dynamics of such a relation, period doubling can be observed as parameters are varied. Rigorous proofs concerning the existence of such periodic solutions can be found in the literature. Attention is given to the (first) Hopf bifurcation as the periodic structure is born. Key questions concern the limit of fast relaxation. In this limit, one can analytically understand the development of the periodic solution in the neighborhood of the bifurcation along with the frequency shift which is encountered. This limit also reveals the underlying mapping structure present. In the model studied, this is the logistic map the behavior of which is well-known. Convergence of periodic solutions to the mapping's square wave involves central issues in this work. An analogue to Gibb's phenomenon presents itself as the mapping structure is approached for a certain range of parameters. Transition layers also exist and, together with the latter, present a challenge to various computational approaches. A highly accurate and efficient spectral numerical technique is introduced to properly resolve such behavior in the limit studied. This scheme is used to measure the period's dependence on the relaxation rate in this region of parameter space. Also, numerically assisted asymptotic analysis develops relations for the layers. Moreover, regimes of parameter values have been identified for which there exist extremely long-lived transient states of arbitrarily complex form. Finally, initial interval states are designed which lead to specific long-lived multi-layer patterns of significant complexity. Layer-layer interactions are considered concerning the formation and lifetime of

  14. Numerical modeling of supercritical carbon dioxide flow in see-through labyrinth seals

    International Nuclear Information System (INIS)

    Yuan, Haomin; Pidaparti, Sandeep; Wolf, Mathew; Edlebeck, John; Anderson, Mark

    2015-01-01

    Highlights: • The supercritical carbon dioxide properties were implemented in an open source CFD code OpenFOAM. • Labyrinth seal was simulated with supercritical carbon dioxide to provide guidance for seal design for compressor. • Two-phase capability was implemented to handle the possible appearance of two-phase carbon dioxide. - Abstract: This paper presents a numerical study of supercritical carbon dioxide (sCO_2) flow in see-through labyrinth seals. The computational fluid dynamic (CFD) simulation of this scenario is performed under the framework of OpenFOAM. Properties of sCO_2 are implemented into OpenFOAM with a user-defined interface. A test facility was constructed to measure the leakage rate and pressure drop of sCO_2 in see-through labyrinth seals. Various designs and conditions have been tested to study the flow characteristic and provide validation data for the numerical model. The primary goal is to verify the model's capability to predict leakage rate, with a secondary goal focused on using the code to optimize the seal design for sCO_2. This research concludes with some guidelines for the see-through labyrinth seal optimization.

  15. Numerical modeling of supercritical carbon dioxide flow in see-through labyrinth seals

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haomin, E-mail: hyuan8@wisc.edu [University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States); Pidaparti, Sandeep, E-mail: sandeep.pidaparti@gmail.com [Georgia Institute of Technology, 495 Tech Way NW, CNES Building, Atlanta, GA 30318 (United States); Wolf, Mathew, E-mail: mpwolf44@gmail.com [University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States); Edlebeck, John, E-mail: jpedlebeck@gmail.com [University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States); Anderson, Mark, E-mail: manderson@engr.wisc.edu [University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2015-11-15

    Highlights: • The supercritical carbon dioxide properties were implemented in an open source CFD code OpenFOAM. • Labyrinth seal was simulated with supercritical carbon dioxide to provide guidance for seal design for compressor. • Two-phase capability was implemented to handle the possible appearance of two-phase carbon dioxide. - Abstract: This paper presents a numerical study of supercritical carbon dioxide (sCO{sub 2}) flow in see-through labyrinth seals. The computational fluid dynamic (CFD) simulation of this scenario is performed under the framework of OpenFOAM. Properties of sCO{sub 2} are implemented into OpenFOAM with a user-defined interface. A test facility was constructed to measure the leakage rate and pressure drop of sCO{sub 2} in see-through labyrinth seals. Various designs and conditions have been tested to study the flow characteristic and provide validation data for the numerical model. The primary goal is to verify the model's capability to predict leakage rate, with a secondary goal focused on using the code to optimize the seal design for sCO{sub 2}. This research concludes with some guidelines for the see-through labyrinth seal optimization.

  16. AEB-highlights. January - June 1977

    International Nuclear Information System (INIS)

    1977-01-01

    AEB Highlights is a half-yearly report reflecting the most important recent achievements of the various Research and Technical divisions of the Atomic Energy Board. It appears alternatively in English and Afrikaans [af

  17. Moving beyond Text Highlights: Inferring Users' Interests to Improve the Relevance of Retrieval

    Science.gov (United States)

    Balakrishnan, Vimala; Mehmood, Yasir; Nagappan, Yoganathan

    2016-01-01

    Introduction: Studies have indicated that users' text highlighting behaviour can be further manipulated to improve the relevance of retrieved results. This article reports on a study that examined users' text highlight frequency, length and users' copy-paste actions. Method: A binary voting mechanism was employed to determine the weights for the…

  18. Numerical Study of Shock-Cylinder Banks Interactions

    International Nuclear Information System (INIS)

    Wang, S.P.; Anderson, M.H.; Oakley, J.G.; Bonazza, R.

    2003-01-01

    A numerical parametric study of shock-cylinder banks interactions is presented using a high resolution Euler solver. Staggered cylinder banks of five rows are chosen with the purpose of modeling IFE reactor cooling tube banks. The effect of the aspect ratio of the intercylinder pitch to the distance between successive cylinder rows on the vertical pressure forces acting on the cylinders with different geometries is investigated. Preliminary results show that the largest vertical force develops on the cylinders of the second or third row. This peak pressure force increases with decreasing values of the aspect ratio. It is shown that an increasing second force peak also appears on the successive rows, starting with the second one, with decreasing aspect ratio. It is also observed that the force on the last-row cylinders basically decreases to the level of that on the first row. The results are useful for the optimal design of the cooling tubes system of IFE reactors

  19. IGC highlights 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The major thrust of the research and development (R and D) activities of the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam is oriented towards mastering fast breeder reactor (FBR) technology. Towards this end, its current R and D activities are carried out in a wide variety of disciplines. Highlights of its R and D activities during 1988 are summarised under the headings: Reactor Engineering and Design, Reactor Physics and Safety, Materials Science and Technology, Sodium Chemistry and Technology, Fuel Reprocessing and Electronics and Instrumentation. The text is illustrated with a number of figures, graphs and coloured pictures. (M.G.B.). figs., tabs

  20. A Numerical Matrix-Based method in Harmonic Studies in Wind Power Plants

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Hjerrild, Jesper; Kocewiak, Łukasz Hubert

    2016-01-01

    In the low frequency range, there are some couplings between the positive- and negative-sequence small-signal impedances of the power converter due to the nonlinear and low bandwidth control loops such as the synchronization loop. In this paper, a new numerical method which also considers...... these couplings will be presented. The numerical data are advantageous to the parametric differential equations, because analysing the high order and complex transfer functions is very difficult, and finally one uses the numerical evaluation methods. This paper proposes a numerical matrix-based method, which...

  1. A two-dimensional numerical study of the flow inside the combustion chamber of a motored rotary engine

    Science.gov (United States)

    Shih, T. I-P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  2. A two-dimensional numerical study of the flow inside the combustion chambers of a motored rotary engine

    Science.gov (United States)

    Shih, T. I. P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  3. Energy Policy. Highlights. 2013 Edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    Energy Policy Highlights showcases recent developments in energy policies among all 28 IEA member countries. Each contribution underscores the changing nature of both global and domestic energy challenges, as well as the commonality of energy concerns among member countries. The policies highlighted in this publication identify an urgent need to reduce greenhouse gas (GHG) emissions as a clear policy objective. Electricity, enhancing energy efficiency and increasing the share of renewables in the energy mix in a cost effective manner are likewise areas of common focus. On the end-user side, increasing public awareness of domestic energy policies through improved transparency and engagement is an important facet of policy support among IEA member countries. The successful implementation of policies and other initiatives benefitted from efforts to inform the public.

  4. Numerical modelling and experimental studies of thermal behaviour of building integrated thermal energy storage unit in a form of a ceiling panel

    International Nuclear Information System (INIS)

    Jaworski, Maciej; Łapka, Piotr; Furmański, Piotr

    2014-01-01

    Highlights: • A new concept of heat storage in ventilation ducts is described. • Ceiling panel as a part of ventilation system is made of a composite with PCM. • A set-up for experimental investigation of heat storage unit was built. • Numerical model of heat transfer in the storage unit was developed. • Numerical code was validated on the base of experimental measurements. - Abstract: Objective: The paper presents a new concept of building integrated thermal energy storage unit and novel mathematical and numerical models of its operation. This building element is made of gypsum based composite with microencapsulated PCM. The proposed heat storage unit has a form of a ceiling panel with internal channels and is, by assumption, incorporated in a ventilation system. Its task is to reduce daily variations of ambient air temperature through the absorption (and subsequent release) of heat in PCM, without additional consumption of energy. Methods: The operation of the ceiling panel was investigated experimentally on a special set-up equipped with temperature sensors, air flow meter and air temperature control system. Mathematical and numerical models of heat transfer and fluid flow in the panel account for air flow in the panel as well as real thermal properties of the PCM composite, i.e.: thermal conductivity variation with temperature and hysteresis of enthalpy vs. temperature curves for heating and cooling. Proposed novel numerical simulator consists of two strongly coupled sub models: the first one – 1D – which deals with air flowing through the U-shaped channel and the second one – 3D – which deals with heat transfer in the body of the panel. Results: Spatial and temporal air temperature variations, measured on the experimental set-up, were used to validate numerical model as well as to get knowledge of thermal performance of the panel operating in different conditions. Conclusion: Preliminary results of experimental tests confirmed the ability of

  5. Numerical study of free convection in an enclosure with two vertical isothermal walls

    International Nuclear Information System (INIS)

    Barletta, A.; Rossi di Schio, E.; Zanchini, E.; Nobile, E.; Pinto, F.

    2005-01-01

    In this paper, natural convection is studied in a 2D-cavity with two vertical isothermal walls, kept at different temperatures, and two adiabatic walls which are either straight (rectangular cavity) or elliptic (modified rectangular cavity). The local mass, momentum and energy balance equations are written in a dimensionless form and solved numerically, by means of two different software packages based on Galerkin finite element methods. With reference to a Prandtl number of 0.71, two rectangular cavities are studied: a square one and a cavity with height double than width. Then, for each value of the ratio between height and width, two cavities with elliptic boundaries are investigated. The numerical solution shows that the elliptic boundaries enhance the mean Nusselt number and the dimensionless mean kinetic energy of the fluid. (authors)

  6. Numerical relativity

    CERN Document Server

    Shibata, Masaru

    2016-01-01

    This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.

  7. Numerical analysis

    CERN Document Server

    Khabaza, I M

    1960-01-01

    Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput

  8. Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study.

    Science.gov (United States)

    Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li

    2014-09-01

    Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Modeling and numerical analysis of non-equilibrium two-phase flows

    International Nuclear Information System (INIS)

    Rascle, P.; El Amine, K.

    1997-01-01

    We are interested in the numerical approximation of two-fluid models of nonequilibrium two-phase flows described by six balance equations. We introduce an original splitting technique of the system of equations. This technique is derived in a way such that single phase Riemann solvers may be used: moreover, it allows a straightforward extension to various and detailed exchange source terms. The properties of the fluids are first approached by state equations of ideal gas type and then extended to real fluids. For the construction of numerical schemes , the hyperbolicity of the full system is not necessary. When based on suitable kinetic unwind schemes, the algorithm can compute flow regimes evolving from mixture to single phase flows and vice versa. The whole scheme preserves the physical features of all the variables which remain in the set of physical states. Several stiff numerical tests, such as phase separation and phase transition are displayed in order to highlight the efficiency of the proposed method. The document is a PhD thesis divided in 6 chapters and two annexes. They are entitled: 1. - Introduction (in French), 2. - Two-phase flow, modelling and hyperbolicity (in French), 3. - A numerical method using upwind schemes for the resolution of two-phase flows without exchange terms (in English), 4. - A numerical scheme for one-phase flow of real fluids (in English), 5. - An upwind numerical for non-equilibrium two-phase flows (in English), 6. - The treatment of boundary conditions (in English), A.1. The Perthame scheme (in English) and A.2. The Roe scheme (in English)

  10. Introduction to precise numerical methods

    CERN Document Server

    Aberth, Oliver

    2007-01-01

    Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations ofthe various numerical methods· Two new types of numerical problems; accurately solving partial differential equations with the included software and computing line integrals in the complex plane.

  11. Mechanical Behaviour of 3D Multi-layer Braided Composites: Experimental, Numerical and Theoretical Study

    Science.gov (United States)

    Deng, Jian; Zhou, Guangming; Ji, Le; Wang, Xiaopei

    2017-12-01

    Mechanical properties and failure mechanisms of a newly designed 3D multi-layer braided composites are evaluated by experimental, numerical and theoretical studies. The microstructure of the composites is introduced. The unit cell technique is employed to address the periodic arrangement of the structure. The volume averaging method is used in theoretical solutions while FEM with reasonable periodic boundary conditions and meshing technique in numerical simulations. Experimental studies are also conducted to verify the feasibility of the proposed models. Predicted elastic properties agree well with the experimental data, indicating the feasibility of the proposed models. Numerical evaluation is more accurate than theoretical assessment. Deformations and stress distributions of the unit cell under tension shows displacement and traction continuity, guaranteeing the rationality of the applied periodic boundary conditions. Although compression and tension modulus are close, the compressive strength only reaches 70% of the tension strength. This indicates that the composites can be weakened in compressive loading. Additionally, by analysing the micrograph of fracture faces and strain-stress curves, a brittle failure mechanism is observed both in composites under tension and compression.

  12. Experimental and numerical study of Bondura® 6.6 PIN joints

    Science.gov (United States)

    Berkani, I.; Karlsen, Ø.; Lemu, H. G.

    2017-12-01

    Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.

  13. Experimental and numerical study of MILD combustion in a lab-scale furnace

    NARCIS (Netherlands)

    Huang, X.; Tummers, M.J.; Roekaerts, D.J.E.M.; Scherer, Viktor; Fricker, Neil; Reis, Albino

    2017-01-01

    Mild combustion in a lab-scale furnace has been experimentally and numerically studied. The furnace was operated with Dutch natural gas (DNG) at 10 kW and at an equivalence ratio of 0.8. OH∗chemiluminescence images were taken to characterize the reaction zone. The chemiluminescence intensity is

  14. Numerical study of extreme-ultra-violet generated plasmas in hydrogen

    OpenAIRE

    Astakhov, Dmitry

    2016-01-01

    In this thesis, we present the development and study a numerical model of EUV-induced plasma. Understanding of behavior of low pressure low density plasmas is of industrial relevance, because of their potential use for on-line removal of different forms of contaminations from multilayer mirrors, which will help increase the throughput of EUV lithography. The model is 2D axially symmetric particle-in-cell code, hence it allows the full geometry of an axially symmetric chamber to be taken into...

  15. Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study

    International Nuclear Information System (INIS)

    Burt, G.; Ronald, K.; Young, A.R.; Phelps, A.D.R.; Cross, A.W.; Konoplev, I.V.; He, W.; Thomson, J.; Whyte, C.G.; Samsonov, S.V.; Denisov, G.G.; Bratman, V.L.

    2004-01-01

    Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared

  16. Physics highlights at ILC and CLIC

    CERN Document Server

    Lukić, Strahinja

    2015-01-01

    In this lecture, the physics potential for the e+e- linear collider experiments ILC and CLIC is reviewed. The experimental conditions are compared to those at hadron colliders and their intrinsic value for precision experiments, complementary to the hadron colliders, is discussed. The detector concepts for ILC and CLIC are outlined in their most important aspects related to the precision physics. Highlights from the physics program and from the benchmark studies are given. It is shown that linear colliders are a promising tool, complementing the LHC in essential ways to test the Standard Model and to search for new physics.

  17. Development of a set of benchmark problems to verify numerical methods for solving burnup equations

    International Nuclear Information System (INIS)

    Lago, Daniel; Rahnema, Farzad

    2017-01-01

    Highlights: • Description transmutation chain benchmark problems. • Problems for validating numerical methods for solving burnup equations. • Analytical solutions for the burnup equations. • Numerical solutions for the burnup equations. - Abstract: A comprehensive set of transmutation chain benchmark problems for numerically validating methods for solving burnup equations was created. These benchmark problems were designed to challenge both traditional and modern numerical methods used to solve the complex set of ordinary differential equations used for tracking the change in nuclide concentrations over time due to nuclear phenomena. Given the development of most burnup solvers is done for the purpose of coupling with an established transport solution method, these problems provide a useful resource in testing and validating the burnup equation solver before coupling for use in a lattice or core depletion code. All the relevant parameters for each benchmark problem are described. Results are also provided in the form of reference solutions generated by the Mathematica tool, as well as additional numerical results from MATLAB.

  18. Study on applicability of numerical simulation to evaluation of gas entrainment due to free surface vortex

    International Nuclear Information System (INIS)

    Ito, Kei; Kunugi, Tomoaki; Ohshima, Hiroyuki

    2008-01-01

    An onset condition of gas entrainment (GE) due to free surface vortex has been studied to establish a design of sodium-cooled fast reactor with a higher coolant velocity than conventional designs. Numerous investigations have been conducted experimentally and theoretically; however, the universal onset condition of the GE has not been determined yet due to the nonlinear characteristics of the GE. Recently, we have been studying numerical simulation methods as a promising method to evaluate GE, instead of the reliable but costly real-scale tests. In this paper, the applicability of the numerical simulation methods to the evaluation of the GE is discussed. For the purpose, a quasi-steady vortex in a cylindrical tank and a wake vortex (unsteady vortex) in a rectangular channel were numerically simulated using the volume-of-fluid type two-phase flow calculation method. The simulated velocity distributions and free surface shapes of the quasi-steady vortex showed good (not perfect, however) agreements with experimental results when a fine mesh subdivision and a high-order discretization scheme were employed. The unsteady behavior of the wake vortex was also simulated with high accuracy. Although the onset condition of the GE was slightly underestimated in the simulation results, the applicability of the numerical simulation methods to the GE evaluation was confirmed. (author)

  19. Exploring the nonequilibrium dynamics of ultracold quantum gases by using numerical tools

    Science.gov (United States)

    Heidrich-Meisner, Fabian

    Numerical tools such as exact diagonalization or the density matrix renormalization group method have been vital for the study of the nonequilibrium dynamics of strongly correlated many-body systems. Moreover, they provided unique insight for the interpretation of quantum gas experiments, whenever a direct comparison with theory is possible. By considering the example of the experiment by Ronzheimer et al., in which both an interaction quench and the release of bosons from a trap into an empty optical lattice (sudden expansion) was realized, I discuss several nonequilibrium effects of strongly interacting quantum gases. These include the thermalization of a closed quantum system and its connection to the eigenstate thermalization hypothesis, nonequilibrium mass transport, dynamical fermionization, and transient phenomena such as quantum distillation or dynamical quasicondensation. I highlight the role of integrability in giving rise to ballistic transport in strongly interacting 1D systems and in determining the asymptotic state after a quantum quench. The talk concludes with a perspective on open questions concerning 2D systems and the numerical simulation of their nonequilibrium dynamics. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 801.

  20. Numerical studies of transverse curvature effects on transonic flow stability

    Science.gov (United States)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  1. Numerical study on oil supply system of a rotary compressor

    International Nuclear Information System (INIS)

    Wu, Jianhua; Wang, Gang

    2013-01-01

    The oil supply system is a crucial reliability issue for rotary compressors. This paper provides a general method for analyzing the oil supply system of a rotary compressor by using computational fluid dynamics (CFD). The process includes establishing the physical model, dividing computational grid, setting boundary conditions, calculating leakage rates through the roller end clearances, translating the dynamic issue into the static issue and so on. Validation of the rationality of the oil supply system model has been made by the measurement of the main bearing oil flow rates. The effects of operating conditions of the compressor, the oil level height of the oil sump and the main design parameters of the oil supply system on the oil supply characteristics are analyzed by numerical simulation. It is found that the main bearing oil flow rate varies circularly along with the rotation of the shaft. The shape and inclination angle of the spiral groove also influence the main bearing oil flow rate. The oil leakage rates through the roller end clearances depend largely on the operating conditions. In addition, the oil level height of the oil sump has a huge effect on the total oil flow rate. -- Highlights: • A CFD method for analyzing the oil supply system of rotary compressor is presented. • Leakage through the roller end clearances depends on the operating condition. • Groove shape and inclination angle are the main design parameters of spiral grooves. • A parabolic interface of oil and gas can be formed in the gallery of the shaft. • Single-flow model and steady solver can be applied to the oil supply system

  2. Structural performance of an IP2 package in free drop test conditions: Numerical and experimental evaluations

    International Nuclear Information System (INIS)

    Lo Frano, Rosa; Pugliese, Giovanni; Nasta, Marco

    2014-01-01

    Highlights: • Vertical free drop test. • Qualification of an IP2 type Italian packaging. • Numerical and experimental investigation of the package integrity. • Demonstration the Italian packaging meets safety requirements. - Abstract: The casks or packaging systems used for the transportation of nuclear materials, especially spent fuel elements, have to be designed according to rigorous acceptance requirements, like the IAEA ones, in order to provide protection to human beings and environment against radiation exposure and contamination. This study deals with the free drop test of an Italian design packaging system to be used for the transportation of low and intermediate level radioactive wastes. Impact drop experiments were performed in the Lab. Scalbatraio of the DICI – University of Pisa. Dynamic analyses too have been carried out, by refined models of both the cask and target surface to predict the effects of the impact shock (vertical drop) on the package. The experimental tests and numerical analyses are thoroughly compared, presented and discussed. The numerical approach shows to be suitable to reproduce with good reliability the test situations and results

  3. Highlights of nuclear chemistry 1995

    International Nuclear Information System (INIS)

    1996-07-01

    In this report 9 topics of the work of the Nuclear Chemistry Group in 1995 are highlighted. A list of publications and an overview of the international cooperation is given. (orig.). 19 refs., 19 figs., 2 tabs., 2 app

  4. Highlights of nuclear chemistry 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    In this report 9 topics of the work of the Nuclear Chemistry Group in 1995 are highlighted. A list of publications and an overview of the international cooperation is given. (orig.). 19 refs., 19 figs., 2 tabs., 2 app.

  5. LAMA Preconference and Program Highlights.

    Science.gov (United States)

    Library Administration & Management, 1988

    1988-01-01

    Highlights events of the Library Administration and Management Association 1988 conference, including presentation of awards and programs on: (1) transfer of training; (2) hiring; (3) mentoring; (4) acquisitions automation; (5) library building consultation; and (6) managing shared systems. (MES)

  6. Key issues review: numerical studies of turbulence in stars

    Science.gov (United States)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  7. Highlights Eurosites insights; highlights on image, implementation, interpretation and integration of Natura 2000 in European perspective; United Kingdom, Sweden, Spain, France and Hungary

    NARCIS (Netherlands)

    Neven, M.G.G.; Kistenkas, F.H.

    2005-01-01

    Highlighting the main report Eurosites Insights this comparative study analyses Natura 2000 nature conservation (EU Birds- and Habitats Directives) alongside the key issues of image, implementation, interpretation and integration. Having quick scanned the EU25, five member states have been selected

  8. Numerical study on drop formation through a micro nozzle

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2005-01-01

    The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satelite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation

  9. Experimental and Numerical Modelling of Flow over Complex Terrain: The Bolund Hill

    Science.gov (United States)

    Conan, Boris; Chaudhari, Ashvinkumar; Aubrun, Sandrine; van Beeck, Jeroen; Hämäläinen, Jari; Hellsten, Antti

    2016-02-01

    In the wind-energy sector, wind-power forecasting, turbine siting, and turbine-design selection are all highly dependent on a precise evaluation of atmospheric wind conditions. On-site measurements provide reliable data; however, in complex terrain and at the scale of a wind farm, local measurements may be insufficient for a detailed site description. On highly variable terrain, numerical models are commonly used but still constitute a challenge regarding simulation and interpretation. We propose a joint state-of-the-art study of two approaches to modelling atmospheric flow over the Bolund hill: a wind-tunnel test and a large-eddy simulation (LES). The approach has the particularity of describing both methods in parallel in order to highlight their similarities and differences. The work provides a first detailed comparison between field measurements, wind-tunnel experiments and numerical simulations. The systematic and quantitative approach used for the comparison contributes to a better understanding of the strengths and weaknesses of each model and, therefore, to their enhancement. Despite fundamental modelling differences, both techniques result in only a 5 % difference in the mean wind speed and 15 % in the turbulent kinetic energy (TKE). The joint comparison makes it possible to identify the most difficult features to model: the near-ground flow and the wake of the hill. When compared to field data, both models reach 11 % error for the mean wind speed, which is close to the best performance reported in the literature. For the TKE, a great improvement is found using the LES model compared to previous studies (20 % error). Wind-tunnel results are in the low range of error when compared to experiments reported previously (40 % error). This comparison highlights the potential of such approaches and gives directions for the improvement of complex flow modelling.

  10. Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion

    International Nuclear Information System (INIS)

    Adamczyk, Wojciech P.; Kozołub, Paweł; Klimanek, Adam; Białecki, Ryszard A.; Andrzejczyk, Marek; Klajny, Marcin

    2015-01-01

    Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown

  11. How Parents Read Counting Books and Non-Numerical Books to Their Preverbal Infants: An Observational Study

    OpenAIRE

    Alison Goldstein; Thomas Cole; Sara Cordes

    2016-01-01

    Studies have stressed the importance of counting with children to promote formal numeracy abilities; however little work has investigated when parents begin to engage in this behavior with their young children. In the current study, we investigated whether parents elaborated on numerical information when reading a counting book to their preverbal infants and whether developmental differences in numerical input exist even in the first year of life. Parents and their 5-10 month old infants wer...

  12. Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation

    International Nuclear Information System (INIS)

    Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2015-01-01

    Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM

  13. The interior of axisymmetric and stationary black holes: Numerical and analytical studies

    International Nuclear Information System (INIS)

    Ansorg, Marcus; Hennig, Joerg

    2011-01-01

    We investigate the interior hyperbolic region of axisymmetric and stationary black holes surrounded by a matter distribution. First, we treat the corresponding initial value problem of the hyperbolic Einstein equations numerically in terms of a single-domain fully pseudo-spectral scheme. Thereafter, a rigorous mathematical approach is given, in which soliton methods are utilized to derive an explicit relation between the event horizon and an inner Cauchy horizon. This horizon arises as the boundary of the future domain of dependence of the event horizon. Our numerical studies provide strong evidence for the validity of the universal relation A + A - (8πJ) 2 where A + and A - are the areas of event and inner Cauchy horizon respectively, and J denotes the angular momentum. With our analytical considerations we are able to prove this relation rigorously.

  14. Numerical simulation of damage evolution for ductile materials and mechanical properties study

    Science.gov (United States)

    El Amri, A.; Hanafi, I.; Haddou, M. E. Y.; Khamlichi, A.

    2015-12-01

    This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations.

  15. Numerical simulation of damage evolution for ductile materials and mechanical properties study

    International Nuclear Information System (INIS)

    Amri, A El; Haddou, M E Y; Hanafi, I; Khamlichi, A

    2015-01-01

    This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations. (paper)

  16. An experimental and numerical study on the improvement of the performance of Savonius wind rotor

    International Nuclear Information System (INIS)

    Altan, Burcin Deda; Atilgan, Mehmet

    2008-01-01

    In the present study, a curtain has been designed to increase the low performance of the Savonius wind rotor, a type of vertical-axis wind rotor, and the effect of this curtain on the static rotor performance has been analyzed both experimentally and numerically. Designed to prevent the torque that occurs on the convex blade of the rotor in the negative direction, this curtain has been placed in front of the rotor. Experimental measurements and numerical analysis have been conducted when the Savonius wind rotor is with and without curtain. The static torque values of the rotor have been measured by experiments and calculated by numerical analysis, and finally they have been compared. The best results have been obtained by means of the rotor with curtain. Low static torque values have been obtained with the short curtain dimensions, while a considerable increase has been acquired in the static torque values with the long curtain dimensions. Fluent 6.0 trade software has been used as the numerical method

  17. Numerical and experimental study on laminar round free jet of Ar discharging into stagnant air

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Hishida, Makoto; Kunugi, Tomoaki

    1990-01-01

    The objective of the present study is to investigate numerically and experimentally the behavior of the fluid flow and the mass transfer of argon gas (Ar) laminar round jet discharging into stagnant air along the gravity force. The SIMPLE method and two differential numerical schemes of PLDS and QUICK are used in the TEAM code modified by adding the binary diffusion equation. The solution domain is comprised of 80X40 grids of uniform size. As the result, the following were obtained: The half radius of Ar mass fraction obtained by QUICK was in good agreement with experimental result. The half radii of axial velocity and Ar mass fraction obtained by PLDS were larger than those by QUICK due to numerical viscosity. Numerical analyses by PLDS and QUICK schemes agreed well with experimental results on centerline Ar mass fraction. Computational times of PLDS and QUICK are about 40 min. and 120 min. respectively by FACOM VP100 computer in JAERI. (author)

  18. Numerical modeling of underground openings behavior with a viscoplastic approach

    International Nuclear Information System (INIS)

    Kleine, A.

    2007-01-01

    Nature is complex and must be approached in total modesty by engineers seeking to predict the behavior of underground openings. The engineering of industrial projects in underground situations, with high economic and social stakes (Alpine mountain crossings, nuclear waste repository), mean striving to gain better understanding of the behavioral mechanisms of the openings to be designed. This improvement necessarily involves better physical representativeness of macroscopic mechanisms and the provision of prediction tools suited to the expectations and needs of the engineers. The calculation tools developed in this work is in step with this concern for satisfying industrial needs and developing knowledge related to the rheology of geo-materials. These developments led to the proposing of a mechanical constitutive model, suited to lightly fissured rocks, comparable to continuous media, while integrating more particularly the effect of time. Thread of this study, the problematics ensued from the subject of the thesis is precisely about the rock mass delayed behavior in numerical modeling and its consequences on underground openings design. Based on physical concepts of reference, defined in several scales (macro/meso/micro), the developed constitutive model is translated in a mathematical formalism in order to be numerically implemented. Numerical applications presented as illustrations fall mainly within the framework of nuclear waste repository problems. They concern two very different configurations of underground openings: the AECL's underground canadian laboratory, excavated in the Lac du Bonnet granite, and the GMR gallery of Bure's laboratory (Meuse/Haute-Marne), dug in argillaceous rock. In this two cases, this constitutive model use highlights the gains to be obtained from allowing for delayed behavior regarding the accuracy of numerical tunnel behavior predictions in the short, medium and long terms. (author)

  19. Performance investigation of a lab–scale latent heat storage prototype – Numerical results

    International Nuclear Information System (INIS)

    Niyas, Hakeem; Prasad, Sunku; Muthukumar, P.

    2017-01-01

    Highlights: • Developed a numerical tool for analyzing a shell-and-tube LHS system. • Effective heat capacity method is used for incorporating the latent heat. • Number of heat transfer fluid tubes and fins are optimized. • Partial charging/discharging is efficient than complete charging/discharging. • Numerically predicted values match well with the experimental results. - Abstract: In the current study, numerical analysis of the charging and discharging characteristics of a lab-scale latent heat storage (LHS) prototype is presented. A mathematical model is developed to analyze the performance characteristics of the LHS prototype of shell and tube heat exchanger configuration. Effective heat capacity (EHC) method is implemented to consider the latent heat of the phase change material (PCM) and Boussinesq approximation is used to incorporate the buoyancy effect of the molten layer of the PCM in the model. For proper modeling of velocities in the PCM, Darcy law’s source term is added. The governing equations involved in the model are solved using a finite element based software product, COMSOL Multiphysics 4.3a. The number of embedded tubes and fins on the embedded tubes are optimized based on the discharging time of the model. Various performance parameters such as charging/discharging time, energy storage/discharge rate and melt fraction are evaluated. Numerically predicted temperature variations of the model during charging and discharging processes were compared with the experimental data extracted from the lab-scale LHS prototype and a good agreement was found between them.

  20. A numerical analysis on the performance of a pressurized twin power piston gamma-type Stirling engine

    International Nuclear Information System (INIS)

    Chen, Wen-Lih; Wong, King-Leung; Po, Li-Wen

    2012-01-01

    Highlights: ► A numerical model has been applied to study the performance of a gamma-type Stirling engine. ► A prototype engine has been built to correct the values of some factors in the model. ► The regeneration effectiveness is most prominent on efficiency. ► Engine speed is most effective on the engine power. ► The rotation arm and initial gas pressure are also influential factors on engine power. - Abstract: In this study, a prototype helium-changed twin-power-piston γ-type Stirling engine has been built, and some of its geometrical and operational parameters have been investigated by a numerical model. Data taken from the prototype engine have been used to correct the values of some factors in the numerical model. The results include volume and temperature variations in the expansion and compression chambers, p–v diagrams, and the effects of regeneration effectiveness, the crank radius of the power piston, the initial pressure of working gas, and the rotation speed on engine’s power and efficiency. It has been found that regeneration effectiveness poses the most prominent effect on efficiency, while engine speed is most effective on the engine power within the range of engine speed investigated in this study. This study offers invaluable guides for the design and optimization of γ-type Stirling engines with similar construction.

  1. Spurious Numerical Solutions Of Differential Equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  2. Experimental and numerical study of the thermal performance of a new type of phase change material room

    International Nuclear Information System (INIS)

    Meng, Erlin; Yu, Hang; Zhan, Guangyi; He, Yang

    2013-01-01

    Highlights: • A new type of PCM room is proposed, two kinds of PCM were used in the room. • The new room can decrease the indoor air temperature fluctuation by 4.3 °C in summer. • Indoor air temperature fluctuation was decreased by 14.2 °C in winter for the new room. • Important factors that affect the thermal performance of the new room were studied. - Abstract: A new type of phase change material (PCM) room was proposed in this paper to control the indoor air temperature for a better thermal comfort for human beings. That is to place two different kinds of PCM into room envelopes of different orientations. Both experimental and numerical studies were carried out for rooms with/without PCM. Indoor air temperature and interior surface heat flux of the two rooms were studied in typical summer and winter climate of Shanghai (31.2N, 121.5E). Important factors that affect the thermal performance of the PCM were studied, such as phase change temperature, thickness of the PCM and the arrangement of the two kinds of PCM in the room. Results showed that this new type of PCM room can decrease the indoor air temperature fluctuation by 4.3 °C in summer and 14.2 °C in winter. Different arrangements of the two kinds of PCM in the room can cause an indoor air temperature difference to be 6.9 °C in summer and 2.7 °C in winter

  3. Numerical prediction of flow, heat transfer, turbulence and combustion

    CERN Document Server

    Spalding, D Brian; Pollard, Andrew; Singhal, Ashok K

    1983-01-01

    Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbu

  4. Experimental and Numerical Study of Water Entry Supercavity Influenced by Turbulent Drag-Reducing Additives

    Directory of Open Access Journals (Sweden)

    Chen-Xing Jiang

    2014-04-01

    Full Text Available The configurational and dynamic characteristics of water entry supercavities influenced by turbulent drag-reducing additives were studied through supercavitating projectile approach, experimentally and numerically. The projectile was projected vertically into water and aqueous solution of CTAC with weight concentrations of 100, 500, and 1000 ppm, respectively, using a pneumatic nail gun. The trajectories of the projectile and the supercavity configuration were recorded by a high-speed CCD camera. Besides, water entry supercavities in water and CTAC solution were numerically simulated based on unsteady RANS scheme, together with application of VOF multiphase model. The Cross viscosity model was adopted to represent the fluid property of CTAC solution. It was obtained that the numerical simulation results are in consistence with experimental data. Numerical and experimental results all show that the length and diameter of supercavity in drag-reducing solution are larger than those in water, and the drag coefficient is smaller than that in water; the maintaining time of supercavity is longer in solution as well. The surface tension plays an important role in maintaining the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitation and drag reduction.

  5. Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Yoshida, Hiroyuki; Abe, Yutaka

    2016-01-01

    Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.

  6. Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Naoki, E-mail: s1430215@u.tsukuba.ac.jp [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Yoshida, Hiroyuki [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Abe, Yutaka [University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan)

    2016-12-15

    Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.

  7. Study on numerical methods for transient flow induced by speed-changing impeller of fluid machinery

    International Nuclear Information System (INIS)

    Wu, Dazhuan; Chen, Tao; Wang, Leqin; Cheng, Wentao; Sun, Youbo

    2013-01-01

    In order to establish a reliable numerical method for solving the transient rotating flow induced by a speed-changing impeller, two numerical methods based on finite volume method (FVM) were presented and analyzed in this study. Two-dimensional numerical simulations of incompressible transient unsteady flow induced by an impeller during starting process were carried out respectively by using DM and DSR methods. The accuracy and adaptability of the two methods were evaluated by comprehensively comparing the calculation results. Moreover, an intensive study on the application of DSR method was conducted subsequently. The results showed that transient flow structure evolution and transient characteristics of the starting impeller are obviously affected by the starting process. The transient flow can be captured by both two methods, and the DSR method shows a higher computational efficiency. As an application example, the starting process of a mixed-flow pump was simulated by using DSR method. The calculation results were analyzed by comparing with the experiment data.

  8. Numerical simulation study for atomic-resolution x-ray fluorescence holography

    International Nuclear Information System (INIS)

    Xie Honglan; Gao Hongyi; Chen Jianwen; Xiong Shisheng; Xu Zhizhan; Wang Junyue; Zhu Peiping; Xian Dingchang

    2003-01-01

    Based on the principle of x-ray fluorescence holography, an iron single crystal model of a body-centred cubic lattice is numerically simulated. From the fluorescence hologram produced numerically, the Fe atomic images were reconstructed. The atomic images of the (001), (100), (010) crystallographic planes were consistent with the corresponding atomic positions of the model. The result indicates that one can obtain internal structure images of single crystals at atomic-resolution by using x-ray fluorescence holography

  9. Coupled numerical modeling of gas hydrates bearing sediments from laboratory to field-scale conditions

    Science.gov (United States)

    Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.

    2017-12-01

    Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.

  10. The Influence of Sensor Size on Acoustic Emission Waveforms—A Numerical Study

    Directory of Open Access Journals (Sweden)

    Eleni Tsangouri

    2018-01-01

    Full Text Available The performance of Acoustic Emission technique is governed by the measuring efficiency of the piezoelectric sensors usually mounted on the structure surface. In the case of damage of bulk materials or plates, the sensors receive the acoustic waveforms of which the frequency and shape are correlated to the damage mode. This numerical study measures the waveforms received by point, medium and large size sensors and evaluates the effect of sensor size on the acoustic emission signals. Simulations are the only way to quantify the effect of sensor size ensuring that the frequency response of the different sensors is uniform. The cases of horizontal (on the same surface, vertical and diagonal excitation are numerically simulated, and the corresponding elastic wave displacement is measured for different sizes of sensors. It is shown that large size sensors significantly affect the wave magnitude and content in both time and frequency domains and especially in the case of surface wave excitation. The coherence between the original and received waveform is quantified and the numerical findings are experimentally supported. It is concluded that sensors with a size larger than half the size of the excitation wavelength start to seriously influence the accuracy of the AE waveform.

  11. Numerical Study of Motion of Falling Conical Graupel

    Science.gov (United States)

    Chueh, Chih-Che; Wang, Pao K.; Hashino, Tempei

    2018-01-01

    In the present study, the attitudes of freely-falling conical graupel with a realistic range of densities are investigated numerically by solving the transient Navier-Stokes equations and the body dynamics equations representing the 6-degrees-of-freedom motion. This framework allows us to determine the position and orientation of the graupel in response to the hydrodynamic force of the flow fields. The results show more significant horizontal movements than those cases with a fixed bulk density of ice assumed in our previous study. This is because the real graupel particles possess the density less than the bulk density of ice, which, in turn, leads to a relatively small mass and a relatively small set of moments of inertia. We demonstrate that, with the six degrees of freedom considered together, when Reynolds number is small, a typical damped oscillation occurs, whereas when Reynolds number is high, amplifying oscillation may occur which leads to more complicated and unpredictable flying attitudes such as tumbling. The drag coefficients obtained in the present study agree with the previous studies and can be approximated by that of spheres of the same Reynolds numbers. We also show that conical graupel can perform significant horizontal translations which can be on the order of 1 km in 1 h.

  12. A numerical study of bulk evaporation and condensation problem

    International Nuclear Information System (INIS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A numerical model is developed to simulate the dynamic behavior of bulk evaporation and condensation process in an encapsulated container with internal heat generation at micro-gravity level. Thermal performance of a multi-phase system with internal heat generation is investigated. The numerical simulation yields the evolution of the bulk liquid-vapor phase change process. This includes the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field. An example of such systems is a phase change nuclear fuel element which was first introduced by Ding and Anghaie with application in high temperature space nuclear power and propulsion systems

  13. Highlight shapes and perception of gloss for real and photographed objects.

    Science.gov (United States)

    van Assen, Jan Jaap R; Wijntjes, Maarten W A; Pont, Sylvia C

    2016-01-01

    Gloss perception strongly depends on the three-dimensional shape and the illumination of the object under consideration. In this study we investigated the influence of the spatial structure of the illumination on gloss perception. A diffuse light box in combination with differently shaped masks was used to produce a set of six simple and complex highlight shapes. The geometry of the simple highlight shapes was inspired by conventional artistic practice (e.g., ring flash for photography, window shape for painting and disk or square for cartoons). In the box we placed spherical stimuli that were painted in six degrees of glossiness. This resulted in a stimulus set of six highlight shapes and six gloss levels, a total of 36 stimuli. We performed three experiments of which two took place using digital photographs on a computer monitor and one with the real spheres in the light box. The observers had to perform a comparison task in which they chose which of two stimuli was glossiest and a rating task in which they rated the glossiness. The results show that, perhaps surprisingly, more complex highlight shapes were perceived to produce a less glossy appearance than simple highlight shapes such as a disk or square. These findings were confirmed for both viewing conditions, on a computer display and in a real setting. The results show that variations in the spatial structure of "rather simple" illumination of the "extended source" type highlight influences perceived glossiness.

  14. Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel.

    Science.gov (United States)

    Riaud, Antoine; Zhang, Hao; Wang, Xueying; Wang, Kai; Luo, Guangsheng

    2018-04-18

    Microchannel emulsification requires large amounts of surfactant to prevent coalescence and improve emulsions lifetime. However, most numerical studies have considered surfactant-free mixtures as models for droplet formation in microchannels, without taking into account the distribution of surfactant on the droplet surface. In this paper, we investigate the effects of nonuniform surfactant coverage on the microfluidic flow pattern using an extended lattice-Boltzmann model. This numerical study, supported by micro-particle image velocimetry experiments, reveals the likelihood of uneven distribution of surfactant during the droplet formation and the appearance of a stagnant cap. The Marangoni effect affects the droplet breakup by increasing the shear rate. According to our results, surfactant-free and surfactant-rich droplet formation processes are qualitatively different, such that both the capillary number and the Damköhler number should be considered when modeling the droplet generation in microfluidic devices. The limitations of traditional volume and pressure estimation methods for determining the dynamic interfacial tension are also discussed on the basis of the simulation results.

  15. Numerical and experimental study on temperature control of solar panels with form-stable paraffin/expanded graphite composite PCM

    International Nuclear Information System (INIS)

    Luo, Zigeng; Huang, Zhaowen; Xie, Ning; Gao, Xuenong; Xu, Tao; Fang, Yutang; Zhang, Zhengguo

    2017-01-01

    Highlights: • A passive cooling PV-PCM system was developed. • Form-stable paraffin/EG composite PCM with high thermal conductivity was utilized. • Numerical simulation on the temperature of PV-PCM panel was carried out. • Effects of density were studied under the given weather conditions. - Abstract: Performance of photovoltaic (PV) panels is greatly affected by its operating temperature. And traditional active and passive cooling methods usually suffer from the disadvantages of external energy consumption, uneven temperature distribution and low thermal conductivity of phase change materials (PCMs). In this work, a PV-PCM system was developed to control the temperature of a PV panel by applying high thermal conductive form-stable paraffin (ZDJN-28)/EG composite PCM. The temperature, output voltage and power of a conventional PV panel and the PV-PCM panel were measured and compared. A numerical simulation model established by CFD software FLUENT was used to simulate the temperature change process of the PV-PCM panel with different material densities under the same conditions as experiment. The experiment results showed that compared with the temperature of the conventional PV panel, the temperature of the PV-PCM panel is kept below 50 °C for 200 min extended by 146 min with output power averagely increased by 7.28% in heating process. Simulated temperatures were in good agreement with experimental temperatures and indicated that the higher the density of the PCM is, the better the temperature management performance the PV panel could achieve. Besides, the PCM with density of 900 kg/m 3 was found sufficient to achieve a good temperature management performance when the average ambient temperature below 25 °C with the highest solar irradiation of 901 w/m 2 . In summary, this work is of great importance in the design of a PV-PCM system for temperature management of PV panels.

  16. Numerical and Analytical Study of Optimal Low-Thrust Limited-Power Transfers between Close Circular Coplanar Orbits

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2007-01-01

    Full Text Available A numerical and analytical study of optimal low-thrust limited-power trajectories for simple transfer (no rendezvous between close circular coplanar orbits in an inverse-square force field is presented. The numerical study is carried out by means of an indirect approach of the optimization problem in which the two-point boundary value problem, obtained from the set of necessary conditions describing the optimal solutions, is solved through a neighboring extremal algorithm based on the solution of the linearized two-point boundary value problem through Riccati transformation. The analytical study is provided by a linear theory which is expressed in terms of nonsingular elements and is determined through the canonical transformation theory. The fuel consumption is taken as the performance criterion and the analysis is carried out considering various radius ratios and transfer durations. The results are compared to the ones provided by a numerical method based on gradient techniques.

  17. Numerical studies of pair creation in counterpropagating laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Matthias

    2009-05-27

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  18. Numerical studies of pair creation in counterpropagating laser fields

    International Nuclear Information System (INIS)

    Ruf, Matthias

    2009-01-01

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  19. Numerical study of the stopping of aura during migraine

    Directory of Open Access Journals (Sweden)

    Moussa A.

    2010-12-01

    Full Text Available This work is devoted to the study of migraine with aura in the human brain. Following [6], we class migraine as a propagation of a wave of depolarization through the cells. The mathematical model used, based on a reaction-diffusion equation, is briefly presented. The equation is considered in a duct containing a bend, in order to model one of the numerous circumvolutions of the brain. For a wide set of parameters, one can establish the existence of a critical radius below which the wave stops. The approximation scheme used for the simulations is first described and then a numerical study is realized, precising the dependence of the critical radius with respect to the different parameters of the model. Ce travail est consacré à l’étude de l’évolution d’une migraine avec aura dans le cerveau humain. Suivant [6], nous assimilons la migraine à une onde de dépolarisation attaquant les cellules du cerveau. Le modèle mathématique retenu, basé sur une équation de réaction-diffusion, est brièvement rappelé. Le domaine d’espace utilisé est constitué d’un conduit présentant un coude, afin de représenter l’une des nombreuses circonvolutions cérébrales. Pour une importante classe de paramètres, il est possible de mettre en évidence l’existence d’un rayon critique au delà duquel le front d’onde n’arrive pas à dépasser le coude. Après une description du schéma d’approximation utilisé, une étude numérique a été réalisée, visant à préciser la dépendance du rayon critique en fonction des différents paramètres du modèle.

  20. Problem-Oriented Simulation Packages and Computational Infrastructure for Numerical Studies of Powerful Gyrotrons

    International Nuclear Information System (INIS)

    Damyanova, M; Sabchevski, S; Vasileva, E; Balabanova, E; Zhelyazkov, I; Dankov, P; Malinov, P

    2016-01-01

    Powerful gyrotrons are necessary as sources of strong microwaves for electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) of magnetically confined plasmas in various reactors (most notably ITER) for controlled thermonuclear fusion. Adequate physical models and efficient problem-oriented software packages are essential tools for numerical studies, analysis, optimization and computer-aided design (CAD) of such high-performance gyrotrons operating in a CW mode and delivering output power of the order of 1-2 MW. In this report we present the current status of our simulation tools (physical models, numerical codes, pre- and post-processing programs, etc.) as well as the computational infrastructure on which they are being developed, maintained and executed. (paper)

  1. Numerical Study on the 1682 Tainan Historic Tsunami Event

    Science.gov (United States)

    Tsai, Y.; Wu, T.; Lee, C.; KO, L.; Chuang, M.

    2013-12-01

    We intend to reconstruct the tsunami source of the 1682/1782 tsunami event in Tainan, Taiwan, based on the numerical method. According to Soloviev and Go (1974), a strong earthquake shook the Tainan and caused severe damage, followed by tsunami waves. Almost the whole island was flooded by tsunami for over 120 km. More than 40,000 inhabitants were killed. Forts Zealand and Pigchingi were washed away. 1682/1782 event was the highest death toll in the Pacific Ocean regarded by Bryant (2001). However, the year is ambiguous in 1682 or 1782, and death toll is doubtful. We tend to believe that this event was happened in 1682 based on the evolution of the harbor name. If the 1682 tsunami event does exist, the hazard mitigation plan has to be modified, and restoring the 1682 event becomes important. In this study, we adopted the tsunami reverse tracking method (TRTM) to examine the possible tsunami sources. A series of numerical simulations were carried out by using COMCOT (Cornell Multi-grid Coupled Tsunami model), and nested grid with 30 m resolution was applied to the study area. According to the result of TRTM, the 1682 tsunami is most likely sourcing from the north segment of Manila Trench. From scenario study, we concluded that the 1682 event was triggered by an Mw >= 8.8 earthquake in north segment of Manila Trench, and 4 m wave height was observed in Tainan and its inundation range is agreeable with historical records. If this scenario occurred again, sever damage and death toll will be seen many high population cities, such as Tainan city, Kaohsiung city and Kenting, where No. 3 nuclear power plant is located. Detailed results will be presented in the full paper. Figure 1. Map of Tsunami Reverse Tracking Method (TRTM) in Tainan. Black arrow indicates direction of possible tsunami direction. The color bar denotes the magnitude of the maximum moment flux. Figure 2. Scenario result of Mw 8.8 in northern segment of Manila Trench. (Left: Initial free surface elevation

  2. Ferrofluids: Modeling, numerical analysis, and scientific computation

    Science.gov (United States)

    Tomas, Ignacio

    simplified version of this model and the corresponding numerical scheme we prove (in addition to stability) convergence and existence of solutions as by-product . Throughout this dissertation, we will provide numerical experiments, not only to validate mathematical results, but also to help the reader gain a qualitative understanding of the PDE models analyzed in this dissertation (the MNSE, the Rosenweig's model, and the Two-phase model). In addition, we also provide computational experiments to illustrate the potential of these simple models and their ability to capture basic phenomenological features of ferrofluids, such as the Rosensweig instability for the case of the two-phase model. In this respect, we highlight the incisive numerical experiments with the two-phase model illustrating the critical role of the demagnetizing field to reproduce physically realistic behavior of ferrofluids.

  3. Numerical study on pressure drop and heat transfer for designing sodium-to-air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, Hie-Chan; Eoh, Jae-Hyuk; Cha, Jae-Eun; Kim, Seong-O.

    2013-01-01

    Highlights: ► Numerical simulation for the heat flow characteristic of the sodium-to-air heat exchanger (AHX) and tube banks. ► Parallelogram tube banks showed almost similar thermal and hydraulic characteristics to the rectangular tube banks. ► Pressure drop and heat transfer of the staggered and rectangular tube banks compared with Zhukauskas’ correlation. ► AHX was modeled as porous media and suggested design guide to enhance the performance. - Abstract: A numerical study is performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX are modeled as porous media and simulated heat and momentum transfer by a commercial program. Two-dimensional flow characteristic appears differently at the inlet region of the AHX annulus, and the required length of the inlet region is shorter for an inlet having a 45 degree chamber or a round shape than for one with a perpendicular corner. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX are evaluated and discussed. Pressure drop and heat transfer shows similar trends and underestimated values, respectively, when compared with Zhukauskas empirical correlations. The parallelogram tube bank shows similar results to the rectangular arrangement.

  4. Numerical study of a double-slope solar still coupled with capillary film condenser in south Algeria

    International Nuclear Information System (INIS)

    Belhadj, Mohamed Mustapha; Bouguettaia, Hamza; Marif, Yacine; Zerrouki, Moussa

    2015-01-01

    Highlights: • This is a numerical work on solar stills in the desert of Algeria using solar energy. • Solar stills can secure fresh water to low density remote desert agglomerations. • The yield was improved by coupling a solar still with a capillary film condenser. • The distilled water production increases with the reduction in flow feed saline water. • The yield varies conversely with the distance between the two condensing plates. - Abstract: The effect of joining a condensation cell to a single-basin double slope solar still was investigated numerically. Direct solar radiation heated the saline water then evaporated. A fraction of the resulting vapor is condensed on the inner glass cover plate and the rest on the outer metal plate. Solar radiation, ambient temperature and the temperatures at different system components were monitored. The performance of the system was evaluated and compared to that of a conventional solar still under the same meteorological conditions. The proposed prototype functioned perfectly and its daily yield reached 7.15 kg m −2 d −1 . Results show that the productivity of the present system was about 60% higher than that of the conventional and capillary film types. The contributions of the glass cover, metal plate and condenser plate are 43%, 18% and 39% of the total distillate yield respectively. It was noticed that the productivity of the capillary film solar still was sensitive to the mass flow of the feeding water. It was also found that the absorptivity coefficient and the diffusion gap have significant effect on distillate production of the system

  5. Numerical study of the characteristics of a dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Shi, C. A.; Adamiak, K.; Castle, G. S. P.

    2018-03-01

    A dielectric barrier discharge actuator to control airflow along a flat dielectric plate has been numerically investigated in this paper. In order to avoid large computing times, streamers, Trichel pulses and the ionic reactions involving photons and electrons are neglected. The numerical model assumes two types of generic ions, one positive and one negative, whose drift in the electric field produces the electrohydrodynamic flow. This study provides detailed insights into the physical mechanisms of DBD that include the electric field, space charge transport, surface charge accumulation and air flow motion. The results show the V-I characteristics, velocity profiles and drag force estimates. In addition, the effects of the voltage level, frequency and inlet air velocity on the actuator performance are presented and interpreted. The simulation results show a good agreement with theoretical expectations and experimental data available in literature.

  6. Comparative numerical and experimental study of two combined wind and wave energy concepts

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    2016-01-01

    Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the

  7. FY 2016 Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-23

    This fact sheet summarizes the research highlights for the Clean Energy Manufacturing Analysis Center (CEMAC) for Fiscal Year 2106. Topics covered include additive manufacturing for the wind industry, biomass-based chemicals substitutions, carbon fiber manufacturing facility siting, geothermal power plant turbines, hydrogen refueling stations, hydropower turbines, LEDs and lighting, light-duty automotive lithium-ion cells, magnetocaloric refrigeration, silicon carbide power electronics for variable frequency motor drives, solar photovoltaics, and wide bandgap semiconductor opportunities in power electronics.

  8. Numerical study of drop spreading on a flat surface

    Science.gov (United States)

    Wang, Sheng; Desjardins, Olivier

    2017-11-01

    In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.

  9. Numerical studies of the influence of food ingestion on phytoplankton and zooplankton biomasses

    Directory of Open Access Journals (Sweden)

    Lidia Dzierzbicka-G³owacka

    2002-03-01

    Full Text Available This paper presents the numerical simulations of the influence of food ingestion by a herbivorous copepod on phytoplankton and zooplankton biomasses (PZB in the sea. The numerical studies were carried out using the phytoplankton-zooplankton-nutrient-detritus PhyZooNuDe biological upper layer model. This takes account both of fully developed primary production and regeneration mechanisms and of daily migration of zooplankton. In this model the zooplankton is treated not as a 'biomass' but as organisms having definite patterns of growth, reproduction and mortality. Assuming also that {Zoop} is composed ofi cohorts of copepods with weights Wi and numbers Zi, then {Zoop} = WiZi. The PhyZooNuDe model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton, zooplankton and nutrients, and one ordinary first-order differential equation for the benthic detritus pool, together with initial and boundary conditions. The calculations were made during 90 days (April, May and June for the study area P1 (Gdansk Deep in an area 0z<=20 m with a vertical space step of 0.1 m and a time step of 300 s. The simulation given here demonstrated the importance of food ingestion by zooplankton in that it can alter the nature of the interactions of plants and herbivores. The analysis of these numerical studies indicate that the maximal ingestion rate and the half-saturation constant for grazing strongly affect the magnitude of the spring bloom and the cyanobacterial bloom, and also the total zooplankton biomass.

  10. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  11. Some physics highlights from the EUROBALL spectrometer

    International Nuclear Information System (INIS)

    Korten, W.

    2004-01-01

    The latest generation of large γ-ray spectrometers, such as EUROBALL, has boosted the explorations of nuclei under extreme conditions especially at the limits of angular momentum and at finite temperatures. But the coupling of this instrument to very selective ''ancillary'' devices allows for more and more refined investigations of the third important degree of freedom in contemporary nuclear-structure studies, the isospin. This contribution summarises some of the recent highlights from the physics at EUROBALL obtained in some of the different areas of nuclear-structure research

  12. Small Drinking Water Systems Communication and Outreach Highlights

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Wa...

  13. Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner

    International Nuclear Information System (INIS)

    Saberi Moghaddam, Mohammad Hossein; Saei Moghaddam, Mojtaba; Khorramdel, Mohammad

    2017-01-01

    This paper investigates the geometric parameters related to thermal efficiency and pollution emission of a multi-hole flat flame burner. Recent experimental studies indicate that such burners are significantly influenced by both the use of distribution mesh and the size of the diameter of the main and retention holes. The present study numerically simulated methane-air premixed combustion using a two-step mechanism and constant mass diffusivity for all species. The results indicate that the addition of distribution mesh leads to uniform flow and maximum temperature that will reduce NOx emissions. An increase in the diameter of the main holes increased the mass flow which increased the temperature, thermal efficiency and NOx emissions. The size of the retention holes should be considered to decrease the total flow velocity and bring the flame closer to the burner surface, although a diameter change did not considerably improve temperature and thermal efficiency. Ultimately, under temperature and pollutant emission constraints, the optimum diameters of the main and retention holes were determined to be 5 and 1.25 mm, respectively. - Highlights: • Using distribution mesh led to uniform flow and reduced Nox pollutant by 53%. • 93% of total heat transfer occurred by radiation method in multi-hole burner. • Employing retention hole caused the flame become closer to the burner surface.

  14. Brookhaven highlights, October 1978-September 1979

    International Nuclear Information System (INIS)

    1979-01-01

    These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the National Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities

  15. Numerical study of time domain analogy applied to noise prediction from rotating blades

    Science.gov (United States)

    Fedala, D.; Kouidri, S.; Rey, R.

    2009-04-01

    Aeroacoustic formulations in time domain are frequently used to model the aerodynamic sound of airfoils, the time data being more accessible. The formulation 1A developed by Farassat, an integral solution of the Ffowcs Williams and Hawkings equation, holds great interest because of its ability to handle surfaces in arbitrary motion. The aim of this work is to study the numerical sensitivity of this model to specified parameters used in the calculation. The numerical algorithms, spatial and time discretizations, and approximations used for far-field acoustic simulation are presented. An approach of quantifying of the numerical errors resulting from implementation of formulation 1A is carried out based on Isom's and Tam's test cases. A helicopter blade airfoil, as defined by Farassat to investigate Isom's case, is used in this work. According to Isom, the acoustic response of a dipole source with a constant aerodynamic load, ρ0c02, is equal to the thickness noise contribution. Discrepancies are observed when the two contributions are computed numerically. In this work, variations of these errors, which depend on the temporal resolution, Mach number, source-observer distance, and interpolation algorithm type, are investigated. The results show that the spline interpolating algorithm gives the minimum error. The analysis is then extended to Tam's test case. Tam's test case has the advantage of providing an analytical solution for the first harmonic of the noise produced by a specific force distribution.

  16. Buckling and Fracture Investigation of Debonded Sandwich Columns: An Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Berggreen, Christian; Carlsson, Leif A.; Avilés, F.

    2008-01-01

    An experimental and numerical study of in-plane compression of foam core sandwich columns with implanted trough width face/core debond is presented. Experiments were conducted for columns with two different face thicknesses over different cores and debond lengths. The debonded region was monitore...

  17. Decoupled numerical simulation of a solid fuel fired retort boiler

    International Nuclear Information System (INIS)

    Ryfa, Arkadiusz; Buczynski, Rafal; Chabinski, Michal; Szlek, Andrzej; Bialecki, Ryszard A.

    2014-01-01

    The paper deals with numerical simulation of the retort boiler fired with solid fuel. Such constructions are very popular for heating systems and their development is mostly based on the designer experience. The simulations have been done in ANSYS/Fluent package and involved two numerical models. The former deals with a fixed-bed combustion of the solid fuel and free-board gas combustion. Solid fuel combustion is based on the coal kinetic parameters. This model encompasses chemical reactions, radiative heat transfer and turbulence. Coal properties have been defined with user defined functions. The latter model describes flow of water inside a water jacked that surrounds the combustion chamber and flue gas ducts. The novelty of the proposed approach is separating of the combustion simulation from the water flow. Such approach allows for reducing the number of degrees of freedom and thus lowering the necessary numerical effort. Decoupling combustion from water flow requires defining interface boundary condition. As this boundary condition is unknown it is adjusted iteratively. The results of the numerical simulation have been successfully validated against measurement data. - Highlights: • New decoupled modelling of small scale boiler is proposed. • Fixed-bed combustion model based on kinetic parameters is introduced. • Decoupling reduced the complexity of the model and computational time. • Simple and computationally inexpensive coupling algorithm is proposed. • Model is successfully validated against measurements

  18. Numerical semigroups and applications

    CERN Document Server

    Assi, Abdallah

    2016-01-01

    This work presents applications of numerical semigroups in Algebraic Geometry, Number Theory, and Coding Theory. Background on numerical semigroups is presented in the first two chapters, which introduce basic notation and fundamental concepts and irreducible numerical semigroups. The focus is in particular on free semigroups, which are irreducible; semigroups associated with planar curves are of this kind. The authors also introduce semigroups associated with irreducible meromorphic series, and show how these are used in order to present the properties of planar curves. Invariants of non-unique factorizations for numerical semigroups are also studied. These invariants are computationally accessible in this setting, and thus this monograph can be used as an introduction to Factorization Theory. Since factorizations and divisibility are strongly connected, the authors show some applications to AG Codes in the final section. The book will be of value for undergraduate students (especially those at a higher leve...

  19. Influence of biases in numerical magnitude allocation on human prosocial decision making.

    Science.gov (United States)

    Arshad, Qadeer; Nigmatullina, Yuliya; Siddiqui, Shuaib; Franka, Mustafa; Mediratta, Saniya; Ramachandaran, Sanjeev; Lobo, Rhannon; Malhotra, Paresh A; Roberts, R E; Bronstein, Adolfo M

    2017-12-01

    Over the past decade neuroscientific research has attempted to probe the neurobiological underpinnings of human prosocial decision making. Such research has almost ubiquitously employed tasks such as the dictator game or similar variations (i.e., ultimatum game). Considering the explicit numerical nature of such tasks, it is surprising that the influence of numerical cognition on decision making during task performance remains unknown. While performing these tasks, participants typically tend to anchor on a 50:50 split that necessitates an explicit numerical judgement (i.e., number-pair bisection). Accordingly, we hypothesize that the decision-making process during the dictator game recruits overlapping cognitive processes to those known to be engaged during number-pair bisection. We observed that biases in numerical magnitude allocation correlated with the formulation of decisions during the dictator game. That is, intrinsic biases toward smaller numerical magnitudes were associated with the formulation of less favorable decisions, whereas biases toward larger magnitudes were associated with more favorable choices. We proceeded to corroborate this relationship by subliminally and systematically inducing biases in numerical magnitude toward either higher or lower numbers using a visuo-vestibular stimulation paradigm. Such subliminal alterations in numerical magnitude allocation led to proportional and corresponding changes to an individual's decision making during the dictator game. Critically, no relationship was observed between neither intrinsic nor induced biases in numerical magnitude on decision making when assessed using a nonnumerical-based prosocial questionnaire. Our findings demonstrate numerical influences on decisions formulated during the dictator game and highlight the necessity to control for confounds associated with numerical cognition in human decision-making paradigms. NEW & NOTEWORTHY We demonstrate that intrinsic biases in numerical magnitude

  20. Experimental study and numerical optimization of tensegrity domes - A case study

    Science.gov (United States)

    Winkelmann, Karol; Kłos, Filip; Rąpca, Mateusz

    2018-01-01

    The paper deals with the design, experimental analysis and numerical optimization of tensegrity dome models. Two structures are analyzed - a Geiger system dome (preliminary dome), with PVC-U bars and PA6/PP/PET tendons and a Fuller system dome (target dome), with wooden bars and steel cables as tendons. All used materials are experimentally tested in terms of Young's modulus and yield stress values, the compressed bars are also tested for the limit length demarcating the elastic buckling from plastic failure. The data obtained in experiments is then implemented in SOFiSTiK commercial software FE model. The model's geometrical parameters are considered uniform random variables. Geometrically and materially nonlinear analysis is carried out. Based on the obtained structural response (displacements), a Monte Carlo simulation - based approach is incorporated for both structural design point formulation and the SLS requirements fulfillment analysis. Finally, an attempt is made to erect the Fuller dome model in order to compare the numerical results of an experimentally-derived model with the in situ measurements of an actual structure.

  1. Numerical study on xenon positive column discharges of mercury-free lamp

    International Nuclear Information System (INIS)

    Ouyang, Jiting; He, Feng; Miao, Jinsong; Wang, Jianqi; Hu, Wenbo

    2007-01-01

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate in a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells

  2. Clinical highlights from Amsterdam

    Directory of Open Access Journals (Sweden)

    Jouke T. Annema

    2016-07-01

    Full Text Available This article contains highlights and a selection of the scientific advances from the Clinical Assembly that were presented at the 2015 European Respiratory Society International Congress in Amsterdam, the Netherlands. The most relevant topics for clinicians will be discussed, covering a wide range of areas including interventional pulmonology, rehabilitation and chronic care, thoracic imaging, diffuse and parenchymal lung diseases, and general practice and primary care. In this comprehensive review, exciting novel data will be discussed and put into perspective.

  3. Highlights from CMS

    CERN Document Server

    Autermann, Christian

    2018-01-01

    This article summarizes the latest highlights from the CMS experiment as presented at the Lepton Photon conference 2017 in Guangzhou, China. A selection of the latest physics results, the latest detector upgrades, and the current detector status are discussed. CMS has analyzed the full dataset of proton-proton collision data delivered by the LHC in 2016 at a center-of-mass energy of $13$\\,TeV corresponding to an integrated luminosity of $40$\\,fb$^{-1}$. The leap in center-of-mass energy and in luminosity with respect to the $7$ and $8$\\,TeV runs enabled interesting and relevant new physics results. A new silicon pixel tracking detector was installed during the LHC shutdown 2016/17 and has successfully started operation.

  4. Numerical Study of Compact Plate-Fin Heat Exchanger for Rotary-Vane Gas Refrigeration Machine

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2017-10-01

    Full Text Available Plate-fin heat exchangers are widely used in refrigeration technique. They are popular because of their compactness and excellent heat transfer performance. Here we present a numerical model for the development, research and optimization of a plate-fin heat exchanger for a rotary-vane gas refrigeration machine. The method of analysis by graphic method of plate - fin heat exchanger is proposed. The model describes the effects of secondary parameters such as axial thermal conductivity through a metal matrix of the heat exchanger. The influence of geometric parameters and heat transfer coefficient is studied. Graphs of dependences of length, efficiency of a fin and pressure drop in a heat exchanger on the thickness of the fin and the number of fins per meter are obtained. To analyze the results of numerical simulation, the heat exchanger was designed in the Aspen HYSYS program. The simulation results show that the total deviation from the proposed numerical model is not more than 15%. 

  5. Electric transport in the Netherlands. Highlights 2012; Elektrisch vervoer in Nederland. Highlights 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    Businesses, social and educational institutions and governmental institutes work together to accelerate electric transport and to discover and exploit economic opportunities. In 2012, many activities were carried out and results achieved, of which the highlights are presented in this brochure [Dutch] Bedrijfsleven, maatschappelijke- en kennisinstellingen en overheden werken samen aan versnelling van elektrisch vervoer en het ontdekken en benutten van economische kansen. In 2012 werden veel activiteiten uitgevoerd en resultaten geboekt, waarvan in deze brochure verslag wordt gedaan.

  6. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    Energy Technology Data Exchange (ETDEWEB)

    Kako, T.; Watanabe, T. [eds.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  7. Numerical study of the bubbly flow regime in micro-channel flow boiling

    Science.gov (United States)

    Bhuvankar, Pramod; Dabiri, Sadegh

    2017-11-01

    Two-phase flow accompanied by boiling in micro-channel heat sinks is an effective means for heat removal from computer chips. We present a numerical study of flow boiling in micro-channels with conjugate heat transfer with a focus on the bubbly flow regime. The bubbles are assumed to nucleate at a pre-determined location and frequency. The Navier Stokes equations are solved using a single fluid formulation with the Front tracking method. Phase change is implemented using the deficit in heat flux across the bubble interface. The analytical solution for bubble growth in a superheated liquid is used as a benchmark to validate the mentioned numerical method. Water and FC-72 are studied as the operating fluids in a micro-channel made of Copper with a focus on hotspot mitigation. The micro-channel of cross-section 231 μm × 1000 μm , is used to study the effects of vertical up-flow, vertical down-flow and horizontal flow of the mentioned fluids on the heat transfer coefficients. A simple film model accounting for mass and energy conservation is applied wherever the bubble approaches closer than a cell width to the wall. The results of the simulation are compared with existing experimental data for bubble growth rates and heat transfer coefficients.

  8. Hydration of mineral shrinkage-compensating admixture for concrete : an experimental and numerical study

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, H.J.H.

    2012-01-01

    The use of shrinkage-compensating admixture in concrete has been proven to be an effective way to mitigate the shrinkage of concrete. The hydration of a shrinkage-compensating admixture in cement paste and concrete is investigated in this paper with numerical simulation and experimental study. An

  9. Experimental and numerical study of the effects of a nanocrystallisation treatment on high-temperature oxidation of a zirconium alloy

    International Nuclear Information System (INIS)

    Panicaud, B.; Retraint, D.; Grosseau-Poussard, J.-L.; Li, L.; Guérain, M.; Goudeau, P.; Tamura, N.; Kunz, M.

    2012-01-01

    Highlights: ► SMAT leads to a modification of surface properties of an M5 zirconium alloy (grain size and roughness. ► SMAT induces a change in the oxidation kinetics during high temperature oxidation. ► A diffusion model is able to reproduce kinetics and emphasise the consequences of SMAT on dissolution of oxygen in Zr. - Abstract: In the present work, the effects of a nanocrystallisation treatment on the high-temperature oxidation of a zirconium alloy are investigated. Surface Mechanical Attrition Treatment is a recent process designed to nanocrystallise the surface of materials. The particular effects of this treatment on an M5 zirconium alloy are studied using different experimental techniques at several scales. This material is of considerable interest, especially to the nuclear industry where very stringent conditions apply. High temperature oxidation was performed in order to show the benefits of this type of nanocrystallisation on the corrosion resistance of the alloy concerned. Microstructure development mechanisms, which improve the oxidation resistance of zirconium alloys have been identified during high-temperature corrosion. Those mechanisms have been discussed in further detail in relation to numerical calculations concerning the oxidation kinetics.

  10. Numerical study on lateral wall displacement of deep excavation supported by IPS earth retention system

    Directory of Open Access Journals (Sweden)

    Tugen Feng

    2017-12-01

    Full Text Available The objective of this study is to investigate the 3D behavior characteristics of an excavation supported by an innovative prestressed support (IPS earth retention system. A numerical simulation was conducted in order to provide insight into the IPS system behavior by using the FLAC3D package. Prior to the parametric study, validation work was conducted by means of a comparison of the deformation between the field test data and numerical analysis results, and strong agreement was obtained. The reasonable excavation location, layered excavation thickness, and blocked excavation sequence are presented according to variable parameter analysis. In view of the previous findings, certain measurements are proposed in order to control the foundation pit deformation. The results indicate that prestress compensation has a significant effect on the IPS system behavior, while an optimized excavation sequence slightly improves its behavior. With the conclusion proposed based on the numerical results, the aim is to provide reference data for optimization design and the construction sequence. Keywords: FLAC3D, IPS system, Prestress compensation, Layered excavation, Blocked excavation, Deformation control

  11. Numerical studies on the heat transfer and friction characteristics of the first wall inserted with the screw blade for water cooled ceramic breeder blanket of CFETR

    International Nuclear Information System (INIS)

    Jiang, Kecheng; Ma, Xuebin; Cheng, Xiaoman; Liu, Songlin

    2016-01-01

    Highlights: • Enhanced heat transfer and friction characteristics of the FW inserted with screw blade is investigated. • The screw blade structure optimization was done on the screw pitch and diameter. • Decreasing screw pitch and increasing screw diameter could further enhance heat transfer accompanied with increasing flow resistance. • Evaluate the overall enhanced heat performance by using the PEC value. - Abstract: The Water Cooled Ceramic Breeder (WCCB) blanket based on Pressurized Water Reactor (PWR) condition is one of the blanket candidates for Chinese Fusion Engineering Test Reactor (CFETR). The first wall (FW) which plays an important part in the blanket design must remove the high heat flux radiated from plasma and nuclear heat deposition on the structure in any operating conditions. In this paper, the characteristics of enhanced heat transfer and friction for the FW with the inserted screw blade are studied by the numerical method. After the comparison between the numerical and experimental results, the standard k–ε turbulent model is selected to do the numerical calculation. The numerical results show that the peak temperature of RAFM steel could be reduced by decreasing screw pitch or increasing screw diameter, while accompanied with ascending flow resistance. Besides, among all of the chosen calculation cases compared with the smooth channel, the maximum value of temperature reduction is 10 °C under the conditions of heat flux of 0.5 MW/m"2 as well as screw pitch of 18 mm and screw diameter of 6 mm. The maximum increment ratio of the friction factor is 257% under the conditions of screw pitch of 10 mm and screw diameter of 4 mm. Furthermore, screw blade of 74 mm pitch and 4 mm diameter presents the highest overall performance evaluation criterion (PEC) value of 0.93 under Reynolds number of 270 000 conditions, and shows the best overall heat transfer enhancement performance.

  12. Numerical studies on the heat transfer and friction characteristics of the first wall inserted with the screw blade for water cooled ceramic breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230037 (China); Ma, Xuebin; Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-03-15

    Highlights: • Enhanced heat transfer and friction characteristics of the FW inserted with screw blade is investigated. • The screw blade structure optimization was done on the screw pitch and diameter. • Decreasing screw pitch and increasing screw diameter could further enhance heat transfer accompanied with increasing flow resistance. • Evaluate the overall enhanced heat performance by using the PEC value. - Abstract: The Water Cooled Ceramic Breeder (WCCB) blanket based on Pressurized Water Reactor (PWR) condition is one of the blanket candidates for Chinese Fusion Engineering Test Reactor (CFETR). The first wall (FW) which plays an important part in the blanket design must remove the high heat flux radiated from plasma and nuclear heat deposition on the structure in any operating conditions. In this paper, the characteristics of enhanced heat transfer and friction for the FW with the inserted screw blade are studied by the numerical method. After the comparison between the numerical and experimental results, the standard k–ε turbulent model is selected to do the numerical calculation. The numerical results show that the peak temperature of RAFM steel could be reduced by decreasing screw pitch or increasing screw diameter, while accompanied with ascending flow resistance. Besides, among all of the chosen calculation cases compared with the smooth channel, the maximum value of temperature reduction is 10 °C under the conditions of heat flux of 0.5 MW/m{sup 2} as well as screw pitch of 18 mm and screw diameter of 6 mm. The maximum increment ratio of the friction factor is 257% under the conditions of screw pitch of 10 mm and screw diameter of 4 mm. Furthermore, screw blade of 74 mm pitch and 4 mm diameter presents the highest overall performance evaluation criterion (PEC) value of 0.93 under Reynolds number of 270 000 conditions, and shows the best overall heat transfer enhancement performance.

  13. A Numerical Study on Premixed Bluff Body Flame of Different Bluff Apex Angle

    Directory of Open Access Journals (Sweden)

    Gelan Yang

    2013-01-01

    Full Text Available In order to investigate effects of apex angle (α on chemically reacting turbulent flow and thermal fields in a channel with a bluff body V-gutter flame holder, a numerical study has been carried out in this paper. With a basic geometry used in a previous experimental study, the apex angle was varied from 45° to 150°. Eddy dissipation concept (EDC combustion model was used for air and propane premixed flame. LES-Smagorinsky model was selected for turbulence. The gird-dependent learning and numerical model verification were done. Both nonreactive and reactive conditions were analyzed and compared. The results show that as α increases, recirculation zone becomes bigger, and Strouhal number increases a little in nonreactive cases while decreases a little in reactive cases, and the increase of α makes the flame shape wider, which will increase the chamber volume heat release ratio and enhance the flame stability.

  14. Numerical taxonomic study of some tribes of composite (subfamily asteroideae) from Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Osman, A K [South Valley University, Faculty of Science, Qena (Egypt). Dept. of Botany

    2011-02-15

    A systematic study of 25 taxa belonging to 12 genera of tribes Gnaphalieae, Helenieae, Plucheeae and Senecioneae of Compositae from Egypt was conducted by means of numerical analysis based on 19 main pollen grains characters. On the basis of UPGMA (Unpaired Group Method off Averaging) clustering and PCO (Principal Component Analysis), two main groups and five subgroups are recognized. (author)

  15. Numerical taxonomic study of some tribes of composite (subfamily asteroideae) from Egypt

    International Nuclear Information System (INIS)

    Osman, A.K.

    2011-01-01

    A systematic study of 25 taxa belonging to 12 genera of tribes Gnaphalieae, Helenieae, Plucheeae and Senecioneae of Compositae from Egypt was conducted by means of numerical analysis based on 19 main pollen grains characters. On the basis of UPGMA (Unpaired Group Method off Averaging) clustering and PCO (Principal Component Analysis), two main groups and five subgroups are recognized. (author)

  16. Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: An fMR-adaptation study

    Directory of Open Access Journals (Sweden)

    Stephan E. Vogel

    2015-04-01

    Full Text Available The way the human brain constructs representations of numerical symbols is poorly understood. While increasing evidence from neuroimaging studies has indicated that the intraparietal sulcus (IPS becomes increasingly specialized for symbolic numerical magnitude representation over developmental time, the extent to which these changes are associated with age-related differences in symbolic numerical magnitude representation or with developmental changes in non-numerical processes, such as response selection, remains to be uncovered. To address these outstanding questions we investigated developmental changes in the cortical representation of symbolic numerical magnitude in 6- to 14-year-old children using a passive functional magnetic resonance imaging adaptation design, thereby mitigating the influence of response selection. A single-digit Arabic numeral was repeatedly presented on a computer screen and interspersed with the presentation of novel digits deviating as a function of numerical ratio (smaller/larger number. Results demonstrated a correlation between age and numerical ratio in the left IPS, suggesting an age-related increase in the extent to which numerical symbols are represented in the left IPS. Brain activation of the right IPS was modulated by numerical ratio but did not correlate with age, indicating hemispheric differences in IPS engagement during the development of symbolic numerical representation.

  17. Numerical study of a mathematical model of internal erosion of soil

    Science.gov (United States)

    Sibin, A.

    2017-10-01

    The process of internal erosion in a three-phase saturated soil is studied. A mathematical model describing the process consists of the equations of mass conservation, Darcy’s law and equation for capillary pressure. The original system of equations is reduced to a system of three equations for porosity, pressure and water saturation. Obtained equation for the water saturation is degenerate. The degenerate problem in an one-dimensional domain is solved numerically using the finite-difference method.

  18. Continuous modelling study of numerical volumes - Applications to the visualization of anatomical structures

    International Nuclear Information System (INIS)

    Goret, C.

    1990-12-01

    Several technics of imaging (IRM, image scanners, tomoscintigraphy, echography) give numerical informations presented by means of a stack of parallel cross-sectional images. Since many years, 3-D mathematical tools have been developed and allow the 3 D images synthesis of surfaces. In first part, we give the technics of numerical volume exploitation and their medical applications to diagnosis and therapy. The second part is about a continuous modelling of the volume with a tensor product of cubic splines. We study the characteristics of this representation and its clinical validation. Finally, we treat of the problem of surface visualization of objects contained in the volume. The results show the interest of this model and allow to propose specifications for 3-D workstation realization [fr

  19. Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage

    Science.gov (United States)

    Bi, Chun-wei; Zhao, Yun-peng; Dong, Guo-hai

    2015-06-01

    The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.

  20. Numerical study of the Columbia high-beta device: Torus-II

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes.

  1. Numerical study of the Columbia high-beta device: Torus-II

    International Nuclear Information System (INIS)

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes

  2. Numerical study of a PCM-air heat exchanger's thermal performance

    Science.gov (United States)

    Herbinger, F.; Bhouri, M.; Groulx, D.

    2016-09-01

    In this paper, the use of PCMs in HVAC applications is investigated by studying numerically the thermal performance of a PCM-air heat exchanger. The PCM used in this study is dodecanoic acid. A symmetric 3D model, incorporating conductive and convective heat transfer (air only) as well as laminar flow, was created in COMSOL Multiphysics 5.0. Simulations examined the dependence of the heat transfer rate on the temperature and velocity of the incoming air as well as the size of the channels in the heat exchanger. Results indicated that small channels size lead to a higher heat transfer rates. A similar trend was also obtained for high incoming air temperature, whereas the heat transfer rate was less sensitive to the incoming air velocity.

  3. Precarious Rock Methodology for Seismic Hazard: Physical Testing, Numerical Modeling and Coherence Studies

    Energy Technology Data Exchange (ETDEWEB)

    Anooshehpoor, Rasool; Purvance, Matthew D.; Brune, James N.; Preston, Leiph A.; Anderson, John G.; Smith, Kenneth D.

    2006-09-29

    This report covers the following projects: Shake table tests of precarious rock methodology, field tests of precarious rocks at Yucca Mountain and comparison of the results with PSHA predictions, study of the coherence of the wave field in the ESF, and a limited survey of precarious rocks south of the proposed repository footprint. A series of shake table experiments have been carried out at the University of Nevada, Reno Large Scale Structures Laboratory. The bulk of the experiments involved scaling acceleration time histories (uniaxial forcing) from 0.1g to the point where the objects on the shake table overturned a specified number of times. The results of these experiments have been compared with numerical overturning predictions. Numerical predictions for toppling of large objects with simple contact conditions (e.g., I-beams with sharp basal edges) agree well with shake-table results. The numerical model slightly underpredicts the overturning of small rectangular blocks. It overpredicts the overturning PGA for asymmetric granite boulders with complex basal contact conditions. In general the results confirm the approximate predictions of previous studies. Field testing of several rocks at Yucca Mountain has approximately confirmed the preliminary results from previous studies, suggesting that he PSHA predictions are too high, possibly because the uncertainty in the mean of the attenuation relations. Study of the coherence of wavefields in the ESF has provided results which will be very important in design of the canisters distribution, in particular a preliminary estimate of the wavelengths at which the wavefields become incoherent. No evidence was found for extreme focusing by lens-like inhomogeneities. A limited survey for precarious rocks confirmed that they extend south of the repository, and one of these has been field tested.

  4. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.

    Directory of Open Access Journals (Sweden)

    Tim Wehner

    Full Text Available Numerous experimental fracture healing studies are performed on rats, in which different experimental, mechanical parameters are applied, thereby prohibiting direct comparison between each other. Numerical fracture healing simulation models are able to predict courses of fracture healing and offer support for pre-planning animal experiments and for post-hoc comparison between outcomes of different in vivo studies. The aims of this study are to adapt a pre-existing fracture healing simulation algorithm for sheep and humans to the rat, to corroborate it using the data of numerous different rat experiments, and to provide healing predictions for future rat experiments. First, material properties of different tissue types involved were adjusted by comparing experimentally measured callus stiffness to respective simulated values obtained in three finite element (FE models. This yielded values for Young's moduli of cortical bone, woven bone, cartilage, and connective tissue of 15,750 MPa, 1,000 MPa, 5 MPa, and 1 MPa, respectively. Next, thresholds in the underlying mechanoregulatory tissue differentiation rules were calibrated by modifying model parameters so that predicted fracture callus stiffness matched experimental data from a study that used rigid and flexible fixators. This resulted in strain thresholds at higher magnitudes than in models for sheep and humans. The resulting numerical model was then used to simulate numerous fracture healing scenarios from literature, showing a considerable mismatch in only 6 of 21 cases. Based on this corroborated model, a fit curve function was derived which predicts the increase of callus stiffness dependent on bodyweight, fixation stiffness, and fracture gap size. By mathematically predicting the time course of the healing process prior to the animal studies, the data presented in this work provides support for planning new fracture healing experiments in rats. Furthermore, it allows one to transfer and

  5. Numerical study of turbulent flow in a rectangular T-junction

    Science.gov (United States)

    Georgiou, Michail; Papalexandris, Miltiadis V.

    2017-06-01

    In this paper, we report on a numerical study of the interaction and merging of a turbulent crossflow with an incoming turbulent jet in a T-junction with rectangular cross section. Our study is based on wall-resolved and experimentally validated large eddy simulations. The bulk Reynolds number of the crossflow is 15 000. Further, we consider cases with two different momentum ratios, namely, MR = 2 and MR = 0.5. In the presentation of the results, we elaborate on the main features of the flow, namely, the shear layers that emanate from the corners of the entry of the jet, the large recirculation bubble downstream the incoming jet, and the mixing process beyond the reattachment point. For validation purposes, we compare our simulations with existing experimental data. This comparison shows a good agreement between our numerical predictions and the measurements. First- and second-order statistics of the flow are also presented and analyzed in detail. Our simulations reveal two features of the flow that have not been reported before in studies of T-junctions. The first one is a secondary small-scale recirculation region between the entry of the jet and the large recirculation bubble. The second one is the negative turbulent kinetic energy production that occurs in the recirculation bubble and close to the reattachment of the flow. The analysis of our results further reveals that just across the entry of the jet, the boundary layer in the wall opposite to the jet experiences a favourable pressure gradient due to a Venturi effect induced by the incoming jet. In turn, this favourable pressure gradient contributes to the local relaminarization of the flow. On the other hand, the boundary layer downstream the recirculation bubble experiences an adverse pressure gradient. In both cases, a significant deviation from the universal law of the wall is confirmed.

  6. Numerical characterization of micro-cell UO{sub 2}−Mo pellet for enhanced thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heung Soo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Dong-Joo [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Sun Woo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Yang, Jae Ho; Koo, Yang-Hyun [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-08-15

    Metallic micro-cell UO{sub 2} pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO{sub 2} fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO{sub 2}−Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO{sub 2}−Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO{sub 2} pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm. - Highlights: • Thermal conductivities of micro-cell UO{sub 2}−Mo pellets were numerically studied in terms of their unit cell geometries. • Numerical calculations qualitatively well agreed with experimental measurements. • Optimizing the unit cell geometries of the micro-cell pellets could greatly enhance their thermal conductivities.

  7. Experimental and Numerical Study of FRP Encased Composite Concrete Columns

    Directory of Open Access Journals (Sweden)

    Mohsen Ishaghian

    2017-02-01

    Full Text Available A new type of composite column is presented and assessed through experimental testing and numerical modeling. The objective of this research is to investigate design options for a composite column without the use of ferrous materials. This is to avoid the current problem of deterioration of concrete due to expansion of rusting reinforcement members. Such a target can be achieved by replacing the steel reinforcement of concrete columns with pultruded I-shape glass FRP structural sections. The composite column utilizes a glass FRP tube that surrounds a pultruded I-section glass FRP, which is subsequently filled with concrete. The GFRP tube acts as a stay-in-place form in addition to providing confinement to the concrete. A total of four composite columns were tested under monotonic axial loading. The experimental ultimate capacity of each of the tested composite column was compared to the predicted numerical capacity using ANSYS program. The comparison showed that the predicted numerical values were in good agreement with the experimental ones.

  8. Optimal control approaches for aircraft conflict avoidance using speed regulation : a numerical study

    OpenAIRE

    Cellier , Loïc; Cafieri , Sonia; Messine , Frederic

    2013-01-01

    International audience; In this paper a numerical study is provided to solve the aircraft conflict avoidance problem through velocity regulation maneuvers. Starting from optimal controlbased model and approaches in which aircraft accelerations are the controls, and by applying the direct shooting technique, we propose to study two different largescale nonlinear optimization problems. In order to compare different possibilities of implementation, two environments (AMPL and MATLAB) and determin...

  9. Numerical analysis

    CERN Document Server

    Rao, G Shanker

    2006-01-01

    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  10. Numerical simulation of laser resonators

    International Nuclear Information System (INIS)

    Yoo, J. G.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.

  11. Research highlights: microfluidics meets big data.

    Science.gov (United States)

    Tseng, Peter; Weaver, Westbrook M; Masaeli, Mahdokht; Owsley, Keegan; Di Carlo, Dino

    2014-03-07

    In this issue we highlight a collection of recent work in which microfluidic parallelization and automation have been employed to address the increasing need for large amounts of quantitative data concerning cellular function--from correlating microRNA levels to protein expression, increasing the throughput and reducing the noise when studying protein dynamics in single-cells, and understanding how signal dynamics encodes information. The painstaking dissection of cellular pathways one protein at a time appears to be coming to an end, leading to more rapid discoveries which will inevitably translate to better cellular control--in producing useful gene products and treating disease at the individual cell level. From these studies it is also clear that development of large scale mutant or fusion libraries, automation of microscopy, image analysis, and data extraction will be key components as microfluidics contributes its strengths to aid systems biology moving forward.

  12. Numerical calculations in quantum field theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1984-01-01

    Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references

  13. Experimental and numerical studies in a vortex tube

    International Nuclear Information System (INIS)

    Sohn, Chang Hyun; Kim, Chang Soo; Gowda, B. H. L Lakshmana; Jung, Ui Hyun

    2006-01-01

    The present investigation deals with the study of the internal flow phenomena of the counter-flow type vortex tube using experimental testing and numerical simulation. Visualization was carried out using the surface tracing method, injecting dye on the vortex tube wall using a needle. Vortex tube is made of acrylic to visualize the surface particle tracing and the input air pressure was varied from 0.1 MPa to 0.3 MPa. The experimentally visualized results on the tube show that there is an apparent sudden changing of the trajectory on the vortex tube wall which was observed in every experimental test case. This may indicate the stagnation position of the vortex flow. The visualized stagnation position moves towards the vortex generator with increase in cold flow ratio and input pressure. Three-dimensional computational study is also conducted to obtain more detailed flow information in the vortex tube. Calculated total pressure, static pressure and total temperature distributions in the vortex tube were in good agreement with the experimental data. The computational particle trace on the vortex tube wall is very similar to that observed in experiments

  14. Automatic Online Lecture Highlighting Based on Multimedia Analysis

    Science.gov (United States)

    Che, Xiaoyin; Yang, Haojin; Meinel, Christoph

    2018-01-01

    Textbook highlighting is widely considered to be beneficial for students. In this paper, we propose a comprehensive solution to highlight the online lecture videos in both sentence- and segment-level, just as is done with paper books. The solution is based on automatic analysis of multimedia lecture materials, such as speeches, transcripts, and…

  15. Complexities in coastal sediment transport studies by numerical modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Ilangovan, D.; ManiMurali, R.

    equations arrived based on scientific principles as all natural phenomena are governed by certain rules which can be explained by scientific principles. Efficiency of numerical modeling greatly depends on quality of input parameters. When input parameters...

  16. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    Science.gov (United States)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  17. Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.

    Science.gov (United States)

    Xia, Ji-Yang; Leung, Dennis Y C

    2005-01-01

    A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.

  18. Palliativedrugs.com therapeutic highlights: gabapentin

    Directory of Open Access Journals (Sweden)

    Twycross Robert

    2003-01-01

    Full Text Available This is the second in a series of highlights drawn from the www.palliativedrugs.com website. The website provides free access to the Palliative Care Formulary, a monthly newsletter and a bulletin board for advice to be given and received. With almost 10,000 professional members it is the largest palliative care resource of its kind.

  19. Analytical and numerical study of microswimming using the 'bead-spring model'

    OpenAIRE

    Pande, Jayant

    2016-01-01

    In this thesis we use the bead-spring microswimmer design as a model system to study mechanical microswimming. The basic form of such a swimmer was introduced as the 'three-sphere swimmer' in Najafi & Golestanian, Phys. Rev. E (2004) and has found wide use in theoretical, numerical and experimental research. In our work, we have modified and extended the model in various ways, which, as explained in this thesis, allow us to gain insight into many general principles of microswimming, for insta...

  20. Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning

    Science.gov (United States)

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-01-01

    This study focuses on a numerical investigation of an initial stable jet through the air-sealed electro-centrifugal spinning process, which is known as a viable method for the mass production of nanofibers. A liquid jet undergoing electric and centrifugal forces, as well as other forces, first travels in a stable trajectory and then goes through an unstable curled path to the collector. In numerical modeling, hydrodynamic equations have been solved using the perturbation method—and the boundary integral method has been implemented to efficiently solve the electric potential equation. Hydrodynamic equations have been coupled with the electric field using stress boundary conditions at the fluid-fluid interface. Perturbation equations were discretized by a second order finite difference method, and the Newton method was implemented to solve the discretized non-linear system. Also, the boundary element method was utilized to solve electrostatic equations. In the theoretical study, the fluid was described as a leaky dielectric with charges only on the surface of the jet traveling in dielectric air. The effect of the electric field induced around the nozzle tip on the jet instability and trajectory deviation was also experimentally studied through plate-plate geometry as well as point-plate geometry. It was numerically found that the centrifugal force prevails on electric force by increasing the rotational speed. Therefore, the alteration of the applied voltage does not significantly affect the jet thinning profile or the jet trajectory.

  1. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    Energy Technology Data Exchange (ETDEWEB)

    Yanallah, K; Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla (Spain); Pontiga, F; Fernandez-Rueda, A [Departamento de FIsica Aplicada II, Universidad de Sevilla (Spain)

    2009-03-21

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  2. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    International Nuclear Information System (INIS)

    Yanallah, K; Castellanos, A; Pontiga, F; Fernandez-Rueda, A

    2009-01-01

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  3. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    Science.gov (United States)

    Yanallah, K; Pontiga, F; Fernández-Rueda, A; Castellanos, A

    2009-03-01

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  4. A numerical study on the usage of phase change material (PCM) to prolong compressor off period in a beverage cooler

    International Nuclear Information System (INIS)

    Ezan, Mehmet Akif; Ozcan Doganay, Esra; Yavuz, Fazil Erinc; Tavman, Ismail Hakkı

    2017-01-01

    Highlights: • A 3D transient model is developed in a commercial CFD solver for vertical beverage cooler with PCM. • PCM slab is directly contacted with the airflow. • Regarding the run-time ratio best performance is achieved with 6 mm PCM slab. • Due to thermal inertia within the PCM domain, the VBC preserves its temperature for a long time. - Abstract: This study numerically investigates the influence of integration of a phase change material (PCM) slab inside a vertical beverage cooler (VBC) on the energy consumption, the thermal stability and flow characteristics of air inside the cooler. The PCM, water, slab is placed on the rear side of the flat plate roll bond evaporator with five different thicknesses, such as 2, 4, 6, 8, and 10 mm. In the current work, transient numerical analyses are performed with ANSYS-FLUENT software for an empty cooler. To simulate the on/off controller of the cooling system a dedicated user-defined-function (UDF) is implemented in the software. Unlike the counterparts in the recent literature, instead of reducing the problem into a 1D or 2D lumped models a three-dimensional cooler domain is simulated in a commercial CFD solver. The predictions are compared with the experimental measurement for the cooler without PCM regarding the transient variations of the mean temperatures of evaporator surface and the indoor air. Consequently, the parametric set of analyses deduced that the PCM integration into the cooler enhances the cooling performance of the VBC by prolonging compressor off duration. Moreover, during the compressor off time, PCM preserves the air temperature inside the refrigerated space in the desired range by limiting the sudden temperature increments.

  5. Numerical modelling of micro-plasto-hydrodynamic lubrication in plane strip drawing

    DEFF Research Database (Denmark)

    Carretta, Y.; Bech, Jakob Ilsted; Legrand, N.

    2017-01-01

    is conducted. Then, a second simulation highlighting microscopic liquid lubrication mechanisms is achieved using boundary conditions provided by the first model. These fluid-structure interaction computations are made possible through the use of the Arbitrary Lagrangian Eulerian (ALE) formalism.The developed...... methodology is validated by comparison to experimental measurements conducted in plane strip drawing. The effect of physical parameters like the drawing speed, the die angle and the strip thickness reduction is investigated. The numerical results show good agreement with experiments....

  6. A transient one-dimensional numerical model for kinetic Stirling engine

    International Nuclear Information System (INIS)

    Wang, Kai; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2016-01-01

    Highlights: • A non-equilibrium thermal mode with considering loses is adopted in Stirling engine. • Good agreements are achieved for predicting various critical system parameters. • Differences between helium and hydrogen systems are highlighted and analyzed. • Pressure drop of helium system is much larger and more sensitive to frequency. - Abstract: A third-order numerical model based on one-dimensional computational fluid dynamics is developed for kinetic Stirling engines. Various loss mechanisms in Stirling engines, including gas spring hysteresis loss, shuttle loss, appendix displacer gap loss, gas leakage loss, finite speed loss, piston friction loss, pressure drop loss, heat conduction loss, mechanical loss and imperfect heat transfer, are considered and embedded into the basic control equations. The non-equilibrium thermal model is adopted for the regenerator to capture the oscillating features of the gas and solid temperatures. To improve the numerical stability and accuracy, the implicit second-order time difference scheme and the second-order upwind scheme are adopted for discretizing the time differential terms and convective terms, respectively. Experimental validations are then conducted on a beta-type Stirling engine with the extensive experimental data for diverse working conditions. The results show that the developed model has better accuracies than the previous second-order models. Good agreements are achieved for predicting various critical system parameters, including pressure-volume diagram, indicated power, brake power, indicated efficiency, brake efficiency and mechanical efficiency. In particular, both the experiments and simulations show that the Stirling engine charged with helium tends to have much lower optimal working frequencies and poorer performances compared to the hydrogen system. Based on the analyses of the losses, it reveals that the pressure drop in the flow channels plays a critical role in shaping the different

  7. A delta-rule model of numerical and non-numerical order processing.

    Science.gov (United States)

    Verguts, Tom; Van Opstal, Filip

    2014-06-01

    Numerical and non-numerical order processing share empirical characteristics (distance effect and semantic congruity), but there are also important differences (in size effect and end effect). At the same time, models and theories of numerical and non-numerical order processing developed largely separately. Currently, we combine insights from 2 earlier models to integrate them in a common framework. We argue that the same learning principle underlies numerical and non-numerical orders, but that environmental features determine the empirical differences. Implications for current theories on order processing are pointed out. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study.

    Science.gov (United States)

    Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-Song; Chen, Fei-Yan

    2015-08-01

    Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation.

  9. Experimental and numerical study of back-cooling car-seat system using embedded heat pipes to improve passenger’s comfort

    International Nuclear Information System (INIS)

    Hatoum, Omar; Ghaddar, Nesreen; Ghali, Kamel; Ismail, Nagham

    2017-01-01

    Graphical abstract: Heat pipe assembly (a) with the insulation layer (b) without the insulation layer; and (c) thermal manikin test on the heat pipe chair. - Highlights: • A new back cooling system for a car seat using embedded heat pipes was modeled numerically. • The heat-pipe seat model was experimentally validated using heated thermal manikin. • An integrated heat pipe model and bio-heat model was used to predict local thermal comfort. • The heat pipe system reduced the back skin temperature by 1 °C compared to seat without heat pipes. • The heat pipe system increased the overall thermal comfort of the passenger by 30%. - Abstract: This work develops a back-cooling system for a car seat using seat embedded heat pipes to improve passenger comfort. The heat pipe system utilizes the temperature difference between the passenger back and the car cabin air to remove heat from the human body and enhance the comfort state. The developed seat heat-pipe model was validated experimentally using a thermal manikin with controlled constant skin temperature mode in a climatic chamber. Good agreement was found between the measured and the numerically predicted values of base panel temperature. By integrating the validated heat pipe with a bio-heat model, the back segmental skin temperature as well as the overall thermal comfort was predicted and compared with the conventional seat case without the heat pipe system. The heat pipes were able to reduce the skin temperature by 1 °C and to increase the overall thermal comfort of the body by 30%. In addition, a parametric study was performed to determine the optimal number of heat pipes that ensure the thermal comfort of the passenger.

  10. Numerical and experimental investigation of laser induced plasma spectrum of aluminum in the presence of a noble gas

    International Nuclear Information System (INIS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2012-01-01

    Laser-induced plasma emission of an aluminum target in helium gas at 1 atm pressure is numerically and experimentally investigated. A laser pulse at wavelength of 266 nm and pulse duration of 10 ns has been considered. Laser ablation is calculated by a one dimensional model based on thermal evaporation mechanism. Spatial and temporal parameters of plasma expansion are determined by using hydrodynamic equations. Three kinds of plasma emission, including Bremsstrahlung, recombination and spectral emissions are considered for modeling the spectrum. Strong lines of aluminum and helium in wavelength interval of 200 to 450 nm are selected. Aluminum spectrum in UV range is depicted and compared with other spectral ranges. Temporal and spatial evolution of plasma emission up to 200 ns after the laser irradiation is studied. The effect of laser energy on the plasma spectrum is studied. An experimental set-up is arranged to compare numerical calculations with experimental results. Experimental and numerical results illustrate that helium line widths and peak intensities become narrower and weaker with time, respectively. Spatial distribution of spectrum shows that for closer distance to the sample surface, an intense continuous emission is observed, while at the farther distance, continuous emission decreases and spectral lines become sharper. A good coincidence is observed between experimental and numerical results. - Highlights: ► Aluminum plasma emission in helium is numerically and experimentally studied. ► Spectral, Bremsstrahlung and recombination emissions in spectrum are calculated. ► All strong lines of aluminum and helium are chosen for spectrum simulation. ► Line widths and peak intensities at later times become narrower and weaker. ► At specific optimum position, the maximum of signal peaks is acquired.

  11. Experimental and numerical study of flow deflection effects on electronic air-cooling

    International Nuclear Information System (INIS)

    Arfaoui, Ahlem; Ben Maad, Rejeb; Hammami, Mahmoud; Rebay, Mourad; Padet, Jacques

    2009-01-01

    This work present a numerical and experimental investigation of the influence of transversal flow deflector on the cooling of a heated block mounted on a flat plate. The deflector is inclined and therefore it guides the air flow to the upper surface of the block. This situation is simulating the air-cooling of a rectangular integrated circuit or a current converter mounted on an electronic board. The electronic component are assumed dissipating a low or medium heat flux (with a density lower than 5000 W/m 2 ), as such the forced convection air cooling without fan or heat sink is still sufficient. The study details the effects of the angle of deflector on the temperature and the heat transfer coefficient along the surface of the block and around it. The results of the numerical simulations and the InfraRed camera measurements show that the deviation caused by deflector may significantly enhance the heat transfer on the top face of block

  12. Atmospheric models in the numerical simulation system (SPEEDI-MP) for environmental studies

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Terada, Hiroaki

    2007-01-01

    As a nuclear emergency response system, numerical models to predict the atmospheric dispersion of radionuclides have been developed at Japan Atomic Energy Agency (JAEA). Evolving these models by incorporating new schemes for physical processes and up-to-date computational technologies, a numerical simulation system, which consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, has been constructed to apply for various environmental studies. In this system, the combination of a non-hydrostatic atmospheric dynamic model and Lagrangian particle dispersion model is used for the emergency response system. The utilization of detailed meteorological field by the atmospheric model improves the model performance for diffusion and deposition calculations. It also calculates a large area domain with coarse resolution and local area domain with high resolution simultaneously. The performance of new model system was evaluated using measurements of surface deposition of 137 Cs over Europe during the Chernobyl accident. (author)

  13. Numerical and experimental study of actuator performance on piezoelectric microelectromechanical inkjet print head.

    Science.gov (United States)

    Van So, Pham; Jun, Hyun Woo; Lee, Jaichan

    2013-12-01

    We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.

  14. Experimental and numerical studies of turbulent flow in an in-line tube bundles

    Directory of Open Access Journals (Sweden)

    Aounalah Mohamed

    2012-04-01

    Full Text Available In the present paper an experimental and a numerical simulation of the turbulent flow in an in-line tube bundles have been performed. The experiments were carried out using a subsonic wind tunnel. The pressure distributions along the tubes (22 circumferential pressure taping were determined for a variation of the azimuthal angle from 0 to 360deg. The drag and lift forces are measured using the TE 44 balance. The Navier-Stokes equations of the turbulent flow are solved using Reynolds Stress and K-ε, turbulence models (RANS provided by Fluent CFD code. An adapted grid using static pressure, pressure coefficient and velocity gradient, furthermore, a second order upwind scheme were used. The obtained results from the experimental and numerical studies show a satisfactory agreement.

  15. Two-Dimensional Numerical Study on the Migration of Particle in a Serpentine Channel

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-01-01

    Full Text Available In this work, the momentum exchange scheme-based lattice Boltzmann method is adopted to numerically study the migration of a circular particle in a serpentine channel for the range of 20 ≤ Re ≤ 120. The effects of the Reynolds number, particle density, and the initial particle position are taken into account. Numerical results include the streamlines, particle trajectories, and final equilibrium positions. Close attention is also paid to the time it takes for the particle to travel in the channel. It has been found that the particle is likely to migrate to a similar equilibrium position irrespective of its initial position when Re is large. Furthermore, there exists a critical solid-to-fluid density ratio for which the particle travels fastest in the channel.

  16. Playing Linear Numerical Board Games Promotes Low-Income Children's Numerical Development

    Science.gov (United States)

    Siegler, Robert S.; Ramani, Geetha B.

    2008-01-01

    The numerical knowledge of children from low-income backgrounds trails behind that of peers from middle-income backgrounds even before the children enter school. This gap may reflect differing prior experience with informal numerical activities, such as numerical board games. Experiment 1 indicated that the numerical magnitude knowledge of…

  17. Numerical and Experimental Study of Electromagnetically Driven Vortical Flows

    NARCIS (Netherlands)

    Kenjeres, S.; Verdoold, J.; Tummers, M.J.; Hanjalic, K.; Kleijn, C.R.

    2009-01-01

    The paper reports on numerical and experimental investigations of electromagnetically driven vortical flows of an electrically conductive fluid in a generic setup. Two different configurations of permanent magnets are considered: a 3-magnet configuration in which the resulting Lorentz force is

  18. Numerical study on transient local entropy generation in pulsating ...

    Indian Academy of Sciences (India)

    - soidal flow, step flow, and saw-down flow) and for varying periods. The flow and temperature fields are computed numerically with the help of the Fluent compu- tational fluid dynamics (CFD) code, and a computer program developed by us by.

  19. Cortical bone drilling: An experimental and numerical study.

    Science.gov (United States)

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  20. Tourette syndrome research highlights 2015

    Science.gov (United States)

    Richards, Cheryl A.; Black, Kevin J.

    2016-01-01

    We present selected highlights from research that appeared during 2015 on Tourette syndrome and other tic disorders. Topics include phenomenology, comorbidities, developmental course, genetics, animal models, neuroimaging, electrophysiology, pharmacology, and treatment. We briefly summarize articles whose results we believe may lead to new treatments, additional research or modifications in current models of TS. PMID:27429744

  1. Experimental and numerical study of a flapping tidal stream generator

    Science.gov (United States)

    Kim, Jihoon; Le, Tuyen Quang; Ko, Jin Hwan; Sitorus, Patar Ebenezer; Tambunan, Indra Hartarto; Kang, Taesam

    2017-11-01

    The tidal stream turbine is one of the systems that extract kinetic energy from tidal stream, and there are several types of the tidal stream turbine depending on its operating motion. In this research, we conduct experimental and consecutive numerical analyses of a flapping tidal stream generator with a dual configuration flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted using two-dimensional computational fluid dynamics simulations with an in-house code. Through an experimental analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90-degree phase difference between the two. This research was a part of the project titled `R&D center for underwater construction robotics', funded by the Ministry of Oceans and Fisheries(MOF), Korea Institute of Marine Science & Technology Promotion(KIMST,PJT200539), and Pohang City in Korea.

  2. Numerical study of criticality of the slab reactors with three regions in one-group transport theory

    International Nuclear Information System (INIS)

    Santos, A. dos.

    1979-01-01

    The criticality of slab reactors consisting of core, blanket, and reflector is studied numerically based on the singular-eigenfunction-expansion method in one-group transport theory. The purpose of this work is three-fold: (1) it is shown that the three-media problem can be converted, using a recently developed method, to a set of regular integral equations for the expansion coefficients, such that numerical solutions can be obtained for the first time based on an exact theory; (2) highly accurate numerical results that can serve as standards of comparison for various approximate methods are reported for representative sets of parameters; and (3) the accuracy of the P sub(N) approximation, one of the more often used methods, is analyzed compared to the exact results [pt

  3. Numerical and on-site experimental dynamic analysis of the Italian PEC fast reactor building

    International Nuclear Information System (INIS)

    Castoldi, A.; Muzzi, F.; Orsi, R.; Panzeri, P.; Pezzoli, P.; Ruggeri, G.; Martelli, A.; Masoni, P.; Brancati, V.

    1988-01-01

    On-site dynamic tests and three-dimensional numerical analysis have been performed by ISMES on behalf of ENEA on the building of the Italian PEC fast reactor test facility. These studies aimed at evaluating the safety margins in the PEC reactor seismic analysis and at providing data for the optimization of the PEC seismic monitoring system. The paper describes the on-site dynamic tests carried out using various excitation methods (two eccentric back-rotating-mass mechanical vibrator, blasting in bore-hole and hydraulic actuators at the building foundations). It highlights the purposes of the four tests campaigns performed at various construction stages and reports the main experimental results. In connection with the experimental tests, a detailed 3D finite element model was set up for fixed base analysis; from the results of the 3D model a simplified equivalent model of the structure was then derived for soil-structure interaction analysis. The mathematical model was validated and calibrated by using the results of the experimental dynamic tests. The main numerical results and the comparisons with the experimental data are presented. (author)

  4. Numerical study on non-locally reacting behavior of nacelle liners incorporating drainage slots

    Science.gov (United States)

    Chen, Chao; Li, Xiaodong; Thiele, Frank

    2018-06-01

    For acoustic liners used in current commercial nacelles, in order to prevent any liquid accumulating in the resonators, drainage slots are incorporated on the partition walls between closely packed cavities. Recently, an experimental study conducted by Busse-Gerstengarbe et al. shown that the cell interaction introduced by drainage slots causes an additional dissipation peak which increases with the size of the slot. However, the variation of damping process due to drainage slots is still not fully understood. Therefore, a numerical study based on computational aeroacoustic methods is carried out to investigate the mechanism of the changed attenuation characteristics due to drainage slots in presence of grazing incident sound waves with low or high intensities. Different slot configurations are designed based on the generic non-locally reacting liner model adopted in the experimental investigation. Both 2-D and 3-D numerical simulations of only slit resonators are carried out. Numerical results indicate that the extra peak is a result of a resonance excited in the second cavity at specific frequency. Under high sound pressure level incoming waves, the basic characteristics of the acoustic performance remain. However, vortex shedding transpires at the resonances around both the slits and the drainage slot. Vorticity contours show that the connection of two coupled cavities decreases the strength of vortex shedding around the basic Helmholtz resonance due to a higher energy reflection. Meanwhile, the cell interaction significantly increases the vorticity magnitude near the extra resonant frequency. Finally, a semi-empirical model is derived to predict the extra attenuation peak frequency.

  5. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    Science.gov (United States)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  6. Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers

    Science.gov (United States)

    Sauret, Emilie; Saha, Suvash C.; Gu, Yuantong

    2013-01-01

    Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.

  7. Numerical study of impact erosion of multiple solid particle

    Science.gov (United States)

    Zheng, Chao; Liu, Yonghong; Chen, Cheng; Qin, Jie; Ji, Renjie; Cai, Baoping

    2017-11-01

    Material erosion caused by continuous particle impingement during hydraulic fracturing results in significant economic loss and increased production risks. The erosion process is complex and has not been clearly explained through physical experiments. To address this problem, a multiple particle model in a 3D configuration was proposed to investigate the dynamic erosion process. This approach can significantly reduce experiment costs. The numerical model considered material damping and elastic-plastic material behavior of target material. The effects of impact parameters on erosion characteristics, such as plastic deformation, contact time, and energy loss rate, were investigated. Based on comprehensive studies, the dynamic erosion mechanism and geometry evolution of eroded crater was obtained. These findings can provide a detailed erosion process of target material and insights into the material erosion caused by multiple particle impingement.

  8. Numerical studies of time-independent and time-dependent scattering by several elliptical cylinders

    Science.gov (United States)

    Nigsch, Martin

    2007-07-01

    A numerical solution to the problem of time-dependent scattering by an array of elliptical cylinders with parallel axes is presented. The solution is an exact one, based on the separation-of-variables technique in the elliptical coordinate system, the addition theorem for Mathieu functions, and numerical integration. Time-independent solutions are described by a system of linear equations of infinite order which are truncated for numerical computations. Time-dependent solutions are obtained by numerical integration involving a large number of these solutions. First results of a software package generating these solutions are presented: wave propagation around three impenetrable elliptical scatterers. As far as we know, this method described has never been used for time-dependent multiple scattering.

  9. Experimental and numerical approaches to studying hot cracking in stainless steel welds

    International Nuclear Information System (INIS)

    Le, Minh

    2014-01-01

    This work concerns experimental and numerical approaches to studying hot cracking in welds in stainless steel. Metallurgical weldability of two filler products used for the welding of an AISI-316L(N) austenitic stainless steel grade is evaluated. These filler metals are distinguished by their solidification microstructures: austeno-ferritic for the 19Cr-12Ni-2Mo grade and austenitic for the 19-15H Thermanit grade. The study of weldability concerns the assessment of the susceptibility to hot cracking of these three alloys, the proposition of a hot cracking criterion, and the evaluation of its transferability to structure-scale tests. Hot cracks are material separations occurring at high temperatures along the grain boundaries (dendrite boundaries), when the level of strain and the strain rate exceed a certain level. The hot cracks studied are formed during solidification from the liquid phase of weld metals. The bibliography study brings to the fore the complexity of initiation and propagation mechanisms of these material separations. Three types of tests are studied in this work: hot cracking tests, such as trapezoidal and Varestraint tests, allowing to initiate the phenomenon in controlled experimental conditions, and tests on the Gleeble thermomechanical simulator for thermomechanical (materials behavior laws, fracture properties) and metallurgical (brittle temperature range (BTR), evolution of delta ferrite) characterizations of the alloys. All these tests on the three materials were analyzed via numerical modeling and simulations implemented in the Cast3M finite element code in order to bring out a thermomechanical hot cracking criterion. (author) [fr

  10. Numerical study of agglomerate abrasion in a tumbling mixer

    NARCIS (Netherlands)

    Thanh Nguyen, [No Value; Willemsz, Tofan; Frijlink, Henderik; Maarschalk, Kees van der Voort

    2014-01-01

    A numerical simulation using the Discrete Element Method (DEM) was performed to investigate the phenomena concerning the abrasion and breakage of agglomerates in a diffusion powder mixer. Agglomerates were created by defining a single structure of particles with bonds of different strengths using

  11. Numerical studies of the g-hartree density functional in the Thomas-Fermi scaling limit

    International Nuclear Information System (INIS)

    Millack, T.; Weymans, G.

    1986-02-01

    Methods of finite temperature quantum field theory are used to construct the g-Hartree density functional for atoms. Low and high temperature expansions are discussed in detail. Numerical studies for atomic ground-state configurations are presented in the Thomas-Fermi-Scaling limit. (orig.)

  12. An analytical and numerical study of solar chimney use for room natural ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan; Koura, Nader S.A. [Department of Mechanical Power Engineering and Energy, Minia University, Minia 61111 (Egypt)

    2008-07-01

    The solar chimney concept used for improving room natural ventilation was analytically and numerically studied. The study considered some geometrical parameters such as chimney inlet size and width, which are believed to have a significant effect on space ventilation. The numerical analysis was intended to predict the flow pattern in the room as well as in the chimney. This would help optimizing design parameters. The results were compared with available published experimental and theoretical data. There was an acceptable trend match between the present analytical results and the published data for the room air change per hour, ACH. Further, it was noticed that the chimney width has a more significant effect on ACH compared to the chimney inlet size. The results showed that the absorber average temperature could be correlated to the intensity as: (T{sub w} = 3.51I{sup 0.461}) with an accepted range of approximation error. In addition the average air exit velocity was found to vary with the intensity as ({nu}{sub ex} = 0.013I{sup 0.4}). (author)

  13. Foundations of children's numerical and mathematical skills: the roles of symbolic and nonsymbolic representations of numerical magnitude.

    Science.gov (United States)

    Lyons, Ian M; Ansari, Daniel

    2015-01-01

    Numerical and mathematical skills are critical predictors of academic success. The last three decades have seen a substantial growth in our understanding of how the human mind and brain represent and process numbers. In particular, research has shown that we share with animals the ability to represent numerical magnitude (the total number of items in a set) and that preverbal infants can process numerical magnitude. Further research has shown that similar processing signatures characterize numerical magnitude processing across species and developmental time. These findings suggest that an approximate system for nonsymbolic (e.g., dot arrays) numerical magnitude representation serves as the basis for the acquisition of cultural, symbolic (e.g., Arabic numerals) representations of numerical magnitude. This chapter explores this hypothesis by reviewing studies that have examined the relation between individual differences in nonsymbolic numerical magnitude processing and symbolic math abilities (e.g., arithmetic). Furthermore, we examine the extent to which the available literature provides strong evidence for a link between symbolic and nonsymbolic representations of numerical magnitude at the behavioral and neural levels of analysis. We conclude that claims that symbolic number abilities are grounded in the approximate system for the nonsymbolic representation of numerical magnitude are not strongly supported by the available evidence. Alternative models and future research directions are discussed. © 2015 Elsevier Inc. All rights reserved.

  14. Numerical study on hygroscopic material drying in packed bed

    Directory of Open Access Journals (Sweden)

    M. Stakić

    2011-06-01

    Full Text Available The paper addresses numerical simulation for the case of convective drying of hygroscopic material in a packed bed, analyzing agreement between the simulated and the corresponding experimental results. In the simulation model of unsteady simultaneous one-dimensional heat and mass transfer between gas phase and dried material, it is assumed that the gas-solid interface is at thermodynamic equilibrium, while the drying rate of the specific product is calculated by applying the concept of a "drying coefficient". Model validation was done on the basis of the experimental data obtained with potato cubes. The obtained drying kinetics, both experimental and numerical, show that higher gas (drying agent velocities (flow-rates, as well as lower equivalent grain diameters, induce faster drying. This effect is more pronounced for deeper beds, because of the larger amount of wet material to be dried using the same drying agent capacity.

  15. Numerical methods for Eulerian and Lagrangian conservation laws

    CERN Document Server

    Després, Bruno

    2017-01-01

    This book focuses on the interplay between Eulerian and Lagrangian conservation laws for systems that admit physical motivation and originate from continuum mechanics. Ultimately, it highlights what is specific to and beneficial in the Lagrangian approach and its numerical methods. The two first chapters present a selection of well-known features of conservation laws and prepare readers for the subsequent chapters, which are dedicated to the analysis and discretization of Lagrangian systems. The text is at the frontier of applied mathematics and scientific computing and appeals to students and researchers interested in Lagrangian-based computational fluid dynamics. It also serves as an introduction to the recent corner-based Lagrangian finite volume techniques.

  16. China's numerical management system for reducing national energy intensity

    International Nuclear Information System (INIS)

    Li, Huimin; Zhao, Xiaofan; Yu, Yuqing; Wu, Tong; Qi, Ye

    2016-01-01

    In China, the national target for energy intensity reduction, when integrated with target disaggregation and information feedback systems, constitutes a numerical management system, which is a hallmark of modern governance. This paper points out the technical weaknesses of China's current numerical management system. In the process of target disaggregation, the national target cannot be fully disaggregated to local governments, sectors and enterprises without omissions. At the same time, governments at lower levels face pressure for reducing energy intensity that exceeds their respective jurisdictions. In the process of information feedback, information failure is inevitable due to statistical inaccuracy. Furthermore, the monitoring system is unable to correct all errors, and data verification plays a limited role in the examination system. To address these problems, we recommend that the government: use total energy consumption as the primary indicator of energy management; reform the accounting and reporting of energy statistics toward greater consistency, timeliness and transparency; clearly define the responsibility of the higher levels of government. - Highlights: •We assess drawbacks of China's numerical management system for energy intensity. •The national energy intensity target cannot be fully disaggregated without omissions. •Data distortion is due to failures in statistics, monitoring and examination system. •Lower-level governments’ ability to meet energy target is weaker than their pressure. •We provide three policy recommendations for China's policy-makers.

  17. Numerical simulation of catalysis combustion inside micro free-piston engine

    International Nuclear Information System (INIS)

    Wang, Qian; Zhang, Di; Bai, Jin; He, Zhixia

    2016-01-01

    Highlights: • A modeling study is applied on methane HCCI process of micro power device. • Mathematical formulas are established to predict the combustion characteristics. • Impacts of catalysis on the combustion characteristics are analyzed respectively. • The catalyst can improve the work steadily and reliability of micro power device. - Abstract: In order to investigate the catalytic combustion characteristics concerning homogeneous charge compression ignition (HCCI) in micro power device, numerical simulations with a 3D computation model that coupled motion of free piston and fluid dynamics of methane–air mixture flow were carried out and detailed gas-phase and surface catalytic reaction mechanisms of methane–air mixture were applied to the catalytic reactions model, a series of mathematical formula are established to predict the characteristics of compression ignition condition, impacts of catalysis on temperature, pressure, work capacity and other factors were analyzed respectively. Simulation results reveal that catalytic combustion facilitates the improvement of energy conversion efficiency and extends the ignition limit of methane–air mixture obviously, the ignition timing is brought forward as well, while compression ratio decreases and ignition delay period shrinks significantly. Numerical results demonstrate that the existence of catalytic wall helped to restrain the peak combustion pressure and maximum rate of pressure rise contributing to the steadily and reliability of operation inside micro free-piston power device.

  18. Emotional sensitization highlights the attentional bias in blood-injection-injury phobics: an ERP study.

    Science.gov (United States)

    Sarlo, Michela; Buodo, Giulia; Devigili, Andrea; Munafò, Marianna; Palomba, Daniela

    2011-02-18

    The presence of an attentional bias towards disorder-related stimuli has not been consistently demonstrated in blood phobics. The present study was aimed at investigating whether or not an attentional bias, as measured by event-related potentials (ERPs), could be highlighted in blood phobics by inducing cognitive-emotional sensitization through the repetitive presentation of different disorder-related pictures. The mean amplitudes of the N100, P200, P300 and late positive potentials to picture onset were assessed along with subjective ratings of valence and arousal in 13 blood phobics and 12 healthy controls. Blood phobics, but not controls, showed a linear increase of subjective arousal over time, suggesting that cognitive-emotional sensitization did occur. The analysis of cortical responses showed larger N100 and smaller late positive potentials in phobics than in controls in response to mutilations. These findings suggest that cognitive-emotional sensitization induced an attentional bias in blood phobics during picture viewing, involving early selective encoding and late cognitive avoidance of disorder-related stimuli depicting mutilations. © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Zdeněk Kopal: Numerical Analyst

    Science.gov (United States)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  20. Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

    International Nuclear Information System (INIS)

    Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  1. Numerical studies of the MHD spectrum of an elliptic plasma column

    International Nuclear Information System (INIS)

    Chance, M.S.; Greene, J.M.; Grimm, R.C.; Johnson, J.L.

    1976-05-01

    A numerical procedure is described for determining the MHD spectrum associated with small perturbations about an analytic equilibrium. This configuration has magnetic flux surfaces which are nested similar elliptical cylinders generated by a uniform axial current. Since the system is periodic, it models the essential features of a toroid. The code is used to study the properties of modes in the continuous shear Alfven and slow acoustic spectra as well as the discrete modes associated with the fast magnetosonic waves and kinks. Modes where the interchange criterion is violated, or nearly violated, are investigated

  2. Numerical Model Study of the Tuscarawas River below Dover Dam, Ohio

    Science.gov (United States)

    2009-09-01

    chl.erdc.usace.army.mil/sms). Cross-sections from a ERDC/CHL TR-09-17 7 HEC - RAS model provided by the district, along with aerial photographs for proper alignment...ER D C/ CH L TR -0 9 -1 7 Numerical Model Study of the Tuscarawas River below Dover Dam, Ohio Richard L. Stockstill and Jane M. Vaughan...September 2009 C oa st al a n d H yd ra u lic s La b or at or y Approved for public release; distribution is unlimited. ERDC/CHL TR-09

  3. Cross-Validation of Numerical and Experimental Studies of Transitional Airfoil Performance

    DEFF Research Database (Denmark)

    Frere, Ariane; Hillewaert, Koen; Sarlak, Hamid

    2015-01-01

    The aerodynamic performance characteristic of airfoils are the main input for estimating wind turbine blade loading as well as annual energy production of wind farms. For transitional flow regimes these data are difficult to obtain, both experimentally as well as numerically, due to the very high...... sensitivity of the flow to perturbations, large scale separation and performance hysteresis. The objective of this work is to improve the understanding of the transitional airfoil flow performance by studying the S826 NREL airfoil at low Reynolds numbers (Re = 4:104 and 1:105) with two inherently different...

  4. Brookhaven highlights, October 1979-September 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Highlights are given for the research areas of the Brookhaven National Laboratory. These areas include high energy physics, physics and chemistry, life sciences, applied energy science (energy and environment, and nuclear energy), and support activities (including mathematics, instrumentation, reactors, and safety)

  5. A numerical study of the stabilitiy of helical vortices using vortex methods

    International Nuclear Information System (INIS)

    Walther, J H; Guenot, M; Machefaux, E; Rasmussen, J T; Chatelain, P; Okulov, V L; Soerensen, J N; Bergdorf, M; Koumoutsakos, P

    2007-01-01

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity

  6. A numerical study of the stabilitiy of helical vortices using vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Walther, J H [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Guenot, M [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Machefaux, E [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Rasmussen, J T [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Chatelain, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Okulov, V L [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Soerensen, J N [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Bergdorf, M [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Koumoutsakos, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-07-15

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.

  7. Numerical study of the rising of the explosion clouds in different atmosphere

    International Nuclear Information System (INIS)

    Li Xiaoli; Zheng Yi; Chao Ying; Cao Yitang

    2010-01-01

    The rising of the explosion clouds in the uniform and normal atmosphere had been studied, the numerical model is based on the assumption that effects the clouds are gravity and buoyancy. The model is testified by Rayleigh-Taylor unsteady problem. The evolution of the density during the rising of the explosion clouds are provided, and the computational results indicates that the effects of the layered atmosphere mains the altitude of the cloud. (authors)

  8. Numerical simulation of compressible two-phase flow using a diffuse interface method

    International Nuclear Information System (INIS)

    Ansari, M.R.; Daramizadeh, A.

    2013-01-01

    Highlights: ► Compressible two-phase gas–gas and gas–liquid flows simulation are conducted. ► Interface conditions contain shock wave and cavitations. ► A high-resolution diffuse interface method is investigated. ► The numerical results exhibit very good agreement with experimental results. -- Abstract: In this article, a high-resolution diffuse interface method is investigated for simulation of compressible two-phase gas–gas and gas–liquid flows, both in the presence of shock wave and in flows with strong rarefaction waves similar to cavitations. A Godunov method and HLLC Riemann solver is used for discretization of the Kapila five-equation model and a modified Schmidt equation of state (EOS) is used to simulate the cavitation regions. This method is applied successfully to some one- and two-dimensional compressible two-phase flows with interface conditions that contain shock wave and cavitations. The numerical results obtained in this attempt exhibit very good agreement with experimental results, as well as previous numerical results presented by other researchers based on other numerical methods. In particular, the algorithm can capture the complex flow features of transient shocks, such as the material discontinuities and interfacial instabilities, without any oscillation and additional diffusion. Numerical examples show that the results of the method presented here compare well with other sophisticated modeling methods like adaptive mesh refinement (AMR) and local mesh refinement (LMR) for one- and two-dimensional problems

  9. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    Science.gov (United States)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  10. Biosensor enhancement using grooved micromixers: Part I, numerical studies

    Czech Academy of Sciences Publication Activity Database

    Lynn, Nicholas Scott; Homola, Jiří

    2015-01-01

    Roč. 87, č. 11 (2015), s. 5516-5523 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Numerical methods * Micromixers * Analytes Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.886, year: 2015

  11. Composite body movements modulate numerical cognition: Evidence from the motion–numerical compatibility effect

    Directory of Open Access Journals (Sweden)

    Xiaorong eCheng

    2015-11-01

    Full Text Available A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011 and Fisher (2012, suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher and colleagues (2008 found that participants’ behavior in a random number generation (RNG task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e. a motion–numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion–numerical compatibility effects exist for movements of other important body components, e.g. arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008 finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out.

  12. Numerical study of particle capture efficiency in fibrous filter

    Directory of Open Access Journals (Sweden)

    Fan Jianhua

    2017-01-01

    Full Text Available Numerical simulations are performed for transport and deposition of particles over a fixed obstacle in a fluid flow. The effect of particle size and Stokes number on the particle capture efficiency is investigated using two methods. The first one is one-way coupling combining Lattice Boltzmann (LB method with Lagrangian point-like approach. The second one is two-way coupling based on the coupling between Lattice Boltzmann method and discrete element (DE method, which consider the particle influence on the fluid. Then the single fiber collection efficiency characterized by Stokes number (St are simulated by LB-DE methods. Results show that two-way coupling method is more appropriate in our case for particles larger than 8 μm. A good agreement has also been observed between our simulation results and existing correlations for single fiber collection efficiency. The numerical simulations presented in this work are useful to understand the particle transport and deposition and to predict the capture efficiency.

  13. Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard

    International Nuclear Information System (INIS)

    Biswas, Kaushik; Lu, Jue; Soroushian, Parviz; Shrestha, Som

    2014-01-01

    Highlights: • Field-testing of a nano-PCM wallboard under varying weather conditions. • Numerical model validation and annual simulations of PCM wallboard performance. • Reduced cooling electricity consumption results from PCM wallboard. • PCM wallboard reduces peak cooling loads with implications on power plant capacity. • PCM performance was sensitive to building temperature set point for cooling. - Abstract: In the United States, forty-eight (48) percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change materials (PCMs) in building envelopes can enhance the energy efficiency of buildings and reduce energy consumption. Experimental testing and numerical modeling of PCM-enhanced envelope components are two important aspects of the evaluation of their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM supported by expanded graphite (interconnected) nanosheets, which are highly conductive and allow enhanced thermal storage and energy distribution. The nano-PCM is shape-stable for convenient incorporation into lightweight building components. A wall with cellulose cavity insulation and a prototype PCM-enhanced interior wallboard was built and tested in a natural exposure test (NET) facility in a hot-humid climate location. The test wall contained the PCM wallboard and a regular gypsum wallboard, for a side-by-side annual comparison study. Further, numerical modeling of the wall containing the nano-PCM wallboard was performed to determine its actual impact on wall-generated heating and cooling loads. The model was first validated using experimental data, and then used for annual simulations using typical meteorological year (TMY3) weather data. This article presents the measured performance and numerical analysis evaluating the energy-saving potential of the nano-PCM-enhanced wallboard

  14. Numerical analysis for multi-group neutron-diffusion equation using Radial Point Interpolation Method (RPIM)

    International Nuclear Information System (INIS)

    Kim, Kyung-O; Jeong, Hae Sun; Jo, Daeseong

    2017-01-01

    Highlights: • Employing the Radial Point Interpolation Method (RPIM) in numerical analysis of multi-group neutron-diffusion equation. • Establishing mathematical formation of modified multi-group neutron-diffusion equation by RPIM. • Performing the numerical analysis for 2D critical problem. - Abstract: A mesh-free method is introduced to overcome the drawbacks (e.g., mesh generation and connectivity definition between the meshes) of mesh-based (nodal) methods such as the finite-element method and finite-difference method. In particular, the Point Interpolation Method (PIM) using a radial basis function is employed in the numerical analysis for the multi-group neutron-diffusion equation. The benchmark calculations are performed for the 2D homogeneous and heterogeneous problems, and the Multiquadrics (MQ) and Gaussian (EXP) functions are employed to analyze the effect of the radial basis function on the numerical solution. Additionally, the effect of the dimensionless shape parameter in those functions on the calculation accuracy is evaluated. According to the results, the radial PIM (RPIM) can provide a highly accurate solution for the multiplication eigenvalue and the neutron flux distribution, and the numerical solution with the MQ radial basis function exhibits the stable accuracy with respect to the reference solutions compared with the other solution. The dimensionless shape parameter directly affects the calculation accuracy and computing time. Values between 1.87 and 3.0 for the benchmark problems considered in this study lead to the most accurate solution. The difference between the analytical and numerical results for the neutron flux is significantly increased in the edge of the problem geometry, even though the maximum difference is lower than 4%. This phenomenon seems to arise from the derivative boundary condition at (x,0) and (0,y) positions, and it may be necessary to introduce additional strategy (e.g., the method using fictitious points and

  15. A numerical approach to the study of the perpetual case of Ameripean options

    Science.gov (United States)

    Kandilarov, J.

    2013-12-01

    A new numerical method for solving the perpetual case of Ameripean options is proposed. The Ameripean delayed exercise model analyzes a new class of option model with American and ParAsian features. The model is mathematically described by ultraparabolic and parabolic PDE's which are valid over different regions. The perpetual case leads to the parabolic-elliptic two-phase Stefan problem with free internal boundary. To deal with the obtained nonlinear problem an iterative numerical method is proposed. Numerical analysis are presented and discussed.

  16. University of Maryland MRSEC - Research: Highlights

    Science.gov (United States)

    -Engineering Program: Project Lead the Way Thinking Small: Nanoscale Informal Science Education (NISE Education Outreach Highlights NanoFabulous Greatest Show on Earth: Big Top Physics, USA Science and Perspective at UMD MRSEC Nanoscience Camp Annual Middle School Student Science Conference (SSC) Pre

  17. Brookhaven highlights, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Highlights are given for the research areas of the Brookhaven National Laboratory. These areas include high energy physics, physics and chemistry, life sciences, applied energy science (energy and environment, and nuclear energy), and support activities (including mathematics, instrumentation, reactors, and safety). (GHT)

  18. Brookhaven highlights - Brookhaven National Laboratory 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  19. Highlights of nuclear chemistry 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Highlights were: 1. Fission product release: benchmark calculations for severe nuclear accidents; 2. Thermochemical data for reactor materials and fission products; 3. thermochemical calculations on fuel of the high-temperature gas-cooled reactor; 4. Formation of organic tellurides during nuclear accidents?; 5. Reaction of tellurium with Zircaloy-4; 6. Transmutation of fission products; 7. The thermal conductivity of high-burnup UO 2 fuel; 8. Tritium retention in graphite. (orig./HP)

  20. Numerical simulation of pulse-tube refrigerators

    NARCIS (Netherlands)

    Lyulina, I.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2004-01-01

    A new numerical model has been introduced to study steady oscillatory heat and mass transfer in the tube section of a pulse-tube refrigerator. Conservation equations describing compressible gas flow in the tube are solved numerically, using high resolution schemes. The equation of conservation of