WorldWideScience

Sample records for numerous studies examining

  1. Examining pitch and numerical magnitude processing in congenital amusia: A quasi-experimental pilot study.

    Science.gov (United States)

    Nunes-Silva, Marilia; Moura, Ricardo; Lopes-Silva, Júlia Beatriz; Haase, Vitor Geraldi

    2016-08-01

    Congenital amusia is a developmental disorder associated with deficits in pitch height discrimination or in integrating pitch sequences into melodies. This quasi-experimental pilot study investigated whether there is an association between pitch and numerical processing deficits in congenital amusia. Since pitch height discrimination is considered a form of magnitude processing, we investigated whether individuals with amusia present an impairment in numerical magnitude processing, which would reflect damage to a generalized magnitude system. Alternatively, we investigated whether the numerical processing deficit would reflect a disconnection between nonsymbolic and symbolic number representations. This study was conducted with 11 adult individuals with congenital amusia and a control comparison group of 6 typically developing individuals. Participants performed nonsymbolic and symbolic magnitude comparisons and number line tasks. Results were available from previous testing using the Montreal Battery of Evaluation of Amusia (MBEA) and a pitch change detection task (PCD). Compared to the controls, individuals with amusia exhibited no significant differences in their performance on both the number line and the nonsymbolic magnitude tasks. Nevertheless, they showed significantly worse performance on the symbolic magnitude task. Moreover, individuals with congenital amusia, who presented worse performance in the Meter subtest, also presented less precise nonsymbolic numerical representation. The relationship between meter and nonsymbolic numerical discrimination could indicate a general ratio processing deficit. The finding of preserved nonsymbolic numerical magnitude discrimination and mental number line representations, with impaired symbolic number processing, in individuals with congenital amusia indicates that (a) pitch height and numerical magnitude processing may not share common neural representations, and (b) in addition to pitch processing, individuals with

  2. Numerical and Experimental Study of Pump Sump Flows

    Directory of Open Access Journals (Sweden)

    Wei-Liang Chuang

    2014-01-01

    Full Text Available The present study analyzes pump sump flows with various discharges and gate submergence. Investigations using a three-dimensional large eddy simulation model and an acoustic Doppler velocimeter are performed. Flow patterns and velocity profiles in the approaching flow are shown to describe the flow features caused by various discharges and gate submergence. The variation of a large-scale spanwise vortex behind a sluice gate is examined and discussed. The suction effect on approaching flow near the pipe column is examined using numerical modeling. To gain more understanding of the vortices variation, a comparison between time-averaged and instantaneous flow patterns is numerically conducted. Additionally, swirl angle, a widely used index for evaluating pump efficiency, is experimentally and numerically examined under various flow conditions. The results indicate that the pump becomes less efficient with increasing discharge and gate submergence. The fluctuation of the free surface over the pump sump is also discussed.

  3. Numerical examinations of simplified spondylodesis models concerning energy absorption in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Hadert Nicole

    2016-09-01

    Full Text Available Metallic implants in magnetic resonance imaging (MRI are a potential safety risk since the energy absorption may increase temperature of the surrounding tissue. The temperature rise is highly dependent on implant size. Numerical examinations can be used to calculate the energy absorption in terms of the specific absorption rate (SAR induced by MRI on orthopaedic implants. This research presents the impact of titanium osteosynthesis spine implants, called spondylodesis, deduced by numerical examinations of energy absorption in simplified spondylodesis models placed in 1.5 T and 3.0 T MRI body coils. The implants are modelled along with a spine model consisting of vertebrae and disci intervertebrales thus extending previous investigations [1], [2]. Increased SAR values are observed at the ends of long implants, while at the center SAR is significantly lower. Sufficiently short implants show increased SAR along the complete length of the implant. A careful data analysis reveals that the particular anatomy, i.e. vertebrae and disci intervertebrales, has a significant effect on SAR. On top of SAR profile due to the implant length, considerable SAR variations at small scale are observed, e.g. SAR values at vertebra are higher than at disc positions.

  4. Numerical study of ion thermal gradient driven modes

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Mourgues, F.; Samain, A.

    1987-01-01

    Anomalous ion thermal confinement has been observed in tokamaks (1). The ion temperature gradient driven modes could provide a possible explanation of this fact. The goal of this paper is to examine the stability of such modes by a linear, analytical and numerical study. The value of the threshold parameter and the radial profiles of the modes are computed. The effects of the particles vertical drift due to the field curvature are discussed

  5. To Examine effect of Flow Zone Generation Techniques for Numerical Flow Analysis in Hydraulic Turbine

    International Nuclear Information System (INIS)

    Hussain, M.; Khan, J.A.

    2004-01-01

    A numerical study of flow in distributor of Francis Turbine is carried out by using two different techniques of flow zone generation. Distributor of GAMM Francis Turbine is used for present calculation. In present work, flow is assumed to be periodic around the distributor in steady state conditions, therefore computational domain consists of only one blade channel (one stay vane and one guide vane). The distributor computational domain is bounded up stream by cylindrical and downstream by conical patches. The first one corresponds to the spiral casing outflow section, while the second one is considered to be the distributor outlet or runner inlet. Upper and lower surfaces are generated by the revolution of hub and shroud edges. Single connected and multiple connected techniques are considered to generate distributor flow zone for numerical flow analysis of GAMM Francis turbine. The tetrahedral meshes are generated in both the flow zones. Same boundary conditions are applied for both the equivalent flow zones. The three dimensional, laminar flow analysis for both the distributor flow zones of the GAMM Francis turbine operating at the best efficiency point is performed. Gambit and G- Turbo are used as a preprocessor while calculations are done by using Fluent. Finally, numerical results obtained on the distributor outlet are compared with the available experimental data to validate the two different methodologies and examine their accuracy. (author)

  6. Numerical study of jets secondary instabilities

    International Nuclear Information System (INIS)

    Brancher, Pierre

    1996-01-01

    The work presented in this dissertation is a contribution to the study of the transition to turbulence in open shear flows. Results from direct numerical simulations are interpreted within the framework of hydrodynamic stability theory. The first chapter is an introduction to the primary and secondary instabilities observed in jets and mixing layers. The numerical method used in the present study is detailed in the second chapter. The dynamics of homogeneous circular jets subjected to stream wise and azimuthal perturbations are investigated in the third chapter. A complete scenario describing the evolution of the jet is proposed with emphasis on the dynamics of vorticity within the flow. In the fourth chapter a parametric study reveals a three-dimensional secondary instability mainly controlled in the linear regime by the Strouhal number of the primary instability. In the nonlinear regime the dynamics of the azimuthal harmonies are described by means of model equations and are linked to the formation of stream wise vortices in the braid. The fifth chapter is dedicated to the convective or absolute nature of the secondary instabilities in plane shear layers. It is shown that there are flow configurations for which the two-dimensional secondary instability (pairing) is absolute even though the primary instability (Kelvin-Helmholtz) is convective. Some preliminary results concerning the three-dimensional secondary instabilities arc presented at the end of this chapter. The last chapter summarizes the main results and examines possible extensions of this work. (author) [fr

  7. Numerical examination of the factors controlling DNAPL migration through a single fracture.

    Science.gov (United States)

    Reynolds, D A; Kueper, B H

    2002-01-01

    The migration of five dense nonaqueous phase liquids (DNAPLs) through a single fracture in a clay aquitard was numerically simulated with the use of a compositional simulator. The effects of fracture aperture, fracture dip, matrix porosity, and matrix organic carbon content on the migration of chlorobenzene, 1,2-dichloroethylene, trichloroethylene, tetra-chloroethylene, and 1,2-dibromoethane were examined. Boundary conditions were chosen such that DNAPL entry into the system was allowed to vary according to the stresses applied. The aperture is the most important factor of those studied controlling the migration rate of DNAPL through a single fracture embedded in a clay matrix. Loss of mass to the matrix through diffusion does not significantly retard the migration rate of the DNAPL, particularly in larger aperture fractures (e.g., 50 microm). With time, the ratio of diffusive loss to the matrix to DNAPL flux into the fracture approaches an asymptotic value lower than unity. The implication is that matrix diffusion cannot arrest the migration of DNAPL in a single fracture. The complex relationships between density, viscosity, and solubility that, to some extent, govern the migration of DNAPL through these systems prevent accurate predictions without the use of numerical models. The contamination potential of the migrating DNAPL is significantly increased through the transfer of mass to the matrix. The occurrence of opposite concentration gradients within the matrix can cause dissolved phase contamination to exist in the system for more than 1000 years after the DNAPL has been completely removed from the fracture.

  8. Experimental-numerical study of heat flow in deep low-enthalpy geothermal conditions

    NARCIS (Netherlands)

    Saeid, S.; Al-Khoury, R.; Nick, H.M.; Barends, F.

    2014-01-01

    This paper presents an intensive experimental-numerical study of heat flow in a saturated porous domain. A temperature and a flow rate range compared to that existing in a typical deep low-enthalpy hydrothermal system is studied. Two main issues are examined: the effect of fluid density and

  9. Gyrotactic trapping: A numerical study

    Science.gov (United States)

    Ghorai, S.

    2016-04-01

    Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.

  10. Numerical studies of the linear theta pinch

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Menzel, M.T.; Barnes, D.C.

    1975-01-01

    Aspects of several physical problems associated with linear theta pinches were studied using recently developed numerical methods for the solution of the nonlinear equations for time-dependent magnetohydrodynamic flow in two- and three-dimensions. The problems studied include the propagation of end-loss produced rarefaction waves, the flow produced in a proposed injection experiment geometry, and the linear growth and nonlinear saturation of instabilities in rotating plasmas, all in linear geometries. The studies illustrate how numerical computations aid in flow visualization, and how the small amplitude behavior and nonlinear fate of plasmas in unstable equilibria can be connected through the numerical solution of the dynamical equations. (auth)

  11. Combustion Behaviour of Pulverised Wood - Numerical and Experimental Studies. Part 1 Numerical Study

    Energy Technology Data Exchange (ETDEWEB)

    Elfasakhany, A.; Xue-Song Bai [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering

    2002-12-01

    This report describes a theoretical/numerical investigation of the particle motion and the particle drying, pyrolysis, oxidation of volatile and char in a pulverised biofuel (wood) flame. This work, along with the experimental measurement of a pulverised wood flame in a vertical furnace at TPS, is supported by the Swedish Energy Agency, STEM. The fundamental combustion process of a pulverised wood flame with determined size distribution and anisotropy character is studied. Comprehensive submodels are studied and some models not available in the literature are developed. The submodels are integrated to a CFD code, previously developed at LTH. The numerical code is used to simulate the experimental flame carried out at TPS (as sub-task 2 within the project). The sub-models describe the drying, devolatilization, char formation of wood particles, and the oxidation reaction of char and the gas phase volatile. At the present stage, the attention is focused on the understanding and modelling of non-spherical particle dynamics and the drying, pyrolysis, and oxidation of volatile and char. Validation of the sub-models against the experimental data is presented and discussed in this study. The influence of different factors on the pulverised wood flame in the TPS vertical furnace is investigated. This includes shape of the particles, the effect of volatile release, as well as the orientation of the particles on the motion of the particles. The effect of particle size on the flame structure (distribution of species and temperature along the axis of the furnace) is also studied. The numerical simulation is in close agreement with the TPS experimental data in the concentrations of species O{sub 2}, CO{sub 2} as well as temperature. Some discrepancy between the model simulations and measurements is observed, which suggests that further improvement in our understanding and modeling the pulverised wood flame is needed.

  12. Numerical MHD study for plasmoid instability in uniform resistivity

    Science.gov (United States)

    Shimizu, Tohru; Kondoh, Koji; Zenitani, Seiji

    2017-11-01

    The plasmoid instability (PI) caused in uniform resistivity is numerically studied with a MHD numerical code of HLLD scheme. It is shown that the PI observed in numerical studies may often include numerical (non-physical) tearing instability caused by the numerical dissipations. By increasing the numerical resolutions, the numerical tearing instability gradually disappears and the physical tearing instability remains. Hence, the convergence of the numerical results is observed. Note that the reconnection rate observed in the numerical tearing instability can be higher than that of the physical tearing instability. On the other hand, regardless of the numerical and physical tearing instabilities, the tearing instability can be classified into symmetric and asymmetric tearing instability. The symmetric tearing instability tends to occur when the thinning of current sheet is stopped by the physical or numerical dissipations, often resulting in the drastic changes in plasmoid chain's structure and its activity. In this paper, by eliminating the numerical tearing instability, we could not specify the critical Lundquist number Sc beyond which PI is fully developed. It suggests that Sc does not exist, at least around S = 105.

  13. An Experimental and numerical Study for squeezing flow

    Science.gov (United States)

    Nathan, Rungun; Lang, Ji; Wu, Qianhong; Vucbmss Team

    2017-11-01

    We report an experimental and numerical study to examine the transient squeezing flow driven by sudden external impacts. The phenomenon is widely observed in industrial applications, e.g. squeeze dampers, or in biological systems, i.e. joints lubrication. However, there is a lack of investigation that captures the transient flow feature during the process. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. The heavy piston was released from rest, creating a fast compaction on the thin fluid gap underneath. The motion of the piston and the fluid pressure build-up was recorded. For this dynamic process, a CFD simulation was performed which shows excellent agreement with the experimental data. Both the numerical and experimental results show that, the squeezing flow starts with the inviscid limit when the viscous fluid effect has no time to appear, and thereafter becomes a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. The study presented herein, filling the gap in the literature, will have broad impacts in industrial and biomedical applications. This research was supported by the National Science Foundation under Award 1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  14. Experimental and numerical examination of the unsteady flow in an axial turbine; Experimentelle und numerische Untersuchung der instationaeren Stroemung in einer Axialturbine

    Energy Technology Data Exchange (ETDEWEB)

    Gentner, C.

    2000-07-01

    The periodic instationary flow in guidevanes and runner of an axial hydraulic turbine is examined experimentally and numerically. The study is carried out at three different points of operation. The experimental study comprises the measurement of the velocity of the flow at midspan using a single channel Laser Doppler Velocimeter and the acquisition of the ozillating pressure at several locations in the casing. The unsteady numerical examination is carried out in a two dimensional plane at midspan of the runnerblades. The interaction between guidevanes and runner is taken into account by exchanging the flow properties at the adjoining edges of the two calculation grids. Further the influence of the tip clearance flow on the characteristics of the turbine is studied numerically by means of a three dimensional steady state calculation. The comparison of the results of measurement and calculation shows the abilities and the limitations of the applied numerical method. Moreover the results are helpful for the optimisation of the turbine with regard to higher efficiency and reduced cavitation. (orig.) [German] Die periodisch instationaere Stroemung in Leit- und Laufrad einer hydraulischen Axialturbine zur Druckentspannung in Rohrleitungssystemen wird fuer drei Betriebspunkte experimentell und rechnerisch untersucht. Die experimentelle Untersuchung umfasst die zeitaufgeloeste Messung der Stroemungsgeschwindigkeiten mit einem Laser-Doppler-Velozimeter im Mittelschnitt und die Erfassung des periodisch schwankenden Drucks an mehreren Punkten an der Gehaeusewand. Die instationaere numerische Untersuchung erfolgt in einem zweidimensionalen Zylinderschnitt im mittleren Durchmesser der Laufschaufeln. Die Wechselwirkung zwischen Leit- und Laufrad wird druch den Austausch der Stroemungsgroessen mittels eines Kopplungsalgorithmus an der Stossflaeche zwischen den zwei gegeneinander bewegten Berechnungsgittern erfasst. Darueber hinaus wird in einer dreidimensionalen stationaeren

  15. Numerical Magnitude Representations Influence Arithmetic Learning

    Science.gov (United States)

    Booth, Julie L.; Siegler, Robert S.

    2008-01-01

    This study examined whether the quality of first graders' (mean age = 7.2 years) numerical magnitude representations is correlated with, predictive of, and causally related to their arithmetic learning. The children's pretest numerical magnitude representations were found to be correlated with their pretest arithmetic knowledge and to be…

  16. Dynamics Of Human Motion The Case Study of an Examination Hall

    Science.gov (United States)

    Ogunjo, Samuel; Ajayi, Oluwaseyi; Fuwape, Ibiyinka; Dansu, Emmanuel

    Human behaviour is difficult to characterize and generalize due to ITS complex nature. Advances in mathematical models have enabled human systems such as love interaction, alcohol abuse, admission problem to be described using models. This study investigates one of such problems, the dynamics of human motion in an examination hall with limited computer systems such that students write their examination in batches. The examination is characterized by time (t) allocated to each students and difficulty level (dl) associated with the examination. A stochastic model based on the difficulty level of the examination was developed for the prediction of student's motion around the examination hall. A good agreement was obtained between theoretical predictions and numerical simulation. The result obtained will help in better planning of examination session to maximize available resources. Furthermore, results obtained in the research can be extended to other areas such as banking hall, customer service points where available resources will be shared amongst many users.

  17. Foundations of children's numerical and mathematical skills: the roles of symbolic and nonsymbolic representations of numerical magnitude.

    Science.gov (United States)

    Lyons, Ian M; Ansari, Daniel

    2015-01-01

    Numerical and mathematical skills are critical predictors of academic success. The last three decades have seen a substantial growth in our understanding of how the human mind and brain represent and process numbers. In particular, research has shown that we share with animals the ability to represent numerical magnitude (the total number of items in a set) and that preverbal infants can process numerical magnitude. Further research has shown that similar processing signatures characterize numerical magnitude processing across species and developmental time. These findings suggest that an approximate system for nonsymbolic (e.g., dot arrays) numerical magnitude representation serves as the basis for the acquisition of cultural, symbolic (e.g., Arabic numerals) representations of numerical magnitude. This chapter explores this hypothesis by reviewing studies that have examined the relation between individual differences in nonsymbolic numerical magnitude processing and symbolic math abilities (e.g., arithmetic). Furthermore, we examine the extent to which the available literature provides strong evidence for a link between symbolic and nonsymbolic representations of numerical magnitude at the behavioral and neural levels of analysis. We conclude that claims that symbolic number abilities are grounded in the approximate system for the nonsymbolic representation of numerical magnitude are not strongly supported by the available evidence. Alternative models and future research directions are discussed. © 2015 Elsevier Inc. All rights reserved.

  18. Numerical examination of temperature control in helium-cooled high flux test module of IFMIF

    International Nuclear Information System (INIS)

    Ebara, Shinji; Yokomine, Takehiko; Shimizu, Akihiko

    2007-01-01

    For long term irradiation of the International Fusion Materials Irradiation Facility (IFMIF), test specimens are needed to retain constant temperature to avoid change of its irradiation characteristics. The constant temperatures control is one of the most challenging issues for the IFMIF test facilities. We have proposed a new concept of test module which is capable of precisely measuring temperature, keeping uniform temperature with enhanced cooling performance. In the system according to the new design, cooling performances and temperature distributions of specimens were examined numerically under diverse conditions. Some transient behaviors corresponding to the prescribed temperature control mode were perseveringly simulated. It was confirmed that the thermal characteristics of the new design satisfied the severe requirement of IFMIF

  19. Numerical study of a PCM-air heat exchanger's thermal performance

    Science.gov (United States)

    Herbinger, F.; Bhouri, M.; Groulx, D.

    2016-09-01

    In this paper, the use of PCMs in HVAC applications is investigated by studying numerically the thermal performance of a PCM-air heat exchanger. The PCM used in this study is dodecanoic acid. A symmetric 3D model, incorporating conductive and convective heat transfer (air only) as well as laminar flow, was created in COMSOL Multiphysics 5.0. Simulations examined the dependence of the heat transfer rate on the temperature and velocity of the incoming air as well as the size of the channels in the heat exchanger. Results indicated that small channels size lead to a higher heat transfer rates. A similar trend was also obtained for high incoming air temperature, whereas the heat transfer rate was less sensitive to the incoming air velocity.

  20. Analytic and numerical studies of Scyllac equilibrium

    International Nuclear Information System (INIS)

    Barnes, D.C.; Brackbill, J.U.; Dagazian, R.Y.; Freidberg, J.P.; Schneider, W.; Betancourt, O.; Garabedian, P.

    1976-01-01

    The results of both numerical and analytic studies of the Scyllac equilibria are presented. Analytic expansions are used to derive equilibrium equations appropriate to noncircular cross sections, and compute the stellarator fields which produce toroidal force balance. Numerical algorithms are used to solve both the equilibrium equations and the full system of dynamical equations in three dimensions. Numerical equilibria are found for both l = 1,0 and l= 1,2 systems. It is found that the stellarator fields which produce equilibria in the l = 1.0 system are larger for diffuse than for sharp boundary plasma profiles, and that the stability of the equilibria depends strongly on the harmonic content of the stellarator fields

  1. Parametrical analysis on the diffuse ceiling ventilation by experimental and numerical studies

    DEFF Research Database (Denmark)

    Zhang, Chen; Kristensen, Martin Heine; Jensen, Jakob Sølund

    2016-01-01

    This paper aims to investigate the performance of diffuse ceiling ventilation in a classroom. An experimental study is carried out in a test chamber to examine the impact of diffuse ceiling opening area on the system cooling capacity and thermal comfort. The results indicate that diffuse ceiling ....... The numerical results reveal that even distribution of heat sources gives a lower draught risk environment than centralized distribution. In addition, there is a significant increase on the draught risk with increase of room height....

  2. Numerical studies of fermionic field theories at large-N

    International Nuclear Information System (INIS)

    Dickens, T.A.

    1987-01-01

    A description of an algorithm, which may be used to study large-N theories with or without fermions, is presented. As an initial test of the method, the spectrum of continuum QCD in 1 + 1 dimensions is determined and compared to previously obtained results. Exact solutions of 1 + 1 dimensional lattice versions of the free fermion theory, the Gross-Neveu model, and QCD are obtained. Comparison of these exact results with results from the numerical algorithm is used to test the algorithms, and more importantly, to determine the errors incurred from the approximations used in the numerical technique. Numerical studies of the above three lattice theories in higher dimensions are also presented. The results are again compared to exact solutions for free fermions and the Gross-Neveu model; perturbation theory is used to derive expansions with which the numerical results for QCD may be compared. The numerical algorithm may also be used to study the euclidean formulation of lattice gauge theories. Results for 1 + 1 dimensional euclidean lattice QCD are compared to the exact solution of this model

  3. Numerical problems in physics

    CERN Document Server

    Singh, Devraj

    2015-01-01

    Numerical Problems in Physics, Volume 1 is intended to serve the need of the students pursuing graduate and post graduate courses in universities with Physics and Materials Science as subject including those appearing in engineering, medical, and civil services entrance examinations. KEY FEATURES: * 29 chapters on Optics, Wave & Oscillations, Electromagnetic Field Theory, Solid State Physics & Modern Physics * 540 solved numerical problems of various universities and ompetitive examinations * 523 multiple choice questions for quick and clear understanding of subject matter * 567 unsolved numerical problems for grasping concepts of the various topic in Physics * 49 Figures for understanding problems and concept

  4. Experimental and numerical study of a printed circuit heat exchanger

    International Nuclear Information System (INIS)

    Chen, Minghui; Sun, Xiaodong; Christensen, Richard N.; Shi, Shanbin; Skavdahl, Isaac; Utgikar, Vivek; Sabharwall, Piyush

    2016-01-01

    Highlights: • A dynamic model is developed for transient analysis of the straight-channel PCHE. • Transient scenarios of the straight-channel PCHE subject to helium temperature and mass flow rate variations are numerically investigated. • Steady-state temperature distribution inside the straight-channel PCHE is obtained in calculation. • Experiments are conducted to study the dynamic behavior of the straight-channel PCHE. - Abstract: Printed circuit heat exchangers (PCHEs) are promising to be employed in very-high-temperature gas-cooled reactors (VHTRs) due to their high robustness for high-temperature, high-pressure applications and high compactness. PCHEs typically serve as intermediate heat exchangers (IHXs) that isolate the secondary loop from the reactor’s primary system and hence must be sufficiently robust to maintain the system integrity during normal and off-normal conditions. In addition, the performance of the PCHE-type IHX could considerably affect the nuclear power plant overall operation since any transients on the secondary side would be propagated back to the reactor’s primary coolant system via the IHX. It is therefore imperative to understand how the PCHE would dynamically respond to a variety of transients. In the current study, experiments were first conducted to examine the steady-state thermal performance of a reduced-scale straight-channel PCHE. A dynamic model benchmarked in a previous study was then used to predict the steady-state and transient behavior of the PCHE. The steady-state temperature profiles of the working fluids on both the hot and cold sides and in the solid plates of the heat exchanger were obtained, which served as the initial condition for the transient simulations. The detailed dynamic response of the straight-channel PCHE, subject to inlet temperature variations, helium mass flow variations, and combinations of the two, was simulated and analyzed. In addition, two sets of transient tests, one for helium inlet

  5. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian

    2014-10-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  6. Numerical studies of deuterium-tritium ignition in impact-fusion targets

    International Nuclear Information System (INIS)

    Zubrin, R.M.; Ribe, F.L.

    1989-01-01

    A numerical one-dimensional solution of the Euler equations for an imploding spherical tungsten shell with internal deuterium-tritium gas is applied to study impact-fusion dynamics with parameters of fusion reactor relevance. Thermal conduction and radiative energy loss by the plasma are taken into account, as is heating by fusion generated alpha particles. A variety of target sizes and impact velocities are examined, and scaling laws for fusion yields are deduced which define possible parameters for conceptual commercial impact-fusion power reactors. It is found that shell energies and velocities of about 30 MJ and 110 km/s would be satisfactory. A commercial impact-fusion reactor based on such parameters is discussed

  7. Numerical study of the thermal and aerodynamic insulation of a cavity with a vertical downstream air jet

    Energy Technology Data Exchange (ETDEWEB)

    Mhiri, H.; El Golli, S. [Ecole Nationale d`Ingenieurs, Monastir (Tunisia). Lab. d`Energetique; Berthon, A.; Le Palec, G.; Bournot, P. [Technopole de Chateau-Gombert, Marseille (France)

    1998-10-01

    Because of its numerous industrial applications (air conditioning, thermal insulation, behavior of fires), heat transfer in rectangular cavities has made the subject of many works which concern both theoretical numerical studies and experimental investigations. This work is devoted to a numerical approach of the laminar mixed convection in a cavity which one of the boundaries is materialized by a laminar vertical downstream air jet. The purpose is to analyze the interaction of this flow with the natural movement that grows in the cavity under the combined action of boundary thermal gradients and external medium of the cavity in order to examine thermal insulation qualities of the jet. Calculations have been made with the help of the finite volume method.

  8. Theoretical and numerical study of highly anisotropic turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.

    2004-01-01

    We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical

  9. Numerical capacities as domain-specific predictors beyond early mathematics learning: a longitudinal study.

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3(rd) and 4(th) grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively "start-up" tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school.

  10. Numerical Studies of Homogenization under a Fast Cellular Flow

    KAUST Repository

    Iyer, Gautam

    2012-09-13

    We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.

  11. Numerical Studies of Homogenization under a Fast Cellular Flow

    KAUST Repository

    Iyer, Gautam; Zygalakis, Konstantinos C.

    2012-01-01

    We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.

  12. Numerical Capacities as Domain-Specific Predictors beyond Early Mathematics Learning: A Longitudinal Study

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3rd and 4th grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively “start-up” tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school. PMID:24255710

  13. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  14. Biofouling in forward osmosis systems: An experimental and numerical study

    KAUST Repository

    Bucs, Szilard; Valladares Linares, Rodrigo; Vrouwenvelder, Johannes S.; Picioreanu, Cristian

    2016-01-01

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute

  15. Children's Mental Representation When Comparing Fractions with Common Numerators

    Science.gov (United States)

    Liu, Chunhui; Xin, Ziqiang; Lin, Chongde; Thompson, Clarissa A.

    2013-01-01

    Researchers debate whether one represents the magnitude of a fraction according to its real numerical value or just the discrete numerosity of its numerator or denominator. The present study examined three effects based on the notion that people possess a mental number line to explore how children represent fractions when they compare fractions…

  16. 3D Numerical Examination of Continental Mantle Lithosphere Response to Lower Crust Eclogitization and Nearby Slab Subduction

    Science.gov (United States)

    Janbakhsh, P.; Pysklywec, R.

    2017-12-01

    2D numerical modeling techniques have made great contribution to understanding geodynamic processes involved in crustal and lithospheric scale deformations for the past 20 years. The aim of this presentation is to expand the scope covered by previous researchers to 3 dimensions to address out-of-plane intrusion and extrusion of mantle material in and out of model space, and toroidal mantle wedge flows. In addition, 3D velocity boundary conditions can create more realistic models to replicate real case scenarios. 3D numerical experiments that will be presented are designed to investigate the density and viscosity effects of lower crustal eclogitization on the decoupling process of continental mantle lithosphere from the crust and its delamination. In addition, these models examine near-field effects of a subducting ocean lithosphere and a lithospheric scale fault zone on the evolution of the processes. The model solutions and predictions will also be compared against the Anatolian geology where subduction of Aegean and Arabian slabs, and the northern boundary with the North Anatolian Fault Zone are considered as two main contributing factors to anomalous crustal uplift, missing mantle lithosphere, and anomalous surface heat flux.

  17. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-12-26

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions

  18. Numerical study of fluid motion in bioreactor with two mixers

    Energy Technology Data Exchange (ETDEWEB)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  19. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    International Nuclear Information System (INIS)

    Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi

    2008-01-01

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies

  20. Guadalupe River, California, Sedimentation Study. Numerical Model Investigation

    National Research Council Canada - National Science Library

    Copeland, Ronald

    2002-01-01

    A numerical model study was conducted to evaluate the potential impact that the Guadalupe River flood-control project would have on channel stability in terms of channel aggradation and degradation...

  1. Numerical studies of the stochastic Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Lin Guang; Grinberg, Leopold; Karniadakis, George Em

    2006-01-01

    We present numerical solutions of the stochastic Korteweg-de Vries equation for three cases corresponding to additive time-dependent noise, multiplicative space-dependent noise and a combination of the two. We employ polynomial chaos for discretization in random space, and discontinuous Galerkin and finite difference for discretization in physical space. The accuracy of the stochastic solutions is investigated by comparing the first two moments against analytical and Monte Carlo simulation results. Of particular interest is the interplay of spatial discretization error with the stochastic approximation error, which is examined for different orders of spatial and stochastic approximation

  2. Numerical study of effect of oxygen fraction on local entropy ...

    Indian Academy of Sciences (India)

    This study considers numerical simulation of the combustion of methane with air, including oxygen and nitrogen, in a burner and the numerical solution of local entropy generation rate due to high temperature and velocity gradients in the combustion chamber. The effects of equivalence ratio () and oxygen percentage () ...

  3. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  4. Numerical Study on the 1682 Tainan Historic Tsunami Event

    Science.gov (United States)

    Tsai, Y.; Wu, T.; Lee, C.; KO, L.; Chuang, M.

    2013-12-01

    We intend to reconstruct the tsunami source of the 1682/1782 tsunami event in Tainan, Taiwan, based on the numerical method. According to Soloviev and Go (1974), a strong earthquake shook the Tainan and caused severe damage, followed by tsunami waves. Almost the whole island was flooded by tsunami for over 120 km. More than 40,000 inhabitants were killed. Forts Zealand and Pigchingi were washed away. 1682/1782 event was the highest death toll in the Pacific Ocean regarded by Bryant (2001). However, the year is ambiguous in 1682 or 1782, and death toll is doubtful. We tend to believe that this event was happened in 1682 based on the evolution of the harbor name. If the 1682 tsunami event does exist, the hazard mitigation plan has to be modified, and restoring the 1682 event becomes important. In this study, we adopted the tsunami reverse tracking method (TRTM) to examine the possible tsunami sources. A series of numerical simulations were carried out by using COMCOT (Cornell Multi-grid Coupled Tsunami model), and nested grid with 30 m resolution was applied to the study area. According to the result of TRTM, the 1682 tsunami is most likely sourcing from the north segment of Manila Trench. From scenario study, we concluded that the 1682 event was triggered by an Mw >= 8.8 earthquake in north segment of Manila Trench, and 4 m wave height was observed in Tainan and its inundation range is agreeable with historical records. If this scenario occurred again, sever damage and death toll will be seen many high population cities, such as Tainan city, Kaohsiung city and Kenting, where No. 3 nuclear power plant is located. Detailed results will be presented in the full paper. Figure 1. Map of Tsunami Reverse Tracking Method (TRTM) in Tainan. Black arrow indicates direction of possible tsunami direction. The color bar denotes the magnitude of the maximum moment flux. Figure 2. Scenario result of Mw 8.8 in northern segment of Manila Trench. (Left: Initial free surface elevation

  5. Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study.

    Science.gov (United States)

    Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-Song; Chen, Fei-Yan

    2015-08-01

    Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation.

  6. A Numerical Study on Impact of Taiwan Island Surface Heat Flux on Super Typhoon Haitang (2005)

    OpenAIRE

    Xu, Hongxiong

    2015-01-01

    Three to four tropical cyclones (TCs) by average usually impact Taiwan every year. This study, using the Developmental Tested Center (DTC) version of the Hurricane WRF (HWRF) model, examines the effects of Taiwan’s island surface heat fluxes on typhoon structure, intensity, track, and its rainfall over the island. The numerical simulation successfully reproduced the structure and intensity of super Typhoon Haitang. The model, especially, reproduced the looped path and landfall at nearly the ...

  7. Numerical study with experimental comparison of pressure waves in the air intake system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Carlos E.G.; Vielmo, Horacio A. [Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Mechanical Engineering Dept.], E-mails: vielmoh@mecanica.ufrgs.br; Hanriot, Sergio M. [Pontifical Catholic University of Minas Gerais (PUC-Minas), Belo Horizonte, MG (Brazil). Mechanical Engineering Dept.], E-mail: hanriot@pucminas.br

    2010-07-01

    The work investigates the pressure waves behavior in the intake system of an internal combustion engine. For the purpose of examining this problem, it was chosen an experimental study in order to validate the results of the present simulation. At the literature there are several experimental studies, and some numerical simulations, but the most of the numerical studies treat the problem only in one dimension in practical problems, or two dimensions in specific problems. Using a CFD code it is possible to analyze more complex systems, including tridimensional effects. The pulsating phenomenon is originated from the periodic movement of the intake valve, and produces waves that propagate within the system. The intake system studied was composed by a straight pipe connected to a 1000 cc engine with a single operating cylinder. The experiments were carried out in a flow bench. In the present work, the governing equations was discretized by Finite Volumes Method with an explicit formulation, and the time integration was made using the multi-stage Runge-Kutta time stepping scheme. The solution is independent of mesh or time step. The numerical analysis presents a good agreement with the experimental results. (author)

  8. Numerical study of a hybrid jet impingement/micro-channel cooling scheme

    International Nuclear Information System (INIS)

    Barrau, Jérôme; Omri, Mohammed; Chemisana, Daniel; Rosell, Joan; Ibañez, Manel; Tadrist, Lounes

    2012-01-01

    A new hybrid jet impingement/micro-channel cooling scheme is studied numerically for use in high-heat-flux thermal management of electronic and power devices. The device is developed with the objective of improving the temperature uniformity of the cooled object. A numerical model based on the k–ω SST turbulent model is developed and validated experimentally. This model is used to carry out a parametrical characterization of the heat sink. The study shows that variations in key parameters of jet impingement and micro-channel technologies allow for the cooling scheme to obtain a wide range of temperature profiles for the cooled object. - Highlights: ► A new hybrid cooling scheme is numerically studied. ► The cooling scheme combines the benefits of jet impingement and micro-channel flows. ► The numerical model is validated by comparison with experimental results. ► The temperature distribution can be adapted to the needs of the cooled system.

  9. Numerical Simulations of Kinetic Alfvén Waves to Study Spectral ...

    Indian Academy of Sciences (India)

    Numerical Simulations of Kinetic Alfvén Waves to Study Spectral. Index in Solar Wind Turbulence and Particle Heating. R. P. Sharma. ∗. & H. D. Singh. Center for Energy Studies, Indian Institute of Technology, Delhi 110 016, India. ∗ e-mail: rpsharma@ces.iitd.ernet.in. Abstract. We present numerical simulations of the ...

  10. Analytical and numerical studies of creation probabilities of hierarchical trees

    Directory of Open Access Journals (Sweden)

    S.S. Borysov

    2011-03-01

    Full Text Available We consider the creation conditions of diverse hierarchical trees both analytically and numerically. A connection between the probabilities to create hierarchical levels and the probability to associate these levels into a united structure is studied. We argue that a consistent probabilistic picture requires the use of deformed algebra. Our consideration is based on the study of the main types of hierarchical trees, among which both regular and degenerate ones are studied analytically, while the creation probabilities of Fibonacci, scale-free and arbitrary trees are determined numerically.

  11. Numerical study of nonspherical black hole accretion

    International Nuclear Information System (INIS)

    Hawley, J.F.

    1984-01-01

    This thesis describes in detail a two-dimensional, axisymmetric computer code for calculating fully relativistic ideal gas hydrodynamics around a Kerr black hole. The aim is to study fully dynamic inviscid fluid accretion onto black holes, as well as to study the evolution and development of nonlinear instabilities in pressure supported accretion disks. In order to fully calibrate and document the code, certain analytic solutions for shock tubes and special accretion flows are derived; these solutions form the basis for code testing. The numerical techniques used are developed and discussed. A variety of alternate differencing schemes are compared on an analytic test bed. Some discussion is devoted to general issues in finite differencing. The working code is calibrated using analytically solvable accretion problems, including the radial accretion of dust and of fluid with pressure (Bondi accretion). Two dimensional test problems include the spiraling infall of low angular momentum fluid, the formation of a pressure supported torus, and the stable evolution of a torus. A series of numerical models are discussed and illustrated with selected plots

  12. Numerical study of thermal test of a cask of transportation for radioactive material

    International Nuclear Information System (INIS)

    Vieira, Tiago A.S.; Santos, André A.C. dos; Vidal, Guilherme A.M.; Silva Junior, Geraldo E.

    2017-01-01

    In this study numerical simulations of a transport cask for radioactive material were made and the numerical results were compared with experimental results of tests carried out in two different opportunities. A mesh study was also made regarding the previously designed geometry of the same cask, in order to evaluate its impact in relation to the stability of numerical results for this type of problem. The comparison of the numerical and experimental results allowed to evaluate the need to plan and carry out a new test in order to validate the CFD codes used in the numerical simulations

  13. Numerical Study of Pollutant Emissions in a Jet Stirred Reactor under Elevated Pressure Lean Premixed Conditions

    Directory of Open Access Journals (Sweden)

    Karim Mazaheri

    2016-01-01

    Full Text Available Numerical study of pollutant emissions (NO and CO in a Jet Stirred Reactor (JSR combustor for methane oxidation under Elevated Pressure Lean Premixed (EPLP conditions is presented. A Detailed Flow-field Simplified Chemistry (DFSC method, a low computational cost method, is employed for predicting NO and CO concentrations. Reynolds Averaged Navier Stokes (RANS equations with species transport equations are solved. Improved-coefficient five-step global mechanisms derived from a new evolutionary-based approach were taken as combustion kinetics. For modeling turbulent flow field, Reynolds Stress Model (RSM, and for turbulence chemistry interactions, finite rate-Eddy dissipation model are employed. Effects of pressure (3, 6.5 bars and inlet temperature (408–573 K over a range of residence time (1.49–3.97 ms are numerically examined. A good agreement between the numerical and experimental distribution of NO and CO was found. The effect of decreasing the operating pressure on NO generation is much more than the effect of increase in the inlet temperature.

  14. Study on the groundwater sustainable problem by numerical ...

    Indian Academy of Sciences (India)

    Pengpeng Zhou

    2017-10-07

    Oct 7, 2017 ... system in Zhanjiang, China, this paper presents a numerical modelling study to research groundwater sustainability of ... bility is a feasible method for solving the sus- ...... Singh A 2010 Decision support for on-farm water man-.

  15. A numerical study of a turbulent axisymmetric jet emerging in a co-flowing stream

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Houda, E-mail: mahhouda2003@yahoo.f [Unite de thermique et thermodynamique des procedes industriels, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5020 Monastir (Tunisia); Kriaa, Wassim; Mhiri, Hatem [Unite de thermique et thermodynamique des procedes industriels, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5020 Monastir (Tunisia); Palec, Georges Le; Bournot, Philippe [IUSTI, UMR CNRS 6595, 5 Rue Enrico Fermi, Technopole de Chateau-Gombert, 13013 Marseille (France)

    2010-11-15

    In this work, we propose a numerical study of an axisymmetric turbulent jet discharging into co-flowing stream with different velocities ratios ranging between 0 and {infinity}. The standard k-{epsilon} model and the RSM model were applied in this study. The numerical resolution of the governing equations was carried out using two computed codes: the first is a personal code and the second is a commercial CFD code FLUENT 6.2. These two codes are based on a finite volume method. The present predictions are compared with the experimental data. The results show that the two turbulence models are valid to predict the average and turbulent flow sizes. Also, the effect of the velocities ratios on the flow structure was examined. For R{sub u} > 1, it is noted the appearance of the fall velocity zone due to the presence of a trough low pressure. This fall velocity becomes increasingly intense according to R{sub u} and changes into a recirculation zone for R{sub u} {>=} 4.5. This zone is larger and approaches more the nozzle injection when R{sub u} increases.

  16. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  17. Numerical study of free pulsed jet flow with variable density

    Energy Technology Data Exchange (ETDEWEB)

    Kriaa, Wassim [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, 5000 Monastir (Tunisia)], E-mail: kriaawass@yahoo.fr; Cheikh, Habib Ben; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, 5000 Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, 60 rue Juliot Curie Technopole de Chateau-Gombert 13453, Marseille Cedex 13 (France)

    2008-05-15

    In this work, we propose a numerical study of a free pulsed plane jet with variable density in unsteady and laminar modes. At the nozzle exit, the flow is characterized by a uniform temperature and submitted to a longitudinal and periodic velocity disturbance: u = u{sub 0}(1 + A sin({omega}t)). A finite difference method is performed to solve the equations governing this flow type. The discussion relates to the effect of the most significant parameters, such as the pulsation frequency and amplitude, on the flow characteristic fields. The effects of Reynolds and Galileo numbers was also examined. The results show that the pulsation affects the flow in the vicinity of the nozzle, and further, the results of the unsteady mode join those of the steady non-pulsed jet. The results state also that the Strouhal number has no influence on the flow mixture degree, whereas the amplitude of pulsation affects, in a remarkable way, the mixture and, consequently, the concentration core length.

  18. Numerical study on discharge process of microcavity plasma

    International Nuclear Information System (INIS)

    Xia Guangqing; Xue Weihua; Wang Dongxue; Zhu Guoqiang; Zhu Yu

    2012-01-01

    The evolution of plasma parameters during high pressure discharge in the microcavity with a hollow anode was numerically studied, with a two-dimensional self-consistent fluid model. The simulations were performed with argon at 13.3 kPa. The numerical results show that during the discharge the electric field around the cathode transforms from an axial field to a radial field, the plasma density gets the maximum value on the central line of the cavity and the location of the maximum density moves from the region near anode at the initial stage to the cathode vicinity at the stable stage, and the maximum electron temperature occurs in the ring sheath of cathode. (authors)

  19. Numerical simulation of gas metal arc welding parametrical study

    International Nuclear Information System (INIS)

    Szanto, M.; Gilad, I.; Shai, I.; Quinn, T.P.

    2002-01-01

    The Gas Metal Arc Welding (GMAW) is a widely used welding process in the industry. The process variables are usually determined through extensive experiments. Numerical simulation, reduce the cost and extends the understanding of the process. In the present work, a versatile model for numerical simulation of GMAW is presented. The model provides the basis for fundamental understanding of the process. The model solves the magneto-hydrodynamic equations for the flow and temperature fields of the molten electrode and the plasma simultaneously, to form a fully coupled model. A commercial CFD code was extended to include the effects of radiation, Lorentz forces, Joule heating and thermoelectric effects. The geometry of the numerical model assembled to fit an experimental apparatus. To demonstrate the method, an aluminum electrode was modeled in a pure argon arc. Material properties and welding parameters are the input variables in the numerical model. In a typical process, the temperature distribution of the plasma is over 15000 K, resulting high non-linearity of the material properties. Moreover, there is high uncertainty in the available property data, at that range of temperatures. Therefore, correction factors were derived for the material properties to adjust between the numerical and the experimental results. Using the compensated properties, parametric study was performed. The effects of the welding parameters on the process, such the working voltage, electrode feed rate and shielding gas flow, were derived. The principal result of the present work is the ability to predict, by numerical simulation, the mode, size and frequency of the metal transferred from the electrode, which is the main material and energy source for the welding pool in GMAW

  20. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections

    International Nuclear Information System (INIS)

    Gang, Wang; Kai-Xin, Liu; De-Liang, Zhang

    2010-01-01

    The critical wedge angle (CWA) for the transition from regular reflection (RR) to Mach reflection (MR) of a cellular detonation wave is studied numerically by an improved space-time conservation element and solution element method together with a two-step chemical reaction model. The accuracy of that numerical way is verified by simulating cellular detonation reflections at a 19.3° wedge. The planar and cellular detonation reflections over 45°–55° wedges are also simulated. When the cellular detonation wave is over a 50° wedge, numerical results show a new phenomenon that RR and MR occur alternately. The transition process between RR and MR is investigated with the local pressure contours. Numerical analysis shows that the cellular structure is the essential reason for the new phenomenon and the CWA of detonation reflection is not a certain angle but an angle range. (fundamental areas of phenomenology(including applications))

  1. Numerical studies on divertor experiments

    International Nuclear Information System (INIS)

    Ueda, N.; Itoh, K.; Itoh, S.-I.; Tanaka, M.; Hasegawa, M.; Shoji, T.; Sugihara, M.

    1988-04-01

    Numerical analysis on the divertor experiments such as JFT-2M tokamak is made by use of the two-dimensional time-dependent simulation code. The plasma in the scrape-off layer (SOL) and divertor region is solved for the given particle and heat sources from the main plasma, Γ p and Q T . Effect of the direction of the toroidal magnetic field is studied. It is found that the heat flux which is proportional to b vector x ∇T i has influences on the divertor plasmas, but has a small effect on the parameters on the midplane in the framework of the fluid model. Parameter survey on Γ p and Q T is made. The transient response of the SOL/divertor plasma to the sudden change of Γ p and Q T is studied. Time delay in the SOL and divertor region is calculated. (author)

  2. Numerical and experimental studies of droplet-gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Joesang, Aage Ingebret

    2002-07-01

    This thesis considers droplet-gas flow by the use of numerical methods and experimental verification. A commercial vane separator was studied both numerical and by experiment. In addition some efforts are put into the numerical analysis of cyclones. The experimental part contains detailed measurements of the flow field between a pair of vanes in a vane separator and droplet size measurements. LDA (Laser Doppler Anemometry) was used to measure the velocity in two dimensions and corresponding turbulence quantities. The results from the LDA measurements are considered to be of high quality and are compared to numerical results obtained from a CFD (Computational Fluid Dynamics) analysis. The simulation showed good agreement between the numerical and experimental results. Combinations of different turbulence models; the standard k-epsilon model and the Reynold Stress Mode, different schemes; first order and higher order scheme and different near wall treatment of the turbulence; the Law of the wall and the Two-Layer Zonal model were used in the simulations. The Reynold Stress Model together with a higher order scheme performed rather poorly. The recirculation in parts of the separator was overpredicted in this case. For the other cases the overall predictions are satisfactory. PDA (Phase Doppler Anemometry) measurements were used to study the changes in the droplet size distribution through the vane separator. The PDA measurements show that smaller droplets are found at the outlet than present at the inlet. In the literature there exists different mechanisms for explaining the re-entrainment and generation of new droplets. The re-entrainments mechanisms are divided into four groups where droplet-droplet interaction, droplet break-up, splashing of impinging droplet and re-entrainment from the film are defined as the groups of re-entrainment mechanisms. Models for these groups are found in the literature and these models are tested for re-entrainment using the operational

  3. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    International Nuclear Information System (INIS)

    Mehrling, Timon Johannes

    2014-11-01

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exceed with 10-100 GV/m the ones in today's radio-frequency accelerators by several orders of magnitude, hence, in principle allowing for accordingly shorter and cheaper accelerators based on plasma. Despite the tremendous progress in the recent decade, beams from plasma accelerators are not yet achieving the quality as demanded for pivotal applications of relativistic electron-beams, e.g. free-electron lasers (FELs).Studies within this work examine how the quality can be optimized in the production of the beams and preserved during the acceleration and transport to the interaction region. Such studies cannot be approached purely analytical but necessitate numerical methods, such as the Particle-In-Cell (PIC) method, which can model kinetic, electrodynamic and relativistic plasma phenomena. However, this method is computationally too expensive for parameter-scans in three-dimensional geometries. Hence, a quasi-static PIC code was developed in connection with this work, which is significantly more effective than the full PIC method for a class of problems in plasma-based acceleration.The evolution of the emittance of beams which are injected into plasma modules was studied in this work by means of theoretical and the above numerical methods. It was shown that the beam parameters need to be matched accurately into the focusing plasma-channel in order to allow for beam-quality preservation. This suggested that new extraction and injection-techniques are required in staged plasma

  4. The Adriatic response to the bora forcing. A numerical study

    International Nuclear Information System (INIS)

    Rachev, N.

    2001-01-01

    This paper deals with the bora wind effect on the Adriatic Sea circulation as simulated by a 3-D numerical code (the DieCAST model). The main result of this forcing is the formation of intense upwelling along the eastern coast in agreement with previous theoretical studies and observations. Different numerical experiments are discussed for various boundary and initial conditions to evaluate their influence on both circulation and upwelling patterns

  5. Experimental and numerical study of an autonomous flap

    NARCIS (Netherlands)

    Bernhammer, L.O.; Navalkar, S.T.; Sodja, J.; De Breuker, R.; Karpel, M.

    2015-01-01

    This paper presents the experimental and numerical study of an autonomous load alleviation concept using trailing edge flaps. The flaps are autonomous units, which for instance can be used for gust load alleviation. The unit is self-powered and self-actuated through trailing edge tabs which are

  6. Is 27 a Big Number? Correlational and Causal Connections among Numerical Categorization, Number Line Estimation, and Numerical Magnitude Comparison

    Science.gov (United States)

    Laski, Elida V.; Siegler, Robert S.

    2007-01-01

    This study examined the generality of the logarithmic to linear transition in children's representations of numerical magnitudes and the role of subjective categorization of numbers in the acquisition of more advanced understanding. Experiment 1 (49 girls and 41 boys, ages 5-8 years) suggested parallel transitions from kindergarten to second grade…

  7. Biofouling in forward osmosis systems: An experimental and numerical study.

    Science.gov (United States)

    Bucs, Szilárd S; Valladares Linares, Rodrigo; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2016-12-01

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biofouling in forward osmosis systems: An experimental and numerical study

    KAUST Repository

    Bucs, Szilard

    2016-09-20

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling. © 2016 Elsevier Ltd

  9. Analytical and Numerical Studies of Sloshing in Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Solaas, F

    1996-12-31

    For oil cargo ship tanks and liquid natural gas carriers, the dimensions of the tanks are often such that the highest resonant sloshing periods and the ship motions are in the same period range, which may cause violent resonant sloshing of the liquid. In this doctoral thesis, linear and non-linear analytical potential theory solutions of the sloshing problem are studied for a two-dimensional rectangular tank and a vertical circular cylindrical tank, using perturbation technique for the non-linear case. The tank is forced to oscillate harmonically with small amplitudes of sway with frequency in the vicinity of the lowest natural frequency of the fluid inside the tank. The method is extended to other tank shapes using a combined analytical and numerical method. A boundary element numerical method is used to determine the eigenfunctions and eigenvalues of the problem. These are used in the non-linear analytical free surface conditions, and the velocity potential and free surface elevation for each boundary value problem in the perturbation scheme are determined by the boundary element method. Both the analytical method and the combined analytical and numerical method are restricted to tanks with vertical walls in the free surface. The suitability of a commercial programme, FLOW-3D, to estimate sloshing is studied. It solves the Navier-Stokes equations by the finite difference method. The free surface as function of time is traced using the fractional volume of fluid method. 59 refs., 54 figs., 37 tabs.

  10. Analytical and Numerical Studies of Sloshing in Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Solaas, F.

    1995-12-31

    For oil cargo ship tanks and liquid natural gas carriers, the dimensions of the tanks are often such that the highest resonant sloshing periods and the ship motions are in the same period range, which may cause violent resonant sloshing of the liquid. In this doctoral thesis, linear and non-linear analytical potential theory solutions of the sloshing problem are studied for a two-dimensional rectangular tank and a vertical circular cylindrical tank, using perturbation technique for the non-linear case. The tank is forced to oscillate harmonically with small amplitudes of sway with frequency in the vicinity of the lowest natural frequency of the fluid inside the tank. The method is extended to other tank shapes using a combined analytical and numerical method. A boundary element numerical method is used to determine the eigenfunctions and eigenvalues of the problem. These are used in the non-linear analytical free surface conditions, and the velocity potential and free surface elevation for each boundary value problem in the perturbation scheme are determined by the boundary element method. Both the analytical method and the combined analytical and numerical method are restricted to tanks with vertical walls in the free surface. The suitability of a commercial programme, FLOW-3D, to estimate sloshing is studied. It solves the Navier-Stokes equations by the finite difference method. The free surface as function of time is traced using the fractional volume of fluid method. 59 refs., 54 figs., 37 tabs.

  11. Current status of regional hydrogeological studies and numerical simulations on geological disposal

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Kikuchi, Tsuneo; Ishido, Tsuneo

    2004-01-01

    Current status of regional hydrogeological studies on geological disposal including hydrogeological modeling using numerical simulators is reviewed in this report. A regional scale and boundary conditions of numerical models are summarized mainly from the results of the RHS (regional hydrogeological study) project conducted by Japan Nuclear Cycle Development Institute (JNC) in the Tono area. We also refer to the current conceptual modes of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada, which is the arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Understanding behavior of a freshwater-saltwater transition zone seems to play a key role in the hydrogeological modeling in a coastal region. Technical features of a numerical simulator as a tool for geothermal reservoir modeling is also briefly described. (author)

  12. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.

    Science.gov (United States)

    Xiao, Huahua; Sun, Jinhua; Chen, Peng

    2014-03-15

    An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. On the Numerical and Experimental Study of Spray Cooling

    Directory of Open Access Journals (Sweden)

    M.R. Guechi

    2013-12-01

    Full Text Available The spraying of an impinging jet is an effective way to cool heated surfaces. The objective of this study is to develop a numerical model to predict the heat transfer with phase change between a hot plate surface and a two-phase impinging jet. Different two-phase modeling approaches (Lagrangian and Eulerian methods are compared. The influence of the spray nozzle operating conditions and of the distance between the nozzle exit and the surface impact is analyzed. The numerical results are compared with measurements obtained on an experimental test bench. The confrontation numerical/experimental is carried out by comparing the distribution of temperature at the surface of the plate and the heat transfer coefficient. This comparison shows that it is the Eulerian model which seems most capable to take into account the evaporation of the droplets in contact with the heated plate. However, the simulation performed with this model show a strong dependence of the results to the turbulence model used.

  14. Interdisciplinary Study of Numerical Methods and Power Plants Engineering

    Directory of Open Access Journals (Sweden)

    Ioana OPRIS

    2014-08-01

    Full Text Available The development of technology, electronics and computing opened the way for a cross-disciplinary research that brings benefits by combining the achievements of different fields. To prepare the students for their future interdisciplinary approach,aninterdisciplinary teaching is adopted. This ensures their progress in knowledge, understanding and ability to navigate through different fields. Aiming these results, the Universities introduce new interdisciplinary courses which explore complex problems by studying subjects from different domains. The paper presents a problem encountered in designingpower plants. The method of solvingthe problem isused to explain the numerical methods and to exercise programming.The goal of understanding a numerical algorithm that solves a linear system of equations is achieved by using the knowledge of heat transfer to design the regenerative circuit of a thermal power plant. In this way, the outcomes from the prior courses (mathematics and physics are used to explain a new subject (numerical methods and to advance future ones (power plants.

  15. Numerical study on anaerobic digestion of fruit and vegetable waste: Biogas generation

    Science.gov (United States)

    Wardhani, Puteri Kusuma; Watanabe, Masaji

    2016-02-01

    The study provides experimental results and numerical results concerning anaerobic digestion of fruit and vegetable waste. Experiments were carried out by using batch floating drum type digester without mixing and temperature setting. The retention time was 30 days. Numerical results based on Monod type model with influence of temperature is introduced. Initial value problems were analyzed numerically, while kinetic parameters were analyzed by using trial error methods. The numerical results for the first five days seems appropriate in comparison with the experimental outcomes. However, numerical results shows that the model is inappropriate for 30 days of fermentation. This leads to the conclusion that Monod type model is not suitable for describe the mixture degradation of fruit and vegetable waste and horse dung.

  16. The Use of Numerical Applications in the Study of Dental Contacts

    Directory of Open Access Journals (Sweden)

    Rodica LUCA

    2010-06-01

    Full Text Available This paper seeks to explore the numerical analysis methods used in dentistry in general and those regarding teeth contacts, in particular. Typically, such an analysis consists of the following steps: modelling the actual object, mesh generation, numerical modelling and computer programming. The best known and mostly used of all is the finite element method. The paper also presents other more refined methods, for instance: CATIA and fast Fourier transform. The study of the living tissue based on numerical analysis exceeds the limitations of in vivo experiments but computers can never replicate the body adaptation capacity.

  17. Numerical Study on Ultimate Behaviour of Bolted End-Plate Steel Connections

    Directory of Open Access Journals (Sweden)

    R.E.S. Ismail

    Full Text Available Abstract Bolted end-plate steel connections have become more popular due to ease of fabrication. This paper presents a three dimension Finite Element Model (FEM, using the multi-purpose software ABAQUS, to study the effect of different geometrical parameters on the ultimate behavior of the connection. The proposed model takes into account material and geometrical non-linearities, initial imperfection, contact between adjacent surfaces and the pretension force in the bolts. The Finite Element results are calibrated with published experimental results ''briefly reviewed in this paper'' and verified that the numerical model can simulate and analyze the overall and detailed behavior of different types of bolted end-plate steel connections. Using verified FEM, parametric study is then carried out to study the ultimate behavior with variations in: bolt diameter, end-plate thickness, length of column stiffener, angle of rib stiffener. The results are examined with respect to the failure modes, the evolution of the resistance, the initial stiffness, and the rotation capacity. Finally, the ultimate behavior of the bolted end-plate steel connection is discussed in detail, and recommendations for the design purpose are made.

  18. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    International Nuclear Information System (INIS)

    Sokovikov, Mikhail; Chudinov, Vasiliy; Bilalov, Dmitry; Oborin, Vladimir; Uvarov, Sergey; Plekhov, Oleg; Terekhina, Alena; Naimark, Oleg

    2014-01-01

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically

  19. Numerical study of optimal equilibrium cycles for pressurized water reactors

    International Nuclear Information System (INIS)

    Mahlers, Y.P.

    2003-01-01

    An algorithm based on simulated annealing and successive linear programming is applied to solve equilibrium cycle optimization problems for pressurized water reactors. In these problems, the core reload scheme is represented by discrete variables, while the cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are treated as continuous variables. The enrichments are considered to be distinct in all feed fuel assemblies. The number of batches and their sizes are not fixed and also determined by the algorithm. An important feature of the algorithm is that all the parameters are determined by the solution of one optimization problem including both discrete and continuous variables. To search for the best reload scheme, simulated annealing is used. The optimum cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are determined for each reload pattern examined using successive linear programming. Numerical results of equilibrium cycle optimization for various values of the effective price of electricity and fuel reprocessing cost are studied

  20. Basic study on the rectangular numeric keys for touch screen.

    Science.gov (United States)

    Harada, H; Katsuura, T; Kikuchi, Y

    1997-06-01

    The present study was conducted to examine the optimum inter-key spacing of numeric rectangular keys for touch screens. Six male students (22-25 years old) and three female students (21-24 years old) participated in the experiment. Each subject performed the data entry task using rectangular keys of touch devices. These keys were arranged in both horizontal and vertical layouts. The sizes of the rectangular keys in both layouts were 12 x 21 mm and 15 x 39 mm, and each of the inter-key spacing of each key was 0, 3, 6, 12 and 21 mm. The response time with inter-key spacing of 3 mm was significantly faster than with the inter-key spacing of 0, 12 and 21 mm (p < 0.05). Keys of vertical position produced faster response time than that of horizontal position. The subjective ratings showed that the inter-key spacing of 6 mm was significantly better than the inter-key spacing of 0, 3, 12 and 21 mm (p < 0.05).

  1. Experimental and numerical studies of microwave-plasma interaction in a MWPECVD reactor

    Directory of Open Access Journals (Sweden)

    A. Massaro

    2016-12-01

    Full Text Available This work deals with and proposes a simple and compact diagnostic method able to characterize the interaction between microwave and plasma without the necessity of using an external diagnostic tool. The interaction between 2.45 GHz microwave and plasma, in a typical ASTeX-type reactor, is investigated from experimental and numerical view points. The experiments are performed by considering plasmas of three different gas mixtures: H2, CH4-H2 and CH4-H2-N2. The two latter are used to deposit synthetic undoped and n-doped diamond films. The experimental setup equipped with a matching network enables the measurements of very low reflected power. The reflected powers show ripples due to the mismatching between wave and plasma impedance. Specifically, the three types of plasma exhibit reflected power values related to the variation of electron-neutral collision frequency among the species by changing the gas mixture. The different gas mixtures studied are also useful to test the sensitivity of the reflected power measurements to the change of plasma composition. By means of a numerical model, only the interaction of microwave and H2 plasma is examined allowing the estimation of plasma and matching network impedances and of reflected power that is found about eighteen times higher than that measured.

  2. Experimental and numerical study of guided wave propagation in a thin metamaterial plate

    International Nuclear Information System (INIS)

    Zhu, R.; Huang, G.L.; Huang, H.H.; Sun, C.T.

    2011-01-01

    In this Letter, both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. Through the numerical simulation, a new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. Experiments were conducted to validate the numerical design. In the experiment, piezoelectric transducers were used to generate and receive guided wave signals. The results show that the numerical predictions are in very good agreement with the experimental measurements. Specifically, the connection between the local resonance in the thin plate and its wave attenuation mechanism was discussed. -- Highlights: → Both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. → A new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. → Experiments were conducted to validate the numerical design. → The connection between the local resonance in the thin plate and its wave attenuation mechanism was investigated.

  3. Numerical modelling techniques of soft soil improvement via stone columns: A brief review

    Science.gov (United States)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.

  4. Numerical study of turbulent diffusion

    International Nuclear Information System (INIS)

    McCoy, M.G.

    1975-01-01

    The problem of the numerical simulation of turbulent diffusion is studied. The two-dimensional velocity fields are assumed to be incompressible, homogeneous and stationary, and they are represented as stochastic processes. A technique is offered which creates velocity fields accurately representing the input statistics once a two point correlation function or an energy spectrum is given. Various complicated energy spectra may be represented utilizing this model. The program is then used to extract information concerning Gaussian diffusion processes. Various theories of other workers are tested including Taylor's classical representation of dispersion for times long compared with the Lagrangian correlation time. Also, a study is made of the relation between the Lagrangian and the Eulerian correlation function and a hypothesis is advanced and successfully tested. Questions concerning the relation between small eddies and the energy spectrum are considered. A criterion is advanced and successfully tested to decide whether small scale flow can be detected within the large eddies for any given spectrum. A method is developed to determine whether this small scale motion is in any sense periodic. Finally, the relation between two particle dispersion and the energy spectrum is studied anew and various theories are tested

  5. Constrained evolution in numerical relativity

    Science.gov (United States)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  6. Numerical modelling and experimental study of liquid evaporation during gel formation

    Science.gov (United States)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  7. Investigation of heat transfer inside a PCM-air heat exchanger: a numerical parametric study

    Science.gov (United States)

    Herbinger, Florent; Bhouri, Maha; Groulx, Dominic

    2017-07-01

    In this paper, the use of PCMs for thermal storage of energy in HVAC applications was investigated by studying numerically the thermal performance of a PCM-air heat exchanger. The PCM used in this study was dodecanoic acid. A symmetric 3D model, incorporating conductive and convective heat transfer (air only) as well as laminar flow, was created in COMSOL Multiphysics 5.0. Simulations examined the dependence of the heat transfer rate on the temperature and velocity of the incoming air as well as the size of the channels in the heat exchanger. Results indicated that small channels size lead to a higher heat transfer rates. A similar trend was also obtained for high incoming air temperature, whereas the heat transfer rate was less sensitive to the incoming air velocity.

  8. Numerical and experimental study of two turbulent opposed plane jets

    Energy Technology Data Exchange (ETDEWEB)

    Besbes, Sonia; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, UNIMECA, Technopole de Chateau-Gombert, 60 rue Joliot-Curie, 13453 Marseille (France)

    2003-09-01

    The turbulent interaction between two opposed plane jets separated by a distance H is experimentally studied by using a PIV (Particle Image Velocimetry) method and numerically investigated by means of a finite volume code. Two turbulence models have been tested: the standard k-{epsilon} model and a second-order model. The validation of the numerical study was performed by comparing the results with experimental data obtained for the case of two interacting opposed jets at ambient temperature (isothermal case). The effect of the angle of inclination of the jets is studied. Conclusions of the validation are then used to study the interaction between two jets, one being maintained at ambient temperature whereas the other is heated. Results show that the stagnation point moves towards the heated jet. It is shown that the heating induces a stabilizing effect on the flow. (orig.)

  9. The Effects of Physical Manipulatives on Children's Numerical Strategies

    Science.gov (United States)

    Manches, Andrew; O'Malley, Claire

    2016-01-01

    This article focuses on how the representational properties of manipulatives affect the strategies children employ in problem solving. Two studies examined the effect of physical materials on 4-7-year-old children's problem solving strategies in a numerical (i.e., additive composition) task. The first study showed how children not only identified…

  10. Experimental and numerical study of the flow field around a small car

    Directory of Open Access Journals (Sweden)

    Dobrev Ivan

    2017-01-01

    Full Text Available This paper presents the aerodynamic study of a small car, which participated in Shell Ecomarathon Europe competition in the Urban Concept Hydrogen class. The goal is to understand the flow field around the vehicle. First, the flow is studied numerically using computational aerodynamics. The numerical simulation is carried out by means of CFD Fluent in order to obtain the drag force experienced by the vehicle and also the flow field. Then the flow field around the car is studied in a wind tunnel by means of particle image velocimetry (PIV. The comparison of the flow fields obtained numerically and experimentally shows good correspondence. The obtained results are very helpful for future car development and permit to improve the drag and to obtain a good stability.

  11. Study of a phase change energy storage using spherical capsules. Part II: Numerical modelling

    International Nuclear Information System (INIS)

    Bedecarrats, J.P.; Castaing-Lasvignottes, J.; Strub, F.; Dumas, J.P.

    2009-01-01

    The objective of this work is the numerical study of an industrial process of energy storage which consists in the use of a cylindrical tank filled with encapsulated phase change materials (PCM). A particularity is present in this kind of processes; it concerns the delay of the crystallization of the PCM, called supercooling phenomenon. The development of the model for cold storage with heat transfer fluid flowing enables a detailed analysis of this process. The effects of different parameters on the behaviour of the tank, such as the inlet temperature, the flow rate, are examined when the tank is in vertical position. There is substantial agreement between the prediction and the experimental values already presented in part I.

  12. Numerical study of droplet impact and rebound on superhydrophobic surface

    Science.gov (United States)

    Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina

    2017-11-01

    Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).

  13. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics

    KAUST Repository

    Sparber, Christof; Markowich, Peter; Huang, Zhongyi

    2010-01-01

    We numerically study the three dimensional Gross-Pitaevskii equation for dipolar quantum gases using a time-splitting algorithm. We are mainly concerned with numerical investigations of the possible blow-up of solutions, i.e. collapse of the condensate, and the dynamics of vortices. © American Institute of Mathematical Sciences.

  14. Numerical study of dense adjoint 2-color matter

    International Nuclear Information System (INIS)

    Hands, S.; Scorzato, L.; Oevers, M.

    2000-11-01

    We study the global symmetries of SU(2) gauge theory with N flavors of staggered fermions in the presence of a chemical potential. We motivate the special interest of the case N=1 (staggered) with fermions in the adjoint representation of the gauge group. We present results from numerical simulations with both hybrid Monte Carlo and the two-step multi-bosonic algorithm. (orig.)

  15. Numerical study of cosmic censorship in string theory

    International Nuclear Information System (INIS)

    Gutperle, Michael; Kraus, Per

    2004-01-01

    Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)

  16. Numerical study of cosmic censorship in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Gutperle, Michael E-mail: gutperle@physics.ucla.edu; Kraus, Per

    2004-04-01

    Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)

  17. Numerical studies of film formation in context of steel coating

    Science.gov (United States)

    Aniszewski, Wojciech; Zaleski, Stephane; Popinet, Stephane

    2017-11-01

    In this work, we present a detailed example of numerical study of film formation in the context of metal coating. Liquid metal is drawn from a reservoir onto a retracting solid sheet, forming a coating film characterized by phenomena such as longitudinal thickness variation (in 3D) or waves akin to that predicted by Kapitza and Kapitza (visible in two dimensions as well). While the industry standard configuration for Zinc coating is marked by coexistence of medium Capillary number (Ca = 0.03) and film Reynolds number above 1000, we present also parametric studies in order to establish more clearly to what degree does the numerical method influence film regimes obtained in the target configuration. The simulations have been performed using Basilisk, a grid-adapting, strongly optimized code derived from Gerris . Mesh adaptation allows for arbitrary precision in relevant regions such as the contact line or the meniscus, while a coarse grid is applied elsewhere. This adaptation strategy, as the results indicate, is the only realistic approach for numerical method to cover the wide range of necessary scales from the predicted film thickness (hundreds of microns) to the domain size (meters).

  18. A study of gonad doses in X-ray radiographic examinations of the abdomen

    International Nuclear Information System (INIS)

    Brown, L.D.

    1980-01-01

    A phantom study has been made in an attempt to redetermine gonad dose associated with routine X-ray diagnostic procedures. Over a range of voltages between 60 kVp and 130 kVp, TLD measurements of skin, ovary, a standardised cassette dose of 1 mrad, and testicle doses were obtained for AP, PA and lateral radiographs. Whilst exact numerical results depended greatly on the characteristics of the film-screen combination used, the contrast required in the final radiograph and the efficiency of the Bucky grid, results of this redetermination did not support the view that a reduction in population genetic dose would follow any general increase in the typical operating potential used for abdominal x-ray examinations. (U.K.)

  19. Numerical Studies of a Fluidic Diverter for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  20. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan

    2013-12-17

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model are used to describe the nucleation rate and the droplet growth, respectively. The conservation of the liquid phase is described by a finite number of moments of the size distribution function. The moment equations are then combined with the Euler equations and are solved by the finite-volume method. The numerical method is first validated by comparing its prediction with experimental results from the literature. The effects of nitrogen condensation on hypersonic nozzle flows are then numerically examined. The parameters at the nozzle exit under the conditions of condensation and no-condensation are evaluated. For the condensation case, the static pressure, the static temperature, and the amount of condensed fluid at the nozzle exit decrease with the increase of the total temperature. Compared with the no-condensation case, both the static pressure and temperature at the nozzle exit increase, and the Mach number decreases due to the nitrogen condensation. It is also indicated that preheating the nitrogen gas is necessary to avoid the nitrogen condensation even for a hypersonic nozzle with a Mach number of 5 operating at room temperatures. © 2013 Springer-Verlag Berlin Heidelberg.

  1. Numerical study of two dimensional disordered systems in an external magnetic field

    International Nuclear Information System (INIS)

    Jana, Debnarayan

    2000-01-01

    We study here 2d tight-binding disordered model in an external magnetic field. By numerically diagonalizing the Hamiltonian, we characterize the eigenstates by Generalized Inverse Participation Ratio (GIPR). The properties of the eigenstates have been studied in case of random flux model as well as with the strength of disorder. Simple theoretical arguments are given in support of the numerical observation. Finally, we have also studied the multifractality of the eigenstates. All these study may shed light on the eigenstates in the center of the band in case of Integer Quantum Hall Effect (IQHE). (author)

  2. Numerical studies of unsteady coherent structures and transport in two-dimensional flows

    Energy Technology Data Exchange (ETDEWEB)

    Hesthaven, J.S.

    1995-08-01

    The dynamics of unsteady two-dimensional coherent structures in various physical systems is studied through direct numerical solution of the dynamical equations using spectral methods. The relation between the Eulerian and the Lagrangian auto-correlation functions in two-dimensional homogeneous, isotropic turbulence is studied. A simple analytic expression for the Eulerian and Lagrangian auto-correlation function for the fluctuating velocity field is derived solely on the basis of the one-dimensional power spectrum. The long-time evolution of monopolar and dipolar vortices in anisotropic systems relevant for geophysics and plasma physics is studied by direct numerical solution. Transport properties and spatial reorganization of vortical structures are found to depend strongly on the initial conditions. Special attention is given to the dynamics of strong monopoles and the development of unsteady tripolar structures. The development of coherent structures in fluid flows, incompressible as well as compressible, is studied by novel numerical schemes. The emphasis is on the development of spectral methods sufficiently advanced as to allow for detailed and accurate studies of the self-organizing processes. (au) 1 ill., 94 refs.

  3. The contributions of numerical acuity and non-numerical stimulus features to the development of the number sense and symbolic math achievement.

    Science.gov (United States)

    Starr, Ariel; DeWind, Nicholas K; Brannon, Elizabeth M

    2017-11-01

    Numerical acuity, frequently measured by a Weber fraction derived from nonsymbolic numerical comparison judgments, has been shown to be predictive of mathematical ability. However, recent findings suggest that stimulus controls in these tasks are often insufficiently implemented, and the proposal has been made that alternative visual features or inhibitory control capacities may actually explain this relation. Here, we use a novel mathematical algorithm to parse the relative influence of numerosity from other visual features in nonsymbolic numerical discrimination and to examine the strength of the relations between each of these variables, including inhibitory control, and mathematical ability. We examined these questions developmentally by testing 4-year-old children, 6-year-old children, and adults with a nonsymbolic numerical comparison task, a symbolic math assessment, and a test of inhibitory control. We found that the influence of non-numerical features decreased significantly over development but that numerosity was a primary determinate of decision making at all ages. In addition, numerical acuity was a stronger predictor of math achievement than either non-numerical bias or inhibitory control in children. These results suggest that the ability to selectively attend to number contributes to the maturation of the number sense and that numerical acuity, independent of inhibitory control, contributes to math achievement in early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Maternal Support of Children's Early Numerical Concept Learning Predicts Preschool and First-Grade Math Achievement

    Science.gov (United States)

    Casey, Beth M.; Lombardi, Caitlin M.; Thomson, Dana; Nguyen, Hoa Nha; Paz, Melissa; Theriault, Cote A.; Dearing, Eric

    2018-01-01

    The primary goal in this study was to examine maternal support of numerical concepts at 36 months as predictors of math achievement at 4.5 and 6-7 years. Observational measures of mother-child interactions (n = 140) were used to examine type of support for numerical concepts. Maternal support that involved labeling the quantities of sets of…

  5. Numerical characterization of thermo-mechanical performance of breeder pebble beds

    International Nuclear Information System (INIS)

    An, Zhiyong; Ying, Alice; Abdou, Mohamed

    2007-01-01

    A numerical approach using the discrete element method (DEM) has been applied to study the thermo-mechanical properties of ceramic breeder pebble beds. This numerical scheme is able to predict the inelastic behavior observed in a loading and unloading operation. In addition, it demonstrates that the average value of contact force increases linearly with overall pressure, but at a much faster rate, about 3.4 times the overall pressure increase rate. In this paper, the thermal creep properties of two different ceramic breeder pebble materials, Li 4 SiO 4 and Li 2 O, are also examined by the current numerical code. The difference found in the properties of candidate materials is reflected numerically in the overall strain in the pebble bed when the stress magnitude becomes smaller

  6. Numerical characterization of thermo-mechanical performance of breeder pebble beds

    International Nuclear Information System (INIS)

    An, Zhiyong; Ying, Alice; Abdou, Mohamed

    2008-01-01

    A numerical approach using the discrete element method (DEM) has been applied to study the thermo-mechanical properties of ceramic breeder pebble beds. This numerical scheme is able to predict the inelastic behavior observed in a loading and unloading operation. In addition, it demonstrates that the average value of contact force increases linearly with overall pressure, but at a much faster rate, about 3.4 times the overall pressure increase rate. In this paper, the thermal creep properties of two different ceramic breeder pebble materials, Li 4 SiO 4 and Li 2 O, are also examined by the current numerical code. The difference found in the properties of candidate materials is reflected numerically in the overall strain in the pebble bed when the stress magnitude becomes smaller. (author)

  7. Numerical study on the power extraction performance of a flapping foil with a flexible tail

    Science.gov (United States)

    Wu, J.; Shu, C.; Zhao, N.; Tian, F.-B.

    2015-01-01

    The numerical study on the power extraction performance of a flapping foil with a flexible tail is performed in this work. A NACA0015 airfoil is arranged in a two-dimensional laminar flow and imposed with a synchronous harmonic plunge and pitch rotary motion. A flat plate that is attached to the trailing edge of the foil is utilized to model a tail, and so they are viewed as a whole for the purpose of power extraction. In addition, the tail either is rigid or can deform due to the exerted hydrodynamic forces. To implement numerical simulations, an immersed boundary-lattice Boltzmann method is employed. At a Reynolds number of 1100 and the position of the pitching axis at third chord, the influences of the mass and flexibility of the tail as well as the frequency of motion on the power extraction are systematically examined. It is found that compared to the foil with a rigid tail, the efficiency of power extraction for the foil with a deformable tail can be improved. Based on the numerical analysis, it is indicated that the enhanced plunging component of the power extraction, which is caused by the increased lift force, directly contributes to the efficiency improvement. Since a flexible tail with medium and high masses is not beneficial to the efficiency improvement, a flexible tail with low mass together with high flexibility is recommended in the flapping foil based power extraction system.

  8. Numerical analysis of data in dynamic function studies

    International Nuclear Information System (INIS)

    Riihimaeki, E.

    1975-01-01

    Relations between tracer theories, models for organ function and the numerical solution of parameters from tracer experiments are reviewed. A unified presentation is given in terms of systems theory. Dynamic tracer studies should give the flow and volume of the tracer and, possibly, indications of the internal structure of the organ studied. Proper program writing will facilitate the exchange of the programs between the users and thereby avoid duplication of effort. An important attribute in this respect is machine independence of the programs which is achieved by the use of a high-level language. (author)

  9. Numerical study of fire whirlwind taking into account radiative heat transfer

    Science.gov (United States)

    Sakai, S.; Miyagi, N.

    2010-06-01

    The fire whirlwind is a strong swirling flow with flame and spark, which may occur in the case of, widespread fire in the urban region by an earthquake disaster or an air raid, and a large-scale fire such as a forest fire. Fire whirlwind moves and promotes spread of fire and may extend serious damage rapidly. In this study, performing the numerical analysis of fire whirlwind with respect to scale effect, it is examined whether a relationship exists between a real phenomenon and the phenomenon in the reduction model with taking into account radiative heat transfer. Three dimensional analyses are performed to investigate the thermal and flow fields by using the analytical software FLUENT6.3. It is analyzed that those swirling flow in original scale, 1/10 scale, 1/50 scale, 1/100 scale from the original brake out to vanish. As an analytical condition, parameter calculation is repeated to get the velocity of a parallel flow which is the easiest to occur the swirling flow for each reduction model, and then scale effect is discussed by comparing the velocity of the natural convection, the velocity of the parallel flow, the center pressure of the whirlwind and the continuance time of the swirling flow. The analysis model of C-character heat source model is performed as well as the analysis in L-character model, which is one of the representative example of the fire whirlwind occurred at Tokyo in the Great Kanto Earthquake (1923). The result of the numerical analysis shows that there is a scale effect to the speed of the parallel flow to generate the swirling flow.

  10. Numerical study of fire whirlwind taking into account radiative heat transfer

    International Nuclear Information System (INIS)

    Sakai, S; Miyagi, N

    2010-01-01

    The fire whirlwind is a strong swirling flow with flame and spark, which may occur in the case of, widespread fire in the urban region by an earthquake disaster or an air raid, and a large-scale fire such as a forest fire. Fire whirlwind moves and promotes spread of fire and may extend serious damage rapidly. In this study, performing the numerical analysis of fire whirlwind with respect to scale effect, it is examined whether a relationship exists between a real phenomenon and the phenomenon in the reduction model with taking into account radiative heat transfer. Three dimensional analyses are performed to investigate the thermal and flow fields by using the analytical software FLUENT6.3. It is analyzed that those swirling flow in original scale, 1/10 scale, 1/50 scale, 1/100 scale from the original brake out to vanish. As an analytical condition, parameter calculation is repeated to get the velocity of a parallel flow which is the easiest to occur the swirling flow for each reduction model, and then scale effect is discussed by comparing the velocity of the natural convection, the velocity of the parallel flow, the center pressure of the whirlwind and the continuance time of the swirling flow. The analysis model of C-character heat source model is performed as well as the analysis in L-character model, which is one of the representative example of the fire whirlwind occurred at Tokyo in the Great Kanto Earthquake (1923). The result of the numerical analysis shows that there is a scale effect to the speed of the parallel flow to generate the swirling flow.

  11. Numerical study of the flow conditioner for the IFMIF liquid lithium target

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S., E-mail: sergej.gordeev@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany); Gröschel, F. [KIT Fusion Program, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany); Heinzel, V.; Hering, W.; Stieglitz, R. [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    Highlights: • A detailed numerical analysis of the flow conditioner efficiency has been performed. • The calculations show that the present design of the flow conditioner cannot suppress swirl motions emerging from the bend. • The transient simulation reveals flow instabilities between the separation zone and the accelerated outer region. • Calculation shows that pitched guide vanes upstream the elbow reduces a generation of backflow areas downstream. - Abstract: IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based deuteron–lithium (D–Li) neutron source to simulate the neutron irradiation field in a fusion reactor. The target assembly of the IFMIF consists of the flow conditioners and the nozzle, which has to form a stable lithium jet. This work focuses on a numerical study of the flow conditioner efficiency, in which two different types of flow conditioners are compared by means of a detailed numerical analysis with respect to specific hydraulic effects in the pipe elbow and the inflow conditioners. The adequateness of three different turbulence models to simulate a flow through a 90° bend of circular cross section has been examined. The calculations show that a honeycomb-screen combination is not capable to suppress effectively large scale swirl motions emerging from the bend. An increasing number of screens improves the flow uniformity downstream, but increases the pressure drop. In order to detect any transient effects in the separation area a flow straightener configuration consisting of a honeycomb with a subsequent screen has been analyzed by means of a detached eddy simulation (DES). A frequency analysis of the normalized static pressure amplitude conducted by means of a detached eddy simulation (DES) reveals instabilities in the shear layer between the separation zone and the accelerated outer region, which additionally increase the inhomogeneity of the axial velocity distribution. A set of six circumferentially

  12. Experimental and numerical studies of high-velocity impact fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kipp, M.E.; Grady, D.E.; Swegle, J.W.

    1993-08-01

    Developments are reported in both experimental and numerical capabilities for characterizing the debris spray produced in penetration events. We have performed a series of high-velocity experiments specifically designed to examine the fragmentation of the projectile during impact. High-strength, well-characterized steel spheres (6.35 mm diameter) were launched with a two-stage light-gas gun to velocities in the range of 3 to 5 km/s. Normal impact with PMMA plates, thicknesses of 0.6 to 11 mm, applied impulsive loads of various amplitudes and durations to the steel sphere. Multiple flash radiography diagnostics and recovery techniques were used to assess size, velocity, trajectory and statistics of the impact-induced fragment debris. Damage modes to the primary target plate (plastic) and to a secondary target plate (aluminum) were also evaluated. Dynamic fragmentation theories, based on energy-balance principles, were used to evaluate local material deformation and fracture state information from CTH, a three-dimensional Eulerian solid dynamics shock wave propagation code. The local fragment characterization of the material defines a weighted fragment size distribution, and the sum of these distributions provides a composite particle size distribution for the steel sphere. The calculated axial and radial velocity changes agree well with experimental data, and the calculated fragment sizes are in qualitative agreement with the radiographic data. A secondary effort involved the experimental and computational analyses of normal and oblique copper ball impacts on steel target plates. High-resolution radiography and witness plate diagnostics provided impact motion and statistical fragment size data. CTH simulations were performed to test computational models and numerical methods.

  13. 3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS

    Directory of Open Access Journals (Sweden)

    FAROUK TAHROUR

    2015-11-01

    Full Text Available The use of 3-D computational fluid dynamics (CFD is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, this study analyzes the effects of fin spacing and fin tube diameter on heat transfer and flow characteristics for a range of Reynolds numbers, 4500≤Re≤22500. A satisfactory qualitative and quantitative agreement was obtained between the numerical predictions and the results published in the literature. For small fin spacings, the eccentric annular finned tube is more efficient than the concentric one. Among the cases examined, the average heat transfer coefficient of the eccentric annular-finned tube, for a tube shift St =12 mm and a Reynolds number Re = 9923, was 7.61% greater than that of the concentric one. This gain is associated with a 43.09% reduction in pressure drop.

  14. Numerical study of the effect of earth tides on recurring short-term slow slip events

    Science.gov (United States)

    Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.

    2017-12-01

    Short-term slow slip events (SSEs) in the Nankai region are affected by earth tides (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The effect of tidal stress on the SSEs is also examined numerically (e.g., Hawthorne and Rubin, 2013). In our previous study (Matsuzawa et al., 2017, JpGU-AGU), we numerically simulated SSEs in the Shikoku region, and reported that tidal stress makes the variance of recurrence intervals of SSEs smaller in relatively isolated SSE regions. However, the reason of such stable recurrence was not clear. In this study, we examine the tidal effect on short-term SSEs based on a flat plate and a realistic plate model (e.g., Matsuzawa et al., 2013, GRL). We adopt a rate- and state-dependent friction law (RS-law) with cutoff velocities as in our previous studies (Matsuzawa et al., 2013). We assume that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. In a flat plate model, the short-term SSE region is a circular patch with the radius of 6 km. In a realistic plate model, the short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of SSEs. Calculating stress change by earth tides as in Yabe et al., (2015), we examine the stress perturbation by two different earth tides with the period of semidiurnal (M2) and fortnight (Mf) tide in this study. In the result of a flat plate case, amplitude of SSEs becomes smaller just after the slip at whole simulated area. Recurring SSEs become clear again within one year in the case with tides (M2 or Mf), while the recurrence becomes clear after seven years in the case without tides. Interestingly, the effect of the Mf tide is similar to the case with the M2 tide, even though the amplitude of the Mf tide (0.01 kPa) is two-order smaller than that of the M2 tide. In the realistic plate model of Shikoku, clear recurrence of short-term SSEs is found earlier than the

  15. Numerical Investigation of Mixing Characteristics in Cavity Flow at Various Aspect Ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob [Dongyang Mirae University, Seoul (Korea, Republic of); Yang, Seung Deok; Yoon, Joon Yong [Hanyang University, Seoul (Korea, Republic of)

    2015-01-15

    This study numerically examined the mixing characteristics of rectangular cavity flows by using the hybrid lattice Boltzmann method (HLBM) applied to the finite difference method (FDM). Multi-relaxation time was used along with a passive scalar method which assumes that two substances have the same mass and that there is no interaction. First, we studied numerical results such as the stream function, position of vortices, and velocity profile for a square cavity and rectangular cavity with an aspect ratio of 2. The data were compared with previous numerical results that have been proven to be reliable. We also studied the mixing characteristics of a rectangular cavity flow such as the concentration profile and average Sherwood number at various Pe numbers and aspect ratios.

  16. Multiple physical healthcare needs among outpatients with schizophrenia: findings from a health examination study.

    Science.gov (United States)

    Eskelinen, Saana; Sailas, Eila; Joutsenniemi, Kaisla; Holi, Matti; Koskela, Tuomas H; Suvisaari, Jaana

    2017-08-01

    Despite the abundant literature on physical comorbidity, the full range of the concurrent somatic healthcare needs among individuals with schizophrenia has rarely been studied. This observational study aimed to assess the distressing somatic symptoms and needs for physical health interventions in outpatients with schizophrenia, and factors predicting those needs. A structured, comprehensive health examination was carried out, including a visit to a nurse and a general practitioner on 275 outpatients with schizophrenia. The required interventions were classified by type of disease. Logistic regression was used to assess the influence of sociodemographic factors, lifestyle, functional limitations, factors related to psychiatric disorder, and healthcare use on the need for interventions. In total, 44.9% of the patients (mean age 44.9 years) reported somatic symptoms affecting daily life; 87.6% needed specific interventions for a disease or condition, most commonly for cardiovascular, dermatological, dental, ophthalmological, and gastrointestinal conditions, and for altered glucose homeostasis. Smoking and obesity predicted significantly a need of any intervention, but the predictors varied in each disease category. Strikingly, use of general practitioner services during the previous year did not reduce the need for interventions. Health examinations for outpatients with schizophrenia revealed numerous physical healthcare needs. The health examinations for patients with schizophrenia should contain a medical history taking and a physical examination, in addition to basic measurements and laboratory tests. Prevention and treatment of obesity and smoking should be given priority in order to diminish somatic comorbidities in schizophrenia.

  17. Time scales of DNAPL migration in sandy aquifers examined via numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, J.I.; Pang, T.; Kueper, B.H. [University of Edinburgh, Edinburgh (United Kingdom). Inst. of Infrastructure & Environmental

    2007-03-15

    The time required for dense nonaqueous phase liquid (DNAPL) to cease migrating following release to the subsurface is a valuable component of a site conceptual model. This study uses numerical simulation to investigate the migration of six different DNAPLs in sandy aquifers. The most influential parameters governing migration cessation time are the density and viscosity of the DNAPL and the mean hydraulic conductivity of the aquifer. Releases of between 1 and 40 drums of chlorinated solvent DNAPLs, characterized by relatively high density and low viscosity, require on the order of months to a few years to cease migrating in a heterogeneous medium sand aquifer having an average hydraulic conductivity of 7.4 x 10{sup -3} cm/s. In contrast to this, the release of 20 drums of coal tar {rho}{sub D} = 1061 kg/m{sup 3}, {mu}{sub D} = 0.161 Pa(.)s) requires more than 100 years to cease migrating in the same aquifer. Altering the mean hydraulic conductivity of the aquifer results in a proportional change in cessation times. Parameters that exhibit relatively little influence on migration time scales are the DNAPL-water interfacial tension, release volume, source capillary pressure, mean aquifer porosity, and ambient ground water hydraulic gradient. This study also demonstrates that low-density DNAPLs (e.g., coal tar) give rise to greater amounts of lateral spreading and greater amounts of pooling on capillary barriers than high-density DNAPLs such as trichloroethylene or tetrachloroethylene.

  18. Mathematical study and numerical simulations of bi-kinetic plasma sheaths

    International Nuclear Information System (INIS)

    Badsi, Mehdi

    2016-01-01

    This thesis focuses on the construction and the numerical simulation theoretical models of plasmas in interaction with an absorbing wall. These models are based on two species Vlasov-Poisson or Vlasov-Ampere systems in the presence of boundary conditions. The expected stationary solutions must verify the balance of the flux of charges in the orthogonal direction to the wall. This feature is called the ambi-polarity. Through the study of a non linear Poisson equation, we prove the well-posedness of 1d-1v stationary Vlasov-Poisson system, for which we determine incoming particles distributions and a wall potential that induces the ambi-polarity as well as a non negative charge density hold. We also give a quantitative estimates of the thickness of the boundary layer that develops at the wall. These results are illustrated numerically. We prove the linear stability of the electronic stationary solution for a non-stationary Vlasov-Ampere system. Finally, we study a 1d-3v stationary Vlasov-Poisson system in the presence of a constant and parallel to the wall magnetic field. We determine incoming particles distributions and a wall potential so that the ambi-polarity holds. We study a non linear Poisson equation through a non linear functional energy that admits minimizers. We established some bounds on the numerical parameters inside which, our model is relevant and we propose an interpretation of the results. (author)

  19. Global and Arctic climate engineering: numerical model studies.

    Science.gov (United States)

    Caldeira, Ken; Wood, Lowell

    2008-11-13

    We perform numerical simulations of the atmosphere, sea ice and upper ocean to examine possible effects of diminishing incoming solar radiation, insolation, on the climate system. We simulate both global and Arctic climate engineering in idealized scenarios in which insolation is diminished above the top of the atmosphere. We consider the Arctic scenarios because climate change is manifesting most strongly there. Our results indicate that, while such simple insolation modulation is unlikely to perfectly reverse the effects of greenhouse gas warming, over a broad range of measures considering both temperature and water, an engineered high CO2 climate can be made much more similar to the low CO2 climate than would be a high CO2 climate in the absence of such engineering. At high latitudes, there is less sunlight deflected per unit albedo change but climate system feedbacks operate more powerfully there. These two effects largely cancel each other, making the global mean temperature response per unit top-of-atmosphere albedo change relatively insensitive to latitude. Implementing insolation modulation appears to be feasible.

  20. Experimental and numerical study of light gas dispersion in a ventilated room

    Energy Technology Data Exchange (ETDEWEB)

    Gelain, Thomas, E-mail: thomas.gelain@irsn.fr; Prévost, Corinne

    2015-11-15

    Highlights: • Presentation of many experimental local data for different configurations. • Highlight of the influence of numerical parameters used in the CFD code. • Validation of the CFD code ANSYS CFX on the basis of experimental data. - Abstract: The objective of this study is to validate the ANSYS CFX version 12 computational code on the basis of light gas dispersion tests performed in two ventilated rooms. It follows an initial study on heavy gas dispersion carried out by Ricciardi et al. (2008). First, a study of sensitivity to various numerical parameters allows a set of reference data to be developed and the influence of the numerical scheme of advection to be revealed. Second, two helium (simulating hydrogen) dispersion test grids are simulated for the two rooms studied, and the results of the calculations are compared with experimental results. The very good agreement between these results allows the code and its dataset to be validated for this application. In future, a study with higher levels of helium (on the order of 4% vol at equilibrium) is envisaged in the context of safety analyses related to the hydrogen risk, these levels representing the lower explosive limit (LEL) of hydrogen.

  1. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Najm, Habib N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phipps, Eric Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  2. Examining Gender Bias in Studies of Innovation

    OpenAIRE

    Crowden, N.

    2003-01-01

    This paper examines the presence of a gender bias in studies of innovation. Using the Innovation Systems Research Network (ISRN) and its interview guide as a case study, this research project examines how accurately and completely such innovation studies present gender differences in the innovation process.

  3. Experimental and numerical studies on super-cavitating flow of axisymmetric cavitators

    Directory of Open Access Journals (Sweden)

    Byoung-Kwon Ahn

    2010-03-01

    Full Text Available Recently underwater systems moving at high speed such as a super-cavitating torpedo have been studied for their practical advantage of the dramatic drag reduction. In this study we are focusing our attention on super-cavitating flows around axisymmetric cavitators. A numerical method based on inviscid flow is developed and the results for several shapes of the cavitator are presented. First using a potential based boundary element method, we find the shape of the cavitator yielding a sufficiently large enough cavity to surround the body. Second, numerical predictions of supercavity are validated by comparing with experimental observations carried out in a high speed cavitation tunnel at Chungnam National University (CNU CT.

  4. Developmental and Individual Differences in Pure Numerical Estimation

    Science.gov (United States)

    Booth, Julie L.; Siegler, Robert S.

    2006-01-01

    The authors examined developmental and individual differences in pure numerical estimation, the type of estimation that depends solely on knowledge of numbers. Children between kindergarten and 4th grade were asked to solve 4 types of numerical estimation problems: computational, numerosity, measurement, and number line. In Experiment 1,…

  5. A Numerical Study of Quantization-Based Integrators

    Directory of Open Access Journals (Sweden)

    Barros Fernando

    2014-01-01

    Full Text Available Adaptive step size solvers are nowadays considered fundamental to achieve efficient ODE integration. While, traditionally, ODE solvers have been designed based on discrete time machines, new approaches based on discrete event systems have been proposed. Quantization provides an efficient integration technique based on signal threshold crossing, leading to independent and modular solvers communicating through discrete events. These solvers can benefit from the large body of knowledge on discrete event simulation techniques, like parallelization, to obtain efficient numerical integration. In this paper we introduce new solvers based on quantization and adaptive sampling techniques. Preliminary numerical results comparing these solvers are presented.

  6. Numerical study of wave propagation around an underground cavity: acoustic case

    Science.gov (United States)

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz

    2015-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the

  7. A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

    Directory of Open Access Journals (Sweden)

    Sungwook Lee

    2015-05-01

    Full Text Available In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV is presented. Planar Motion Mechanism (PMM captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.

  8. Numerical Studies of Magnetohydrodynamic Activity Resulting from Inductive Transients. Final Report

    International Nuclear Information System (INIS)

    Sovinec, Carl R.

    2005-01-01

    This report describes results from numerical studies of transients in magnetically confined plasmas. The work has been performed by University of Wisconsin graduate students James Reynolds and Giovanni Cone and by the Principal Investigator through support from contract DE-FG02-02ER54687, a Junior Faculty in Plasma Science award from the DOE Office of Science. Results from the computations have added significantly to our knowledge of magnetized plasma relaxation in the reversed-field pinch (RFP) and spheromak. In particular, they have distinguished relaxation activity expected in sustained configurations from transient effects that can persist over a significant fraction of the plasma discharge. We have also developed the numerical capability for studying electrostatic current injection in the spherical torus (ST). These configurations are being investigated as plasma confinement schemes in the international effort to achieve controlled thermonuclear fusion for environmentally benign energy production. Our numerical computations have been performed with the NIMROD code (http://nimrodteam.org) using local computing resources and massively parallel computing hardware at the National Energy Research Scientific Computing Center. Direct comparisons of simulation results for the spheromak with laboratory measurements verify the effectiveness of our numerical approach. The comparisons have been published in refereed journal articles by this group and by collaborators at Lawrence Livermore National Laboratory (see Section 4). In addition to the technical products, this grant has supported the graduate education of the two participating students for three years

  9. Methods of numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1983-01-01

    Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)

  10. Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2010-01-01

    We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.

  11. Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.

    Science.gov (United States)

    Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula

    2017-12-01

    Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.

  12. A numerical study of capillary and viscous drainage in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Aker, Eyvind

    1999-07-01

    Fluid flow in porous media is an important field of study in several contexts, for instance oil recovery and hydrology. This thesis concentrates on the flow properties when one fluid displaces another fluid in a network of pores and throats. It considers the scale where individual pores enter the description. A network model is used to simulate the displacement process. The model describes the pores and throats by means of a square lattice of cylindrical tubes. The thesis examines the interplay between the pressure build up in the fluids and the displacement structure during drainage. The network model is also used to study the stabilisation mechanisms when a stable front develops. It is found, neglecting gravity, that the capillary pressure between two points along the front varies almost linearly as a function of height separation in the direction of the displacement. The thesis presents an alternative view on the displacement process based on the observation that nonwetting fluid flows in separate strands along the front where wetting fluid is displaced. Based on numerical simulations, it is concluded that earlier theories that do not include the effect of nonwetting fluid flowing in strands are incompatible with drainage when strands dominate the displacement process.

  13. Numerical Study of a Long-Lived, Isolated Wake Vortex in Ground Effect

    Science.gov (United States)

    Proctor, Fred H.

    2014-01-01

    This paper examines a case observed during the 1990 Idaho Falls Test program, in which a wake vortex having an unusually long lifetime was observed while in ground effect. A numerical simulation is performed with a Large Eddy Simulation model to understand the response of the environment in affecting this event. In the simulation, it was found that one of the vortices decayed quickly, with the remaining vortex persisting beyond the time-bound of typical vortex lifetimes. This unusual behavior was found to be related to the first and second vertical derivatives of the ambient crosswind.

  14. Delivering Online Examinations: A Case Study

    Directory of Open Access Journals (Sweden)

    John MESSING

    2004-07-01

    Full Text Available Delivering Online Examinations: A Case Study Jason HOWARTH John MESSING Irfan ALTAS Charles Sturt University Wagga Wagga-AUSTRALIA ABSTRACT This paper represents a brief case study of delivering online examinations to a worldwide audience. These examinations are delivered in partnership with a commercial online testing company as part of the Industry Master’s degree at Charles Sturt University (CSU. The Industry Master’s degree is an academic program for students currently employed in the IT industry. Using Internet Based Testing (IBT, these students are examined in test centres throughout the world. This offers many benefits. For example, students have the freedom of sitting exams at any time during a designated interval. Computer-based testing also provides instructors with valuable feedback through test statistics and student comments. In this paper, we document CSU’s use of the IBT system, including how tests are built and delivered, and how both human and statistical feedback is used to evaluate and enhance the testing process.

  15. Experimental and numerical study of the MYRRHA control rod system dynamics

    International Nuclear Information System (INIS)

    Kennedy, G.; Lamberts, D.; Van Tichelen, K.; Profir, M.; Moreau, V.

    2017-01-01

    This paper presents an experimental and numerical investigation of the buoyancy driven MYRRHA control rod (CR) insertion during an emergency SCRAM. The study aimed to support the MYRRHA reactor design and characterise the hydrodynamic behaviour of the CR system while demonstrating the proof-of-principle. A full-scale mock-up test section of the MYRRHA CR was constructed to test the hydrodynamics in Lead Bismuth Eutectic over a wide range of operating conditions, to provide experimental data for the qualification of the CR system. A numerical CFD model of the CR test section was also setup in STAR-CCM+. The simulations make use of the recently developed overset mesh method to simulate the dynamic two-way coupling between the moving CR bundle and the fluid domain. The numerical methodology and post-test simulation results are validated against the experimental results. The steady state hydraulic results and the transient insertion results from both the experimental and numerical efforts are presented. The influence of the global process conditions on the CR insertion time are presented as well. This investigation successfully demonstrates the CR insertion proof-of-principle during a SCRAM. (author)

  16. Numerical taxonomic studies of some tribes of Brassicaceae from Egypt

    NARCIS (Netherlands)

    Abdel Khalik, K.; Maesen, van der L.J.G.; Koopman, W.J.M.; Berg, van den R.G.

    2002-01-01

    A systematic study of 45 taxa belonging to 23 genera of tribes Arabideae, Euclidieae, Hesperideae, Lunarieae, Matthioleae and Sisymbrieae of Brassicaceae from Egypt was conducted by means of numerical analysis based on sixty two morphological characters, including vegetative parts, pollen grains and

  17. NUMERICAL STUDY OF THE VISHNIAC INSTABILITY IN SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Michaut, C.; Cavet, C.; Bouquet, S. E.; Roy, F.; Nguyen, H. C.

    2012-01-01

    The Vishniac instability is thought to explain the complex structure of radiative supernova remnants in their Pressure-Driven Thin Shell (PDTS) phase after a blast wave (BW) has propagated from a central explosion. In this paper, the propagation of the BW and the evolution of the PDTS stage are studied numerically with the two-dimensional (2D) code HYDRO-MUSCL for a finite-thickness shell expanding in the interstellar medium (ISM). Special attention is paid to the adiabatic index, γ, and three distinct values are taken for the cavity (γ 1 ), the shell (γ 2 ), and the ISM (γ 3 ) with the condition γ 2 1 , γ 3 . This low value of γ 2 accounts for the high density in the shell achieved by a strong radiative cooling. Once the spherical background flow is obtained, the evolution of a 2D-axisymmetric perturbation is computed from the linear to the nonlinear regime. The overstable mechanism, previously demonstrated theoretically by E. T. Vishniac in 1983, is recovered numerically in the linear stage and is expected to produce and enhance anisotropies and clumps on the shock front, leading to the disruption of the shell in the nonlinear phase. The period of the increasing oscillations and the growth rate of the instability are derived from several points of view (the position of the perturbed shock front, mass fluxes along the shell, and density maps), and the most unstable mode differing from the value given by Vishniac is computed. In addition, the influence of several parameters (the Mach number, amplitude and wavelength of the perturbation, and adiabatic index) is examined and for wavelengths that are large enough compared to the shell thickness, the same conclusion arises: in the late stage of the evolution of the radiative supernova remnant, the instability is dampened and the angular initial deformation of the shock front is smoothed while the mass density becomes uniform with the angle. As a result, our model shows that the supernova remnant returns to a

  18. Rayleigh-Benard convection in a Hele-Shaw cell - a numerical study

    International Nuclear Information System (INIS)

    Guenther, C.; Mueller, U.

    1987-05-01

    Free convection in narrow vertical gaps heated from below gives rise to several different flow patterns as has been demonstrated by previous experimental investigations. A numerical study is presented aimed at simulating the observed flow phenomena in Hele-Shaw cells of small lateral extend. The numerical study is based on the assumption that the flow is essentially two-dimensional. This allows an approach using a one-term Galerkin approximation with respect to the direction perpendicular to the gap and a finite difference scheme with regard to the coordinates in the plane of the gap. The calculations result in realistic values of the critical Rayleigh numbers for the onset of steady and oscillatory convection. Most of the observed unsteady flow patterns can be simulated numerically. It is shown that five different stable flow patterns can occur at one particular Rayleigh number. The different stable flow patterns are coupled by a variety of complex transitions. Moreover the calculations show that a realistic description of the observed flow phenomena can not be obtained by a simplified model using the Darcy law in the momentum equation and implying slip flow at the small confining boundaries. (orig.) [de

  19. A numerical study of the eigenvalues in the neutron diffusion theory

    International Nuclear Information System (INIS)

    Lima Bezerra, J. de.

    1982-12-01

    A systematic numerical study for the eigenvalue problem in one dimension was carried out. A computer code RED2G was developed to obtain and to discuss a number of numerical solutions concerning eigenvalues problems originating from the discretization of the two groups neutron diffusion equation in one dimension and steady state. The problem of eigenvalues was created from the discretization by the method of finite differences. The solutions were obtained by four different iterative methods, i.e. Power, Wielandt-1, Wielandt-2 and accelerated Power with the Chebyshev polinomials. The numerical results given by the solution of the two test-problems indicate that the RED2G code is fast and efficient in these calculations and the Wielandt-2 method has been found to be the best both in respect of rapidity of calculations as well as programation effort required. (E.G.) [pt

  20. A numerical study of the integral equations for the laser fields in free-electron lasers

    International Nuclear Information System (INIS)

    Yoo, J. G.; Park, S. H.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    The dynamics of the radiation fields in free-electron lasers is investigated on the basis of the integro-differential equations in the one-dimensional formulation. For simple cases we solved the integro-differential equations analytically and numerically to test our numerical procedures developed on the basis of the Filon method. The numerical results showed good agreement with the analytical solutions. To confirm the legitimacy of the numerical package, we carried out numerical studies on the inhomogeneous broadening effects, where no analytic solutions are available, due to the energy spread and the emittance of the electron beam.

  1. Numerical study of droplet evaporation in an acoustic levitator

    Science.gov (United States)

    Bänsch, Eberhard; Götz, Michael

    2018-03-01

    We present a finite element method for the simulation of all relevant processes of the evaporation of a liquid droplet suspended in an acoustic levitation device. The mathematical model and the numerical implementation take into account heat and mass transfer across the interface between the liquid and gaseous phase and the influence of acoustic streaming on this process, as well as the displacement and deformation of the droplet due to acoustic radiation pressure. We apply this numerical method to several theoretical and experimental examples and compare our results with the well-known d2-law for the evaporation of spherical droplets and with theoretical predictions for the acoustic streaming velocity. We study the influence of acoustic streaming on the distribution of water vapor and temperature in the levitation device, with special attention to the vapor distribution in the emerging toroidal vortices. We also compare the evaporation rate of a droplet with and without acoustic streaming, as well as the evaporation rates in dependence of different temperatures and sound pressure levels. Finally, a simple model of protein inactivation due to heat damage is considered and studied for different evaporation settings and their respective influence on protein damage.

  2. Numerical study of damage evolution and failure in an electromagnetic corner fill operation

    International Nuclear Information System (INIS)

    Imbert, J.M.; Winkler, S.L.; Worswick, M.J.; Oliveira, D.A.; Golovashchenko, S.

    2004-01-01

    A numerical study of an electromagnetic corner fill operation using AA5754 aluminum alloy sheet was performed. Conical parts with side angles of 40 and 45 deg. (included angles of 100 and 90 deg.) were modeled. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Damage evolution was predicted using a damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. Experiments were performed to validate the numerical results. Damage measurements were made using optical microscopy to determine the actual damage produced by the forming operations. Predicted final shape, failure and damage levels are presented and compared with experimental results. The numerical models were able to accurately predict damage trends. Failure was predicted in general agreement with the experiments

  3. Numerical study of extreme-ultra-violet generated plasmas in hydrogen

    NARCIS (Netherlands)

    Astakhov, Dmitry

    2016-01-01

    In this thesis, we present the development and study a numerical model of EUV-induced plasma. Understanding of behavior of low pressure low density plasmas is of industrial relevance, because of their potential use for on-line removal of different forms of contaminations from multilayer mirrors,

  4. A novel method of including Landau level mixing in numerical studies of the quantum Hall effect

    International Nuclear Information System (INIS)

    Wooten, Rachel; Quinn, John; Macek, Joseph

    2013-01-01

    Landau level mixing should influence the quantum Hall effect for all except the strongest applied magnetic fields. We propose a simple method for examining the effects of Landau level mixing by incorporating multiple Landau levels into the Haldane pseudopotentials through exact numerical diagonalization. Some of the resulting pseudopotentials for the lowest and first excited Landau levels will be presented

  5. Mathematical and numerical study of non-linear models used in plasma physics

    International Nuclear Information System (INIS)

    Ebrard, G.

    2005-12-01

    We study the interaction of several crossing beams with a plasma in the Laser-Megajoule context. We start from Euler-Maxwell. The formal asymptotic is the Zakharov system. For simplified systems of Klein-Gordon-wave type, we justify an approximation by a Zakharov equation for solutions of large amplitude. We construct a new system that simulates the interaction of 2 beams and present a whole hierarchy of models. We introduce a numerical scheme using the known results on Zakharov-wave equations which are valid for short pulses. We give a scheme which eliminate the backscattering wave. We give some numerical results. Finally, we do several numerical simulations of laser-plasma interaction for the initial value problem and the boundary value problem. (author)

  6. Study for discharge coefficient of flow nozzles. Prediction by using numerical simulation

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Sakai, Norio; Yamamoto, Yasushi; Arai, Kenji; Matsumoto, Masaaki

    2008-01-01

    In nuclear plant, as water feeding into reactor have much effect on thermal power of plant, it is important to measure accurately the flow rate of water. Flow nozzle is on of typical differential pressure type flow meters and the discharge coefficient is used to calculate the flow rate. This coefficient is given by actual experiment and theory. We studied the theoretical assumption of the discharge coefficient curve using numerical simulation and evaluated the effect of flow nozzle configuration on the coefficient numerically and experimentally. As the result, numerical simulation can predict the discharge coefficient of theoretical curve within 0.3%. And we found that the throat length and throat tapping location of flow nozzle have much effect on the coefficient. (author)

  7. Research status and some results of numerical system to study regional environment: SPEEDI-MP

    International Nuclear Information System (INIS)

    Chino, Masamichi

    2004-01-01

    Research status and some results of 'Numerical system to study regional environment: SPEEDI-MP', which reproduces circulations of materials in the atmospheric, oceanic and terrestrial environments, are introduced. The purpose of this system are the development of various environmental models, the connection of atmospheric, oceanic and terrestrial models and the construction of research bases for numerical environmental studies. In addition to the accurate prediction of environmental behavior of radionuclides, the system has been applied to the non-nuclear fields, e.g., numerical analysis of environmental effects to volcanic gases from Miyake Jima, real-time prediction of the migration of rice planthoppers from Eastern Asia. (author)

  8. Recent results of seismic isolation study in CRIEPI: Numerical activities

    International Nuclear Information System (INIS)

    Shiojiri, Hiroo; Ishida, Katsuhiko; Yabana, Shurichi; Hirata, Kazuta

    1992-01-01

    Development of detailed numerical models of a bearing and the related isolation system Is necessary for establishing the rational design of the bearing and the system. The developed numerical models should be validated regarding the physical parameters and the basic assumption by comparing the experimental results with the numerical ones. The numerical work being conducted in CRIEPI consists of the following items: (1) Simple modeling of the behavior of the bearings capable of approximating the tests on bearings, and the validation of the model for the bearing by comparing the numerical results adopting the models with the shaking table tests results; (2) Detailed three-dimensional modeling of single bearings with finite-element codes, and the experimental validation of the model; (3)Simple and detailed three-dimensional modeling of isolation buildings and experimental validation

  9. Numerical simulation system for environmental studies: SPEEDI-MP

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Chino, Masamichi; Terada, Hiroaki; Harayama, Takaya; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok; Furuno, Akiko

    2006-09-01

    A numerical simulation system SPEEDI-MP has been developed to apply for various environmental studies. SPEEDI-MP consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical database for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. System utility GUIs are based on the Web technology, allowing users to manipulate all the functions on the system using their own PCs via the internet. In this system, the source estimation function in the atmospheric transport model can be executed on the grid computer system. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)

  10. A numerical study for global atmospheric transport-chemistry problems

    NARCIS (Netherlands)

    E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1998-01-01

    htmlabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  11. A numerical study for global atmospheric transport-chemistry problems

    NARCIS (Netherlands)

    E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1997-01-01

    textabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  12. Numerical models for high beta magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    Brackbill, J.U.

    1987-01-01

    The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs

  13. 47 CFR 97.507 - Preparing an examination.

    Science.gov (United States)

    2010-10-01

    ... coordinating VEC. (d) A telegraphy examination must consist of a message sent in the international Morse code... telegraphy examination. Each 5 letters of the alphabet must be counted as 1 word. Each numeral, punctuation...

  14. Maternal Support of Children's Early Numerical Concept Learning Predicts Preschool and First-Grade Math Achievement.

    Science.gov (United States)

    Casey, Beth M; Lombardi, Caitlin M; Thomson, Dana; Nguyen, Hoa Nha; Paz, Melissa; Theriault, Cote A; Dearing, Eric

    2018-01-01

    The primary goal in this study was to examine maternal support of numerical concepts at 36 months as predictors of math achievement at 4½ and 6-7 years. Observational measures of mother-child interactions (n = 140) were used to examine type of support for numerical concepts. Maternal support that involved labeling the quantities of sets of objects was predictive of later child math achievement. This association was significant for preschool (d = .45) and first-grade math (d = .49), controlling for other forms of numerical support (identifying numerals, one-to-one counting) as well as potential confounding factors. The importance of maternal support of labeling set sizes at 36 months is discussed as a precursor to children's eventual understanding of the cardinal principle. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  15. Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids

    International Nuclear Information System (INIS)

    Huminic, Gabriela; Huminic, Angel

    2013-01-01

    Highlights: • Numerical study of nanofluid heat transfer in thermosyphon heat pipes is performed. • Effect of nanoparticle concentration and operating temperature are studied. • Fe 2 O 3 –water nanofluid with 5.3% volume concentration shows the best performance. • Results show the improvement the thermal performances of thermosyphon heat pipe with nanofluids. - Abstract: In this work, a three-dimensional analysis is used to investigate the heat transfer of thermosyphon heat pipe using water and nanofluids as the working fluid. The study focused mainly on the effects of volume concentrations of nanoparticles and the operating temperature on the heat transfer performance of the thermosyphon heat pipe using the nanofluids. The analysis was performed for water and γ-Fe 2 O 3 nanoparticles, three volume concentrations of nanoparticles (0 vol.%, 2 vol.% and 5.3 vol.%) and four operating temperatures (60, 70, 80 and 90 °C). The numerical results show that the volume concentration of nanoparticles had a significant effect in reducing the temperature difference between the evaporator and condenser. Experimental and numerical results show qualitatively that the thermosyphon heat pipe using the nanofluid has better heat transfer characteristics than the thermosyphon heat pipe using water

  16. Numerical and experimental study of a hydrodynamic cavitation tube

    Science.gov (United States)

    Hu, H.; Finch, J. A.; Zhou, Z.; Xu, Z.

    1998-08-01

    A numerical analysis of hydrodynamics in a cavitation tube used for activating fine particle flotation is described. Using numerical procedures developed for solving the turbulent k-ɛ model with boundary fitted coordinates, the stream function, vorticity, velocity, and pressure distributions in a cavitation tube were calculated. The calculated pressure distribution was found to be in excellent agreement with experimental results. The requirement of a pressure drop below approximately 10 m water for cavitation to occur was observed experimentally and confirmed by the model. The use of the numerical procedures for cavitation tube design is discussed briefly.

  17. A numerical study of a supercritical fluid jet

    International Nuclear Information System (INIS)

    Sierra-Pallares, J.; Garcia-Serna, J.; Cocero, M.J.; Parra-Santos, M.T.; Castro-Ruiz, F.

    2009-01-01

    This study affords the numerical solution of the mixing of a submerged turbulent jet under supercritical conditions and near-critical conditions. Turbulence plays a very important role in the behaviour of chemical engineering equipment. An accurate prediction of the turbulence at supercritical conditions with low computational cost is crucial in designing new processes such as reactions in supercritical media, high pressure separation processes, nanomaterials processing and heterogeneous catalysis. At high-pressure, the flow cannot be modelled accurately using the ideal-gas assumption. Therefore, the real gas models must be used in order to solve accurately the fluid flow and heat transfer problems where the working fluid behaviour deviate seriously from the ideal-gas assumption. The jet structure has three parts clearly distinguished: the injection, the transition and the fully developed jet. Once the flow is dominated by the turbulent eddies of the shear layer, the flow is fully developed and the radial profiles match a similarity profile. This work reports the state of the project that is not completed and is being processed now. This work is devoted to establish the distance downstream from the injector where the jet become self-preserving and the shape of the similarity profiles. This system is of interest in the design of supercritical reactor inlets, where two streams should be mixed in the shortest length, or mixing conditions strongly affect the behaviour of the processes. The numerical results have been validated with experimental measurements made in the jet mixing region. The radial profiles for average velocity, density and temperature are analyzed. The parameters of the profile that match better the numerical results are summarized in Table 1. The density requires a lower value of n than these for velocity and temperature, which reflect smoother profiles. These conclusions are in good agreement with the results from Oschwald and Schik. (author)

  18. Detection of the onset of numerical chaotic instabilities by lyapunov exponents

    Directory of Open Access Journals (Sweden)

    Alicia Serfaty De Markus

    2001-01-01

    Full Text Available It is commonly found in the fixed-step numerical integration of nonlinear differential equations that the size of the integration step is opposite related to the numerical stability of the scheme and to the speed of computation. We present a procedure that establishes a criterion to select the largest possible step size before the onset of chaotic numerical instabilities, based upon the observation that computational chaos does not occur in a smooth, continuous way, but rather abruptly, as detected by examining the largest Lyapunov exponent as a function of the step size. For completeness, examination of the bifurcation diagrams with the step reveals the complexity imposed by the algorithmic discretization, showing the robustness of a scheme to numerical instabilities, illustrated here for explicit and implicit Euler schemes. An example of numerical suppression of chaos is also provided.

  19. Study and simulation of a parallel numerical processing machine

    International Nuclear Information System (INIS)

    Bel Hadj, Slaheddine

    1981-12-01

    This study has been carried out in the perspective of the implementation on a minicomputer of the NEPTUNIX package (software for the resolution of very large algebra-differential equation systems). Aiming at increasing the system performance, a previous research work has shown the necessity of reducing the execution time of certain numerical computation tasks, which are of frequent use. It has also demonstrated the feasibility of handling these tasks with efficient algorithms of parallel type. The present work deals with the study and simulation of a parallel architecture processor adapted to the fast execution of these algorithms. A minicomputer fitted with a connection to such a parallel processor, has a greatly extended computing power. Then the architecture of a parallel numerical processor, based on the use of VLSI microprocessors and co-processors, is described. Its design aims at the best cost / performance ratio. The last part deals with the simulation processor with the 'CHAMBOR' program. Results show an increasing factor of 30 in speed, in comparison with the execution on a MITRA 15 minicomputer. Moreover the conflicts importance, mainly at the level of access to a shared resource is evaluated. Although this implementation has been designed having in mind a dedicated application, other uses could be envisaged, particularly for the simulation of nuclear reactors: operator guiding system, the behavioural study under accidental circumstances, etc. (author) [fr

  20. Numerical study of microphase separation in gels and random media

    International Nuclear Information System (INIS)

    Uchida, Nariya

    2004-01-01

    Microphase separation in gels and random media is numerically studied using a Ginzburg-Landau model. A random field destroys long-range orientational (lamellar) order and gives rise to a disordered bicontinuous morphology. The dependence of the correlation length on the field strength is distinct from that of random-field magnets

  1. Numerical study of hydrogen absorption in a LM-Ni5 hybride reactor

    International Nuclear Information System (INIS)

    Altinisik, K.; Tekin, M.; Mat, M. D.; Altinisik, A.; Veziroglu, T. N.

    2007-01-01

    Metal hydride formation in an Lm-Ni5 storage tank is numerically studied with a continuum mathematical model. The model considers complex heat, and mass transfer and chemical reaction in the reaction bed. It is found that hydride formation enhances at regions with lower equilibrium pressure. Absorbed hydrogen mass increases exponentially at earlier times of hydriding process and slow down after temperature of reaction bed increases due to the heat of reaction. Numerical results agree satisfactorily with the experimental data in the literature

  2. Development of numerical processing in children with typical and dyscalculic arithmetic skills—a longitudinal study

    Science.gov (United States)

    Landerl, Karin

    2013-01-01

    Numerical processing has been demonstrated to be closely associated with arithmetic skills, however, our knowledge on the development of the relevant cognitive mechanisms is limited. The present longitudinal study investigated the developmental trajectories of numerical processing in 42 children with age-adequate arithmetic development and 41 children with dyscalculia over a 2-year period from beginning of Grade 2, when children were 7; 6 years old, to beginning of Grade 4. A battery of numerical processing tasks (dot enumeration, non-symbolic and symbolic comparison of one- and two-digit numbers, physical comparison, number line estimation) was given five times during the study (beginning and middle of each school year). Efficiency of numerical processing was a very good indicator of development in numerical processing while within-task effects remained largely constant and showed low long-term stability before middle of Grade 3. Children with dyscalculia showed less efficient numerical processing reflected in specifically prolonged response times. Importantly, they showed consistently larger slopes for dot enumeration in the subitizing range, an untypically large compatibility effect when processing two-digit numbers, and they were consistently less accurate in placing numbers on a number line. Thus, we were able to identify parameters that can be used in future research to characterize numerical processing in typical and dyscalculic development. These parameters can also be helpful for identification of children who struggle in their numerical development. PMID:23898310

  3. A numerical study of bubble interactions in Rayleigh--Taylor instability for compressible fluids

    International Nuclear Information System (INIS)

    Glimm, J.; Li, X.L.; Menikoff, R.; Sharp, D.H.; Zhang, Q.

    1990-01-01

    The late nonlinear and chaotic stage of Rayleigh--Taylor instability is characterized by the evolution of bubbles of the light fluid and spikes of the heavy fluid, each penetrating into the other phase. This paper is focused on the numerical study of bubble interactions and their effect on the statistical behavior and evolution of the bubble envelope. Compressible fluids described by the two-fluid Euler equations are considered and the front tracking method for numerical simulation of these equations is used. Two major phenomena are studied. One is the dynamics of the bubbles in a chaotic environment and the interaction among neighboring bubbles. Another one is the acceleration of the overall bubble envelope, which is a statistical consequence of the interactions of bubbles. The main result is a consistent analysis, at least in the approximately incompressible case of these two phenomena. The consistency encompasses the analysis of experiments, numerical simulation, simple theoretical models, and variation of parameters. Numerical simulation results that are in quantitative agreement with laboratory experiment for one-and-one-half (1 1/2) generations of bubble merger are presented. To the authors' knowledge, computations of this accuracy have not previously been obtained

  4. Numerical and algebraic studies for the control of finite-dimensional quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Uwe

    2010-11-18

    In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)

  5. Numerical and algebraic studies for the control of finite-dimensional quantum systems

    International Nuclear Information System (INIS)

    Sander, Uwe

    2010-01-01

    In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)

  6. Numerical Study of the Ghost-Ghost-Gluon Vertex on the Lattice

    International Nuclear Information System (INIS)

    Mihara, A.; Cucchieri, A.; Mendes, T.

    2004-01-01

    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z-tilde1 (p2) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β = 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16

  7. Numerical study of the ghost-ghost-gluon vertex on the lattice

    International Nuclear Information System (INIS)

    Mihara, A.; Cucchieri, A.; Mendes, T.

    2004-01-01

    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z∼ 1 1(p 2 ) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β= 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16. (author)

  8. Numerical analysis

    CERN Document Server

    Scott, L Ridgway

    2011-01-01

    Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...

  9. Numerical studies on the dynamics of the Northwestern Black Sea shelf

    Directory of Open Access Journals (Sweden)

    V. KOURAFALOU

    2004-06-01

    Full Text Available The Northwestern Black Sea shelf dynamics are studied with numerical simulations based on the Princeton Ocean Model. The study focus is on buoyancy and wind driven flows and on the transport and fate of low salinity waters that are introduced through riverine sources (the Danube, Dnestr and Dnepr Rivers, under the seasonal changes in atmospheric forcing. The study is part of the DANUBS project (NUtrient management in the DAnube basin and its impact on the Black Sea. The numerical simulations show that the coastal circulation is greatly influenced by river runoff and especially that of the Danube, which is dominant with monthly averaged values ranging from 5,000 m3 to 10,000 m3. The transport of low-salinity waters associated with the Danube runoff is greatly influenced by wind stress, topographic effects and basin-scale circulation patterns, such as changes in the position of the Rim Current.

  10. Experimental and numerical studies on free surface flow of windowless target

    International Nuclear Information System (INIS)

    Su, G.Y.; Gu, H.Y.; Cheng, X.

    2012-01-01

    Highlights: ► Experimental and CFD studies on free surface flow have been performed in a scaled windowless target. ► Flow structure inside spallation area can be divided into three typical zones. ► Under large Reynolds number, large scale vortex can be observed. ► CFD studies have been conducted by using both LES and RANS (k-ω SST) turbulence models. ► LES model provides better numerical prediction on free surface behavior and flow transient. - Abstract: The formation and control method of the coolant free surface is one of the key technologies for the design of windowless targets in the accelerator driven system (ADS). In the recent study, experimental and numerical investigations on the free surface flow have been performed in a scaled windowless target by using water as the model fluid. The planar laser induced fluorescence technique has been applied to visualize the free surface flow pattern inside the spallation area. Experiments have been carried out with the Reynolds number in the range of 30,000–50,000. The structure and features of flow vortex have been investigated. The experimental results show that the free surface is vulnerable to the vortex movement. In addition, CFD simulations have been performed under the experimental conditions, using LES and RANS (k-ω SST) turbulence models, respectively. The numerical results of LES model agree qualitatively well with the experimental data related to both flow pattern and free surface behavior.

  11. Numerical Investigation of Thermal and Thermo-mechanical Effective Properties for Short Fibre Reinforced Composite

    Science.gov (United States)

    Ioannou, Ioannis; Hodzic, Alma; Gitman, Inna M.

    2017-10-01

    This study aims to investigate the thermal conductivity and the linear coefficient of thermal expansion for short fibre reinforced composites. The study combines numerical and statistical analyses in order to primarily examine the representative size and the effective properties of the volume element. Effects of various micromechanical parameters, such as fibre's aspect ratio and fibre's orientation, on the minimum representative size are discussed. The numerically acquired effective properties, obtained for the representative size, are presented and compared with analytical models.

  12. Numerical study of traveling-wave solutions for the Camassa-Holm equation

    International Nuclear Information System (INIS)

    Kalisch, Henrik; Lenells, Jonatan

    2005-01-01

    We explore numerically different aspects of periodic traveling-wave solutions of the Camassa-Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied

  13. Abstract numerical discrimination learning in rats.

    Science.gov (United States)

    Taniuchi, Tohru; Sugihara, Junko; Wakashima, Mariko; Kamijo, Makiko

    2016-06-01

    In this study, we examined rats' discrimination learning of the numerical ordering positions of objects. In Experiments 1 and 2, five out of seven rats successfully learned to respond to the third of six identical objects in a row and showed reliable transfer of this discrimination to novel stimuli after being trained with three different training stimuli. In Experiment 3, the three rats from Experiment 2 continued to be trained to respond to the third object in an object array, which included an odd object that needed to be excluded when identifying the target third object. All three rats acquired this selective-counting task of specific stimuli, and two rats showed reliable transfer of this selective-counting performance to test sets of novel stimuli. In Experiment 4, the three rats from Experiment 3 quickly learned to respond to the third stimulus in object rows consisting of either six identical or six different objects. These results offer strong evidence for abstract numerical discrimination learning in rats.

  14. Numerical study of interfacial flows with immersed solids

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2003-01-01

    A numerical method is presented for computing unsteady incompressible two-phase flows with immersed solids. The method is based on a level set technique for capturing the phase interface, which is modified to satisfy a contact angle condition at the solid-fluid interface as well as to achieve mass conservation during the whole calculation procedure. The modified level set method is applied for numerical simulation of bubble deformation in a micro channel with a cylindrical solid block and liquid jet from a micro nozzle

  15. Experimental and numerical studies of rotating drum grate furnace

    Directory of Open Access Journals (Sweden)

    Basista Grzegorz

    2017-01-01

    Full Text Available Waste material from the meat industry can be taken into account as a biofuel. Studies confirm, that calorific value is higher and ash content is lower comparing to some conventional fuels. EU directives regulate details of thermal disposal of the waste material from the meat industry - especially in range of the process temperature and time of the particle presence in area of the combustion zone. The paper describes design of the rotating drum grate stove, dedicated to thermal disposal of the meat wastes as well as solid biomass (pellet, small bricket, wood chips combustion. Device has been developed in frames of cooperation between AGH University of Science and Technology (Krakow, Poland and producer focused on technologies of energy utilization of biomass in distributed generation. Results of measurements of selected operational parameters performed during startup of the furnace have been presented and discussed. Furthermore, numerical model of the combustion process has been developed to complement experimental results in range of the temperature and oxygen distribution in the area of the combustion chamber. ANSYS CFX solver has been applied to perform simulations including rotational domain related with specifics of operation of the device. Results of numerical modelling and experimental studies have been summarized and compared.

  16. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.

    Science.gov (United States)

    Thalhammer, Mechthild; Abhau, Jochen

    2012-08-15

    As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross-Pitaevskii equation arising in the description of Bose-Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross-Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter [Formula: see text], especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that

  17. Numerical study for two phase flow in the near nozzle region of turbine combustors

    International Nuclear Information System (INIS)

    Pervez, K.; Mushtaq, S.

    1999-01-01

    In the present study flow conditions in the near nozzle region of the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion zone largely depends on the spray field in the near nozzle region the studies are conducted to determined the effects of multi jets on the flow pattern in the near nozzle region The phase doppler particle analyzer (PDPA) has been used to measure the velocities and sizes of the droplets. The flow field of two-phase liquid drop-air jets is formed from three injectors arranged in t line. Furthermore the two-phase flow field has been analyzed numerically also. The numerical analysis consists of two computational models, namely (i) 3 non-evaporating two-phase jets, (II) 3 evaporating two phase jets. The Eulerian-Eulerian approach in incorporated in both the numerical models. Since the flow is turbulent, a two-equation model (k-Epsilon) is implemented in the numerical analysis. Numerical solution of the conservation equation is obtained using PHOENICS computer code. Boundary conditions are provided from the experimental measurements. Numerical domain for the two models of the analysis starts at some distance (about 10 diameters of the injector orifice) where the atomization process is complete and droplet size and velocity could be measured experimentally. (author)

  18. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations

    Directory of Open Access Journals (Sweden)

    Yucong Miao

    2014-01-01

    Full Text Available The objective of this study is to numerically study flow and traffic exhaust dispersion in urban street canyons with different configurations to find out the urban-planning strategies to ease the air pollution. The Computational Fluid Dynamics (CFD model used in this study—Open Source Field Operation and Manipulation (OpenFOAM software package—was firstly validated against the wind-tunnel experiment data by using three different k-ε turbulence models. And then the patterns of flow and dispersion within three different kinds of street canyon configuration under the perpendicular approaching flow were numerically studied. The result showed that the width and height of building can dramatically affect the pollution level inside the street canyon. As the width or height of building increases, the pollution at the pedestrian level increases. And the asymmetric configuration (step-up or step-down street canyon could provide better ventilation. It is recommended to design a street canyon with nonuniform configurations. And the OpenFOAM software package can be used as a reliable tool to study flows and dispersions around buildings.

  19. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    Science.gov (United States)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  20. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  1. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  2. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    Energy Technology Data Exchange (ETDEWEB)

    Kako, T.; Watanabe, T. [eds.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  3. A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations

    Science.gov (United States)

    Thalhammer, Mechthild; Abhau, Jochen

    2012-01-01

    As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross–Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter 0Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the numerical approximation captures correctly the behaviour of the analytical solution. Further illustrations for Gross–Pitaevskii equations with a focusing nonlinearity or a sharp Gaussian as initial condition, respectively

  4. Role of vegetation in formation of radiation fog: A numerical study

    Czech Academy of Sciences Publication Activity Database

    Potužníková, Kateřina; Sedlák, Pavel

    2004-01-01

    Roč. 23, Suppl. 2 (2004), s. 39-45 ISSN 1335-342X Institutional research plan: CEZ:AV0Z3042911 Keywords : radiation fog * vegetation cover * numerical study Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.078, year: 2004

  5. Numerical Study of Corrosion Crack Opening

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan

    2008-01-01

    is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...... for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...

  6. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael

    2017-11-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  7. Selecting numerical scales for pairwise comparisons

    International Nuclear Information System (INIS)

    Elliott, Michael A.

    2010-01-01

    It is often desirable in decision analysis problems to elicit from an individual the rankings of a population of attributes according to the individual's preference and to understand the degree to which each attribute is preferred to the others. A common method for obtaining this information involves the use of pairwise comparisons, which allows an analyst to convert subjective expressions of preference between two attributes into numerical values indicating preferences across the entire population of attributes. Key to the use of pairwise comparisons is the underlying numerical scale that is used to convert subjective linguistic expressions of preference into numerical values. This scale represents the psychological manner in which individuals perceive increments of preference among abstract attributes and it has important implications about the distribution and consistency of an individual's preferences. Three popular scale types, the traditional integer scales, balanced scales and power scales are examined. Results of a study of 64 individuals responding to a hypothetical decision problem show that none of these scales can accurately capture the preferences of all individuals. A study of three individuals working on an actual engineering decision problem involving the design of a decay heat removal system for a nuclear fission reactor show that the choice of scale can affect the preferred decision. It is concluded that applications of pairwise comparisons would benefit from permitting participants to choose the scale that best models their own particular way of thinking about the relative preference of attributes.

  8. Contribution to the theoretical and numerical study of inertial confinement fusion

    International Nuclear Information System (INIS)

    Tran Trach-Minh

    1983-01-01

    After an overview of problems faced for numerical simulations of inertial fusion, this research thesis reports the study of the behaviour of suprathermal ions by using the transport equation as model. The problem is then to find an appropriate numerical method to solve this equation, inspired by well known methods related to the transport of neutral particles (photons and neutrons) which however cannot be directly applied. The calculation scheme is introduced in an existing hydrodynamic code. Models are then proposed to take the partial ionisation of some materials into account in the target thermodynamics and in the slowing down of fast ions. In the next part, the author discusses the ion transport equation, and the calculation of the different coefficients which characterise their interaction with particles of the host medium. Problems faced for numerical processing are addressed. The coupling of ion transport calculation model with a hydrodynamic code is described. Effects of alphas transport during target ignition are analysed, as well as the penetration of external ion beams during the compression phase

  9. Microfluidic emulsification at cross-junction: experimental and numerical study using Blue

    Science.gov (United States)

    Roumpea, Evangelia; Kovalchuk, Nina M.; Kahouadji, Lyes; Xie, Zhihua; Chinaud, Maxime; Simmons, Mark J. H.; Matar, Omar K.; Angeli, Panagiota

    2017-11-01

    Liquid-liquid drop formation in a cross-junction device is investigated both experimentally and numerically. Experiments are performed using 5 cSt silicone oil as the continuous phase and 52% glycerol/ 48% water mixture containing surfactants as the dispersed phase. Both a high-speed camera and a two-colour micro-PIV technique were used to obtain the different flow regimes i.e. squeezing, dripping, jetting and threading and to study the velocity fields of the two phases simultaneously. The dependence of the drop size on flow rate follows a power law with different exponents for small and large drops. Numerical simulations using the code Blue, a massive parallel solver for simulations of fully three-dimensional multiphase flows, were also performed taking into account the properties of the liquids used in the experiments and the precise geometry of the microfluidic chips. The simulation results agreed very well with the surfactant-free solution. The numerical simulations taking into account the surfactant are ongoing. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  10. Modeling and numerical study of two phase flow

    International Nuclear Information System (INIS)

    Champmartin, A.

    2011-01-01

    This thesis describes the modelization and the simulation of two-phase systems composed of droplets moving in a gas. The two phases interact with each other and the type of model to consider directly depends on the type of simulations targeted. In the first part, the two phases are considered as fluid and are described using a mixture model with a drift relation (to be able to follow the relative velocity between the two phases and take into account two velocities), the two-phase flows are assumed at the equilibrium in temperature and pressure. This part of the manuscript consists of the derivation of the equations, writing a numerical scheme associated with this set of equations, a study of this scheme and simulations. A mathematical study of this model (hyperbolicity in a simplified framework, linear stability analysis of the system around a steady state) was conducted in a frame where the gas is assumed baro-tropic. The second part is devoted to the modelization of the effect of inelastic collisions on the particles when the time of the simulation is shorter and the droplets can no longer be seen as a fluid. We introduce a model of inelastic collisions for droplets in a spray, leading to a specific Boltzmann kernel. Then, we build caricatures of this kernel of BGK type, in which the behavior of the first moments of the solution of the Boltzmann equation (that is mass, momentum, directional temperatures, variance of the internal energy) are mimicked. The quality of these caricatures is tested numerically at the end. (author) [fr

  11. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik

    2014-01-01

    We present a numerical study of thermoviscous effects on the acoustic streaming flow generated by an ultrasound standing-wave resonance in a long straight microfluidic channel containing a Newtonian fluid. These effects enter primarily through the temperature and density dependence of the fluid...... viscosity. The resulting magnitude of the streaming flow is calculated and characterized numerically, and we find that even for thin acoustic boundary layers, the channel height affects the magnitude of the streaming flow. For the special case of a sufficiently large channel height, we have successfully...

  12. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    Science.gov (United States)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  13. Numerical study of two-dimensional moist symmetric instability

    Directory of Open Access Journals (Sweden)

    M. Fantini

    2008-06-01

    Full Text Available The 2-D version of the non-hydrostatic fully compressible model MOLOCH developed at ISAC-CNR was used in idealized set-up to study the start-up and finite amplitude evolution of symmetric instability. The unstable basic state was designed by numerical integration of the equation which defines saturated equivalent potential vorticity qe*. We present the structure and growth rates of the linear modes both for a supersaturated initial state ("super"-linear mode and for a saturated one ("pseudo"-linear mode and the modifications induced on the base state by their finite amplitude evolution.

  14. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian; Sparber, Christof; Markowich, Peter A.

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass

  15. Numerical investigation of FAST powder consolidation of Al2O3 and additive free β-SiC

    International Nuclear Information System (INIS)

    Allen, J B; Cornwell, C F; Carlson, T; Marsh, C P

    2015-01-01

    In this work we examine ceramic synthesis through powder consolidation and the field assisted sintering technique. In particular, we investigate the sintering of Al 2 O 3 and additive free β−SiC from both an experimental and numerical perspective. For the numerical model, the continuum theory of sintering model is employed, and the densification mechanisms corresponding to power law creep and grain boundary diffusion are considered. Experiments are used for comparison and validation purposes. The results indicate that in general, the densification kinetics simulated by the numerical model compare favorably with the experimental results. Parametric studies involving initial grain size, heating rate, and applied stress are also examined using the numerical model, and confirm many of the expected results from previous research, including increased densification due to higher heating rates, smaller grain sizes, and increased applied loading conditions. (paper)

  16. Effect of object functions on tomographic reconstruction a numerical study

    International Nuclear Information System (INIS)

    Babu Rao, C.; Baldev Raj; Ravichandran, V.S.; Munshi, P.

    1996-01-01

    Convolution back projection is the most widely used algorithm of computed tomography (CT). Theoretical studies show that under ideal conditions, the error in the reconstruction can be correlated with the second fourier space derivative of filter function and with the Laplacian of the object function. This paper looks into the second aspect of the error function. In this paper a systematic numerical study is presented on the effect to object functions on global and local errors. (author)

  17. Approximate numerical abilities and mathematics: Insight from correlational and experimental training studies.

    Science.gov (United States)

    Hyde, D C; Berteletti, I; Mou, Y

    2016-01-01

    Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test. © 2016 Elsevier B.V. All rights reserved.

  18. Numerical study on boiling heat transfer enhancement in a microchannel heat exchanger

    International Nuclear Information System (INIS)

    Jeon, Jin Ho; Suh, Young Ho; Son, Gi Hun

    2008-01-01

    Flow boiling in a microchannel heat exchanger has received attention as an effective heat removal mechanism for high power-density microelectronics. Despite extensive experimental studied, the bubble dynamics coupled with boiling heat transfer in a microchannel heat exchanger is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulations are performed to further clarify the dynamics of flow boiling in a microchannel heat exchanger. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle and to treat an immersed solid surface. Based on the numerical results, the effects of modified channel shape on the bubble growth and heat transfer are quantified

  19. Numerical and experimental study of blowing jet on a high lift airfoil

    Science.gov (United States)

    Bobonea, A.; Pricop, M. V.

    2013-10-01

    Active manipulation of separated flows over airfoils at moderate and high angles of attack in order to improve efficiency or performance has been the focus of a number of numerical and experimental investigations for many years. One of the main methods used in active flow control is the usage of blowing devices with constant and pulsed blowing. Through CFD simulation over a 2D high-lift airfoil, this study is trying to highlight the impact of pulsed blowing over its aerodynamic characteristics. The available wind tunnel data from INCAS low speed facility are also beneficial for the validation of the numerical analysis. This study intends to analyze the impact of the blowing jet velocity and slot geometry on the efficiency of an active flow control.

  20. Study of natural convection heat transfer characteristics. (2) Verification for numerical simulation

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Nakada, Kotaro; Ikeda, Tatsumi; Wakamatsu, Mitsuo; Iwaki, Chikako; Morooka, Shinichi; Masaki, Yoshikazu

    2008-01-01

    In the natural cooling system for waste storage, it is important to evaluate the flow by natural draft enough to remove the decay heat from the waste. In this study, we carried out the fundamental study of natural convection on vertical cylindrical heater by experiment and numerical simulation. The dimension of test facility is about 4m heights with single heater. Heating power is varied in the range of 33-110W, where Rayleigh number is over 10 10 . We surveyed the velocity distribution around heater by some turbulent models, mesh sizes around heated wall and turbulent Prandtl numbers. Results of numerical simulation of the velocity distribution and averaged heat transfer coefficient agreed well with experimental data and references. (author)

  1. The analytical and numerical study of the fluorination of uranium dioxide particles

    International Nuclear Information System (INIS)

    Sazhin, S.S.

    1997-01-01

    A detailed analytical study of the equations describing the fluorination of UO 2 particles is presented for some limiting cases assuming that the mass flowrate of these particles is so small that they do not affect the state of the gas. The analytical solutions obtained can be used for approximate estimates of the effect of fluorination on particle diameter and temperature but their major application, however, is probably in the verification of self-consistent numerical solutions. Computational results are presented and discussed for a self-consistent problem in which both the effects of gas on particles and particles on gas are accounted for. It has been shown that in the limiting cases for which analytical solutions have been obtained, the coincidence between numerical and analytical results is almost exact. This can be considered as a verification of both the analytical and numerical solutions. (orig.)

  2. Numerical simulation of tornado-borne missile impact

    International Nuclear Information System (INIS)

    Tu, D.K.; Murray, R.C.

    1977-01-01

    The feasibility of using a finite element procedure to examine the impact phenomenon of a tornado-borne missile impinging on a reinforced concrete barrier was assessed. The major emphasis of this study was to simulate the impact of a nondeformable missile. Several series of simulations were run, using an 8-in.-dia steel slug as the impacting missile. The numerical results were then compared with experimental field tests and empirical formulas. The work is in support of tornado design practices for fuel reprocessing and fuel fabrication plants

  3. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

  4. Numerical study of particle filtration in an induction crucible furnace

    International Nuclear Information System (INIS)

    Asad, Amjad; Kratzsch, Christoph; Dudczig, Steffen; Aneziris, Christos G.; Schwarze, Rüdiger

    2016-01-01

    Highlights: • Removing particles from a melt in an induction furnace by using a filter is introduced. • The effect of filter and its permeability on the melt flow is shown. • The impact of filter permeability and particle diameter on filter efficiency is studied. • The filter efficiency depends on filter position and number of the used filter. - Abstract: The present paper deals with a numerical investigation of the turbulent melt flow driven by the electromagnetic force in an induction furnace. The main scope of the paper is to present a new principle to remove non-metallic particles from steel melt in an induction furnace by immersing a porous filter in the melt. The magnetic field acting on the melt is calculated by using the open source software MaxFEM"®, while the turbulent flow is simulated by means of the open source computational fluid dynamics library OpenFOAM"®. The validation of the numerical model is accomplished by using experimental results for the flow without the immersed filter. Here it is shown that the time-averaged flow, obtained numerically is in a good quantitive agreement with the experimental data. Then, the validated numerical model is employed to simulate the melt flow with the immersed filter in the induction furnace of a new type of real steel casting simulator investigated at Technische Universität Bergakademie Freiberg. The considerable effect of the filter on the flow pattern is indicated in the present work. Moreover, it is shown that the filter permeability and its position have a significant influence on the melt flow in the induction furnace. Additionally, particles are injected in the flow domain and tracked by using Lagrangian framework. In this case, the efficiency of the used filter is determined in the present investigation depending on its permeability, its position and the particles diameter.

  5. Numerical methods using Matlab

    CERN Document Server

    Lindfield, George

    2012-01-01

    Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of use

  6. A Numerical Study for Robust Active Portfolio Management with Worst-Case Downside Risk Measure

    Directory of Open Access Journals (Sweden)

    Aifan Ling

    2014-01-01

    Full Text Available Recently, active portfolio management problems are paid close attention by many researchers due to the explosion of fund industries. We consider a numerical study of a robust active portfolio selection model with downside risk and multiple weights constraints in this paper. We compare the numerical performance of solutions with the classical mean-variance tracking error model and the naive 1/N portfolio strategy by real market data from China market and other markets. We find from the numerical results that the tested active models are more attractive and robust than the compared models.

  7. Analytical and Numerical Studies of Several Fluid Mechanical Problems

    Science.gov (United States)

    Kong, D. L.

    2014-03-01

    In this thesis, three parts, each with several chapters, are respectively devoted to hydrostatic, viscous, and inertial fluids theories and applications. Involved topics include planetary, biological fluid systems, and high performance computing technology. In the hydrostatics part, the classical Maclaurin spheroids theory is generalized, for the first time, to a more realistic multi-layer model, establishing geometries of both the outer surface and the interfaces. For one of its astrophysical applications, the theory explicitly predicts physical shapes of surface and core-mantle-boundary for layered terrestrial planets, which enables the studies of some gravity problems, and the direct numerical simulations of dynamo flows in rotating planetary cores. As another application of the figure theory, the zonal flow in the deep atmosphere of Jupiter is investigated for a better understanding of the Jovian gravity field. An upper bound of gravity field distortions, especially in higher-order zonal gravitational coefficients, induced by deep zonal winds is estimated firstly. The oblate spheroidal shape of an undistorted Jupiter resulting from its fast solid body rotation is fully taken into account, which marks the most significant improvement from previous approximation based Jovian wind theories. High viscosity flows, for example Stokes flows, occur in a lot of processes involving low-speed motions in fluids. Microorganism swimming is such a typical case. A fully three dimensional analytic solution of incompressible Stokes equation is derived in the exterior domain of an arbitrarily translating and rotating prolate spheroid, which models a large family of microorganisms such as cocci bacteria. The solution is then applied to the magnetotactic bacteria swimming problem, and good consistency has been found between theoretical predictions and laboratory observations of the moving patterns of such bacteria under magnetic fields. In the analysis of dynamics of planetary

  8. The Numerical Study on the Influence of Prandtl Number and Height of the Enclosure

    International Nuclear Information System (INIS)

    Moon, Je-Young; Chung, Bum-Jin

    2016-01-01

    This study investigated numerically the internal flow depending on Prandtl number of fluid and height of enclosure. The two-dimensional numerical simulations were performed for several heights of enclosure in the range between 0.01 m and 0.074 m. It corresponds to the aspect ratio (H/L) ranged from 0.07 to 0.5. Prandtl number was 0.2, 0.7 and 7. Rayleigh number based on the height of enclosure ranged between 8.49x10 3 and 1.20x10 8 . The numerical calculations were carried out using FLUENT 6.3. In order to confirm the influence of Prandtl number and height of side walls on the internal flow and heat transfer of the horizontal enclosure, the numerical study is carried out using the FLUENT 6.3. The numerical results for the condition of top cooling only agree well with Rayleigh-Benard natural convection. When the top and side walls were cooled, the internal flow of enclosure is more complex. The thickness of thermal and velocity boundary layer varies with Prandtl number. For Pr>1 the behavior of cells is unstable and irregular owing to the entrained plume, whereas the internal flow for Pr<1 is stable and regular. Also, the number of cells increases depending on decrease of height. As a result, the heat exchange increases

  9. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  10. Numerical studies of the influence of food ingestion on phytoplankton and zooplankton biomasses

    OpenAIRE

    Lidia Dzierzbicka-G³owacka

    2002-01-01

    This paper presents the numerical simulations of the influence of food ingestion by a herbivorous copepod on phytoplankton and zooplankton biomasses (PZB) in the sea. The numerical studies were carried out using the phytoplankton-zooplankton-nutrient-detritus PhyZooNuDe biological upper layer model. This takes account both of fully developed primary production and regeneration mechanisms and of daily migration of zooplankton. In this model the zooplankton is treated not as a 'biomass' but as ...

  11. Residents' numeric inputting error in computerized physician order entry prescription.

    Science.gov (United States)

    Wu, Xue; Wu, Changxu; Zhang, Kan; Wei, Dong

    2016-04-01

    Computerized physician order entry (CPOE) system with embedded clinical decision support (CDS) can significantly reduce certain types of prescription error. However, prescription errors still occur. Various factors such as the numeric inputting methods in human computer interaction (HCI) produce different error rates and types, but has received relatively little attention. This study aimed to examine the effects of numeric inputting methods and urgency levels on numeric inputting errors of prescription, as well as categorize the types of errors. Thirty residents participated in four prescribing tasks in which two factors were manipulated: numeric inputting methods (numeric row in the main keyboard vs. numeric keypad) and urgency levels (urgent situation vs. non-urgent situation). Multiple aspects of participants' prescribing behavior were measured in sober prescribing situations. The results revealed that in urgent situations, participants were prone to make mistakes when using the numeric row in the main keyboard. With control of performance in the sober prescribing situation, the effects of the input methods disappeared, and urgency was found to play a significant role in the generalized linear model. Most errors were either omission or substitution types, but the proportion of transposition and intrusion error types were significantly higher than that of the previous research. Among numbers 3, 8, and 9, which were the less common digits used in prescription, the error rate was higher, which was a great risk to patient safety. Urgency played a more important role in CPOE numeric typing error-making than typing skills and typing habits. It was recommended that inputting with the numeric keypad had lower error rates in urgent situation. An alternative design could consider increasing the sensitivity of the keys with lower frequency of occurrence and decimals. To improve the usability of CPOE, numeric keyboard design and error detection could benefit from spatial

  12. Numerical study of the glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Zaccarelli, Emanuela; Sciortino, Francesco; Tartaglia, Piero

    2004-01-01

    We report extensive numerical simulations in the glass region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behaviour of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition

  13. Infragravity-wave dynamics in a barred coastal region, a numerical study

    NARCIS (Netherlands)

    Rijnsdorp, Dirk P.; Ruessink, Gerben; Zijlema, Marcel

    2015-01-01

    This paper presents a comprehensive numerical study into the infragravity-wave dynamics at a field site, characterized by a gently sloping barred beach. The nonhydrostatic wave-flow model SWASH was used to simulate the local wavefield for a range of wave conditions (including mild and storm

  14. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    De Bakker, A. T M; Tissier, M.F.S.; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

  15. Development of numerical processing in children with typical and dyscalculic arithmetic skills – a longitudinal study

    Directory of Open Access Journals (Sweden)

    Karin eLanderl

    2013-07-01

    Full Text Available Numerical processing has been demonstrated to be closely associated with arithmetic skills, however, our knowledge on the development of the relevant cognitive mechanisms is limited. The present longitudinal study investigated the developmental trajectories of numerical processing in 42 children with age-adequate arithmetic development and 41 children with dyscalculia over a two-year period from beginning of Grade 2, when children were 7;6 years old, to beginning of Grade 4. A battery of numerical processing tasks (dot enumeration, non-symbolic and symbolic comparison of one- and two-digit numbers, physical comparison, number line estimation was given five times during the study (beginning and middle of each school year. Efficiency of numerical processing was a very good indicator of development in numerical processing while within-task effects remained largely constant and showed low long-term stability before middle of Grade 3. Children with dyscalculia showed less efficient numerical processing reflected in specifically prolonged response times. Importantly, they showed consistently larger slopes for dot enumeration in the subitizing range, an untypically large compatibility effect when processing two-digit numbers, and they were consistently less accurate in placing numbers on a number line. Thus, we were able to identify parameters that can be used in future research to characterize numerical processing in typical and dyscalculic development. These parameters can also be helpful for identification of children who struggle in their numerical development.

  16. Numerical and experimental comparison of plastic work-hardening rules

    International Nuclear Information System (INIS)

    Haisler, W.E.

    1977-01-01

    The purpose of this paper is to describe recent numerical and experimental correlation studies of several plastic work-hardening rules. The mechanical sublayer model and the combined kinematic-isotropic hardening rules are examined and the numerical results for several structural geometries are compared to experimental results. Both monotonic and cyclic loads are considered. The governing incremental plasticity relations are developed for both work-hardening models. The combined kinematic-isotropic hardening model is developed in terms of a ratio γ which controls the relative contribution of kinematic hardening (yield surface translation) and isotropic hardening (yield surface expansion). In addition to making use of a uniaxial stress-strain curve as input data, the model allows for the input of a yield surface size vs. uniaxial plastic strain curve obtained from a cyclic uniaxial reverse loading test. The mechanical sublayer model is developed in general form and a new method for determining the sublayer parameters (stress weighting factors and yield stresses) is presented. It is demonstrated that former procedures used to obtain the sublayer parameters are inconsistent for multiaxial loading. Numerical and experimental results are presented for a cylinder, circular plate with punch, and a steel pressure vessel. The numerical results are obtained with the computer program AGGIE I. The comparison study indicates that reasonable agreement is obtained with both hardening models; the choice depending upon whether the loading is monotonic or cyclic

  17. Numerical study on visualization method for material distribution using photothermal effect

    International Nuclear Information System (INIS)

    Kim, Moo Joong; Yoo, Jai Suk; Kim, Dong Kwon; Kim, Hyun Jung

    2015-01-01

    Visualization and imaging techniques have become increasingly essential in a wide range of industrial fields. A few imaging methods such as X-ray imaging, computed tomography and magnetic resonance imaging have been developed for medical applications to materials that are basically transparent or X-ray penetrable; however, reliable techniques for optically opaque materials such as semiconductors or metallic circuits have not been suggested yet. The photothermal method has been developed mainly for the measurement of thermal properties using characteristics that exhibit photothermal effects depending on the thermal properties of the materials. This study attempts to numerically investigate the feasibility of using photothermal effects to visualize or measure the material distribution of opaque substances. For this purpose, we conducted numerical analyses of various intaglio patterns with approximate sizes of 1.2-6 mm in stainless steel 0.5 mm below copper. In addition, images of the intaglio patterns in stainless steel were reconstructed by two-dimensional numerical scanning. A quantitative comparison of the reconstructed results and the original geometries showed an average difference of 0.172 mm and demonstrated the possibility of application to experimental imaging.

  18. Numerical Study of the Critical Impact Velocity in Shear. Appendix Number 1

    National Research Council Canada - National Science Library

    Klosak, M

    1996-01-01

    .... A numerical study of impact shearing of a layer has been performed by the FE code ABAQUS. It was intended to verify available experimental results for VAR 4340 steel 52 HRC, obtained by direct...

  19. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces

    KAUST Repository

    Zhong, Hua; Wang, Xiao-Ping; Sun, Shuyu

    2016-01-01

    We study numerically the three-dimensional droplets spreading on physically flat chemically patterned surfaces with periodic squares separated by channels. Our model consists of the Navier-Stokes-Cahn-Hilliard equations with the generalized Navier

  20. Parametrical Numerical Study on Breakwater SSG Application

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Kofoed, Jens Peter

    The report presents numerical investigations on the performance of the SSG concept for different tide and wave conditions towards different levels of discretization to an optimal solution. Benefit of extra reservoir utilization and reservoir length has also been investigated. The report must be c...

  1. Study on blast furnace cooling stave for various refractory linings based on numerical modeling

    International Nuclear Information System (INIS)

    Mohanty, T R; Sahoo, S K; Moharana, M K

    2016-01-01

    Cooling technology for refractory lining of blast furnace is very important for the metallurgical industry, because it can substantially increase output and operation life of furnaces. A three dimensional mathematical model for the temperature field of the blast furnace stave cooler with refractory lining has been developed and analyzed. The temperature and heat dissipated by stave cooler is examined by using the finite element method. The cast steel stave is studied and computational analysis is made to know the effect of the cooling water velocity, temperature, and the lining material on the maximum temperature of the stave hot surface. The refractory lining materials, which are used in this experiment, are high alumina bricks with different stave materials (copper, aluminum and cast iron). The obtained numerical calculations are compared with that obtained from experiments performed at Rourkela Steel Plant, Odisha taking a stave in belly zone having maximum heat load shows very good agreement. (paper)

  2. Field and numerical studies of flow structure in Lake Shira (Khakassia) in summer

    Science.gov (United States)

    Yakubaylik, Tatyana; Kompaniets, Lidia

    2014-05-01

    Investigations of Lake Shira are conducted within a multidisciplinary approach that includes the study of biodiversity, biochemistry, geology of lake sediments, as well as its hydrophysics. Our report focuses on field measurements in the lake during the 2009 - 2013 and numerical modeling of flow structure. The flow velocity, temperature and salinity distribution and fluctuations of the thermocline (density) were measured in summer. An analysis of spatial and temporal variability of the major hydrophysical characteristics leads us to conclusion that certain meteorological conditions may cause internal waves in this lake. Digital terrain model is constructed from measurements of Lake bathymetry allowing us to carry out numerical simulation. Three-dimensional primitive equation numerical model GETM is applied to simulate hydrophysical processes in Lake Shira. The model is hydrostatic and Boussinesq. An algorithm of high order approximation is opted for calculating the equations of heat and salt transfer. Temperature and salinity distributions resulting from field observations are taken as initial data for numerical simulations. Model calculations as well as calculations with appropriate real wind pattern being observed on Lake Shira have been carried out. In the model calculations we follow (1). Significant differences are observed between model calculations with constant wind and calculations with real wind pattern. Unsteady wind pattern leads to the appearance of horizontal vortexes and a significant increase of vertical fluctuations in temperature (density, impurities). It causes lifting of the sediments to the upper layers at the areas where the thermocline contacts the bottom. It is important for understanding the overall picture of the processes occurring in the lake in summer. Comparison of the results of numerical experiments with the field data shows the possibility of such a phenomena in Lake Shira. The work was supported by the Russian Foundation for

  3. Experimental and numerical study of heat transfer phenomena, inside a flat-plate integrated collector storage solar water heater (ICSSWH), with indirect heat withdrawal

    International Nuclear Information System (INIS)

    Gertzos, K.P.; Pnevmatikakis, S.E.; Caouris, Y.G.

    2008-01-01

    The thermal behavior of a particular flat-plate integrated collector storage solar water heater (ICSSWH) is examined, experimentally and numerically. The particularity consists of the indirect heating of the service hot water, through a heat exchanger incorporated into front and back major surfaces of the ICSSWH. Natural and forced convection mechanisms are both examined. A prototype tank was fabricated and experimental data of temperature profiles are extracted, during various energy withdrawals. A 3D computational fluid dynamics (CFD) model was developed and validated against experimental results. Numerical predictions are found highly accurate, providing thus the use of the 3D CFD model for the optimization of this and similar devices

  4. Numerical Boron mixing studies for Loviisa Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Gango, P. [IVO International Ltd. (Finland)

    1995-09-01

    A program has been started for studying numerically boron mixing in the downcomer of Loviisa NPP (VVER-440). Mixing during the transport of a diluted slug from the loop to the core might serve as an inherent protection mechanism against severe reactivity accidents in inhomogenous boron dilution scenarios for PWRs. The commercial general purpose Computational Fluid Dynamics (CFD) core PHOENICS is used for solving the governing fluid flow equations in the downcomer geometry of VVER-440. So far numerical analyses have been performed for steady state operation conditions and two different pump driven transients. The steady state analyses focused on model development and validation against existing experimental data. The two pump driven transient scenarios reported are based on slug transport during the start of the sixth and first loop respectively. The results from the two transients show that mixing is case and plant specific; the high and open downcomer geometry of VVER-440 seems to be advantageous from mixing point of view. In addition the analyzing work for the {open_quotes}first pump start{close_quotes} scenario brought up some considerations about flow distribution in the existing experimental facilities.

  5. Numerical study of Taylor bubbles with adaptive unstructured meshes

    Science.gov (United States)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  6. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  7. Numerical study of circular synthetic jets at low Reynolds numbers

    International Nuclear Information System (INIS)

    Xia, Qingfeng; Lei, Shenghui; Ma, Jieyan; Zhong, Shan

    2014-01-01

    Highlights: • Parameter maps depicting different flow regimes of synthetic jets are produced. • Boundaries separating these regimes are defined using quantitative criteria. • The Reynolds number is most appropriate for classifying different flow regimes. • A use of high suction cycle factors enhances the effectiveness of synthetic jets. - Abstract: In this paper, the flow patterns of circular synthetic jets issuing into a quiescent flow at low Reynolds numbers are studied numerically. The results confirm the presence of the three jet flow regimes, i.e. no jet formation, jet flow without rollup and jet flow with rollup reported in the literature. The boundaries of the different jet flow regimes are determined by tracking the structures produced by the synthetic jets in the near field of the jet orifice over several actuation cycles and examining the cycle-averaged streamwise velocity profiles along the jet central axis. When the Stokes number is above a certain threshold value appropriate for the corresponding flow regime, a good correlation between the flow patterns and the jet Reynolds number defined using the jet orifice diameter, Re Do , is also found. Furthermore, the flow structures of synthetic jets with different suction duty cycle factors are compared. The use of a high suction duty cycle factor strengthens the synthetic jet resulting in a greater penetration depth into the surrounding fluid. Overall, the finding from this study enables the flow regimes, in which a synthetic jet actuator with a circular orifice operates, to be determined. It also provides a way of designing more effective synthetic jet actuators for enhancing mass and momentum transfer at very low Reynolds numbers

  8. The concept of stability in numerical mathematics

    CERN Document Server

    Hackbusch, Wolfgang

    2014-01-01

    In this book, the author compares the meaning of stability in different subfields of numerical mathematics.  Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.  

  9. Representational Change and Children's Numerical Estimation

    Science.gov (United States)

    Opfer, John E.; Siegler, Robert S.

    2007-01-01

    We applied overlapping waves theory and microgenetic methods to examine how children improve their estimation proficiency, and in particular how they shift from reliance on immature to mature representations of numerical magnitude. We also tested the theoretical prediction that feedback on problems on which the discrepancy between two…

  10. Case studies in the numerical solution of oscillatory integrals

    International Nuclear Information System (INIS)

    Adam, G.

    1992-06-01

    A numerical solution of a number of 53,249 test integrals belonging to nine parametric classes was attempted by two computer codes: EAQWOM (Adam and Nobile, IMA Journ. Numer. Anal. (1991) 11, 271-296) and DO1ANF (Mark 13, 1988) from the NAG library software. For the considered test integrals, EAQWOM was found to be superior to DO1ANF as it concerns robustness, reliability, and friendly user information in case of failure. (author). 9 refs, 3 tabs

  11. Management of examinations: ethical issues. | Nweze | Edo Journal ...

    African Journals Online (AJOL)

    Talking about the ethical issues, we are all aware of the manner/way in which examination malpractice has eaten deep into the fabrics of our society. Some measures really have to be taken to normalize the examination system in our society. The challenges of examination management are numerous for example, having ...

  12. Numerical Study of Photoacoustic Pressure for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Thomas Grosges

    2016-11-01

    Full Text Available A commonly used therapy for cancer is based on the necrosis of cells induced by heating through the illumination of nanoparticles embedded in cells. Recently, the photoacoustic pressure shock induced by the illumination pulse was proved and this points to another means of cell destruction. The purpose of this study is to propose a model of the photoacoustic pressure in cells. The numerical resolution of the problem requires the accurate computation of the electromagnetism, the temperature and the pressure around the nanostructures embedded in a cell. Here, the problem of the interaction between an electromagnetic excitation and a gold nanoparticle embedded in a cell domain is solved. The variations of the thermal and photoacoustic pressures are studied in order to analyze the pressure shock wave inducing the collapse of the cell’s membrane in cancer therapy.

  13. A Floating Ocean Energy Conversion Device and Numerical Study on Buoy Shape and Performance

    Directory of Open Access Journals (Sweden)

    Ruiyin Song

    2016-05-01

    Full Text Available Wave and current energy can be harnessed in the East China Sea and South China Sea; however, both areas are subject to high frequencies of typhoon events. To improve the safety of the ocean energy conversion device, a Floating Ocean Energy Conversion Device (FOECD with a single mooring system is proposed, which can be towed to avoid severe ocean conditions or for regular maintenance. In this paper, the structure of the FOECD is introduced, and it includes a catamaran platform, an oscillating buoy part, a current turbine blade, hydraulic energy storage and an electrical generation part. The numerical study models the large catamaran platform as a single, large buoy, while the four floating buoys were modeled simply as small buoys. Theoretical models on wave energy power capture and efficiency were established. To improve the suitability of the buoy for use in the FOECD and its power harvesting capability, a numerical simulation of the four buoy geometries was undertaken. The shape profiles examined in this paper are cylindrical, turbinate (V-shaped and U-shaped cone with cylinder, and combined cylinder-hemisphere buoys. Simulation results reveal that the suitability of a turbinate buoy is the best of the four types. Further simulation models were carried out by adjusting the tip radius of the turbinate buoy. Three performance criteria including suitability, power harvesting capability and energy capture efficiency were analyzed. It reveals that the turbinate buoy has almost the same power harvesting capabilities and energy capture efficiency, while its suitability is far better than that of a cylindrical buoy.

  14. Direct Numerical Simulations of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Livescu, D; Wei, T; Petersen, M R

    2011-01-01

    The development of the Rayleigh-Taylor mixing layer is studied using data from an extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This includes a suite of simulations with grid size of 1024 2 × 4608 and Atwood number ranging from 0.04 to 0.9, in order to examine small departures from the Boussinesq approximation as well as large Atwood number effects, and a high resolution simulation of grid size 4096 2 × 4032 and Atwood number of 0.75. After the layer width had developed substantially, additional branched simulations have been run under reversed and zero gravity conditions. While the bulk of the results will be published elsewhere, here we present preliminary results on: 1) the long-standing open question regarding the discrepancy between the numerically and experimentally measured mixing layer growth rates and 2) mixing characteristics.

  15. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    Science.gov (United States)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  16. On numerical heat transfer characteristic study of flat surface subjected to variation in geometric thickness

    Science.gov (United States)

    Umair, Siddique Mohammed; Kolawale, Abhijeet Rangnath; Bhise, Ganesh Anurath; Gulhane, Nitin Parashram

    Thermal management in the looming world of electronic packaging system is the most prior and conspicuous issue as far as the working efficiency of the system is concerned. The cooling in such systems can be achieved by impinging air jet over the heat sink as jet impingement cooling is one of the cooling technologies which are widely studied now. Here the modulation in impinging and geometric parameters results in the establishment of the characteristic cooling rate over the target surface. The characteristic cooling curve actually resembles non-uniformity in cooling rate. This non-uniformity favors the area average heat dissipation rate. In order to study the non-uniformity in cooling characteristic, the present study takes an initiative in plotting the local Nusselt number magnitude against the non-dimensional radial distance of the different thickness of target surfaces. For this, the steady temperature distribution over the target surface under the impingement of air jet is being determined numerically. The work is completely inclined towards the determination of critical value of geometric thickness below which the non-uniformity in the Nusselt profile starts. This is done by numerically examining different target surfaces under constant Reynolds number and nozzle-target spacing. The occurrences of non-uniformity in Nusselt profile contributes to over a 42% enhancement in area average Nusselt magnitude. The critical value of characteristic thickness (t/d) reported in the present investigation approximate to 0.05. Below this value, the impingement of air jet generates a discrete pressure zones over the target surface in the form of pressure spots. As a result of this, the air flowing in contact with the target surface experiences a damping potential, in due of which it gets more time and contact with the surface to dissipate heat.

  17. Numerical study of plasma-wall transition in an oblique magnetic field

    International Nuclear Information System (INIS)

    Valsaque, Fabrice; Manfredi, Giovanni

    2001-01-01

    The interaction of a plasma with a fixed wall is investigated numerically. The ions are described by a kinetic model, while the electrons are assumed to be at thermal equilibrium. Finite Debye length effects are taken into account. An Eulerian code is used for the ion dynamics, which enables us to obtain a fine resolution of both position and velocity space. First, we analyse the effect of ionization and collisions, which bring the ion flow to supersonic velocity at the entrance of the Debye sheath (Bohm's criterion). Second, we consider a collisionless sheath with an oblique magnetic field. A magnetic presheath, which has a width of several ion gyroradii, is located between the Debye sheath and the bulk plasma. We perform a systematic numerical study of these sheaths for different incidences of the magnetic field

  18. A numerical study of a premixed flame on a slit burner

    NARCIS (Netherlands)

    Somers, L.M.T.; Goey, de L.P.H.

    1995-01-01

    A numerical study of a premixed methane/air flame on a 4 mm slit burner is presented. A local grid refinement technique is used to deal with large gradients and curvature of all variables encountered in the flame, keeping the number of grid points within reasonable bounds. The method used here leads

  19. New numerical method to study phase transitions and its applications

    International Nuclear Information System (INIS)

    Lee, Jooyoung; Kosterlitz, J.M.

    1991-11-01

    We present a powerful method of identifying the nature of transitions by numerical simulation of finite systems. By studying the finite size scaling properties of free energy barrier between competing states, we can identify unambiguously a weak first order transition even when accessible system sizes are L/ξ < 0.05 as in the five state Potts model in two dimensions. When studying a continuous phase transition we obtain quite accurate estimates of critical exponents by treating it as a field driven first order transition. The method has been successfully applied to various systems

  20. Investigation of Numerical Dissipation in Classical and Implicit Large Eddy Simulations

    Directory of Open Access Journals (Sweden)

    Moutassem El Rafei

    2017-12-01

    Full Text Available The quantitative measure of dissipative properties of different numerical schemes is crucial to computational methods in the field of aerospace applications. Therefore, the objective of the present study is to examine the resolving power of Monotonic Upwind Scheme for Conservation Laws (MUSCL scheme with three different slope limiters: one second-order and two third-order used within the framework of Implicit Large Eddy Simulations (ILES. The performance of the dynamic Smagorinsky subgrid-scale model used in the classical Large Eddy Simulation (LES approach is examined. The assessment of these schemes is of significant importance to understand the numerical dissipation that could affect the accuracy of the numerical solution. A modified equation analysis has been employed to the convective term of the fully-compressible Navier–Stokes equations to formulate an analytical expression of truncation error for the second-order upwind scheme. The contribution of second-order partial derivatives in the expression of truncation error showed that the effect of this numerical error could not be neglected compared to the total kinetic energy dissipation rate. Transitions from laminar to turbulent flow are visualized considering the inviscid Taylor–Green Vortex (TGV test-case. The evolution in time of volumetrically-averaged kinetic energy and kinetic energy dissipation rate have been monitored for all numerical schemes and all grid levels. The dissipation mechanism has been compared to Direct Numerical Simulation (DNS data found in the literature at different Reynolds numbers. We found that the resolving power and the symmetry breaking property are enhanced with finer grid resolutions. The production of vorticity has been observed in terms of enstrophy and effective viscosity. The instantaneous kinetic energy spectrum has been computed using a three-dimensional Fast Fourier Transform (FFT. All combinations of numerical methods produce a k − 4 spectrum

  1. Numerical study of Q-ball formation in gravity mediation

    International Nuclear Information System (INIS)

    Hiramatsu, Takashi; Kawasaki, Masahiro; Takahashi, Fuminobu

    2010-01-01

    We study Q-ball formation in the expanding universe on 1D, 2D and 3D lattice simulations. We obtain detailed Q-ball charge distributions, and find that the distribution is peaked at Q 3D peak ≅ 1.9 × 10 −2 (|Φ in |/m) 2 , which is greater than the existing result by about 60%. Based on the numerical simulations, we discuss how the Q-ball formation proceeds. Also we make a comment on possible deviation of the charge distributions from what was conjectured in the past

  2. Numerical study of the grain growth and the thermal properties of ceramics

    International Nuclear Information System (INIS)

    Shahtahmasebi, N.; Shariaty ghleno, A.M.; Hosaini, M.

    2000-04-01

    The physical properties of ceramics strongly depends on the grain size, which itself depends on the sintering process. In this work we propose a model for sintering based on the gross features known experimental and the preform numerical study

  3. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  4. Numerical study of non-ideal Vlasov-BGK plasmas

    International Nuclear Information System (INIS)

    Levchenko, V.D.; Sigov, Y.S.; Premuda, F.

    1995-01-01

    A relatively simple quasi-classical description of quantum plasmas using as first approximation the Bhatnagar-Gross-Krook (BGK) collision integral, if combined with the modern numerical simulation methods, might be effective tool of a deep study of non-ideal plasma kinetics in a variety of urgent applications as inertial confinement and cold fusion, transport and collective properties of highly condensed plasmas in liquid metals, semi- and superconductors and others. Consider one-dimensional degenerate plasma consisting of thermal electrons and thermal bosons (deuterons) in the vicinity of the equilibrium Fermi- and Bose-type distributions respectively. In the frame of our rough mixed model we solve Vlasov-BGK-Poisson eqs using simplified version of the SUR code

  5. How Parents Read Counting Books and Non-numerical Books to Their Preverbal Infants: An Observational Study.

    Science.gov (United States)

    Goldstein, Alison; Cole, Thomas; Cordes, Sara

    2016-01-01

    Studies have stressed the importance of counting with children to promote formal numeracy abilities; however, little work has investigated when parents begin to engage in this behavior with their young children. In the current study, we investigated whether parents elaborated on numerical information when reading a counting book to their preverbal infants and whether developmental differences in numerical input exist even in the 1st year of life. Parents and their 5-10 months old infants were asked to read, as they would at home, two books to their infants: a counting book and another book that did not have numerical content. Parents' spontaneous statements rarely focused on number and those that did consisted primarily of counting, with little emphasis on labeling the cardinality of the set. However, developmental differences were observed even in this age range, such that parents were more likely to make numerical utterances when reading to older infants. Together, results are the first to characterize naturalistic reading behaviors between parents and their preverbal infants in the context of counting books, suggesting that although counting books promote numerical language in parents, infants still receive very little in the way of numerical input before the end of the 1st year of life. While little is known regarding the impact of number talk on the cognitive development of young infants, the current results may guide future work in this area by providing the first assessment of the characteristics of parental numerical input to preverbal infants.

  6. NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL

    Science.gov (United States)

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...

  7. Three-dimensional numerical study of heat transfer enhancement in separated flows

    Science.gov (United States)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  8. Towards source level evaluation of the evidential value of fibre examinations.

    Science.gov (United States)

    Vooijs, Cees; Vergeer, Peter; van der Weerd, Jaap

    2015-05-01

    This paper aims to provide the first steps towards a numerical source level evaluation of fibre evidence. For that purpose, likelihood ratio equations are derived for four generic scenarios, in which the source frequency, the number of references and trace types investigated, and the number of matches vary. Previous experimental studies into the evaluation of fibre evidence are reviewed and we demonstrate how the results of these studies, as well as other data, can be used to evaluate the derived equations for the four scenarios. Evaluation is not straightforward and requires a number of assumptions. This is mainly because the relevant population under consideration in a specific case cannot be sufficiently evaluated. In addition, the subjective match-criterion in current forensic fibre examinations makes it impossible to implement a good evaluation of the within-variation of samples. As a result, the discrimination power, currently calculated for discrimination studies, is only valid for samples with negligible heterogeneity. We conclude that reporting a numerical evidential value for forensic fibre examinations is not yet feasible as the data are available for only a few types of fibres and cannot be used without several assumptions. We propose a number of developments that are required to improve the accuracy and numerical analysis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Comparative numerical study of kaolin clay with three drying methods: Convective, convective–microwave and convective infrared modes

    International Nuclear Information System (INIS)

    Hammouda, I.; Mihoubi, D.

    2014-01-01

    Highlights: • Modelling of drying of deformable media. • Theoretical study of kaolin clay with three drying methods: convective, convective–microwave and convective infrared mode. • The stresses generated during convective, microwave/convective drying and infrared/convective drying. • The combined drying decrease the intensity of stresses developed during drying. - Abstract: A mathematical model is developed to simulate the response of a kaolin clay sample when subjected to convective, convective–microwave and convective–infrared mode. This model is proposed to describe heat, mass, and momentum transfers applied to a viscoelastic medium described by a Maxwell model with two branches. The combined drying methods were investigated to examine whether these types of drying may minimize cracking that can be generated in the product and to know whether the best enhancement is developed by the use of infra-red or microwave radiation. The numerical code allowed us to determine, and thus, compare the effect of the drying mode on drying rate, temperature, moisture content and mechanical stress evolutions during drying. The numerical results show that the combined drying decrease the intensity of stresses developed during drying and that convective–microwave drying is the best method that gives a good quality of dried product

  10. High energy gravitational scattering: a numerical study

    CERN Document Server

    Marchesini, Giuseppe

    2008-01-01

    The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.

  11. Preliminary Study of 1D Thermal-Hydraulic System Analysis Code Using the Higher-Order Numerical Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The existing nuclear system analysis codes such as RELAP5, TRAC, MARS and SPACE use the first-order numerical scheme in both space and time discretization. However, the first-order scheme is highly diffusive and less accurate due to the first order of truncation error. So, the numerical diffusion problem which makes the gradients to be smooth in the regions where the gradients should be steep can occur during the analysis, which often predicts less conservatively than the reality. Therefore, the first-order scheme is not always useful in many applications such as boron solute transport. RELAP7 which is an advanced nuclear reactor system safety analysis code using the second-order numerical scheme in temporal and spatial discretization is being developed by INL (Idaho National Laboratory) since 2011. Therefore, for better predictive performance of the safety of nuclear reactor systems, more accurate nuclear reactor system analysis code is needed for Korea too to follow the global trend of nuclear safety analysis. Thus, this study will evaluate the feasibility of applying the higher-order numerical scheme to the next generation nuclear system analysis code to provide the basis for the better nuclear system analysis code development. The accuracy is enhanced in the spatial second-order scheme and the numerical diffusion problem is alleviated while indicates significantly lower maximum Courant limit and the numerical dispersion issue which produces spurious oscillation and non-physical results in the higher-order scheme. If the spatial scheme is the first order scheme then the temporal second-order scheme provides almost the same result with the temporal firstorder scheme. However, when the temporal second order scheme and the spatial second-order scheme are applied together, the numerical dispersion can occur more severely. For the more in-depth study, the verification and validation of the NTS code built in MATLAB will be conducted further and expanded to handle two

  12. Numerical method for wave forces acting on partially perforated caisson

    Science.gov (United States)

    Jiang, Feng; Tang, Xiao-cheng; Jin, Zhao; Zhang, Li; Chen, Hong-zhou

    2015-04-01

    The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid-structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier-Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.

  13. Numerical study of blow-up in the Davey-Stewartson system

    KAUST Repository

    Klein, Christian

    2013-03-01

    Nonlinear dispersive partial differential equations such as the nonlinear Schrödinger equations can have solutions that blow up. We numerically study the long time behavior and potential blow-up of solutions to the focusing Davey-Stewartson II equation by analyzing perturbations of the lump and the Ozawa solutions. It is shown in this way that both are unstable to blow-up and dispersion, and that blow-up in the Ozawa solution is generic.

  14. Numerical study of blow-up in the Davey-Stewartson system

    KAUST Repository

    Klein, Christian; Muite, Benson; Roidot, Kristelle

    2013-01-01

    Nonlinear dispersive partial differential equations such as the nonlinear Schrödinger equations can have solutions that blow up. We numerically study the long time behavior and potential blow-up of solutions to the focusing Davey-Stewartson II equation by analyzing perturbations of the lump and the Ozawa solutions. It is shown in this way that both are unstable to blow-up and dispersion, and that blow-up in the Ozawa solution is generic.

  15. Direct numerical simulation of turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  16. Numerical studies of QCD renormalons in high-order perturbative expansions

    International Nuclear Information System (INIS)

    Bauer, Clemens

    2013-01-01

    Perturbative expansions in four-dimensional non-Abelian gauge theories such as Quantum Chromodynamics (QCD) are expected to be divergent, at best asymptotic. One reason is that it is impossible to strictly exclude from the relevant Feynman diagrams those energy regions in which a perturbative treatment is inapplicable. The divergent nature of the series is then signaled by a rapid (factorial) growth of the perturbative expansion coefficients, commonly referred to as a renormalon. In QCD, the most severe divergences occur in the infrared (IR) limit and therefore they are classified as IR renormalons. Their appearance can be understood within the well-accepted Operator Product Expansion (OPE) framework. According to the OPE, the perturbative calculation of a physical observable must be amended by non-perturbative power corrections that come in the form of condensates, universal characteristics of the rich QCD vacuum structure. Adding up perturbative and non-perturbative contributions, the ambiguity due to the renormalon cancels and the physical observable is well-defined. Although the field has made considerable progress in the last twenty years, a proof of renormalon existence is still pending. It has only been tested assuming strong simplifications or in toy models. The aim of this thesis is to provide the first numerical evidence for renormalon existence in the gauge sector of QCD. We use Numerical Stochastic Perturbation Theory (NSPT) to directly obtain perturbative coefficients within lattice regularization, a means to replace continuum spacetime by a four-dimensional hypercubic lattice. A peculiar feature of NSPT are comparatively low simulation costs when reaching high expansion orders. We examine two distinct observables: the static self-energy of an isolated quark and the elementary plaquette. Following the OPE classification, the static quark self-energy is ideally suited for a renormalon study. Taking into account peculiarities of the lattice approach such

  17. The Influence of Pre-University Students' Mathematics Test Anxiety and Numerical Anxiety on Mathematics Achievement

    Science.gov (United States)

    Seng, Ernest Lim Kok

    2015-01-01

    This study examines the relationship between mathematics test anxiety and numerical anxiety on students' mathematics achievement. 140 pre-university students who studied at one of the institutes of higher learning were being investigated. Gender issue pertaining to mathematics anxieties was being addressed besides investigating the magnitude of…

  18. A numerical study of variable density flow and mixing in porous media

    Science.gov (United States)

    Fan, Yin; Kahawita, René

    1994-10-01

    A numerical study of a negatively buoyant plume intruding into a neutrally stratified porous medium has been undertaken using finite different methods. Of particular interest has been to ascertain whether the experimentally observed gravitational instabilities that form along the lower edge of the plume are reproduced in the numerical model. The model has been found to faithfully reproduce the mean flow as well as the gravitational instabilities in the intruding plume. A linear stability analysis has confirmed the fact that the negatively buoyant plume is in fact gravitationally unstable and that the stability depends on two parameters: a concentration Rayleigh number and a characteristic length scale which is dependent on the transverse dispersivity.

  19. Numerical study for melting heat transfer and homogeneous-heterogeneous reactions in flow involving carbon nanotubes

    Science.gov (United States)

    Hayat, Tasawar; Muhammad, Khursheed; Alsaedi, Ahmed; Asghar, Saleem

    2018-03-01

    Present work concentrates on melting heat transfer in three-dimensional flow of nanofluid over an impermeable stretchable surface. Analysis is made in presence of porous medium and homogeneous-heterogeneous reactions. Single and multi-wall CNTs (carbon nanotubes) are considered. Water is chosen as basefluid. Adequate transformations yield the non-linear ordinary differential systems. Solution of emerging problems is obtained using shooting method. Impacts of influential variables on velocity and temperature are discussed graphically. Skin friction coefficient and Nusselt number are numerically discussed. The results for MWCNTs and SWCNTs are compared and examined.

  20. Quantitative study on the statistical properties of fibre architecture of genuine and numerical composite microstructures

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl

    2013-01-01

    A quantitative study is carried out regarding the statistical properties of the fibre architecture found in composite laminates and that generated numerically using Statistical Representative Volume Elements (SRVE’s). The aim is to determine the reliability and consistency of SRVE’s for represent......A quantitative study is carried out regarding the statistical properties of the fibre architecture found in composite laminates and that generated numerically using Statistical Representative Volume Elements (SRVE’s). The aim is to determine the reliability and consistency of SRVE...

  1. A numerical study of non-linear crack tip parameters

    Directory of Open Access Journals (Sweden)

    F.V. Antunes

    2015-07-01

    Full Text Available Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, different authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle, were investigated. It was demonstrated that: i LEFM concepts are applicable to the problem under study; ii the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; iii the Keff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; iv the analysis of remote compliance is the best numerical parameter to quantify the crack opening level; v without contact there is no effect of stress ratio on crack tip parameters. Therefore it is proved that the crack closure concept is valid.

  2. Experimental and Numerical Study of Twin Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru Yaga; Minoru Okano; Masumi Tamashiro; Kenyu Oyakawa

    2003-01-01

    In this paper, the dual underexpanded impinging jets are experimentally and numerically studied. The experiments were performed by measuring the unsteady and averaged wall static pressures and by visualizing density fields using schlieren method. Numerical calculations were also conducted by solving unsteady three dimensional compressible Navier-Stokes equations with Baldwin-Lomax turbulence model. The main parameters for the dual jets are the non-dimensional distance between the two nozzle centers H/D covering 1.5, 2.0, the nozzle to plate separation L/D 2.0, 3.0,4.0 and 5.0 and the pressure ratio defined by Po/Pb 1.0~6.0, where D is the diameter of each nozzle exit, Po the stagnation pressure and Pb the back pressure. It is found that the agreement between the experiments and the calculations is good. The fountain flow at the middle of the two jets is observed both in the experiments and the calculation. According to FFT analysis of the experiments for the twin jets,relatively low frequency (up to 5 kHz) is dominant for H/D =1.5, L/D =2.0 and pressure ratio Po/Pb =3.0 and 5.0,which is confirmed by the experiments.

  3. Numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1982-01-01

    There are many recent developments in numerical relativity, but there remain important unsolved theoretical and practical problems. The author reviews existing numerical approaches to solution of the exact Einstein equations. A framework for classification and comparison of different numerical schemes is presented. Recent numerical codes are compared using this framework. The discussion focuses on new developments and on currently open questions, excluding a review of numerical techniques. (Auth.)

  4. Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case

    Directory of Open Access Journals (Sweden)

    Irina Carmen ANDREI

    2014-06-01

    Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.

  5. Numerical modeling for longwall pillar design: a case study from a typical longwall panel in China

    Science.gov (United States)

    Zhang, Guangchao; Liang, Saijiang; Tan, Yunliang; Xie, Fuxing; Chen, Shaojie; Jia, Hongguo

    2018-02-01

    This paper presents a new numerical modeling procedure and design principle for longwall pillar design with the assistance of numerical simulation of FLAC3D. A coal mine located in Yanzhou city, Shandong Province, China, was selected for this case study. A meticulously validated numerical model was developed to investigate the stress changes across the longwall pillar with various sizes. In order to improve the reliability of the numerical modeling, a calibration procedure is undertaken to match the Salamon and Munro pillar strength formula for the coal pillar, while a similar calibration procedure is used to estimate the stress-strain response of a gob. The model results demonstrated that when the coal pillar width was 7-8 m, most of the vertical load was carried by the panel rib, whilst the gateroad was overall in a relatively low stress environment and could keep its stability with proper supports. Thus, the rational longwall pillar width was set as 8 m and the field monitoring results confirmed the feasibility of this pillar size. The proposed numerical simulation procedure and design principle presented in this study could be a viable alternative approach for longwall pillar design for other similar projects.

  6. a Numerical Study of Basic Coastal Upwelling Processes.

    Science.gov (United States)

    Li, Zhihong

    Available from UMI in association with The British Library. Two-dimensional (2-D) and three-dimensional (3 -D) numerical models with a second order turbulence closure are developed for the study of coastal upwelling processes. A logarithmic coordinate system is introduced to obtain increased resolution in the regions near the surface and bottom where high velocity shear occurs and in the upwelling zone where its width is confined to the coast. In the experiments performed in the 2-D model an ocean initially at rest is driven by a spatially uniform alongshore wind-stress. There is a development of an offshore flow in the surface layer and an onshore flow below the surface layer. In the wind-stress direction there is a development of a coastal surface jet. The neglect of the alongshore pressure gradient leads to the intensification of the jet, and the concentration of the onshore flow in an over-developed Ekman layer yielding an unrealistic deepening of a bottom mixed layer. When bathymetric variations are introduced, some modifications in the dynamics of upwelling are observed. On the shelf region there is another upwelling zone and isotherms are interested with the bottom topography. When an alongshore pressure gradient is added externally into the model, the strength of the coastal jet decreases and a coastal undercurrent exists at greater depth. In addition the return onshore flow is largely independent of depth and the deepening of the bottom mixed layer disappears. In the experiments performed in the 3-D model a wind-stress with limited domain is used. Coastally trapped waves are generated and propagate along the coastline leading to a development of an alongshore pressure gradient, which has a significant effect on upwelling. The evolution of the alongshore flow, vertical velocity and the temperature is determined by both remote and local wind due to the propagation of waves. As the integration proceeds, the flow pattern becomes remarkably 3-dimensional

  7. How Parents Read Counting Books and Non-Numerical Books to Their Preverbal Infants: An Observational Study

    Directory of Open Access Journals (Sweden)

    Alison Goldstein

    2016-07-01

    Full Text Available Studies have stressed the importance of counting with children to promote formal numeracy abilities; however little work has investigated when parents begin to engage in this behavior with their young children. In the current study, we investigated whether parents elaborated on numerical information when reading a counting book to their preverbal infants and whether developmental differences in numerical input exist even in the first year of life. Parents and their 5-10 month old infants were asked to read, as they would at home, two books to their infants: a counting book and another book that did not have numerical content. Parents’ spontaneous statements rarely focused on number and those that did consisted primarily of counting, with little emphasis on labeling the cardinality of the set. However, developmental differences were observed even in this age range, such that parents were more likely to make numerical utterances when reading to older infants. Together, results are the first to characterize naturalistic reading behaviors between parents and their preverbal infants in the context of counting books, suggesting that although counting books promote numerical language in parents, infants still receive very little in the way of numerical input before the end of the first year of life. While little is known regarding the impact of number talk on the cognitive development of young infants, the current results may guide future work in this area by providing the first assessment of the characteristics of parental numerical input to preverbal infants.

  8. Numerical and Experimental Study of Amplitude Modulated Positive Corona Discharge

    Directory of Open Access Journals (Sweden)

    Pablo Martín GOMEZ

    2014-12-01

    Full Text Available The electrical behavior of a modulated positive corona discharge loudspeaker was studied. A coaxial transducer in air was built using a central copper wire of 75 mm radius (inner electrode and a perforated tube of 11 mm (outer electrode. A high voltage DC supply provided the bias current and a sinusoidal signal was superimposed to measure the discharge admittance. The experimental results could not be matched to previously reported equivalent circuits with fixed components. Using the basic equations that describe the ion motion, a numerical model was proposed. The computed values matched well the experimental data and suggested an equivalent circuit composed of frequency dependent conductance and capacitance. This dependence is closely related to the ion travel time between electrodes (transit time. Simulations carried out at several inter-electrode distances could be synthesized in a single plot where the different results overlap and further emphasize the role of the transit time. This numerical model proved to be an efficient tool to simulate and design modulated corona transducers.

  9. Theoretical and numerical study of heat transfer deterioration in HPLWR

    International Nuclear Information System (INIS)

    Palko, D.; Anglart, H.

    2007-01-01

    A numerical investigation of the Heat Transfer Deterioration (HTD) phenomena is performed using the low-Re k - ω turbulence model. Steady state Reynolds-averaged Navier-Stokes equations are solved together with equations for the transport of enthalpy and turbulence. Equations are solved for the supercritical water flow at different pressures, using water properties from the standard IAPWS tables. All cases are extensively validated against experimental data. The influence of buoyancy on the HTD is demonstrated for different mass flow rates in the heated pipes. Numerical results prove that the RANS low-Re turbulence modeling approach is fully capable to simulate the heat transfer in pipes with the water flow at supercritical pressures. A study of buoyancy influence shows that for the low mass flow rates of coolant, the influence of buoyancy forces on the heat transfer in heated pipes is significant. For the high flow rates, buoyancy influence could be neglected and there are clearly other mechanisms causing the decrease in heat transfer at high coolant flow rates. (author)

  10. Contingencies: Learning Numerical and Emotional Associations in an Uncertain World

    OpenAIRE

    Langhe, Bart

    2011-01-01

    textabstractThe ability to learn about the relation or covariation between events happening in the world is probably the most critical aspect of human cognition. This dissertation examines how the human mind learns numerical and emotional relations and explores consequences for managerial and consumer decision making. First, we study how uncertainty in the environment affects covariation learning and explore the consequences for consumers’ price-quality inferences and product valuation. Secon...

  11. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations

    OpenAIRE

    Yucong Miao; Shuhua Liu; Yijia Zheng; Shu Wang; Yuan Li

    2014-01-01

    The objective of this study is to numerically study flow and traffic exhaust dispersion in urban street canyons with different configurations to find out the urban-planning strategies to ease the air pollution. The Computational Fluid Dynamics (CFD) model used in this study—Open Source Field Operation and Manipulation (OpenFOAM) software package—was firstly validated against the wind-tunnel experiment data by using three different k-ε turbulence models. And then the patterns of flow and dispe...

  12. Nucleation and solidification of thin walled ductile iron - Experiments and numerical simulation

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron has been performed based on experiments and numerical simulation. The experiments were based on temperature and microstructure examination. Results of the experiments have been compared with a 1-D numerical solidification model...

  13. Numerical study of emergency cryogenics gas relief into confined spaces

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The presented work focuses on the risk analysis and the consequences of the unexpected leak to the tunnel of cryogenics gases. Formation of the gas mixture and its propagation along tunnels is an important issue for the safe operation of cryogenic machines, including superconducting accelerators or free electron lasers. As the cryogenics gas the helium and argon will be considered. A minimal numerical model will be presented and discussed. Series of numerical results related to emergency helium relief to the CERN tunnel and related to unexpected leak of the argon to an underground tunnel, will be shown. The numerical results will show temperature distribution, oxygen deficiency and gas cloud propagation in function of intensity of the leak and intensity of the ventilation.

  14. DIETFITS study (diet intervention examining the factors interacting with treatment success) - Study design and methods.

    Science.gov (United States)

    Stanton, Michael V; Robinson, Jennifer L; Kirkpatrick, Susan M; Farzinkhou, Sarah; Avery, Erin C; Rigdon, Joseph; Offringa, Lisa C; Trepanowski, John F; Hauser, Michelle E; Hartle, Jennifer C; Cherin, Rise J; King, Abby C; Ioannidis, John P A; Desai, Manisha; Gardner, Christopher D

    2017-02-01

    Numerous studies have attempted to identify successful dietary strategies for weight loss, and many have focused on Low-Fat vs. Low-Carbohydrate comparisons. Despite relatively small between-group differences in weight loss found in most previous studies, researchers have consistently observed relatively large between-subject differences in weight loss within any given diet group (e.g., ~25kg weight loss to ~5kg weight gain). The primary objective of this study was to identify predisposing individual factors at baseline that help explain differential weight loss achieved by individuals assigned to the same diet, particularly a pre-determined multi-locus genotype pattern and insulin resistance status. Secondary objectives included discovery strategies for further identifying potential genetic risk scores. Exploratory objectives included investigation of an extensive set of physiological, psychosocial, dietary, and behavioral variables as moderating and/or mediating variables and/or secondary outcomes. The target population was generally healthy, free-living adults with BMI 28-40kg/m 2 (n=600). The intervention consisted of a 12-month protocol of 22 one-hour evening instructional sessions led by registered dietitians, with ~15-20 participants/class. Key objectives of dietary instruction included focusing on maximizing the dietary quality of both Low-Fat and Low-Carbohydrate diets (i.e., Healthy Low-Fat vs. Healthy Low-Carbohydrate), and maximally differentiating the two diets from one another. Rather than seeking to determine if one dietary approach was better than the other for the general population, this study sought to examine whether greater overall weight loss success could be achieved by matching different people to different diets. Here we present the design and methods of the study. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Asymptotic and numerical studies of a differential-delay system

    Science.gov (United States)

    Semak, Matthew Richard

    A singularly-perturbed differential-delay equation is studied the form of which is seen in various fields. Relaxation effects are combined with nonlinear driving from the past in this system. Having an infinite dimensional phase space, this flow is capable of very interesting behavior. Among the rich aspects of the dynamics of such a relation, period doubling can be observed as parameters are varied. Rigorous proofs concerning the existence of such periodic solutions can be found in the literature. Attention is given to the (first) Hopf bifurcation as the periodic structure is born. Key questions concern the limit of fast relaxation. In this limit, one can analytically understand the development of the periodic solution in the neighborhood of the bifurcation along with the frequency shift which is encountered. This limit also reveals the underlying mapping structure present. In the model studied, this is the logistic map the behavior of which is well-known. Convergence of periodic solutions to the mapping's square wave involves central issues in this work. An analogue to Gibb's phenomenon presents itself as the mapping structure is approached for a certain range of parameters. Transition layers also exist and, together with the latter, present a challenge to various computational approaches. A highly accurate and efficient spectral numerical technique is introduced to properly resolve such behavior in the limit studied. This scheme is used to measure the period's dependence on the relaxation rate in this region of parameter space. Also, numerically assisted asymptotic analysis develops relations for the layers. Moreover, regimes of parameter values have been identified for which there exist extremely long-lived transient states of arbitrarily complex form. Finally, initial interval states are designed which lead to specific long-lived multi-layer patterns of significant complexity. Layer-layer interactions are considered concerning the formation and lifetime of

  16. Numerical Chromosome Errors in Day 7 Somatic Nuclear Transfer Bovine Blastocysts

    DEFF Research Database (Denmark)

    Booth, Paul J.; VIUFF, Dorte; Tan, Shijian

    2002-01-01

    Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona-free manipulat......Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona...

  17. Numerical ecology with R

    CERN Document Server

    Borcard, Daniel; Legendre, Pierre

    2018-01-01

    This new edition of Numerical Ecology with R guides readers through an applied exploration of the major methods of multivariate data analysis, as seen through the eyes of three ecologists. It provides a bridge between a textbook of numerical ecology and the implementation of this discipline in the R language. The book begins by examining some exploratory approaches. It proceeds logically with the construction of the key building blocks of most methods, i.e. association measures and matrices, and then submits example data to three families of approaches: clustering, ordination and canonical ordination. The last two chapters make use of these methods to explore important and contemporary issues in ecology: the analysis of spatial structures and of community diversity. The aims of methods thus range from descriptive to explanatory and predictive and encompass a wide variety of approaches that should provide readers with an extensive toolbox that can address a wide palette of questions arising in contemporary mul...

  18. Numerical Study of Shock-Cylinder Banks Interactions

    International Nuclear Information System (INIS)

    Wang, S.P.; Anderson, M.H.; Oakley, J.G.; Bonazza, R.

    2003-01-01

    A numerical parametric study of shock-cylinder banks interactions is presented using a high resolution Euler solver. Staggered cylinder banks of five rows are chosen with the purpose of modeling IFE reactor cooling tube banks. The effect of the aspect ratio of the intercylinder pitch to the distance between successive cylinder rows on the vertical pressure forces acting on the cylinders with different geometries is investigated. Preliminary results show that the largest vertical force develops on the cylinders of the second or third row. This peak pressure force increases with decreasing values of the aspect ratio. It is shown that an increasing second force peak also appears on the successive rows, starting with the second one, with decreasing aspect ratio. It is also observed that the force on the last-row cylinders basically decreases to the level of that on the first row. The results are useful for the optimal design of the cooling tubes system of IFE reactors

  19. Numerical and Experimental Study on the Formation and Dispersion Patterns of Multiple Explosively Formed Penetrators

    Directory of Open Access Journals (Sweden)

    Jian Feng Liu

    Full Text Available Abstract Three-dimensional numerical simulations and experiments were performed to examine the formation and spatial dispersion patterns of integral multiple explosively formed penetrators (MEFP warhead with seven hemispherical liners. Numerical results had successfully described the formation process and distribution pattern of MEFP. A group of penetrators consisting of a central penetrator surrounded by 6 penetrators is formed during the formation process of MEFP and moves in the direction of aiming position. The maximum divergence angle of the surrounding penetrator group was 7.8°, and the damage area could reach 0.16 m2 at 1.2 m. The laws of perforation dispersion patterns of MEFP were also obtained through a nonlinear fitting of the perforation information on the target at different standoffs. The terminal effects of the MEFP warhead were performed on three #45 steel targets with a dimension of 160cm ( 160cm ( 1.5cm at various standoffs (60, 80, and 120 cm. The simulation results were validated through penetration experiments at different standoffs. It has shown excellent agreement between simulation and experiment results.

  20. A Numerical Matrix-Based method in Harmonic Studies in Wind Power Plants

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Hjerrild, Jesper; Kocewiak, Łukasz Hubert

    2016-01-01

    In the low frequency range, there are some couplings between the positive- and negative-sequence small-signal impedances of the power converter due to the nonlinear and low bandwidth control loops such as the synchronization loop. In this paper, a new numerical method which also considers...... these couplings will be presented. The numerical data are advantageous to the parametric differential equations, because analysing the high order and complex transfer functions is very difficult, and finally one uses the numerical evaluation methods. This paper proposes a numerical matrix-based method, which...

  1. A two-dimensional numerical study of the flow inside the combustion chamber of a motored rotary engine

    Science.gov (United States)

    Shih, T. I-P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  2. A two-dimensional numerical study of the flow inside the combustion chambers of a motored rotary engine

    Science.gov (United States)

    Shih, T. I. P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  3. Experimental and Numerical Study for Flow across a Cube at various Reynolds numbers

    Science.gov (United States)

    Khan, Majid Hassan; Agrawal, Amit; Sharma, Atul

    2017-11-01

    Cube is an archetypal three dimensional bluff body and flow around a rigidly suspended cube is one of the least studied. The present work explains the flow behaviour in the wake of a cube. Lattice Boltzmann Method (LBM) simulations are used for Re = 84 to 780 and Particle Image Velocimetry (PIV) measurements are reported for Re = 550 to 55000. Mean and rms velocities at different axial locations are examined. Double peaks for rms velocity profiles at different axial locations in the wake is observed. Recirculation length increases at lower Re and then decreases at higher Re with a critical Re between 500 and 1000. An inverse relationship is found for the coefficient of drag and recirculation length in the steady range. Wake behaviour becomes non-dependent after Re = 1620. Using the nature of recirculation bubbles in the near wake, four flow regimes are established utilizing the LBM results and the categorization extends to the information at higher Re obtained using PIV. Drag coefficients are obtained using modified wake survey method and compared with established correlations for a cube and a sphere. Numerical results explain the relationship between side-forces at lower Re.

  4. Intentional and automatic processing of numerical information in mathematical anxiety: testing the influence of emotional priming.

    Science.gov (United States)

    Ashkenazi, Sarit

    2018-02-05

    Current theoretical approaches suggest that mathematical anxiety (MA) manifests itself as a weakness in quantity manipulations. This study is the first to examine automatic versus intentional processing of numerical information using the numerical Stroop paradigm in participants with high MA. To manipulate anxiety levels, we combined the numerical Stroop task with an affective priming paradigm. We took a group of college students with high MA and compared their performance to a group of participants with low MA. Under low anxiety conditions (neutral priming), participants with high MA showed relatively intact number processing abilities. However, under high anxiety conditions (mathematical priming), participants with high MA showed (1) higher processing of the non-numerical irrelevant information, which aligns with the theoretical view regarding deficits in selective attention in anxiety and (2) an abnormal numerical distance effect. These results demonstrate that abnormal, basic numerical processing in MA is context related.

  5. An Examination of the Quality of Wind Observations with Smartphones

    Science.gov (United States)

    Hintz, Kasper; Vedel, Henrik; Muñoz-Gomez, Juan; Woetmann, Niels

    2017-04-01

    Over the last years, the number of devices connected to the internet has increased significantly making it possible for internal and external sensors to communicate via the internet, opening up many possibilities for additional data for use in the atmospheric sciences. Vaavud has manufactured small anemometer devices which can measure wind speed and wind direction when connected to a smartphone. This work examines the quality of such crowdsourced Handheld Wind Observations (HWO). In order to examine the quality of the HWO, multiple idealised measurement sessions were performed at different sites in different atmospheric conditions. In these sessions, a high-precision ultrasonic anemometer was installed to work as a reference measurement. The HWO are extrapolated to 10 m in order to compare these to the reference observations. This allows us to examine the effect of stability correction in the surface layer and the quality of height extrapolated HWO. The height extrapolation is done using the logarithmic wind profile law with and without stability correction. Furthermore, this study examines the optimal ways of using traditional observations and numerical models to validate HWO. In order to do so, a series of numerical reanalysis have been run for a period of 5 months to quantise the effect of including crowdsourced HWO in a traditional observation dataset.

  6. Numerical Study on the Thermal Stress and its Formation Mechanism of a Thermoelectric Device

    Science.gov (United States)

    Pan, Tao; Gong, Tingrui; Yang, Wei; Wu, Yongjia

    2018-06-01

    The strong thermo-mechanical stress is one of the most critical failure mechanisms that affect the durability of thermoelectric devices. In this study, numerical simulations on the formation mechanism of the maximum thermal stress inside the thermoelectric device have been performed by using finite element method. The influences of the material properties and the thermal radiation on the thermal stress have been examined. The results indicate that the maximum thermal stress was located at the contact position between the two materials and occurred due to differential thermal expansions and displacement constraints of the materials. The difference in the calculated thermal stress value between the constant and the variable material properties was between 3% and 4%. At a heat flux of 1 W·cm-2 and an emissivity of 0.5, the influence of the radiation heat transfer on the thermal stress was only about 5%; however, when the heat flux was 20 W·cm-2 and the emissivity was 0.7, the influence of the radiation heat transfer was more than 30%.

  7. Numerical study of free convection in an enclosure with two vertical isothermal walls

    International Nuclear Information System (INIS)

    Barletta, A.; Rossi di Schio, E.; Zanchini, E.; Nobile, E.; Pinto, F.

    2005-01-01

    In this paper, natural convection is studied in a 2D-cavity with two vertical isothermal walls, kept at different temperatures, and two adiabatic walls which are either straight (rectangular cavity) or elliptic (modified rectangular cavity). The local mass, momentum and energy balance equations are written in a dimensionless form and solved numerically, by means of two different software packages based on Galerkin finite element methods. With reference to a Prandtl number of 0.71, two rectangular cavities are studied: a square one and a cavity with height double than width. Then, for each value of the ratio between height and width, two cavities with elliptic boundaries are investigated. The numerical solution shows that the elliptic boundaries enhance the mean Nusselt number and the dimensionless mean kinetic energy of the fluid. (authors)

  8. Numerical relativity

    CERN Document Server

    Shibata, Masaru

    2016-01-01

    This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.

  9. Numerical analysis

    CERN Document Server

    Khabaza, I M

    1960-01-01

    Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput

  10. Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study.

    Science.gov (United States)

    Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li

    2014-09-01

    Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Introduction to precise numerical methods

    CERN Document Server

    Aberth, Oliver

    2007-01-01

    Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations ofthe various numerical methods· Two new types of numerical problems; accurately solving partial differential equations with the included software and computing line integrals in the complex plane.

  12. Mechanical Behaviour of 3D Multi-layer Braided Composites: Experimental, Numerical and Theoretical Study

    Science.gov (United States)

    Deng, Jian; Zhou, Guangming; Ji, Le; Wang, Xiaopei

    2017-12-01

    Mechanical properties and failure mechanisms of a newly designed 3D multi-layer braided composites are evaluated by experimental, numerical and theoretical studies. The microstructure of the composites is introduced. The unit cell technique is employed to address the periodic arrangement of the structure. The volume averaging method is used in theoretical solutions while FEM with reasonable periodic boundary conditions and meshing technique in numerical simulations. Experimental studies are also conducted to verify the feasibility of the proposed models. Predicted elastic properties agree well with the experimental data, indicating the feasibility of the proposed models. Numerical evaluation is more accurate than theoretical assessment. Deformations and stress distributions of the unit cell under tension shows displacement and traction continuity, guaranteeing the rationality of the applied periodic boundary conditions. Although compression and tension modulus are close, the compressive strength only reaches 70% of the tension strength. This indicates that the composites can be weakened in compressive loading. Additionally, by analysing the micrograph of fracture faces and strain-stress curves, a brittle failure mechanism is observed both in composites under tension and compression.

  13. Experimental and numerical study of Bondura® 6.6 PIN joints

    Science.gov (United States)

    Berkani, I.; Karlsen, Ø.; Lemu, H. G.

    2017-12-01

    Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.

  14. Experimental and numerical study of MILD combustion in a lab-scale furnace

    NARCIS (Netherlands)

    Huang, X.; Tummers, M.J.; Roekaerts, D.J.E.M.; Scherer, Viktor; Fricker, Neil; Reis, Albino

    2017-01-01

    Mild combustion in a lab-scale furnace has been experimentally and numerically studied. The furnace was operated with Dutch natural gas (DNG) at 10 kW and at an equivalence ratio of 0.8. OH∗chemiluminescence images were taken to characterize the reaction zone. The chemiluminescence intensity is

  15. Numerical study of extreme-ultra-violet generated plasmas in hydrogen

    OpenAIRE

    Astakhov, Dmitry

    2016-01-01

    In this thesis, we present the development and study a numerical model of EUV-induced plasma. Understanding of behavior of low pressure low density plasmas is of industrial relevance, because of their potential use for on-line removal of different forms of contaminations from multilayer mirrors, which will help increase the throughput of EUV lithography. The model is 2D axially symmetric particle-in-cell code, hence it allows the full geometry of an axially symmetric chamber to be taken into...

  16. Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study

    International Nuclear Information System (INIS)

    Burt, G.; Ronald, K.; Young, A.R.; Phelps, A.D.R.; Cross, A.W.; Konoplev, I.V.; He, W.; Thomson, J.; Whyte, C.G.; Samsonov, S.V.; Denisov, G.G.; Bratman, V.L.

    2004-01-01

    Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared

  17. A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones

    Science.gov (United States)

    Rodgers, Edward B.; Chang, Simon W.; Pierce, Harold F.

    1994-01-01

    Special Sensor Microwave/Imager (SSM/I) observations were used to examine the spatial and temporal changes of the precipitation characteristics of tropical cyclones. SSM/I observations were also combined with the results of a tropical cyclone numerical model to examine the role of inner-core diabatic heating in subsequent intensity changes of tropical cyclones. Included in the SSM/I observations were rainfall characteristics of 18 named western North Atlantic tropical cyclones between 1987 and 1989. The SSM/I rain-rate algorithm that employed the 85-GHz channel provided an analysis of the rain-rate distribution in greater detail. However, the SSM/I algorithm underestimated the rain rates when compared to in situ techniques but appeared to be comparable to the rain rates obtained from other satellite-borne passive microwave radiometers. The analysis of SSM/I observations found that more intense systems had higher rain rates, more latent heat release, and a greater contribution from heavier rain to the total tropical cyclone rainfall. In addition, regions with the heaviest rain rates were found near the center of the most intense tropical cyclones. Observational analysis from SSM/I also revealed that the greatest rain rates in the inner-core regions were found in the right half of fast-moving cyclones, while the heaviest rain rates in slow-moving tropical cyclones were found in the forward half. The combination of SSM/I observations and an interpretation of numerical model simulations revealed that the correlation between changes in the inner core diabetic heating and the subsequent intensity became greater as the tropical cyclones became more intense.

  18. Study on applicability of numerical simulation to evaluation of gas entrainment due to free surface vortex

    International Nuclear Information System (INIS)

    Ito, Kei; Kunugi, Tomoaki; Ohshima, Hiroyuki

    2008-01-01

    An onset condition of gas entrainment (GE) due to free surface vortex has been studied to establish a design of sodium-cooled fast reactor with a higher coolant velocity than conventional designs. Numerous investigations have been conducted experimentally and theoretically; however, the universal onset condition of the GE has not been determined yet due to the nonlinear characteristics of the GE. Recently, we have been studying numerical simulation methods as a promising method to evaluate GE, instead of the reliable but costly real-scale tests. In this paper, the applicability of the numerical simulation methods to the evaluation of the GE is discussed. For the purpose, a quasi-steady vortex in a cylindrical tank and a wake vortex (unsteady vortex) in a rectangular channel were numerically simulated using the volume-of-fluid type two-phase flow calculation method. The simulated velocity distributions and free surface shapes of the quasi-steady vortex showed good (not perfect, however) agreements with experimental results when a fine mesh subdivision and a high-order discretization scheme were employed. The unsteady behavior of the wake vortex was also simulated with high accuracy. Although the onset condition of the GE was slightly underestimated in the simulation results, the applicability of the numerical simulation methods to the GE evaluation was confirmed. (author)

  19. Numerical Study on Mass Transfer of a Vapor Bubble Rising in Very High Viscous Fluid

    Directory of Open Access Journals (Sweden)

    T. Kunugi

    2014-09-01

    Full Text Available This study focused on a bubble rising behavior in a molten glass because it is important to improve the efficiency of removal of bubbles from the molten glass. On the other hand, it is expected that some gas species which exists in a bubble are transferred into the molten glass through the bubble interface, i.e., the mass transfer, subsequently, it may cause a bubble contraction in the molten glass. In this paper, in order to understand the bubble rising behavior with its contraction caused by the mass transfer through the bubble interface in the very high viscous fluid such as the molten glass, a bubble contraction model has been developed. The direct numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver coupled with the mass transfer equation and the bubble contraction model regarding the mass transfer from the rising bubble in very high viscous fluid have been performed. Here, the working fluids were water vapor as the gas species and the molten glass as the very high viscous fluid. Also, the jump conditions at the bubble interface for the mass transfer were examined. Furthermore, the influence of the bubble contraction for the bubble rising compared to that in the water as a normal viscous fluid was investigated. From the result of the numerical simulations, it was found that the bubble rising behavior was strongly affected not only by the viscosity of the working fluid but also by the bubble contraction due to the mass transfer through the bubble interface.

  20. Numerical studies of transverse curvature effects on transonic flow stability

    Science.gov (United States)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  1. Key issues review: numerical studies of turbulence in stars

    Science.gov (United States)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  2. Numerical study on drop formation through a micro nozzle

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2005-01-01

    The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satelite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation

  3. Introduction to the numerical solutions of Markov chains

    CERN Document Server

    Stewart, Williams J

    1994-01-01

    A cornerstone of applied probability, Markov chains can be used to help model how plants grow, chemicals react, and atoms diffuse - and applications are increasingly being found in such areas as engineering, computer science, economics, and education. To apply the techniques to real problems, however, it is necessary to understand how Markov chains can be solved numerically. In this book, the first to offer a systematic and detailed treatment of the numerical solution of Markov chains, William Stewart provides scientists on many levels with the power to put this theory to use in the actual world, where it has applications in areas as diverse as engineering, economics, and education. His efforts make for essential reading in a rapidly growing field. Here, Stewart explores all aspects of numerically computing solutions of Markov chains, especially when the state is huge. He provides extensive background to both discrete-time and continuous-time Markov chains and examines many different numerical computing metho...

  4. How Parents Read Counting Books and Non-Numerical Books to Their Preverbal Infants: An Observational Study

    OpenAIRE

    Alison Goldstein; Thomas Cole; Sara Cordes

    2016-01-01

    Studies have stressed the importance of counting with children to promote formal numeracy abilities; however little work has investigated when parents begin to engage in this behavior with their young children. In the current study, we investigated whether parents elaborated on numerical information when reading a counting book to their preverbal infants and whether developmental differences in numerical input exist even in the first year of life. Parents and their 5-10 month old infants wer...

  5. A review of numerical techniques approaching microstructures of crystalline rocks

    Science.gov (United States)

    Zhang, Yahui; Wong, Louis Ngai Yuen

    2018-06-01

    The macro-mechanical behavior of crystalline rocks including strength, deformability and failure pattern are dominantly influenced by their grain-scale structures. Numerical technique is commonly used to assist understanding the complicated mechanisms from a microscopic perspective. Each numerical method has its respective strengths and limitations. This review paper elucidates how numerical techniques take geometrical aspects of the grain into consideration. Four categories of numerical methods are examined: particle-based methods, block-based methods, grain-based methods, and node-based methods. Focusing on the grain-scale characters, specific relevant issues including increasing complexity of micro-structure, deformation and breakage of model elements, fracturing and fragmentation process are described in more detail. Therefore, the intrinsic capabilities and limitations of different numerical approaches in terms of accounting for the micro-mechanics of crystalline rocks and their phenomenal mechanical behavior are explicitly presented.

  6. Numerical methods for axisymmetric and 3D nonlinear beams

    Science.gov (United States)

    Pinton, Gianmarco F.; Trahey, Gregg E.

    2005-04-01

    Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.

  7. The interior of axisymmetric and stationary black holes: Numerical and analytical studies

    International Nuclear Information System (INIS)

    Ansorg, Marcus; Hennig, Joerg

    2011-01-01

    We investigate the interior hyperbolic region of axisymmetric and stationary black holes surrounded by a matter distribution. First, we treat the corresponding initial value problem of the hyperbolic Einstein equations numerically in terms of a single-domain fully pseudo-spectral scheme. Thereafter, a rigorous mathematical approach is given, in which soliton methods are utilized to derive an explicit relation between the event horizon and an inner Cauchy horizon. This horizon arises as the boundary of the future domain of dependence of the event horizon. Our numerical studies provide strong evidence for the validity of the universal relation A + A - (8πJ) 2 where A + and A - are the areas of event and inner Cauchy horizon respectively, and J denotes the angular momentum. With our analytical considerations we are able to prove this relation rigorously.

  8. Numerical simulation of damage evolution for ductile materials and mechanical properties study

    Science.gov (United States)

    El Amri, A.; Hanafi, I.; Haddou, M. E. Y.; Khamlichi, A.

    2015-12-01

    This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations.

  9. Numerical simulation of damage evolution for ductile materials and mechanical properties study

    International Nuclear Information System (INIS)

    Amri, A El; Haddou, M E Y; Hanafi, I; Khamlichi, A

    2015-01-01

    This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations. (paper)

  10. An experimental and numerical study on the improvement of the performance of Savonius wind rotor

    International Nuclear Information System (INIS)

    Altan, Burcin Deda; Atilgan, Mehmet

    2008-01-01

    In the present study, a curtain has been designed to increase the low performance of the Savonius wind rotor, a type of vertical-axis wind rotor, and the effect of this curtain on the static rotor performance has been analyzed both experimentally and numerically. Designed to prevent the torque that occurs on the convex blade of the rotor in the negative direction, this curtain has been placed in front of the rotor. Experimental measurements and numerical analysis have been conducted when the Savonius wind rotor is with and without curtain. The static torque values of the rotor have been measured by experiments and calculated by numerical analysis, and finally they have been compared. The best results have been obtained by means of the rotor with curtain. Low static torque values have been obtained with the short curtain dimensions, while a considerable increase has been acquired in the static torque values with the long curtain dimensions. Fluent 6.0 trade software has been used as the numerical method

  11. Numerical and experimental study on laminar round free jet of Ar discharging into stagnant air

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Hishida, Makoto; Kunugi, Tomoaki

    1990-01-01

    The objective of the present study is to investigate numerically and experimentally the behavior of the fluid flow and the mass transfer of argon gas (Ar) laminar round jet discharging into stagnant air along the gravity force. The SIMPLE method and two differential numerical schemes of PLDS and QUICK are used in the TEAM code modified by adding the binary diffusion equation. The solution domain is comprised of 80X40 grids of uniform size. As the result, the following were obtained: The half radius of Ar mass fraction obtained by QUICK was in good agreement with experimental result. The half radii of axial velocity and Ar mass fraction obtained by PLDS were larger than those by QUICK due to numerical viscosity. Numerical analyses by PLDS and QUICK schemes agreed well with experimental results on centerline Ar mass fraction. Computational times of PLDS and QUICK are about 40 min. and 120 min. respectively by FACOM VP100 computer in JAERI. (author)

  12. Spurious Numerical Solutions Of Differential Equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  13. Development of Numerical Estimation in Young Children

    Science.gov (United States)

    Siegler, Robert S.; Booth, Julie L.

    2004-01-01

    Two experiments examined kindergartners', first graders', and second graders' numerical estimation, the internal representations that gave rise to the estimates, and the general hypothesis that developmental sequences within a domain tend to repeat themselves in new contexts. Development of estimation in this age range on 0-to-100 number lines…

  14. Numerical investigation on effects of induced jet on boundary layer and turbulent models around airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Shojaeefard, M.H.; Pirnia, A.; Fallahian, M.A. [Iran University of Science and Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of); Tahani, M. [Iran University of Science and Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of); University of Tehran, Faculty of New Science and Technology, Tehran (Iran, Islamic Republic of)

    2012-06-15

    In this study the effects of induced jet at trailing edge of a two dimensional airfoil on its boundary layer shape, separation over surface and turbulent parameters behind trailing edge are numerically investigated and compared against a previous experimental data. After proving independency of results from mesh size and obtaining the required mesh size, different turbulent models are examined and RNG k-epsilon model is chosen because of good agreement with experimental data in velocity and turbulent intensity variations. A comparison between ordinary and jet induced cases, regarding numerical data, is made. The results showed that because of low number of measurement points in experimental study, turbulent intensity extremes are not captured. While in numerical study, these values and their positions are well calculated and exact variation of turbulent intensity is acquired. Also a study in effect of jet at high angles of attack is done and the results showed the ability of jet in controlling separation and reducing wake region. (orig.)

  15. Experimental and Numerical Study of Water Entry Supercavity Influenced by Turbulent Drag-Reducing Additives

    Directory of Open Access Journals (Sweden)

    Chen-Xing Jiang

    2014-04-01

    Full Text Available The configurational and dynamic characteristics of water entry supercavities influenced by turbulent drag-reducing additives were studied through supercavitating projectile approach, experimentally and numerically. The projectile was projected vertically into water and aqueous solution of CTAC with weight concentrations of 100, 500, and 1000 ppm, respectively, using a pneumatic nail gun. The trajectories of the projectile and the supercavity configuration were recorded by a high-speed CCD camera. Besides, water entry supercavities in water and CTAC solution were numerically simulated based on unsteady RANS scheme, together with application of VOF multiphase model. The Cross viscosity model was adopted to represent the fluid property of CTAC solution. It was obtained that the numerical simulation results are in consistence with experimental data. Numerical and experimental results all show that the length and diameter of supercavity in drag-reducing solution are larger than those in water, and the drag coefficient is smaller than that in water; the maintaining time of supercavity is longer in solution as well. The surface tension plays an important role in maintaining the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitation and drag reduction.

  16. Study on numerical methods for transient flow induced by speed-changing impeller of fluid machinery

    International Nuclear Information System (INIS)

    Wu, Dazhuan; Chen, Tao; Wang, Leqin; Cheng, Wentao; Sun, Youbo

    2013-01-01

    In order to establish a reliable numerical method for solving the transient rotating flow induced by a speed-changing impeller, two numerical methods based on finite volume method (FVM) were presented and analyzed in this study. Two-dimensional numerical simulations of incompressible transient unsteady flow induced by an impeller during starting process were carried out respectively by using DM and DSR methods. The accuracy and adaptability of the two methods were evaluated by comprehensively comparing the calculation results. Moreover, an intensive study on the application of DSR method was conducted subsequently. The results showed that transient flow structure evolution and transient characteristics of the starting impeller are obviously affected by the starting process. The transient flow can be captured by both two methods, and the DSR method shows a higher computational efficiency. As an application example, the starting process of a mixed-flow pump was simulated by using DSR method. The calculation results were analyzed by comparing with the experiment data.

  17. Assessing numerical methods used in nuclear aerosol transport models

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1987-01-01

    Several computer codes are in use for predicting the behaviour of nuclear aerosols released into containment during postulated accidents in water-cooled reactors. Each of these codes uses numerical methods to discretize and integrate the equations that govern the aerosol transport process. Computers perform only algebraic operations and generate only numbers. It is in the numerical methods that sense can be made of these numbers and where they can be related to the actual solution of the equations. In this report, the numerical methods most commonly used in the aerosol transport codes are examined as special cases of a general solution procedure, the Method of Weighted Residuals. It would appear that the numerical methods used in the codes are all capable of producing reasonable answers to the mathematical problem when used with skill and care. 27 refs

  18. The Application of Visual Basic Computer Programming Language to Simulate Numerical Iterations

    Directory of Open Access Journals (Sweden)

    Abdulkadir Baba HASSAN

    2006-06-01

    Full Text Available This paper examines the application of Visual Basic Computer Programming Language to Simulate Numerical Iterations, the merit of Visual Basic as a Programming Language and the difficulties faced when solving numerical iterations analytically, this research paper encourage the uses of Computer Programming methods for the execution of numerical iterations and finally fashion out and develop a reliable solution using Visual Basic package to write a program for some selected iteration problems.

  19. Numerical simulation study for atomic-resolution x-ray fluorescence holography

    International Nuclear Information System (INIS)

    Xie Honglan; Gao Hongyi; Chen Jianwen; Xiong Shisheng; Xu Zhizhan; Wang Junyue; Zhu Peiping; Xian Dingchang

    2003-01-01

    Based on the principle of x-ray fluorescence holography, an iron single crystal model of a body-centred cubic lattice is numerically simulated. From the fluorescence hologram produced numerically, the Fe atomic images were reconstructed. The atomic images of the (001), (100), (010) crystallographic planes were consistent with the corresponding atomic positions of the model. The result indicates that one can obtain internal structure images of single crystals at atomic-resolution by using x-ray fluorescence holography

  20. Estimation of doses to patients from ''complex'' conventional X-ray examinations

    International Nuclear Information System (INIS)

    Calzado, A.; Vano, E.; Moran, P.; Ruiz, S.; Gonzalez, L.; Castellote, C.

    1991-01-01

    A numerical method has been developed to estimate organ doses and effective dose-equivalent for patients undergoing three 'complex' examinations (barium meal, barium enema and intravenous urography). The separation of radiological procedures into a set of standard numerical views is based on the use of Monte Carlo conversion factors and measurements within a Remab phantom. Radiation doses measured in a phantom for such examinations were compared with predictions of the ''numerical'' method. Dosimetric measurements with thermoluminescent dosemeters attached to the patient's skin along with measurements of the dose-area product during the examination have enabled the derivation of organ doses and to estimate effective dose-equivalent. Mean frequency weighted values of dose-area product, energy imparted to the patient, doses to a set of organs and effective dose-equivalent in the area of Madrid are reported. Comparisons of results with those from similar surveys in other countries were made. (author)

  1. An Examination of the Roles of Rationalization and Narcissism in Facilitating Academic Dishonesty

    Science.gov (United States)

    Faulkner, Karen

    2012-01-01

    Academic dishonesty is a significant problem among college students. Numerous factors affect levels of cheating. This study utilized an original survey on cheating and rationalization along with the Narcissistic Personality Inventory and multiple regression analysis to examine the relationships between rationalization, narcissism, and academic…

  2. The Influence of Sensor Size on Acoustic Emission Waveforms—A Numerical Study

    Directory of Open Access Journals (Sweden)

    Eleni Tsangouri

    2018-01-01

    Full Text Available The performance of Acoustic Emission technique is governed by the measuring efficiency of the piezoelectric sensors usually mounted on the structure surface. In the case of damage of bulk materials or plates, the sensors receive the acoustic waveforms of which the frequency and shape are correlated to the damage mode. This numerical study measures the waveforms received by point, medium and large size sensors and evaluates the effect of sensor size on the acoustic emission signals. Simulations are the only way to quantify the effect of sensor size ensuring that the frequency response of the different sensors is uniform. The cases of horizontal (on the same surface, vertical and diagonal excitation are numerically simulated, and the corresponding elastic wave displacement is measured for different sizes of sensors. It is shown that large size sensors significantly affect the wave magnitude and content in both time and frequency domains and especially in the case of surface wave excitation. The coherence between the original and received waveform is quantified and the numerical findings are experimentally supported. It is concluded that sensors with a size larger than half the size of the excitation wavelength start to seriously influence the accuracy of the AE waveform.

  3. Complex blood flow patterns in an idealized left ventricle: A numerical study

    Science.gov (United States)

    Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio

    2017-09-01

    In this paper, we study the blood flow dynamics in a three-dimensional (3D) idealized left ventricle of the human heart whose deformation is driven by muscle contraction and relaxation in coordination with the action of the mitral and aortic valves. We propose a simplified but realistic mathematical treatment of the valves function based on mixed time-varying boundary conditions (BCs) for the Navier-Stokes equations modeling the flow. These switchings in time BCs, from natural to essential and vice versa, model either the open or the closed configurations of the valves. At the numerical level, these BCs are enforced by means of the extended Nitsche's method (Tagliabue et al., Int. J. Numer. Methods Fluids, 2017). Numerical results for the 3D idealized left ventricle obtained by means of Isogeometric Analysis are presented, discussed in terms of both instantaneous and phase-averaged quantities of interest and validated against those available in the literature, both experimental and computational. The complex blood flow patterns are analysed to describe the characteristic fluid properties, to show the transitional nature of the flow, and to highlight its main features inside the left ventricle. The sensitivity of the intraventricular flow patterns to the mitral valve properties is also investigated.

  4. Numerical Study of Motion of Falling Conical Graupel

    Science.gov (United States)

    Chueh, Chih-Che; Wang, Pao K.; Hashino, Tempei

    2018-01-01

    In the present study, the attitudes of freely-falling conical graupel with a realistic range of densities are investigated numerically by solving the transient Navier-Stokes equations and the body dynamics equations representing the 6-degrees-of-freedom motion. This framework allows us to determine the position and orientation of the graupel in response to the hydrodynamic force of the flow fields. The results show more significant horizontal movements than those cases with a fixed bulk density of ice assumed in our previous study. This is because the real graupel particles possess the density less than the bulk density of ice, which, in turn, leads to a relatively small mass and a relatively small set of moments of inertia. We demonstrate that, with the six degrees of freedom considered together, when Reynolds number is small, a typical damped oscillation occurs, whereas when Reynolds number is high, amplifying oscillation may occur which leads to more complicated and unpredictable flying attitudes such as tumbling. The drag coefficients obtained in the present study agree with the previous studies and can be approximated by that of spheres of the same Reynolds numbers. We also show that conical graupel can perform significant horizontal translations which can be on the order of 1 km in 1 h.

  5. An experimental and numerical study of the flow and mass transfer in a model of the wearable artificial kidney dialyzer

    Directory of Open Access Journals (Sweden)

    Rosenfeld Moshe

    2010-05-01

    Full Text Available Abstract Background Published studies of the past decades have established that mass transfer across the dialyzer membrane is governed by diffusion, convection and osmosis. While the former is independent of the pressure in the liquids, the latter two are pressure dependent and are enhanced when the pressure difference across the membrane is increased. The goal of the present study is to examine the impact of pulsatile flow on the transport phenomena across the membrane of a high-flux dialyzer in a wearable artificial kidney (WAK with a novel single small battery-operated pulsatile pump that drives both the blood and dialysate in a counter-phased manner, maximizing the trans-membrane pressure. Methods Both in-vitro experimental and numerical tools are employed to compare the performance of the pulsatile WAK dialyzer with a traditional design of a single-channel roller blood pump together with a centrifugal pump that drives the dialysate flow. The numerical methods utilize the axisymmetric Navier-Stokes and mass transfer equations to model the flow in the fibers of the dialyzer. Results While diffusion is still the dominating transport regime, the WAK pump enhances substantially the trans-membrane pressure and thus increases mass convection that might be as high as 30% of the overall transfer. This increase is obtained due to the design of the pulsatile WAK pump that increases ultrafiltration by increasing the trans-membrane pressure. Conclusions The experimental and numerical results revealed that when pumping at similar flow rates, a small battery-operated pulsatile pump provides clearances of urea and creatinine similar as or better than a large heavy AC-powered roller pump.

  6. A numerical study of bulk evaporation and condensation problem

    International Nuclear Information System (INIS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A numerical model is developed to simulate the dynamic behavior of bulk evaporation and condensation process in an encapsulated container with internal heat generation at micro-gravity level. Thermal performance of a multi-phase system with internal heat generation is investigated. The numerical simulation yields the evolution of the bulk liquid-vapor phase change process. This includes the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field. An example of such systems is a phase change nuclear fuel element which was first introduced by Ding and Anghaie with application in high temperature space nuclear power and propulsion systems

  7. Study on Accuracy of Judgments by Chinese Fingerprint Examiners

    Directory of Open Access Journals (Sweden)

    Shiquan Liu

    2015-01-01

    Full Text Available The interpretation of fingerprint evidence depends on the judgments of fingerprint examiners. This study assessed the accuracy of different judgments made by fingerprint examiners following the Analysis, Comparison, and Evaluation (ACE process. Each examiner was given five marks for analysis, comparison, and evaluation. We compared the experts′ judgments against the ground truth and used an annotation platform to evaluate how Chinese fingerprint examiners document their comparisons during the identification process. The results showed that different examiners demonstrated different accuracy of judgments and different mechanisms to reach them.

  8. Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel.

    Science.gov (United States)

    Riaud, Antoine; Zhang, Hao; Wang, Xueying; Wang, Kai; Luo, Guangsheng

    2018-04-18

    Microchannel emulsification requires large amounts of surfactant to prevent coalescence and improve emulsions lifetime. However, most numerical studies have considered surfactant-free mixtures as models for droplet formation in microchannels, without taking into account the distribution of surfactant on the droplet surface. In this paper, we investigate the effects of nonuniform surfactant coverage on the microfluidic flow pattern using an extended lattice-Boltzmann model. This numerical study, supported by micro-particle image velocimetry experiments, reveals the likelihood of uneven distribution of surfactant during the droplet formation and the appearance of a stagnant cap. The Marangoni effect affects the droplet breakup by increasing the shear rate. According to our results, surfactant-free and surfactant-rich droplet formation processes are qualitatively different, such that both the capillary number and the Damköhler number should be considered when modeling the droplet generation in microfluidic devices. The limitations of traditional volume and pressure estimation methods for determining the dynamic interfacial tension are also discussed on the basis of the simulation results.

  9. Numerical and Analytical Study of Optimal Low-Thrust Limited-Power Transfers between Close Circular Coplanar Orbits

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2007-01-01

    Full Text Available A numerical and analytical study of optimal low-thrust limited-power trajectories for simple transfer (no rendezvous between close circular coplanar orbits in an inverse-square force field is presented. The numerical study is carried out by means of an indirect approach of the optimization problem in which the two-point boundary value problem, obtained from the set of necessary conditions describing the optimal solutions, is solved through a neighboring extremal algorithm based on the solution of the linearized two-point boundary value problem through Riccati transformation. The analytical study is provided by a linear theory which is expressed in terms of nonsingular elements and is determined through the canonical transformation theory. The fuel consumption is taken as the performance criterion and the analysis is carried out considering various radius ratios and transfer durations. The results are compared to the ones provided by a numerical method based on gradient techniques.

  10. Numerical studies of pair creation in counterpropagating laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Matthias

    2009-05-27

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  11. Numerical studies of pair creation in counterpropagating laser fields

    International Nuclear Information System (INIS)

    Ruf, Matthias

    2009-01-01

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  12. Vortex locking in direct numerical simulations of quantum turbulence.

    Science.gov (United States)

    Morris, Karla; Koplik, Joel; Rouson, Damian W I

    2008-07-04

    Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.

  13. Elucidation of self-induced sloshing occurrence mechanism using numerical analysis

    International Nuclear Information System (INIS)

    Saeki, Soichi; Madarame, Haruki; Okamoto, Koji; Tanaka, Nobukazu.

    1995-01-01

    In liquid metal-cooled fast breeder reactors, there is free liquid surface in a reactor vessel and others, and by reducing the size of the reactor vessel and others, it is necessary to increase the flow velocity of liquid sodium coolant. In the free liquid surface in which fast circulating flow exists, undesirable phenomena like waving and bubble catching are feared. The self-induced sloshing taken up in this study is one of these phenomena. Since the actual machine has complex three-dimensional structure, in order to forecast the occurrence of sloshing, it is necessary to elucidate the mechanism of vibration occurrence. The mechanism of occurrence of self-induced sloshing due to horizontal and vertical plane jets has been explained a number of times so far. In this study, by applying the model of the occurrence mechanism of Fukaya to horizontal plane jet, the self-induced sloshing due to horizontal plane jet was simulated by numerical analysis. Based on the results, it was attempted to examine the vibration energy supplied to sloshing in a whole flow field and the dependence of sloshing region on water depth and flow velocity. The numerical simulation, the analysis of the occurrence mechanism by using the numerical analysis code and the results are reported. (K.I.)

  14. Numerical study of the stopping of aura during migraine

    Directory of Open Access Journals (Sweden)

    Moussa A.

    2010-12-01

    Full Text Available This work is devoted to the study of migraine with aura in the human brain. Following [6], we class migraine as a propagation of a wave of depolarization through the cells. The mathematical model used, based on a reaction-diffusion equation, is briefly presented. The equation is considered in a duct containing a bend, in order to model one of the numerous circumvolutions of the brain. For a wide set of parameters, one can establish the existence of a critical radius below which the wave stops. The approximation scheme used for the simulations is first described and then a numerical study is realized, precising the dependence of the critical radius with respect to the different parameters of the model. Ce travail est consacré à l’étude de l’évolution d’une migraine avec aura dans le cerveau humain. Suivant [6], nous assimilons la migraine à une onde de dépolarisation attaquant les cellules du cerveau. Le modèle mathématique retenu, basé sur une équation de réaction-diffusion, est brièvement rappelé. Le domaine d’espace utilisé est constitué d’un conduit présentant un coude, afin de représenter l’une des nombreuses circonvolutions cérébrales. Pour une importante classe de paramètres, il est possible de mettre en évidence l’existence d’un rayon critique au delà duquel le front d’onde n’arrive pas à dépasser le coude. Après une description du schéma d’approximation utilisé, une étude numérique a été réalisée, visant à préciser la dépendance du rayon critique en fonction des différents paramètres du modèle.

  15. Problem-Oriented Simulation Packages and Computational Infrastructure for Numerical Studies of Powerful Gyrotrons

    International Nuclear Information System (INIS)

    Damyanova, M; Sabchevski, S; Vasileva, E; Balabanova, E; Zhelyazkov, I; Dankov, P; Malinov, P

    2016-01-01

    Powerful gyrotrons are necessary as sources of strong microwaves for electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) of magnetically confined plasmas in various reactors (most notably ITER) for controlled thermonuclear fusion. Adequate physical models and efficient problem-oriented software packages are essential tools for numerical studies, analysis, optimization and computer-aided design (CAD) of such high-performance gyrotrons operating in a CW mode and delivering output power of the order of 1-2 MW. In this report we present the current status of our simulation tools (physical models, numerical codes, pre- and post-processing programs, etc.) as well as the computational infrastructure on which they are being developed, maintained and executed. (paper)

  16. DIETFITS Study (Diet Intervention Examining The Factors Interacting with Treatment Success) – Study Design and Methods

    Science.gov (United States)

    Stanton, Michael; Robinson, Jennifer; Kirkpatrick, Susan; Farzinkhou, Sarah; Avery, Erin; Rigdon, Joseph; Offringa, Lisa; Trepanowski, John; Hauser, Michelle; Hartle, Jennifer; Cherin, Rise; King, Abby C.; Ioannidis, John P.A.; Desai, Manisha; Gardner, Christopher D.

    2017-01-01

    Numerous studies have attempted to identify successful dietary strategies for weight loss, and many have focused on Low-Fat vs. Low-Carbohydrate comparisons. Despite relatively small between-group differences in weight loss found in most previous studies, researchers have consistently observed relatively large between-subject differences in weight loss within any given diet group (e.g., ~25 kg weight loss to ~5 kg weight gain). The primary objective of this study was to identify predisposing individual factors at baseline that help explain differential weight loss achieved by individuals assigned to the same diet, particularly a pre-determined multi-locus genotype pattern and insulin resistance status. Secondary objectives included discovery strategies for further identifying potential genetic risk scores. Exploratory objectives included investigation of an extensive set of physiological, psychosocial, dietary, and behavioral variables as moderating and/or mediating variables and/or secondary outcomes. The target population was generally healthy, free-living adults with BMI 28-40 kg/m2 (n=600). The intervention consisted of a 12-month protocol of 22 one-hour evening instructional sessions led by registered dietitians, with ~15-20 participants/class. Key objectives of dietary instruction included focusing on maximizing the dietary quality of both Low-Fat and Low-Carbohydrate diets (i.e., Healthy Low-Fat vs. Healthy Low-Carbohydrate), and maximally differentiating the two diets from one another. Rather than seeking to determine if one dietary approach was better than the other for the general population, this study sought to examine whether greater overall weight loss success could be achieved by matching different people to different diets. Here we present the design and methods of the study. PMID:28027950

  17. Numerical studies on helium cooled divertor finger mock up with sectorial extended surfaces

    International Nuclear Information System (INIS)

    Rimza, Sandeep; Satpathy, Kamalakanta; Khirwadkar, Samir; Velusamy, Karupanna

    2014-01-01

    Highlights: • Studies on heat transfer enhancement for divertor finger mock-up. • Heat transfer characteristics of jet impingement with extended surfaces have been investigated. • Effect of critical parameters that influence the thermal performance of the finger mock-up by CFD approach. • Effect of extended surface in enhancing heat removal potential with pumping power assessed. • Practicability of the chosen design is verified by structural analysis. - Abstract: Jet impinging technique is an advance divertor concept for the design of future fusion power plants. This technique is extensively used due to its high heat removal capability with reasonable pumping power and for safe operation. In this design, plasma-facing components are fabricated with numerous fingers cooled by helium jets to reduce the thermal stresses. The present study is focused towards finding an optimum performance of one such finger mock-up through systematic computational fluid dynamics (CFD) studies. Heat transfer characteristics of jet impingement have been numerically investigated with sectorial extended surfaces (SES). The result shows that addition of SES enhances heat removal potential with minimum pumping power. Detailed parametric studies on critical parameters that influence thermal performance of the finger mock-up have been analyzed. Thermo-mechanical analysis has been carried out through finite element based approach to know the state of stress in the assembly as a result of large temperature gradients. It is seen that the stresses are within the permissible limits for the present design. The whole numerical simulation has been carried out using general-purpose CFD software (ANSYS FLUENT, Release 14.0, User Guide, Ansys, Inc., 2011). Benchmark validation studies have been performed against high-heat flux experiments (B. Končar, P. Norajitra, K. Oblak, Appl. Therm. Eng., 30, 697–705, 2010) and a good agreement is noticed between the present simulation and the reported

  18. Ultrastructural and histological findings on examination of skin in osteogenesis imperfecta: a novel study.

    Science.gov (United States)

    Balasubramanian, Meena; Wagner, Bart E; Peres, Luiz C; Sobey, Glenda J; Parker, Michael J; Dalton, Ann; Arundel, Paul; Bishop, Nicholas J

    2015-04-01

    Osteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders of bone formation, resulting in low bone mass and an increased propensity for fractures. It is a variable condition with a range of clinical severities. The histological and ultrastructural findings in the skin of patients with OI have not been described in detail in the previously published literature. Although protein analysis of cultured fibroblasts has historically been used in the diagnostic work-up of OI patients, other aspects of skin examination are not routinely performed as part of the diagnostic pathway in patients with OI. The aims of this study were to perform histological and ultrastructural examination of skin biopsies in patients with OI. This was to identify common and distinguishing features in the numerous genetically distinct subtypes of OI and compare the findings with those in patients who did not present with fractures, and to enable the use of the results thus obtained to aid in the diagnostic work-up of patients with OI. As part of a larger research study set-up to identify clinical features and natural history in patients with atypical features of OI, skin biopsy and examination (histology and electron microscopy) were undertaken. Genetic analysis and ancillary investigations were also performed to identify similarities within this group and to differentiate this group from the 'normal' population. At the end of this study, we were able to demonstrate that the histological and electron microscopic findings on a skin biopsy may be an indicator of the likelihood of identifying a pathogenic mutation in type 1 collagen genes. This is because patients with specific findings on examination, such as elastic fibre area fraction (on histological analysis), collagen fibril diameter variability, deviation from the expected mean and collagen flowers (on electron microscopy), are more likely to be positive on genetic analyses. This has, in turn, provided more insight into the

  19. Elastic Numbers: National Examinations Data as a Technology of Government

    Science.gov (United States)

    Piattoeva, Nelli

    2015-01-01

    This article is motivated by interest in the deployment of massive numerical information produced by national examinations in the practices of control and steering. It examines how data generated in the compulsory school graduation examination in the Russian Federation connect together different actors within the education system and beyond, and…

  20. Numerical study of the characteristics of a dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Shi, C. A.; Adamiak, K.; Castle, G. S. P.

    2018-03-01

    A dielectric barrier discharge actuator to control airflow along a flat dielectric plate has been numerically investigated in this paper. In order to avoid large computing times, streamers, Trichel pulses and the ionic reactions involving photons and electrons are neglected. The numerical model assumes two types of generic ions, one positive and one negative, whose drift in the electric field produces the electrohydrodynamic flow. This study provides detailed insights into the physical mechanisms of DBD that include the electric field, space charge transport, surface charge accumulation and air flow motion. The results show the V-I characteristics, velocity profiles and drag force estimates. In addition, the effects of the voltage level, frequency and inlet air velocity on the actuator performance are presented and interpreted. The simulation results show a good agreement with theoretical expectations and experimental data available in literature.

  1. Comparative numerical and experimental study of two combined wind and wave energy concepts

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    2016-01-01

    Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the

  2. 47 CFR 13.207 - Preparing an examination.

    Science.gov (United States)

    2010-10-01

    ... consist of a plain language text or code group message sent in the international Morse code at no less... examination. Each five letters of the alphabet must be counted as one word or one code group. Each numeral...

  3. Numerical study of drop spreading on a flat surface

    Science.gov (United States)

    Wang, Sheng; Desjardins, Olivier

    2017-11-01

    In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.

  4. Numerical studies of the influence of food ingestion on phytoplankton and zooplankton biomasses

    Directory of Open Access Journals (Sweden)

    Lidia Dzierzbicka-G³owacka

    2002-03-01

    Full Text Available This paper presents the numerical simulations of the influence of food ingestion by a herbivorous copepod on phytoplankton and zooplankton biomasses (PZB in the sea. The numerical studies were carried out using the phytoplankton-zooplankton-nutrient-detritus PhyZooNuDe biological upper layer model. This takes account both of fully developed primary production and regeneration mechanisms and of daily migration of zooplankton. In this model the zooplankton is treated not as a 'biomass' but as organisms having definite patterns of growth, reproduction and mortality. Assuming also that {Zoop} is composed ofi cohorts of copepods with weights Wi and numbers Zi, then {Zoop} = WiZi. The PhyZooNuDe model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton, zooplankton and nutrients, and one ordinary first-order differential equation for the benthic detritus pool, together with initial and boundary conditions. The calculations were made during 90 days (April, May and June for the study area P1 (Gdansk Deep in an area 0z<=20 m with a vertical space step of 0.1 m and a time step of 300 s. The simulation given here demonstrated the importance of food ingestion by zooplankton in that it can alter the nature of the interactions of plants and herbivores. The analysis of these numerical studies indicate that the maximal ingestion rate and the half-saturation constant for grazing strongly affect the magnitude of the spring bloom and the cyanobacterial bloom, and also the total zooplankton biomass.

  5. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  6. A Numerical Study on Impact of Taiwan Island Surface Heat Flux on Super Typhoon Haitang (2005

    Directory of Open Access Journals (Sweden)

    Hongxiong Xu

    2015-01-01

    Full Text Available Three to four tropical cyclones (TCs by average usually impact Taiwan every year. This study, using the Developmental Tested Center (DTC version of the Hurricane WRF (HWRF model, examines the effects of Taiwan’s island surface heat fluxes on typhoon structure, intensity, track, and its rainfall over the island. The numerical simulation successfully reproduced the structure and intensity of super Typhoon Haitang. The model, especially, reproduced the looped path and landfall at nearly the right position. Sensitive experiments indicated that Taiwan’s surface heat fluxes have significant influence on the super Typhoon Haitang. Compared to sensible heat (SH fluxes, latent heat (LH is the dominant factor affecting the intensity and rainfall, but they showed opposite effects on intensity and rainfall. LH (SH flux of Taiwan Island intensified (weakened Typhoon Haitang’s intensity and structure by transferring more energy from (to surface. However, only LH played a major role in the looped path before the landfall of the Typhoon Haitang.

  7. Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic

    Science.gov (United States)

    Kasimzade, A. A.; Tuhta, S.

    2012-03-01

    In the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.

  8. Numerical study of time domain analogy applied to noise prediction from rotating blades

    Science.gov (United States)

    Fedala, D.; Kouidri, S.; Rey, R.

    2009-04-01

    Aeroacoustic formulations in time domain are frequently used to model the aerodynamic sound of airfoils, the time data being more accessible. The formulation 1A developed by Farassat, an integral solution of the Ffowcs Williams and Hawkings equation, holds great interest because of its ability to handle surfaces in arbitrary motion. The aim of this work is to study the numerical sensitivity of this model to specified parameters used in the calculation. The numerical algorithms, spatial and time discretizations, and approximations used for far-field acoustic simulation are presented. An approach of quantifying of the numerical errors resulting from implementation of formulation 1A is carried out based on Isom's and Tam's test cases. A helicopter blade airfoil, as defined by Farassat to investigate Isom's case, is used in this work. According to Isom, the acoustic response of a dipole source with a constant aerodynamic load, ρ0c02, is equal to the thickness noise contribution. Discrepancies are observed when the two contributions are computed numerically. In this work, variations of these errors, which depend on the temporal resolution, Mach number, source-observer distance, and interpolation algorithm type, are investigated. The results show that the spline interpolating algorithm gives the minimum error. The analysis is then extended to Tam's test case. Tam's test case has the advantage of providing an analytical solution for the first harmonic of the noise produced by a specific force distribution.

  9. Buckling and Fracture Investigation of Debonded Sandwich Columns: An Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Berggreen, Christian; Carlsson, Leif A.; Avilés, F.

    2008-01-01

    An experimental and numerical study of in-plane compression of foam core sandwich columns with implanted trough width face/core debond is presented. Experiments were conducted for columns with two different face thicknesses over different cores and debond lengths. The debonded region was monitore...

  10. Direct numerical simulation of fluid-particle heat transfer in fixed random arrays of non-spherical particles

    NARCIS (Netherlands)

    Tavassoli Estahbanati, H.; Peters, E.A.J.F.; Kuipers, J.A.M.

    2015-01-01

    Direct numerical simulations are conducted to characterize the fluid-particle heat transfer coefficient in fixed random arrays of non-spherical particles. The objective of this study is to examine the applicability of well-known heat transfer correlations, that are proposed for spherical particles,

  11. Examining the effect of adverse geological conditions on jamming of a single shielded TBM in Uluabat tunnel using numerical modeling

    Directory of Open Access Journals (Sweden)

    Rohola Hasanpour

    2017-12-01

    Full Text Available Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine (TBM. To study the jamming mechanism, three-dimensional (3D simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and pre-estimating of the required thrust force during excavation through adverse ground conditions.

  12. Numerical Operations, Transparency Illusions and the Datafication of Governance

    DEFF Research Database (Denmark)

    Hansen, Hans Krause

    2015-01-01

    Building on conceptual insights from the history and sociology of numbers, media and surveillance studies, and theories of governance and risk, this article analyzes the forms of transparency produced by the use of numbers in social life. It examines what it is about numbers that often makes...... their ‘truth claims’ so powerful, investigates the role that numerical operations play in the production of retrospective, real-time and anticipatory forms of transparency in contemporary politics and economic transactions, and discusses some of the implications resulting from the increasingly abstract...

  13. Numerical semigroups and applications

    CERN Document Server

    Assi, Abdallah

    2016-01-01

    This work presents applications of numerical semigroups in Algebraic Geometry, Number Theory, and Coding Theory. Background on numerical semigroups is presented in the first two chapters, which introduce basic notation and fundamental concepts and irreducible numerical semigroups. The focus is in particular on free semigroups, which are irreducible; semigroups associated with planar curves are of this kind. The authors also introduce semigroups associated with irreducible meromorphic series, and show how these are used in order to present the properties of planar curves. Invariants of non-unique factorizations for numerical semigroups are also studied. These invariants are computationally accessible in this setting, and thus this monograph can be used as an introduction to Factorization Theory. Since factorizations and divisibility are strongly connected, the authors show some applications to AG Codes in the final section. The book will be of value for undergraduate students (especially those at a higher leve...

  14. A NOVEL NUMERICAL MODEL APPROACH FOR EXAMINING SHIP BERTHING IMPACT ON FLOATING PIERS

    Directory of Open Access Journals (Sweden)

    AMIN CHEGENIZADEH

    2015-08-01

    Full Text Available This paper presents the results of an investigation into the impact of ship berthing upon floating piers using highly advanced numerical software Abaqus. The ship and floating piers were modeled as solid bodies. For the first time, the effect of soil on the total energy absorption of the system was considered using both elastic and elastic-perfectly plastic soil models. First the results for the elastic soil model were compared to and verified by the existing literature using a spring soil model.Then a continuum soil model was utilized instead of a spring soil model, with the results showing 27% higher energy absorption compared to the spring model. The investigation also considered a model with soil as an elastic-perfectly plastic material, being more aligned with the soil material’s real behavior. With this model the results produced 1% more energy absorption as the soil did not reach plastic failure.

  15. Experimental study and numerical optimization of tensegrity domes - A case study

    Science.gov (United States)

    Winkelmann, Karol; Kłos, Filip; Rąpca, Mateusz

    2018-01-01

    The paper deals with the design, experimental analysis and numerical optimization of tensegrity dome models. Two structures are analyzed - a Geiger system dome (preliminary dome), with PVC-U bars and PA6/PP/PET tendons and a Fuller system dome (target dome), with wooden bars and steel cables as tendons. All used materials are experimentally tested in terms of Young's modulus and yield stress values, the compressed bars are also tested for the limit length demarcating the elastic buckling from plastic failure. The data obtained in experiments is then implemented in SOFiSTiK commercial software FE model. The model's geometrical parameters are considered uniform random variables. Geometrically and materially nonlinear analysis is carried out. Based on the obtained structural response (displacements), a Monte Carlo simulation - based approach is incorporated for both structural design point formulation and the SLS requirements fulfillment analysis. Finally, an attempt is made to erect the Fuller dome model in order to compare the numerical results of an experimentally-derived model with the in situ measurements of an actual structure.

  16. Numerical study on xenon positive column discharges of mercury-free lamp

    International Nuclear Information System (INIS)

    Ouyang, Jiting; He, Feng; Miao, Jinsong; Wang, Jianqi; Hu, Wenbo

    2007-01-01

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate in a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells

  17. Numerical Study of Compact Plate-Fin Heat Exchanger for Rotary-Vane Gas Refrigeration Machine

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2017-10-01

    Full Text Available Plate-fin heat exchangers are widely used in refrigeration technique. They are popular because of their compactness and excellent heat transfer performance. Here we present a numerical model for the development, research and optimization of a plate-fin heat exchanger for a rotary-vane gas refrigeration machine. The method of analysis by graphic method of plate - fin heat exchanger is proposed. The model describes the effects of secondary parameters such as axial thermal conductivity through a metal matrix of the heat exchanger. The influence of geometric parameters and heat transfer coefficient is studied. Graphs of dependences of length, efficiency of a fin and pressure drop in a heat exchanger on the thickness of the fin and the number of fins per meter are obtained. To analyze the results of numerical simulation, the heat exchanger was designed in the Aspen HYSYS program. The simulation results show that the total deviation from the proposed numerical model is not more than 15%. 

  18. Qualitative analysis of subcutaneous Lispro and regular insulin injections for stress hyperglycemia: a pilot numerical study.

    Science.gov (United States)

    Strilka, Richard J; Armen, Scott B; Indeck, Matthew C

    2014-09-07

    Increased glucose variability (GV) is an independent risk factor for mortality in the critically ill; unfortunately, the optimal insulin therapy that minimizes GV is not known. We simulate the glucose-insulin feedback system to study how stress hyperglycemia (SH) states, taken to be a non-uniform group of physiologic disorders with varying insulin resistance (IR) and similar levels of hyperglycemia, respond to the type and dose of subcutaneous (SQ) insulin. Two groups of 100 virtual patients are studied: those receiving and those not receiving continuous enteral feeds. Stress hyperglycemia was facilitated by doubling the gluconeogenesis rate and IR was stepwise varied from a borderline to a high value. Lispro and regular insulin were simulated with dosages that ranged from 0 to 6 units; the resulting GV was analyzed after each insulin injection. The numerical model used consists of a set of non-linear differential equations with two time delays and five adjustable parameters. The results show that regular insulin decreased GV in both patient groups and rarely caused hypoglycemia. With continuous enteral feeds and borderline to mild IR, Lispro showed minimal effect on GV; however, rebound hyperglycemia that increased GV occurred when the IR was moderate to high. Without a nutritional source, Lispro worsened GV through frequent hypoglycemia episodes as the injection dose increased. The inferior performance of Lispro is a result of its rapid absorption profile; half of its duration of action is similar to the glucose ultradian period. Clinical trials are needed to examine whether these numerical results represent the glucose-insulin dynamics that occur in intensive care units, and if such dynamics are present, their clinical effects should be evaluated. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    Energy Technology Data Exchange (ETDEWEB)

    Kako, T.; Watanabe, T. [eds.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  20. Numerical study of the bubbly flow regime in micro-channel flow boiling

    Science.gov (United States)

    Bhuvankar, Pramod; Dabiri, Sadegh

    2017-11-01

    Two-phase flow accompanied by boiling in micro-channel heat sinks is an effective means for heat removal from computer chips. We present a numerical study of flow boiling in micro-channels with conjugate heat transfer with a focus on the bubbly flow regime. The bubbles are assumed to nucleate at a pre-determined location and frequency. The Navier Stokes equations are solved using a single fluid formulation with the Front tracking method. Phase change is implemented using the deficit in heat flux across the bubble interface. The analytical solution for bubble growth in a superheated liquid is used as a benchmark to validate the mentioned numerical method. Water and FC-72 are studied as the operating fluids in a micro-channel made of Copper with a focus on hotspot mitigation. The micro-channel of cross-section 231 μm × 1000 μm , is used to study the effects of vertical up-flow, vertical down-flow and horizontal flow of the mentioned fluids on the heat transfer coefficients. A simple film model accounting for mass and energy conservation is applied wherever the bubble approaches closer than a cell width to the wall. The results of the simulation are compared with existing experimental data for bubble growth rates and heat transfer coefficients.

  1. Hydration of mineral shrinkage-compensating admixture for concrete : an experimental and numerical study

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, H.J.H.

    2012-01-01

    The use of shrinkage-compensating admixture in concrete has been proven to be an effective way to mitigate the shrinkage of concrete. The hydration of a shrinkage-compensating admixture in cement paste and concrete is investigated in this paper with numerical simulation and experimental study. An

  2. Numerical Study of Critical Role of Rock Heterogeneity in Hydraulic Fracture Propagation

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to different particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.

  3. Numerical study on lateral wall displacement of deep excavation supported by IPS earth retention system

    Directory of Open Access Journals (Sweden)

    Tugen Feng

    2017-12-01

    Full Text Available The objective of this study is to investigate the 3D behavior characteristics of an excavation supported by an innovative prestressed support (IPS earth retention system. A numerical simulation was conducted in order to provide insight into the IPS system behavior by using the FLAC3D package. Prior to the parametric study, validation work was conducted by means of a comparison of the deformation between the field test data and numerical analysis results, and strong agreement was obtained. The reasonable excavation location, layered excavation thickness, and blocked excavation sequence are presented according to variable parameter analysis. In view of the previous findings, certain measurements are proposed in order to control the foundation pit deformation. The results indicate that prestress compensation has a significant effect on the IPS system behavior, while an optimized excavation sequence slightly improves its behavior. With the conclusion proposed based on the numerical results, the aim is to provide reference data for optimization design and the construction sequence. Keywords: FLAC3D, IPS system, Prestress compensation, Layered excavation, Blocked excavation, Deformation control

  4. Professional mathematicians differ from controls in their spatial-numerical associations.

    Science.gov (United States)

    Cipora, Krzysztof; Hohol, Mateusz; Nuerk, Hans-Christoph; Willmes, Klaus; Brożek, Bartosz; Kucharzyk, Bartłomiej; Nęcka, Edward

    2016-07-01

    While mathematically impaired individuals have been shown to have deficits in all kinds of basic numerical representations, among them spatial-numerical associations, little is known about individuals with exceptionally high math expertise. They might have a more abstract magnitude representation or more flexible spatial associations, so that no automatic left/small and right/large spatial-numerical association is elicited. To pursue this question, we examined the Spatial Numerical Association of Response Codes (SNARC) effect in professional mathematicians which was compared to two control groups: Professionals who use advanced math in their work but are not mathematicians (mostly engineers), and matched controls. Contrarily to both control groups, Mathematicians did not reveal a SNARC effect. The group differences could not be accounted for by differences in mean response speed, response variance or intelligence or a general tendency not to show spatial-numerical associations. We propose that professional mathematicians possess more abstract and/or spatially very flexible numerical representations and therefore do not exhibit or do have a largely reduced default left-to-right spatial-numerical orientation as indexed by the SNARC effect, but we also discuss other possible accounts. We argue that this comparison with professional mathematicians also tells us about the nature of spatial-numerical associations in persons with much less mathematical expertise or knowledge.

  5. A Numerical Study on Premixed Bluff Body Flame of Different Bluff Apex Angle

    Directory of Open Access Journals (Sweden)

    Gelan Yang

    2013-01-01

    Full Text Available In order to investigate effects of apex angle (α on chemically reacting turbulent flow and thermal fields in a channel with a bluff body V-gutter flame holder, a numerical study has been carried out in this paper. With a basic geometry used in a previous experimental study, the apex angle was varied from 45° to 150°. Eddy dissipation concept (EDC combustion model was used for air and propane premixed flame. LES-Smagorinsky model was selected for turbulence. The gird-dependent learning and numerical model verification were done. Both nonreactive and reactive conditions were analyzed and compared. The results show that as α increases, recirculation zone becomes bigger, and Strouhal number increases a little in nonreactive cases while decreases a little in reactive cases, and the increase of α makes the flame shape wider, which will increase the chamber volume heat release ratio and enhance the flame stability.

  6. Numerical taxonomic study of some tribes of composite (subfamily asteroideae) from Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Osman, A K [South Valley University, Faculty of Science, Qena (Egypt). Dept. of Botany

    2011-02-15

    A systematic study of 25 taxa belonging to 12 genera of tribes Gnaphalieae, Helenieae, Plucheeae and Senecioneae of Compositae from Egypt was conducted by means of numerical analysis based on 19 main pollen grains characters. On the basis of UPGMA (Unpaired Group Method off Averaging) clustering and PCO (Principal Component Analysis), two main groups and five subgroups are recognized. (author)

  7. Numerical taxonomic study of some tribes of composite (subfamily asteroideae) from Egypt

    International Nuclear Information System (INIS)

    Osman, A.K.

    2011-01-01

    A systematic study of 25 taxa belonging to 12 genera of tribes Gnaphalieae, Helenieae, Plucheeae and Senecioneae of Compositae from Egypt was conducted by means of numerical analysis based on 19 main pollen grains characters. On the basis of UPGMA (Unpaired Group Method off Averaging) clustering and PCO (Principal Component Analysis), two main groups and five subgroups are recognized. (author)

  8. Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: An fMR-adaptation study

    Directory of Open Access Journals (Sweden)

    Stephan E. Vogel

    2015-04-01

    Full Text Available The way the human brain constructs representations of numerical symbols is poorly understood. While increasing evidence from neuroimaging studies has indicated that the intraparietal sulcus (IPS becomes increasingly specialized for symbolic numerical magnitude representation over developmental time, the extent to which these changes are associated with age-related differences in symbolic numerical magnitude representation or with developmental changes in non-numerical processes, such as response selection, remains to be uncovered. To address these outstanding questions we investigated developmental changes in the cortical representation of symbolic numerical magnitude in 6- to 14-year-old children using a passive functional magnetic resonance imaging adaptation design, thereby mitigating the influence of response selection. A single-digit Arabic numeral was repeatedly presented on a computer screen and interspersed with the presentation of novel digits deviating as a function of numerical ratio (smaller/larger number. Results demonstrated a correlation between age and numerical ratio in the left IPS, suggesting an age-related increase in the extent to which numerical symbols are represented in the left IPS. Brain activation of the right IPS was modulated by numerical ratio but did not correlate with age, indicating hemispheric differences in IPS engagement during the development of symbolic numerical representation.

  9. DIETFITS Study (Diet Intervention Examining The Factors Interacting with Treatment Success) – Study Design and Methods

    OpenAIRE

    Stanton, Michael; Robinson, Jennifer; Kirkpatrick, Susan; Farzinkhou, Sarah; Avery, Erin; Rigdon, Joseph; Offringa, Lisa; Trepanowski, John; Hauser, Michelle; Hartle, Jennifer; Cherin, Rise; King, Abby C.; Ioannidis, John P.A.; Desai, Manisha; Gardner, Christopher D.

    2016-01-01

    Numerous studies have attempted to identify successful dietary strategies for weight loss, and many have focused on Low-Fat vs. Low-Carbohydrate comparisons. Despite relatively small between-group differences in weight loss found in most previous studies, researchers have consistently observed relatively large between-subject differences in weight loss within any given diet group (e.g., ~25 kg weight loss to ~5 kg weight gain). The primary objective of this study was to identify predisposing ...

  10. Numerical study of a mathematical model of internal erosion of soil

    Science.gov (United States)

    Sibin, A.

    2017-10-01

    The process of internal erosion in a three-phase saturated soil is studied. A mathematical model describing the process consists of the equations of mass conservation, Darcy’s law and equation for capillary pressure. The original system of equations is reduced to a system of three equations for porosity, pressure and water saturation. Obtained equation for the water saturation is degenerate. The degenerate problem in an one-dimensional domain is solved numerically using the finite-difference method.

  11. Numerical chromosome errors in day 7 somatic nuclear blastocysts

    DEFF Research Database (Denmark)

    Booth, Paul J; Viuff, Dorthe; Tan, Shijian J

    2003-01-01

    Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona-free manipulat......Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona...... families, consisting of 112 blastocysts reconstructed from five different primary granulosa cell cultures, were examined. Overall, the mean chromosome complement within embryos was 86.9 +/- 3.7% (mean +/- SEM) diploid, 2.6 +/- 0.5% triploid, 10.0 +/- 3.1% tetraploid, and 0.5 +/- 0.2% pentaploid or greater......; the vast majority (>75%) of the abnormal nuclei were tetraploid. Completely diploid and mixoploid embryos represented 22.1 +/- 4.5% and 73.7 +/- 5.5%, respectively, of all clones. Six totally polyploid blastocysts, containing or=5N chromosome complements, respectively) between two clone families were...

  12. FORECASTING PILE SETTLEMENT ON CLAYSTONE USING NUMERICAL AND ANALYTICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ponomarev Andrey Budimirovich

    2016-06-01

    Full Text Available In the article the problem of designing pile foundations on claystones is reviewed. The purpose of this paper is comparative analysis of the analytical and numerical methods for forecasting the settlement of piles on claystones. The following tasks were solved during the study: 1 The existing researches of pile settlement are analyzed; 2 The characteristics of experimental studies and the parameters for numerical modeling are presented, methods of field research of single piles’ operation are described; 3 Calculation of single pile settlement is performed using numerical methods in the software package Plaxis 2D and analytical method according to the requirements SP 24.13330.2011; 4 Experimental data is compared with the results of analytical and numerical calculations; 5 Basing on these results recommendations for forecasting pile settlement on claystone are presented. Much attention is paid to the calculation of pile settlement considering the impacted areas in ground space beside pile and the comparison with the results of field experiments. Basing on the obtained results, for the prediction of settlement of single pile on claystone the authors recommend using the analytical method considered in SP 24.13330.2011 with account for the impacted areas in ground space beside driven pile. In the case of forecasting the settlement of single pile on claystone by numerical methods in Plaxis 2D the authors recommend using the Hardening Soil model considering the impacted areas in ground space beside the driven pile. The analyses of the results and calculations are presented for examination and verification; therefore it is necessary to continue the research work of deep foundation at another experimental sites to improve the reliability of the calculation of pile foundation settlement. The work is of great interest for geotechnical engineers engaged in research, design and construction of pile foundations.

  13. Continuous modelling study of numerical volumes - Applications to the visualization of anatomical structures

    International Nuclear Information System (INIS)

    Goret, C.

    1990-12-01

    Several technics of imaging (IRM, image scanners, tomoscintigraphy, echography) give numerical informations presented by means of a stack of parallel cross-sectional images. Since many years, 3-D mathematical tools have been developed and allow the 3 D images synthesis of surfaces. In first part, we give the technics of numerical volume exploitation and their medical applications to diagnosis and therapy. The second part is about a continuous modelling of the volume with a tensor product of cubic splines. We study the characteristics of this representation and its clinical validation. Finally, we treat of the problem of surface visualization of objects contained in the volume. The results show the interest of this model and allow to propose specifications for 3-D workstation realization [fr

  14. Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage

    Science.gov (United States)

    Bi, Chun-wei; Zhao, Yun-peng; Dong, Guo-hai

    2015-06-01

    The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.

  15. Breast self-examination: do religious beliefs matter? A descriptive study.

    Science.gov (United States)

    Montazeri, Ali; Haji-Mahmoodi, Mehregan; Jarvandi, Soghra

    2003-06-01

    A descriptive study was conducted in Tehran, Iran, to investigate the beliefs of Muslim women and their practices regarding screening modalities of breast cancer. A questionnaire was specially designed and validated to collect data and was completed by 410 Muslim women. A vast majority of women (90 per cent) said that breast self-examination is not against their religious beliefs. With regard to clinical breast examination, although 58 per cent preferred to be examined by a female physician, 47 per cent said that clinical breast examination by a male physician is not against their Islamic beliefs. However, only 6 per cent of respondents performed breast self-examination on a regular basis (monthly). The study findings suggest that most Muslim women do not perceive breast self-examination as being against their Islamic beliefs and that they believe clinical breast examination by a male physician does not interfere with their religious beliefs.

  16. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations

    KAUST Repository

    Pietschmann, Jan-Frederik; Markowich, Peter Alexander; Burger, Martin

    2011-01-01

    In this paper we study the continuum limit of a cellular automaton model used for simulating human crowds with herding behaviour. We derive a system of non-linear partial differential equations resembling the Keller-Segel model for chemotaxis, however with a non-monotone interaction. The latter has interesting consequences on the behaviour of the model's solutions, which we highlight in its analysis. In particular we study the possibility of stationary states, the formation of clusters and explore their connection to congestion. We also introduce an efficient numerical simulation approach based on an appropriate hybrid discontinuous Galerkin method, which in particular allows flexible treatment of complicated geometries. Extensive numerical studies also provide a better understanding of the strengths and shortcomings of the herding model, in particular we examine trapping effects of crowds behind nonconvex obstacles. © American Institute of Mathematical Sciences.

  17. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations

    KAUST Repository

    Pietschmann, Jan-Frederik

    2011-11-01

    In this paper we study the continuum limit of a cellular automaton model used for simulating human crowds with herding behaviour. We derive a system of non-linear partial differential equations resembling the Keller-Segel model for chemotaxis, however with a non-monotone interaction. The latter has interesting consequences on the behaviour of the model\\'s solutions, which we highlight in its analysis. In particular we study the possibility of stationary states, the formation of clusters and explore their connection to congestion. We also introduce an efficient numerical simulation approach based on an appropriate hybrid discontinuous Galerkin method, which in particular allows flexible treatment of complicated geometries. Extensive numerical studies also provide a better understanding of the strengths and shortcomings of the herding model, in particular we examine trapping effects of crowds behind nonconvex obstacles. © American Institute of Mathematical Sciences.

  18. Enhancement of numeric cognition in children with low achievement in mathematic after a non-instrumental musical training.

    Science.gov (United States)

    Ribeiro, Fabiana Silva; Santos, Flávia H

    2017-03-01

    Studies suggest that musical training enhances spatial-temporal reasoning and leads to greater learning of mathematical concepts. The aim of this prospective study was to verify the efficacy of a Non-Instrumental Musical Training (NIMT) on the Numerical Cognition systems in children with low achievement in math. For this purpose, we examined, with a cluster analysis, whether children with low scores on Numerical Cognition would be grouped in the same cluster at pre and post-NIMT. Participants were primary school children divided into two groups according to their scores on an Arithmetic test. Results with a specialized battery of Numerical Cognition revealed improvements for Cluster 2 (children with low achievement in math) especially for number production capacity compared to normative data. Besides, the number of children with low scores in Numerical Cognition decreased at post-NIMT. These findings suggest that NIMT enhances Numerical Cognition and seems to be a useful tool for rehabilitation of children with low achievement in math. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Numerical study of the Columbia high-beta device: Torus-II

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes.

  20. Numerical study of the Columbia high-beta device: Torus-II

    International Nuclear Information System (INIS)

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes

  1. Precarious Rock Methodology for Seismic Hazard: Physical Testing, Numerical Modeling and Coherence Studies

    Energy Technology Data Exchange (ETDEWEB)

    Anooshehpoor, Rasool; Purvance, Matthew D.; Brune, James N.; Preston, Leiph A.; Anderson, John G.; Smith, Kenneth D.

    2006-09-29

    This report covers the following projects: Shake table tests of precarious rock methodology, field tests of precarious rocks at Yucca Mountain and comparison of the results with PSHA predictions, study of the coherence of the wave field in the ESF, and a limited survey of precarious rocks south of the proposed repository footprint. A series of shake table experiments have been carried out at the University of Nevada, Reno Large Scale Structures Laboratory. The bulk of the experiments involved scaling acceleration time histories (uniaxial forcing) from 0.1g to the point where the objects on the shake table overturned a specified number of times. The results of these experiments have been compared with numerical overturning predictions. Numerical predictions for toppling of large objects with simple contact conditions (e.g., I-beams with sharp basal edges) agree well with shake-table results. The numerical model slightly underpredicts the overturning of small rectangular blocks. It overpredicts the overturning PGA for asymmetric granite boulders with complex basal contact conditions. In general the results confirm the approximate predictions of previous studies. Field testing of several rocks at Yucca Mountain has approximately confirmed the preliminary results from previous studies, suggesting that he PSHA predictions are too high, possibly because the uncertainty in the mean of the attenuation relations. Study of the coherence of wavefields in the ESF has provided results which will be very important in design of the canisters distribution, in particular a preliminary estimate of the wavelengths at which the wavefields become incoherent. No evidence was found for extreme focusing by lens-like inhomogeneities. A limited survey for precarious rocks confirmed that they extend south of the repository, and one of these has been field tested.

  2. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.

    Directory of Open Access Journals (Sweden)

    Tim Wehner

    Full Text Available Numerous experimental fracture healing studies are performed on rats, in which different experimental, mechanical parameters are applied, thereby prohibiting direct comparison between each other. Numerical fracture healing simulation models are able to predict courses of fracture healing and offer support for pre-planning animal experiments and for post-hoc comparison between outcomes of different in vivo studies. The aims of this study are to adapt a pre-existing fracture healing simulation algorithm for sheep and humans to the rat, to corroborate it using the data of numerous different rat experiments, and to provide healing predictions for future rat experiments. First, material properties of different tissue types involved were adjusted by comparing experimentally measured callus stiffness to respective simulated values obtained in three finite element (FE models. This yielded values for Young's moduli of cortical bone, woven bone, cartilage, and connective tissue of 15,750 MPa, 1,000 MPa, 5 MPa, and 1 MPa, respectively. Next, thresholds in the underlying mechanoregulatory tissue differentiation rules were calibrated by modifying model parameters so that predicted fracture callus stiffness matched experimental data from a study that used rigid and flexible fixators. This resulted in strain thresholds at higher magnitudes than in models for sheep and humans. The resulting numerical model was then used to simulate numerous fracture healing scenarios from literature, showing a considerable mismatch in only 6 of 21 cases. Based on this corroborated model, a fit curve function was derived which predicts the increase of callus stiffness dependent on bodyweight, fixation stiffness, and fracture gap size. By mathematically predicting the time course of the healing process prior to the animal studies, the data presented in this work provides support for planning new fracture healing experiments in rats. Furthermore, it allows one to transfer and

  3. When three is not some: on the pragmatics of numerals.

    Science.gov (United States)

    Shetreet, Einat; Chierchia, Gennaro; Gaab, Nadine

    2014-04-01

    Both numerals and quantifiers (like some) have more than one possible interpretation (i.e., weak and strong interpretations). Some studies have found similar behavior for numerals and quantifiers, whereas others have shown critical differences. It is, therefore, debated whether they are processed in the same way. A previous fMRI investigation showed that the left inferior frontal gyrus is linked to the computation of the strong interpretation of quantifiers (derived by a scalar implicature) and that the left middle frontal gyrus and the medial frontal gyrus are linked to processing the mismatch between the strong interpretation of quantifiers and the context in which they are presented. In the current study, we attempted to characterize the similarities and differences between numbers and quantifiers by examining brain activation patterns related to the processing of numerals in these brain regions. When numbers were presented in a mismatch context (i.e., where their strong interpretation did not match the context), they elicited brain activations similar to those previously observed with quantifiers in the same context type. Conversely, in a match context (i.e., where both interpretations of the scalar item matched the context), numbers elicited a different activation pattern than the one observed with quantifiers: Left inferior frontal gyrus activations in response to the match condition showed decrease for numbers (but not for quantifiers). Our results support previous findings suggesting that, although they share some features, numbers and quantifiers are processed differently. We discuss our results in light of various theoretical approaches linked to the representation of numerals.

  4. Numerical study of turbulent flow in a rectangular T-junction

    Science.gov (United States)

    Georgiou, Michail; Papalexandris, Miltiadis V.

    2017-06-01

    In this paper, we report on a numerical study of the interaction and merging of a turbulent crossflow with an incoming turbulent jet in a T-junction with rectangular cross section. Our study is based on wall-resolved and experimentally validated large eddy simulations. The bulk Reynolds number of the crossflow is 15 000. Further, we consider cases with two different momentum ratios, namely, MR = 2 and MR = 0.5. In the presentation of the results, we elaborate on the main features of the flow, namely, the shear layers that emanate from the corners of the entry of the jet, the large recirculation bubble downstream the incoming jet, and the mixing process beyond the reattachment point. For validation purposes, we compare our simulations with existing experimental data. This comparison shows a good agreement between our numerical predictions and the measurements. First- and second-order statistics of the flow are also presented and analyzed in detail. Our simulations reveal two features of the flow that have not been reported before in studies of T-junctions. The first one is a secondary small-scale recirculation region between the entry of the jet and the large recirculation bubble. The second one is the negative turbulent kinetic energy production that occurs in the recirculation bubble and close to the reattachment of the flow. The analysis of our results further reveals that just across the entry of the jet, the boundary layer in the wall opposite to the jet experiences a favourable pressure gradient due to a Venturi effect induced by the incoming jet. In turn, this favourable pressure gradient contributes to the local relaminarization of the flow. On the other hand, the boundary layer downstream the recirculation bubble experiences an adverse pressure gradient. In both cases, a significant deviation from the universal law of the wall is confirmed.

  5. Experimental and Numerical Study of FRP Encased Composite Concrete Columns

    Directory of Open Access Journals (Sweden)

    Mohsen Ishaghian

    2017-02-01

    Full Text Available A new type of composite column is presented and assessed through experimental testing and numerical modeling. The objective of this research is to investigate design options for a composite column without the use of ferrous materials. This is to avoid the current problem of deterioration of concrete due to expansion of rusting reinforcement members. Such a target can be achieved by replacing the steel reinforcement of concrete columns with pultruded I-shape glass FRP structural sections. The composite column utilizes a glass FRP tube that surrounds a pultruded I-section glass FRP, which is subsequently filled with concrete. The GFRP tube acts as a stay-in-place form in addition to providing confinement to the concrete. A total of four composite columns were tested under monotonic axial loading. The experimental ultimate capacity of each of the tested composite column was compared to the predicted numerical capacity using ANSYS program. The comparison showed that the predicted numerical values were in good agreement with the experimental ones.

  6. Optimal control approaches for aircraft conflict avoidance using speed regulation : a numerical study

    OpenAIRE

    Cellier , Loïc; Cafieri , Sonia; Messine , Frederic

    2013-01-01

    International audience; In this paper a numerical study is provided to solve the aircraft conflict avoidance problem through velocity regulation maneuvers. Starting from optimal controlbased model and approaches in which aircraft accelerations are the controls, and by applying the direct shooting technique, we propose to study two different largescale nonlinear optimization problems. In order to compare different possibilities of implementation, two environments (AMPL and MATLAB) and determin...

  7. Numerical analysis

    CERN Document Server

    Rao, G Shanker

    2006-01-01

    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  8. Numerical simulation of laser resonators

    International Nuclear Information System (INIS)

    Yoo, J. G.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.

  9. Numerical calculations in quantum field theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1984-01-01

    Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references

  10. Experimental and numerical studies in a vortex tube

    International Nuclear Information System (INIS)

    Sohn, Chang Hyun; Kim, Chang Soo; Gowda, B. H. L Lakshmana; Jung, Ui Hyun

    2006-01-01

    The present investigation deals with the study of the internal flow phenomena of the counter-flow type vortex tube using experimental testing and numerical simulation. Visualization was carried out using the surface tracing method, injecting dye on the vortex tube wall using a needle. Vortex tube is made of acrylic to visualize the surface particle tracing and the input air pressure was varied from 0.1 MPa to 0.3 MPa. The experimentally visualized results on the tube show that there is an apparent sudden changing of the trajectory on the vortex tube wall which was observed in every experimental test case. This may indicate the stagnation position of the vortex flow. The visualized stagnation position moves towards the vortex generator with increase in cold flow ratio and input pressure. Three-dimensional computational study is also conducted to obtain more detailed flow information in the vortex tube. Calculated total pressure, static pressure and total temperature distributions in the vortex tube were in good agreement with the experimental data. The computational particle trace on the vortex tube wall is very similar to that observed in experiments

  11. Complexities in coastal sediment transport studies by numerical modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Ilangovan, D.; ManiMurali, R.

    equations arrived based on scientific principles as all natural phenomena are governed by certain rules which can be explained by scientific principles. Efficiency of numerical modeling greatly depends on quality of input parameters. When input parameters...

  12. Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.

    Science.gov (United States)

    Xia, Ji-Yang; Leung, Dennis Y C

    2005-01-01

    A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.

  13. Analytical and numerical study of microswimming using the 'bead-spring model'

    OpenAIRE

    Pande, Jayant

    2016-01-01

    In this thesis we use the bead-spring microswimmer design as a model system to study mechanical microswimming. The basic form of such a swimmer was introduced as the 'three-sphere swimmer' in Najafi & Golestanian, Phys. Rev. E (2004) and has found wide use in theoretical, numerical and experimental research. In our work, we have modified and extended the model in various ways, which, as explained in this thesis, allow us to gain insight into many general principles of microswimming, for insta...

  14. Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning

    Science.gov (United States)

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-01-01

    This study focuses on a numerical investigation of an initial stable jet through the air-sealed electro-centrifugal spinning process, which is known as a viable method for the mass production of nanofibers. A liquid jet undergoing electric and centrifugal forces, as well as other forces, first travels in a stable trajectory and then goes through an unstable curled path to the collector. In numerical modeling, hydrodynamic equations have been solved using the perturbation method—and the boundary integral method has been implemented to efficiently solve the electric potential equation. Hydrodynamic equations have been coupled with the electric field using stress boundary conditions at the fluid-fluid interface. Perturbation equations were discretized by a second order finite difference method, and the Newton method was implemented to solve the discretized non-linear system. Also, the boundary element method was utilized to solve electrostatic equations. In the theoretical study, the fluid was described as a leaky dielectric with charges only on the surface of the jet traveling in dielectric air. The effect of the electric field induced around the nozzle tip on the jet instability and trajectory deviation was also experimentally studied through plate-plate geometry as well as point-plate geometry. It was numerically found that the centrifugal force prevails on electric force by increasing the rotational speed. Therefore, the alteration of the applied voltage does not significantly affect the jet thinning profile or the jet trajectory.

  15. A delta-rule model of numerical and non-numerical order processing.

    Science.gov (United States)

    Verguts, Tom; Van Opstal, Filip

    2014-06-01

    Numerical and non-numerical order processing share empirical characteristics (distance effect and semantic congruity), but there are also important differences (in size effect and end effect). At the same time, models and theories of numerical and non-numerical order processing developed largely separately. Currently, we combine insights from 2 earlier models to integrate them in a common framework. We argue that the same learning principle underlies numerical and non-numerical orders, but that environmental features determine the empirical differences. Implications for current theories on order processing are pointed out. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. The distance effect in numerical memory-updating tasks.

    Science.gov (United States)

    Lendínez, Cristina; Pelegrina, Santiago; Lechuga, Teresa

    2011-05-01

    Two experiments examined the role of numerical distance in updating numerical information in working memory. In the first experiment, participants had to memorize a new number only when it was smaller than a previously memorized number. In the second experiment, updating was based on an external signal, which removed the need to perform any numerical comparison. In both experiments, distance between the memorized number and the new one was manipulated. The results showed that smaller distances between the new and the old information led to shorter updating times. This graded facilitation suggests that the process by which information is substituted in the focus of attention involves maintaining the shared features between the new and the old number activated and selecting other new features to be activated. Thus, the updating cost may be related to amount of new features to be activated in the focus of attention.

  17. Experimental and numerical study of flow deflection effects on electronic air-cooling

    International Nuclear Information System (INIS)

    Arfaoui, Ahlem; Ben Maad, Rejeb; Hammami, Mahmoud; Rebay, Mourad; Padet, Jacques

    2009-01-01

    This work present a numerical and experimental investigation of the influence of transversal flow deflector on the cooling of a heated block mounted on a flat plate. The deflector is inclined and therefore it guides the air flow to the upper surface of the block. This situation is simulating the air-cooling of a rectangular integrated circuit or a current converter mounted on an electronic board. The electronic component are assumed dissipating a low or medium heat flux (with a density lower than 5000 W/m 2 ), as such the forced convection air cooling without fan or heat sink is still sufficient. The study details the effects of the angle of deflector on the temperature and the heat transfer coefficient along the surface of the block and around it. The results of the numerical simulations and the InfraRed camera measurements show that the deviation caused by deflector may significantly enhance the heat transfer on the top face of block

  18. Atmospheric models in the numerical simulation system (SPEEDI-MP) for environmental studies

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Terada, Hiroaki

    2007-01-01

    As a nuclear emergency response system, numerical models to predict the atmospheric dispersion of radionuclides have been developed at Japan Atomic Energy Agency (JAEA). Evolving these models by incorporating new schemes for physical processes and up-to-date computational technologies, a numerical simulation system, which consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, has been constructed to apply for various environmental studies. In this system, the combination of a non-hydrostatic atmospheric dynamic model and Lagrangian particle dispersion model is used for the emergency response system. The utilization of detailed meteorological field by the atmospheric model improves the model performance for diffusion and deposition calculations. It also calculates a large area domain with coarse resolution and local area domain with high resolution simultaneously. The performance of new model system was evaluated using measurements of surface deposition of 137 Cs over Europe during the Chernobyl accident. (author)

  19. Numerical and experimental study of actuator performance on piezoelectric microelectromechanical inkjet print head.

    Science.gov (United States)

    Van So, Pham; Jun, Hyun Woo; Lee, Jaichan

    2013-12-01

    We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.

  20. Experimental and numerical studies of turbulent flow in an in-line tube bundles

    Directory of Open Access Journals (Sweden)

    Aounalah Mohamed

    2012-04-01

    Full Text Available In the present paper an experimental and a numerical simulation of the turbulent flow in an in-line tube bundles have been performed. The experiments were carried out using a subsonic wind tunnel. The pressure distributions along the tubes (22 circumferential pressure taping were determined for a variation of the azimuthal angle from 0 to 360deg. The drag and lift forces are measured using the TE 44 balance. The Navier-Stokes equations of the turbulent flow are solved using Reynolds Stress and K-ε, turbulence models (RANS provided by Fluent CFD code. An adapted grid using static pressure, pressure coefficient and velocity gradient, furthermore, a second order upwind scheme were used. The obtained results from the experimental and numerical studies show a satisfactory agreement.

  1. Two-Dimensional Numerical Study on the Migration of Particle in a Serpentine Channel

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-01-01

    Full Text Available In this work, the momentum exchange scheme-based lattice Boltzmann method is adopted to numerically study the migration of a circular particle in a serpentine channel for the range of 20 ≤ Re ≤ 120. The effects of the Reynolds number, particle density, and the initial particle position are taken into account. Numerical results include the streamlines, particle trajectories, and final equilibrium positions. Close attention is also paid to the time it takes for the particle to travel in the channel. It has been found that the particle is likely to migrate to a similar equilibrium position irrespective of its initial position when Re is large. Furthermore, there exists a critical solid-to-fluid density ratio for which the particle travels fastest in the channel.

  2. Numerical and adaptive grid methods for ideal magnetohydrodynamics

    Science.gov (United States)

    Loring, Burlen

    2008-02-01

    In this thesis numerical finite difference methods for ideal magnetohydrodynamics(MHD) are investigated. A review of the relevant physics, essential for interpreting the results of numerical solutions and constructing validation cases, is presented. This review includes a discusion of the propagation of small amplitude waves in the MHD system as well as a thorough discussion of MHD shocks, contacts and rarefactions and how they can be piece together to obtain a solutions to the MHD Riemann problem. Numerical issues relevant to the MHD system such as: the loss of nonlinear numerical stability in the presence of discontinuous solutions, the introduction of spurious forces due to the growth of the divergence of the magnetic flux density, the loss of pressure positivity, and the effects of non-conservative numerical methods are discussed, along with the practical approaches which can be used to remedy or minimize the negative consequences of each. The use of block structured adaptive mesh refinement is investigated in the context of a divergence free MHD code. A new method for conserving magnetic flux across AMR grid interfaces is developed and a detailed discussion of our implementation of this method using the CHOMBO AMR framework is given. A preliminary validation of the new method for conserving magnetic flux density across AMR grid interfaces illustrates that the method works. Finally a number of code validation cases are examined spurring a discussion of the strengths and weaknesses of the numerics employed.

  3. Playing Linear Numerical Board Games Promotes Low-Income Children's Numerical Development

    Science.gov (United States)

    Siegler, Robert S.; Ramani, Geetha B.

    2008-01-01

    The numerical knowledge of children from low-income backgrounds trails behind that of peers from middle-income backgrounds even before the children enter school. This gap may reflect differing prior experience with informal numerical activities, such as numerical board games. Experiment 1 indicated that the numerical magnitude knowledge of…

  4. Numerical and Experimental Study of Electromagnetically Driven Vortical Flows

    NARCIS (Netherlands)

    Kenjeres, S.; Verdoold, J.; Tummers, M.J.; Hanjalic, K.; Kleijn, C.R.

    2009-01-01

    The paper reports on numerical and experimental investigations of electromagnetically driven vortical flows of an electrically conductive fluid in a generic setup. Two different configurations of permanent magnets are considered: a 3-magnet configuration in which the resulting Lorentz force is

  5. Numerical study on transient local entropy generation in pulsating ...

    Indian Academy of Sciences (India)

    - soidal flow, step flow, and saw-down flow) and for varying periods. The flow and temperature fields are computed numerically with the help of the Fluent compu- tational fluid dynamics (CFD) code, and a computer program developed by us by.

  6. Cortical bone drilling: An experimental and numerical study.

    Science.gov (United States)

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  7. Experimental and numerical study of a flapping tidal stream generator

    Science.gov (United States)

    Kim, Jihoon; Le, Tuyen Quang; Ko, Jin Hwan; Sitorus, Patar Ebenezer; Tambunan, Indra Hartarto; Kang, Taesam

    2017-11-01

    The tidal stream turbine is one of the systems that extract kinetic energy from tidal stream, and there are several types of the tidal stream turbine depending on its operating motion. In this research, we conduct experimental and consecutive numerical analyses of a flapping tidal stream generator with a dual configuration flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted using two-dimensional computational fluid dynamics simulations with an in-house code. Through an experimental analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90-degree phase difference between the two. This research was a part of the project titled `R&D center for underwater construction robotics', funded by the Ministry of Oceans and Fisheries(MOF), Korea Institute of Marine Science & Technology Promotion(KIMST,PJT200539), and Pohang City in Korea.

  8. Numerical study of criticality of the slab reactors with three regions in one-group transport theory

    International Nuclear Information System (INIS)

    Santos, A. dos.

    1979-01-01

    The criticality of slab reactors consisting of core, blanket, and reflector is studied numerically based on the singular-eigenfunction-expansion method in one-group transport theory. The purpose of this work is three-fold: (1) it is shown that the three-media problem can be converted, using a recently developed method, to a set of regular integral equations for the expansion coefficients, such that numerical solutions can be obtained for the first time based on an exact theory; (2) highly accurate numerical results that can serve as standards of comparison for various approximate methods are reported for representative sets of parameters; and (3) the accuracy of the P sub(N) approximation, one of the more often used methods, is analyzed compared to the exact results [pt

  9. Space in Numerical and Ordinal Information: A Common Construct?

    Directory of Open Access Journals (Sweden)

    Philipp Alexander Schroeder

    2017-12-01

    Full Text Available Space is markedly involved in numerical processing, both explicitly in instrumental learning and implicitly in mental operations on numbers. Besides action decisions, action generations, and attention, the response-related effect of numerical magnitude or ordinality on space is well documented in the Spatial-Numerical Associations of Response Codes (SNARC effect. Here, right- over left-hand responses become relatively faster with increasing magnitude positions. However, SNARC-like behavioral signatures in non-numerical tasks with ordinal information were also observed and inspired new models integrating seemingly spatial effects of ordinal and numerical metrics. To examine this issue further, we report a comparison between numerical SNARC and ordinal SNARC-like effects to investigate group-level characteristics and individual-level deductions from generalized views, i.e., convergent validity. Participants solved order-relevant (before/after classification and order-irrelevant tasks (font color classification with numerical stimuli 1-5, comprising both magnitude and order information, and with weekday stimuli, comprising only ordinal information. A small correlation between magnitude- and order-related SNARCs was observed, but effects are not pronounced in order-irrelevant color judgments. On the group level, order-relevant spatial-numerical associations were best accounted for by a linear magnitude predictor, whereas the SNARC effect for weekdays was categorical. Limited by the representativeness of these tasks and analyses, results are inconsistent with a single amodal cognitive mechanism that activates space in mental processing of cardinal and ordinal information alike. A possible resolution to maintain a generalized view is proposed by discriminating different spatial activations, possibly mediated by visuospatial and verbal working memory, and by relating results to findings from embodied numerical cognition.

  10. Numerical study on non-locally reacting behavior of nacelle liners incorporating drainage slots

    Science.gov (United States)

    Chen, Chao; Li, Xiaodong; Thiele, Frank

    2018-06-01

    For acoustic liners used in current commercial nacelles, in order to prevent any liquid accumulating in the resonators, drainage slots are incorporated on the partition walls between closely packed cavities. Recently, an experimental study conducted by Busse-Gerstengarbe et al. shown that the cell interaction introduced by drainage slots causes an additional dissipation peak which increases with the size of the slot. However, the variation of damping process due to drainage slots is still not fully understood. Therefore, a numerical study based on computational aeroacoustic methods is carried out to investigate the mechanism of the changed attenuation characteristics due to drainage slots in presence of grazing incident sound waves with low or high intensities. Different slot configurations are designed based on the generic non-locally reacting liner model adopted in the experimental investigation. Both 2-D and 3-D numerical simulations of only slit resonators are carried out. Numerical results indicate that the extra peak is a result of a resonance excited in the second cavity at specific frequency. Under high sound pressure level incoming waves, the basic characteristics of the acoustic performance remain. However, vortex shedding transpires at the resonances around both the slits and the drainage slot. Vorticity contours show that the connection of two coupled cavities decreases the strength of vortex shedding around the basic Helmholtz resonance due to a higher energy reflection. Meanwhile, the cell interaction significantly increases the vorticity magnitude near the extra resonant frequency. Finally, a semi-empirical model is derived to predict the extra attenuation peak frequency.

  11. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    Science.gov (United States)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  12. Numerical study of impact erosion of multiple solid particle

    Science.gov (United States)

    Zheng, Chao; Liu, Yonghong; Chen, Cheng; Qin, Jie; Ji, Renjie; Cai, Baoping

    2017-11-01

    Material erosion caused by continuous particle impingement during hydraulic fracturing results in significant economic loss and increased production risks. The erosion process is complex and has not been clearly explained through physical experiments. To address this problem, a multiple particle model in a 3D configuration was proposed to investigate the dynamic erosion process. This approach can significantly reduce experiment costs. The numerical model considered material damping and elastic-plastic material behavior of target material. The effects of impact parameters on erosion characteristics, such as plastic deformation, contact time, and energy loss rate, were investigated. Based on comprehensive studies, the dynamic erosion mechanism and geometry evolution of eroded crater was obtained. These findings can provide a detailed erosion process of target material and insights into the material erosion caused by multiple particle impingement.

  13. Development of children’s early understanding of numeric structure

    Directory of Open Access Journals (Sweden)

    Vasilyeva, Marina

    2016-09-01

    Full Text Available Understanding of the base-10 structure of multi-digit numbers is one of the critical aspects in early mathematics learning. It has been documented that children from different countries vary in their use of base-10 representations. Questions concerning potential sources of this variability have been debated for decades. One commonly posited explanation is that some languages provide explicit cues about the structure of multi-digit numbers, facilitating the development of base-10 representations. In the present study, we tested this view against an alternative view, positing that variability in children’s learning of numeric structure may reflect differences in their experiences with numbers. The study examined kindergartners and first-graders from four countries: Taiwan, South Korea, the USA, and Russia. Results showed that the use of base-10 representations by American first-graders increased dramatically over the last decades, following changes in curricular guidelines. First-graders across the four countries showed some differences in performance (however, not consistent with the language account, whereas kindergartners performed comparably despite the differences in their languages. The results suggest that the nature of early math instruction may be critical for children’s developing understanding of numeric structure.

  14. Numerical studies of time-independent and time-dependent scattering by several elliptical cylinders

    Science.gov (United States)

    Nigsch, Martin

    2007-07-01

    A numerical solution to the problem of time-dependent scattering by an array of elliptical cylinders with parallel axes is presented. The solution is an exact one, based on the separation-of-variables technique in the elliptical coordinate system, the addition theorem for Mathieu functions, and numerical integration. Time-independent solutions are described by a system of linear equations of infinite order which are truncated for numerical computations. Time-dependent solutions are obtained by numerical integration involving a large number of these solutions. First results of a software package generating these solutions are presented: wave propagation around three impenetrable elliptical scatterers. As far as we know, this method described has never been used for time-dependent multiple scattering.

  15. Biased calculations: Numeric anchors influence answers to math equations

    Directory of Open Access Journals (Sweden)

    Andrew R. Smith

    2011-02-01

    Full Text Available People must often perform calculations in order to produce a numeric estimate (e.g., a grocery-store shopper estimating the total price of his or her shopping cart contents. The current studies were designed to test whether estimates based on calculations are influenced by comparisons with irrelevant anchors. Previous research has demonstrated that estimates across a wide range of contexts assimilate toward anchors, but none has examined estimates based on calculations. In two studies, we had participants compare the answers to math problems with anchors. In both studies, participants' estimates assimilated toward the anchor values. This effect was moderated by time limit such that the anchoring effects were larger when the participants' ability to engage in calculations was limited by a restrictive time limit.

  16. Experimental and numerical approaches to studying hot cracking in stainless steel welds

    International Nuclear Information System (INIS)

    Le, Minh

    2014-01-01

    This work concerns experimental and numerical approaches to studying hot cracking in welds in stainless steel. Metallurgical weldability of two filler products used for the welding of an AISI-316L(N) austenitic stainless steel grade is evaluated. These filler metals are distinguished by their solidification microstructures: austeno-ferritic for the 19Cr-12Ni-2Mo grade and austenitic for the 19-15H Thermanit grade. The study of weldability concerns the assessment of the susceptibility to hot cracking of these three alloys, the proposition of a hot cracking criterion, and the evaluation of its transferability to structure-scale tests. Hot cracks are material separations occurring at high temperatures along the grain boundaries (dendrite boundaries), when the level of strain and the strain rate exceed a certain level. The hot cracks studied are formed during solidification from the liquid phase of weld metals. The bibliography study brings to the fore the complexity of initiation and propagation mechanisms of these material separations. Three types of tests are studied in this work: hot cracking tests, such as trapezoidal and Varestraint tests, allowing to initiate the phenomenon in controlled experimental conditions, and tests on the Gleeble thermomechanical simulator for thermomechanical (materials behavior laws, fracture properties) and metallurgical (brittle temperature range (BTR), evolution of delta ferrite) characterizations of the alloys. All these tests on the three materials were analyzed via numerical modeling and simulations implemented in the Cast3M finite element code in order to bring out a thermomechanical hot cracking criterion. (author) [fr

  17. Numerical study of agglomerate abrasion in a tumbling mixer

    NARCIS (Netherlands)

    Thanh Nguyen, [No Value; Willemsz, Tofan; Frijlink, Henderik; Maarschalk, Kees van der Voort

    2014-01-01

    A numerical simulation using the Discrete Element Method (DEM) was performed to investigate the phenomena concerning the abrasion and breakage of agglomerates in a diffusion powder mixer. Agglomerates were created by defining a single structure of particles with bonds of different strengths using

  18. Numerical studies of the g-hartree density functional in the Thomas-Fermi scaling limit

    International Nuclear Information System (INIS)

    Millack, T.; Weymans, G.

    1986-02-01

    Methods of finite temperature quantum field theory are used to construct the g-Hartree density functional for atoms. Low and high temperature expansions are discussed in detail. Numerical studies for atomic ground-state configurations are presented in the Thomas-Fermi-Scaling limit. (orig.)

  19. An analytical and numerical study of solar chimney use for room natural ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan; Koura, Nader S.A. [Department of Mechanical Power Engineering and Energy, Minia University, Minia 61111 (Egypt)

    2008-07-01

    The solar chimney concept used for improving room natural ventilation was analytically and numerically studied. The study considered some geometrical parameters such as chimney inlet size and width, which are believed to have a significant effect on space ventilation. The numerical analysis was intended to predict the flow pattern in the room as well as in the chimney. This would help optimizing design parameters. The results were compared with available published experimental and theoretical data. There was an acceptable trend match between the present analytical results and the published data for the room air change per hour, ACH. Further, it was noticed that the chimney width has a more significant effect on ACH compared to the chimney inlet size. The results showed that the absorber average temperature could be correlated to the intensity as: (T{sub w} = 3.51I{sup 0.461}) with an accepted range of approximation error. In addition the average air exit velocity was found to vary with the intensity as ({nu}{sub ex} = 0.013I{sup 0.4}). (author)

  20. Numerical study on hygroscopic material drying in packed bed

    Directory of Open Access Journals (Sweden)

    M. Stakić

    2011-06-01

    Full Text Available The paper addresses numerical simulation for the case of convective drying of hygroscopic material in a packed bed, analyzing agreement between the simulated and the corresponding experimental results. In the simulation model of unsteady simultaneous one-dimensional heat and mass transfer between gas phase and dried material, it is assumed that the gas-solid interface is at thermodynamic equilibrium, while the drying rate of the specific product is calculated by applying the concept of a "drying coefficient". Model validation was done on the basis of the experimental data obtained with potato cubes. The obtained drying kinetics, both experimental and numerical, show that higher gas (drying agent velocities (flow-rates, as well as lower equivalent grain diameters, induce faster drying. This effect is more pronounced for deeper beds, because of the larger amount of wet material to be dried using the same drying agent capacity.

  1. Rotationally symmetric numerical solutions to the sine-Gordon equation

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1981-01-01

    We examine numerically the properties of solutions to the spherically symmetric sine-Gordon equation given an initial profile which coincides with the one-dimensional breather solution and refer to such solutions as ring waves. Expanding ring waves either exhibit a return effect or expand towards...

  2. DynEarthSol3D: numerical studies of basal crevasses and calving blocks

    Science.gov (United States)

    Logan, E.; Lavier, L. L.; Choi, E.; Tan, E.; Catania, G. A.

    2014-12-01

    DynEarthSol3D (DES) is a thermomechanical model for the simulation of dynamic ice flow. We present the application of DES toward two case studies - basal crevasses and calving blocks - to illustrate the potential of the model to aid in understanding calving processes. Among the advantages of using DES are: its unstructured meshes which adaptively resolve zones of high interest; its use of multiple rheologies to simulate different types of dynamic behavior; and its explicit and parallel numerical core which both make the implementation of different boundary conditions easy and the model highly scalable. We examine the initiation and development of both basal crevasses and calving blocks through time using visco-elasto-plastic rheology. Employing a brittle-to-ductile transition zone (BDTZ) based on local strain rate shows that the style and development of brittle features like crevasses differs markedly on the rheological parameters. Brittle and ductile behavior are captured by Mohr-Coulomb elastoplasticity and Maxwell viscoelasticity, respectively. We explore the parameter spaces which define these rheologies (including temperature) as well as the BDTZ threshold (shown in the literature as 10-7 Pa s), using time-to-failure as a metric for accuracy within the model. As the time it takes for a block of ice to fail can determine an iceberg's size, this work has implications for calving laws.

  3. Learning and Study Strategies Inventory subtests and factors as predictors of National Board of Chiropractic Examiners Part 1 examination performance.

    Science.gov (United States)

    Schutz, Christine M; Dalton, Leanne; Tepe, Rodger E

    2013-01-01

    This study was designed to extend research on the relationship between chiropractic students' learning and study strategies and national board examination performance. Sixty-nine first trimester chiropractic students self-administered the Learning and Study Strategies Inventory (LASSI). Linear trends tests (for continuous variables) and Mantel-Haenszel trend tests (for categorical variables) were utilized to determine if the 10 LASSI subtests and 3 factors predicted low, medium and high levels of National Board of Chiropractic Examiners (NBCE) Part 1 scores. Multiple regression was performed to predict overall mean NBCE examination scores using the 3 LASSI factors as predictor variables. Four LASSI subtests (Anxiety, Concentration, Selecting Main Ideas, Test Strategies) and one factor (Goal Orientation) were significantly associated with NBCE examination levels. One factor (Goal Orientation) was a significant predictor of overall mean NBCE examination performance. Learning and study strategies are predictive of NBCE Part 1 examination performance in chiropractic students. The current study found LASSI subtests Anxiety, Concentration, Selecting Main Ideas, and Test Strategies, and the Goal-Orientation factor to be significant predictors of NBCE scores. The LASSI may be useful to educators in preparing students for academic success. Further research is warranted to explore the effects of learning and study strategies training on GPA and NBCE performance.

  4. Theoretical and numerical studies of TWR based on ESFR core design

    International Nuclear Information System (INIS)

    Zhang, Dalin; Chen, Xue-Nong; Flad, Michael; Rineiski, Andrei; Maschek, Werner

    2013-01-01

    Highlights: • The traveling wave reactor (TWR) is studied based on the core design of the European Sodium-cooled Fast Reactor (ESFR). • The conventional fuel shuffling technique is used to produce a continuous radial fuel movement. • A stationary self sustainable nuclear fission power can be established asymptotically by only loading natural or depleted uranium. • The multi-group deterministic neutronic code ERANOS is applied. - Abstract: This paper deals with the so-called traveling wave reactor (TWR) based on the core design of the European Sodium-cooled Fast Reactor (ESFR). The current concept of TWR is to use the conventional radial fuel shuffling technique to produce a continuous radial fuel movement so that a stationary self sustainable nuclear fission power can be established asymptotically by only loading fertile material consisting of natural or depleted uranium. The core design of ESFR loaded with metallic uranium fuel without considering the control mechanism is used as a practical application example. The theoretical studies focus mainly on qualitative feasibility analyses, i.e. to identify out in general essential parameter dependences of such a kind of reactor. The numerical studies are carried out more specifically on a certain core design. The multi-group deterministic neutronic code ERANOS with the JEFF3.1 data library is applied as a basic tool to perform the neutronics and burn-up calculations. The calculations are performed in a 2-D R-Z geometry, which is sufficient for the current core layout. Numerical results of radial fuel shuffling indicate that the asymptotic k eff parabolically varies with the shuffling period, while the burn-up increases linearly. Typical shuffling periods investigated in this study are in the range of 300–1000 days. The important parameters, e.g. k eff , the burn-up, the power peaking factor, and safety coefficients are calculated

  5. Risk Factors, Pathobiomechanics and Physical Examination of Rotator Cuff Tears

    Science.gov (United States)

    Moulton, Samuel G.; Greenspoon, Joshua A.; Millett, Peter J.; Petri, Maximilian

    2016-01-01

    Background: It is important to appreciate the risk factors for the development of rotator cuff tears and specific physical examination maneuvers. Methods: A selective literature search was performed. Results: Numerous well-designed studies have demonstrated that common risk factors include age, occupation, and anatomic considerations such as the critical shoulder angle. Recently, research has also reported a genetic component as well. The rotator cuff axially compresses the humeral head in the glenohumeral joint and provides rotational motion and abduction. Forces are grouped into coronal and axial force couples. Rotator cuff tears are thought to occur when the force couples become imbalanced. Conclusion: Physical examination is essential to determining whether a patient has an anterosuperior or posterosuperior tear. Diagnostic accuracy increases when combining a series of examination maneuvers. PMID:27708731

  6. Zdeněk Kopal: Numerical Analyst

    Science.gov (United States)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  7. Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

    International Nuclear Information System (INIS)

    Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  8. Static Tensile and Transient Dynamic Response of Cracked Aluminum Plate Repaired with Composite Patch - Numerical Study

    Science.gov (United States)

    Khalili, S. M. R.; Shariyat, M.; Mokhtari, M.

    2014-06-01

    In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.

  9. Numerical studies of the MHD spectrum of an elliptic plasma column

    International Nuclear Information System (INIS)

    Chance, M.S.; Greene, J.M.; Grimm, R.C.; Johnson, J.L.

    1976-05-01

    A numerical procedure is described for determining the MHD spectrum associated with small perturbations about an analytic equilibrium. This configuration has magnetic flux surfaces which are nested similar elliptical cylinders generated by a uniform axial current. Since the system is periodic, it models the essential features of a toroid. The code is used to study the properties of modes in the continuous shear Alfven and slow acoustic spectra as well as the discrete modes associated with the fast magnetosonic waves and kinks. Modes where the interchange criterion is violated, or nearly violated, are investigated

  10. Numerical Model Study of the Tuscarawas River below Dover Dam, Ohio

    Science.gov (United States)

    2009-09-01

    chl.erdc.usace.army.mil/sms). Cross-sections from a ERDC/CHL TR-09-17 7 HEC - RAS model provided by the district, along with aerial photographs for proper alignment...ER D C/ CH L TR -0 9 -1 7 Numerical Model Study of the Tuscarawas River below Dover Dam, Ohio Richard L. Stockstill and Jane M. Vaughan...September 2009 C oa st al a n d H yd ra u lic s La b or at or y Approved for public release; distribution is unlimited. ERDC/CHL TR-09

  11. Cross-Validation of Numerical and Experimental Studies of Transitional Airfoil Performance

    DEFF Research Database (Denmark)

    Frere, Ariane; Hillewaert, Koen; Sarlak, Hamid

    2015-01-01

    The aerodynamic performance characteristic of airfoils are the main input for estimating wind turbine blade loading as well as annual energy production of wind farms. For transitional flow regimes these data are difficult to obtain, both experimentally as well as numerically, due to the very high...... sensitivity of the flow to perturbations, large scale separation and performance hysteresis. The objective of this work is to improve the understanding of the transitional airfoil flow performance by studying the S826 NREL airfoil at low Reynolds numbers (Re = 4:104 and 1:105) with two inherently different...

  12. Experimental and Numerical Study of the Interfacial Shear Strength in Carbon Fiber/Epoxy Resin Composite under Thermal Loads

    Directory of Open Access Journals (Sweden)

    Hongxiao Wang

    2018-01-01

    Full Text Available This study examined the influence mechanism of temperature on the interfacial shear strength (IFSS between carbon fiber (CF and epoxy resin (EP matrices under various thermal loads using experimental and numerical simulation methods. To evaluate the change in IFSS as a function of the increase in temperature, a microbond test was performed under controlled temperature environment from 23°C to 150°C. The experimental results showed that IFSS values of CF/EP reduce significantly when the temperature reaches near glass transition temperature. To interpret the effect of thermal loads on IFSS, a thermal-mechanical coupling finite element model was used to simulate the process of fiber pull-out from EP. The results revealed that temperature dependence of IFSS is linked to modulus of the matrix as well as to the coefficients of thermal expansion of the fiber and matrix.

  13. A numerical study of the stabilitiy of helical vortices using vortex methods

    International Nuclear Information System (INIS)

    Walther, J H; Guenot, M; Machefaux, E; Rasmussen, J T; Chatelain, P; Okulov, V L; Soerensen, J N; Bergdorf, M; Koumoutsakos, P

    2007-01-01

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity

  14. A numerical study of the stabilitiy of helical vortices using vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Walther, J H [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Guenot, M [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Machefaux, E [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Rasmussen, J T [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Chatelain, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Okulov, V L [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Soerensen, J N [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Bergdorf, M [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Koumoutsakos, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-07-15

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.

  15. Numerical study of the rising of the explosion clouds in different atmosphere

    International Nuclear Information System (INIS)

    Li Xiaoli; Zheng Yi; Chao Ying; Cao Yitang

    2010-01-01

    The rising of the explosion clouds in the uniform and normal atmosphere had been studied, the numerical model is based on the assumption that effects the clouds are gravity and buoyancy. The model is testified by Rayleigh-Taylor unsteady problem. The evolution of the density during the rising of the explosion clouds are provided, and the computational results indicates that the effects of the layered atmosphere mains the altitude of the cloud. (authors)

  16. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    Science.gov (United States)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  17. Biosensor enhancement using grooved micromixers: Part I, numerical studies

    Czech Academy of Sciences Publication Activity Database

    Lynn, Nicholas Scott; Homola, Jiří

    2015-01-01

    Roč. 87, č. 11 (2015), s. 5516-5523 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Numerical methods * Micromixers * Analytes Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.886, year: 2015

  18. Composite body movements modulate numerical cognition: Evidence from the motion–numerical compatibility effect

    Directory of Open Access Journals (Sweden)

    Xiaorong eCheng

    2015-11-01

    Full Text Available A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011 and Fisher (2012, suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher and colleagues (2008 found that participants’ behavior in a random number generation (RNG task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e. a motion–numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion–numerical compatibility effects exist for movements of other important body components, e.g. arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008 finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out.

  19. Numerical study of particle capture efficiency in fibrous filter

    Directory of Open Access Journals (Sweden)

    Fan Jianhua

    2017-01-01

    Full Text Available Numerical simulations are performed for transport and deposition of particles over a fixed obstacle in a fluid flow. The effect of particle size and Stokes number on the particle capture efficiency is investigated using two methods. The first one is one-way coupling combining Lattice Boltzmann (LB method with Lagrangian point-like approach. The second one is two-way coupling based on the coupling between Lattice Boltzmann method and discrete element (DE method, which consider the particle influence on the fluid. Then the single fiber collection efficiency characterized by Stokes number (St are simulated by LB-DE methods. Results show that two-way coupling method is more appropriate in our case for particles larger than 8 μm. A good agreement has also been observed between our simulation results and existing correlations for single fiber collection efficiency. The numerical simulations presented in this work are useful to understand the particle transport and deposition and to predict the capture efficiency.

  20. A numerical approach to the study of the perpetual case of Ameripean options

    Science.gov (United States)

    Kandilarov, J.

    2013-12-01

    A new numerical method for solving the perpetual case of Ameripean options is proposed. The Ameripean delayed exercise model analyzes a new class of option model with American and ParAsian features. The model is mathematically described by ultraparabolic and parabolic PDE's which are valid over different regions. The perpetual case leads to the parabolic-elliptic two-phase Stefan problem with free internal boundary. To deal with the obtained nonlinear problem an iterative numerical method is proposed. Numerical analysis are presented and discussed.

  1. Numerical Modeling of Climate-Chemistry Connections: Recent Developments and Future Challenges

    Directory of Open Access Journals (Sweden)

    Patrick Jöckel

    2013-05-01

    Full Text Available This paper reviews the current state and development of different numerical model classes that are used to simulate the global atmospheric system, particularly Earth’s climate and climate-chemistry connections. The focus is on Chemistry-Climate Models. In general, these serve to examine dynamical and chemical processes in the Earth atmosphere, their feedback, and interaction with climate. Such models have been established as helpful tools in addition to analyses of observational data. Definitions of the global model classes are given and their capabilities as well as weaknesses are discussed. Examples of scientific studies indicate how numerical exercises contribute to an improved understanding of atmospheric behavior. There, the focus is on synergistic investigations combining observations and model results. The possible future developments and challenges are presented, not only from the scientific point of view but also regarding the computer technology and respective consequences for numerical modeling of atmospheric processes. In the future, a stronger cross-linkage of subject-specific scientists is necessary, to tackle the looming challenges. It should link the specialist discipline and applied computer science.

  2. Relations of Different Types of Numerical Magnitude Representations to Each Other and to Mathematics Achievement

    Science.gov (United States)

    Fazio, Lisa K.; Bailey, Drew H.; Thompson, Clarissa A.; Siegler, Robert S.

    2014-01-01

    We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both…

  3. Numerical simulation of pulse-tube refrigerators

    NARCIS (Netherlands)

    Lyulina, I.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2004-01-01

    A new numerical model has been introduced to study steady oscillatory heat and mass transfer in the tube section of a pulse-tube refrigerator. Conservation equations describing compressible gas flow in the tube are solved numerically, using high resolution schemes. The equation of conservation of

  4. A simple and rational numerical method of two-phase flow with volume-junction model. 2. The numerical method for general condition of two-phase flow in non-equilibrium states

    International Nuclear Information System (INIS)

    Okazaki, Motoaki

    1997-11-01

    In the previous report, the usefulness of a new numerical method to achieve a rigorous numerical calculation using a simple explicit method with the volume-junction model was presented with the verification calculation for the depressurization of a saturated two-phase mixture. In this report, on the basis of solution method above, a numerical method for general condition of two-phase flow in non-equilibrium states is presented. In general condition of two-phase flow, the combinations of saturated and non-saturated conditions of each phase are considered in the each flow of volume and junction. Numerical evaluation programs are separately prepared for each combination of flow condition. Several numerical calculations of various kinds of non-equilibrium two-phase flow are made to examine the validity of the numerical method. Calculated results showed that the thermodynamic states obtained in different solution schemes were consistent with each other. In the first scheme, the states are determined by using the steam table as a function of pressure and specific enthalpy which are obtained as the solutions of simultaneous equations. In the second scheme, density and specific enthalpy of each phase are directly calculated by using conservation equations of mass and enthalpy of each phase, respectively. Further, no accumulation of error in mass and energy was found. As for the specific enthalpy, two cases of using energy equations for the volume are examined. The first case uses total energy conservation equation and the second case uses the type of the first law of thermodynamics. The results of both cases agreed well. (author)

  5. Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes

    International Nuclear Information System (INIS)

    Deodhar, Subodh D.; Kothadia, Hardik B.; Iyer, K.N.; Prabhu, S.V.

    2015-01-01

    Capillary tubes are extensively used in several cooling applications like refrigeration, electronic cooling etc. Local pressure variation in adiabatic straight capillary tube (mini channel) is studied experimentally and numerically with R134a as the working fluid. Experiments are performed on two straight capillary tubes. It is found that the diameter is the most sensitive design parameter of the capillary tube. Experiments are performed on five helically coiled capillary tubes to quantify the effect of pitch and curvature of helically coiled capillary tube on the pressure drop. Non dimensionalized factor to account coiling of capillary tube is derived to calculate mass flow rate in helically coiled capillary tubes. Flow visualization in adiabatic capillary tube confirms the bubbly nature of two phase flow. Numerical and experimental investigations in diabatic capillary tube suggest that the use of positive displacement pump and choking at the exit of the channel ensures flow stability. - Highlights: • Model is developed to design capillary tube in adiabatic and diabatic condition. • Effect of coil curvature on pressure drop is studied experimentally. • Correlation is developed to predict mass flow rate in helical capillary tubes. • Flow visualization is carried out to check the type of two phase flow. • Effect of choked flow on diabatic capillary tubes is studied experimentally.

  6. Review of Factor Analytic Studies Examining Symptoms of Autism Spectrum Disorders

    Science.gov (United States)

    Shuster, Jill; Perry, Adrienne; Bebko, James; Toplak, Maggie E.

    2014-01-01

    Factor analytic studies have been conducted to examine the inter-relationships and degree of overlap among symptoms in Autism Spectrum Disorder (ASD). This paper reviewed 36 factor analytic studies that have examined ASD symptoms, using 13 different instruments. Studies were grouped into three categories: Studies with all DSM-IV symptoms, studies…

  7. Numerical study of magnetic field effect on nano-fluid forced convection in a channel

    Energy Technology Data Exchange (ETDEWEB)

    Heidary, H., E-mail: Heidary_ha@aut.ac.ir [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Hosseini, R. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Pirmohammadi, M., E-mail: Pirmohamadi@pardisiau.ac.ir [Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis New City, Tehran (Iran, Islamic Republic of); Kermani, M.J. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)

    2015-01-15

    In this study heat transfer and fluid flow analysis in a straight channel utilizing nano-fluid is numerically studied, while flow field is under magnetic field. Usage of nano-particles in base fluid and also applying magnetic field transverse to fluid velocity are two ways recommended in this paper to enhance heat exchange in straight duct. The fluid temperature at the channel inlet (T{sub in}) is taken less than that of the walls (T{sub w}). With assuming thermal equilibrium state of both the fluid phase and nano-particles and ignoring the slip velocity between the phases, single phase approach is used for modeling of nano-fluid. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique. Numerical studies are performed over a range of Reynolds number, nano-fluid volume fraction and Hartmann number. The influence of these parameters is investigated on the local and average Nusselt numbers. Computations show excellent agreement with the literature. From this study, it is concluded that heat transfer in channels can enhance up to 75% due to the presence of nano-particles and magnetic field in channels. In industrial applications for cooling or heating purposes, the recommended ways in this paper, can provide helpful guidelines to the manufacturers to enhance efficiencies without heat exchanger area increase. - Highlights: • Addition of 10% nano-particles (copper here) can enhance the heat exchange by 26%. • Presence of magnetic field with Ha=30 in pure fluid can enhance the heat exchange by 50%. • Presence of magnetic field and nanofluid with Ha=30 and ϕ=0.1, can enhance the heat exchange by 76%. • Increasing Re{sub H} from 50 to 1000, the average Nu number can increase by a factor of ≈3.

  8. Numerically and experimentally analysis of creep

    International Nuclear Information System (INIS)

    Fontanive, J.A.

    1982-11-01

    The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt

  9. The effects of area contraction on the performance of UNITEN's shock tube: Numerical study

    International Nuclear Information System (INIS)

    Mohsen, A M; Yusoff, M Z; Al-Falahi, A

    2013-01-01

    Numerical study into the effects of area contraction on shock tube performance has been reported in this paper. The shock tube is an important component of high speed fluid flow test facility was designed and built at the Universiti Tenaga Nasional (UNITEN). In the above mentioned facility, a small area contraction, in form of a bush, was placed adjacent to the diaphragm section to facilitate the diaphragm rupturing process when the pressure ratio across the diaphragm increases to a certain value. To investigate the effects of the small area contraction on facility performance, numerical simulations were conducted at different operating conditions (diaphragm pressure ratios P 4 /P 1 of 10, 15, and 20). A two-dimensional time-accurate Navier-Stokes CFD solver was used to simulate the transient flow in the facility with and without area contraction. The numerical results show that the facility performance is influenced by area contraction in the diaphragm section. For instance, when operating the facility with area contraction using diaphragm pressure ratio (P 4 /P 1 ) of 10, the shock wave strength and shock wave speed decrease by 18% and 8% respectively.

  10. Cognitive Strategy Use and Measured Numeric Ability in Immediate- and Long-Term Recall of Everyday Numeric Information

    Science.gov (United States)

    Bermingham, Douglas; Hill, Robert D.; Woltz, Dan; Gardner, Michael K.

    2013-01-01

    The goals of this study were to assess the primary effects of the use of cognitive strategy and a combined measure of numeric ability on recall of every-day numeric information (i.e. prices). Additionally, numeric ability was assessed as a moderator in the relationship between strategy use and memory for prices. One hundred participants memorized twelve prices that varied from 1 to 6 digits; they recalled these immediately and after 7 days. The use of strategies, assessed through self-report, was associated with better overall recall, but not forgetting. Numeric ability was not associated with either better overall recall or forgetting. A small moderating interaction was found, in which higher levels of numeric ability enhanced the beneficial effects of strategy use on overall recall. Exploratory analyses found two further small moderating interactions: simple strategy use enhanced overall recall at higher levels of numeric ability, compared to complex strategy use; and complex strategy use was associated with lower levels of forgetting, but only at higher levels of numeric ability, compared to the simple strategy use. These results provide support for an objective measure of numeric ability, as well as adding to the literature on memory and the benefits of cognitive strategy use. PMID:23483964

  11. The study on quality control of bedside CR examination

    International Nuclear Information System (INIS)

    Yang Xufeng; Luo Xiaomei; Xu Qiaolan; Wu Tengfang; Wen Xingwei

    2007-01-01

    Objective: To study the quality controll of bedside CR examination and improves the imaging quality. Methods: X-ray examination with CR system were performed on 3,300 patients. All CR cassettes were encoded. The imaging plate and cassettes were cleaned regularly. Results: With and without quality control, the percentage of first-rate film was 58.2% and 51%, the second-rate film was 40% and 45.5%, the third-rate film was 1.3% and 2%, respectively. Corxespondingly, the ratio of re-examination decreased from 1.5% to 0.5% after quality control, and imaging quality was stable. Conclusion: The quality control of bedside CR examination can improve the image quality as well as lighten the labor of radiographers. (authors)

  12. Numerical study of the aerodynamics of sound sources in a bass-reflex port

    Directory of Open Access Journals (Sweden)

    V.M. Garcia-Alcaide

    2017-01-01

    Full Text Available The aim of this paper is to study the aerodynamics phenomena of a bass-reflex port that causes noise in the audible frequency range. After discarding structural and mechanical vibration issues, the hypothesis considered is that vortex shedding is the source of the noise. Experimental and numerical evidences of the vortex, an analysis of its noise and the similarities between real and simulated performance are presented. The numerically simulated cases with the original geometry are excited at different frequencies and with modifications of the port geometry. Likewise, the internal performance of an enclosure with a closed port was simulated. The simulations have been performed with axisymmetrical geometries using the open-source OpenFOAM® toolbox. Moreover, experimental measurements were carried out. First, acoustic signal experiments were done to analyse the response of the bass-reflex ports. Secondly, a structure vibration measurement was conducted in order to exclude the cabinet structure vibration as a source of the noise in question. A good agreement was found between numerical and experimental results, especially in the frequency band of the detected noise, i.e. the 1000–1500 Hz range. Despite no remarkable improvement being made with the geometry changes explored, the presented CFD approach has proved a useful and cost-effective tool to address this kind of phenomenon.

  13. Numerical study of dispersing pollutant clouds in a built-up environment

    International Nuclear Information System (INIS)

    Wang Bingchen; Yee, Eugene; Lien, F.-S.

    2009-01-01

    In this paper, we study numerically the dispersion of a passive scalar released from an instantaneous point source in a built-up (urban) environment using a Reynolds-averaged Navier-Stokes method. A nonlinear k-ε turbulence model [Speziale, C.G., 1987. On nonlinear k-l and k-ε models of turbulence. J. Fluid Mech., 178, 459-475] was used for the closure of the mean momentum equations. A tensor diffusivity model [Yoshizawa, A., 1985. Statistical analysis of the anisotropy of scalar diffusion in turbulent shear flows. Phys. Fluids, 28, 3226-3231] was used for closure of the scalar transport equations. The concentration variance was also calculated from its transport equation, for which new values of Yoshizawa's closure coefficients are used, in order to account for the instantaneous tracer release and the complex geometry. A new dissipation length-scale model, required for the modelling of the dissipation rate of concentration variance, is also proposed. The numerical results for the flow, the pollutant concentration and the concentration variance, are compared with experimental data. This data was obtained from a water-channel simulation of a full-scale field experiment of tracer dispersion through a large array of building-like obstacles known as the Mock Urban Setting Trial (MUST)

  14. Numerical study of dispersing pollutant clouds in a built-up environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bingchen [Department of Mechanical and Manufacturing Engineering, University of Manitoba, 75A Chancellors Circle, Winnipeg, Manitoba, R3T 5V6 (Canada)], E-mail: bc_wang@umanitoba.ca; Yee, Eugene [Defence Research and Development Canada - Suffield, P.O. Box 4000, STN Main, Medicine Hat, AB, T1A 8K6 (Canada)], E-mail: eugene.yee@drdc-rddc.gc.ca; Lien, F.-S. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)], E-mail: fslien@mecheng1.uwaterloo.ca

    2009-02-15

    In this paper, we study numerically the dispersion of a passive scalar released from an instantaneous point source in a built-up (urban) environment using a Reynolds-averaged Navier-Stokes method. A nonlinear k-{epsilon} turbulence model [Speziale, C.G., 1987. On nonlinear k-l and k-{epsilon} models of turbulence. J. Fluid Mech., 178, 459-475] was used for the closure of the mean momentum equations. A tensor diffusivity model [Yoshizawa, A., 1985. Statistical analysis of the anisotropy of scalar diffusion in turbulent shear flows. Phys. Fluids, 28, 3226-3231] was used for closure of the scalar transport equations. The concentration variance was also calculated from its transport equation, for which new values of Yoshizawa's closure coefficients are used, in order to account for the instantaneous tracer release and the complex geometry. A new dissipation length-scale model, required for the modelling of the dissipation rate of concentration variance, is also proposed. The numerical results for the flow, the pollutant concentration and the concentration variance, are compared with experimental data. This data was obtained from a water-channel simulation of a full-scale field experiment of tracer dispersion through a large array of building-like obstacles known as the Mock Urban Setting Trial (MUST)

  15. Numerical study of inertial effects on the rheology of filament suspensions

    Science.gov (United States)

    Alizad Banaei, Arash; Rosti, Marco Edoardo; Brandt, Luca

    2017-11-01

    Significant work has been devoted to modeling fiber suspensions as they occur in many applications such as paper and food industries. Most of the works are limited to the motion of rigid cylindrical rods in low Stokes flows. Here, we investigate the rheological properties of flexible filament suspensions by means of numerical simulations. We considered the filaments as one-dimensional inextensible slender bodies obeying the Euler-Bernoulli equations and study the effect of flexibility, flow inertia and volume fraction on the rheology of the suspensions. The numerical simulations are performed using the Immersed Boundary Method to model the fluid/structure interaction. The results indicate that the inertia has significant effect on the relative viscosity of the suspensions. The effect is larger for less deformable filaments. The filament suspensions exhibit viscoelastic behavior and the first normal stress has a maximum for moderate flexibilities. The relative viscosity increases with volume fraction of the filaments and it is more sensitive to the volume fraction for larger Reynolds numbers. For a constant flexibility, the mean end-to-end distance of the filaments decreases with Reynolds number and the mean velocity fluctuations of the fluid increases with the Reynolds number. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  16. Nonlinear dynamics and numerical uncertainties in CFD

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  17. A study on user authentication methodology using numeric password and fingerprint biometric information.

    Science.gov (United States)

    Ju, Seung-hwan; Seo, Hee-suk; Han, Sung-hyu; Ryou, Jae-cheol; Kwak, Jin

    2013-01-01

    The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility.

  18. A study on experiment and numerical simulation of heat exchanger in heating furnace

    Directory of Open Access Journals (Sweden)

    Z. C. Lv

    2018-01-01

    Full Text Available In this paper, air preheater is used the research object and its heat transfer law is studied by experiment and numerical simulation. The experimental data showed that with the increases of inlet air velocity, the comprehensive heat transfer coefficient and heat transfer efficiency increase, but the temperature efficiency decreases and the resistance loss on the air side increases. The numerical simulation results showed that the larger the diameter of the tube, the better the heat transfer effect. When horizontal spacing in the range of 290 - 305 mm and longitudinal spacing is 70 - 90 mm, the heat transfer effect is best. The optimized heat exchanger structure is that diameter is 60 mm, horizontal spacing is 300 mm, longitudinal spacing is 90 mm. As the inlet air flow rate increases, the heat transfer efficiency increases, but the temperature efficiency decreases and the resistance loss on the air side increases.

  19. Experimental study of a shear wall with numerous small openings

    International Nuclear Information System (INIS)

    Sotomura, K.; Murazumi, Y.; Yoshizaki, S.; Ezaki, T.

    1981-01-01

    Many small openings for piping and ducts are usually required in the shear walls for PWR nuclear power plant. It is generally believed that such openings oadversely affect the strength and stiffness of shear walls. However, little information is available concerning the behavior of walls with numerous small openings. Therefore, tests using wall specimens and an analysis using an FEM program were carried out to investigate this behavior. Main findings are as follows: 1) The ultimate strength of a shear wall with numerous small openings may be obtained by using the effective area at the critical cross section of the shear wall. 2) Shear walls with openings can be restored to the same shear strength and stiffness as shear walls without openings by diagonal reinforcement. (orig./HP)

  20. Numerical study of power generation by reverse electrodialysis in ion-selective nanochannels

    International Nuclear Information System (INIS)

    Kim, Dong Kwon

    2011-01-01

    In this article, ion-selective nanochannels are numerically studied to investigate the power generation capability of a concentration gradient in conjunction with reverse electrodialysis. The generation of power from the nanochannel when it is placed between two reservoirs containing sodium chloride solutions with different concentrations is investigated. The current-potential characteristics of the nanochannel were calculated by solving the Poisson equation and the Nernst-Planck equation. The effects of engineering parameters on the power generation density are investigated

  1. Numerical study of power generation by reverse electrodialysis in ion-selective nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Kwon [Ajou University, Suwon (Korea, Republic of)

    2011-01-15

    In this article, ion-selective nanochannels are numerically studied to investigate the power generation capability of a concentration gradient in conjunction with reverse electrodialysis. The generation of power from the nanochannel when it is placed between two reservoirs containing sodium chloride solutions with different concentrations is investigated. The current-potential characteristics of the nanochannel were calculated by solving the Poisson equation and the Nernst-Planck equation. The effects of engineering parameters on the power generation density are investigated.

  2. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    Science.gov (United States)

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-10-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  3. Simplex-based optimization of numerical and categorical inputs in early bioprocess development: Case studies in HT chromatography.

    Science.gov (United States)

    Konstantinidis, Spyridon; Titchener-Hooker, Nigel; Velayudhan, Ajoy

    2017-08-01

    Bioprocess development studies often involve the investigation of numerical and categorical inputs via the adoption of Design of Experiments (DoE) techniques. An attractive alternative is the deployment of a grid compatible Simplex variant which has been shown to yield optima rapidly and consistently. In this work, the method is combined with dummy variables and it is deployed in three case studies wherein spaces are comprised of both categorical and numerical inputs, a situation intractable by traditional Simplex methods. The first study employs in silico data and lays out the dummy variable methodology. The latter two employ experimental data from chromatography based studies performed with the filter-plate and miniature column High Throughput (HT) techniques. The solute of interest in the former case study was a monoclonal antibody whereas the latter dealt with the separation of a binary system of model proteins. The implemented approach prevented the stranding of the Simplex method at local optima, due to the arbitrary handling of the categorical inputs, and allowed for the concurrent optimization of numerical and categorical, multilevel and/or dichotomous, inputs. The deployment of the Simplex method, combined with dummy variables, was therefore entirely successful in identifying and characterizing global optima in all three case studies. The Simplex-based method was further shown to be of equivalent efficiency to a DoE-based approach, represented here by D-Optimal designs. Such an approach failed, however, to both capture trends and identify optima, and led to poor operating conditions. It is suggested that the Simplex-variant is suited to development activities involving numerical and categorical inputs in early bioprocess development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Self-similar radiation from numerical Rosenau-Hyman compactons

    International Nuclear Information System (INIS)

    Rus, Francisco; Villatoro, Francisco R.

    2007-01-01

    The numerical simulation of compactons, solitary waves with compact support, is characterized by the presence of spurious phenomena, as numerically induced radiation, which is illustrated here using four numerical methods applied to the Rosenau-Hyman K(p, p) equation. Both forward and backward radiations are emitted from the compacton presenting a self-similar shape which has been illustrated graphically by the proper scaling. A grid refinement study shows that the amplitude of the radiations decreases as the grid size does, confirming its numerical origin. The front velocity and the amplitude of both radiations have been studied as a function of both the compacton and the numerical parameters. The amplitude of the radiations decreases exponentially in time, being characterized by a nearly constant scaling exponent. An ansatz for both the backward and forward radiations corresponding to a self-similar function characterized by the scaling exponent is suggested by the present numerical results

  5. China's numerical management system for reducing national energy intensity

    International Nuclear Information System (INIS)

    Li, Huimin; Zhao, Xiaofan; Yu, Yuqing; Wu, Tong; Qi, Ye

    2016-01-01

    In China, the national target for energy intensity reduction, when integrated with target disaggregation and information feedback systems, constitutes a numerical management system, which is a hallmark of modern governance. This paper points out the technical weaknesses of China's current numerical management system. In the process of target disaggregation, the national target cannot be fully disaggregated to local governments, sectors and enterprises without omissions. At the same time, governments at lower levels face pressure for reducing energy intensity that exceeds their respective jurisdictions. In the process of information feedback, information failure is inevitable due to statistical inaccuracy. Furthermore, the monitoring system is unable to correct all errors, and data verification plays a limited role in the examination system. To address these problems, we recommend that the government: use total energy consumption as the primary indicator of energy management; reform the accounting and reporting of energy statistics toward greater consistency, timeliness and transparency; clearly define the responsibility of the higher levels of government. - Highlights: •We assess drawbacks of China's numerical management system for energy intensity. •The national energy intensity target cannot be fully disaggregated without omissions. •Data distortion is due to failures in statistics, monitoring and examination system. •Lower-level governments’ ability to meet energy target is weaker than their pressure. •We provide three policy recommendations for China's policy-makers.

  6. Numerical study of the heat transfer in wound woven wire matrix of a Stirling regenerator

    International Nuclear Information System (INIS)

    Costa, S.C.; Barrutia, Harritz; Esnaola, Jon Ander; Tutar, Mustafa

    2014-01-01

    Highlights: • A correlation equation to characterize regenerator heat transfer is proposed. • Proposed correlation can be used as a effective tool to optimize the heat transfer. • Thermal efficiency can be maximized by optimizing Stirling regenerator heat transfer. • The wound woven wire matrix provides lower Nusselt numbers compared to stacked. • The developed correlation can be used for Reynolds number range from 4 to 400. - Abstract: Nusselt number correlation equations are numerically derived by characterizing the heat transfer phenomena through porous medium of both stacked and wound woven wire matrices of a Stirling engine regenerator over a specified range of Reynolds number, diameter and porosity. A finite volume method (FVM) based numerical approach is proposed and validated against well known experimentally obtained empirical correlations for a random stacking woven wire matrix, the most widely used due to fabrication issues, for Reynolds number up to 400. The results show that the numerically derived correlation equation corresponds well with the experimentally obtained correlations with less than 6% deviation with the exception of low Reynolds numbers. Once the numerical approach is validated, the study is further extended to characterize the heat transfer in a wound woven wire matrix model for a diameter range from 0.08 to 0.11 mm and a porosity range from 0.60 to 0.68 within the same Reynolds number range. Thus, the new correlation equations are numerically derived for different flow configurations of the Stirling engine regenerator. It is believed that the developed correlations can be applied with confidence as a cost effective solution to characterize and hence to optimize stacked and wound woven wire Stirling regenerator in the above specified ranges

  7. Numerical case studies of vertical wall fire protection using water spray

    Directory of Open Access Journals (Sweden)

    L.M. Zhao

    2014-11-01

    Full Text Available Studies of vertical wall fire protection are evaluated with numerical method. Typical fire cases such as heated dry wall and upward flame spread have been validated. Results predicted by simulations are found to agree with experiment results. The combustion behavior and flame development of vertical polymethylmethacrylate slabs with different water flow rates are explored and discussed. Water spray is found to be capable of strengthening the fire resistance of combustible even under high heat flux radiation. Provided result and data are expected to provide reference for fire protection methods design and development of modern buildings.

  8. Contingencies: Learning Numerical and Emotional Associations in an Uncertain World

    NARCIS (Netherlands)

    B. de Langhe (Bart)

    2011-01-01

    textabstractThe ability to learn about the relation or covariation between events happening in the world is probably the most critical aspect of human cognition. This dissertation examines how the human mind learns numerical and emotional relations and explores consequences for managerial and

  9. Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects

    Science.gov (United States)

    Peter, Geoffrey John M.

    With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component. In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter. A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect

  10. Numerical model for mapping of complex hydrogeological conditions: the Chmielnik area (South Poland) case study

    Science.gov (United States)

    Buszta, Kamila; Szklarczyk, Tadeusz; Malina, Grzegorz

    2017-04-01

    Detailed analysis of hydrogeological conditions at a study area is the basis for characterising adjacent groundwater circulation systems. It is also an essential element during executing hydrogeological documentations. The goal of this work was to reconstruct on a numerical model natural groundwater circulation systems of the studied area located within the municipality of Chmielnik in the region of Kielce (South Poland). The area is characterized by a complex geological structure, which along with the existing hydrographic network, makes the scheme of groundwater circulation complicated and difficult to map on a numerical model. The studied area is situated at the border of three geological units: on the North - the extended portion of the Palaeozoic Swietokrzyskie Mountains (mainly Devonian and Permian), in the center - the S-W part of the Mesozoic Margin of the Swietokrzyskie Mountains, and on the South - a marginal zone of the Carpathian Foredeep. The whole area belongs to the Vistula river basin, and it includes catchments of its left tributaries: the Nida and Czarna Staszowska rivers. Based on the collected field and archival hydrogeological, hydrological and sozological data a conceptual model was built, under which a numerical model of groundwater flow was developed using the specialized software - Visual MODFLOW. The numerical model maps the five-layer groundwater circulation system in conjunction with surface watercourses. Such division reflects appropriately the variability of hydrogeological parameters within the geological structures. Two principal and exploited aquifers comprise: a fractured-porous Neogene and fractured Upper Jurassic formations. The external model borders are based primarily on surface watercourses and locally on watersheds. The modelled area of 130 km2 was divided into square grids of 50 m. The model consists of 275 rows and 277 columns. Each of five layers was simulated with the same number of active blocks. In the construction of

  11. Numerical simulation of sand jet in water

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.

  12. Experimental and numerical studies on two-stage combustion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Houshfar, Eshan

    2012-07-01

    In this thesis, two-stage combustion of biomass was experimentally/numerically investigated in a multifuel reactor. The following emissions issues have been the main focus of the work: 1- NOx and N2O 2- Unburnt species (CO and CxHy) 3- Corrosion related emissions.The study had a focus on two-stage combustion in order to reduce pollutant emissions (primarily NOx emissions). It is well known that pollutant emissions are very dependent on the process conditions such as temperature, reactant concentrations and residence times. On the other hand, emissions are also dependent on the fuel properties (moisture content, volatiles, alkali content, etc.). A detailed study of the important parameters with suitable biomass fuels in order to optimize the various process conditions was performed. Different experimental studies were carried out on biomass fuels in order to study the effect of fuel properties and combustion parameters on pollutant emissions. Process conditions typical for biomass combustion processes were studied. Advanced experimental equipment was used in these studies. The experiments showed the effects of staged air combustion, compared to non-staged combustion, on the emission levels clearly. A NOx reduction of up to 85% was reached with staged air combustion using demolition wood as fuel. An optimum primary excess air ratio of 0.8-0.95 was found as a minimizing parameter for the NOx emissions for staged air combustion. Air staging had, however, a negative effect on N2O emissions. Even though the trends showed a very small reduction in the NOx level as temperature increased for non-staged combustion, the effect of temperature was not significant for NOx and CxHy, neither in staged air combustion or non-staged combustion, while it had a great influence on the N2O and CO emissions, with decreasing levels with increasing temperature. Furthermore, flue gas recirculation (FGR) was used in combination with staged combustion to obtain an enhanced NOx reduction. The

  13. Numerical relativity and asymptotic flatness

    International Nuclear Information System (INIS)

    Deadman, E; Stewart, J M

    2009-01-01

    It is highly plausible that the region of spacetime far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al (1962 Proc. R. Soc. A 269 21-51), Sachs (1962 Proc. R. Soc. A 270 103-26) and Newman and Unti (1962 J. Math. Phys. 3 891-901), rely on careful, clever, a priori choices of a chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap. Starting from data available in a typical numerical evolution, we construct a chart and tetrad which are, asymptotically, sufficiently close to the theoretical ones, so that the key concepts of the Bondi news function, Bondi mass and its rate of decrease can be estimated. In particular, these estimates can be expressed in the numerical relativist's chart as numerical relativity recipes.

  14. Numerical study of wave disturbance in liquid cooling film

    Directory of Open Access Journals (Sweden)

    S.R. Shine

    2013-06-01

    Full Text Available Transient numerical simulations are carried out to investigate the liquid-gas interface characteristics associated with liquid film cooling flows. A two-dimensional axisymmetric multi-phase numerical model using finite volume formulation is developed. The model has been validated against available experimental data for liquid-film cooling flows inside tubes. The model has been used to predict the interface characteristics for a variety of imposed parameters and momentum flux ratios under cold flow conditions wherein both the coolant and mainstream are maintained at the same temperature. Disturbance waves are observed at the liquid-gas interface for coolant flows above a critical value and after a finite distance from the inlet. The distance toward the wave inception point increased with the increase of momentum flux ratio. However, at higher momentum flux ratios, the properties of the disturbance waves did not vary significantly. The parameters related to the liquid-gas interface waves, namely, wave velocity, frequency, amplitude and wave length have been analyzed in detail. Analysis indicates that the liquid entrainment is due to the shearing of the disturbance wave crest.

  15. Numerical studies of neon gas-puff Z-pinch dynamic processes

    International Nuclear Information System (INIS)

    Ning Cheng; Yang Zhenhua; Ding Ning

    2003-01-01

    Dynamic processes of neon gas-puff Z-pinch are studied numerically in this paper. A high temperature plasma with a high density can be generated in the process. Based on some physical analysis and assumption, a set of equations of one-dimensional Lagrangian radiation magneto-hydrodynamic (MHD) and its code are developed to solve the problem. Spatio-temporal distributions of plasma parameters in the processes are obtained, and their dynamic variations show that the major results are self-consistent. The duration for the plasma pinched to centre, as well as the width and the total energy of the x-ray pulse caused by the Z-pinch are in reasonable agreement with experimental results of GAMBLE-II. A zipping effect is also clearly shown in the simulation

  16. A Study on User Authentication Methodology Using Numeric Password and Fingerprint Biometric Information

    Directory of Open Access Journals (Sweden)

    Seung-hwan Ju

    2013-01-01

    Full Text Available The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility.

  17. A Study on User Authentication Methodology Using Numeric Password and Fingerprint Biometric Information

    Science.gov (United States)

    Ju, Seung-hwan; Seo, Hee-suk; Han, Sung-hyu; Ryou, Jae-cheol

    2013-01-01

    The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility. PMID:24151601

  18. Numerical simulation studies of the LBNL heavy-ion beam combiner experiment

    International Nuclear Information System (INIS)

    Fawley, W.M.; Seidl, P.; Haber, I.; Friedman, A.; Grote, D.P.

    1997-01-01

    Transverse beam combining is a cost-saving option employed in many designs for heavy-ion inertial fusion energy drivers. A major area of interest, both theoretically and experimentally, is the resultant transverse phase space dilution during the beam merging process. Currently, a prototype combining experiment is underway at LBNL and we have employed a variety of numerical descriptions to aid in both the initial design of the experiment data. These range from simple envelope codes to detailed 2- and 3-D PIC simulations. We compare the predictions of the different numerical models to each other and to experimental data at different longitudinal positions

  19. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.

    Science.gov (United States)

    Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader

    2017-12-01

    The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  20. Pure Left Neglect for Arabic Numerals

    Science.gov (United States)

    Priftis, Konstantinos; Albanese, Silvia; Meneghello, Francesca; Pitteri, Marco

    2013-01-01

    Arabic numerals are diffused and language-free representations of number magnitude. To be effectively processed, the digits composing Arabic numerals must be spatially arranged along a left-to-right axis. We studied one patient (AK) to show that left neglect, after right hemisphere damage, can selectively impair the computation of the spatial…

  1. Numerical bifurcation analysis of conformal formulations of the Einstein constraints

    International Nuclear Information System (INIS)

    Holst, M.; Kungurtsev, V.

    2011-01-01

    The Einstein constraint equations have been the subject of study for more than 50 years. The introduction of the conformal method in the 1970s as a parametrization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et al. in 2008, with extensions to rough data by Holst et al. in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental nonuniqueness problems with the conformal method as a parametrization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einstein constraints. In particular, numerical evidence suggests the existence of multiple solutions with a quadratic fold, and a recent analysis of a simplified model supports this conclusion. In this article, we examine this apparent bifurcation phenomena in a methodical way, using modern techniques in bifurcation theory and in numerical homotopy methods. We first review the evidence for the presence of bifurcation in the Hamiltonian constraint in the time-symmetric case. We give a brief introduction to the mathematical framework for analyzing bifurcation phenomena, and then develop the main ideas behind the construction of numerical homotopy, or path-following, methods in the analysis of bifurcation phenomena. We then apply the continuation software package AUTO to this problem, and verify the presence of the fold with homotopy-based numerical methods. We discuss these results and their physical significance, which lead to some interesting remaining questions to

  2. Numerical analysis of the flow field in a sloshing tank with a horizontal perforated plate

    Science.gov (United States)

    Jin, Heng; Liu, Yong; Li, Huajun; Fu, Qiang

    2017-08-01

    Liquid sloshing is a type of free surface flow inside a partially filled water tank. Sloshing exerts a significant effect on the safety of liquid transport systems; in particular, it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank. Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions. In this study, a numerical model based on OpenFOAM (Open Source Field Operation and Manipulation), an open source computed fluid dynamic code, is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate. The numerical results of the free surface elevations are first verified using experimental data, and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples. The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies. This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.

  3. Numerical calculations near spatial infinity

    International Nuclear Information System (INIS)

    Zenginoglu, Anil

    2007-01-01

    After describing in short some problems and methods regarding the smoothness of null infinity for isolated systems, I present numerical calculations in which both spatial and null infinity can be studied. The reduced conformal field equations based on the conformal Gauss gauge allow us in spherical symmetry to calculate numerically the entire Schwarzschild-Kruskal spacetime in a smooth way including spacelike, null and timelike infinity and the domain close to the singularity

  4. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces

    KAUST Repository

    Zhong, Hua

    2016-09-26

    We study numerically the three-dimensional droplets spreading on physically flat chemically patterned surfaces with periodic squares separated by channels. Our model consists of the Navier-Stokes-Cahn-Hilliard equations with the generalized Navier boundary conditions. Stick-slip behavior and con-tact angle hysteresis are observed. Moreover, we also study the relationship between the effective advancing/receding angle and the two intrinsic angles of the surface patterns. By increasing the volume of droplet gradually, we find that the advancing contact line tends gradually to an equiangular octagon with the length ratio of the two adjacent sides equal to a fixed value that depends on the geometry of the pattern.

  5. Experimental and numerical study of pleated filters clogging

    International Nuclear Information System (INIS)

    Gervais, Pierre-Colin

    2013-01-01

    Pleated filters are widely used in air treatments because of the advantageous effective surface to overall dimension ratio they offer. Their major drawback though resides in their reduced lifetime which still needs to be controlled. Indeed, when clogging, the pressure drop considerably increases, the filtration flow is then no longer maintained which might lead to the deterioration of the media. It is then crucial to characterize the evolution of the pressure drop under operating conditions in order to best design these equipments. Part of our work consisted in studying how the operating conditions influence the geometry of the deposit. To do so, we used Single- Photon Emission Computed Tomography (SPECT), a non-destructive imaging technique that keeps intact the particle structuring. The visualization of aerosol deposit at the beginning of the filtration process allows observing preferential particle deposition on the whole height of the pleat. A numerical approach was used to study the permeability of bimodal fibrous media and we experimentally studied the local velocity as well as the biphasic flow inside pleated filter media. Comparison between experiments and simulations allowed us to validate the Geodict code for a wide range of media properties and velocities. Regarding bimodal fibrous media, the fast data acquisition has allowed testing several existing models which resulted in classifying them in a unique way. If the experimental results on the initial deposition in pleated filters are encouraging, those related to beforehand clogging point to several improvements regarding the technique we used. (author) [fr

  6. Review of The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing

    International Nuclear Information System (INIS)

    Bailey, David

    2005-01-01

    In the January 2002 edition of SIAM News, Nick Trefethen announced the '$100, 100-Digit Challenge'. In this note he presented ten easy-to-state but hard-to-solve problems of numerical analysis, and challenged readers to find each answer to ten-digit accuracy. Trefethen closed with the enticing comment: 'Hint: They're hard. If anyone gets 50 digits in total, I will be impressed.' This challenge obviously struck a chord in hundreds of numerical mathematicians worldwide, as 94 teams from 25 nations later submitted entries. Many of these submissions exceeded the target of 50 correct digits; in fact, 20 teams achieved a perfect score of 100 correct digits. Trefethen had offered $100 for the best submission. Given the overwhelming response, a generous donor (William Browning, founder of Applied Mathematics, Inc.) provided additional funds to provide a $100 award to each of the 20 winning teams. Soon after the results were out, four participants, each from a winning team, got together and agreed to write a book about the problems and their solutions. The team is truly international: Bornemann is from Germany, Laurie is from South Africa, Wagon is from the USA, and Waldvogel is from Switzerland. This book provides some mathematical background for each problem, and then shows in detail how each of them can be solved. In fact, multiple solution techniques are mentioned in each case. The book describes how to extend these solutions to much larger problems and much higher numeric precision (hundreds or thousands of digit accuracy). The authors also show how to compute error bounds for the results, so that one can say with confidence that one's results are accurate to the level stated. Numerous numerical software tools are demonstrated in the process, including the commercial products Mathematica, Maple and Matlab. Computer programs that perform many of the algorithms mentioned in the book are provided, both in an appendix to the book and on a website. In the process, the

  7. Numerical Development

    Science.gov (United States)

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  8. Numerical study of the quasinormal mode excitation of Kerr black holes

    International Nuclear Information System (INIS)

    Dorband, Ernst Nils; Diener, Peter; Tiglio, Manuel; Berti, Emanuele; Schnetter, Erik

    2006-01-01

    We present numerical results from three-dimensional evolutions of scalar perturbations of Kerr black holes. Our simulations make use of a high-order accurate multiblock code which naturally allows for adapted grids and smooth inner (excision) and outer boundaries. We focus on the quasinormal ringing phase, presenting a systematic method for extraction of the quasinormal mode frequencies and amplitudes and comparing our results against perturbation theory. The detection of a single mode in a ringdown waveform allows for a measurement of the mass and spin of a black hole; a multimode detection would allow a test of the Kerr nature of the source. Since the possibility of a multimode detection depends on the relative mode amplitude, we study this topic in some detail. The amplitude of each mode depends exponentially on the starting time of the quasinormal regime, which is not defined unambiguously. We show that this time-shift problem can be circumvented by looking at appropriately chosen relative mode amplitudes. From our simulations we extract the quasinormal frequencies and the relative and absolute amplitudes of corotating and counterrotating modes (including overtones in the corotating case). We study the dependence of these amplitudes on the shape of the initial perturbation, the angular dependence of the mode, and the black hole spin, comparing against results from perturbation theory in the so-called asymptotic approximation. We also compare the quasinormal frequencies from our numerical simulations with predictions from perturbation theory, finding excellent agreement. For rapidly rotating black holes (of spin j=0.98) we can extract the quasinormal frequencies of not only the fundamental mode, but also of the first two overtones. Finally we study under what conditions the relative amplitude between given pairs of modes gets maximally excited and present a quantitative analysis of rotational mode-mode coupling. The main conclusions and techniques of our

  9. Numerical Optimization in Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg

    2017-01-01

    Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....

  10. Hindi Numerals.

    Science.gov (United States)

    Bright, William

    In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…

  11. Numerical and Experimental Studies of Transient Natural Convection with Density Inversion

    Science.gov (United States)

    Mizutani, Satoru; Ishiguro, Tatsuji; Kuwahara, Kunio

    1996-11-01

    In beer manufacturing process, we cool beer in storage tank down from 8 to -1 ^circC. The understanding of cooling process is very important for designing a fermentation tank. In this paper, flow and temperature distribution in a rectangular enclosure was studied. The unsteady incompressible Navier-Stokes equations were integrated by using the multi-directional third-order upwind finite difference method(MUFDM). A parabolic density-temperature relationship was assumed in water which has the maximum density at 3.98 ^circC. Cooling down from 8 to 0 ^circC of water in 10 cm cubical enclosure (Ra=10^7) was numerically done by keeping a vertical side wall at 0 ^circC. Vortex was caused by density inversion of water which was cooled bellow 4 ^circC, and it rose near the cold wall and reached water surface after 33 min from the start of cooling. Finally, cooling proceeded from upper surface. At the aim of verifing the accuracy of the numerical result, temperature distribution under the same condition was experimentally visualized using temperature sensitive liquid crystal. The results will be presented by using video movie. Comparison between the computation and the experiment showed that the present direct simulation based on the MUFDM was powerful tool for the understanding of the natural convection with density inversion and the application of cooling phenomenon to the design of beer storage tanks.

  12. Numerical study on lithium titanate battery thermal response under adiabatic condition

    International Nuclear Information System (INIS)

    Sun, Qiujuan; Wang, Qingsong; Zhao, Xuejuan; Sun, Jinhua; Lin, Zijing

    2015-01-01

    Highlights: • The thermal behavior of lithium titanate battery during cycling was investigated. • The temperature rate in charging was less than that of discharging in the cycling. • The temperature difference was less than 0.02 °C at 0.5 C in adiabatic condition. • The temperature distribution and thermal runaway of the battery were predicted. - Abstract: To analyze the thermal behavior of 945 mA h lithium titanate battery during charging and discharging processes, the experimental and numerical studies are performed in this work. The cathode and anode of the 945 mA h lithium titanate soft package battery are the lithium nickel–cobalt–manganese-oxide and lithium titanate, respectively. In the experiment, an Accelerating Rate Calorimeter combined with battery cycler is employed to investigate the electrochemical–thermal behavior during charge–discharge cycling under the adiabatic condition. In numerical simulation, one electrochemical-thermal model is adopted to predict the thermal response and validated with the experimental results. From both experimental and simulated results, the profile of potential and current, the heat generation, the temperature, the temperature changing rate and the temperature distribution in the cell are obtained and thermal runaway is predicted. The analysis of the electrochemical and thermal behavior is beneficial for the commercial application of lithium titanate battery in the fields of electric vehicles and hybrid electric vehicles

  13. Numerical Investigation of the Effect of Radial Lip Seal Geometry on Sealing Performance

    Science.gov (United States)

    Tok, G.; Parlar, Z.; Temiz, V.

    2018-01-01

    Sealing elements are often needed in industry and especially in machine design. With the change and development of machine technology from day to day, sealing elements show continuous development and change in parallel with these developments. Many factors influence the performance of the sealing elements such as shaft surface roughness, radial force, lip geometry etc. In addition, the radial lip seals must have a certain pre-load and interference in order to provide a good sealing. This also affects the friction torque. Researchers are developing new seal designs to reduce friction losses in mechanical systems. In the presented study, the effect of the lip seal geometry on sealing performance will be examined numerically. The numerical model created for this purpose will be verified with experimental data firstly. In the numerical model, shaft and seal will be modeled as hyper-elastic in 2D and 3D. NBR (Nitrile Butadiene Rubber) as seal material will be analyzed for the rotating shaft state at constant speed by applying a uniform radial force.

  14. Monte Carlo numerical study of lattice field theories

    International Nuclear Information System (INIS)

    Gan Cheekwan; Kim Seyong; Ohta, Shigemi

    1997-01-01

    The authors are interested in the exact first-principle calculations of quantum field theories which are indeed exact ones. For quantum chromodynamics (QCD) at low energy scale, a nonperturbation method is needed, and the only known such method is the lattice method. The path integral can be evaluated by putting a system on a finite 4-dimensional volume and discretizing space time continuum into finite points, lattice. The continuum limit is taken by making the lattice infinitely fine. For evaluating such a finite-dimensional integral, the Monte Carlo numerical estimation of the path integral can be obtained. The calculation of light hadron mass in quenched lattice QCD with staggered quarks, 3-dimensional Thirring model calculation and the development of self-test Monte Carlo method have been carried out by using the RIKEN supercomputer. The motivation of this study, lattice QCD formulation, continuum limit, Monte Carlo update, hadron propagator, light hadron mass, auto-correlation and source size dependence are described on lattice QCD. The phase structure of the 3-dimensional Thirring model for a small 8 3 lattice has been mapped. The discussion on self-test Monte Carlo method is described again. (K.I.)

  15. Numerical study of glare spot phase Doppler anemometry

    Science.gov (United States)

    Hespel, C.; Ren, K. F.; Gréhan, G.; Onofri, F.

    2008-03-01

    The phase Doppler anemometry has (PDA) been developed to measure simultaneously the velocity and the size of droplets. When the concentration of particles is high, tightly focused beams must be used, as in the dual burst PDA. The latter permits an access to the refractive index of the particle, but the effect of wave front curvature of the incident beams becomes evident. In this paper, we introduce a glare spot phase Doppler anemometry which uses two large beams. The images of the particle formed by the reflected and refracted light, known as glare spots, are separated in space. When a particle passes through the probe volume, the two parts in a signal obtained by a detector in forward direction are then separated in time. If two detectors are used the phase differences and the intensity ratios between two signals, the distance between the reflected and refracted spots can be obtained. These measured values provide information about the particle diameter and its refractive index, as well as its two velocity components. This paper is devoted to the numerical study of such a configuration with two theoretical models: geometrical optics and rigorous electromagnetism solution.

  16. Stress Analysis of Non-Ferrous Metals Welds by Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Kravarikova Helena

    2017-01-01

    Full Text Available Thermal energy welded material unevenly heated and thus supports the creation of tension. During the fusing process welding transient tensions generated in the welded material. Generation of the transient tensions depends on the thermal expansion and fixed permanently welded parts. Tensions are the result of the interaction of material particles. For welded parts and constructions it is necessary to know the size and direction of application of tensions. The emerging tensions can cause local change or a total deformation of welded materials. Deformations and residual stresses impair the performance of a welded construction, reduces the stability of the parts. To reduce or eliminate of action or a screening direction stresses and strains it is necessary to know the mechanism of their emergence. It is now possible to examine the emergence of tensions numerical experiments on any model using numerical simulation using FEM. Results of numerical experiment is the analysis of stress and deformation course. In the plane the tension it divided into normal σ and τ tangential folders. Decomposition stress on components simplifies the stress analysis. The results obtained from numerical analysis are correct to predict the stress distribution and size. The paper presents the results of numerical experiments stress analysis solutions fillet welds using FEM numerical simulation of welding of non-ferrous metals.

  17. Numerical Investigation of Novel Oxygen Blast Furnace Ironmaking Processes

    Science.gov (United States)

    Li, Zhaoyang; Kuang, Shibo; Yu, Aibing; Gao, Jianjun; Qi, Yuanhong; Yan, Dingliu; Li, Yuntao; Mao, Xiaoming

    2018-04-01

    Oxygen blast furnace (OBF) ironmaking process has the potential to realize "zero carbon footprint" production, but suffers from the "thermal shortage" problem. This paper presents three novel OBF processes, featured by belly injection of reformed coke oven gas, burden hot-charge operation, and their combination, respectively. These processes were studied by a multifluid process model. The applicability of the model was confirmed by comparing the numerical results against the measured key performance indicators of an experimental OBF operated with or without injection of reformed coke oven gas. Then, these different OBF processes together with a pure OBF were numerically examined in aspects of in-furnace states and global performance, assuming that the burden quality can be maintained during the hot-charge operation. The numerical results show that under the present conditions, belly injection and hot charge, as auxiliary measures, are useful for reducing the fuel rate and increasing the productivity for OBFs but in different manners. Hot charge should be more suitable for OBFs of different sizes because it improves the thermochemical states throughout the dry zone rather than within a narrow region in the case of belly injection. The simultaneous application of belly injection and hot charge leads to the best process performance, at the same time, lowering down hot-charge temperature to achieve the same carbon consumption and hot metal temperature as that achieved when applying the hot charge alone. This feature will be practically beneficial in the application of hot-charge operation. In addition, a systematic study of hot-charge temperature reveals that optimal hot-charge temperatures can be identified according to the utilization efficiency of the sensible heat of hot burden.

  18. A numerical study on RCCI engine fueled by biodiesel/methanol

    International Nuclear Information System (INIS)

    Zhou, D.Z.; Yang, W.M.; An, H.; Li, J.; Shu, C.

    2015-01-01

    Highlights: • Numerical study is done to investigate RCCI engine fueled by biodiesel/methanol. • A new biodiesel/methanol dual-fuel chemical reaction mechanism is developed. • Engine performance is improved with fuel reactivity stratification formed. • Soot and NO x significant reduce with methanol induction and fuel reactivity stratification. - Abstract: A 3-D numerical simulation platform based on the KIVA4-CHEMKIN code was constructed by incorporating a newly developed skeletal chemical kinetics mechanism to study the reactivity controlled compression ignition (RCCI) engine performance, combustion and emission characteristics. In the present study, methanol is assumed to be induced into the engine through the intake port, while biodiesel is directly injected into the engine by the end of the compression stroke. The skeletal biodiesel and methanol dual fuel chemical reaction mechanism coupled with CO, NO x and soot formation mechanisms was developed and validated by comparing the ignition delay predicted by the developed mechanism with that of the detailed biodiesel and methanol mechanisms, and also by comparing the simulation results of KIVA-CHEMKIN with the experimental results under different engine operating conditions. A good agreement has been achieved in terms of ignition delay, in-cylinder pressure and heat release rate (HRR). The methanol mass fraction was varied from 0% to 80% at an interval of 20% to form different reactivity stratification. Simulation results revealed that under 10% load conditions, the increasing methanol reduced the peak pressure and heat release rate, whereas under 50% and 100% loads, the peak pressure both appeared at 60% methanol induction. Also, the reactivity distribution and ringing intensity were discussed, aiming at investigating the fuel gradient effects and knocking level, respectively. For the emissions, a general decreasing trend on CO emission was observed at both 50% and 100% loads while at 10% load, a slight

  19. Interaction of Plasma Discharges with a Flame: Experimental and Numerical Study

    International Nuclear Information System (INIS)

    Vincent-Randonnier, Axel; Teixeira, David

    2010-01-01

    This paper presents experimental results and numerical simulations of methane/air non-premixed flame under plasma assistance. Without plasma assistance, the flame blows off at a 28-30 m·s -1 bulk velocity (power around 3 kW). When the discharge is on, the flame can be maintained up to a bulk velocity of 53 m·s -1 (power around 6 kW), corresponding to +90% gain in power with only a few watt of plasma power. The plasma discharges present short duration current pulses (between 100 ns and 200 ns) and occur non-monotonically (delay between two pulses from 6x10 -5 s to 0.1 s). The probability density function of this occurrence is significantly influenced by the mass flow rate or the absence of flame, revealing the strong coupling of the plasma with hydrodynamic and combustion. For the numerical section of this work, we simulated the flame using a Computational Fluid Dynamics code based on Direct Numerical Simulation (direct solving of Navier-Stokes equations), and investigated the thermal and/or chemical effects of discharges on the flame stability.

  20. Analytical and Numerical Deflection Study on the Structure of 10 kW Low Speed Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Hilman Syaeful Alam

    2012-12-01

    Full Text Available Analytical and numerical studies of the deflection in the structure of 10 kW low speed permanent magnet generator (PMG have been discussed in this paper. This study is intended to prevent failure of the structure when the prototype is made. Numerical analysis was performed with the finite-element method (FEM. Flux density, weight and temperature of the components are the required input parameters. Deflection observed were the movements of the two main rotor components, namely the rim and shaft, where the maximum deflection allowed at the air gap between rotor and stator should be between 10% to 20% of the air gap clearance or 0.1000 mm to 0.2000 mm. Base on the analysis, total deflection of the analytic calculation was 0.0553 mm, and numerical simulation was 0.0314 mm. Both values were in the acceptable level because it was still below the maximum allowed deflection. These results indicate that the structure of a permanent magnet generator (rim and shaft can be used safely.