WorldWideScience

Sample records for numerous factors including

  1. Domain-General Factors Influencing Numerical and Arithmetic Processing

    Directory of Open Access Journals (Sweden)

    André Knops

    2017-12-01

    Full Text Available This special issue contains 18 articles that address the question how numerical processes interact with domain-general factors. We start the editorial with a discussion of how to define domain-general versus domain-specific factors and then discuss the contributions to this special issue grouped into two core numerical domains that are subject to domain-general influences (see Figure 1. The first group of contributions addresses the question how numbers interact with spatial factors. The second group of contributions is concerned with factors that determine and predict arithmetic understanding, performance and development. This special issue shows that domain-general (Table 1a as well as domain-specific (Table 1b abilities influence numerical and arithmetic performance virtually at all levels and make it clear that for the field of numerical cognition a sole focus on one or several domain-specific factors like the approximate number system or spatial-numerical associations is not sufficient. Vice versa, in most studies that included domain-general and domain-specific variables, domain-specific numerical variables predicted arithmetic performance above and beyond domain-general variables. Therefore, a sole focus on domain-general aspects such as, for example, working memory, to explain, predict and foster arithmetic learning is also not sufficient. Based on the articles in this special issue we conclude that both domain-general and domain-specific factors contribute to numerical cognition. But the how, why and when of their contribution still needs to be better understood. We hope that this special issue may be helpful to readers in constraining future theory and model building about the interplay of domain-specific and domain-general factors.

  2. Preface of "The Second Symposium on Border Zones Between Experimental and Numerical Application Including Solution Approaches By Extensions of Standard Numerical Methods"

    Science.gov (United States)

    Ortleb, Sigrun; Seidel, Christian

    2017-07-01

    In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.

  3. The Contributions of Domain-General and Numerical Factors to Third-Grade Arithmetic Skills and Mathematical Learning Disability

    Science.gov (United States)

    Cowan, Richard; Powell, Daisy

    2014-01-01

    Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills…

  4. An analytically based numerical method for computing view factors in real urban environments

    Science.gov (United States)

    Lee, Doo-Il; Woo, Ju-Wan; Lee, Sang-Hyun

    2018-01-01

    A view factor is an important morphological parameter used in parameterizing in-canyon radiative energy exchange process as well as in characterizing local climate over urban environments. For realistic representation of the in-canyon radiative processes, a complete set of view factors at the horizontal and vertical surfaces of urban facets is required. Various analytical and numerical methods have been suggested to determine the view factors for urban environments, but most of the methods provide only sky-view factor at the ground level of a specific location or assume simplified morphology of complex urban environments. In this study, a numerical method that can determine the sky-view factors ( ψ ga and ψ wa ) and wall-view factors ( ψ gw and ψ ww ) at the horizontal and vertical surfaces is presented for application to real urban morphology, which are derived from an analytical formulation of the view factor between two blackbody surfaces of arbitrary geometry. The established numerical method is validated against the analytical sky-view factor estimation for ideal street canyon geometries, showing a consolidate confidence in accuracy with errors of less than 0.2 %. Using a three-dimensional building database, the numerical method is also demonstrated to be applicable in determining the sky-view factors at the horizontal (roofs and roads) and vertical (walls) surfaces in real urban environments. The results suggest that the analytically based numerical method can be used for the radiative process parameterization of urban numerical models as well as for the characterization of local urban climate.

  5. Osteonecrosis - A rare complication of HIV infection. Association with numerous risk factors

    International Nuclear Information System (INIS)

    Meyer, D.; Behrens, G.; Stoll, M.; Schmidt, R.E.

    2000-01-01

    Osteonecrosis is a rare complication of HIV infection. The presumptive cause of the aseptic osteonecrosis is a disturbed blood supply to the bone. Most cases of osteonecrosis are associated with numerous risk factors, such as use of steroids, alcohol abuse, coagulopathies or metabolic derangements. Since conventional X-rays appear unremarkable, early forms often go unrecognized or are diagnosed late. Methods of establishing the diagnosis are MRI and three-phase skeletal scintigraphy. The pathogenesis of osteonecrosis in HIV infection is unclear. So far, about 30 cases have been reported in the literature. We would recommend that in HIV patients with typical symptoms - in particular when classical risk factors are present - osteonecrosis be included in the differential diagnostic considerations. (orig.) [de

  6. Numerical Treatment of Two-phase Flow in Porous Media Including Specific Interfacial Area

    KAUST Repository

    El-Amin, Mohamed

    2015-06-01

    In this work, we present a numerical treatment for the model of two-phase flow in porous media including specific interfacial area. For numerical discretization we use the cell-centered finite difference (CCFD) method based on the shifting-matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation are treated using upwind schemes. Selected simulation results such as pc–Sw–awn surface, capillary pressure, saturation and specific interfacial area with various values of model parameters have been introduced. The simulation results show a good agreement with those in the literature using either pore network modeling or Darcy scale modeling.

  7. Comparison of Different Numerical Methods for Quality Factor Calculation of Nano and Micro Photonic Cavities

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2014-01-01

    Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed.......Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed....

  8. Semi-empirical γ-ray peak efficiency determination including self-absorption correction based on numerical integration

    International Nuclear Information System (INIS)

    Noguchi, M.; Takeda, K.; Higuchi, H.

    1981-01-01

    A method of γ-ray efficiency determination for extended (plane or bulk) samples based on numerical integration of point source efficiency is studied. The proposed method is widely applicable to samples of various shapes and materials. The geometrical factor in the peak efficiency can easily be corrected for by simply changing the integration region, and γ-ray self-absorption is also corrected by the absorption coefficients for the sample matrix. (author)

  9. Numerical Determination of Crack Opening and Closure Stress Intensity Factors

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes

    2009-01-01

    The present work shows the numerical determination of fatigue crack opening and closure stress intensity factors of a C(T) specimen under variable amplitude loading using a finite element method. A half compact tension C(T) specimen, assuming plane stress constraint was used by finite element...

  10. Numerical optimization of conical flow waveriders including detailed viscous effects

    Science.gov (United States)

    Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego

    1987-01-01

    A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.

  11. The preparation of landslide map by Landslide Numerical Risk Factor (LNRF model and Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi Torkashvand

    2014-12-01

    Full Text Available One of the risks to threaten mountainous areas is that hillslope instability caused damage to lands. One of the most dangerous instabilities is mass movement and much movement occurs due to slip. The aim of this study is zonation of landslide hazards in a basin of the Ardebil province, the eastern slopes of Sabalan, Iran. Geological and geomorphologic conditions, climate and type of land use have caused susceptibility of this watershed to landslides. Firstly, maps of the main factors affecting landslide occurrence including slope, distance from faults, lithology, elevation and precipitation were prepared and digitized. Then, by using interpretation of aerial photos and satellite images and field views, the ground truth map of landslides was prepared. Each basic layer (factor and landslide map were integrated to compute the numeric value of each factor with the help of a Landslide Numerical Risk Factor (LNRF model and landslide occurrence percent obtained in different units from each of the maps. Finally, with overlapping different data layers, a landslide hazard zonation map was prepared. Results showed that 67.85% of the basin has high instability, 7.76% moderate instability and 24.39% low instability.

  12. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack

    2013-09-18

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  13. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack; Faverge, Mathieu; Ltaief, Hatem; Luszczek, Piotr R.

    2013-01-01

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  14. Factors influencing undergraduates' self-evaluation of numerical competence

    Science.gov (United States)

    Tariq, Vicki N.; Durrani, Naureen

    2012-04-01

    This empirical study explores factors influencing undergraduates' self-evaluation of their numerical competence, using data from an online survey completed by 566 undergraduates from a diversity of academic disciplines, across all four faculties at a post-1992 UK university. Analysis of the data, which included correlation and multiple regression analyses, revealed that undergraduates exhibiting greater confidence in their mathematical and numeracy skills, as evidenced by their higher self-evaluation scores and their higher scores on the confidence sub-scale contributing to the measurement of attitude, possess more cohesive, rather than fragmented, conceptions of mathematics, and display more positive attitudes towards mathematics/numeracy. They also exhibit lower levels of mathematics anxiety. Students exhibiting greater confidence also tended to be those who were relatively young (i.e. 18-29 years), whose degree programmes provided them with opportunities to practise and further develop their numeracy skills, and who possessed higher pre-university mathematics qualifications. The multiple regression analysis revealed two positive predictors (overall attitude towards mathematics/numeracy and possession of a higher pre-university mathematics qualification) and five negative predictors (mathematics anxiety, lack of opportunity to practise/develop numeracy skills, being a more mature student, being enrolled in Health and Social Care compared with Science and Technology, and possessing no formal mathematics/numeracy qualification compared with a General Certificate of Secondary Education or equivalent qualification) accounted for approximately 64% of the variation in students' perceptions of their numerical competence. Although the results initially suggested that male students were significantly more confident than females, one compounding variable was almost certainly the students' highest pre-university mathematics or numeracy qualification, since a higher

  15. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region

    International Nuclear Information System (INIS)

    Kacha, K.; Djeffal, F.; Ferhati, H.; Arar, D.; Meguellati, M.

    2015-01-01

    We present a new approach based on the multi-trench technique to improve the electrical performances, which are the fill factor and the electrical efficiency. The key idea behind this approach is to introduce a new multi-trench region in the intrinsic layer, in order to modulate the total resistance of the solar cell. Based on 2-D numerical investigation and optimization of amorphous SiGe double-junction (a-Si:H/a-SiGe:H) thin film solar cells, in the present paper numerical models of electrical and optical parameters are developed to explain the impact of the multi-trench technique on the improvement of the double-junction solar cell electrical behavior for high performance photovoltaic applications. In this context, electrical characteristics of the proposed design are analyzed and compared with conventional amorphous silicon double-junction thin-film solar cells. (paper)

  16. Numerical evaluation of stress intensity factor for vessel and pipe subjected to thermal shock

    International Nuclear Information System (INIS)

    Kim, Y.W.; Lee, H.Y.; Yoo, B.

    1994-01-01

    The thermal weight function method and the finite element method were employed in the numerical computation of the stress intensity factor for a cracked vessel and the cracked pipe subjected to thermal shock. A wall subjected to thermal shock was analyzed, and it has been shown that the effect of thermal shock on the stress intensity factor is dominant for the crack with small crack length to thickness ratio. Convection at the crack face had an influence on the stress intensity factor in the early stage of thermal shock. (Author)

  17. Effects of source shape on the numerical aperture factor with a geometrical-optics model.

    Science.gov (United States)

    Wan, Der-Shen; Schmit, Joanna; Novak, Erik

    2004-04-01

    We study the effects of an extended light source on the calibration of an interference microscope, also referred to as an optical profiler. Theoretical and experimental numerical aperture (NA) factors for circular and linear light sources along with collimated laser illumination demonstrate that the shape of the light source or effective aperture cone is critical for a correct NA factor calculation. In practice, more-accurate results for the NA factor are obtained when a linear approximation to the filament light source shape is used in a geometric model. We show that previously measured and derived NA factors show some discrepancies because a circular rather than linear approximation to the filament source was used in the modeling.

  18. Risk Factors for Breast Cancer, Including Occupational Exposures

    Directory of Open Access Journals (Sweden)

    Elisabete Weiderpass

    2011-03-01

    Full Text Available The knowledge on the etiology of breast cancer has advanced substantially in recent years, and several etiological factors are now firmly established. However, very few new discoveries have been made in relation to occupational risk factors. The International Agency for Research on Cancer has evaluated over 900 different exposures or agents to-date to determine whether they are carcinogenic to humans. These evaluations are published as a series of Monographs (www.iarc.fr. For breast cancer the following substances have been classified as “carcinogenic to humans” (Group 1: alcoholic beverages, exposure to diethylstilbestrol, estrogen-progestogen contraceptives, estrogen-progestogen hormone replacement therapy and exposure to X-radiation and gamma-radiation (in special populations such as atomic bomb survivors, medical patients, and in-utero exposure. Ethylene oxide is also classified as a Group 1 carcinogen, although the evidence for carcinogenicity in epidemiologic studies, and specifically for the human breast, is limited. The classification “probably carcinogenic to humans” (Group 2A includes estrogen hormone replacement therapy, tobacco smoking, and shift work involving circadian disruption, including work as a flight attendant. If the association between shift work and breast cancer, the most common female cancer, is confirmed, shift work could become the leading cause of occupational cancer in women.

  19. Perinatal risk factors including malformation

    International Nuclear Information System (INIS)

    Brachner, A.; Grosche, B.

    1991-10-01

    The study gives a survey of the factors most frequently mentioned in the literature as factors likely to adversely affect a pregnancy. One essential aspect is the discussion of those factors that can be counted among the causes of malformations, as among others, prenatal radiation exposure. The study prepared within the framework of the research project 'Radiobiological environmental monitoring in Bavaria' is intended to serve as a basis for a retrospective and prospective evaluation of infant mortality, perinatal conditions and occurrence of malformations in Bavaria, with the principal idea of drawing up an environment - related health survey. The study therefore, in addition to ionizing radiation also takes into account other detectable risks within the ecologic context, as e.g. industrial installations, refuse incineration plants or waste dumps, or urbanity. (orig./MG) [de

  20. An experimental and numerical study of endwall heat transfer in a turbine blade cascade including tangential heat conduction analysis

    Science.gov (United States)

    Ratto, Luca; Satta, Francesca; Tanda, Giovanni

    2018-06-01

    This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).

  1. On the use of risk-informed regulation including organizational factors

    International Nuclear Information System (INIS)

    Gibelli, S.M.O.; Alvarenga, M.A.B.

    1998-01-01

    Risk-Informed Regulation (RIR) can be applied by using Probabilistic Safety Assessment (PSA) as a basic tool. Traditionally, PSA methodology encompasses the calculation of failure probabilities of Structures, Systems and Components (SSCs) and direct associated human errors. However, there are indirect causes related to human failures, associated with Organizational Factors, which are normally not included in fault trees, that may influence plant risk evaluation. This paper discusses on possible applications of RIR and on Organizational Factors. It also presents a classification of Angra-1 NPP unresolved issues, aiming a future inclusion of these factors into a PSA calculation. (author)

  2. Numerical semigroups and applications

    CERN Document Server

    Assi, Abdallah

    2016-01-01

    This work presents applications of numerical semigroups in Algebraic Geometry, Number Theory, and Coding Theory. Background on numerical semigroups is presented in the first two chapters, which introduce basic notation and fundamental concepts and irreducible numerical semigroups. The focus is in particular on free semigroups, which are irreducible; semigroups associated with planar curves are of this kind. The authors also introduce semigroups associated with irreducible meromorphic series, and show how these are used in order to present the properties of planar curves. Invariants of non-unique factorizations for numerical semigroups are also studied. These invariants are computationally accessible in this setting, and thus this monograph can be used as an introduction to Factorization Theory. Since factorizations and divisibility are strongly connected, the authors show some applications to AG Codes in the final section. The book will be of value for undergraduate students (especially those at a higher leve...

  3. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  4. Numerical analysis

    CERN Document Server

    Scott, L Ridgway

    2011-01-01

    Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...

  5. Formation factor in Bentheimer and Fontainebleau sandstones: Theory compared with pore-scale numerical simulations

    Science.gov (United States)

    Ghanbarian, Behzad; Berg, Carl F.

    2017-09-01

    Accurate quantification of formation resistivity factor F (also called formation factor) provides useful insight into connectivity and pore space topology in fully saturated porous media. In particular the formation factor has been extensively used to estimate permeability in reservoir rocks. One of the widely applied models to estimate F is Archie's law (F = ϕ- m in which ϕ is total porosity and m is cementation exponent) that is known to be valid in rocks with negligible clay content, such as clean sandstones. In this study we compare formation factors determined by percolation and effective-medium theories as well as Archie's law with numerical simulations of electrical resistivity on digital rock models. These digital models represent Bentheimer and Fontainebleau sandstones and are derived either by reconstruction or directly from micro-tomographic images. Results show that the universal quadratic power law from percolation theory accurately estimates the calculated formation factor values in network models over the entire range of porosity. However, it crosses over to the linear scaling from the effective-medium approximation at the porosity of 0.75 in grid models. We also show that the effect of critical porosity, disregarded in Archie's law, is nontrivial, and the Archie model inaccurately estimates the formation factor in low-porosity homogeneous sandstones.

  6. Factors and factorizations of graphs proof techniques in factor theory

    CERN Document Server

    Akiyama, Jin

    2011-01-01

    This book chronicles the development of graph factors and factorizations. It pursues a comprehensive approach, addressing most of the important results from hundreds of findings over the last century. One of the main themes is the observation that many theorems can be proved using only a few standard proof techniques. This stands in marked contrast to the seemingly countless, complex proof techniques offered by the extant body of papers and books. In addition to covering the history and development of this area, the book offers conjectures and discusses open problems. It also includes numerous explanatory figures that enable readers to progressively and intuitively understand the most important notions and proofs in the area of factors and factorization.

  7. Evaluation and purchase of confocal microscopes: numerous factors to consider.

    Science.gov (United States)

    Zucker, Robert M; Chua, Michael

    2010-10-01

    The purchase of a confocal microscope is a difficult decision. Many factors need to be considered, which include hardware, software, company, support, service, and price. These issues are discussed to help guide the purchasing process. © 2010 by John Wiley & Sons, Inc.

  8. Composite body movements modulate numerical cognition: Evidence from the motion–numerical compatibility effect

    Directory of Open Access Journals (Sweden)

    Xiaorong eCheng

    2015-11-01

    Full Text Available A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011 and Fisher (2012, suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher and colleagues (2008 found that participants’ behavior in a random number generation (RNG task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e. a motion–numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion–numerical compatibility effects exist for movements of other important body components, e.g. arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008 finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out.

  9. Numerical examination of the factors controlling DNAPL migration through a single fracture.

    Science.gov (United States)

    Reynolds, D A; Kueper, B H

    2002-01-01

    The migration of five dense nonaqueous phase liquids (DNAPLs) through a single fracture in a clay aquitard was numerically simulated with the use of a compositional simulator. The effects of fracture aperture, fracture dip, matrix porosity, and matrix organic carbon content on the migration of chlorobenzene, 1,2-dichloroethylene, trichloroethylene, tetra-chloroethylene, and 1,2-dibromoethane were examined. Boundary conditions were chosen such that DNAPL entry into the system was allowed to vary according to the stresses applied. The aperture is the most important factor of those studied controlling the migration rate of DNAPL through a single fracture embedded in a clay matrix. Loss of mass to the matrix through diffusion does not significantly retard the migration rate of the DNAPL, particularly in larger aperture fractures (e.g., 50 microm). With time, the ratio of diffusive loss to the matrix to DNAPL flux into the fracture approaches an asymptotic value lower than unity. The implication is that matrix diffusion cannot arrest the migration of DNAPL in a single fracture. The complex relationships between density, viscosity, and solubility that, to some extent, govern the migration of DNAPL through these systems prevent accurate predictions without the use of numerical models. The contamination potential of the migrating DNAPL is significantly increased through the transfer of mass to the matrix. The occurrence of opposite concentration gradients within the matrix can cause dissolved phase contamination to exist in the system for more than 1000 years after the DNAPL has been completely removed from the fracture.

  10. 2D Numerical Modelling of the Resin Injection Pultrusion Process Including Experimental Resin Kinetics and Temperature Validation

    DEFF Research Database (Denmark)

    Rasmussen, Filip Salling; Sonne, Mads Rostgaard; Larsen, Martin

    In the present study, a two-dimensional (2D) transient Eulerian thermo-chemical analysis of a carbon fibre epoxy thermosetting Resin Injection Pultrusion (RIP) process is carried out. The numerical model is implemented using the well known unconditionally stable Alternating Direction Implicit (ADI......) scheme. The total heat of reaction and the cure kinetics of the epoxy thermosetting are determined using Differential Scanning Calorimetry (DSC). A very good agreement is observed between the fitted cure kinetic model and the experimental measurements. The numerical steady state temperature predictions...

  11. On joint numerical radius II

    Czech Academy of Sciences Publication Activity Database

    Drnovšek, R.; Müller, Vladimír

    2014-01-01

    Roč. 62, č. 9 (2014), s. 1197-1204 ISSN 0308-1087 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : joint numerical range * numerical radius Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2014 http://www.tandfonline.com/doi/abs/10.1080/03081087.2013.816303

  12. Revised emission factors for gas engines including start/stop emissions

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Boll Illerup, J.; Birr-Petersen, K.

    2008-06-15

    Liberalisation of the electricity market has led to Danish gas engine plants increasingly converting to the spot and regulating power markets. In order to offer regulating power, plants need to be able to start and stop the engines at the plants quickly. The liberalisation causes a considerable change of operation practice of the engines e.g. less full load operation hours /year. The project provides an inventory determining the scale of the emissions during the start and stop sequence as well as proposals for engine modifications aimed at reducing start/stop emissions. This report includes calculation of emission factors as well as an inventory of total emissions and reduction potentials. (au)

  13. Numerical calculation of electromagnetic properties including chirality parameters for uniaxial bianisotropic media

    International Nuclear Information System (INIS)

    Amirkhizi, Alireza V; Nemat-Nasser, Sia

    2008-01-01

    Through the use of conductive straight wires or coils the electromagnetic properties of a composite material can be modified. The asymmetric geometry of the coils creates an overall chiral response. The polarization vectors rotate as an electromagnetic wave travels through such a medium. To calculate the chirality of a medium prior to its manufacturing, we developed a method to extract all four electromagnetic material parameter tensors for a general uniaxial bianisotropic composite based on the numerical simulation of the electromagnetic fields. Our method uses appropriate line and surface field averages in a single unit cell of the periodic structure of the composite material. These overall field quantities have physical meaning only when the microscopic variation of the electromagnetic fields in the scale of the unit cell is not important, that is when the wavelength of interest is significantly larger than the maximum linear dimension of the unit cell. The overall constitutive relations of the periodic structure can then be obtained from the relations among the average quantities

  14. Diet-induced obesity, gut microbiota and bone, including alveolar bone loss.

    Science.gov (United States)

    Eaimworawuthikul, Sathima; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-06-01

    Obesity is a major risk factor for several pathologies, including jaw bone resorption. The underlying mechanisms involved in pathological conditions resulting from obesity include chronic systemic inflammation and the development of insulin resistance. Although numerous studies have indicated the importance of the role of gut microbiota in the pathogenesis of inflammation and insulin resistance in obesity, only a few studies have established a relationship between obesity, gut microbiota and status of the jaw bone. This review aims to summarize current findings relating to these issues, focusing on the role of obesity and gut microbiota on jaw bone health, including possible mechanisms which can explain this link. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. On numerical Bessel transformation

    International Nuclear Information System (INIS)

    Sommer, B.; Zabolitzky, J.G.

    1979-01-01

    The authors present a computer program to calculate the three dimensional Fourier or Bessel transforms and definite integrals with Bessel functions. Numerical integration of systems containing Bessel functions occurs in many physical problems, e.g. electromagnetic form factor of nuclei, all transitions involving multipole expansions at high momenta. Filon's integration rule is extended to spherical Bessel functions. The numerical error is of the order of the Simpson error term of the function which has to be transformed. Thus one gets a stable integral even at large arguments of the transformed function. (Auth.)

  16. Electroweak one-loop corrections for e+e- annihilation into t anti t including hard bremsstrahlung

    International Nuclear Information System (INIS)

    Fleischer, J.; Leike, A.; Riemann, T.; Werthenbach, A.

    2003-01-01

    We present the complete electroweak one-loop corrections to top-pair production at a linear e + e - collider in the continuum region. Besides weak and photonic virtual corrections, real hard bremsstrahlung with simple realistic kinematical cuts is included. For the bremsstrahlung we advocate a semi-analytical approach with a high numerical accuracy. The virtual corrections are parameterized through six independent form factors, suitable for Monte Carlo implementation. Alternatively, our numerical package Topfit, a stand-alone code, can be utilized for the calculation of both differential and integrated cross sections as well as forward-backward asymmetries. (orig.)

  17. Some factors including radiation affecting the productivity of proteinase enzymes by mucor lamprosporus

    International Nuclear Information System (INIS)

    El-Kabbany, H.M.I.

    1996-01-01

    In the present time, great attention has been focused on the production of milk clotting enzymes from microbial source for use as remain substitute due to the increasing demands on rennin for cheese making and the prohibition of the slaughter of small calves. The present investigation included the isolation and identification of remin-like enzyme fungal producers from different egyptian food and soil samples. Different factors including gamma radiation affecting the capability of selected isolate to produce the enzyme was also included. Special attention has also given to study the effect of different purification methods of the produced enzyme. The properties of the purified enzyme were also investigated

  18. Application of variational principles and adjoint integrating factors for constructing numerical GFD models

    Science.gov (United States)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2015-04-01

    The proposed method is considered on an example of hydrothermodynamics and atmospheric chemistry models [1,2]. In the development of the existing methods for constructing numerical schemes possessing the properties of total approximation for operators of multiscale process models, we have developed a new variational technique, which uses the concept of adjoint integrating factors. The technique is as follows. First, a basic functional of the variational principle (the integral identity that unites the model equations, initial and boundary conditions) is transformed using Lagrange's identity and the second Green's formula. As a result, the action of the operators of main problem in the space of state functions is transferred to the adjoint operators defined in the space of sufficiently smooth adjoint functions. By the choice of adjoint functions the order of the derivatives becomes lower by one than those in the original equations. We obtain a set of new balance relationships that take into account the sources and boundary conditions. Next, we introduce the decomposition of the model domain into a set of finite volumes. For multi-dimensional non-stationary problems, this technique is applied in the framework of the variational principle and schemes of decomposition and splitting on the set of physical processes for each coordinate directions successively at each time step. For each direction within the finite volume, the analytical solutions of one-dimensional homogeneous adjoint equations are constructed. In this case, the solutions of adjoint equations serve as integrating factors. The results are the hybrid discrete-analytical schemes. They have the properties of stability, approximation and unconditional monotony for convection-diffusion operators. These schemes are discrete in time and analytic in the spatial variables. They are exact in case of piecewise-constant coefficients within the finite volume and along the coordinate lines of the grid area in each

  19. Introduction to precise numerical methods

    CERN Document Server

    Aberth, Oliver

    2007-01-01

    Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations ofthe various numerical methods· Two new types of numerical problems; accurately solving partial differential equations with the included software and computing line integrals in the complex plane.

  20. Paradoxes in numerical calculations

    Czech Academy of Sciences Publication Activity Database

    Brandts, J.; Křížek, Michal; Zhang, Z.

    2016-01-01

    Roč. 26, č. 3 (2016), s. 317-330 ISSN 1210-0552 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : round-off errors * numerical instability * recurrence formulae Subject RIV: BA - General Mathematics Impact factor: 0.394, year: 2016

  1. Journal Impact Factor: Do the Numerator and Denominator Need Correction?

    Science.gov (United States)

    Liu, Xue-Li; Gai, Shuang-Shuang; Zhou, Jing

    2016-01-01

    To correct the incongruence of document types between the numerator and denominator in the traditional impact factor (IF), we make a corresponding adjustment to its formula and present five corrective IFs: IFTotal/Total, IFTotal/AREL, IFAR/AR, IFAREL/AR, and IFAREL/AREL. Based on a survey of researchers in the fields of ophthalmology and mathematics, we obtained the real impact ranking of sample journals in the minds of peer experts. The correlations between various IFs and questionnaire score were analyzed to verify their journal evaluation effects. The results show that it is scientific and reasonable to use five corrective IFs for journal evaluation for both ophthalmology and mathematics. For ophthalmology, the journal evaluation effects of the five corrective IFs are superior than those of traditional IF: the corrective effect of IFAR/AR is the best, IFAREL/AR is better than IFTotal/Total, followed by IFTotal/AREL, and IFAREL/AREL. For mathematics, the journal evaluation effect of traditional IF is superior than those of the five corrective IFs: the corrective effect of IFTotal/Total is best, IFAREL/AR is better than IFTotal/AREL and IFAREL/AREL, and the corrective effect of IFAR/AR is the worst. In conclusion, not all disciplinary journal IF need correction. The results in the current paper show that to correct the IF of ophthalmologic journals may be valuable, but it seems to be meaningless for mathematic journals. PMID:26977697

  2. A novel method of including Landau level mixing in numerical studies of the quantum Hall effect

    International Nuclear Information System (INIS)

    Wooten, Rachel; Quinn, John; Macek, Joseph

    2013-01-01

    Landau level mixing should influence the quantum Hall effect for all except the strongest applied magnetic fields. We propose a simple method for examining the effects of Landau level mixing by incorporating multiple Landau levels into the Haldane pseudopotentials through exact numerical diagonalization. Some of the resulting pseudopotentials for the lowest and first excited Landau levels will be presented

  3. Numerical problems in physics

    CERN Document Server

    Singh, Devraj

    2015-01-01

    Numerical Problems in Physics, Volume 1 is intended to serve the need of the students pursuing graduate and post graduate courses in universities with Physics and Materials Science as subject including those appearing in engineering, medical, and civil services entrance examinations. KEY FEATURES: * 29 chapters on Optics, Wave & Oscillations, Electromagnetic Field Theory, Solid State Physics & Modern Physics * 540 solved numerical problems of various universities and ompetitive examinations * 523 multiple choice questions for quick and clear understanding of subject matter * 567 unsolved numerical problems for grasping concepts of the various topic in Physics * 49 Figures for understanding problems and concept

  4. Numerical calculations in quantum field theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1984-01-01

    Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references

  5. Numerical simulation of a short RFQ resonator using the MAFIA codes

    International Nuclear Information System (INIS)

    Wang, H.; Ben-Zvi, I.; Jain, A.; Paul, P.; Lombardi, A.

    1991-01-01

    The electrical characteristics of a short (2βλ=0.4 m) resonator with large modulation (m=4) have been studied using the three dimensional codes, MAFIA. The complete resonator, including the modulated electrodes and a complex support structure, has been simulated using ∼ 350,000 mesh points. Important characteristics studied include the resonant frequency, electric and magnetic fields distributions, quality factor and stored energy. The results of the numerical simulations are compared with the measurements of an actual resonator and analytical approximations. 7 refs., 3 figs., 1 tab

  6. Simplified parquet equations for the Anderson impurity model: comparison with numerically exact solutions

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Vladislav; Žonda, M.; Kauch, Anna; Janiš, Václav

    2017-01-01

    Roč. 131, č. 4 (2017), s. 1042-1044 ISSN 0587-4246 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : And erson model * parquet equations * numerical renormalization group Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  7. Analysis of numerical methods

    CERN Document Server

    Isaacson, Eugene

    1994-01-01

    This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.

  8. Numerical Procedure for Optimizing Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mihai Razvan Mitroi

    2014-01-01

    Full Text Available We propose a numerical procedure consisting of a simplified physical model and a numerical method with the aim of optimizing the performance parameters of dye-sensitized solar cells (DSSCs. We calculate the real rate of absorbed photons (in the dye spectral range Grealx by introducing a factor β<1 in order to simplify the light absorption and reflection on TCO electrode. We consider the electrical transport to be purely diffusive and the recombination process only to occur between electrons from the TiO2 conduction band and anions from the electrolyte. The used numerical method permits solving the system of differential equations resulting from the physical model. We apply the proposed numerical procedure on a classical DSSC based on Ruthenium dye in order to validate it. For this, we simulate the J-V characteristics and calculate the main parameters: short-circuit current density Jsc, open circuit voltage Voc, fill factor FF, and power conversion efficiency η. We analyze the influence of the nature of semiconductor (TiO2 and dye and also the influence of different technological parameters on the performance parameters of DSSCs. The obtained results show that the proposed numerical procedure is suitable for developing a numerical simulation platform for improving the DSSCs performance by choosing the optimal parameters.

  9. Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Johnson, J.L.; Dalhed, H.E.; Greene, J.M.

    1978-07-01

    Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given

  10. Numerically predicting horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1993-01-01

    A comparison between numerical calculations with use of commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degrees C and 23 degrees C for the low heat dissipation and high dissipation, respectively. The temperature predictions using helium as a fill gas are lower than the experimental data for the low and medium heat dissipation levels. The temperature predictions are 1 degrees C and 6 degrees C lower than the experimental data for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degrees C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include a experimental uncertainity in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This works demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects, such as axial heat transfer through the spent fuel rods, will be increasingly important as the amount of dissipated heat increases

  11. Numerically predicting horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1992-01-01

    A comparison between numerical calculations with use of commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degree C and 23 degree C for the low heat dissipation and high heat dissipation, respectively. The temperature predictions using helium as a fill gas are lower than the experimental data for the low and medium heat dissipation levels. The temperature predictions are 1 degree C and 6 degree C lower than the experimental data for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degree C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include experimental uncertainty in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This work demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects, such as axial heat transfer through the spent fuel rods, will be increasingly important as the amount of dissipated heat increases

  12. Numerical methods in software and analysis

    CERN Document Server

    Rice, John R

    1992-01-01

    Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm

  13. Combustion Behaviour of Pulverised Wood - Numerical and Experimental Studies. Part 1 Numerical Study

    Energy Technology Data Exchange (ETDEWEB)

    Elfasakhany, A.; Xue-Song Bai [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering

    2002-12-01

    This report describes a theoretical/numerical investigation of the particle motion and the particle drying, pyrolysis, oxidation of volatile and char in a pulverised biofuel (wood) flame. This work, along with the experimental measurement of a pulverised wood flame in a vertical furnace at TPS, is supported by the Swedish Energy Agency, STEM. The fundamental combustion process of a pulverised wood flame with determined size distribution and anisotropy character is studied. Comprehensive submodels are studied and some models not available in the literature are developed. The submodels are integrated to a CFD code, previously developed at LTH. The numerical code is used to simulate the experimental flame carried out at TPS (as sub-task 2 within the project). The sub-models describe the drying, devolatilization, char formation of wood particles, and the oxidation reaction of char and the gas phase volatile. At the present stage, the attention is focused on the understanding and modelling of non-spherical particle dynamics and the drying, pyrolysis, and oxidation of volatile and char. Validation of the sub-models against the experimental data is presented and discussed in this study. The influence of different factors on the pulverised wood flame in the TPS vertical furnace is investigated. This includes shape of the particles, the effect of volatile release, as well as the orientation of the particles on the motion of the particles. The effect of particle size on the flame structure (distribution of species and temperature along the axis of the furnace) is also studied. The numerical simulation is in close agreement with the TPS experimental data in the concentrations of species O{sub 2}, CO{sub 2} as well as temperature. Some discrepancy between the model simulations and measurements is observed, which suggests that further improvement in our understanding and modeling the pulverised wood flame is needed.

  14. Numerical treatment of experimental data in calibration procedures

    International Nuclear Information System (INIS)

    Moreno, C.

    1993-06-01

    A discussion of a numerical procedure to find the proportionality factor between two measured quantities is given in the framework of the least-squares method. Variable, as well as constant, amounts of experimental uncertainties are considered for each variable along their measured range. The variance of the proportionality factor is explicitly given as a closed analytical expression valid for the general case. Limits of the results obtained here have been studied allowing comparisons with those obtained using classical least-squares expressions. Analytical and numerical examples are also discussed. (author). 11 refs, 1 fig., 1 tab

  15. Numerical investigation of perforated polymer microcantilever sensor for contractile behavior of cardiomyocytes

    Science.gov (United States)

    Khoa Nguyen, Trieu; Lee, Dong-Weon; Lee, Bong-Kee

    2017-06-01

    In this study, a numerical investigation of microcantilever sensors for detecting the contractile behavior of cardiomyocytes (CMs) was performed. Recently, a novel surface-patterned perforated SU-8 microcantilever sensor has been developed for the preliminary screening of cardiac toxicity. From the contractile motion of the CMs cultured on the microcantilever surface, a macroscopic bending of the microcantilever was obtained, which is considered to reflect a physiological change. As a continuation of the previous research, a novel numerical method based on a surface traction model was proposed and verified to further understand the bending behavior of the microcantilevers. Effects of various factors, including surface traction magnitude, focal area of CMs, and stiffness of microcantilever, on the bending displacement were investigated. From static and transient analyses, the focal area was found to be the most crucial factor. In addition, the current result can provide a design guideline for various micromechanical devices based on the same principle.

  16. Numerical simulation of fluid flow in microporous media

    International Nuclear Information System (INIS)

    Xu Ruina; Jiang Peixue

    2008-01-01

    The flow characteristics of water and air in microporous media with average diameters of 200 μm, 125 μm, 90 μm, 40 μm, 20 μm, and 10 μm were studied numerically. The calculated friction factors for water and air in the non-slip-flow regime in the microporous media agree well with the known correlation suitable for normal size porous media. The numerically predicted friction factors for air in the slip-flow regime in the microporous media with 90 μm, 40 μm, 20 μm, and 10 μm diameter particles were less than the correlation for normal size porous media but close to experimental data and a modified correlation that accounts for rarefaction. Comparisons of the numerical results with the experimental data and the modified correlations show that rarefaction effects occur in air flows in the microporous media with particle diameters less than 90 μm and that the numerical calculations with velocity slip on the boundary can properly simulate the fluid flow in microporous media

  17. Numerical simulation of gas metal arc welding parametrical study

    International Nuclear Information System (INIS)

    Szanto, M.; Gilad, I.; Shai, I.; Quinn, T.P.

    2002-01-01

    The Gas Metal Arc Welding (GMAW) is a widely used welding process in the industry. The process variables are usually determined through extensive experiments. Numerical simulation, reduce the cost and extends the understanding of the process. In the present work, a versatile model for numerical simulation of GMAW is presented. The model provides the basis for fundamental understanding of the process. The model solves the magneto-hydrodynamic equations for the flow and temperature fields of the molten electrode and the plasma simultaneously, to form a fully coupled model. A commercial CFD code was extended to include the effects of radiation, Lorentz forces, Joule heating and thermoelectric effects. The geometry of the numerical model assembled to fit an experimental apparatus. To demonstrate the method, an aluminum electrode was modeled in a pure argon arc. Material properties and welding parameters are the input variables in the numerical model. In a typical process, the temperature distribution of the plasma is over 15000 K, resulting high non-linearity of the material properties. Moreover, there is high uncertainty in the available property data, at that range of temperatures. Therefore, correction factors were derived for the material properties to adjust between the numerical and the experimental results. Using the compensated properties, parametric study was performed. The effects of the welding parameters on the process, such the working voltage, electrode feed rate and shielding gas flow, were derived. The principal result of the present work is the ability to predict, by numerical simulation, the mode, size and frequency of the metal transferred from the electrode, which is the main material and energy source for the welding pool in GMAW

  18. Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Emanuele Teodori

    2017-06-01

    Full Text Available This study presents the numerical reproduction of the entire surface temperature field resulting from a water droplet spreading on a heated surface, which is compared with experimental data. High-speed infrared thermography of the back side of the surface and high-speed images of the side view of the impinging droplet were used to infer on the solid surface temperature field and on droplet dynamics. Numerical reproduction of the phenomena was performed using OpenFOAM CFD toolbox. An enhanced volume of fluid (VOF model was further modified for this purpose. The proposed modifications include the coupling of temperature fields between the fluid and the solid regions, to account for transient heat conduction within the solid. The results evidence an extremely good agreement between the temporal evolution of the measured and simulated spreading factors of the considered droplet impacts. The numerical and experimental dimensionless surface temperature profiles within the solid surface and along the droplet radius, were also in good agreement. Most of the differences were within the experimental measurements uncertainty. The numerical results allowed relating the solid surface temperature profiles with the fluid flow. During spreading, liquid recirculation within the rim, leads to the appearance of different regions of heat transfer that can be correlated with the vorticity field within the droplet.

  19. Development of orthogonal 2-dimensional numerical code TFC2D for fluid flow with various turbulence models and numerical schemes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Yeop; In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    The development of orthogonal 2-dimensional numerical code is made. The present code contains 9 kinds of turbulence models that are widely used. They include a standard k-{epsilon} model and 8 kinds of low Reynolds number ones. They also include 6 kinds of numerical schemes including 5 kinds of low order schemes and 1 kind of high order scheme such as QUICK. To verify the present numerical code, pipe flow, channel flow and expansion pipe flow are solved by this code with various options of turbulence models and numerical schemes and the calculated outputs are compared to experimental data. Furthermore, the discretization error that originates from the use of standard k-{epsilon} turbulence model with wall function is much more diminished by introducing a new grid system than a conventional one in the present code. 23 refs., 58 figs., 6 tabs. (Author)

  20. Numerical Modeling of the Effects of Nutrient-rich Coastal-water Input on the Phytoplankton in the Gulf of California

    Science.gov (United States)

    Bermudez, A.; Rivas, D.

    2015-12-01

    Phytoplankton bloom dynamics depends on the interactions of favorable physical, chemical, and biotic conditions, particularly on the available nutrients that enhance phytoplankton growth, like nitrogen. Costal and estuarine environments are heavily influenced by exogenous sources of nitrogen; the anthropogenic inputs include urban and rural wastewater coming from agricultural activities (i.e., fertilizers and animal waste). In response, new production is often enhanced, leading eutrophication and phytoplankton blooms, including harmful taxa. These events have become more frequent, and with it the interest to evaluate their effects on marine ecosystems and the impact on human health. In the Gulf of California the harmful algal blooms (HABs) had affected aquaculture, fisheries, and even tourism, thereby it is important to generate information about biological and physical factors that can influence their appearance. A numerical model is a tool that may bring key information about the origin and distribution of phytoplankton blooms. Herein the analysis is based on a three-dimensional, hydrodynamical numerical model, coupled to a Nitrogen-Phytoplankton-Zooplankton-Detritus (NPZD) model. Several numerical simulations using different forcing and scenarios are carried out in order to evaluate the processes that influence the phytoplankton growth. These numerical results are compared to available observations. Thus, the main environmental factors triggering the generation of HABs can be identified.

  1. Risk factors for QTc interval prolongation

    NARCIS (Netherlands)

    Heemskerk, Charlotte P.M.; Pereboom, Marieke; van Stralen, Karlijn; Berger, Florine A.; van den Bemt, Patricia M.L.A.; Kuijper, Aaf F.M.; van der Hoeven, Ruud T M; Mantel-Teeuwisse, Aukje K.; Becker, Matthijs L

    2018-01-01

    Purpose: Prolongation of the QTc interval may result in Torsade de Pointes, a ventricular arrhythmia. Numerous risk factors for QTc interval prolongation have been described, including the use of certain drugs. In clinical practice, there is much debate about the management of the risks involved. In

  2. Numerical computations with GPUs

    CERN Document Server

    Kindratenko, Volodymyr

    2014-01-01

    This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to

  3. Macroenvironmental factors including GDP per capita and physical activity in Europe.

    Science.gov (United States)

    Cameron, Adrian J; Van Stralen, Maartje M; Kunst, Anton E; Te Velde, Saskia J; Van Lenthe, Frank J; Salmon, Jo; Brug, Johannes

    2013-02-01

    Socioeconomic inequalities in physical activity at the individual level are well reported. Whether inequalities in economic development and other macroenvironmental variables between countries are also related to physical activity at the country level is comparatively unstudied. We examined the relationship between country-level data on macroenvironmental factors (gross domestic product (GDP) per capita, public sector expenditure on health, percentage living in urban areas, and cars per 1000 population) with country-level physical activity prevalence obtained from previous pan-European studies. Studies that assessed leisuretime physical activity (n = 3 studies including 27 countries in adults, n = 2 studies including 28 countries in children) and total physical activity (n = 3 studies in adults including 16 countries) were analyzed separately as were studies among adults and children. Strong and consistent positive correlations were observed between country prevalence of leisure-time physical activity and country GDP per capita in adults (average r = 0.70; all studies, P G 0.05). In multivariate analysis, country prevalence of leisure-time physical activity among adults remained associated with country GDP per capita (two of three studies) but not urbanization or educational attainment. Among school-age populations, no association was found between country GDP per capita and country prevalence of leisure-time physical activity. In those studies that assessed total physical activity (which also includes occupational and transport physical activity), no association with country GDP per capita was observed. Clear differences in national leisure-time physical activity levels throughout Europe may be a consequence of economic development. Lack of economic development of some countries in Europe may make increasing leisure-time physical activity more difficult. Further examination of the link between country GDP per capita and national physical activity levels (across

  4. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  5. Numerical simulation of sand jet in water

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.

  6. Advanced approach to numerical forecasting using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Michael Štencl

    2009-01-01

    Full Text Available Current global market is driven by many factors, such as the information age, the time and amount of information distributed by many data channels it is practically impossible analyze all kinds of incoming information flows and transform them to data with classical methods. New requirements could be met by using other methods. Once trained on patterns artificial neural networks can be used for forecasting and they are able to work with extremely big data sets in reasonable time. The patterns used for learning process are samples of past data. This paper uses Radial Basis Functions neural network in comparison with Multi Layer Perceptron network with Back-propagation learning algorithm on prediction task. The task works with simplified numerical time series and includes forty observations with prediction for next five observations. The main topic of the article is the identification of the main differences between used neural networks architectures together with numerical forecasting. Detected differences then verify on practical comparative example.

  7. The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Defraene, Gilles; Van den Bergh, Laura; Al-Mamgani, Abrahim; Haustermans, Karin; Heemsbergen, Wilma; Van den Heuvel, Frank; Lebesque, Joos V.

    2012-01-01

    Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011–0.013) clinical factor was “previous abdominal surgery.” As second significant (p = 0.012–0.016) factor, “cardiac history” was included in all three rectal bleeding fits, whereas including “diabetes” was significant (p = 0.039–0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003–0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D 50 . Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints. Conclusions

  8. The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Defraene, Gilles, E-mail: gilles.defraene@uzleuven.be [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Van den Bergh, Laura [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Al-Mamgani, Abrahim [Department of Radiation Oncology, Erasmus Medical Center - Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Haustermans, Karin [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Heemsbergen, Wilma [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Van den Heuvel, Frank [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Lebesque, Joos V. [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2012-03-01

    Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011-0.013) clinical factor was 'previous abdominal surgery.' As second significant (p = 0.012-0.016) factor, 'cardiac history' was included in all three rectal bleeding fits, whereas including 'diabetes' was significant (p = 0.039-0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003-0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D{sub 50}. Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints

  9. Numerical treatment of creep crack growth

    International Nuclear Information System (INIS)

    Kienzler, R.; Hollstein, T.

    1990-06-01

    To accomplish the safety analysis and to predict the lifetime of high-termpature components with flaws, several concepts have been proposed to correlate creep-crack initiation and growth with fracture mechanics parameters. The concepts of stress-intensity factor K, reference stress σ ref , line integral C * , and others will be discussed. Among them, the C * -integral concept seems to have the widest range of applicability, if large creep zones develop and steady state creep conditions can be assumed. The numerical evaluation of C * by the virtual crack extension method is described. The methods are demonstrated by two- and three-dimensional finite element simulations including creep crack growth. As for ductile fracture experiments, plane stress and plane strain simulations are bounds to the three-dimensional simulations which agree well with corresponding experiments. (orig.)

  10. Numerical processing of ultrasonic holographic data

    International Nuclear Information System (INIS)

    Langenberg, K.J.; Kiefer, R.; Wosnitza, M.; Schmitz, V.; Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V., Saarbruecken

    1980-01-01

    Reconstructing ultrasonic holographic data numerically, the well-known Fresnel approximation is a first step in evaluating the Rayleigh-Sommerfeld diffraction formula, that is to say, a one- or two-dimensional Fourier-transform of the holographic data multiplied by a complex phase factor has to be computed. The present contribution investigates the relation between flaw depth and aperture size yielding the more advantageous use of the spatial frequency approach where the advantage is in terms of the number of samples and hence computation time in evaluating Fourier transforms numerically. (orig.) [de

  11. Numerically and experimentally analysis of creep

    International Nuclear Information System (INIS)

    Fontanive, J.A.

    1982-11-01

    The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt

  12. Theory and applications of numerical analysis

    CERN Document Server

    Phillips, G M

    1996-01-01

    This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions

  13. Factors that regulate embryonic gustatory development

    Directory of Open Access Journals (Sweden)

    Krimm Robin F

    2007-09-01

    Full Text Available Abstract Numerous molecular factors orchestrate the development of the peripheral taste system. The unique anatomy/function of the taste system makes this system ideal for understanding the mechanisms by which these factors function; yet the taste system is underutilized for this role. This review focuses on some of the many factors that are known to regulate gustatory development, and discusses a few topics where more work is needed. Some attention is given to factors that regulate epibranchial placode formation, since gustatory neurons are thought to be primarily derived from this region. Epibranchial placodes appear to arise from a pan-placodal region and a number of regulatory factors control the differentiation of individual placodes. Gustatory neuron differentiation is regulated by a series of transcription factors and perhaps bone morphongenic proteins (BMP. As neurons differentiate, they also proliferate such that their numbers exceed those in the adult, and this is followed by developmental death. Some of these cell-cycling events are regulated by neurotrophins. After gustatory neurons become post-mitotic, axon outgrowth occurs. Axons are guided by multiple chemoattractive and chemorepulsive factors, including semaphorins, to the tongue epithelium. Brain derived neurotrophic factor (BDNF, functions as a targeting factor in the final stages of axon guidance and is required for gustatory axons to find and innervate taste epithelium. Numerous factors are involved in the development of gustatory papillae including Sox-2, Sonic hedge hog and Wnt-β-catenin signaling. It is likely that just as many factors regulate taste bud differentiation; however, these factors have not yet been identified. Studies examining the molecular factors that regulate terminal field formation in the nucleus of the solitary tract are also lacking. However, it is possible that some of the factors that regulate geniculate ganglion development, outgrowth, guidance and

  14. Behavioral factors to include in guidelines for lifelong oral healthiness: an observational study in Japanese adults

    Directory of Open Access Journals (Sweden)

    Shimozato Miho

    2006-12-01

    Full Text Available Abstract Background The aim of this study was to determine which behavioral factors to include in guidelines for the Japanese public to achieve an acceptable level of oral healthiness. The objective was to determine the relationship between oral health related behaviors and symptoms related to oral disease and tooth loss in a Japanese adult community. Methods Oral health status and lifestyle were investigated in 777 people aged 20 years and older (390 men and 387 women. Subjects were asked to complete a postal questionnaire concerning past diet and lifestyle. The completed questionnaires were collected when they had health examinations. The 15 questions included their preference for sweets, how many between-meal snacks they usually had per day, smoking and drinking habits, presence of oral symptoms, and attitudes towards dental visits. Participants were asked about their behaviors at different stages of their life. The oral health examinations included examination of the oral cavity and teeth performed by dentists using WHO criteria. Odds ratios were calculated for all subjects, all 10 year age groups, and for subjects 30 years or older, 40 years or older, 50 years or older, and 60 years or older. Results Frequency of tooth brushing (OR = 3.98, having your own toothbrush (OR = 2.11, smoking (OR = 2.71 and bleeding gums (OR = 2.03 were significantly associated with number of retained teeth in males. Frequency of between-meal snacks was strongly associated with number of retained teeth in females (OR = 4.67. Having some hobbies (OR = 2.97, having a family dentist (OR = 2.34 and consulting a dentist as soon as symptoms occurred (OR = 1.74 were significantly associated with number of retained teeth in females. Factors that were significantly associated with tooth loss in both males and females included alcohol consumption (OR = 11.96, males, OR = 3.83, females, swollen gums (OR = 1.93, males, OR = 3.04, females and toothache (OR = 3.39, males, OR

  15. Numerical Feedback Stabilization with Applications to Networks

    Directory of Open Access Journals (Sweden)

    Simone Göttlich

    2017-01-01

    Full Text Available The focus is on the numerical consideration of feedback boundary control problems for linear systems of conservation laws including source terms. We explain under which conditions the numerical discretization can be used to design feedback boundary values for network applications such as electric transmission lines or traffic flow systems. Several numerical examples illustrate the properties of the results for different types of networks.

  16. WRKY Transcription Factors: Key Components in Abscisic Acid Signaling

    Science.gov (United States)

    2011-01-01

    networks that take inputs from numerous stimuli and that they are involved in mediating responses to numerous phytohormones including salicylic acid ... jasmonic acid , ABA and GA. These roles in multiple signalling pathways may in turn partly explain the pleiotropic effects commonly seen when TF genes are...Review article WRKY transcription factors: key components in abscisic acid signalling Deena L. Rushton1, Prateek Tripathi1, Roel C. Rabara1, Jun Lin1

  17. Numerical modeling of AA2024-T3 friction stir welding process for residual stress evaluation, including softening effects

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Carlone, Pierpaolo; Palazzo, Gaetano S.

    2014-01-01

    In the present paper, a numerical finite element model of the precipitation hardenable AA2024-T3 aluminum alloy, consisting of a heat transfer analysis based on the Thermal Pseudo Mechanical model for heat generation, and a sequentially coupled quasi-static stress analysis is proposed. Metallurgi...

  18. Numerical modeling and experimental validation of the acoustic transmission of aircraft's double-wall structures including sound package

    Science.gov (United States)

    Rhazi, Dilal

    In the field of aeronautics, reducing the harmful effects of acoustics constitutes a major concern at the international level and justifies the call for further research, particularly in Canada where aeronautics is a key economic sector, which operates in a context of global competition. Aircraft sidewall structure is usually of a double wall construction with a curved ribbed metallic skin and a lightweight composite or sandwich trim separated by a cavity filled with a noise control treatment. The latter is of a great importance in the transport industry, and continues to be of interest in many engineering applications. However, the insertion loss noise control treatment depends on the excitation of the supporting structure. In particular, Turbulent Boundary Layer is of interest to several industries. This excitation is difficult to simulate in laboratory conditions, given the prohibiting costs and difficulties associated with wind tunnel and in-flight tests. Numerical simulation is the only practical way to predict the response to such excitations and to analyze effects of design changes to the response to such excitation. Another kinds of excitations encountered in industrial are monopole, rain on the Roof and diffuse acoustic field. Deterministic methods can calculate in each point the spectral response of the system. Most known are numerical methods such as finite elements and boundary elements methods. These methods generally apply to the low frequency where modal behavior of the structure dominates. However, the high limit of calculation in frequency of these methods cannot be defined in a strict way because it is related to the capacity of data processing and to the nature of the studied mechanical system. With these challenges in mind, and with limitations of the main numerical codes on the market, the manufacturers have expressed the need for simple models immediately available as early as the stage of preliminary drafts. This thesis represents an attempt

  19. Introduction to numerical analysis

    CERN Document Server

    Hildebrand, F B

    1987-01-01

    Well-known, respected introduction, updated to integrate concepts and procedures associated with computers. Computation, approximation, interpolation, numerical differentiation and integration, smoothing of data, other topics in lucid presentation. Includes 150 additional problems in this edition. Bibliography.

  20. Numerical calculations near spatial infinity

    International Nuclear Information System (INIS)

    Zenginoglu, Anil

    2007-01-01

    After describing in short some problems and methods regarding the smoothness of null infinity for isolated systems, I present numerical calculations in which both spatial and null infinity can be studied. The reduced conformal field equations based on the conformal Gauss gauge allow us in spherical symmetry to calculate numerically the entire Schwarzschild-Kruskal spacetime in a smooth way including spacelike, null and timelike infinity and the domain close to the singularity

  1. Probabilistic numerics and uncertainty in computations.

    Science.gov (United States)

    Hennig, Philipp; Osborne, Michael A; Girolami, Mark

    2015-07-08

    We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

  2. Osteonecrosis - A rare complication of HIV infection. Association with numerous risk factors; Osteonekrose: eine seltene Komplikation der HIV-Infektion. Assoziation mit bestimmten Risikofaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, D.; Behrens, G.; Stoll, M.; Schmidt, R.E. [Medizinische Hochschule Hannover (Germany). Abt. Klinische Immunologie

    2000-03-13

    Osteonecrosis is a rare complication of HIV infection. The presumptive cause of the aseptic osteonecrosis is a distrubed blood supply to the bone. Most cases of osteonecrosis are associated with numerous risk factors, such as use of steroids, alcohol abuse, coagulopathies or metabolic derangements. Since conventional X-rays appear unremarkable, early forms often go unrecognized or are diagnosed late. Methods of establishing the diagnosis are MRI and three-phase skeletal scintigraphy. The pathogenesis of osteonecrosis in HIV infection is unclear. So far, about 30 cases have been reported in the literature. We would recommend that in HIV patients with typical symptoms - in particular when classical risk factors are present - osteonecrosis be included in the differential diagnostic considerations. (orig.) [German] Die Osteonekrose ist eine seltene Komplikation der HIV-Infektion. Als Ursache werden Stoerungen in der Gefaessversorgung des Knochengewebes angenommen. Aufgrund unauffaelliger Befunde im konventionellen Roentgen werden Fruehformen haeufig verkannt oder erst verspaetet diagnostiziert. Methoden zur Diagnosesicherung sind die Kernspintomographie oder die 3-Phasen-Knochenszintigraphie. Die Pathogenese der Osteonekrose bei der HIV-Infektion ist unklar. Bisher sind in der Literatur etwa 30 Kasuistiken beschrieben. Wir empfehlen, bei Vorliegen einer typischen Symptomatik bei HIV-Patienten - insbesondere wenn typische Risikofaktoren vorliegen - die Osteonekrose in die differenzialdiagnostischen Ueberlegungen mit einzubeziehen. (orig.)

  3. Policies for including disabled people in education. obstacles and facilitating factors for their implementation: Bucaramanga, 2010

    Directory of Open Access Journals (Sweden)

    Claudia P. Serrano R

    2011-07-01

    Full Text Available Objective: to explore the factors enabling or hindering the implementation of inclusive education policies for the disabled population of Bucaramanga. Methodology: a descriptive study, involving representatives from governmental agencies (EG, members of the faculty boards of educational institutions (DIE and guardians of disabled individuals (APSD. Physical, social, and political obstacles and facilitating factors that could potentially determine the implementation of these policies were analyzed. Data was collected through interviews. Results: there was a total of 2, 32, and 34 participants from the EG, DIE, and APSD groups respectively. Identified obstacles included: lack of strategies to support educational institutions, poor or limited teacher training, high tuition fees, and negative attitude towards disability. The facilitating factors included: availability of places, inclusion of this issue in the political agenda, and desire of the disabled individuals’ families to provide them with education. Discussion: These findings provide useful information for further research on this issue and show how action has been taken, as well as how urgent it is to establish a direct relationship between academia and the public sector to propose strategies for assessing and modifying these policies.

  4. Numerical simulation of mechatronic sensors and actuators

    CERN Document Server

    Kaltenbacher, Manfred

    2007-01-01

    Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.

  5. NUMERICAL SIMULATION OF POLLUTION DISPERSION IN URBAN STREET

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2017-08-01

    Full Text Available Purpose. The scientific paper solves the question of 2D numerical model development, which allows quick computation of air pollution in streets from vehicles. The aim of the work is numerical model development that would enable to predict the level of air pollution by using protective barriers along the road. Methodology. The developed model is based on the equation of inviscid flow and equation of pollutant transfer. Potential equation is used to compute velocity field of air flow near road in the case of protection barriers application. To solve equation for potential flow implicit difference scheme of «conditional approximation« is used. The implicit change – triangle difference scheme is used to solve equation of convective – diffusive dispersion. Numerical integration is carried out using the rectangular difference grid. Method of porosity technique («markers method» is used to create the form of comprehensive computational region. Emission of toxic gases from vehicle is modeled using Delta function for point source.Findings. Authors developed 2D numerical model. It takes into account the main physical factors affecting the process of dispersion of pollutants in the atmosphere when emissions of vehicle including protection barriers near the road. On the basis of the developed numerical models a computational experiment was performed to estimate the level of air pollution in the street. Originality. A numerical model has been created. It makes it possible to calculate 2D aerodynamics of the wind flow in the presence of noises and the process of mass transfer of toxic gas emissions from the motorway. The model allows taking into account the presence of the car on the road, the form of a protective barrier, the presence of a curb. Calculations have been performed to determine the contamination zone formed at the protective barrier that is located at the motorway. Practical value. An effective numerical model that can be applied in the

  6. A numerical method for resonance integral calculations

    International Nuclear Information System (INIS)

    Tanbay, Tayfun; Ozgener, Bilge

    2013-01-01

    A numerical method has been proposed for resonance integral calculations and a cubic fit based on least squares approximation to compute the optimum Bell factor is given. The numerical method is based on the discretization of the neutron slowing down equation. The scattering integral is approximated by taking into account the location of the upper limit in energy domain. The accuracy of the method has been tested by performing computations of resonance integrals for uranium dioxide isolated rods and comparing the results with empirical values. (orig.)

  7. Susy theories and QCD: numerical approaches

    International Nuclear Information System (INIS)

    Ita, Harald

    2011-01-01

    We review on-shell and unitarity methods and discuss their application to precision predictions for Large Hadron Collider (LHC) physics. Being universal and numerically robust, these methods are straightforward to automate for next-to-leading-order computations within standard model and beyond. Several state-of-the-art results including studies of (W/Z+3)-jet and (W+4)-jet production have explicitly demonstrated the effectiveness of the unitarity method for describing multi-parton scattering. Here we review central ideas needed to obtain efficient numerical implementations. This includes on-shell loop-level recursions, the unitarity method, color management and further refined tricks. (review)

  8. Characteristic evolutions in numerical relativity using six angular patches

    International Nuclear Information System (INIS)

    Reisswig, Christian; Bishop, Nigel T; Lai, Chi Wai; Thornburg, Jonathan; Szilagyi, Bela

    2007-01-01

    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50

  9. Characteristic evolutions in numerical relativity using six angular patches

    Energy Technology Data Exchange (ETDEWEB)

    Reisswig, Christian [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Bishop, Nigel T [Department of Mathematical Sciences, University of South Africa, PO Box 392, Unisa 0003, South Africa (South Africa); Lai, Chi Wai [Department of Mathematical Sciences, University of South Africa, PO Box 392, Unisa 0003, South Africa (South Africa); Thornburg, Jonathan [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Szilagyi, Bela [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany)

    2007-06-21

    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50.

  10. The numerical simulation of convection delayed dominated diffusion equation

    Directory of Open Access Journals (Sweden)

    Mohan Kumar P. Murali

    2016-01-01

    Full Text Available In this paper, we propose a fitted numerical method for solving convection delayed dominated diffusion equation. A fitting factor is introduced and the model equation is discretized by cubic spline method. The error analysis is analyzed for the consider problem. The numerical examples are solved using the present method and compared the result with the exact solution.

  11. Average-case analysis of numerical problems

    CERN Document Server

    2000-01-01

    The average-case analysis of numerical problems is the counterpart of the more traditional worst-case approach. The analysis of average error and cost leads to new insight on numerical problems as well as to new algorithms. The book provides a survey of results that were mainly obtained during the last 10 years and also contains new results. The problems under consideration include approximation/optimal recovery and numerical integration of univariate and multivariate functions as well as zero-finding and global optimization. Background material, e.g. on reproducing kernel Hilbert spaces and random fields, is provided.

  12. Influence of structural parameter included in nonlocal rock mass model on stress concentration around circular tunnel

    Science.gov (United States)

    Lavrikov, SV; Mikenina, OA; Revuzhenko, AF

    2018-03-01

    A model of elastic body, including local curvature of elementary volume, is matched with a nonlocal model with a linear structural parameter in the differential approximation. The problem on deformation of rock mass around a circular cross section tunnel is solved numerically. The contours of the calculated stresses are plotted. It is shown that inclusion of local bends in the model results in expansion of influence zone of the tunnel and reduces stress concentration factor at the tunnel boundary.

  13. Numerical modelling of mine workings.

    CSIR Research Space (South Africa)

    Lightfoot, N

    1999-03-01

    Full Text Available to cover most of what is required for a practising rock mechanics engineer to be able to use any of these five programs to solve practical mining problems. The chapters on specific programs discuss their individual strengths and weaknesses and highlight... and applications of numerical modelling in the context of the South African gold and platinum mining industries. This includes an example that utilises a number of different numerical 3 modelling programs to solve a single problem. This particular example...

  14. Numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1982-01-01

    There are many recent developments in numerical relativity, but there remain important unsolved theoretical and practical problems. The author reviews existing numerical approaches to solution of the exact Einstein equations. A framework for classification and comparison of different numerical schemes is presented. Recent numerical codes are compared using this framework. The discussion focuses on new developments and on currently open questions, excluding a review of numerical techniques. (Auth.)

  15. Numerical solution of the full potential equation using a chimera grid approach

    Science.gov (United States)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  16. A numerical analysis on the performance of a pressurized twin power piston gamma-type Stirling engine

    International Nuclear Information System (INIS)

    Chen, Wen-Lih; Wong, King-Leung; Po, Li-Wen

    2012-01-01

    Highlights: ► A numerical model has been applied to study the performance of a gamma-type Stirling engine. ► A prototype engine has been built to correct the values of some factors in the model. ► The regeneration effectiveness is most prominent on efficiency. ► Engine speed is most effective on the engine power. ► The rotation arm and initial gas pressure are also influential factors on engine power. - Abstract: In this study, a prototype helium-changed twin-power-piston γ-type Stirling engine has been built, and some of its geometrical and operational parameters have been investigated by a numerical model. Data taken from the prototype engine have been used to correct the values of some factors in the numerical model. The results include volume and temperature variations in the expansion and compression chambers, p–v diagrams, and the effects of regeneration effectiveness, the crank radius of the power piston, the initial pressure of working gas, and the rotation speed on engine’s power and efficiency. It has been found that regeneration effectiveness poses the most prominent effect on efficiency, while engine speed is most effective on the engine power within the range of engine speed investigated in this study. This study offers invaluable guides for the design and optimization of γ-type Stirling engines with similar construction.

  17. Extraction of gravitational waves in numerical relativity.

    Science.gov (United States)

    Bishop, Nigel T; Rezzolla, Luciano

    2016-01-01

    A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.

  18. An efficient approach for computing the geometrical optics field reflected from a numerically specified surface

    Science.gov (United States)

    Mittra, R.; Rushdi, A.

    1979-01-01

    An approach for computing the geometrical optic fields reflected from a numerically specified surface is presented. The approach includes the step of deriving a specular point and begins with computing the reflected rays off the surface at the points where their coordinates, as well as the partial derivatives (or equivalently, the direction of the normal), are numerically specified. Then, a cluster of three adjacent rays are chosen to define a 'mean ray' and the divergence factor associated with this mean ray. Finally, the ampilitude, phase, and vector direction of the reflected field at a given observation point are derived by associating this point with the nearest mean ray and determining its position relative to such a ray.

  19. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic.

    Science.gov (United States)

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min

    2017-05-01

    This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Neoclassical transport including collisional nonlinearity.

    Science.gov (United States)

    Candy, J; Belli, E A

    2011-06-10

    In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.

  1. A literature survey on numerical heat transfer

    Science.gov (United States)

    Shih, T. M.

    1982-12-01

    Technical papers in the area of numerical heat transfer published from 1977 through 1981 are reviewed. The journals surveyed include: (1) ASME Journal of Heat Transfer, (2) International Journal of Heat and Mass Transfer, (3) AIAA Journal, (4) Numerical Heat Transfer, (5) Computers and Fluids, (6) International Journal for Numerical Methods in Engineering, (7) SIAM Journal of Numerical Analysis, and (8) Journal of Computational Physics. This survey excludes experimental work in heat transfer and numerical schemes that are not applied to equations governing heat transfer phenomena. The research work is categorized into the following areas: (A) conduction, (B) boundary-layer flows, (C) momentum and heat transfer in cavities, (D) turbulent flows, (E) convection around cylinders and spheres or within annuli, (F) numerical convective instability, (G) radiation, (H) combustion, (I) plumes, jets, and wakes, (J) heat transfer in porous media, (K) boiling, condensation, and two-phase flows, (L) developing and fully developed channel flows, (M) combined heat and mass transfer, (N) applications, (O) comparison and properties of numerical schemes, and (P) body-fitted coordinates and nonuniform grids.

  2. Numerical relativity

    CERN Document Server

    Shibata, Masaru

    2016-01-01

    This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.

  3. Numerical analysis

    CERN Document Server

    Khabaza, I M

    1960-01-01

    Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput

  4. Numerical Analysis Objects

    Science.gov (United States)

    Henderson, Michael

    1997-08-01

    The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.

  5. Residents' numeric inputting error in computerized physician order entry prescription.

    Science.gov (United States)

    Wu, Xue; Wu, Changxu; Zhang, Kan; Wei, Dong

    2016-04-01

    Computerized physician order entry (CPOE) system with embedded clinical decision support (CDS) can significantly reduce certain types of prescription error. However, prescription errors still occur. Various factors such as the numeric inputting methods in human computer interaction (HCI) produce different error rates and types, but has received relatively little attention. This study aimed to examine the effects of numeric inputting methods and urgency levels on numeric inputting errors of prescription, as well as categorize the types of errors. Thirty residents participated in four prescribing tasks in which two factors were manipulated: numeric inputting methods (numeric row in the main keyboard vs. numeric keypad) and urgency levels (urgent situation vs. non-urgent situation). Multiple aspects of participants' prescribing behavior were measured in sober prescribing situations. The results revealed that in urgent situations, participants were prone to make mistakes when using the numeric row in the main keyboard. With control of performance in the sober prescribing situation, the effects of the input methods disappeared, and urgency was found to play a significant role in the generalized linear model. Most errors were either omission or substitution types, but the proportion of transposition and intrusion error types were significantly higher than that of the previous research. Among numbers 3, 8, and 9, which were the less common digits used in prescription, the error rate was higher, which was a great risk to patient safety. Urgency played a more important role in CPOE numeric typing error-making than typing skills and typing habits. It was recommended that inputting with the numeric keypad had lower error rates in urgent situation. An alternative design could consider increasing the sensitivity of the keys with lower frequency of occurrence and decimals. To improve the usability of CPOE, numeric keyboard design and error detection could benefit from spatial

  6. Finite volume form factors in the presence of integrable defects

    International Nuclear Information System (INIS)

    Bajnok, Z.; Buccheri, F.; Hollo, L.; Konczer, J.; Takacs, G.

    2014-01-01

    We developed the theory of finite volume form factors in the presence of integrable defects. These finite volume form factors are expressed in terms of the infinite volume form factors and the finite volume density of states and incorporate all polynomial corrections in the inverse of the volume. We tested our results, in the defect Lee–Yang model, against numerical data obtained by truncated conformal space approach (TCSA), which we improved by renormalization group methods adopted to the defect case. To perform these checks we determined the infinite volume defect form factors in the Lee–Yang model exactly, including their vacuum expectation values. We used these data to calculate the two point functions, which we compared, at short distance, to defect CFT. We also derived explicit expressions for the exact finite volume one point functions, which we checked numerically. In all of these comparisons excellent agreement was found

  7. Semantic and pragmatic factors influencing deaf and hearing students' comprehension of english sentences containing numeral quantifiers.

    Science.gov (United States)

    Kelly, Ronald R; Berent, Gerald P

    2011-01-01

    This research contrasted deaf and hearing students' interpretive knowledge of English sentences containing numeral quantifier phrases and indefinite noun phrases. A multiple-interpretation picture task methodology was used to assess 305 participants' judgments of the compatibility of sentence meanings with depicted discourse contexts. Participants' performance was assessed on the basis of hearing level (deaf, hearing) and grade level (middle school, high school, college). The deaf students were predicted to have differential access to specific sentence interpretations in accordance with the relative derivational complexity of the targeted sentence types. Hypotheses based on the pressures of derivational economy on acquisition were largely supported. The results also revealed that the deaf participants tended to overactivate pragmatic processes that yielded principled, though non-target, sentence interpretations. Collectively, the results not only contribute to the understanding of English acquisition under conditions of restricted access to spoken language input, they also suggest that pragmatic factors may play a broad role in influencing, and compromising, deaf students' reading comprehension and written expression.

  8. Numerical MHD study for plasmoid instability in uniform resistivity

    Science.gov (United States)

    Shimizu, Tohru; Kondoh, Koji; Zenitani, Seiji

    2017-11-01

    The plasmoid instability (PI) caused in uniform resistivity is numerically studied with a MHD numerical code of HLLD scheme. It is shown that the PI observed in numerical studies may often include numerical (non-physical) tearing instability caused by the numerical dissipations. By increasing the numerical resolutions, the numerical tearing instability gradually disappears and the physical tearing instability remains. Hence, the convergence of the numerical results is observed. Note that the reconnection rate observed in the numerical tearing instability can be higher than that of the physical tearing instability. On the other hand, regardless of the numerical and physical tearing instabilities, the tearing instability can be classified into symmetric and asymmetric tearing instability. The symmetric tearing instability tends to occur when the thinning of current sheet is stopped by the physical or numerical dissipations, often resulting in the drastic changes in plasmoid chain's structure and its activity. In this paper, by eliminating the numerical tearing instability, we could not specify the critical Lundquist number Sc beyond which PI is fully developed. It suggests that Sc does not exist, at least around S = 105.

  9. Numerical methods for metamaterial design

    CERN Document Server

    2013-01-01

    This book describes a relatively new approach for the design of electromagnetic metamaterials.  Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered.  Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies.  Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization.  Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromag...

  10. Numerical integration of asymptotic solutions of ordinary differential equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  11. Magnitude Knowledge: The Common Core of Numerical Development

    Science.gov (United States)

    Siegler, Robert S.

    2016-01-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic…

  12. Numerical modeling of atoll island hydrogeology.

    Science.gov (United States)

    Bailey, R T; Jenson, J W; Olsen, A E

    2009-01-01

    We implemented Ayers and Vachers' (1986) inclusive conceptual model for atoll island aquifers in a comprehensive numerical modeling study to evaluate the response of the fresh water lens to selected controlling climatic and geologic variables. Climatic factors include both constant and time-varying recharge rates, with particular attention paid to the effects of El Niño and the associated drought it brings to the western Pacific. Geologic factors include island width; hydraulic conductivity of the uppermost Holocene-age aquifer, which contains the fresh water lens; the depth to the contact with the underlying, and much more conductive, Pleistocene karst aquifer, which transmits tidal signals to the base of the lens; and the presence or absence of a semiconfining reef flat plate on the ocean side. Sensitivity analyses of steady-steady simulations show that lens thickness is most strongly sensitive to the depth to the Holocene-Pleistocene contact and to the hydraulic conductivity of the Holocene aquifer, respectively. Comparisons between modeling results and published observations of atoll island lens thicknesses suggest a hydraulic conductivity of approximately 50 m/d for leeward islands and approximately 400 m/d for windward islands. Results of transient simulations show that lens thickness fluctuations during average seasonal conditions and El Niño events are quite sensitive to island width, recharge rate, and hydraulic conductivity of the Holocene aquifer. In general, the depletion of the lens during drought conditions is most drastic for small, windward islands. Simulation results suggest that recovery from a 6-month drought requires about 1.5 years.

  13. Numerical solution of neutron transport equations in discrete ordinates and slab geometry

    International Nuclear Information System (INIS)

    Serrano Pedraza, F.

    1985-01-01

    An unified formalism to solve numerically, between other equation, the neutron transport in discrete ordinates, slab geometry, several energy groups and independents of time, has been developed recently. Such a formalism cover some of the conventional schemes as diamond difference, (WDD) characteristic step (SC) lineal characteristic (LC), quadratic characteristic (QC) and lineal discontinuous. Unified formation gives before hand the convergence order of the previously selected scheme. In fact it allows besides to generate a big amount of numerical schemes, with which is also possible to solve numerical equations as soon as neutron transport. The essential purpose of this work was to solve the neutron transport equations in slab geometry and discrete ordinates considering several energy groups without to take under advisement time dependence based in the above mentioned unified formalism. To reach this purpose it was necesary to design a computer code with the name TNOD1 (Neutron transport in discrete ordinates and 1 dimension) which includes each one of the schemes already pointed out. there exist two numerical schemes, also recently developed, quadratic continuous (QC) and cubic continuous (CN), although covered by unified formalism, it has been possible to include them inside this computer code without make substantial changes in its structure. In chapter I, derivative of neutron transport equation independent of time is taken, for angular flux, including boundary conditions and discontinuity. In chapter II the neutron transport equations are obtained in multigroups, independents of time, for approximation of discrete ordinates. Description of theory related with unified formalism and its relationship with mentioned discretization schemes is presented in chapter III. Chapter IV describes the computer code developed and finally, in chapter V different numerical results obtained with TNOD1 program are shown. In Appendix A theorems and mathematical arguments used

  14. A review of numerical techniques approaching microstructures of crystalline rocks

    Science.gov (United States)

    Zhang, Yahui; Wong, Louis Ngai Yuen

    2018-06-01

    The macro-mechanical behavior of crystalline rocks including strength, deformability and failure pattern are dominantly influenced by their grain-scale structures. Numerical technique is commonly used to assist understanding the complicated mechanisms from a microscopic perspective. Each numerical method has its respective strengths and limitations. This review paper elucidates how numerical techniques take geometrical aspects of the grain into consideration. Four categories of numerical methods are examined: particle-based methods, block-based methods, grain-based methods, and node-based methods. Focusing on the grain-scale characters, specific relevant issues including increasing complexity of micro-structure, deformation and breakage of model elements, fracturing and fragmentation process are described in more detail. Therefore, the intrinsic capabilities and limitations of different numerical approaches in terms of accounting for the micro-mechanics of crystalline rocks and their phenomenal mechanical behavior are explicitly presented.

  15. Numerical studies of non-linear evolution of kink and tearing modes in tokamaks

    International Nuclear Information System (INIS)

    White, R.; Monticello, D.; Rosenbluth, M.N.; Strauss, H.; Kadomtsev, B.B.

    1975-01-01

    A set of numerical techniques for investigating the full nonlinear unstable behavior of low β kink modes of given helical symmetry in Tokamaks is presented. Uniform current density plasmas display complicated deformations including the formation of large vacuum bubbles provided that the safety factor q is sufficiently close to integral. Fairly large m = 1 deformations, but not bubble formation, persist for a plasma with a parabolic current density profile (and hence shear). Deformations for m greater than or equal to 2 are, however, greatly suppressed. (auth)

  16. Development of generalized boiling transition model applicable for wide variety of fuel bundle geometries. Basic strategy and numerical approaches

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Sadatomi, Michio; Okawa, Tomio

    2003-01-01

    In order to establish a key technology to realize advanced BWR fuel designs, a three-year project of the advanced subchannel analysis code development had been started since 2002. The five dominant factors involved in the boiling transitional process in the fuel bundles were focused. They are, (1) inter-subchannel exchanges, (2) influences of obstacles (3) dryout of liquid film, (4) transition of two-phase flow regimes and (5) deposition of droplets. It has been recognized that present physical models or constitutive equations in subchannel formulations need to be improved so that they include geometrical effects in the fuel bundle design more mechanistically and universally. Through reviewing literatures and existent experimental results, underlying elementary processes and geometrical factors that are indispensable for improving subchannel codes were identified. The basic strategy that combines numerical and experimental approaches was proposed aiming at establishment of mechanistic models for the five dominant factors. In this paper, the present status of methodologies for detailed two-phase flow studies has been summarized. According to spatial scales of focused elementary processes, proper numerical approaches were selected. For some promising numerical approaches, preliminary calcitonins were performed for assessing their applicability to investigation of elementary processes involved in the boiling transition. (author)

  17. Stochastic numerical methods an introduction for students and scientists

    CERN Document Server

    Toral, Raul

    2014-01-01

    Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability ConceptsMonte Carlo IntegrationGeneration of Uniform and Non-uniformRandom Numbers: Non-correlated ValuesDynamical MethodsApplications to Statistical MechanicsIn...

  18. Numerical Investigations of the Influencing Factors on a Rotary Regenerator-Type Catalytic Combustion Reactor

    Directory of Open Access Journals (Sweden)

    Zhenkun Sang

    2018-04-01

    Full Text Available Ultra-low calorific value gas (ULCVG not only poses a problem for environmental pollution, but also createsa waste of energy resources if not utilized. A novel reactor, a rotary regenerator-type catalytic combustion reactor (RRCCR, which integrates the functions of a regenerator and combustor into one component, is proposed for the elimination and utilization of ULCVG. Compared to reversal-flow reactor, the operation of the RRCCR is achieved by incremental rotation rather than by valve control, and it has many outstanding characteristics, such as a compact structure, flexible application, and limited energy for circulation. Due to the effects of the variation of the gas flow and concentration on the performance of the reactor, different inlet velocities and concentrations are analyzed by numerical investigations. The results reveal that the two factors have a major impact on the performance of the reactor. The performance of the reactor is more sensitive to the increase of velocity and the decrease of methane concentration. When the inlet concentration (2%vol. is reduced by 50%, to maintain the methane conversion over 90%, the inlet velocity can be reduced by more than three times. Finally, the highly-efficient and stable operating envelope of the reactor is drawn.

  19. Numerical study of unsteady viscous flow past oscillating airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Jin Yan; Yuan Xin [Tsinghua Univ., Dept. of Thermal Engineering, Beijing (China)

    2001-07-01

    Accurate simulation of the dynamic stall of an oscillating airfoil is of major importance to wing and wind turbine blade design. However, dynamic stall is complicated and influenced by many factors, such as geometry shape of the airfoil, reduced frequency, etc. The difficulties of simulation are both mathematical (numerical method) and physical (turbulence model). The present paper has introduced a new numerical method (new LU-type scheme and fourth-order higher resolution MUSCL TVD scheme) and q-{omega} turbulence modelling to calculate the unsteady flowfields of an oscillating NACA0015 airfoil. The test targets include attached flow, light-stall and deep-stall of the airfoil. The calculated results for attached flow and light-stall are in good agreement with those of experiments. The calculated results for deep-stall also show improvement, especially during the downstroke of the oscillation. However, there is still a significant difference between the results of calculation and experiment in the hysteresis curves of the drag coefficient. One reason is that the q-{omega} turbulence model still has limitations. Another is that the drag coefficient is difficult to measure and the experiments are not reliable. (Author)

  20. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....

  1. Development and application of a complex numerical model and software for the computation of dose conversion factors for radon progenies.

    Science.gov (United States)

    Farkas, Árpád; Balásházy, Imre

    2015-04-01

    A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. An Evaluation of Java for Numerical Computing

    Directory of Open Access Journals (Sweden)

    Brian Blount

    1999-01-01

    Full Text Available This paper describes the design and implementation of high performance numerical software in Java. Our primary goals are to characterize the performance of object‐oriented numerical software written in Java and to investigate whether Java is a suitable language for such endeavors. We have implemented JLAPACK, a subset of the LAPACK library in Java. LAPACK is a high‐performance Fortran 77 library used to solve common linear algebra problems. JLAPACK is an object‐oriented library, using encapsulation, inheritance, and exception handling. It performs within a factor of four of the optimized Fortran version for certain platforms and test cases. When used with the native BLAS library, JLAPACK performs comparably with the Fortran version using the native BLAS library. We conclude that high‐performance numerical software could be written in Java if a handful of concerns about language features and compilation strategies are adequately addressed.

  3. Characteristic times in the English Channel from numerical modelling: supporting decision-making

    Energy Technology Data Exchange (ETDEWEB)

    Perianez, R [Departamento de Fisica Aplicada 1, Universidad de Sevilla, EUITA, Carretera Utrera km 1, 41013 Sevilla (Spain); Miro, C [Departamento de Fisica Aplicada, Facultad de Veterinaria, Universidad de Extremadura, Avenida de la Universidad s/n, 10071 Caceres (Spain)], E-mail: rperianez@us.es, E-mail: cmiro@unex.es

    2009-06-15

    A numerical model that simulates the dispersion of radionuclides in the English Channel has been applied to study the dispersion of conservative and non-conservative radionuclides released from the La Hague nuclear fuel reprocessing plant. The model is based upon previous work and now is able to simulate dispersion over long timescales (decades), explicitly including transport by instantaneous tidal currents and variable wind conditions. Wind conditions are obtained from meteorological statistics using a stochastic method. Outputs from the model are treated using time-series analysis techniques. These techniques allow the determination of characteristic times of the system, transport velocities and dispersion factors. This information may be very useful to support the decision-making process after an emergency situation. Thus, we are proposing that time-series analysis can be integrated with numerical modelling for helping decision-making in response to an accident. The model is first validated through its application to actual releases of {sup 99}Tc and {sup 125}Sb, comparing measured and computed concentrations, and characteristic times for three radionuclides are given next: a perfectly conservative one, a very reactive one ({sup 239,240}Pu) and {sup 137}Cs, which has an intermediate behaviour. Characteristic transport velocities and dispersion factors have been calculated as well. Model results are supported by experimental evidence.

  4. Numerical simulation of fractional Cable equation of spiny neuronal dendrites

    Directory of Open Access Journals (Sweden)

    N.H. Sweilam

    2014-03-01

    Full Text Available In this article, numerical study for the fractional Cable equation which is fundamental equations for modeling neuronal dynamics is introduced by using weighted average of finite difference methods. The stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. A simple and an accurate stability criterion valid for different discretization schemes of the fractional derivative and arbitrary weight factor is introduced and checked numerically. Numerical results, figures, and comparisons have been presented to confirm the theoretical results and efficiency of the proposed method.

  5. Numerical Modelling of Flow and Settling in Secondary Settling Tanks

    DEFF Research Database (Denmark)

    Dahl, Claus Poulsen

    This thesis discusses the development of a numerical model for the simulation of secondary settling tanks. In the first part, the status on the development of numerical models for settling tanks and a discussion of the current design practice are presented. A study of the existing numerical models...... and design practice proved a demand for further development to include numerical models in the design of settling tanks, thus improving the future settling tanks....

  6. Diffusion piecewise homogenization via flux discontinuity factors

    International Nuclear Information System (INIS)

    Sanchez, Richard; Zmijarevic, Igor

    2011-01-01

    We analyze the calculation of flux discontinuity factors (FDFs) for use with piecewise subdomain assembly homogenization. These coefficients depend on the numerical mesh used to compute the diffusion problem. When the mesh has a single degree of freedom on subdomain interfaces the solution is unique and can be computed independently per subdomain. For all other cases we have implemented an iterative calculation for the FDFs. Our numerical results show that there is no solution to this nonlinear problem but that the iterative algorithm converges towards FDFs values that reproduce subdomains reaction rates with a relatively high precision. In our test we have included both the GET and black-box FDFs. (author)

  7. Children and adolescents' internal models of food-sharing behavior include complex evaluations of contextual factors.

    Science.gov (United States)

    Markovits, Henry; Benenson, Joyce F; Kramer, Donald L

    2003-01-01

    This study examined internal representations of food sharing in 589 children and adolescents (8-19 years of age). Questionnaires, depicting a variety of contexts in which one person was asked to share a resource with another, were used to examine participants' expectations of food-sharing behavior. Factors that were varied included the value of the resource, the relation between the two depicted actors, the quality of this relation, and gender. Results indicate that internal models of food-sharing behavior showed systematic patterns of variation, demonstrating that individuals have complex contextually based internal models at all ages, including the youngest. Examination of developmental changes in use of individual patterns is consistent with the idea that internal models reflect age-specific patterns of interactions while undergoing a process of progressive consolidation.

  8. Are Humans too Numerous to Become Extinct?

    OpenAIRE

    Cairns, John

    2009-01-01

    Some claim that humans are too numerous to become extinct. However, passenger pigeon, once the most numerous birds on the planet, are now extinct. For years, humankind has been damaging its habitat, discharging toxic chemicals into the environment, and having harmful effects on agricultural productivity due to climate change. Humankind s extinction depends on the continuation of various human activities including economic growth, addiction to fossil fuel, over consumption, overpopulation, oc...

  9. CHIRON: a package for ChPT numerical results at two loops

    Energy Technology Data Exchange (ETDEWEB)

    Bijnens, Johan [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden)

    2015-01-01

    This document describes the package CHIRON which includes two libraries, chiron itself and jbnumlib.chiron is a set of routines useful for two-loop numerical results in chiral perturbation theory (ChPT). It includes programs for the needed one- and two-loop integrals as well as routines to deal with the ChPT parameters. The present version includes everything needed for the masses, decay constants and quark-antiquark vacuum-expectation-values. An added routine calculates consistent values for the masses and decay constants when the pion and kaon masses are varied. In addition a number of finite volume results are included: one-loop tadpole integrals, two-loop sunset integrals and the results for masses and decay constants. The numerical routine library jbnumlib contains the numerical routines used in chiron. Many are to a large extent simple C++ versions of routines in the CERNLIB numerical library. Notable exceptions are the dilogarithm and the Jacobi theta function implementations. This paper describes what is included in CHIRON v0.50. (orig.)

  10. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas

    Science.gov (United States)

    Chen, Long-chao; Fan, Wen-hui

    2011-08-01

    The numerical simulation of terahertz generation and detection in the interaction between femtosecond laser pulse and photoconductive material has been reported in this paper. The simulation model based on the Drude-Lorentz theory is used, and takes into account the phenomena that photo-generated electrons and holes are separated by the external bias field, which is screened by the space-charge field simultaneously. According to the numerical calculation, the terahertz time-domain waveforms and their Fourier-transformed spectra are presented under different conditions. The simulation results indicate that terahertz generation and detection properties of photoconductive antennas are largely influenced by three major factors, including photo-carriers' lifetime, laser pulse width and pump laser power. Finally, a simple model has been applied to simulate the detected terahertz pulses by photoconductive antennas with various photo-carriers' lifetimes, and the results show that the detected terahertz spectra are very different from the spectra radiated from the emitter.

  11. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method

    OpenAIRE

    Jun He; Quansheng Liu; Zhijun Wu; Yalong Jiang

    2018-01-01

    One significant factor influencing geothermal energy exploitation is the variation of the mechanical properties of rock in high temperature environments. Since rock is typically a heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient temperature changes, which can greatly influence the geothermal energy exploitation. A numerical method based on the numerical manifold method (NMM) is developed in this study to simulate the thermo-elastic fracturing ...

  12. Numerical simulation of fire vortex

    Science.gov (United States)

    Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.

    2018-05-01

    The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.

  13. Basset force in numerical models of saltation

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Dolanský, Jindřich; Vlasák, Pavel

    2012-01-01

    Roč. 60, č. 4 (2012), s. 277-287 ISSN 0042-790X R&D Projects: GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : basset force * bed load transport * numerical model * particle-bed collision Subject RIV: BK - Fluid Dynamics Impact factor: 0.653, year: 2012

  14. Numerical methods in simulation of resistance welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi

    2015-01-01

    Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...... thecontact area and the distribution of contact pressure. The numerical simulation of resistancewelding is illustrated by a spot welding example that includes subsequent tensile shear testing...

  15. Numerical studies of the linear theta pinch

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Menzel, M.T.; Barnes, D.C.

    1975-01-01

    Aspects of several physical problems associated with linear theta pinches were studied using recently developed numerical methods for the solution of the nonlinear equations for time-dependent magnetohydrodynamic flow in two- and three-dimensions. The problems studied include the propagation of end-loss produced rarefaction waves, the flow produced in a proposed injection experiment geometry, and the linear growth and nonlinear saturation of instabilities in rotating plasmas, all in linear geometries. The studies illustrate how numerical computations aid in flow visualization, and how the small amplitude behavior and nonlinear fate of plasmas in unstable equilibria can be connected through the numerical solution of the dynamical equations. (auth)

  16. Coincidental match of numerical simulation and physics

    Science.gov (United States)

    Pierre, B.; Gudmundsson, J. S.

    2010-08-01

    Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.

  17. Towards standard testbeds for numerical relativity

    International Nuclear Information System (INIS)

    Alcubierre, Miguel; Allen, Gabrielle; Bona, Carles; Fiske, David; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Hawley, Scott H; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David; Salgado, Marcelo; Schnetter, Erik; Seidel, Edward; Shinkai, Hisa-aki; Shoemaker, Deirdre; Szilagyi, Bela; Takahashi, Ryoji; Winicour, Jeff

    2004-01-01

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community

  18. Towards standard testbeds for numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    Alcubierre, Miguel [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Allen, Gabrielle; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany); Bona, Carles [Departament de Fisica, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Fiske, David [Dept. of Physics, Univ. of Maryland, College Park, MD 20742-4111 (United States); Hawley, Scott H [Center for Relativity, Univ. of Texas at Austin, Austin, Texas 78712 (United States); Salgado, Marcelo [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Schnetter, Erik [Inst. fuer Astronomie und Astrophysik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Seidel, Edward [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Inst., 14476 Golm (Germany); Shinkai, Hisa-aki [Computational Science Div., Inst. of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Shoemaker, Deirdre [Center for Radiophysics and Space Research, Cornell Univ., Ithaca, NY 14853 (United States); Szilagyi, Bela [Dept. of Physics and Astronomy, Univ. of Pittsburgh, Pittsburgh, PA 15260 (United States); Takahashi, Ryoji [Theoretical Astrophysics Center, Juliane Maries Vej 30, 2100 Copenhagen, (Denmark); Winicour, Jeff [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany)

    2004-01-21

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.

  19. Numerical analysis of electromagnetic fields

    CERN Document Server

    Zhou Pei Bai

    1993-01-01

    Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...

  20. Numerical Modelling Of Pumpkin Balloon Instability

    Science.gov (United States)

    Wakefield, D.

    Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.

  1. Numerical modelling of radon-222 entry into houses: An outline of techniques and results

    DEFF Research Database (Denmark)

    Andersen, C.E.

    2001-01-01

    Numerical modelling is a powerful tool for studies of soil gas and radon-222 entry into houses. It is the purpose of this paper to review some main techniques and results. In the past, modelling has focused on Darcy flow of soil gas (driven by indoor–outdoor pressure differences) and combined...... diffusive and advective transport of radon. Models of different complexity have been used. The simpler ones are finite-difference models with one or two spatial dimensions. The more complex models allow for full three-dimensional and time dependency. Advanced features include: soil heterogeneity, anisotropy......, fractures, moisture, non-uniform soil temperature, non-Darcy flow of gas, and flow caused by changes in the atmospheric pressure. Numerical models can be used to estimate the importance of specific factors for radon entry. Models are also helpful when results obtained in special laboratory or test structure...

  2. Numerical tables of anomalous scattering factors calculated by the Cromer and Liberman's method

    International Nuclear Information System (INIS)

    Sasaki, Satoshi.

    1989-02-01

    Anomalous scattering factors f' and f'' have been calculated for the atoms Li through Bi, plus U, using the relativistic treatment described by Cromer and Liberman. The final f' value does not include the Jensen's correction term on the magnetic scattering. The tables are presented with the f' and f'' values (i) at 0.01 A intervals in the wavelength range from 0.1 to 2.89 A and (ii) at 0.0001 A intervals in the neighborhood of the K, L 1 , L 2 , and L 3 absorption edges. (author)

  3. Numerical analysis

    CERN Document Server

    Rao, G Shanker

    2006-01-01

    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  4. Numerical Investigation of magnetohydrodynamic flow through Sudden expansion pipes in Liquid Metal Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; He, Qingyun; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Ye, Minyou

    2016-11-01

    In fusion liquid metal blanket, sudden expansions and sudden contractions are very common geometries. Changing of the cross-section causes 3-D magnetohydrodynamic (MHD) effects, which will affect the flow pattern, current distribution and pressure drop. In this paper the numerical code based on OpenFOAM platform developed by University of Science and Technology of China was used to investigate and optimize the sudden expansion pipe. The code has been validated by the recommended benchmark cases including Shercliff, Hunt, ALEX experiments (rectangular duct and round pipe) and KIT experiment cases. The obtained numerical results agreed well with those of all the benchmark cases. Previous and valuable analytical and experimental works have been done by L. Buhler, et. el. Based on these works, in the present paper, further investigation of different expansion lengths between the upstream pipe and downstream pipe at high Hartmann number and Reynolds number were conducted. Besides, different expansion ratios with a specific expansion length were conducted. The numerical results showed that with the increasing of expansion length, the 3D MHD effects gradually weakened. Especially, the 3D pressure drop decreases with the increasing of expansion length. Whereas, the expansion ratio factor shows no obvious influences on the total MHD pressure drop but greatly influence the local pressure distribution. These numerical simulations can be used to evaluate the MHD flow inside the expansion and contraction pipes.

  5. Numerical study of the lattice meson form factor

    International Nuclear Information System (INIS)

    Woloshyn, R.M.; Kobos, A.M.

    1986-01-01

    The electric form factor of the pseudo-Goldstone meson (the generic pion) is calculated in quenched lattice quantum chromodynamics with SU(2) color. Charge radii are calculated for different values of the bare-quark mass. The results are in agreement with the physically reasonable expectation that heavier quarks have distributions of smaller radius

  6. Obesity and Hypertension, Heart Failure, and Coronary Heart Disease—Risk Factor, Paradox, and Recommendations for Weight Loss

    OpenAIRE

    Artham, Surya M.; Lavie, Carl J.; Milani, Richard V.; Ventura, Hector O.

    2009-01-01

    Obesity prevalence has reached epidemic proportions and is independently associated with numerous cardiovascular disease (CVD) risk factors, including diabetes mellitus, hypertension, dyslipidemia, cancers, sleep apnea, and other major CVDs. Obesity has significant negative impact on CVD, including hypertension, coronary heart disease, heart failure, and arrhythmias via its maladaptive effects on individual CVD risk factors and cardiac structure and function. Despite this negative association...

  7. Fever in trauma patients: evaluation of risk factors, including traumatic brain injury.

    Science.gov (United States)

    Bengualid, Victoria; Talari, Goutham; Rubin, David; Albaeni, Aiham; Ciubotaru, Ronald L; Berger, Judith

    2015-03-01

    The role of fever in trauma patients remains unclear. Fever occurs as a response to release of cytokines and prostaglandins by white blood cells. Many factors, including trauma, can trigger release of these factors. To determine whether (1) fever in the first 48 hours is related to a favorable outcome in trauma patients and (2) fever is more common in patients with head trauma. Retrospective study of trauma patients admitted to the intensive care unit for at least 2 days. Data were analyzed by using multivariate analysis. Of 162 patients studied, 40% had fever during the first 48 hours. Febrile patients had higher mortality rates than did afebrile patients. When adjusted for severity of injuries, fever did not correlate with mortality. Neither the incidence of fever in the first 48 hours after admission to the intensive care unit nor the number of days febrile in the unit differed between patients with and patients without head trauma (traumatic brain injury). About 70% of febrile patients did not have a source found for their fever. Febrile patients without an identified source of infection had lower peak white blood cell counts, lower maximum body temperature, and higher minimum platelet counts than did febrile patients who had an infectious source identified. The most common infection was pneumonia. No relationship was found between the presence of fever during the first 48 hours and mortality. Patients with traumatic brain injury did not have a higher incidence of fever than did patients without traumatic brain injury. About 30% of febrile patients had an identifiable source of infection. Further studies are needed to understand the origin and role of fever in trauma patients. ©2015 American Association of Critical-Care Nurses.

  8. On Numerical Methods for Including the Effect of Capillary Pressure Forces on Two-phase, Immiscible Flow in a Layered Porous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Ersland, B.G.

    1996-05-01

    This mathematical doctoral thesis contains the theory, algorithms and numerical simulations for a heterogeneous oil reservoir. It presents the equations, which apply to immiscible and incompressible two-phase fluid flow in the reservoir, including the effect of capillary pressure forces, and emphasises in particular the interior boundary conditions at the interface between two sediments. Two different approaches are discussed. The first approach is to decompose the computational domain along the interior boundary and iterate between the subdomains until mass balance is achieved. The second approach accounts for the interior boundary conditions in the basis in which the solution is expanded, the basis being discontinuous over the interior boundaries. An overview of the construction of iterative solvers for partial differential equations by means of Schwartz methods is given, and the algorithm for local refinement with Schwartz iterations as iterative solver is described. The theory is then applied to a core plug problem in one and two space dimensions and the results of different methods compared. A general description is given of the computer simulation model, which is implemented in C++. 64 refs., 49 figs., 7 tabs.

  9. Hemodynamic effect of bypass geometry on intracranial aneurysm: A numerical investigation.

    Science.gov (United States)

    Kurşun, Burak; Uğur, Levent; Keskin, Gökhan

    2018-05-01

    Hemodynamic analyzes are used in the clinical investigation and treatment of cardiovascular diseases. In the present study, the effect of bypass geometry on intracranial aneurysm hemodynamics was investigated numerically. Pressure, wall shear stress (WSS) and velocity distribution causing the aneurysm to grow and rupture were investigated and the best conditions were tried to be determined in case of bypassing between basilar (BA) and left/right posterior arteries (LPCA/RPCA) for different values of parameters. The finite volume method was used for numerical solutions and calculations were performed with the ANSYS-Fluent software. The SIMPLE algorithm was used to solve the discretized conservation equations. Second Order Upwind method was preferred for finding intermediate point values in the computational domain. As the blood flow velocity changes with time, the blood viscosity value also changes. For this reason, the Carreu model was used in determining the viscosity depending on the velocity. Numerical study results showed that when bypassed, pressure and wall shear stresses reduced in the range of 40-70% in the aneurysm. Numerical results obtained are presented in graphs including the variation of pressure, wall shear stress and velocity streamlines in the aneurysm. Considering the numerical results for all parameter values, it is seen that the most important factors affecting the pressure and WSS values in bypassing are the bypass position on the basilar artery (L b ) and the diameter of the bypass vessel (d). Pressure and wall shear stress reduced in the range of 40-70% in the aneurysm in the case of bypass for all parameters. This demonstrates that pressure and WSS values can be greatly reduced in aneurysm treatment by bypassing in cases where clipping or coil embolization methods can not be applied. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A modular approach to numerical human body modeling

    NARCIS (Netherlands)

    Forbes, P.A.; Griotto, G.; Rooij, L. van

    2007-01-01

    The choice of a human body model for a simulated automotive impact scenario must take into account both accurate model response and computational efficiency as key factors. This study presents a "modular numerical human body modeling" approach which allows the creation of a customized human body

  11. Numerical Analysis of Dusty-Gas Flows

    Science.gov (United States)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  12. Comparison of numerical change of epidermal growth factor receptor gene among pre- and postradiation glioma, and gliosis, and its clinical use

    International Nuclear Information System (INIS)

    Okada, Yoshifumi; Ohno, Chihiro; Ueki, Keisuke; Ogino, Masahiro; Kawamoto, Shunsuke; Kim, Phyo

    2007-01-01

    Surgery with following chemoradiotherapy is the mainstream glioma treatment. In the course of postradiation events, however, it is sometimes difficult for neurosurgeons, radiologists, and pathologists to discriminate tumor recurrence from radiation necrosis. The epidermal growth factor receptor (EGFR) gene, on chromosome 7, is known to gain in copy number frequently in high-grade gliomas. The authors applied the fluorescence in situ hybridization (FISH) method to observe the gene's numerical status in pre- and postradiation glioma samples to elucidate whether this technique is useful in the discrimination of glioma recurrence from radiation necrosis. When 15 postradiation glioma samples and 4 postradiation nonglioma samples were tested, all the recurrent glioma tissue harbored numerical aberrations of the gene, whereas no abnormality could be observed in necrosis or in nonglioma gliosis. FISH could even prove a residual glioma cell in a gliotic tissue taken by needle biopsy after gamma-knife radiosurgery, which had been executed on a supposed metastatic brain tumor. FISH is considered to be of help in accurate diagnosis, especially when the usual histopathological diagnosis is difficult because of radiation effects or small sample size. (author)

  13. A delta-rule model of numerical and non-numerical order processing.

    Science.gov (United States)

    Verguts, Tom; Van Opstal, Filip

    2014-06-01

    Numerical and non-numerical order processing share empirical characteristics (distance effect and semantic congruity), but there are also important differences (in size effect and end effect). At the same time, models and theories of numerical and non-numerical order processing developed largely separately. Currently, we combine insights from 2 earlier models to integrate them in a common framework. We argue that the same learning principle underlies numerical and non-numerical orders, but that environmental features determine the empirical differences. Implications for current theories on order processing are pointed out. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. Numerical differential protection

    CERN Document Server

    Ziegler, Gerhard

    2012-01-01

    Differential protection is a fast and selective method of protection against short-circuits. It is applied in many variants for electrical machines, trans?formers, busbars, and electric lines.Initially this book covers the theory and fundamentals of analog and numerical differential protection. Current transformers are treated in detail including transient behaviour, impact on protection performance, and practical dimensioning. An extended chapter is dedicated to signal transmission for line protection, in particular, modern digital communication and GPS timing.The emphasis is then pla

  15. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  16. Evaluation of different numerical methodologies for dispersion of air pollutants in an urban environment

    International Nuclear Information System (INIS)

    Mumovic, D.; Crowther, J.M.; Stevanovic, Z.

    2003-01-01

    Since 1950 the world population has more than doubled but meanwhile the global number of cars has increased by a factor of 10. In that same period the fraction of people living in urban areas has increased by a factor of 4. Apart from large point-sources of local air pollution, traffic induced pollution is now the most significant contributor to urban air quality in city centres, particularly for carbon monoxide, oxides of nitrogen and fine particulate matter. Until recently, pollutant dispersion in urban areas has usually been numerically investigated by using empirical models, such as the Gaussian plume model, or by extensions of this technique to line sources and multiple sources. More recently, advanced computational fluid dynamics (CFD) simulations have been attempted but have been mainly two-dimensional and often encompassing only a single street canyon. This paper provides a comprehensive, critical evaluation of dispersion of pollutants in urban areas. A three-dimensional flow model has been set-up for a staggered crossroad, using the Navier-Stokes equations and the conservation equation for species concentration. The effect of using several different turbulence models, including the k-ε model, modifications and extensions, has been investigated. Cartesian coordinates have been used in connection with the Partial Solution Algorithm (PARSOL) and Body Fitted Coordinates (BFC). The effects of several different numerical algorithms for discretization of differential equations have also been studied. More than thirty cases are analysed, and the main results are compared with wind tunnel experiments. The numerical results are presented as non-dimensional values to facilitate comparison between experimental and numerical studies. It has been shown that the numerical studies have been able to simulate the air-flow in urban areas and confirm, qualitatively, the previous field observations and wind tunnel results. This success encouraged the authors to extend such

  17. Evaluation of different numerical methodologies for dispersion of air pollutants in an urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Mumovic, D.; Crowther, J.M. [Glasgow Caledonian Univ., School of Built and Natural Environment, Glasgow (United Kingdom)]. E-mail: dmumov10@caledonian.ac.uk; Stevanovic, Z. [Univ. of Belgrade, Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro)

    2003-07-01

    Since 1950 the world population has more than doubled but meanwhile the global number of cars has increased by a factor of 10. In that same period the fraction of people living in urban areas has increased by a factor of 4. Apart from large point-sources of local air pollution, traffic induced pollution is now the most significant contributor to urban air quality in city centres, particularly for carbon monoxide, oxides of nitrogen and fine particulate matter. Until recently, pollutant dispersion in urban areas has usually been numerically investigated by using empirical models, such as the Gaussian plume model, or by extensions of this technique to line sources and multiple sources. More recently, advanced computational fluid dynamics (CFD) simulations have been attempted but have been mainly two-dimensional and often encompassing only a single street canyon. This paper provides a comprehensive, critical evaluation of dispersion of pollutants in urban areas. A three-dimensional flow model has been set-up for a staggered crossroad, using the Navier-Stokes equations and the conservation equation for species concentration. The effect of using several different turbulence models, including the k-{epsilon} model, modifications and extensions, has been investigated. Cartesian coordinates have been used in connection with the Partial Solution Algorithm (PARSOL) and Body Fitted Coordinates (BFC). The effects of several different numerical algorithms for discretization of differential equations have also been studied. More than thirty cases are analysed, and the main results are compared with wind tunnel experiments. The numerical results are presented as non-dimensional values to facilitate comparison between experimental and numerical studies. It has been shown that the numerical studies have been able to simulate the air-flow in urban areas and confirm, qualitatively, the previous field observations and wind tunnel results. This success encouraged the authors to extend

  18. Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor

    International Nuclear Information System (INIS)

    Han Le; Chang Haiping; Zhang Jingyang; Xu Tiejun

    2015-01-01

    In order to accurately predict the incident critical heat flux (ICHF, the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor, the exact knowledge of its peaking factors (f p ) under one-sided heating conditions with different design parameters is a key issue. In this paper, the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients (HTC) of the cooling wall to be functions of the local wall temperature, so as to obtain f p . The reliability of the calculation method is validated by an experimental example result, with the maximum error of 2.1% only. The effects of geometric and flow parameters on the f p of a water-cooled W/Cu monoblock are investigated. Within the scope of this study, it is shown that the f p increases with increasing dimensionless W/Cu monoblock width and armour thickness (the shortest distance between the heated surface and Cu layer), and the maximum increases are 43.8% and 22.4% respectively. The dimensionless W/Cu monoblock height and Cu thickness have little effect on f p . The increase of Reynolds number and Jakob number causes the increase of f p , and the maximum increases are 6.8% and 9.6% respectively. Based on the calculated results, an empirical correlation on peaking factor is obtained via regression. These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. (paper)

  19. [Factors influencing research activity of Andalusian nurses and improvement strategies].

    Science.gov (United States)

    López Alonso, Sergio R; Gálvez González, María; Amezcua, Manuel

    2013-04-01

    To identify factors influencing research activity of Andalusian nurses and to find improvement strategies. Qualitative research using SWOT analysis (weaknesses, threats, strengths, opportunities). Nurses were selected deliberately in eight groups according to predetermined criteria. Analysis included categorization and relationship of factors and strategies. 81 participants were included in groups of 7-12 range. 45 categories were identified with 212 factors: 12 weaknesses (50 factors), 10 strengths (44 factors), 12 threats (68 factors) and 11 opportunities (50 factors). In addition, 32 categories were identified with 53 strategies: 14 categories of W-T strategies (42 strategies), 3 categories of S-T strategies (11 strategies), 5 categories of W-O strategies (13 strategies) and 10 categories of S-O strategies (41 strategies). Nurses identified numerous factors, mainly threats. The strategies are focused on W-T but they also suggest many but weak 5-0 strategies due to the low potential of the opportunities and strengths perceived.

  20. Molecular dynamics with deterministic and stochastic numerical methods

    CERN Document Server

    Leimkuhler, Ben

    2015-01-01

    This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications.  Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method...

  1. Playing Linear Numerical Board Games Promotes Low-Income Children's Numerical Development

    Science.gov (United States)

    Siegler, Robert S.; Ramani, Geetha B.

    2008-01-01

    The numerical knowledge of children from low-income backgrounds trails behind that of peers from middle-income backgrounds even before the children enter school. This gap may reflect differing prior experience with informal numerical activities, such as numerical board games. Experiment 1 indicated that the numerical magnitude knowledge of…

  2. Numerical issues for liquid-metal boiling transient analysis

    International Nuclear Information System (INIS)

    Rowe, D.S.

    1986-01-01

    The large liquid-to-vapor density ratio of a boiling liquid-metal leads to a very abrupt change of the two-phase mixture density at the inception of boiling. Unfortunately, the strong dependence of mixture density on pressure leads to a key numerical issue that adversely affects the behavior of numerical solutions. The difficulties can be reduced by using techniques that acknowledge this functional behavior at the start of boiling. Some of the methods used include a spatially averaged density function, mathematical smoothing, and under relaxation. Nonequilibrium two-fluid models also seem to offer aid in obtaining reliable numerical solutions. (author)

  3. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential...... are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...

  4. Evaluation and purchase of an analytical flow cytometer: some of the numerous factors to consider.

    Science.gov (United States)

    Zucker, Robert M; Fisher, Nancy C

    2013-01-01

    When purchasing a flow cytometer, the decision of which brand, model, specifications, and accessories may be challenging. The decisions should initially be guided by the specific applications intended for the instrument. However, many other factors need to be considered, which include hardware, software, quality assurance, support, service, and price and recommendations from colleagues. These issues are discussed to help guide the purchasing process.

  5. Prognostic factors for head and neck cancer of unknown primary including the impact of human papilloma virus infection.

    Science.gov (United States)

    Axelsson, Lars; Nyman, Jan; Haugen-Cange, Hedda; Bove, Mogens; Johansson, Leif; De Lara, Shahin; Kovács, Anikó; Hammerlid, Eva

    2017-06-10

    Head and neck cancer of unknown primary (HNCUP) is rare and prospective studies are lacking. The impact of different prognostic factors such as age and N stage is not completely known, the optimal treatment is not yet established, and the reported survival rates vary. In the last decade, human papilloma virus (HPV) has been identified as a common cause of and important prognostic factor in oropharyngeal cancer, and there is now growing interest in the importance of HPV for HNCUP. The aim of the present study on curatively treated HNCUP was to investigate the prognostic importance of different factors, including HPV status, treatment, and overall survival. A search for HNCUP was performed in the Swedish Cancer Registry, Western health district, between the years 1992-2009. The medical records were reviewed, and only patients with squamous cell carcinoma or undifferentiated carcinoma treated with curative intent were included. The tumor specimens were retrospectively analyzed for HPV with p16 immunostaining. Sixty-eight patients were included. The mean age was 59 years. The majority were males, and had N2 tumors. Sixty-nine percent of the tumors were HPV positive using p16 staining. Patients who were older than 70 years, patients with N3-stage tumors, and patients with tumors that were p16 negative had a significantly worse prognosis. The overall 5-year survival rate for patients with p16-positive tumors was 88% vs 61% for p16-negative tumors. Treatment with neck dissection and postoperative radiation or (chemo) radiation had 81 and 88% 5-year survival rates, respectively. The overall and disease-free 5-year survival rates for all patients in the study were 82 and 74%. Curatively treated HNCUP had good survival. HPV infection was common. Independent prognostic factors for survival were age over 70 years, HPV status and N3 stage. We recommend that HPV analysis should be performed routinely for HNCUP. Treatment with neck dissection and postoperative radiation or

  6. Lecture notes in numerical analysis with Mathematica

    CERN Document Server

    Styś, Tadeusz

    2014-01-01

    The contents of this book include chapters on floating point computer arithmetic, natural and generalized interpolating polynomials, uniform approximation, numerical integration, polynomial splines and many more.This book is intended for undergraduate and graduate students in institutes, colleges, universities and academies who want to specialize in this field. The readers will develop a solid understanding of the concepts of numerical methods and their application. The inclusion of Lagrane and Hermite approximation by polynomials, Trapezian rule, Simpsons rule, Gauss methods and Romberg`s met

  7. The joint essential numerical range, compact perturbations, and the Olsen problem

    Czech Academy of Sciences Publication Activity Database

    Müller, Vladimír

    2010-01-01

    Roč. 197, č. 3 (2010), s. 275-290 ISSN 0039-3223 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional research plan: CEZ:AV0Z10190503 Keywords : joint essential numerical range * joint numerical range * compact perturbation * Olsen's problem Subject RIV: BA - General Mathematics Impact factor: 0.567, year: 2010 http://journals.impan.pl/cgi-bin/doi?sm197-3-5

  8. Classical mechanics including an introduction to the theory of elasticity

    CERN Document Server

    Hentschke, Reinhard

    2017-01-01

    This textbook teaches classical mechanics as one of the foundations of physics. It describes the mechanical stability and motion in physical systems ranging from the molecular to the galactic scale. Aside from the standard topics of mechanics in the physics curriculum, this book includes an introduction to the theory of elasticity and its use in selected modern engineering applications, e.g. dynamic mechanical analysis of viscoelastic materials. The text also covers many aspects of numerical mechanics, ranging from the solution of ordinary differential equations, including molecular dynamics simulation of many particle systems, to the finite element method. Attendant Mathematica programs or parts thereof are provided in conjunction with selected examples. Numerous links allow the reader to connect to related subjects and research topics. Among others this includes statistical mechanics (separate chapter), quantum mechanics, space flight, galactic dynamics, friction, and vibration spectroscopy. An introductory...

  9. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  10. Summary of research in applied mathematics, numerical analysis, and computer sciences

    Science.gov (United States)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  11. Learning linear spatial-numeric associations improves accuracy of memory for numbers

    Directory of Open Access Journals (Sweden)

    Clarissa Ann Thompson

    2016-01-01

    Full Text Available Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1. Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status. To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2. As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.

  12. Numerical investigations of gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)

    2010-03-01

    Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.

  13. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  14. Evaluation of wave runup predictions from numerical and parametric models

    Science.gov (United States)

    Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.

    2014-01-01

    Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.

  15. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, P., E-mail: hahnp@ethz.ch; Dual, J. [Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich (Switzerland)

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  16. Application of the photoelastic experimental hybrid method with new numerical method to the high stress distribution

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Lee, Dong Hun; Lee, Dong Ha; Tche, Konstantin

    2004-01-01

    In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method

  17. The contributions of numerical acuity and non-numerical stimulus features to the development of the number sense and symbolic math achievement.

    Science.gov (United States)

    Starr, Ariel; DeWind, Nicholas K; Brannon, Elizabeth M

    2017-11-01

    Numerical acuity, frequently measured by a Weber fraction derived from nonsymbolic numerical comparison judgments, has been shown to be predictive of mathematical ability. However, recent findings suggest that stimulus controls in these tasks are often insufficiently implemented, and the proposal has been made that alternative visual features or inhibitory control capacities may actually explain this relation. Here, we use a novel mathematical algorithm to parse the relative influence of numerosity from other visual features in nonsymbolic numerical discrimination and to examine the strength of the relations between each of these variables, including inhibitory control, and mathematical ability. We examined these questions developmentally by testing 4-year-old children, 6-year-old children, and adults with a nonsymbolic numerical comparison task, a symbolic math assessment, and a test of inhibitory control. We found that the influence of non-numerical features decreased significantly over development but that numerosity was a primary determinate of decision making at all ages. In addition, numerical acuity was a stronger predictor of math achievement than either non-numerical bias or inhibitory control in children. These results suggest that the ability to selectively attend to number contributes to the maturation of the number sense and that numerical acuity, independent of inhibitory control, contributes to math achievement in early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Numerical modelling of fire propagation: principles and applications at Electricite de France

    International Nuclear Information System (INIS)

    Rongere, F.X.; Gibault, J.

    1994-05-01

    Electricite de France, wishing to limit the accidental unavailability of its nuclear plants and to ensure their safety rigorously takes particular care to reduce the risk of fire. In this context, the Heat Transfer and Aerodynamics Branch of the Research and Development Division has been in charge of the design of numerical tools to simulate the fire propagation in buildings since 1985. Its program is articulated towards three axes which include : the development of the MAGIC software program, the characterization of the combustibles present in power plants, the development of methods for the use of the computer codes in the design of plants. This paper gives on overview of the activity in progress in this research fields. It illustrates also the applications performed and anticipated at Electricite de France of the numerical simulation in fire safety design. We discuss at the end of it the limitations and the development factors of these tool use. One of the later is the association of MAGIC software and the FIVE method. (authors). 15 refs., 10 figs., 2 tabs

  19. Numeric algorithms for parallel processors computer architectures with applications to the few-groups neutron diffusion equations

    International Nuclear Information System (INIS)

    Zee, S.K.

    1987-01-01

    A numeric algorithm and an associated computer code were developed for the rapid solution of the finite-difference method representation of the few-group neutron-diffusion equations on parallel computers. Applications of the numeric algorithm on both SIMD (vector pipeline) and MIMD/SIMD (multi-CUP/vector pipeline) architectures were explored. The algorithm was successfully implemented in the two-group, 3-D neutron diffusion computer code named DIFPAR3D (DIFfusion PARallel 3-Dimension). Numerical-solution techniques used in the code include the Chebyshev polynomial acceleration technique in conjunction with the power method of outer iteration. For inner iterations, a parallel form of red-black (cyclic) line SOR with automated determination of group dependent relaxation factors and iteration numbers required to achieve specified inner iteration error tolerance is incorporated. The code employs a macroscopic depletion model with trace capability for selected fission products' transients and critical boron. In addition to this, moderator and fuel temperature feedback models are also incorporated into the DIFPAR3D code, for realistic simulation of power reactor cores. The physics models used were proven acceptable in separate benchmarking studies

  20. A New Language Design for Prototyping Numerical Computation

    Directory of Open Access Journals (Sweden)

    Thomas Derby

    1996-01-01

    Full Text Available To naturally and conveniently express numerical algorithms, considerable expressive power is needed in the languages in which they are implemented. The language Matlab is widely used by numerical analysts for this reason. Expressiveness or ease-of-use can also result in a loss of efficiency, as is the case with Matlab. In particular, because numerical analysts are highly interested in the performance of their algorithms, prototypes are still often implemented in languages such as Fortran. In this article we describe a language design that is intended to both provide expressiveness for numerical computation, and at the same time provide performance guarantees. In our language, EQ, we attempt to include both syntactic and semantic features that correspond closely to the programmer's model of the problem, including unordered equations, large-granularity state transitions, and matrix notation. The resulting language does not fit into standard language categories such as functional or imperative but has features of both paradigms. We also introduce the notion of language dependability, which is the idea that a language should guarantee that certain program transformations are performed by all implementations. We first describe the interesting features of EQ, and then present three examples of algorithms written using it. We also provide encouraging performance results from an initial implementation of our language.

  1. Critical role of environmental factors in the pathogenesis of psoriasis.

    Science.gov (United States)

    Zeng, Jinrong; Luo, Shuaihantian; Huang, Yumeng; Lu, Qianjin

    2017-08-01

    Psoriasis is a common cutaneous disease with multifactorial etiology including genetic and non-genetic factors, such as drugs, smoking, drinking, diet, infection and mental stress. Now, the role of the interaction between environmental factors and genetics are considered to be a main factor in the pathogenesis of psoriasis. However, it is a challenge to explore the mechanisms how the environmental factors break the body balance to affect the onset and development of psoriasis. In this article, we review the pathogenesis of psoriasis and summarize numerous clinical data to reveal the association between environmental factors and psoriasis. In addition, we focus on the mechanisms of environmental risk factors impact on psoriasis and provide a series of potential treatments against environmental risk factors. © 2017 Japanese Dermatological Association.

  2. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  3. Numerical study of effect of oxygen fraction on local entropy ...

    Indian Academy of Sciences (India)

    This study considers numerical simulation of the combustion of methane with air, including oxygen and nitrogen, in a burner and the numerical solution of local entropy generation rate due to high temperature and velocity gradients in the combustion chamber. The effects of equivalence ratio () and oxygen percentage () ...

  4. COMPLEX OF NUMERICAL MODELS FOR COMPUTATION OF AIR ION CONCENTRATION IN PREMISES

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-04-01

    Full Text Available Purpose. The article highlights the question about creation the complex numerical models in order to calculate the ions concentration fields in premises of various purpose and in work areas. Developed complex should take into account the main physical factors influencing the formation of the concentration field of ions, that is, aerodynamics of air jets in the room, presence of furniture, equipment, placement of ventilation holes, ventilation mode, location of ionization sources, transfer of ions under the electric field effect, other factors, determining the intensity and shape of the field of concentration of ions. In addition, complex of numerical models has to ensure conducting of the express calculation of the ions concentration in the premises, allowing quick sorting of possible variants and enabling «enlarged» evaluation of air ions concentration in the premises. Methodology. The complex numerical models to calculate air ion regime in the premises is developed. CFD numerical model is based on the use of aerodynamics, electrostatics and mass transfer equations, and takes into account the effect of air flows caused by the ventilation operation, diffusion, electric field effects, as well as the interaction of different polarities ions with each other and with the dust particles. The proposed balance model for computation of air ion regime indoors allows operative calculating the ions concentration field considering pulsed operation of the ionizer. Findings. The calculated data are received, on the basis of which one can estimate the ions concentration anywhere in the premises with artificial air ionization. An example of calculating the negative ions concentration on the basis of the CFD numerical model in the premises with reengineering transformations is given. On the basis of the developed balance model the air ions concentration in the room volume was calculated. Originality. Results of the air ion regime computation in premise, which

  5. Numerical analysis in electromagnetics the TLM method

    CERN Document Server

    Saguet, Pierre

    2013-01-01

    The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been

  6. Numerical orbit generators of artificial earth satellites

    Science.gov (United States)

    Kugar, H. K.; Dasilva, W. C. C.

    1984-04-01

    A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.

  7. Numerical solution of fractured horizontal wells in shale gas reservoirs considering multiple transport mechanisms

    Science.gov (United States)

    Zhao, Yu-long; Tang, Xu-chuan; Zhang, Lie-hui; Tang, Hong-ming; Tao, Zheng-Wu

    2018-06-01

    The multiscale pore size and specific gas storage mechanism in organic-rich shale gas reservoirs make gas transport in such reservoirs complicated. Therefore, a model that fully incorporates all transport mechanisms and employs an accurate numerical method is urgently needed to simulate the gas production process. In this paper, a unified model of apparent permeability was first developed, which took into account multiple influential factors including slip flow, Knudsen diffusion (KD), surface diffusion, effects of the adsorbed layer, permeability stress sensitivity, and ad-/desorption phenomena. Subsequently, a comprehensive mathematical model, which included the model of apparent permeability, was derived to describe gas production behaviors. Thereafter, on the basis of unstructured perpendicular bisection grids and finite volume method, a fully implicit numerical simulator was developed using Matlab software. The validation and application of the new model were confirmed using a field case reported in the literature. Finally, the impacts of related influencing factors on gas production were analyzed. The results showed that KD resulted in a negligible impact on gas production in the proposed model. The smaller the pore size was, the more obvious the effects of the adsorbed layer on the well production rate would be. Permeability stress sensitivity had a slight effect on well cumulative production in shale gas reservoirs. Adsorbed gas made a major contribution to the later flow period of the well; the greater the adsorbed gas content, the greater the well production rate would be. This paper can improve the understanding of gas production in shale gas reservoirs for petroleum engineers.

  8. Biosensor enhancement using grooved micromixers: Part I, numerical studies

    Czech Academy of Sciences Publication Activity Database

    Lynn, Nicholas Scott; Homola, Jiří

    2015-01-01

    Roč. 87, č. 11 (2015), s. 5516-5523 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Numerical methods * Micromixers * Analytes Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.886, year: 2015

  9. Numerical analysis of the performance prediction for a thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Nyung [Kyung Hee University, Yongin (Korea, Republic of)

    2015-09-15

    The present study develops a two-dimensional numerical code that can predict the performance of a thermoelectric generator module including a p-leg/n-leg pair and top and bottom electrodes. The present code can simulate the detailed thermoelectric phenomena including the heat flow, electric current, Joule heating, Peltier heating, and Thomson heating, together with the efficiency of the modules whose properties depend on the temperature. The present numerical code can be used for the design optimization of a thermoelectric power generator.

  10. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  11. Relationship between sleep duration and childhood obesity: Systematic review including the potential underlying mechanisms.

    Science.gov (United States)

    Felső, R; Lohner, S; Hollódy, K; Erhardt, É; Molnár, D

    2017-09-01

    The prevalence of obesity is continually increasing worldwide. Determining risk factors for obesity may facilitate effective preventive programs. The present review focuses on sleep duration as a potential risk factor for childhood obesity. The aim is to summarize the evidence on the association of sleep duration and obesity and to discuss the underlying potential physiological and/or pathophysiological mechanisms. The Ovid MEDLINE, Scopus and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched for papers using text words with appropriate truncation and relevant indexing terms. All studies objectively measuring sleep duration and investigating the association between sleep duration and obesity or factors (lifestyle and hormonal) possibly associated with obesity were included, without making restrictions based on study design or language. Data from eligible studies were extracted in tabular form and summarized narratively. After removing duplicates, 3540 articles were obtained. Finally, 33 studies (including 3 randomized controlled trials and 30 observational studies) were included in the review. Sleep duration seems to influence weight gain in children, however, the underlying explanatory mechanisms are still uncertain. In our review only the link between short sleep duration and the development of insulin resistance, sedentarism and unhealthy dietary patterns could be verified, while the role of other mediators, such as physical activity, screen time, change in ghrelin and leptin levels, remained uncertain. There are numerous evidence gaps. To answer the remaining questions, there is a need for studies meeting high methodological standards and including a large number of children. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All

  12. Numerical assessment of the ion turbulent thermal transport scaling laws

    International Nuclear Information System (INIS)

    Ottaviani, M.; Manfredi, G.

    2001-01-01

    Numerical simulations of ion temperature gradient (ITG) driven turbulence were carried out to investigate the parametric dependence of the ion thermal transport on the reduced gyroradius and on the local safety factor. Whereas the simulations show a clear proportionality of the conductivity to the gyroradius, the dependence on the safety factor cannot be represented as a simple power law like the one exhibited by the empirical scaling laws. (author)

  13. Numerical simulations of progressive hardening by using ABAQUS FEA software

    Directory of Open Access Journals (Sweden)

    Domański Tomasz

    2018-01-01

    Full Text Available The paper concerns numerical simulations of progressive hardening include phase transformations in solid state of steel. Abaqus FEA software is used for numerical analysis of temperature field and phase transformations. Numerical subroutines, written in fortran programming language are used in computer simulations where models of the distribution of movable heat source, kinetics of phase transformations in solid state as well as thermal and structural strain are implemented. Model for evaluation of fractions of phases and their kinetics is based on continuous heating diagram and continuous cooling diagram. The numerical analysis of thermal fields, phase fractions and strain associated progressive hardening of elements made of steel were done.

  14. Preliminary investigations on the effects of a Strongylus vulgaris larval extract, mononuclear factors and platelet factors on equine smooth muscle cells in vitro.

    Science.gov (United States)

    Morgan, S J; Storts, R W; Stromberg, P C; Sowa, B A; Lay, J C

    1989-01-01

    Factors involved in the proliferation of equine vascular smooth muscle cells were studied in vitro. The most prominent proliferative responses in cultured vascular smooth muscle cells were induced by Strongylus vulgaris larval antigen extract (LAE) and platelet-derived factors. Less significant proliferative responses were obtained with conditioned media from S. vulgaris LAE stimulated and from unstimulated equine mononuclear leukocytes. Additionally, vascular smooth muscle cells exposed to S. vulgaris LAE developed numerous perinuclear vacuoles and were more spindle-shaped than control or smooth muscle cells exposed to other factors. Equine mononuclear leukocytes exposed to LAE developed prominent morphological changes, including enlargement, clumping and increased numbers of mitotic figures.

  15. Factors Affecting Employees’ Job Satisfaction in Telecommunication Industry: a case study of Pakistan

    OpenAIRE

    Mohammad Aamir; Muhammad Salman; Mohammad Asif; Gul Bahar

    2014-01-01

    Employees’ satisfaction is crucial to any organization. There are numerous factors affecting the employees’ job satisfaction but 5 factors, namely working conditions, pay & promotion, job security, fairness and relations with co-workers. Organizations have to invest on its employees to satisfy its employees. Target audience is in Telecommunication sector Zong and Mobilink in Pakistan and took data through ques-tionnaire and analyzes data through SPSS. The research included 5 independent varia...

  16. Determination of point isotropic buildup factors of gamma rays including incoherent and coherent scattering for aluminum, iron, lead, and water by discrete ordinates method

    International Nuclear Information System (INIS)

    Kitsos, S.; Assad, A.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    Exposure and energy absorption buildup factors for aluminum, iron, lead, and water are calculated by the SNID discrete ordinates code for an isotropic point source in a homogeneous medium. The calculation of the buildup factors takes into account the effects of both bound-electron Compton (incoherent) and coherent (Rayleigh) scattering. A comparison with buildup factors from the literature shows that these two effects greatly increase the buildup factors for energies below a few hundred kilo-electron-volts, and thus the new results are improved relative to the experiment. This greater accuracy is due to the increase in the linear attenuation coefficient, which leads to the calculation of the buildup factors for a mean free path with a smaller shield thickness. On the other hand, for the same shield thickness, exposure increases when only incoherent scattering is included and decreases when only coherent scattering is included, so that the exposure finally decreases when both effects are included. Great care must also be taken when checking the approximations for gamma-ray deep-penetration transport calculations, as well as for the cross-section treatment and origin

  17. Uncertainty Quantification in Numerical Aerodynamics

    KAUST Repository

    Litvinenko, Alexander

    2017-05-16

    We consider uncertainty quantification problem in aerodynamic simulations. We identify input uncertainties, classify them, suggest an appropriate statistical model and, finally, estimate propagation of these uncertainties into the solution (pressure, velocity and density fields as well as the lift and drag coefficients). The deterministic problem under consideration is a compressible transonic Reynolds-averaged Navier-Strokes flow around an airfoil with random/uncertain data. Input uncertainties include: uncertain angle of attack, the Mach number, random perturbations in the airfoil geometry, mesh, shock location, turbulence model and parameters of this turbulence model. This problem requires efficient numerical/statistical methods since it is computationally expensive, especially for the uncertainties caused by random geometry variations which involve a large number of variables. In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al \\'17]. For modeling we used the TAU code, developed in DLR, Germany.

  18. Numerical Development

    Science.gov (United States)

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  19. Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor

    Science.gov (United States)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-09-01

    In order to accurately predict the incident critical heat flux (ICHF, the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor, the exact knowledge of its peaking factors (fp) under one-sided heating conditions with different design parameters is a key issue. In this paper, the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients (HTC) of the cooling wall to be functions of the local wall temperature, so as to obtain fp. The reliability of the calculation method is validated by an experimental example result, with the maximum error of 2.1% only. The effects of geometric and flow parameters on the fp of a water-cooled W/Cu monoblock are investigated. Within the scope of this study, it is shown that the fp increases with increasing dimensionless W/Cu monoblock width and armour thickness (the shortest distance between the heated surface and Cu layer), and the maximum increases are 43.8% and 22.4% respectively. The dimensionless W/Cu monoblock height and Cu thickness have little effect on fp. The increase of Reynolds number and Jakob number causes the increase of fp, and the maximum increases are 6.8% and 9.6% respectively. Based on the calculated results, an empirical correlation on peaking factor is obtained via regression. These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. supported by National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005) and Funding of Jiangsu Innovation Program for Graduate Education, China (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  20. Numerical Optimization in Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg

    2017-01-01

    Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....

  1. A study on the development of the radiation protection numerical guideline

    International Nuclear Information System (INIS)

    Park, M. S.; Kang, C. S.

    1998-01-01

    The present paper intends to develope the radiation protection numerical guideline for next generation nuclear power plants. For the determining a value for a societal life, medical costs method, wages and investments method, and GNP method are used. In assessing the risk factors due to radiation exposure, it is accepted that fatal cancer risk, nonfatal cancer risk, and genetic risk factors proposed by ICRP 60. It is calculated that the societal value of life with corresponding range of from $886,500 to $3,406,000 in 1996 U.S. dollars. The person-rem cost estimates can be found to range from $650 per person-rem to $2,500 per person-rem. The radiation protection numerical guideline for next generation nuclear power plants is proposed by $1,600 per person-rem

  2. Polyhedral meshing in numerical analysis of conjugate heat transfer

    Science.gov (United States)

    Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata

    2018-06-01

    Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.

  3. Hindi Numerals.

    Science.gov (United States)

    Bright, William

    In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…

  4. Uncertainty Quantification in Numerical Aerodynamics

    KAUST Repository

    Litvinenko, Alexander; Matthies, Hermann G.; Liu, Dishi; Schillings, Claudia; Schulz, Volker

    2017-01-01

    In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al '17]. For modeling we used the TAU code, developed in DLR, Germany.

  5. Methods of numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1983-01-01

    Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)

  6. Numerical Flexural Strength Analysis of Thermally Stressed Delaminated Composite Structure under Sinusoidal Loading

    Science.gov (United States)

    Hirwani, C. K.; Biswash, S.; Mehar, K.; Panda, S. K.

    2018-03-01

    In this article, we investigate the thermomechanical deflection characteristics of the debonded composite plate structure using an isoparametric type of higher-order finite element model. The current formulation is derived using higher-order kinematic theory and the displacement variables described as constant along the thickness direction whereas varying nonlinearly for the in-plane directions. The present mid-plane kinematic model mainly obsoletes the use of shear correction factor as in the other lower-order theories. The separation between the adjacent layers is modeled via the sub-laminate technique and the intermittent continuity conditions imposed to avoid the mathematical ill conditions. The governing equation of equilibrium of the damaged plate structure under the combined state of loading are obtained using the variational principle and solved numerically to compute the deflection values. Further, the convergence test has been performed by refining the numbers of elements and validated through comparing the present results with available published values. The usefulness of the proposed formulation has been discussed by solving the different kind of numerical examples including the size, location and position of delamination.

  7. Force-controlled absorption in a fully-nonlinear numerical wave tank

    International Nuclear Information System (INIS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-01-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes

  8. Handbook of numerical analysis

    CERN Document Server

    Ciarlet, Philippe G

    Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas an

  9. Regulation of hippocampal neurogenesis by systemic factors including stress, glucocorticoids, sleep, and inflammation

    NARCIS (Netherlands)

    Lucassen, P.J.; Oomen, C.; van Dam, A.-M.; Czéh, B.; Gage, F.H.; Kempermann, G.; Song, H.

    2008-01-01

    This review summarizes and discusses the regulation of adult neurogenesis and hippocampal cellular plasticity by systemic factors. We focus on the role of stress, glucocorticoids, and related factors such as sleep deprivation and inflammation.

  10. Numerical study of droplet impact and rebound on superhydrophobic surface

    Science.gov (United States)

    Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina

    2017-11-01

    Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).

  11. Numerical and field tests of hydraulic transients at Piva power plant

    International Nuclear Information System (INIS)

    Giljen, Z

    2014-01-01

    In 2009, a sophisticated field investigation was undertaken and later, in 2011, numerical tests were completed, on all three turbine units at the Piva hydroelectric power plant. These tests were made in order to assist in making decisions about the necessary scope of the reconstruction and modernisation of the Piva hydroelectric power plant, a plant originally constructed in the mid-1970s. More specifically, the investigation included several hydraulic conditions including both the start-up and stopping of each unit, load rejection under governor control from different initial powers, as well as emergency shut-down. Numerical results were obtained using the method of characteristics in a representation that included the full flow system and the characteristics of each associated Francis turbine. The impact of load rejection and emergency shut-down on the penstock pressure and turbine speed changes are reported and numerical and experimental results are compared, showing close agreement

  12. Fast sweeping method for the factored eikonal equation

    Science.gov (United States)

    Fomel, Sergey; Luo, Songting; Zhao, Hongkai

    2009-09-01

    We develop a fast sweeping method for the factored eikonal equation. By decomposing the solution of a general eikonal equation as the product of two factors: the first factor is the solution to a simple eikonal equation (such as distance) or a previously computed solution to an approximate eikonal equation. The second factor is a necessary modification/correction. Appropriate discretization and a fast sweeping strategy are designed for the equation of the correction part. The key idea is to enforce the causality of the original eikonal equation during the Gauss-Seidel iterations. Using extensive numerical examples we demonstrate that (1) the convergence behavior of the fast sweeping method for the factored eikonal equation is the same as for the original eikonal equation, i.e., the number of iterations for the Gauss-Seidel iterations is independent of the mesh size, (2) the numerical solution from the factored eikonal equation is more accurate than the numerical solution directly computed from the original eikonal equation, especially for point sources.

  13. Numerical Clifford Analysis for the Non-stationary Schroedinger Equation

    International Nuclear Information System (INIS)

    Faustino, N.; Vieira, N.

    2007-01-01

    We construct a discrete fundamental solution for the parabolic Dirac operator which factorizes the non-stationary Schroedinger operator. With such fundamental solution we construct a discrete counterpart for the Teodorescu and Cauchy-Bitsadze operators and the Bergman projectors. We finalize this paper with convergence results regarding the operators and a concrete numerical example

  14. Teaching numerical methods with IPython notebooks and inquiry-based learning

    KAUST Repository

    Ketcheson, David I.

    2014-01-01

    A course in numerical methods should teach both the mathematical theory of numerical analysis and the craft of implementing numerical algorithms. The IPython notebook provides a single medium in which mathematics, explanations, executable code, and visualizations can be combined, and with which the student can interact in order to learn both the theory and the craft of numerical methods. The use of notebooks also lends itself naturally to inquiry-based learning methods. I discuss the motivation and practice of teaching a course based on the use of IPython notebooks and inquiry-based learning, including some specific practical aspects. The discussion is based on my experience teaching a Masters-level course in numerical analysis at King Abdullah University of Science and Technology (KAUST), but is intended to be useful for those who teach at other levels or in industry.

  15. Patient safety - the role of human factors and systems engineering.

    Science.gov (United States)

    Carayon, Pascale; Wood, Kenneth E

    2010-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety.

  16. Patient Safety: The Role of Human Factors and Systems Engineering

    Science.gov (United States)

    Carayon, Pascale; Wood, Kenneth E.

    2011-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety. PMID:20543237

  17. Numerical stability in problems of linear algebra.

    Science.gov (United States)

    Babuska, I.

    1972-01-01

    Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

  18. Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.

    Science.gov (United States)

    Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula

    2017-12-01

    Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.

  19. Experimental and numerical study of the degradation of radioactive measurements in the filters of airborne radioactive surveillance systems

    International Nuclear Information System (INIS)

    Geryes, Tony

    2009-01-01

    The measurement of radioactivity in the filters of airborne radioactive surveillance systems is a major metrology difficulty due to the fact that the absorption of a radiation in the filter media and the mass of aerosols accumulated distort the nuclear counting response. This thesis focuses on the determination of correction factors for the radioactivity loss in the survey filters. In a first step, radioactive filters representing the atmospheric samples have been prepared using the nuclear test bench ICARE. The experimental study on reference filters provided a database to determine correction factors for various filtration conditions. The second part proposes a new numerical method developed to determine the correction factors. It consists of coupling GeoDict for particles filtration simulations and MCNPX simulations for a transport in matter. The good agreement obtained by comparing the numerical and experimental correction factors has permitted to validate the numerical model

  20. Numerical methods design, analysis, and computer implementation of algorithms

    CERN Document Server

    Greenbaum, Anne

    2012-01-01

    Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book a...

  1. Mathematica with a Numerical Methods Course

    Science.gov (United States)

    Varley, Rodney

    2003-04-01

    An interdisciplinary "Numerical Methods" course has been shared between physics, mathematics and computer science since 1992 at Hunter C. Recently, the lectures and workshops for this course have become formalized and placed on the internet at http://www.ph.hunter.cuny.edu (follow the links "Course Listings and Websites" >> "PHYS385 (Numerical Methods)". Mathematica notebooks for the lectures are available for automatic download (by "double clicking" the lecture icon) for student use in the classroom or at home. AOL (or Netscape/Explorer) can be used provided Mathematica (or the "free" MathReader) has been made a "helper application". Using Mathematica has the virtue that mathematical equations (no LaTex required) can easily be included with the text and Mathematica's graphing is easy to use. Computational cells can be included within the notebook and students may easily modify the calculation to see the result of "what if..." questions. Homework is sent as Mathematica notebooks to the instructor via the internet and the corrected workshops are returned in the same manner. Most exam questions require computational solutions.

  2. On a framework for generating PoD curves assisted by numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Subair, S. Mohamed, E-mail: prajagopal@iitm.ac.in; Agrawal, Shweta, E-mail: prajagopal@iitm.ac.in; Balasubramaniam, Krishnan, E-mail: prajagopal@iitm.ac.in; Rajagopal, Prabhu, E-mail: prajagopal@iitm.ac.in [Indian Institute of Technology Madras, Department of Mechanical Engineering, Chennai, T.N. (India); Kumar, Anish; Rao, Purnachandra B.; Tamanna, Jayakumar [Indira Gandhi Centre for Atomic Research, Metallurgy and Materials Group, Kalpakkam, T.N. (India)

    2015-03-31

    The Probability of Detection (PoD) curve method has emerged as an important tool for the assessment of the performance of NDE techniques, a topic of particular interest to the nuclear industry where inspection qualification is very important. The conventional experimental means of generating PoD curves though, can be expensive, requiring large data sets (covering defects and test conditions), and equipment and operator time. Several methods of achieving faster estimates for PoD curves using physics-based modelling have been developed to address this problem. Numerical modelling techniques are also attractive, especially given the ever-increasing computational power available to scientists today. Here we develop procedures for obtaining PoD curves, assisted by numerical simulation and based on Bayesian statistics. Numerical simulations are performed using Finite Element analysis for factors that are assumed to be independent, random and normally distributed. PoD curves so generated are compared with experiments on austenitic stainless steel (SS) plates with artificially created notches. We examine issues affecting the PoD curve generation process including codes, standards, distribution of defect parameters and the choice of the noise threshold. We also study the assumption of normal distribution for signal response parameters and consider strategies for dealing with data that may be more complex or sparse to justify this. These topics are addressed and illustrated through the example case of generation of PoD curves for pulse-echo ultrasonic inspection of vertical surface-breaking cracks in SS plates.

  3. Practical integrated simulation systems for coupled numerical simulations in parallel

    Energy Technology Data Exchange (ETDEWEB)

    Osamu, Hazama; Zhihong, Guo [Japan Atomic Energy Research Inst., Centre for Promotion of Computational Science and Engineering, Tokyo (Japan)

    2003-07-01

    In order for the numerical simulations to reflect 'real-world' phenomena and occurrences, incorporation of multidisciplinary and multi-physics simulations considering various physical models and factors are becoming essential. However, there still exist many obstacles which inhibit such numerical simulations. For example, it is still difficult in many instances to develop satisfactory software packages which allow for such coupled simulations and such simulations will require more computational resources. A precise multi-physics simulation today will require parallel processing which again makes it a complicated process. Under the international cooperative efforts between CCSE/JAERI and Fraunhofer SCAI, a German institute, a library called the MpCCI, or Mesh-based Parallel Code Coupling Interface, has been implemented together with a library called STAMPI to couple two existing codes to develop an 'integrated numerical simulation system' intended for meta-computing environments. (authors)

  4. Representation of Numerical and Non-Numerical Order in Children

    Science.gov (United States)

    Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco

    2012-01-01

    The representation of numerical and non-numerical ordered sequences was investigated in children from preschool to grade 3. The child's conception of how sequence items map onto a spatial scale was tested using the Number-to-Position task (Siegler & Opfer, 2003) and new variants of the task designed to probe the representation of the alphabet…

  5. Cubic spline numerical solution of an ablation problem with convective backface cooling

    Science.gov (United States)

    Lin, S.; Wang, P.; Kahawita, R.

    1984-08-01

    An implicit numerical technique using cubic splines is presented for solving an ablation problem on a thin wall with convective cooling. A non-uniform computational mesh with 6 grid points has been used for the numerical integration. The method has been found to be computationally efficient, providing for the care under consideration of an overall error of about 1 percent. The results obtained indicate that the convective cooling is an important factor in reducing the ablation thickness.

  6. Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis.

    Science.gov (United States)

    Eriksson, Mikael; Hardell, Lennart; Carlberg, Michael; Akerman, Måns

    2008-10-01

    We report a population based case-control study of exposure to pesticides as risk factor for non-Hodgkin lymphoma (NHL). Male and female subjects aged 18-74 years living in Sweden were included during December 1, 1999, to April 30, 2002. Controls were selected from the national population registry. Exposure to different agents was assessed by questionnaire. In total 910 (91 %) cases and 1016 (92%) controls participated. Exposure to herbicides gave odds ratio (OR) 1.72, 95% confidence interval (CI) 1.18-2.51. Regarding phenoxyacetic acids highest risk was calculated for MCPA; OR 2.81, 95% CI 1.27-6.22, all these cases had a latency period >10 years. Exposure to glyphosate gave OR 2.02, 95% CI 1.10-3.71 and with >10 years latency period OR 2.26, 95% CI 1.16-4.40. Insecticides overall gave OR 1.28, 95% CI 0.96-1.72 and impregnating agents OR 1.57, 95% CI 1.07-2.30. Results are also presented for different entities of NHL. In conclusion our study confirmed an association between exposure to phenoxyacetic acids and NHL and the association with glyphosate was considerably strengthened.

  7. Simple Numerical Simulation of Strain Measurement

    Science.gov (United States)

    Tai, H.

    2002-01-01

    By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.

  8. Practical design of magnetostatic structure using numerical simulation

    CERN Document Server

    Wang, Qiuliang

    2013-01-01

    Covers the practical numerical method for the analysis and design of magnets Extensively covers the magnet design and computation aspects from theories to practical applications, emphasizing design methods of practical structures such as superconducting, electromagnetic and permanent magnet for use in various scientific instruments, industrial processing, biomedicine and special electrical equipments. The computations cover a wide range of numerical techniques and analytical derivation to efficiently provide solutions to complicated problems that are often encountered in practice, where simple analytical calculations are no longer adequate. Chapters include: Introduction of Magnet Technology, Magnetostatic Equation for the Magnet Structure, Finite Element Analysis for Magnetostatic Field, Integral Method for Magnetostatic Field, Numerical Method of Solenoid Coils Design, Series Analysis of Axially Symmetric Magnetic Field, Magnets with High Magnetic Field and High Homogeneity, Permanent Magnet and its App...

  9. Numerical Modelling and Measurement in a Test Secondary Settling Tank

    DEFF Research Database (Denmark)

    Dahl, C.; Larsen, Torben; Petersen, O.

    1994-01-01

    sludge. Phenomena as free and hindered settling and the Bingham plastic characteristic of activated sludge suspensions are included in the numerical model. Further characterisation and test tank experiments are described. The characterisation experiments were designed to measure calibration parameters...... for model description of settling and density differences. In the test tank experiments, flow velocities and suspended sludge concentrations were measured with different tank inlet geomotry and hydraulic and sludge loads. The test tank experiments provided results for the calibration of the numerical model......A numerical model and measurements of flow and settling in activated sludge suspension is presented. The numerical model is an attempt to describe the complex and interrelated hydraulic and sedimentation phenomena by describing the turbulent flow field and the transport/dispersion of suspended...

  10. Emerging opportunities in enterprise integration with open architecture computer numerical controls

    Science.gov (United States)

    Hudson, Christopher A.

    1997-01-01

    The shift to open-architecture machine tool computer numerical controls is providing new opportunities for metal working oriented manufacturers to streamline the entire 'art to part' process. Production cycle times, accuracy, consistency, predictability and process reliability are just some of the factors that can be improved, leading to better manufactured product at lower costs. Open architecture controllers are allowing manufacturers to apply general purpose software and hardware tools increase where previous approaches relied on proprietary and unique hardware and software. This includes DNC, SCADA, CAD, and CAM, where the increasing use of general purpose components is leading to lower cost system that are also more reliable and robust than the past proprietary approaches. In addition, a number of new opportunities exist, which in the past were likely impractical due to cost or performance constraints.

  11. Vascular and perivascular niches, but not the osteoblastic niche, are numerically restored following allogeneic hematopoietic stem cell transplantation in patients with aplastic anemia.

    Science.gov (United States)

    Wu, Liangliang; Mo, Wenjian; Zhang, Yuping; Zhou, Ming; Li, Yumiao; Zhou, Ruiqing; Xu, Shiling; Pan, Shiyi; Deng, Hui; Mao, Ping; Wang, Shunqing

    2017-07-01

    Bone marrow (BM) niches, including the osteoblastic, vascular, and perivascular niches, are numerically impaired in patients with aplastic anemia (AA). It remains unclear whether these niches are numerically restored in AA patients after allogenic hematopoietic stem cell transplantation (allo-HSCT). To investigate changes in BM niches, we monitored 52 patients with AA who had undergone allo-HSCT and performed immunohistochemical studies of BM niches using antibodies against CD34, CD146, and osteopontin. After allo-HSCT, patients with AA exhibited a remarkable increase in the number of cellular elements in the BM niches, including the vascular and perivascular cells. However, no significant differences in endosteal cells were detected. We explored the cause of this restoration by analyzing the origin of BM mesenchymal stem cells (BM-MSCs) and the expression of cytokines in BM plasma. STR-PCR revealed that the BM-MSCs were derived from the host, not the donor. In addition, significantly elevated levels of vascular endothelial growth factor (VEGF) were found after allo-HSCT. Our data indicates that vascular and perivascular niches are numerically restored, but the endosteal niche remains numerically impaired in patients with AA after allo-HSCT, and that levels of VEGF, but not donor-derived BM-MSCs, may correlate with the restoration of BM niches.

  12. Numerical methods in finance and economics a MATLAB-based introduction

    CERN Document Server

    Brandimarte, Paolo

    2006-01-01

    A state-of-the-art introduction to the powerful mathematical and statistical tools used in the field of financeThe use of mathematical models and numerical techniques is a practice employed by a growing number of applied mathematicians working on applications in finance. Reflecting this development, Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition bridges the gap between financial theory and computational practice while showing readers how to utilize MATLAB?--the powerful numerical computing environment--for financial applications.The author provides an essential foundation in finance and numerical analysis in addition to background material for students from both engineering and economics perspectives. A wide range of topics is covered, including standard numerical analysis methods, Monte Carlo methods to simulate systems affected by significant uncertainty, and optimization methods to find an optimal set of decisions.Among this book''s most outstanding features is the...

  13. Numerical problems with the Pascal triangle in moment computation

    Czech Academy of Sciences Publication Activity Database

    Kautsky, J.; Flusser, Jan

    2016-01-01

    Roč. 306, č. 1 (2016), s. 53-68 ISSN 0377-0427 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : moment computation * Pascal triangle * appropriate polynomial basis * numerical problems Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.357, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0459096.pdf

  14. Role of vegetation in formation of radiation fog: A numerical study

    Czech Academy of Sciences Publication Activity Database

    Potužníková, Kateřina; Sedlák, Pavel

    2004-01-01

    Roč. 23, Suppl. 2 (2004), s. 39-45 ISSN 1335-342X Institutional research plan: CEZ:AV0Z3042911 Keywords : radiation fog * vegetation cover * numerical study Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.078, year: 2004

  15. Mathematical and numerical foundations of turbulence models and applications

    CERN Document Server

    Chacón Rebollo, Tomás

    2014-01-01

    With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...

  16. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    Energy Technology Data Exchange (ETDEWEB)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; Wang, John Yilin

    2017-04-01

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influenced by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.

  17. Numerical Simulation of Particle Motion in a Curved Channel

    Science.gov (United States)

    Liu, Yi; Nie, Deming

    2018-01-01

    In this work the lattice Boltzmann method (LBM) is used to numerically study the motion of a circular particle in a curved channel at intermediate Reynolds numbers (Re). The effects of the Reynolds number and the initial particle position are taken into account. Numerical results include the streamlines, particle trajectories and final equilibrium positions. It has been found that the particle is likely to migrate to a similar equilibrium position irrespective of its initial position when Re is large.

  18. On the theories, techniques, and computer codes used in numerical reactor criticality and burnup calculations

    International Nuclear Information System (INIS)

    El-Osery, I.A.

    1981-01-01

    The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented

  19. Efficient numerical simulation of heat storage in subsurface georeservoirs

    Science.gov (United States)

    Boockmeyer, A.; Bauer, S.

    2015-12-01

    The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and

  20. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    Science.gov (United States)

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  1. Analysis of factors influencing the bond strength in roll bonding processes

    Science.gov (United States)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  2. Numerical fluid flow and heat transfer calculations on multiprocessor systems

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, G.A.; Malen, T.E.; Kuusela, P.

    1989-01-01

    The first part of the report presents the basic principles of parallel processing, and factors influencing tbe efficiency of practical applications are discussed. In a multiprocessor computer, different parts of the program code are executed in parallel, i.e. simultaneous with respect to time, on different processors, and thus it becomes possible to decrease the overall computation time by a factor, which in the ideal case is equal to the number of processors. The application study starts from the numerical solution of the twodimesional Laplace equation, which describes the steady heat conduction in a solid plate and advances through the solution of the three dimensional Laplace equation to the case of study laminar fluid flow in a twodimensional box at Reynolds numbers up to 20. Hereby the stream function-vorticity method is first applied and the SIMPLER method. The conventional (sequential) numerical algoritms for these fluid flow and heat transfer problems are found not to be ideally suited for conversion to parallel computation, but sped-up ratios considerably above 50 % of the theoretical maximum are regularly achieved in the runs. The numerical procedures we coded in the OCCAM-2 language and the test runs were performed at who Akademi on the imperimental HATHI-computers containing 16 T4l4 and 100 INMOS T800 transputers respectively.

  3. Numerical fluid flow and heat transfer calculations on multiprocessor systems

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, G.A.; Malen, T.E.; Kuusela, P.

    1989-12-31

    The first part of the report presents the basic principles of parallel processing, and factors influencing tbe efficiency of practical applications are discussed. In a multiprocessor computer, different parts of the program code are executed in parallel, i.e. simultaneous with respect to time, on different processors, and thus it becomes possible to decrease the overall computation time by a factor, which in the ideal case is equal to the number of processors. The application study starts from the numerical solution of the twodimesional Laplace equation, which describes the steady heat conduction in a solid plate and advances through the solution of the three dimensional Laplace equation to the case of study laminar fluid flow in a twodimensional box at Reynolds numbers up to 20. Hereby the stream function-vorticity method is first applied and the SIMPLER method. The conventional (sequential) numerical algoritms for these fluid flow and heat transfer problems are found not to be ideally suited for conversion to parallel computation, but sped-up ratios considerably above 50 % of the theoretical maximum are regularly achieved in the runs. The numerical procedures we coded in the OCCAM-2 language and the test runs were performed at who Akademi on the imperimental HATHI-computers containing 16 T4l4 and 100 INMOS T800 transputers respectively.

  4. Cut points on 0-10 numeric rating scales for symptoms included in the edmonton symptom assessment scale in cancer patients: A systematic review

    NARCIS (Netherlands)

    W.H. Oldenmenger (Wendy); P.J. de Raaf (Pleun); C. de Klerk (Cora); C.C.D. van der Rijt (Carin)

    2013-01-01

    textabstractContext: To improve the management of cancer-related symptoms, systematic screening is necessary, often performed by using 0-10 numeric rating scales. Cut points are used to determine if scores represent clinically relevant burden. Objectives: The aim of this systematic review was to

  5. Double-gate junctionless transistor model including short-channel effects

    International Nuclear Information System (INIS)

    Paz, B C; Pavanello, M A; Ávila-Herrera, F; Cerdeira, A

    2015-01-01

    This work presents a physically based model for double-gate junctionless transistors (JLTs), continuous in all operation regimes. To describe short-channel transistors, short-channel effects (SCEs), such as increase of the channel potential due to drain bias, carrier velocity saturation and mobility degradation due to vertical and longitudinal electric fields, are included in a previous model developed for long-channel double-gate JLTs. To validate the model, an analysis is made by using three-dimensional numerical simulations performed in a Sentaurus Device Simulator from Synopsys. Different doping concentrations, channel widths and channel lengths are considered in this work. Besides that, the series resistance influence is numerically included and validated for a wide range of source and drain extensions. In order to check if the SCEs are appropriately described, besides drain current, transconductance and output conductance characteristics, the following parameters are analyzed to demonstrate the good agreement between model and simulation and the SCEs occurrence in this technology: threshold voltage (V TH ), subthreshold slope (S) and drain induced barrier lowering. (paper)

  6. Numerical and adaptive grid methods for ideal magnetohydrodynamics

    Science.gov (United States)

    Loring, Burlen

    2008-02-01

    In this thesis numerical finite difference methods for ideal magnetohydrodynamics(MHD) are investigated. A review of the relevant physics, essential for interpreting the results of numerical solutions and constructing validation cases, is presented. This review includes a discusion of the propagation of small amplitude waves in the MHD system as well as a thorough discussion of MHD shocks, contacts and rarefactions and how they can be piece together to obtain a solutions to the MHD Riemann problem. Numerical issues relevant to the MHD system such as: the loss of nonlinear numerical stability in the presence of discontinuous solutions, the introduction of spurious forces due to the growth of the divergence of the magnetic flux density, the loss of pressure positivity, and the effects of non-conservative numerical methods are discussed, along with the practical approaches which can be used to remedy or minimize the negative consequences of each. The use of block structured adaptive mesh refinement is investigated in the context of a divergence free MHD code. A new method for conserving magnetic flux across AMR grid interfaces is developed and a detailed discussion of our implementation of this method using the CHOMBO AMR framework is given. A preliminary validation of the new method for conserving magnetic flux density across AMR grid interfaces illustrates that the method works. Finally a number of code validation cases are examined spurring a discussion of the strengths and weaknesses of the numerics employed.

  7. Factors Associated with Binge Eating Behavior among Malaysian Adolescents

    OpenAIRE

    Gan, Wan Ying; Mohamad, Normasliana; Law, Leh Shii

    2018-01-01

    Although there are numerous studies on binge eating behavior in the Western countries, studies on this behavior in Malaysia are still limited. Therefore, this cross-sectional study aimed to determine the risk factors associated with binge eating behavior among adolescents in Malaysia. The study included 356 adolescents (42.7% males and 57.3% females), aged 13 to 16 years. They completed a self-administered questionnaire on demographic and socioeconomic backgrounds, frequency of family meals, ...

  8. Summary of Numerical Modeling for Underground Nuclear Test Monitoring Symposium

    International Nuclear Information System (INIS)

    Taylor, S.R.; Kamm, J.R.

    1993-01-01

    This document contains the Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium held in Durango, Colorado on March 23-25, 1993. The symposium was sponsored by the Office of Arms Control and Nonproliferation of the United States Department of Energy and hosted by the Source Region Program of Los Alamos National Laboratory. The purpose of the meeting was to discuss state-of-the-art advances in numerical simulations of nuclear explosion phenomenology for the purpose of test ban monitoring. Another goal of the symposium was to promote discussion between seismologists and explosion source-code calculators. Presentation topics include the following: numerical model fits to data, measurement and characterization of material response models, applications of modeling to monitoring problems, explosion source phenomenology, numerical simulations and seismic sources

  9. Experimental and Numerical Analyses of New Massive Wooden Shear-Wall Systems

    Directory of Open Access Journals (Sweden)

    Luca Pozza

    2014-07-01

    Full Text Available Three innovative massive wooden shear-wall systems (Cross-Laminated-Glued Wall, Cross-Laminated-Stapled Wall, Layered Wall with dovetail inserts were tested and their structural behaviour under seismic action was assessed with numerical simulations. The wall specimens differ mainly in the method used to assemble the layers of timber boards composing them. Quasi-static cyclic loading tests were carried out and then reproduced with a non-linear numerical model calibrated on the test results to estimate the most appropriate behaviour factor for each system. Non-linear dynamic simulations of 15 artificially generated seismic shocks showed that these systems have good dissipative capacity when correctly designed and that they can be assigned to the medium ductility class of Eurocode 8. This work also shows the influence of deformations in wooden panels and base connectors on the behaviour factor and dissipative capacity of the system.

  10. Solutions manual to accompany An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2014-01-01

    A solutions manual to accompany An Introduction to Numerical Methods and Analysis, Second Edition An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, sp

  11. Spectral factorization using the delta operator

    DEFF Research Database (Denmark)

    Rostgaard, Morten; Poulsen, Niels Kjølstad; Ravn, Ole

    1994-01-01

    In recent years many papers have been published abouth the gamma-operator, mostly caused by the better numerical properties and the rapprochement between continuous and discrete time. A major problem within the LQG-design of a delta-based input-output relation has been how to spectral-factorize...... solution to the spectral factorization problem. The key idea is to use the gamma-operator resembled by its behavior to the differential operator....... in an efficient way. The discrete-time method of Kuccera will not be applied since numerical word-length characteristics will be poor for fast sampling rates. In this paper a new approach is considered. A new gamma-operator (Tustin operator) is introduced, in order to make an iterative and numerical stable...

  12. Numerical simulation of GEW equation using RBF collocation method

    Directory of Open Access Journals (Sweden)

    Hamid Panahipour

    2012-08-01

    Full Text Available The generalized equal width (GEW equation is solved numerically by a meshless method based on a global collocation with standard types of radial basis functions (RBFs. Test problems including propagation of single solitons, interaction of two and three solitons, development of the Maxwellian initial condition pulses, wave undulation and wave generation are used to indicate the efficiency and accuracy of the method. Comparisons are made between the results of the proposed method and some other published numerical methods.

  13. Numerical distance protection

    CERN Document Server

    Ziegler, Gerhard

    2011-01-01

    Distance protection provides the basis for network protection in transmission systems and meshed distribution systems. This book covers the fundamentals of distance protection and the special features of numerical technology. The emphasis is placed on the application of numerical distance relays in distribution and transmission systems.This book is aimed at students and engineers who wish to familiarise themselves with the subject of power system protection, as well as the experienced user, entering the area of numerical distance protection. Furthermore it serves as a reference guide for s

  14. Disconnected electromagnetic form factors

    International Nuclear Information System (INIS)

    Wilcox, Walter

    2001-01-01

    Preliminary results of a calculation of disconnected nucleon electromagnetic factors factors on the lattice are presented. The implementation of the numerical subtraction scheme is outlined. A comparison of results for electric and magnetic disconnected form factors on two lattice sizes with those of the Kentucky group is presented. Unlike previous results, the results found in this calculation are consistent with zero in these sectors

  15. Numerical methods using Matlab

    CERN Document Server

    Lindfield, George

    2012-01-01

    Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of use

  16. On Numerical Stability in Large Scale Linear Algebraic Computations

    Czech Academy of Sciences Publication Activity Database

    Strakoš, Zdeněk; Liesen, J.

    2005-01-01

    Roč. 85, č. 5 (2005), s. 307-325 ISSN 0044-2267 R&D Projects: GA AV ČR 1ET400300415 Institutional research plan: CEZ:AV0Z10300504 Keywords : linear algebraic systems * eigenvalue problems * convergence * numerical stability * backward error * accuracy * Lanczos method * conjugate gradient method * GMRES method Subject RIV: BA - General Mathematics Impact factor: 0.351, year: 2005

  17. The numerical solution of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.; Todd, A.M.M.

    1986-01-01

    The numerics of a numerical code called GARFIELD (Grumman Aerospace RF fIELD code) designed to calculate the three-dimensional structure of ICRF fields in axisymmetric mirrors is presented. The code solves the electromagnetic wave equation for the electric field using a cold plasma dispersion relation with a small collision term to simulate absorption. The full wave solution including E.B is computed. The fields are Fourier analyzed in the poloidal direction and solved on a grid in the axial and radial directions. A two-dimensional equilibrium can be used as the source of equilibrium data. This allows us to extend previous studies of ICRF wave propagation and absorption in mirrors to include the effect of axial variation of the magnetic field and density. (orig.)

  18. A numerical library in Java for scientists and engineers

    CERN Document Server

    Lau, Hang T

    2003-01-01

    At last researchers have an inexpensive library of Java-based numeric procedures for use in scientific computation. The first and only book of its kind, A Numeric Library in Java for Scientists and Engineers is a translation into Java of the library NUMAL (NUMerical procedures in ALgol 60). This groundbreaking text presents procedural descriptions for linear algebra, ordinary and partial differential equations, optimization, parameter estimation, mathematical physics, and other tools that are indispensable to any dynamic research group. The book offers test programs that allow researchers to execute the examples provided; users are free to construct their own tests and apply the numeric procedures to them in order to observe a successful computation or simulate failure. The entry for each procedure is logically presented, with name, usage parameters, and Java code included. This handbook serves as a powerful research tool, enabling the performance of critical computations in Java. It stands as a cost-effi...

  19. Experimental and numerical investigations of plasma turbulence

    International Nuclear Information System (INIS)

    Huld, T.

    1990-07-01

    Turbulence in plasmas has been investigated experimentally and numerically. The work described here is divided into four parts: - experiments on edge turbulence in a single-ended Q-machine. Convective cells are investigated in detail together with the anomalous transport caused by them. - Numerical simulation of the edge turbulence in the Q-machine. This simulation uses spectral methods to solve Euler's equation in a cylindrical geometry. - Measurements on wave propagation and the ion beam instability in an unmagnetized plasma with an ion beam with a finite diameter. - Development of software for the automated acquisition of data. This program can control an experiment as well as make measurements. It also include a graphics part. (author) 66 ills., 47 refs

  20. Numerical prediction of green water loads on ships

    DEFF Research Database (Denmark)

    Nielsen, Kristian Bendix

    2003-01-01

    The main objective of the present study has been to investigate problems related to shipping green water on deck of a floating vessel by use of numerical methods. A Navier-Stokes solver with a free surface capturing scheme, similar to the VOF method (Hirt and Nichols, 1981) has been applied...... green water problem with relative ship motion included. Great effoort has been made to validate and verify the numerical method and all computations have been verified by use of several computational grids with increasing resolution and validated by comparison to experimental data. Results from the dam...

  1. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method

    Directory of Open Access Journals (Sweden)

    Jun He

    2018-05-01

    Full Text Available One significant factor influencing geothermal energy exploitation is the variation of the mechanical properties of rock in high temperature environments. Since rock is typically a heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient temperature changes, which can greatly influence the geothermal energy exploitation. A numerical method based on the numerical manifold method (NMM is developed in this study to simulate the thermo-elastic fracturing of rocklike granular materials. The Voronoi tessellation is incorporated into the pre-processor of NMM to represent the grain structure. A contact-based heat transfer model is developed to reflect heat interaction among grains. Based on the model, the transient thermal conduction algorithm for granular materials is established. To simulate the cohesion effects among grains and the fracturing process between grains, a damage-based contact fracture model is developed to improve the contact algorithm of NMM. In the developed numerical method, the heat interaction among grains as well as the heat transfer inside each solid grain are both simulated. Additionally, as damage evolution and fracturing at grain interfaces are also considered, the developed numerical method is applicable to simulate the geothermal-related thermal fracturing process.

  2. Numerical model for the thermal behavior of thermocline storage tanks

    Science.gov (United States)

    Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.

    2018-03-01

    Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.

  3. Numerical implementation of multiple peeling theory and its application to spider web anchorages.

    Science.gov (United States)

    Brely, Lucas; Bosia, Federico; Pugno, Nicola M

    2015-02-06

    Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations.

  4. A Latent Factor Analysis of Working Memory Measures Using Large-Scale Data

    Directory of Open Access Journals (Sweden)

    Otto Waris

    2017-06-01

    Full Text Available Working memory (WM is a key cognitive system that is strongly related to other cognitive domains and relevant for everyday life. However, the structure of WM is yet to be determined. A number of WM models have been put forth especially by factor analytical studies. In broad terms, these models vary by their emphasis on WM contents (e.g., visuospatial, verbal vs. WM processes (e.g., maintenance, updating as critical, dissociable elements. Here we conducted confirmatory and exploratory factor analyses on a broad set of WM tasks, half of them numerical-verbal and half of them visuospatial, representing four commonly used task paradigms: simple span, complex span, running memory, and n-back. The tasks were selected to allow the detection of both content-based (visuospatial, numerical-verbal and process-based (maintenance, updating divisions. The data were collected online which allowed the recruitment of a large and demographically diverse sample of adults (n = 711. Both factor analytical methods pointed to a clear division according to task content for all paradigms except n-back, while there was no indication for a process-based division. Besides the content-based division, confirmatory factor analyses supported a model that also included a general WM factor. The n-back tasks had the highest loadings on the general factor, suggesting that this factor reflected high-level cognitive resources such as executive functioning and fluid intelligence that are engaged with all WM tasks, and possibly even more so with the n-back. Together with earlier findings that indicate high variability of process-based WM divisions, we conclude that the most robust division of WM is along its contents (visuospatial vs. numerical-verbal, rather than along its hypothetical subprocesses.

  5. Numerical investigation of heat transfer and friction factor characteristics in a circular tube fitted with V-cut twisted tape inserts.

    Science.gov (United States)

    Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar

    2013-01-01

    Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.

  6. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  7. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    Science.gov (United States)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  8. Numerical expressions for the computation of coincidence-summing correction factors in gamma-ray spectrometry with HPGe detectors

    International Nuclear Information System (INIS)

    Rizzo, S.; Tomarchio, E.

    2008-01-01

    Full text: The analytical relations used to compute the coincidence-summing effects on spectral response of Ge semiconductor detectors are quite complex and involve full-energy peak and total efficiencies. For point-sources, a general method for calculating the correction factors for gamma ray coincidences has been formulated by Andreev et al. and used by Schima and Hoppes to obtain γ-X K coincidence correction expressions for 17 nuclides. However, because the higher-order terms are neglected, the expressions supplied do not give reliable results in the case of short sample-detector distances. Using the formulae given by Morel et al.[3] and Lepy et al.[4], we have developed a computer program able to get numerical expressions to compute γ-γ e γ-X K coincidence summing corrections for point sources. Only full-energy peak and total efficiencies are needed. Alternatively, values of peak-to-total ratio can be introduced. For extended sources, the same expressions can be always considered with the introduction of 'effective efficiencies' as defined by Arnold and Sima, i.e. an average over the source volume of the spatial distribution of the elementary photon source total efficiency, weighted by the corresponding peak efficiency. We have considered the most used calibration radioisotopes as well as fission products, activation products and environmental isotopes. All decay data were taken from the most recent volumes of 'Table of Radionuclides', CEA Monographie BIPM-5 and a suitable matrix representation of a decay scheme was adopted. For the sake of brevity, we provide for each nuclide a set of expressions for the more intense gamma emissions, considered sufficient for most applications. However, numerical expressions are available for all the stored gamma transitions and can be obtained on request. As examples of the use of the expressions, the evaluation of correction values for point sources and a particulate sample reduced to a 6x6x0.7 cm packet - with reference

  9. Numerical Investigations of Moisture Distribution in a Selected Anisotropic Soil Medium

    Science.gov (United States)

    Iwanek, M.

    2018-01-01

    The moisture of soil profile changes both in time and space and depends on many factors. Changes of the quantity of water in soil can be determined on the basis of in situ measurements, but numerical methods are increasingly used for this purpose. The quality of the results obtained using pertinent software packages depends on appropriate description and parameterization of soil medium. Thus, the issue of providing for the soil anisotropy phenomenon gains a big importance. Although anisotropy can be taken into account in many numerical models, isotopic soil is often assumed in the research process. However, this assumption can be a reason for incorrect results in the simulations of water changes in soil medium. In this article, results of numerical simulations of moisture distribution in the selected soil profile were presented. The calculations were conducted assuming isotropic and anisotropic conditions. Empirical verification of the results obtained in the numerical investigations indicated statistical essential discrepancies for the both analyzed conditions. However, better fitting measured and calculated moisture values was obtained for the case of providing for anisotropy in the simulation model.

  10. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  11. A bibliography on parallel and vector numerical algorithms

    Science.gov (United States)

    Ortega, James M.; Voigt, Robert G.; Romine, Charles H.

    1988-01-01

    This is a bibliography on numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are also listed.

  12. Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients

    Energy Technology Data Exchange (ETDEWEB)

    Evoli, Carmelo [Gran Sasso Science Institute, viale Francesco Crispi 7, 67100 L' Aquila (AQ) (Italy); Gaggero, Daniele [GRAPPA Institute, University of Amsterdam, Science Park 904, 1090 GL Amsterdam (Netherlands); Vittino, Andrea [Physik-Department T30d, Technische Universität München, James-Franck-Straße 1, D-85748 Garching (Germany); Bernardo, Giuseppe Di [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85740 Garching bei München (Germany); Mauro, Mattia Di [W.W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ligorini, Arianna [Instytut Fizyki J\\cadrowej—PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Ullio, Piero [Scuola Internazionale di Studi Superiori Avanzati, via Bonomea 265, 34136 Trieste (Italy); Grasso, Dario, E-mail: carmelo.evoli@gssi.infn.it, E-mail: d.gaggero@uva.nl, E-mail: andrea.vittino@tum.de, E-mail: bernardo@mpa-garching.mpg.de, E-mail: mdimauro@slac.stanford.edu, E-mail: arianna.ligorini@ifj.edu.pl, E-mail: piero.ullio@sissa.it, E-mail: dario.grasso@pi.infn.it [INFN and Dipartimento di Fisica ' ' E. Fermi' ' , Pisa University, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2017-02-01

    We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed to reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.

  13. Merging of coronal and heliospheric numerical two dimensional MHD models

    Czech Academy of Sciences Publication Activity Database

    Odstrčil, Dušan; Linker, J. A.; Lionello, R.; Mikic, Z.; Riley, P.; Pizzo, J. V.; Luhmann, J. G.

    2002-01-01

    Roč. 107, A12 (2002), s. SSH14-1 - SSH14-11 ISSN 0148-0227 R&D Projects: GA AV ČR IAA3003003 Institutional research plan: CEZ:AV0Z1003909 Keywords : coronal mass ejection * interplanetary shock * numerical MHD simulation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.245, year: 2002

  14. A fast numerical test of multivariate polynomial positiveness with applications

    Czech Academy of Sciences Publication Activity Database

    Augusta, Petr; Augustová, Petra

    2018-01-01

    Roč. 54, č. 2 (2018), s. 289-303 ISSN 0023-5954 Institutional support: RVO:67985556 Keywords : stability * multidimensional systems * positive polynomials * fast Fourier transforms * numerical algorithm Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 0.379, year: 2016 https://www.kybernetika.cz/content/2018/2/289/paper.pdf

  15. Influencing factors of the 6-min walk distance in adult Arab populations: a literature review.

    Science.gov (United States)

    Joobeur, Samah; Rouatbi, Sonia; Latiri, Imed; Sfaxi, Raoudha; Ben Saad, Helmi

    2016-05-01

    Background Walk tests, especially the 6-min walk-test (6MWT), are commonly used in order to evaluate submaximal exercise capacity. The primary outcome of the 6MWT is the 6-min walk-distance (6MWD). Numerous demographic, physiological and anthropometric factors can influence the 6MWD in healthy adults. Objective The purpose of the present review is to highlight and discuss the 6MWD influencing factors in healthy of the healthy adult Arab populations. Methods It is a review including a literature search, from 1970 to September 31th 2015 using the PubMed, the Science Direct databases and the World Wide Web on Google search engine. Reference lists of retrieved English/French articles were searched for any additional references. Results Six studies, conducted in Tunisia (n=2), Saudi Arabia (n=3) and Algeria (n=1) were included. All studies were conducted according to the 2002-American-thoracic-society guidelines for the 6MWT. In addition to anthropometric data (sex, age, height, weight, body mass index, lean mass), the following data were recognized as 6MWD influencing factors: schooling and socioeconomic levels, urban origin, parity, physical activity score or status, metabolic equivalent task for moderate activity, spirometric data, end-walk heart-rate, resting diastolic blood pressure, dyspnoea Borg value and niqab-wearing. Conclusion The 6MWD influencing factors in adult Arab populations are numerous and include some specific predictors such as parity, physical activity level and niqab-wearing.

  16. FINAL REPORT (MILESTONE DATE 9/30/11) FOR SUBCONTRACT NO. B594099 NUMERICAL METHODS FOR LARGE-SCALE DATA FACTORIZATION

    Energy Technology Data Exchange (ETDEWEB)

    De Sterck, H

    2011-10-18

    The following work has been performed by PI Hans De Sterck and graduate student Manda Winlaw for the required tasks 1-5 (as listed in the Statement of Work). Graduate student Manda Winlaw has visited LLNL January 31-March 11, 2011 and May 23-August 19, 2010, working with Van Henson and Mike O'Hara on non-negative matrix factorizations (NMF). She has investigated the dense subgraph clustering algorithm from 'Finding Dense Subgraphs for Sparse Undirected, Directed, and Bipartite Graphs' by Chen and Saad, testing this method on several term-document matrices and adapting it to cluster based on the rank of the subgraphs instead of the density. Manda Winlaw was awarded a first prize in the annual LLNL summer student poster competition for a poster on her NMF research. PI Hans De Sterck has developed a new adaptive algebraic multigrid algorithm for computing a few dominant or minimal singular triplets of sparse rectangular matrices. This work builds on adaptive algebraic multigrid methods that were further developed by the PI and collaborators (including Sanders and Henson) for Markov chains. The method also combines and extends existing multigrid algorithms for the symmetric eigenproblem. The PI has visited LLNL February 22-25, 2011, and has given a CASC seminar 'Algebraic Multigrid for the Singular Value Problem' on this work on February 23, 2011. During his visit, he has discussed this work and related topics with Van Henson, Geoffrey Sanders, Panayot Vassilevski, and others. He has tested the algorithm on PDE matrices and on a term-document matrix, with promising initial results. Manda Winlaw has also started to work, with O'Hara, on estimating probability distributions over undirected graph edges. The goal is to estimate probabilistic models from sets of undirected graph edges for the purpose of prediction, anomaly detection and support to supervised learning. Graduate student Manda Winlaw is writing a paper on the results obtained with

  17. Massive three-loop form factor in the planar limit

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes [PRISMA Cluster of Excellence, Johannes Gutenberg University,Staudingerweg 9, 55099 Mainz (Germany); Smirnov, Alexander V. [Research Computing Center, Moscow State University,119991 Moscow (Russian Federation); Smirnov, Vladimir A. [Skobeltsyn Institute of Nuclear Physics of Moscow State University,119991 Moscow (Russian Federation); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),Wolfgang-Gaede Straße 1, 76128 Karlsruhe (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),Wolfgang-Gaede Straße 1, 76128 Karlsruhe (Germany)

    2017-01-17

    We compute the three-loop QCD corrections to the massive quark-anti-quark-photon form factors F{sub 1} and F{sub 2} in the large-N{sub c} limit. The analytic results are expressed in terms of Goncharov polylogarithms. This allows for a straightforward numerical evaluation. We also derive series expansions, including power suppressed terms, for three kinematic regions corresponding to small and large invariant masses of the photon momentum, and small velocities of the heavy quarks.

  18. Hybrid RANS-LES using high order numerical methods

    Science.gov (United States)

    Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael

    2017-11-01

    Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  19. Numerical analysis

    CERN Document Server

    Brezinski, C

    2012-01-01

    Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<

  20. Numerical and symbolic scientific computing

    CERN Document Server

    Langer, Ulrich

    2011-01-01

    The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from

  1. Warranty claim analysis considering human factors

    International Nuclear Information System (INIS)

    Wu Shaomin

    2011-01-01

    Warranty claims are not always due to product failures. They can also be caused by two types of human factors. On the one hand, consumers might claim warranty due to misuse and/or failures caused by various human factors. Such claims might account for more than 10% of all reported claims. On the other hand, consumers might not be bothered to claim warranty for failed items that are still under warranty, or they may claim warranty after they have experienced several intermittent failures. These two types of human factors can affect warranty claim costs. However, research in this area has received rather little attention. In this paper, we propose three models to estimate the expected warranty cost when the two types of human factors are included. We consider two types of failures: intermittent and fatal failures, which might result in different claim patterns. Consumers might report claims after a fatal failure has occurred, and upon intermittent failures they might report claims after a number of failures have occurred. Numerical examples are given to validate the results derived.

  2. Numerical simulation of the fluid flow between blades and around the turbine blade

    International Nuclear Information System (INIS)

    Donevski, Bozin; Antoska, Vesna; Chodkiewicz, Ryszard

    2006-01-01

    In this paper are presented the results of investigations of the flow in turbine cascade giving a contribution to development of both numerical method and upgrading the mathematical model describing the physics of the flow in the turbine cascade. The objective is to classified the influenced factors which affects the efficiency of the work of the turbine stage at defined thermodynamics properties of the flow. The numerical computation is conducted on the turbine model of two stage using CFD commercial computer code CF-TascFlow, based on solving of Navier-Stokes equation with applying a standard ?-? SST (Short-Stress Transport) turbulence model. Results of the numerical computation are discussed in the paper.

  3. Numerical simulation of the fluid flow between blades and around the turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Donevski, Bozin; Antoska, Vesna [Faculty of Technical Science, University St. Kliment Ohridski, Bitola (Macedonia, The Former Yugoslav Republic of); Chodkiewicz, Ryszard [Institute of Turbomachinery, Technical University of Lodz (Poland)

    2006-07-01

    In this paper are presented the results of investigations of the flow in turbine cascade giving a contribution to development of both numerical method and upgrading the mathematical model describing the physics of the flow in the turbine cascade. The objective is to classified the influenced factors which affects the efficiency of the work of the turbine stage at defined thermodynamics properties of the flow. The numerical computation is conducted on the turbine model of two stage using CFD commercial computer code CF-TascFlow, based on solving of Navier-Stokes equation with applying a standard ?-? SST (Short-Stress Transport) turbulence model. Results of the numerical computation are discussed in the paper.

  4. Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus

    Science.gov (United States)

    Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H.

    2015-05-01

    We derive a numerical method for Darcy flow, and also for Poisson's equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its discretizations on simplicial complexes such as triangle and tetrahedral meshes. DEC is a coordinate invariant discretization, in that it does not depend on the embedding of the simplices or the whole mesh. We start by rewriting the governing equations of Darcy flow using the language of exterior calculus. This yields a formulation in terms of flux differential form and pressure. The numerical method is then derived by using the framework provided by DEC for discretizing differential forms and operators that act on forms. We also develop a discretization for a spatially dependent Hodge star that varies with the permeability of the medium. This also allows us to address discontinuous permeability. The matrix representation for our discrete non-homogeneous Hodge star is diagonal, with positive diagonal entries. The resulting linear system of equations for flux and pressure are saddle type, with a diagonal matrix as the top left block. The performance of the proposed numerical method is illustrated on many standard test problems. These include patch tests in two and three dimensions, comparison with analytically known solutions in two dimensions, layered medium with alternating permeability values, and a test with a change in permeability along the flow direction. We also show numerical evidence of convergence of the flux and the pressure. A convergence experiment is included for Darcy flow on a surface. A short introduction to the relevant parts of smooth and discrete exterior calculus is included in this article. We also include a discussion of the boundary condition in terms of exterior calculus.

  5. 2nd International Workshop on the Numerical Solution of Markov Chains

    CERN Document Server

    1995-01-01

    Computations with Markov Chains presents the edited and reviewed proceedings of the Second International Workshop on the Numerical Solution of Markov Chains, held January 16--18, 1995, in Raleigh, North Carolina. New developments of particular interest include recent work on stability and conditioning, Krylov subspace-based methods for transient solutions, quadratic convergent procedures for matrix geometric problems, further analysis of the GTH algorithm, the arrival of stochastic automata networks at the forefront of modelling stratagems, and more. An authoritative overview of the field for applied probabilists, numerical analysts and systems modelers, including computer scientists and engineers.

  6. PIV-validated numerical modeling of pulsatile flows in distal coronary end-to-side anastomoses.

    Science.gov (United States)

    Xiong, F L; Chong, C K

    2007-01-01

    This study employed particle image velocimetry (PIV) to validate a numerical model in a complementary approach to quantify hemodynamic factors in distal coronary anastomoses and to gain more insights on their relationship with anastomotic geometry. Instantaneous flow fields and wall shear stresses (WSS) were obtained from PIV measurement in a modified life-size silastic anastomosis model adapted from a conventional geometry by incorporating a smooth graft-artery transition. The results were compared with those predicted by a concurrent numerical model. The numerical method was then used to calculate cycle-averaged WSS (WSS(cyc)) and spatial wall shear stress gradient (SWSSG), two critical hemodynamic factors in the pathogenesis of intimal thickening (IT), to compare the conventional and modified geometries. Excellent qualitative agreement and satisfactory quantitative agreement with averaged normalized error in WSS between 0.8% and 8.9% were achieved between the PIV experiment and numerical model. Compared to the conventional geometry, the modified geometry produces a more uniform WSS(cyc) distribution eliminating both high and low WSS(cyc) around the toe, critical in avoiding IT. Peak SWSSG on the artery floor of the modified model is less than one-half that in the conventional case, and high SWSSG at the toe is eliminated. The validated numerical model is useful for modeling unsteady coronary anastomotic flows and elucidating the significance of geometry regulated hemodynamics. The results suggest the clinical relevance of constructing smooth graft-artery transition in distal coronary anastomoses to improve their hemodynamic performance.

  7. Numerical study of nonspherical black hole accretion

    International Nuclear Information System (INIS)

    Hawley, J.F.

    1984-01-01

    This thesis describes in detail a two-dimensional, axisymmetric computer code for calculating fully relativistic ideal gas hydrodynamics around a Kerr black hole. The aim is to study fully dynamic inviscid fluid accretion onto black holes, as well as to study the evolution and development of nonlinear instabilities in pressure supported accretion disks. In order to fully calibrate and document the code, certain analytic solutions for shock tubes and special accretion flows are derived; these solutions form the basis for code testing. The numerical techniques used are developed and discussed. A variety of alternate differencing schemes are compared on an analytic test bed. Some discussion is devoted to general issues in finite differencing. The working code is calibrated using analytically solvable accretion problems, including the radial accretion of dust and of fluid with pressure (Bondi accretion). Two dimensional test problems include the spiraling infall of low angular momentum fluid, the formation of a pressure supported torus, and the stable evolution of a torus. A series of numerical models are discussed and illustrated with selected plots

  8. Numeral-Incorporating Roots in Numeral Systems: A Comparative Analysis of Two Sign Languages

    Science.gov (United States)

    Fuentes, Mariana; Massone, Maria Ignacia; Fernandez-Viader, Maria del Pilar; Makotrinsky, Alejandro; Pulgarin, Francisca

    2010-01-01

    Numeral-incorporating roots in the numeral systems of Argentine Sign Language (LSA) and Catalan Sign Language (LSC), as well as the main features of the number systems of both languages, are described and compared. Informants discussed the use of numerals and roots in both languages (in most cases in natural contexts). Ten informants took part in…

  9. Numerical experimentation on convective coolant flow in Ghana ...

    African Journals Online (AJOL)

    Numerical experiments on one dimensional convective coolant flow during steady state operation of the Ghana Research Reactor-1 (GHARR-I) were performed to determine the thermal hydraulic parameters of temperature, density and flow rate. The computational domain was the reactor vessel, including the reactor core.

  10. Numerical Analysis of Amirkabir Plasma Focus (APF) Device for Neon and Argon Gases

    Science.gov (United States)

    Niknam Sharak, M.; Goudarzi, S.; Raeisdana, A.; Jafarabadi, M.

    2013-04-01

    In this paper the experimental results in different working conditions in Amirkabir Plasma Focus (APF) Device have been compared with the numerical results of a two-dimensional simulation code based on Lee's model. The experiments were done with pure Neon and Argon as operating gases over a wide range of working conditions (gas pressures and discharge voltages). It is observed that by a proper choice for values of the efficiency factors, comparison between numerical and experimental results shows a good agreement.

  11. Physical and numerical modeling of Joule-heated melters

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.

  12. Physical and numerical modeling of Joule-heated melters

    International Nuclear Information System (INIS)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs

  13. Numerical simulation methods of fires in nuclear power plants

    International Nuclear Information System (INIS)

    Keski-Rahkonen, O.; Bjoerkman, J.; Heikkilae, L.

    1992-01-01

    Fire is a significant hazard to the safety of nuclear power plants (NPP). Fire may be serious accident as such, but even small fire at a critical point in a NPP may cause an accident much more serious than fire itself. According to risk assessments a fire may be an initial cause or a contributing factor in a large part of reactor accidents. At the Fire Technology and the the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) fire safety research for NPPs has been carried out in a large extent since 1985. During years 1988-92 a project Advanced Numerical Modelling in Nuclear Power Plants (PALOME) was carried out. In the project the level of numerical modelling for fire research in Finland was improved by acquiring, preparing for use and developing numerical fire simulation programs. Large scale test data of the German experimental program (PHDR Sicherheitsprogramm in Kernforschungscentral Karlsruhe) has been as reference. The large scale tests were simulated by numerical codes and results were compared to calculations carried out by others. Scientific interaction with outstanding foreign laboratories and scientists has been an important part of the project. This report describes the work of PALOME-project carried out at the Fire Technology Laboratory only. A report on the work at the Nuclear Engineering Laboratory will be published separatively. (au)

  14. Numerical and experimental comparison of plastic work-hardening rules

    International Nuclear Information System (INIS)

    Haisler, W.E.

    1977-01-01

    The purpose of this paper is to describe recent numerical and experimental correlation studies of several plastic work-hardening rules. The mechanical sublayer model and the combined kinematic-isotropic hardening rules are examined and the numerical results for several structural geometries are compared to experimental results. Both monotonic and cyclic loads are considered. The governing incremental plasticity relations are developed for both work-hardening models. The combined kinematic-isotropic hardening model is developed in terms of a ratio γ which controls the relative contribution of kinematic hardening (yield surface translation) and isotropic hardening (yield surface expansion). In addition to making use of a uniaxial stress-strain curve as input data, the model allows for the input of a yield surface size vs. uniaxial plastic strain curve obtained from a cyclic uniaxial reverse loading test. The mechanical sublayer model is developed in general form and a new method for determining the sublayer parameters (stress weighting factors and yield stresses) is presented. It is demonstrated that former procedures used to obtain the sublayer parameters are inconsistent for multiaxial loading. Numerical and experimental results are presented for a cylinder, circular plate with punch, and a steel pressure vessel. The numerical results are obtained with the computer program AGGIE I. The comparison study indicates that reasonable agreement is obtained with both hardening models; the choice depending upon whether the loading is monotonic or cyclic

  15. Including gauge corrections to thermal leptogenesis

    International Nuclear Information System (INIS)

    Huetig, Janine

    2013-01-01

    . Furthermore, we have computed the Majorana neutrino production rate itself in chapter 6 to test our numerical procedure. In this context we have calculated the tree-level result as well as the gauge corrected result for the Majorana neutrino production rate. Finally in chapter 7, we have implemented the Majorana neutrino ladder rung diagram into our setup for leptogenesis: As a first consideration, we have collected all gauge corrected diagrams up to three-loop order for the asymmetry-causing two-loop diagrams. However, the results of chap. 5 showed that it is not sufficient to just include diagrams up to three-loop level. Due to the necessity of resumming all n-loop diagrams, we have constructed a cylindrical diagram that fulfils this condition. This diagram is the link between the Majorana neutrino ladder rung diagram calculated before on the one hand and the lepton asymmetry on the other. Therefore we have been able to derive a complete expression for the integrated lepton number matrix including all leading order corrections. The numerical analysis of this lepton number matrix needs a great computational effort since for the resulting eight-dimensional integral two ordinary differential equations have to be computed for each point the routine evaluates. Thus the result remains yet inaccessible. Research perspectives: Summarising, this thesis provides the basis for a systematic inclusion of gauge interactions in thermal leptogenesis scenarios. As a next step, one should evaluate the expression for the integrated lepton number numerically to gain a value, which can be used for comparison to earlier results such as the solutions of the Boltzmann equations as well as the Kadanoff-Baym ansatz with the implemented Standard Model widths. This numerical result would be the first quantitative number, which contains leading order corrections due to all interactions of the Majorana neutrino with the Standard Model particles. Further corrections by means of including washout effects

  16. Including gauge corrections to thermal leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Huetig, Janine

    2013-05-17

    . Furthermore, we have computed the Majorana neutrino production rate itself in chapter 6 to test our numerical procedure. In this context we have calculated the tree-level result as well as the gauge corrected result for the Majorana neutrino production rate. Finally in chapter 7, we have implemented the Majorana neutrino ladder rung diagram into our setup for leptogenesis: As a first consideration, we have collected all gauge corrected diagrams up to three-loop order for the asymmetry-causing two-loop diagrams. However, the results of chap. 5 showed that it is not sufficient to just include diagrams up to three-loop level. Due to the necessity of resumming all n-loop diagrams, we have constructed a cylindrical diagram that fulfils this condition. This diagram is the link between the Majorana neutrino ladder rung diagram calculated before on the one hand and the lepton asymmetry on the other. Therefore we have been able to derive a complete expression for the integrated lepton number matrix including all leading order corrections. The numerical analysis of this lepton number matrix needs a great computational effort since for the resulting eight-dimensional integral two ordinary differential equations have to be computed for each point the routine evaluates. Thus the result remains yet inaccessible. Research perspectives: Summarising, this thesis provides the basis for a systematic inclusion of gauge interactions in thermal leptogenesis scenarios. As a next step, one should evaluate the expression for the integrated lepton number numerically to gain a value, which can be used for comparison to earlier results such as the solutions of the Boltzmann equations as well as the Kadanoff-Baym ansatz with the implemented Standard Model widths. This numerical result would be the first quantitative number, which contains leading order corrections due to all interactions of the Majorana neutrino with the Standard Model particles. Further corrections by means of including washout effects

  17. Constrained evolution in numerical relativity

    Science.gov (United States)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  18. The absorption factor of crystalline silicon PV cells: a numerical and experimental study

    NARCIS (Netherlands)

    Santbergen, R.; Zolingen, van R.J.C.

    2008-01-01

    The absorption factor of a PV cell is defined as the fraction of incident solar irradiance that is absorbed by the cell. This absorption factor is one of the major parameters determining the cell temperature under operational conditions. Experimentally the absorption factor can be derived from

  19. Numerical Simulation Of Silicon-Ribbon Growth

    Science.gov (United States)

    Woda, Ben K.; Kuo, Chin-Po; Utku, Senol; Ray, Sujit Kumar

    1987-01-01

    Mathematical model includes nonlinear effects. In development simulates growth of silicon ribbon from melt. Takes account of entire temperature and stress history of ribbon. Numerical simulations performed with new model helps in search for temperature distribution, pulling speed, and other conditions favoring growth of wide, flat, relatively defect-free silicon ribbons for solar photovoltaic cells at economically attractive, high production rates. Also applicable to materials other than silicon.

  20. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections

    International Nuclear Information System (INIS)

    Gang, Wang; Kai-Xin, Liu; De-Liang, Zhang

    2010-01-01

    The critical wedge angle (CWA) for the transition from regular reflection (RR) to Mach reflection (MR) of a cellular detonation wave is studied numerically by an improved space-time conservation element and solution element method together with a two-step chemical reaction model. The accuracy of that numerical way is verified by simulating cellular detonation reflections at a 19.3° wedge. The planar and cellular detonation reflections over 45°–55° wedges are also simulated. When the cellular detonation wave is over a 50° wedge, numerical results show a new phenomenon that RR and MR occur alternately. The transition process between RR and MR is investigated with the local pressure contours. Numerical analysis shows that the cellular structure is the essential reason for the new phenomenon and the CWA of detonation reflection is not a certain angle but an angle range. (fundamental areas of phenomenology(including applications))

  1. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-01

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  2. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-09

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  3. First-order symmetrizable hyperbolic formulations of Einstein's equations including lapse and shift as dynamical fields

    International Nuclear Information System (INIS)

    Alvi, Kashif

    2002-01-01

    First-order hyperbolic systems are promising as a basis for numerical integration of Einstein's equations. In previous work, the lapse and shift have typically not been considered part of the hyperbolic system and have been prescribed independently. This can be expensive computationally, especially if the prescription involves solving elliptic equations. Therefore, including the lapse and shift in the hyperbolic system could be advantageous for numerical work. In this paper, two first-order symmetrizable hyperbolic systems are presented that include the lapse and shift as dynamical fields and have only physical characteristic speeds

  4. Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data

    Czech Academy of Sciences Publication Activity Database

    Herčík, David; Trávníček, Pavel M.; Štverák, Štěpán; Hellinger, Petr

    2016-01-01

    Roč. 121, č. 1 (2016), s. 413-431 ISSN 2169-9380 Grant - others:European Commission(XE) 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : Mercury * plasma belt * numerical simulations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.733, year: 2016

  5. Numerical approximations for speeding up mcmc inference in the infinite relational model

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Albers, Kristoffer Jon

    2015-01-01

    The infinite relational model (IRM) is a powerful model for discovering clusters in complex networks; however, the computational speed of Markov chain Monte Carlo inference in the model can be a limiting factor when analyzing large networks. We investigate how using numerical approximations...

  6. An improved numerical approximation for the first derivative

    Indian Academy of Sciences (India)

    Administrator

    The traditional numerical computation of the first derivative f ′(x) of a given function f (x) of a single argument ... includes the option of user-provided analytic deriva- tives, but its ...... will be in the near future, and back to the present. The macro ...

  7. Practical considerations in developing numerical simulators for thermal recovery

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    1996-08-15

    Numerical simulation of steam injection and in-situ combustion-based oil recovery processes is of great importance in project design. Development of such numerical simulators is an on-going process, with improvements made as the process description becomes more complete, and also as better methods are devised to resolve certain numerical difficulties. This paper addresses some of the latter, and based on the author`s experience gives useful guidelines for developing more efficient numerical simulators of steam injection and in-situ combustion. The paper takes up a series of questions related to simulating thermal processes. Included are: the elimination of constraint equations at the matrix level, phase change, steam injection rate, alternative treatments of heat loss, relative permeabilities and importance of hysteresis effects, improved solutions to the grid orientation problem and other simulation problems such as potential inversion, grid block size, time-step size control and induced fractures. The points discussed in the paper should be of use to both simulator developers and users alike, and will lead to a better understanding of simulation results

  8. Efficient numerical methods for fluid- and electrodynamics on massively parallel systems

    Energy Technology Data Exchange (ETDEWEB)

    Zudrop, Jens

    2016-07-01

    In the last decade, computer technology has evolved rapidly. Modern high performance computing systems offer a tremendous amount of computing power in the range of a few peta floating point operations per second. In contrast, numerical software development is much slower and most existing simulation codes cannot exploit the full computing power of these systems. Partially, this is due to the numerical methods themselves and partially it is related to bottlenecks within the parallelization concept and its data structures. The goal of the thesis is the development of numerical algorithms and corresponding data structures to remedy both kinds of parallelization bottlenecks. The approach is based on a co-design of the numerical schemes (including numerical analysis) and their realizations in algorithms and software. Various kinds of applications, from multicomponent flows (Lattice Boltzmann Method) to electrodynamics (Discontinuous Galerkin Method) to embedded geometries (Octree), are considered and efficiency of the developed approaches is demonstrated for large scale simulations.

  9. Numerical estimation of the effective electrical conductivity in carbon paper diffusion media

    International Nuclear Information System (INIS)

    Zamel, Nada; Li, Xianguo; Shen, Jun

    2012-01-01

    Highlights: ► Anisotropic effective electrical conductivity of the GDL is estimated numerically. ► The electrical conductivity is a key component in understanding the structure of the GDL. ► Expressions for evaluating the electrical conductivity were proposed. ► The tortuosity factor was evaluated as 1.7 and 3.4 in the in- and through-plane directions, respectively. - Abstract: The transport of electrons through the gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells has a significant impact on the optimal design and operation of PEM fuel cells and is directly affected by the anisotropic nature of the carbon paper material. In this study, a three-dimensional reconstruction of the GDL is used to numerically estimate the directional dependent effective electrical conductivity of the layer for various porosity values. The distribution of the fibers in the through-plane direction results in high electrical resistivity; hence, decreasing the overall effective electrical conductivity in this direction. This finding is in agreement with measured experimental data. Further, using the numerical results of this study, two mathematical expressions were proposed for the calculation of the effective electrical conductivity of the carbon paper GDL. Finally, the tortuosity factor was evaluated as 1.7 and 3.4 in the in- and through-plane directions, respectively.

  10. Numerical models for prestressing tendons in containment structures

    International Nuclear Information System (INIS)

    Kwak, Hyo-Gyoung; Kim, Jae Hong

    2006-01-01

    Two modified stress-strain relations for bonded and unbonded internal tendons are proposed. The proposed relations can simulate the post-cracking behavior and tension stiffening effect in prestressed concrete containment structures. In the case of the bonded tendon, tensile forces between adjacent cracks are transmitted from a bonded tendon to concrete by bond forces. Therefore, the constitutive law of a bonded tendon stiffened by grout needs to be determined from the bond-slip relationship. On the other hand, a stress increase beyond the effective prestress in an unbonded tendon is not section-dependent but member-dependent. It means that the tendon stress unequivocally represents a uniform distribution along the length when the friction loss is excluded. Thus, using a strain reduction factor, the modified stress-strain curve of an unbonded tendon is derived by successive iterations. In advance, the prediction of cracking behavior and ultimate resisting capacity of prestressed concrete containment structures using the introduced numerical models are succeeded, and the need for the consideration of many influencing factors such as the tension stiffening effect, plastic hinge length and modification of stress-strain relation of tendon is emphasized. Finally, the developed numerical models are applied to prestressed concrete containment structures to verify the efficiency and applicability in simulating the structural behavior with bonded and/or unbonded tendons

  11. Numerical measures of the degree of non-proportionality of multiaxial fatigue loadings

    Directory of Open Access Journals (Sweden)

    A. Bolchoun

    2015-07-01

    Full Text Available The influence of the non-proportional loadings on the fatigue life depends on the material ductility. Ductile materials react with a shortening of lifetime compared to proportional loading conditions. For a semiductile material there is almost no difference between proportional and non-proportional loadings with respect to the fatigue life. Brittle materials show an increase of the lifetime under non-proportional loadings. If fatigue life assessment is performed using stress-based hypotheses, it is a rather difficult task to take into account material ductility correctly, especially the fatigue life reduction as displayed by ductile materials. Most stress-based hypotheses will compute a longer fatigue life under non-proportional loading conditions. There are also hypotheses, which already include quantitative evaluation of the non-proportionality (e.g. EESH, SSCH and MWCM. Anyway in order to improve assessment for ductile materials, some sort of numerical measure for the degree of non-proportionality of the fatigue loading is required. A number of measures of this kind (or non-proportionality factors were proposed in the literature and are discussed here: - the factor used in EESH is a quotient of stress amplitudes integrals, - the factor according to Gaier, which works with a discrete stress tensor values in a scaled stress space, - the factor according to Kanazawa, which makes use of plane-based stress values, - the factor used in MWCM, which exploits stress values in the plane with the highest shear stress amplitude, a new non-proportionality factor, which is based on the correlation between individual stress tensor components, is proposed. General requirements imposed on the non-proportionality factors are discussed and each of the factors is evaluated with respect to these requirements. Also application with the stress-based hypotheses is discussed and illustrated using the experimental data for aluminum and magnesium welded joints under

  12. Factorization of heavy-to-light baryonic transitions in SCET

    International Nuclear Information System (INIS)

    Wang Wei

    2012-01-01

    In the framework of the soft-collinear effective theory, we demonstrate that the leading-power heavy-to-light baryonic form factors at large recoil obey the heavy quark and large energy symmetries. Symmetry breaking effects are suppressed by Λ/m b or Λ/E, where Λ is the hadronic scale, m b is the b quark mass and E∼m b is the energy of light baryon in the final state. At leading order, the leading power baryonic form factor ξ Λ,p (E), in which two hard-collinear gluons are exchanged in the baryon constituents, can factorize into the soft and collinear matrix elements convoluted with a hard-kernel of order α s 2 . Including the energy release dependence, we derive the scaling law ξ Λ,p (E)∼Λ 2 /E 2 . We also find that this form factor ξ Λ (E) is numerically smaller than the form factor governed by soft processes, although the latter is formally power-suppressed.

  13. Numerical investigation on asymmetric bilayer system at integer filling factor

    Czech Academy of Sciences Publication Activity Database

    Nomura, K.; Yoshioka, D.; Jungwirth, Tomáš; MacDonald, A. H.

    2004-01-01

    Roč. 22, - (2004), s. 60-63 ISSN 1386-9477. [International Conference on Electronic Properties of Two-Dimensional Systems /15./. Nara, 14.07.2003-18.07.2003] Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnet * asymmetric bilayer systems * anisotropy * stripe states Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.898, year: 2004

  14. Numerical modeling of polar mesocyclones generation mechanisms

    Science.gov (United States)

    Sergeev, Dennis; Stepanenko, Victor

    2013-04-01

    Polar mesocyclones, commonly referred to as polar lows, remain of great interest due to their complicated dynamics. These mesoscale vortices are small short-living objects that are formed over the observation-sparse high-latitude oceans, and therefore, their evolution can hardly be observed and predicted numerically. The origin of polar mesoscale cyclones is still a matter of uncertainty, though the recent numerical investigations [3] have exposed a strong dependence of the polar mesocyclone development upon the magnitude of baroclinicity. Nevertheless, most of the previous studies focused on the individual polar low (the so-called case studies), with too many factors affecting it simultaneously. None of the earlier studies suggested a clear picture of polar mesocyclone generation within an idealized experiment, where it is possible to look deeper into each single physical process. The present paper concentrates on the initial triggering mechanism of the polar mesocyclone. As it is reported by many researchers, some mesocyclones are formed by the surface forcing, namely the uneven distribution of heat fluxes. That feature is common on the ice boundaries [2], where intense air stream flows from the cold ice surface to the warm sea surface. Hence, the resulting conditions are shallow baroclinicity and strong surface heat fluxes, which provide an arising polar mesocyclone with potential energy source converting it to the kinetic energy of the vortex. It is shown in this paper that different surface characteristics, including thermal parameters and, for example, the shape of an ice edge, determine an initial phase of a polar low life cycle. Moreover, it is shown what initial atmospheric state is most preferable for the formation of a new polar mesocyclone or in maintaining and reinforcing the existing one. The study is based on idealized high-resolution (~2 km) numerical experiment in which baroclinicity, stratification, initial wind profile and disturbance, surface

  15. Numerical investigations on cavitating flows with thermodynamic effects in a diffuser-type centrifugal pump

    International Nuclear Information System (INIS)

    Xuelin, Tang Xue; Liyuan, Bian; Fujun, Wang; Xiaoqin, Lin; Man, Hao

    2013-01-01

    A cavitation model with thermodynamic effects for cavitating flows in a diffuser-type centrifugal pump is developed based on the bubble two-phase flow model. The proposed cavitation model includes mass, momentum, and energy transportations according to the thermodynamic mechanism of cavitation. Numerical simulations are conducted inside the entire passage of the centrifugal pump by using the proposed cavitation model and the renormalization group-based k - ε turbulent model coupled with the energy transportation equation. By using the commercial computational fluid dynamics software FLUENT 6.3, we have shown that the predicted performance characteristics of the pump, as well as the pressure, vapor, and density distributions in the impeller, agree well with that calculated by the full cavitation model. Simulation results show that cavitation initially occurs slightly behind the inlet of the blade suction surface, i.e., the area with maximum vapor concentration and minimum pressure. The predicted temperature field shows that the reduction in temperature restrains the growth of cavitating bubbles. Therefore, the thermodynamic effect should be treated as a necessary factor in cavitation models. Comparison results validate the efficiency and accuracy of the numerical technique in simulating cavitation flows in centrifugal pumps.

  16. Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism

    Science.gov (United States)

    Cao, Zhoujian; Han, Wen-Biao

    2017-08-01

    Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.

  17. Development process of muzzle flows including a gun-launched missile

    Directory of Open Access Journals (Sweden)

    Zhuo Changfei

    2015-04-01

    Full Text Available Numerical investigations on the launch process of a gun-launched missile from the muzzle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to dealing with the problems of a moving gun-launched missile. The high-resolution upwind scheme (AUSMPW+ and the detailed reaction kinetics model are adopted to solve the chemical non-equilibrium Euler equations for dynamic grids. The development process and flow field structure of muzzle flows including a gun-launched missile are discussed in detail. This present numerical study confirms that complicated transient phenomena exist in the shortly launching stages when the gun-launched missile moves from the muzzle of a cannon to the free-flight stage. The propellant gas flows, the initial environmental ambient air flows and the moving missile mutually couple and interact. A complete structure of flow field is formed at the launching stages, including the blast wave, base shock, reflected shock, incident shock, shear layer, primary vortex ring and triple point.

  18. Numeral Incorporation in Japanese Sign Language

    Science.gov (United States)

    Ktejik, Mish

    2013-01-01

    This article explores the morphological process of numeral incorporation in Japanese Sign Language. Numeral incorporation is defined and the available research on numeral incorporation in signed language is discussed. The numeral signs in Japanese Sign Language are then introduced and followed by an explanation of the numeral morphemes which are…

  19. Two parameters Lie group analysis and numerical solution of unsteady free convective flow of non-Newtonian fluid

    Directory of Open Access Journals (Sweden)

    M.J. Uddin

    2016-09-01

    Full Text Available The two-dimensional unsteady laminar free convective heat and mass transfer fluid flow of a non-Newtonian fluid adjacent to a vertical plate has been analyzed numerically. The two parameters Lie group transformation method that transforms the three independent variables into a single variable is used to transform the continuity, the momentum, the energy and the concentration equations into a set of coupled similarity equations. The transformed equations have been solved by the Runge–Kutta–Fehlberg fourth-fifth order numerical method with shooting technique. Numerical calculations were carried out for the various parameters entering into the problem. The dimensionless velocity, temperature and concentration profiles were shown graphically and the skin friction, heat and mass transfer rates were given in tables. It is found that friction factor and heat transfer (mass transfer rate for methanol are higher (lower than those of hydrogen and water vapor. Friction factor decreases while heat and mass transfer rate increase as the Prandtl number increases. Friction (heat and mass transfer rate factor of Newtonian fluid is higher (lower than the dilatant fluid.

  20. Numerical analysis

    CERN Document Server

    Jacques, Ian

    1987-01-01

    This book is primarily intended for undergraduates in mathematics, the physical sciences and engineering. It introduces students to most of the techniques forming the core component of courses in numerical analysis. The text is divided into eight chapters which are largely self-contained. However, with a subject as intricately woven as mathematics, there is inevitably some interdependence between them. The level of difficulty varies and, although emphasis is firmly placed on the methods themselves rather than their analysis, we have not hesitated to include theoretical material when we consider it to be sufficiently interesting. However, it should be possible to omit those parts that do seem daunting while still being able to follow the worked examples and to tackle the exercises accompanying each section. Familiarity with the basic results of analysis and linear algebra is assumed since these are normally taught in first courses on mathematical methods. For reference purposes a list of theorems used in the t...

  1. Numerical evaluation of high energy particle effects in magnetohydrodynamics

    International Nuclear Information System (INIS)

    White, R.B.; Wu, Y.

    1994-03-01

    The interaction of high energy ions with magnetohydrodynamic modes is analyzed. A numerical code is developed which evaluates the contribution of the high energy particles to mode stability using orbit averaging of motion in either analytic or numerically generated equilibria through Hamiltonian guiding center equations. A dispersion relation is then used to evaluate the effect of the particles on the linear mode. Generic behavior of the solutions of the dispersion relation is discussed and dominant contributions of different components of the particle distribution function are identified. Numerical convergence of Monte-Carlo simulations is analyzed. The resulting code ORBIT provides an accurate means of comparing experimental results with the predictions of kinetic magnetohydrodynamics. The method can be extended to include self consistent modification of the particle orbits by the mode, and hence the full nonlinear dynamics of the coupled system

  2. Nonlinear ordinary differential equations analytical approximation and numerical methods

    CERN Document Server

    Hermann, Martin

    2016-01-01

    The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

  3. Numerical simulation of droplet evaporation between two circular plates

    International Nuclear Information System (INIS)

    Bam, Hang Jin; Son, Gi Hun

    2015-01-01

    Numerical simulation is performed for droplet evaporation between two circular plates. The flow and thermal characteristics of the droplet evaporation are numerically investigated by solving the conservation equations of mass, momentum, energy and mass fraction in the liquid and gas phases. The liquid-gas interface is tracked by a sharp-interface level-set method which is modified to include the effects of evaporation at the liquid-gas interface and contact angle hysteresis at the liquid-gas-solid contact line. An analytical model to predict the droplet evaporation is also developed by simplifying the mass and vapor fraction equations in the gas phase. The numerical results demonstrate that the 1-D analytical prediction is not applicable to the high rate evaporation process. The effects of plate gap and receding contact angle on the droplet evaporation are also quantified.

  4. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations

    OpenAIRE

    Boudin , Laurent; Grec , Bérénice; Salvarani , Francesco

    2012-01-01

    International audience; We consider the Maxwell-Stefan model of diffusion in a multicomponent gaseous mixture. After focusing on the main differences with the Fickian diffusion model, we study the equations governing a three-component gas mixture. We provide a qualitative and quantitative mathematical analysis of the model. The main properties of the standard explicit numerical scheme are also analyzed. We eventually include some numerical simulations pointing out the uphill diffusion phenome...

  5. Numerical Model of Air Valve For Computation of One-dimensional Flow

    Directory of Open Access Journals (Sweden)

    Daniel HIMR

    2014-06-01

    Full Text Available The paper is focused on a numerical simulation of unsteady flow in a pipeline. The special attention is paid to a numerical model of an air valve, which has to include all possible regimes: critical/subcritical inflow and critical/subcritical outflow of air. Thermodynamic equation of subcritical mass flow was simplified to get more friendly shape of relevant equations, which enables easier solution of the problem.

  6. XFEL OSCILLATOR SIMULATION INCLUDING ANGLE-DEPENDENT CRYSTAL REFLECTIVITY

    International Nuclear Information System (INIS)

    Fawley, William; Lindberg, Ryan; Kim, K.-J.; Shvyd'ko, Yuri

    2010-01-01

    The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinal and transverse coherence of the radiation output.

  7. Numerical analysis for prediction of fatigue crack opening level

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang

    2004-01-01

    Finite Element Analysis (FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials

  8. A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation

    Directory of Open Access Journals (Sweden)

    S. Battal Gazi Karakoç

    2016-02-01

    Full Text Available The generalized equal width (GEW wave equation is solved numerically by using lumped Galerkin approach with cubic B-spline functions. The proposed numerical scheme is tested by applying two test problems including single solitary wave and interaction of two solitary waves. In order to determine the performance of the algorithm, the error norms L2 and L∞ and the invariants I1, I2 and I3 are calculated. For the linear stability analysis of the numerical algorithm, von Neumann approach is used. As a result, the obtained findings show that the presented numerical scheme is preferable to some recent numerical methods.  

  9. Numerical simulation of heat exchangers elliptical tubes and corrugated fins

    International Nuclear Information System (INIS)

    Borrajo Pérez, Rubén; González Bayón, Juan José; Menéndez Pérez, Alberto

    2015-01-01

    The intensified heat exchangers fins are widely used in the automotive and domestic industry. The low heat transfer coefficients on the air side are the main reason why these fins of heat exchangers need to be intensified. In this paper, the numerical simulation of a wavy fin type is made with elliptical tubes. The dimensions of the fin is in the range of those used in air conditioning equipment. The friction factor and the mass transfer coefficient as a function of the Reynolds number for this type of fin, always within the laminar regime is determined. The numerical model against experimental results published in the literature is validated. In addition the mechanisms that produce intensified heat transfer fin in such occur. (full text)

  10. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  11. Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity

    International Nuclear Information System (INIS)

    Leiler, Gregor; Rezzolla, Luciano

    2006-01-01

    The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion

  12. Numerical study of the glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Zaccarelli, Emanuela; Sciortino, Francesco; Tartaglia, Piero

    2004-01-01

    We report extensive numerical simulations in the glass region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behaviour of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition

  13. Numerical Laplace inversion in problems of elastodynamics: Comparison of four algorithms

    Czech Academy of Sciences Publication Activity Database

    Adámek, V.; Valeš, František; Červ, Jan

    2017-01-01

    Roč. 113, November (2017), s. 120-129 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 Keywords : inverse Laplace transform * numerical algorithm * wave propagation * multi-precision computation * Maple code Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 3.000, year: 2016

  14. Numerical Modeling and Mechanical Analysis of Flexible Risers

    Directory of Open Access Journals (Sweden)

    J. Y. Li

    2015-01-01

    Full Text Available ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact interaction, geometric nonlinearity, and friction has been employed to accurately simulate the structural behavior of riser. The model includes the main features of the riser geometry with very little simplifying assumptions. The model was solved using a fully explicit time-integration scheme implemented in a parallel environment on an eight-processor cluster and 24 G memory computer. There is a very good agreement obtained from numerical and analytical comparisons, which validates the use of numerical model here. The results from the numerical simulation show that the numerical model takes into account various details of the riser. It has been shown that the detailed finite element model can be used to predict riser’s mechanics behavior under various load cases and bound conditions.

  15. A decision support system prototype including human factors based on the TOGA meta-theory approach

    International Nuclear Information System (INIS)

    Cappelli, M.; Memmi, F.; Gadomski, A. M.; Sepielli, M.

    2012-01-01

    The human contribution to the risk of operation of complex technological systems is often not negligible and sometimes tends to become significant, as shown by many reports on incidents and accidents occurred in the past inside Nuclear Power Plants (NPPs). An error of a human operator of a NPP can derive by both omission and commission. For instance, complex commission errors can also lead to significant catastrophic technological accidents, as for the case of the Three Mile Island accident. Typically, the problem is analyzed by focusing on the single event chain that has provoked the incident or accident. What is needed is a general framework able to include as many parameters as possible, i.e. both technological and human factors. Such a general model could allow to envisage an omission or commission error before it can happen or, alternatively, suggest preferred actions to do in order to take countermeasures to neutralize the effect of the error before it becomes critical. In this paper, a preliminary Decision Support System (DSS) based on the so-called (-) TOGA meta-theory approach is presented. The application of such a theory to the management of nuclear power plants has been presented in the previous ICAPP 2011. Here, a human factor simulator prototype is proposed in order to include the effect of human errors in the decision path. The DSS has been developed using a TRIGA research reactor as reference plant, and implemented using the LabVIEW programming environment and the Finite State Machine (FSM) model The proposed DSS shows how to apply the Universal Reasoning Paradigm (URP) and the Universal Management Paradigm (UMP) to a real plant context. The DSS receives inputs from instrumentation data and gives as output a suggested decision. It is obtained as the result of an internal elaborating process based on a performance function. The latter, describes the degree of satisfaction and efficiency, which are dependent on the level of responsibility related to

  16. Numerical study of emergency cryogenics gas relief into confined spaces

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The presented work focuses on the risk analysis and the consequences of the unexpected leak to the tunnel of cryogenics gases. Formation of the gas mixture and its propagation along tunnels is an important issue for the safe operation of cryogenic machines, including superconducting accelerators or free electron lasers. As the cryogenics gas the helium and argon will be considered. A minimal numerical model will be presented and discussed. Series of numerical results related to emergency helium relief to the CERN tunnel and related to unexpected leak of the argon to an underground tunnel, will be shown. The numerical results will show temperature distribution, oxygen deficiency and gas cloud propagation in function of intensity of the leak and intensity of the ventilation.

  17. Vector model for polarized second-harmonic generation microscopy under high numerical aperture

    International Nuclear Information System (INIS)

    Wang, Xiang-Hui; Chang, Sheng-Jiang; Lin, Lie; Wang, Lin-Rui; Huo, Bing-Zhong; Hao, Shu-Jian

    2010-01-01

    Based on the vector diffraction theory and the generalized Jones matrix formalism, a vector model for polarized second-harmonic generation (SHG) microscopy is developed, which includes the roles of the axial component P z , the weight factor and the cross-effect between the lateral components. The numerical results show that as the relative magnitude of P z increases, the polarization response of the second-harmonic signal will vary from linear polarization to elliptical polarization and the polarization orientation of the second-harmonic signal is different from that under the paraxial approximation. In addition, it is interesting that the polarization response of the detected second-harmonic signal can change with the value of the collimator lens NA. Therefore, it is more advantageous to adopt the vector model to investigate the property of polarized SHG microscopy for a variety of cases

  18. Disentangling Wording and Substantive Factors in the Spiritual Well-Being Scale.

    Science.gov (United States)

    Murray, Aja L; Johnson, Wendy; Gow, Alan J; Deary, Ian J

    2015-05-01

    We evaluated the extent to which the Spiritual Well-Being Scale (SWBS) may help to meet the need for multidimensional, psychometrically sophisticated measures of spiritual and religious traits. Although the various forms of validity of the scale have, for the most part, been supported by psychometric studies, conflicting evidence surrounding its dimensionality has called into question its structural validity. Specifically, numerous authors have suggested that a more appropriate factor structure for the SWBS includes further substantive factors in addition to the 2 factors that the scale was originally intended to measure. In the current study, we attempted to resolve these debates using a combination of exploratory and confirmatory factor analysis based investigations in the Lothian Birth Cohort, 1921 study. Our analyses suggested that the additional factors suggested in previous studies may not have reflected substantive constructs; but rather, common variance due to methodological factors.

  19. Numerical modeling to assess the sensitivity and resolution of long-electrode electrical resistance tomography (LEERT) surveys to monitor CO2 migration, Phase 1B area

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Abelardo L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-05-18

    This document describes the results of a numerical modeling study that evaluated whether LEERT could be used successfully to monitor CO2 distribution in the Weyburn- Midale reservoir, Phase 1B area. The magnitude of electrical resistivity changes and the technique’s resolution depend on many site-specific factors including well separation distances, casing lengths, reservoir depth, thickness, and composition, and the effect of CO2 on the electrical properties of the reservoir. Phase 1B-specific numerical modeling of the electrical response to CO2 injection has been performed to assess sensitivity and resolution of the electrical surveys.

  20. Numerical Modeling of the Photothermal Processing for Bubble Forming around Nanowire in a Liquid

    Directory of Open Access Journals (Sweden)

    Anis Chaari

    2014-01-01

    Full Text Available An accurate computation of the temperature is an important factor in determining the shape of a bubble around a nanowire immersed in a liquid. The study of the physical phenomenon consists in solving a photothermic coupled problem between light and nanowire. The numerical multiphysic model is used to study the variations of the temperature and the shape of the created bubble by illumination of the nanowire. The optimization process, including an adaptive remeshing scheme, is used to solve the problem through a finite element method. The study of the shape evolution of the bubble is made taking into account the physical and geometrical parameters of the nanowire. The relation between the sizes and shapes of the bubble and nanowire is deduced.

  1. Numerical Modeling of the Photothermal Processing for Bubble Forming around Nanowire in a Liquid

    Science.gov (United States)

    Chaari, Anis; Giraud-Moreau, Laurence

    2014-01-01

    An accurate computation of the temperature is an important factor in determining the shape of a bubble around a nanowire immersed in a liquid. The study of the physical phenomenon consists in solving a photothermic coupled problem between light and nanowire. The numerical multiphysic model is used to study the variations of the temperature and the shape of the created bubble by illumination of the nanowire. The optimization process, including an adaptive remeshing scheme, is used to solve the problem through a finite element method. The study of the shape evolution of the bubble is made taking into account the physical and geometrical parameters of the nanowire. The relation between the sizes and shapes of the bubble and nanowire is deduced. PMID:24795538

  2. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    Science.gov (United States)

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-10-11

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lack of a role for AP1 in GPEI mediated trans-activation in F9 cells, although endogenously present AP1 can influence GPEI in HeLa cells. Co-transfection of delta fosB with c-jun, which forms an inactive c-Jun/delta FosB heterodimer that binds TRE sequences, inhibits GPEI-mediated transcription in AP1-lacking F9 cells as well as AP1-containing HeLa cells. These data suggest novel factor(s) other than AP1 are influencing GPEI. Binding studies reveal multiple nucleoproteins bind to GPEI. These factors are likely responsible for the high level of GPEI-mediated transcription observed in the absence of AP1 and during hepatocarcinogenesis.

  3. ESTIMATION OF THE WANDA GLACIER (SOUTH SHETLANDS SEDIMENT EROSION RATE USING NUMERICAL MODELLING

    Directory of Open Access Journals (Sweden)

    Kátia Kellem Rosa

    2013-09-01

    Full Text Available Glacial sediment yield results from glacial erosion and is influenced by several factors including glacial retreat rate, ice flow velocity and thermal regime. This paper estimates the contemporary subglacial erosion rate and sediment yield of Wanda Glacier (King George Island, South Shetlands. This work also examines basal sediment evacuation mechanisms by runoff and glacial erosion processes during the subglacial transport. This is small temperate glacier that has seen retreating for the last decades. In this work, we examine basal sediment evacuation mechanisms by runoff and analyze glacial erosion processes occurring during subglacial transport. The glacial erosion rate at Wanda Glacier, estimated using a numerical model that consider sediment evacuated to outlet streams, ice flow velocity, ice thickness and glacier area, is 1.1 ton m yr-1.

  4. A deterministic combination of numerical and physical models for coastal waves

    DEFF Research Database (Denmark)

    Zhang, Haiwen

    2006-01-01

    of numerical and physical modelling hence provides an attractive alternative to the use of either tool on it's own. The goal of this project has been to develop a deterministically combined numerical/physical model where the physical wave tank is enclosed in a much larger computational domain, and the two......Numerical and physical modelling are the two main tools available for predicting the influence of water waves on coastlines and structures placed in the near-shore environment. Numerical models can cover large areas at the correct scale, but are limited in their ability to capture strong...... nonlinearities, wave breaking, splash, mixing, and other such complicated physics. Physical models naturally include the real physics (at the model scale), but are limited by the physical size of the facility and must contend with the fact that different physical effects scale differently. An integrated use...

  5. Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data

    Czech Academy of Sciences Publication Activity Database

    Herčík, David; Trávníček, Pavel M.; Štverák, Štěpán; Hellinger, Petr

    2016-01-01

    Roč. 121, č. 1 (2016), s. 413-431 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : Mercury * plasma belt * numerical simulations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2015JA021938/full

  6. Factors Adopting E-Travel Website: The Case of Indonesia

    OpenAIRE

    Vera Pujani; Alfitman; Refdinal Nazir

    2012-01-01

    E-travel is travel agency-s companies employing internet and website as e-commerce context. This study presents numerous initial key factors of electronic travel model based on small travel agencies perspectives. Browsing previous studies related to website travel activities are conducted. Five small travel agencies in Indonesia has been deeply interviewed in case studies. The finding of this research is identifying numerous characteristics and dimension factors and travel website operations ...

  7. Numerical methods for engine-airframe integration

    International Nuclear Information System (INIS)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment

  8. Abstract numerical discrimination learning in rats.

    Science.gov (United States)

    Taniuchi, Tohru; Sugihara, Junko; Wakashima, Mariko; Kamijo, Makiko

    2016-06-01

    In this study, we examined rats' discrimination learning of the numerical ordering positions of objects. In Experiments 1 and 2, five out of seven rats successfully learned to respond to the third of six identical objects in a row and showed reliable transfer of this discrimination to novel stimuli after being trained with three different training stimuli. In Experiment 3, the three rats from Experiment 2 continued to be trained to respond to the third object in an object array, which included an odd object that needed to be excluded when identifying the target third object. All three rats acquired this selective-counting task of specific stimuli, and two rats showed reliable transfer of this selective-counting performance to test sets of novel stimuli. In Experiment 4, the three rats from Experiment 3 quickly learned to respond to the third stimulus in object rows consisting of either six identical or six different objects. These results offer strong evidence for abstract numerical discrimination learning in rats.

  9. Numerical calculation of two-phase flows

    International Nuclear Information System (INIS)

    Travis, J.R.; Harlow, F.H.; Amsden, A.A.

    1975-06-01

    The theoretical study of time-varying two-phase flow problems in several space dimensions introduces such a complicated set of coupled nonlinear partial differential equations that numerical solution procedures for high-speed computers are required in almost all but the simplest examples. Efficient attainment of realistic solutions for practical problems requires a finite- difference formulation that is simultaneously implicit in the treatment of mass convection, equations of state, and the momentum coupling between phases. Such a method is described, the equations on which it is based are discussed, and its properties are illustrated by means of examples. In particular, the capability for calculating physical instabilities and other time-varying dynamics, at the same time avoiding numerical instability is emphasized. The computer code is applicable to problems in reactor safety analysis, the dynamics of fluidized dust beds, raindrops or aerosol transport, and a variety of similar circumstances, including the effects of phase transitions and the release of latent heat or chemical energy. (U.S.)

  10. Numerical study of nozzle design for the hybrid synthetic jet actuator

    Czech Academy of Sciences Publication Activity Database

    Hsu, S.-S.; Chou, Y.-J.; Trávníček, Zdeněk; Lin, C.-F.; Wang, A. B.; Yen, R.H.

    2015-01-01

    Roč. 232, August (2015), s. 172-182 ISSN 0924-4247 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : synthetic jet * hybrid synthetic jet * numerical simulation Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 2.201, year: 2015 http://www.sciencedirect.com/science/article/pii/S0924424715300091

  11. Risk factors for exposure to influenza a viruses, including subtype H5 viruses, in Thai free-grazing ducks.

    Science.gov (United States)

    Beaudoin, A L; Kitikoon, P; Schreiner, P J; Singer, R S; Sasipreeyajan, J; Amonsin, A; Gramer, M R; Pakinsee, S; Bender, J B

    2014-08-01

    Free-grazing ducks (FGD) have been associated with highly pathogenic avian influenza (HPAI) H5N1 outbreaks and may be a viral reservoir. In July-August 2010, we assessed influenza exposure of Thai FGD and risk factors thereof. Serum from 6254 ducks was analysed with enzyme-linked immunosorbent assay (ELISA) to detect antibodies to influenza A nucleoprotein (NP), and haemagglutinin H5 protein. Eighty-five per cent (5305 ducks) were seropositive for influenza A. Of the NP-seropositive sera tested with H5 assays (n = 1423), 553 (39%) were H5 ELISA positive and 57 (4%) suspect. Twelve per cent (74 of 610) of H5 ELISA-positive/suspect ducks had H5 titres ≥ 1 : 20 by haemagglutination inhibition. Risk factors for influenza A seropositivity include older age, poultry contact, flock visitors and older purchase age. Study flocks had H5 virus exposure as recently as March 2010, but no HPAI H5N1 outbreaks have been identified in Thailand since 2008, highlighting a need for rigorous FGD surveillance. © 2012 Blackwell Verlag GmbH.

  12. Numerical relativity in spherical coordinates with the Einstein Toolkit

    Science.gov (United States)

    Mewes, Vassilios; Zlochower, Yosef; Campanelli, Manuela; Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.

    2018-04-01

    Numerical relativity codes that do not make assumptions on spatial symmetries most commonly adopt Cartesian coordinates. While these coordinates have many attractive features, spherical coordinates are much better suited to take advantage of approximate symmetries in a number of astrophysical objects, including single stars, black holes, and accretion disks. While the appearance of coordinate singularities often spoils numerical relativity simulations in spherical coordinates, especially in the absence of any symmetry assumptions, it has recently been demonstrated that these problems can be avoided if the coordinate singularities are handled analytically. This is possible with the help of a reference-metric version of the Baumgarte-Shapiro-Shibata-Nakamura formulation together with a proper rescaling of tensorial quantities. In this paper we report on an implementation of this formalism in the Einstein Toolkit. We adapt the Einstein Toolkit infrastructure, originally designed for Cartesian coordinates, to handle spherical coordinates, by providing appropriate boundary conditions at both inner and outer boundaries. We perform numerical simulations for a disturbed Kerr black hole, extract the gravitational wave signal, and demonstrate that the noise in these signals is orders of magnitude smaller when computed on spherical grids rather than Cartesian grids. With the public release of our new Einstein Toolkit thorns, our methods for numerical relativity in spherical coordinates will become available to the entire numerical relativity community.

  13. Numerical computation of gravitational field for general axisymmetric objects

    Science.gov (United States)

    Fukushima, Toshio

    2016-10-01

    We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.

  14. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  15. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  16. The effect of saturation on resin flow in injection pultrusion: a preliminary numerical study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Larsen, Martin; R. Rodríguez, Rosa

    . The implemented saturation and relative permeability curves are adopted from relationships presented in the literature. The results of the numerical model highlights the importance of accurately determining thesaturation curve when included in a numerical solver that is used to predict the resin flow in injection...

  17. Monograph - The Numerical Integration of Ordinary Differential Equations.

    Science.gov (United States)

    Hull, T. E.

    The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…

  18. Numerical simulation of laser filamentation in underdense plasma

    International Nuclear Information System (INIS)

    Yu Lichun; Chen Zhihua; Tu Qinfen

    2000-01-01

    Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation

  19. Numerical heating in Particle-In-Cell simulations with Monte Carlo binary collisions

    Science.gov (United States)

    Alves, E. Paulo; Mori, Warren; Fiuza, Frederico

    2017-10-01

    The binary Monte Carlo collision (BMCC) algorithm is a robust and popular method to include Coulomb collision effects in Particle-in-Cell (PIC) simulations of plasmas. While a number of works have focused on extending the validity of the model to different physical regimes of temperature and density, little attention has been given to the fundamental coupling between PIC and BMCC algorithms. Here, we show that the coupling between PIC and BMCC algorithms can give rise to (nonphysical) numerical heating of the system, that can be far greater than that observed when these algorithms operate independently. This deleterious numerical heating effect can significantly impact the evolution of the simulated system particularly for long simulation times. In this work, we describe the source of this numerical heating, and derive scaling laws for the numerical heating rates based on the numerical parameters of PIC-BMCC simulations. We compare our theoretical scalings with PIC-BMCC numerical experiments, and discuss strategies to minimize this parasitic effect. This work is supported by DOE FES under FWP 100237 and 100182.

  20. Numerical modeling of turbulent combustion and flame spread

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenghua

    1999-01-01

    Theoretical models have been developed to address several important aspects of numerical modeling of turbulent combustion and flame spread. The developed models include a pyrolysis model for charring and non-charring solid materials, a fast narrow band radiation property evaluation model (FASTNB) and a turbulence model for buoyant flow and flame. In the pyrolysis model, a completely new algorithm has been proposed, where a moving dual mesh concept was developed and implemented. With this new concept, it provides proper spatial resolution for both temperature and density and automatically considers the regression of the surface of the non-charring solid material during its pyrolysis. It is simple, very efficient and applicable to both charring and non-charring materials. FASTNB speeds up significantly the evaluation of narrow band spectral radiation properties and thus provides a potential of applying narrow band model in numerical simulations of practical turbulent combustion. The turbulence model was developed to improve the consideration of buoyancy effect on turbulence and turbulent transport. It was found to be simple, promising and numerically stable. It has been tested against both plane and axisymmetric thermal plumes and an axisymmetric buoyant diffusion flame. When compared with the widely used standard buoyancy-modified {kappa} - {epsilon} model, it gives significant improvement on numerical results. These developed models have been fully incorporated into CFD (Computational Fluid Dynamics) code and coupled with other CFD sub-models, including the DT (Discrete Transfer) radiation model, EDC (Eddy Dissipation Concept) combustion model, flamelet combustion model, various soot models and transpired wall function. Comprehensive numerical simulations have been carried out to study soot formation and oxidation in turbulent buoyant diffusion flames, flame heat transfer and flame spread in fires. The gas temperature and velocity, soot volume fraction, wall

  1. Neural correlates of the numerical distance effect in children

    Directory of Open Access Journals (Sweden)

    Christophe eMussolin

    2013-10-01

    Full Text Available In number comparison tasks, the performance is better when the distance between the two numbers to compare increases. During development this so-called numerical distance effect decreases with age and the neuroanatomical correlates of these age-related changes are poorly known. Using functional magnetic resonance imaging, we recorded the brain activity changes in children aged from 8 to 14 years while they performed a number comparison task on pairs of Arabic digits and a control colour comparison task on non-numerical symbols. On the one hand, we observed developmental changes in the recruitment of frontal regions and the left intraparietal sulcus, with lower activation as the age increased. On the other hand, we found that a behavioural index of selective sensitivity to the numerical distance effect was positively correlated with higher brain activity in a right lateralized occipito-temporo-parietal network including the intraparietal sulcus. This leads us to propose that the left intraparietal sulcus would be engaged in the refinement of cognitive processes involved in number comparison during development, while the right intraparietal sulcus would underlie the semantic representation of numbers and its activation would be mainly affected by the numerical proximity between them.

  2. A Review of Factors Influencing Athletes' Food Choices.

    Science.gov (United States)

    Birkenhead, Karen L; Slater, Gary

    2015-11-01

    Athletes make food choices on a daily basis that can affect both health and performance. A well planned nutrition strategy that includes the careful timing and selection of appropriate foods and fluids helps to maximize training adaptations and, thus, should be an integral part of the athlete's training programme. Factors that motivate food selection include taste, convenience, nutrition knowledge and beliefs. Food choice is also influenced by physiological, social, psychological and economic factors and varies both within and between individuals and populations. This review highlights the multidimensional nature of food choice and the depth of previous research investigating eating behaviours. Despite numerous studies with general populations, little exploration has been carried out with athletes, yet the energy demands of sport typically require individuals to make more frequent and/or appropriate food choices. While factors that are important to general populations also apply to athletes, it seems likely, given the competitive demands of sport, that performance would be an important factor influencing food choice. It is unclear if athletes place the same degree of importance on these factors or how food choice is influenced by involvement in sport. There is a clear need for further research exploring the food choice motives of athletes, preferably in conjunction with research investigating dietary intake to establish if intent translates into practice.

  3. Structure of unilamellar vesicles: Numerical analysis based on small-angle neutron scattering data

    International Nuclear Information System (INIS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zbytovska, J.; Almasy, L.; Aswal, V. K.; Strunz, P.; Wartewig, S.; Neubert, R.

    2006-01-01

    The structure of polydispersed populations of unilamellar vesicles is studied by small-angle neutron scattering for three types of lipid systems, namely, single-, two-and four-component vesicular systems. Results of the numerical analysis based on the separated-form-factor model are reported

  4. Chaotic advection at large Péclet number: Electromagnetically driven experiments, numerical simulations, and theoretical predictions

    International Nuclear Information System (INIS)

    Figueroa, Aldo; Meunier, Patrice; Villermaux, Emmanuel; Cuevas, Sergio; Ramos, Eduardo

    2014-01-01

    We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, “The diffusive strip method for scalar mixing in two-dimensions,” J. Fluid Mech. 662, 134–172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors

  5. 3D numerical simulation and analysis of railgun gouging mechanism

    Directory of Open Access Journals (Sweden)

    Jin-guo Wu

    2016-04-01

    Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  6. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  7. A numerical method for solving singular De`s

    Energy Technology Data Exchange (ETDEWEB)

    Mahaver, W.T.

    1996-12-31

    A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.

  8. Numerical Modeling for the Solute Uptake from Groundwater by Plants-Plant Uptake Package

    OpenAIRE

    El-Sayed, Amr A.

    2006-01-01

    A numerical model is presented to describe solute transport in groundwater coupled to sorption by plant roots, translocation into plant stems, and finally evapotranspiration. The conceptual model takes into account both Root Concentration Factor, RCF, and Transpiration Stream Concentration Factor, TSCF for chemicals which are a function of Kow. A similar technique used to simulate the solute transport in groundwater to simulate sorption and plant uptake is used. The mathematical equation is s...

  9. NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were

  10. The structure factor of primes

    Science.gov (United States)

    Zhang, G.; Martelli, F.; Torquato, S.

    2018-03-01

    Although the prime numbers are deterministic, they can be viewed, by some measures, as pseudo-random numbers. In this article, we numerically study the pair statistics of the primes using statistical-mechanical methods, particularly the structure factor S(k) in an interval M ≤slant p ≤slant M + L with M large, and L/M smaller than unity. We show that the structure factor of the prime-number configurations in such intervals exhibits well-defined Bragg-like peaks along with a small ‘diffuse’ contribution. This indicates that primes are appreciably more correlated and ordered than previously thought. Our numerical results definitively suggest an explicit formula for the locations and heights of the peaks. This formula predicts infinitely many peaks in any non-zero interval, similar to the behavior of quasicrystals. However, primes differ from quasicrystals in that the ratio between the location of any two predicted peaks is rational. We also show numerically that the diffuse part decays slowly as M and L increases. This suggests that the diffuse part vanishes in an appropriate infinite-system-size limit.

  11. Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method

    Directory of Open Access Journals (Sweden)

    De-Gang Wang

    2012-01-01

    Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.

  12. Current status of regional hydrogeological studies and numerical simulations on geological disposal

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Kikuchi, Tsuneo; Ishido, Tsuneo

    2004-01-01

    Current status of regional hydrogeological studies on geological disposal including hydrogeological modeling using numerical simulators is reviewed in this report. A regional scale and boundary conditions of numerical models are summarized mainly from the results of the RHS (regional hydrogeological study) project conducted by Japan Nuclear Cycle Development Institute (JNC) in the Tono area. We also refer to the current conceptual modes of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada, which is the arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Understanding behavior of a freshwater-saltwater transition zone seems to play a key role in the hydrogeological modeling in a coastal region. Technical features of a numerical simulator as a tool for geothermal reservoir modeling is also briefly described. (author)

  13. Uralic numerals : is the evolution of numeral system reconstructable? : (Reading new Václav Balzhek's book on numerals in Eurasia) / Vladimir Napolskich

    Index Scriptorium Estoniae

    Napolskich, Vladimir

    2003-01-01

    Rmt.: Balzhek, Václav. Numerals. Comparative-etymological analyses of numeral systems and their implications (saharan, nubian, egyptian, berber, kartvelian, ralic, altaic and indo-european languages). Brno, 1999. (Spisy Masarykovy Univerzity v Brné. Filozofická fakulta; 322). Ülevaade uurali keelte arvsõnu käsitlevast osast

  14. Qualitative factors in the healthcare services

    Directory of Open Access Journals (Sweden)

    Claudiu CICEA

    2010-12-01

    Full Text Available It is known that the efficiency of medical services is a broad social and economic concept, influenced by both numerical-quantitative and non-numerical-qualitative factors. The dynamic nature of technical progress and the accelerated pace of scientific discoveries in the field of health, enhances the size and complexity of economic issues related to assessing the efficiency of these social activities.

  15. Numerical methods for the Lévy LIBOR model

    DEFF Research Database (Denmark)

    Papapantoleon, Antonis; Skovmand, David

    2010-01-01

    but the methods are generally slow. We propose an alternative approximation scheme based on Picard iterations. Our approach is similar in accuracy to the full numerical solution, but with the feature that each rate is, unlike the standard method, evolved independently of the other rates in the term structure....... This enables simultaneous calculation of derivative prices of different maturities using parallel computing. We include numerical illustrations of the accuracy and speed of our method pricing caplets.......The aim of this work is to provide fast and accurate approximation schemes for the Monte-Carlo pricing of derivatives in the L\\'evy LIBOR model of Eberlein and \\"Ozkan (2005). Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates...

  16. Numerical Methods for the Lévy LIBOR Model

    DEFF Research Database (Denmark)

    Papapantoleon, Antonis; Skovmand, David

    are generally slow. We propose an alternative approximation scheme based on Picard iterations. Our approach is similar in accuracy to the full numerical solution, but with the feature that each rate is, unlike the standard method, evolved independently of the other rates in the term structure. This enables...... simultaneous calculation of derivative prices of different maturities using parallel computing. We include numerical illustrations of the accuracy and speed of our method pricing caplets.......The aim of this work is to provide fast and accurate approximation schemes for the Monte-Carlo pricing of derivatives in the Lévy LIBOR model of Eberlein and Özkan (2005). Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates but the methods...

  17. Numerical Relativity Simulations for Black Hole Merger Astrophysics

    Science.gov (United States)

    Baker, John G.

    2010-01-01

    Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.

  18. Wind conditions in urban layout - Numerical and experimental research

    Science.gov (United States)

    Poćwierz, Marta; Zielonko-Jung, Katarzyna

    2018-01-01

    This paper presents research which compares the numerical and the experimental results for different cases of airflow around a few urban layouts. The study is concerned mostly with the analysis of parameters, such as pressure and velocity fields, which are essential in the building industry. Numerical simulations have been performed by the commercial software Fluent, with the use of a few different turbulence models, including popular k-ɛ, k-ɛ realizable or k-ω. A particular attention has been paid to accurate description of the conditions on the inlet and the selection of suitable computing grid. The pressure measurement near buildings and oil visualization were undertaken and described accordingly.

  19. Java technology for implementing efficient numerical analysis in intranet

    International Nuclear Information System (INIS)

    Song, Hee Yong; Ko, Sung Ho

    2001-01-01

    This paper introduces some useful Java technologies for utilizing the internet in numerical analysis, and suggests one architecture performing efficient numerical analysis in the intranet by using them. The present work has verified it's possibility by implementing some parts of this architecture with two easy examples. One is based on Servlet-Applet communication, JDBC and swing. The other is adding multi-threads, file transfer and Java remote method invocation to the former. Through this work it has been intended to make the base for the later advanced and practical research that will include efficiency estimates of this architecture and deal with advanced load balancing

  20. Time's arrow: A numerical experiment

    Science.gov (United States)

    Fowles, G. Richard

    1994-04-01

    The dependence of time's arrow on initial conditions is illustrated by a numerical example in which plane waves produced by an initial pressure pulse are followed as they are multiply reflected at internal interfaces of a layered medium. Wave interactions at interfaces are shown to be analogous to the retarded and advanced waves of point sources. The model is linear and the calculation is exact and demonstrably time reversible; nevertheless the results show most of the features expected of a macroscopically irreversible system, including the approach to the Maxwell-Boltzmann distribution, ergodicity, and concomitant entropy increase.

  1. Factors Stimulating Internationalisation of Firms: An Attempted Holistic Synthesis

    Directory of Open Access Journals (Sweden)

    Magdalena Belniak

    2015-06-01

    Full Text Available The main goal of this paper is the critical and synthetic analysis of internationalisation process factors, with reference to business management. It presents a systematic review of the most important relational ideas in regard to factors of firm-level internationalisation. The text includes the synthesis of previous academic studies and results of empirical researches on internationalisation factors. The motives for going international are explained in reference to external and internal factors. Different definitions of understanding external factors of internationalisation of firms are discussed, among them (i framework factors (market, cost, governmental, competitive and additional factors, (ii conditioning factors (factor and demand conditions, related and supporting industries, firm strategy, structure and rivalry as well as (iii general environment factors (economic environment, demographic environment, political and legal environment, technological, natural and socio-cultural environment. Internal factors of internationalisation are mostly rooted in the resource-based view. Motives for going international mainly depend on top management team, international resources and firms specifics. The paper underlines that there are numerous factors, both external and internal, which influence international activities of firms. Despite the fact that the decision to internationalize is focused on specific motives and goals, the role of managers is crucial.

  2. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    Science.gov (United States)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  3. Factors affecting the local control of stereotactic body radiotherapy for lung tumors including primary lung cancer and metastatic lung tumors

    International Nuclear Information System (INIS)

    Hamamoto, Yasushi; Kataoka, Masaaki; Yamashita, Motohiro

    2012-01-01

    The purpose of this study was to identify factors affecting local control of stereotactic body radiotherapy (SBRT) for lung tumors including primary lung cancer and metastatic lung tumors. Between June 2006 and June 2009, 159 lung tumors in 144 patients (primary lung cancer, 128; metastatic lung tumor, 31) were treated with SBRT with 48-60 Gy (mean 50.1 Gy) in 4-5 fractions. Higher doses were given to larger tumors and metastatic tumors in principle. Assessed factors were age, gender, tumor origin (primary vs. metastatic), histological subtype, tumor size, tumor appearance (solid vs. ground glass opacity), maximum standardized uptake value of positron emission tomography using 18 F-fluoro-2-deoxy-D-glucose, and SBRT doses. Follow-up time was 1-60 months (median 18 months). The 1-, 2-, and 3-year local failure-free rates of all lesions were 90, 80, and 77%, respectively. On univariate analysis, metastatic tumors (p<0.0001), solid tumors (p=0.0246), and higher SBRT doses (p=0.0334) were the statistically significant unfavorable factors for local control. On multivariate analysis, only tumor origin was statistically significant (p=0.0027). The 2-year local failure-free rates of primary lung cancer and metastatic lung tumors were 87 and 50%, respectively. A metastatic tumor was the only independently significant unfavorable factor for local control after SBRT. (author)

  4. The Navier-Stokes Equations Theory and Numerical Methods

    CERN Document Server

    Masuda, Kyûya; Rautmann, Reimund; Solonnikov, Vsevolod

    1990-01-01

    These proceedings contain original (refereed) research articles by specialists from many countries, on a wide variety of aspects of Navier-Stokes equations. Additionally, 2 survey articles intended for a general readership are included: one surveys the present state of the subject via open problems, and the other deals with the interplay between theory and numerical analysis.

  5. Two Numerical Approaches to Stationary Mean-Field Games

    KAUST Repository

    Almulla, Noha; Ferreira, Rita; Gomes, Diogo A.

    2016-01-01

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient-flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  6. Two Numerical Approaches to Stationary Mean-Field Games

    KAUST Repository

    Almulla, Noha

    2016-10-04

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient-flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  7. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    Science.gov (United States)

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Determination of some radiative view factors

    International Nuclear Information System (INIS)

    Ghosh, B.; Mukhopadhyay, D.; Lele, H.G.; Fichot, F.; Guillard, G.

    2011-01-01

    View factors are essential components for analysis for of radiative heat transfer through enclosure methods like radiosity approach, direct/total exchange area approach etc. View factor is defined as the integral over the interacting surface. View factor integral can be calculated by following various approaches, such as: view factor algebra, direction analytical approach, contour integration method, Monte Carlo method, numerical methods based of FDM or FEM, Hottle's string method etc. The present module of work on determination of view factor is aimed for use in ASTEC code system for severe accident analysis. There exist many routines (RADB, RADC, GRADEB, RADR, RADL) in the ICARE module of ASTEC code system to model radiative heat transfer from different types of assemblies of interacting surfaces of different nature. The present work is specially targeted for radiative heat transfer model for lower plenum (RADILOWE) and for extension of ICARE module for IPHWR. In interacting surfaces within the lower plenum comprises of different types of circular, cylindrical and conical surface. In the work completed so far, view factor relations have been derived/compiled based on exact/approximate analytical and numerical approaches. (author)

  9. Numerical analysis of a natural convection cooling system for radioactive canisters storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsal, R.J.; Anwar, S.; Mercada, M.G. [Fluor Daniel Inc., Irvine, CA (United States)

    1995-02-01

    This paper describes the use of numerical analysis for studying natural convection cooling systems for long term storage of heat producing radioactive materials, including special nuclear materials and nuclear waste. The paper explains the major design philosophy, and shares the experiences of numerical modeling. The strategy of storing radioactive material is to immobilize nuclear high-level waste by a vitrification process, convertion it into borosilicate glass, and cast the glass into stainless steel canisters. These canisters are seal welded, decontaminated, inspected, and temporarily stored in an underground vault until they can be sent to a geologic repository for permanent storage. These canisters generate heat by nuclear decay of radioactive isotopes. The function of the storage facility ventilation system is to ensure that the glass centerline temperature does not exceed the glass transition temperature during storage and the vault concrete temperatures remain within the specified limits. A natural convection cooling system was proposed to meet these functions. The effectiveness of a natural convection cooling system is dependent on two major factors that affect air movement through the vault for cooling the canisters: (1) thermal buoyancy forces inside the vault which create a stack effect, and (2) external wind forces, that may assist or oppose airflow through the vault. Several numerical computer models were developed to analyze the thermal and hydraulic regimes in the storage vault. The Site Model is used to simulate the airflow around the building and to analyze different air inlet/outlet devices. The Airflow Model simulates the natural convection, thermal regime, and hydraulic resistance in the vault. The Vault Model, internal vault temperature stratification; and, finally, the Hot Area Model is used for modeling concrete temperatures within the vault.

  10. How to Overcome Numerical Challenges to Modeling Stirling Engines

    Science.gov (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.

    2004-01-01

    Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.

  11. Numerical electromagnetic frequency domain analysis with discrete exterior calculus

    Science.gov (United States)

    Chen, Shu C.; Chew, Weng Cho

    2017-12-01

    In this paper, we perform a numerical analysis in frequency domain for various electromagnetic problems based on discrete exterior calculus (DEC) with an arbitrary 2-D triangular or 3-D tetrahedral mesh. We formulate the governing equations in terms of DEC for 3-D and 2-D inhomogeneous structures, and also show that the charge continuity relation is naturally satisfied. Then we introduce a general construction for signed dual volume to incorporate material information and take into account the case when circumcenters fall outside triangles or tetrahedrons, which may lead to negative dual volume without Delaunay triangulation. Then we examine the boundary terms induced by the dual mesh and provide a systematical treatment of various boundary conditions, including perfect magnetic conductor (PMC), perfect electric conductor (PEC), Dirichlet, periodic, and absorbing boundary conditions (ABC) within this method. An excellent agreement is achieved through the numerical calculation of several problems, including homogeneous waveguides, microstructured fibers, photonic crystals, scattering by a 2-D PEC, and resonant cavities.

  12. Note Onset Detection via Nonnegative Factorization of Magnitude Spectrum

    Directory of Open Access Journals (Sweden)

    Saeid Sanei

    2008-06-01

    Full Text Available A novel approach for onset detection of musical notes from audio signals is presented. In contrast to most commonly used conventional approaches, the proposed method features new detection functions constructed from the linear temporal bases that are obtained from the decomposition of musical spectra using nonnegative matrix factorization (NMF. Three forms of detection function, namely, first-order difference function, psychoacoustically motivated relative difference function, and constant-balanced relative difference function, are considered. As the approach works directly on input data, no prior knowledge or statistical information is therefore required. Practical issues, including the choice of the factorization rank and detection robustness to instruments, are also examined experimentally. Due to the scalability issue with the generated nonnegative matrix, the proposed method is only applied to relatively short, single instrument (or voice recordings. Numerical examples are provided to show the good performance of the proposed method, including comparisons between the three detection functions.

  13. Foundations of children's numerical and mathematical skills: the roles of symbolic and nonsymbolic representations of numerical magnitude.

    Science.gov (United States)

    Lyons, Ian M; Ansari, Daniel

    2015-01-01

    Numerical and mathematical skills are critical predictors of academic success. The last three decades have seen a substantial growth in our understanding of how the human mind and brain represent and process numbers. In particular, research has shown that we share with animals the ability to represent numerical magnitude (the total number of items in a set) and that preverbal infants can process numerical magnitude. Further research has shown that similar processing signatures characterize numerical magnitude processing across species and developmental time. These findings suggest that an approximate system for nonsymbolic (e.g., dot arrays) numerical magnitude representation serves as the basis for the acquisition of cultural, symbolic (e.g., Arabic numerals) representations of numerical magnitude. This chapter explores this hypothesis by reviewing studies that have examined the relation between individual differences in nonsymbolic numerical magnitude processing and symbolic math abilities (e.g., arithmetic). Furthermore, we examine the extent to which the available literature provides strong evidence for a link between symbolic and nonsymbolic representations of numerical magnitude at the behavioral and neural levels of analysis. We conclude that claims that symbolic number abilities are grounded in the approximate system for the nonsymbolic representation of numerical magnitude are not strongly supported by the available evidence. Alternative models and future research directions are discussed. © 2015 Elsevier Inc. All rights reserved.

  14. The demography of words: The global decline in non-numeric fertility preferences, 1993-2011.

    Science.gov (United States)

    Frye, Margaret; Bachan, Lauren

    2017-07-01

    This paper examines the decline in non-numeric responses to questions about fertility preferences among women in the developing world. These types of response-such as 'don't know' or 'it's up to God'-have often been interpreted through the lens of fertility transition theory as an indication that reproduction has not yet entered women's 'calculus of conscious choice'. However, this has yet to be investigated cross-nationally and over time. Using 19 years of data from 32 countries, we find that non-numeric fertility preferences decline most substantially in the early stages of a country's fertility transition. Using country-specific and multilevel models, we explore the individual- and contextual-level characteristics associated with women's likelihood of providing a non-numeric response to questions about their fertility preferences. Non-numeric fertility preferences are influenced by a host of social factors, with educational attainment and knowledge of contraception being the most robust and consistent predictors.

  15. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.

    1995-02-01

    There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.

  16. Numerical Asymptotic Solutions Of Differential Equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  17. Propagation of steel corrosion in concrete: Experimental and numerical investigations

    DEFF Research Database (Denmark)

    Michel, Alexander; Otieno, M.; Stang, Henrik

    2016-01-01

    This paper focuses on experimental and numerical investigations of the propagation phase of reinforcement corrosion to determine anodic and cathodic Tafel constants and exchange current densities, from corrosion current density and corrosion potential measurements. The experimental program includ...

  18. Experimental and numerical results of optical preamplification in LDA receiving head

    Czech Academy of Sciences Publication Activity Database

    Többen, H.; Karásek, Miroslav

    2000-01-01

    Roč. 49, č. 1 (2000), s. 10-13 ISSN 0018-9456 R&D Projects: GA ČR GA102/99/0393 Grant - others:EU COST(XE) OC 265.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibre amplifiers * flow measurement * neodymium * noise * numerical analysis * signal detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.584, year: 2000

  19. Experimental and numerical study of the pressure drop for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Min-Su; Kim, Sawoong; Jung, Hun-Chea; Shim, Hee-Jin; Ahn, Hee-Jae

    2016-11-01

    Highlights: • The results of the experiment and the numerical analysis are compared. • The numerical analysis results are lower than the experimental results. • The margin of the pressure drop is suggested. - Abstract: The blanket shield block (SB) is located inside the ITER vacuum chamber, and the main function is to provide the thermal and nuclear shielding to the vacuum vessel and external components. The SB is foreseen to undergo a significant heat load which is a body load throughout the whole thickness of the SB under normal operation conditions. Therefore, the cooling configuration in SB should be designed very carefully based on the various experiences. The pressure drop in the cooling design is one of the most important factors to balance a water distribution of overall blanket cooling system. In order to verify the pressure drop characteristic and validate the design methodology of SB, experiment and numerical analysis are performed and compared their results. These results would be a benchmarking of the numerical results with experimental results to assess the gap between calculations and experiments.

  20. Langevin simulations of QCD, including fermions

    International Nuclear Information System (INIS)

    Kronfeld, A.S.

    1986-02-01

    We encounter critical slow down in updating when xi/a -> infinite and in matrix inversion (needed to include fermions) when msub(q)a -> 0. A simulation that purports to solve QCD numerically will encounter these limits, so to face the challenge in the title of this workshop, we must cure the disease of critical slow down. Physically, this critical slow down is due to the reluctance of changes at short distances to propagate to large distances. Numerically, the stability of an algorithm at short wavelengths requires a (moderately) small step size; critical slow down occurs when the effective long wavelength step size becomes tiny. The remedy for this disease is an algorithm that propagates signals quickly throughout the system; i.e. one whose effective step size is not reduced for the long wavelength conponents of the fields. (Here the effective ''step size'' is essentially an inverse decorrelation time.) To do so one must resolve various wavelengths of the system and modify the dynamics (in CPU time) of the simulation so that all modes evolve at roughly the same rate. This can be achieved by introducing Fourier transforms. I show how to implement Fourier acceleration for Langevin updating and for conjugate gradient matrix inversion. The crucial feature of these algorithms that lends them to Fourier acceleration is that they update the lattice globally; hence the Fourier transforms are computed once per sweep rather than once per hit. (orig./HSI)

  1. Numerical analysis using Sage

    CERN Document Server

    Anastassiou, George A

    2015-01-01

    This is the first numerical analysis text to use Sage for the implementation of algorithms and can be used in a one-semester course for undergraduates in mathematics, math education, computer science/information technology, engineering, and physical sciences. The primary aim of this text is to simplify understanding of the theories and ideas from a numerical analysis/numerical methods course via a modern programming language like Sage. Aside from the presentation of fundamental theoretical notions of numerical analysis throughout the text, each chapter concludes with several exercises that are oriented to real-world application.  Answers may be verified using Sage.  The presented code, written in core components of Sage, are backward compatible, i.e., easily applicable to other software systems such as Mathematica®.  Sage is  open source software and uses Python-like syntax. Previous Python programming experience is not a requirement for the reader, though familiarity with any programming language is a p...

  2. Experimental and numerical study of a flapping tidal stream generator

    Science.gov (United States)

    Kim, Jihoon; Le, Tuyen Quang; Ko, Jin Hwan; Sitorus, Patar Ebenezer; Tambunan, Indra Hartarto; Kang, Taesam

    2017-11-01

    The tidal stream turbine is one of the systems that extract kinetic energy from tidal stream, and there are several types of the tidal stream turbine depending on its operating motion. In this research, we conduct experimental and consecutive numerical analyses of a flapping tidal stream generator with a dual configuration flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted using two-dimensional computational fluid dynamics simulations with an in-house code. Through an experimental analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90-degree phase difference between the two. This research was a part of the project titled `R&D center for underwater construction robotics', funded by the Ministry of Oceans and Fisheries(MOF), Korea Institute of Marine Science & Technology Promotion(KIMST,PJT200539), and Pohang City in Korea.

  3. A constriction factor based particle swarm optimisation algorithm to solve the economic dispatch problem including losses

    Energy Technology Data Exchange (ETDEWEB)

    Young, Steven; Montakhab, Mohammad; Nouri, Hassan

    2011-07-15

    Economic dispatch (ED) is one of the most important problems to be solved in power generation as fractional percentage fuel reductions represent significant cost savings. ED wishes to optimise the power generated by each generating unit in a system in order to find the minimum operating cost at a required load demand, whilst ensuring both equality and inequality constraints are met. For the process of optimisation, a model must be created for each generating unit. The particle swarm optimisation technique is an evolutionary computation technique with one of the most powerful methods for solving global optimisation problems. The aim of this paper is to add in a constriction factor to the particle swarm optimisation algorithm (CFBPSO). Results show that the algorithm is very good at solving the ED problem and that CFBPSO must be able to work in a practical environment and so a valve point effect with transmission losses should be included in future work.

  4. Numerical simulation of laser resonators

    International Nuclear Information System (INIS)

    Yoo, J. G.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.

  5. Risk Factor Analysis for AKI Including Laboratory Indicators: a Nationwide Multicenter Study of Hospitalized Patients

    Directory of Open Access Journals (Sweden)

    Sasa Nie

    2017-10-01

    Full Text Available Background/Aims: Risk factor studies for acute kidney injury (AKI in China are lacking, especially those regarding non-traditional risk factors, such as laboratory indicators. Methods: All adult patients admitted to 38 tertiary and 22 secondary hospitals in China in any one month between July and December 2014 were surveyed. AKI patients were screened according to the Kidney Disease: Improving Global Outcomes’ definition of AKI. Logistic regression was used to analyze the risk factors for AKI, and Cox regression was used to analyze the risk of in-hospital mortality for AKI patients; additionally, a propensity score analysis was used to reconfirm the risk factors among laboratory indicators for mortality. Results: The morbidity of AKI was 0.97%. Independent risk factors for AKI were advancing age, male gender, hypertension, and chronic kidney disease. All-cause mortality was 16.5%. The predictors of mortality in AKI patients were advancing age, tumor, higher uric acid level and increases in Acute Physiologic Assessment and Chronic Health Evaluation II and Sequential Organ Failure Assessment scores. The hazard ratio (HR for mortality with uric acid levels > 9.1 mg/dl compared with ≤ 5.2 mg/dl was 1.78 (95% CI: 1.23 to 2.58 for the AKI patients as a group, and was 1.73 (95% CI: 1.24 to 2.42 for a propensity score-matched set. Conclusion: In addition to traditional risk factors, uric acid level is an independent predictor of all-cause mortality after AKI.

  6. Error estimates for a numerical method for the compressible Navier-Stokes system on sufficiently smooth domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Hošek, Radim; Maltese, D.; Novotný, A.

    2017-01-01

    Roč. 51, č. 1 (2017), s. 279-319 ISSN 0764-583X EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Navier-Stokes system * finite element numerical method * finite volume numerical method Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.727, year: 2016 http://www.esaim-m2an.org/ articles /m2an/abs/2017/01/m2an150157/m2an150157.html

  7. Numerical

    Directory of Open Access Journals (Sweden)

    M. Boumaza

    2015-07-01

    Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.

  8. Numerical Methods for Free Boundary Problems

    CERN Document Server

    1991-01-01

    About 80 participants from 16 countries attended the Conference on Numerical Methods for Free Boundary Problems, held at the University of Jyviiskylii, Finland, July 23-27, 1990. The main purpose of this conference was to provide up-to-date information on important directions of research in the field of free boundary problems and their numerical solutions. The contributions contained in this volume cover the lectures given in the conference. The invited lectures were given by H.W. Alt, V. Barbu, K-H. Hoffmann, H. Mittelmann and V. Rivkind. In his lecture H.W. Alt considered a mathematical model and existence theory for non-isothermal phase separations in binary systems. The lecture of V. Barbu was on the approximate solvability of the inverse one phase Stefan problem. K-H. Hoff­ mann gave an up-to-date survey of several directions in free boundary problems and listed several applications, but the material of his lecture is not included in this proceedings. H.D. Mittelmann handled the stability of thermo capi...

  9. Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.

    Science.gov (United States)

    Khoromskaia, Venera; Khoromskij, Boris N

    2015-12-21

    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.

  10. A review of laboratory and numerical modelling in volcanology

    Directory of Open Access Journals (Sweden)

    J. L. Kavanagh

    2018-04-01

    Full Text Available Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars, volcanic plume formation, and ash dispersal. When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real

  11. A review of laboratory and numerical modelling in volcanology

    Science.gov (United States)

    Kavanagh, Janine L.; Engwell, Samantha L.; Martin, Simon A.

    2018-04-01

    Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars), volcanic plume formation, and ash dispersal. When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real world data.

  12. Origin of preferential flow and its controlling factors on emission potential using numerical simulations and lab experiments

    NARCIS (Netherlands)

    Baviskar, S.M.; Heimovaara, T.J.

    2015-01-01

    We believe the unsaturated and heterogeneous nature of landfills leads to the emergence of preferential pathways of water and dissolved compounds through the waste body. In this research we explore the origin of preferential flow in a porous media with a deterministic numerical model. In this model

  13. Clinical Application of Growth Factors and Cytokines in Wound Healing

    Science.gov (United States)

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  14. Numerical Studies of a Fluidic Diverter for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  15. A review on factors influencing bioaccessibility and bioefficacy of carotenoids.

    Science.gov (United States)

    Priyadarshani, A M B

    2017-05-24

    Vitamin A deficiency is one of the most prevalent deficiency disorders in the world. As shown by many studies plant food based approaches have a real potential on prevention of vitamin A deficiency in a sustainable way. Carotenoids are important as precursors of vitamin A as well as for prevention of cancers, coronary heart diseases, age-related macular degeneration, cataract etc. Bioaccessibility and bioefficacy of carotenoids are known to be influenced by numerous factors including dietary factors such as fat, fiber, dosage of carotenoid, location of carotenoid in the plant tissue, heat treatment, particle size of food, carotenoid species, interactions among carotenoids, isomeric form and molecular linkage and subject characteristics. Therefore even when carotenoids are found in high quantities in plant foods their utilization may be unsatisfactory because some factors are known to interfere as negative effectors.

  16. Maternal Support of Children's Early Numerical Concept Learning Predicts Preschool and First-Grade Math Achievement.

    Science.gov (United States)

    Casey, Beth M; Lombardi, Caitlin M; Thomson, Dana; Nguyen, Hoa Nha; Paz, Melissa; Theriault, Cote A; Dearing, Eric

    2018-01-01

    The primary goal in this study was to examine maternal support of numerical concepts at 36 months as predictors of math achievement at 4½ and 6-7 years. Observational measures of mother-child interactions (n = 140) were used to examine type of support for numerical concepts. Maternal support that involved labeling the quantities of sets of objects was predictive of later child math achievement. This association was significant for preschool (d = .45) and first-grade math (d = .49), controlling for other forms of numerical support (identifying numerals, one-to-one counting) as well as potential confounding factors. The importance of maternal support of labeling set sizes at 36 months is discussed as a precursor to children's eventual understanding of the cardinal principle. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  17. Including an ocean carbon cycle model into iLOVECLIM (v1.0)

    NARCIS (Netherlands)

    Bouttes, N.; Roche, D.M.V.A.P.; Mariotti, V.; Bopp, L.

    2015-01-01

    The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a

  18. International Winter Workshop on Differential Equations and Numerical Analysis

    CERN Document Server

    Miller, John; Narasimhan, Ramanujam; Mathiazhagan, Paramasivam; Victor, Franklin

    2016-01-01

    This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.

  19. A numerical study of bulk evaporation and condensation problem

    International Nuclear Information System (INIS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A numerical model is developed to simulate the dynamic behavior of bulk evaporation and condensation process in an encapsulated container with internal heat generation at micro-gravity level. Thermal performance of a multi-phase system with internal heat generation is investigated. The numerical simulation yields the evolution of the bulk liquid-vapor phase change process. This includes the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field. An example of such systems is a phase change nuclear fuel element which was first introduced by Ding and Anghaie with application in high temperature space nuclear power and propulsion systems

  20. Numerical Gram-Schmidt orthonormalization

    International Nuclear Information System (INIS)

    Werneth, Charles M; Dhar, Mallika; Maung, Khin Maung; Sirola, Christopher; Norbury, John W

    2010-01-01

    A numerical Gram-Schmidt orthonormalization procedure is presented for constructing an orthonormal basis function set from a non-orthonormal set, when the number of basis functions is large. This method will provide a pedagogical illustration of the Gram-Schmidt procedure and can be presented in classes on numerical methods or computational physics.

  1. Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions

    Science.gov (United States)

    McCullough, Christopher; Bettadpur, Srinivas

    2015-04-01

    In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.

  2. Numerical Transducer Modeling

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda

    This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... manipulations are developed to satisfy the more complicated boundary conditions, and a model of a condenser microphone with a coupled membrane is developed. The model is tested against measurements of ¼ inch condenser microphones and analytical calculations. A detailed discussion of the results is given....

  3. Fast numerical algorithm for the linear canonical transform.

    Science.gov (United States)

    Hennelly, Bryan M; Sheridan, John T

    2005-05-01

    The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.

  4. Numerical simulation of real-world flows

    Energy Technology Data Exchange (ETDEWEB)

    Hayase, Toshiyuki, E-mail: hayase@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan)

    2015-10-15

    Obtaining real flow information is important in various fields, but is a difficult issue because measurement data are usually limited in time and space, and computational results usually do not represent the exact state of real flows. Problems inherent in the realization of numerical simulation of real-world flows include the difficulty in representing exact initial and boundary conditions and the difficulty in representing unstable flow characteristics. This article reviews studies dealing with these problems. First, an overview of basic flow measurement methodologies and measurement data interpolation/approximation techniques is presented. Then, studies on methods of integrating numerical simulation and measurement, namely, four-dimensional variational data assimilation (4D-Var), Kalman filters (KFs), state observers, etc are discussed. The first problem is properly solved by these integration methodologies. The second problem can be partially solved with 4D-Var in which only initial and boundary conditions are control parameters. If an appropriate control parameter capable of modifying the dynamical structure of the model is included in the formulation of 4D-Var, unstable modes are properly suppressed and the second problem is solved. The state observer and KFs also solve the second problem by modifying mathematical models to stabilize the unstable modes of the original dynamical system by applying feedback signals. These integration methodologies are now applied in simulation of real-world flows in a wide variety of research fields. Examples are presented for basic fluid dynamics and applications in meteorology, aerospace, medicine, etc. (topical review)

  5. Numerical investigations of the dynamic behaviour of the DCB sample

    International Nuclear Information System (INIS)

    Stoeckl, H.

    1985-11-01

    Expericence with the wedge-loaded double cantilever beam (DCB) sample has shown that a reliable numerical simulation of measurements of the stress intensity factor is made very difficult. One tries to predict the effects associated with the occurring complications quantitatively and to interpret the dynamic behaviour of the sample as the effects of various waveforms. The problem of stability of crack propagation is discussed using a criterion provided by Cotterell. (HP) [de

  6. Parallel spatial direct numerical simulations on the Intel iPSC/860 hypercube

    Science.gov (United States)

    Joslin, Ronald D.; Zubair, Mohammad

    1993-01-01

    The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube is documented. The direct numerical simulation approach is used to compute spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows. The feasibility of using the PSDNS on the hypercube to perform transition studies is examined. The results indicate that the direct numerical simulation approach can effectively be parallelized on a distributed-memory parallel machine. By increasing the number of processors nearly ideal linear speedups are achieved with nonoptimized routines; slower than linear speedups are achieved with optimized (machine dependent library) routines. This slower than linear speedup results because the Fast Fourier Transform (FFT) routine dominates the computational cost and because the routine indicates less than ideal speedups. However with the machine-dependent routines the total computational cost decreases by a factor of 4 to 5 compared with standard FORTRAN routines. The computational cost increases linearly with spanwise wall-normal and streamwise grid refinements. The hypercube with 32 processors was estimated to require approximately twice the amount of Cray supercomputer single processor time to complete a comparable simulation; however it is estimated that a subgrid-scale model which reduces the required number of grid points and becomes a large-eddy simulation (PSLES) would reduce the computational cost and memory requirements by a factor of 10 over the PSDNS. This PSLES implementation would enable transition simulations on the hypercube at a reasonable computational cost.

  7. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    Hinds, J.

    2001-01-01

    This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The

  8. Numerical simulation of premixed turbulent methane combustion

    International Nuclear Information System (INIS)

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.

    2001-01-01

    In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame

  9. Combined Effects of Numerical Method Type and Time Step on Water Stressed Actual Crop ET

    Directory of Open Access Journals (Sweden)

    B. Ghahraman

    2016-02-01

    Full Text Available Introduction: Actual crop evapotranspiration (Eta is important in hydrologic modeling and irrigation water management issues. Actual ET depends on an estimation of a water stress index and average soil water at crop root zone, and so depends on a chosen numerical method and adapted time step. During periods with no rainfall and/or irrigation, actual ET can be computed analytically or by using different numerical methods. Overal, there are many factors that influence actual evapotranspiration. These factors are crop potential evapotranspiration, available root zone water content, time step, crop sensitivity, and soil. In this paper different numerical methods are compared for different soil textures and different crops sensitivities. Materials and Methods: During a specific time step with no rainfall or irrigation, change in soil water content would be equal to evapotranspiration, ET. In this approach, however, deep percolation is generally ignored due to deep water table and negligible unsaturated hydraulic conductivity below rooting depth. This differential equation may be solved analytically or numerically considering different algorithms. We adapted four different numerical methods, as explicit, implicit, and modified Euler, midpoint method, and 3-rd order Heun method to approximate the differential equation. Three general soil types of sand, silt, and clay, and three different crop types of sensitive, moderate, and resistant under Nishaboor plain were used. Standard soil fraction depletion (corresponding to ETc=5 mm.d-1, pstd, below which crop faces water stress is adopted for crop sensitivity. Three values for pstd were considered in this study to cover the common crops in the area, including winter wheat and barley, cotton, alfalfa, sugar beet, saffron, among the others. Based on this parameter, three classes for crop sensitivity was considered, sensitive crops with pstd=0.2, moderate crops with pstd=0.5, and resistive crops with pstd=0

  10. Numerical taxonomic studies of some tribes of Brassicaceae from Egypt

    NARCIS (Netherlands)

    Abdel Khalik, K.; Maesen, van der L.J.G.; Koopman, W.J.M.; Berg, van den R.G.

    2002-01-01

    A systematic study of 45 taxa belonging to 23 genera of tribes Arabideae, Euclidieae, Hesperideae, Lunarieae, Matthioleae and Sisymbrieae of Brassicaceae from Egypt was conducted by means of numerical analysis based on sixty two morphological characters, including vegetative parts, pollen grains and

  11. Determination of adsorption parameters in numerical simulation for polymer flooding

    Science.gov (United States)

    Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu

    2018-02-01

    A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.

  12. Development of numerical concepts

    Directory of Open Access Journals (Sweden)

    Sabine Peucker

    2013-06-01

    Full Text Available The development of numerical concepts is described from infancy to preschool age. Infants a few days old exhibit an early sensitivity for numerosities. In the course of development, nonverbal mental models allow for the exact representation of small quantities as well as changes in these quantities. Subitising, as the accurate recognition of small numerosities (without counting, plays an important role. It can be assumed that numerical concepts and procedures start with insights about small numerosities. Protoquantitative schemata comprise fundamental knowledge about quantities. One-to-one-correspondence connects elements and numbers, and, for this reason, both quantitative and numerical knowledge. If children understand that they can determine the numerosity of a collection of elements by enumerating the elements, they have acquired the concept of cardinality. Protoquantitative knowledge becomes quantitative if it can be applied to numerosities and sequential numbers. The concepts of cardinality and part-part-whole are key to numerical development. Developmentally appropriate learning and teaching should focus on cardinality and part-part-whole concepts.

  13. Australian mineral industry annual review 1977 (including information to June 1978)

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J

    1979-01-01

    This article records growth of the Australian mineral industry and reports production, consumption, treatment, trade, prices, new developments, exploration, and resources for all mineral commodities including fuels. Equivalent development abroad is summarized. Appendices include principal mineral producers, associations, etc. and royalties. Black coal is described under the headings: production, ex-mine value of output, employment, wages and salaries, production per manshift, interstate trade, port facilities, consumption, stock, prices, new developments, exploration, resources, world review, and coke. There are numerous tables of data and a flow chart of the Australian black coal industry, 1977. Brown coal includes production, consumption, new developments, exploration, resources, and world review.

  14. The factors affecting effectiveness of treatment in phages therapy, mini review

    Directory of Open Access Journals (Sweden)

    Mai Huong eCHATAIN-LY

    2014-02-01

    Full Text Available In recent years, the use of lytic bacteriophages as antimicrobial agents controlling pathogenic bacteria has appeared as a promising new alternative strategy in the face of growing antibiotic resistance which has caused problems in many fields including medicine, veterinary medicine and aquaculture. The use of bacteriophages has numerous advantages over traditional antimicrobials. The effectiveness of phage applications in fighting against pathogenic bacteria depends on several factors such as the bacteriophages/target bacteria ratio, the mode and moment of treatment, environmental conditions (pH, temperature ..., the neutralization of phage and accessibility to target bacteria, amongst others. This report presents these factors and the challenges involved in developing phage therapy applications

  15. Calculations of electromagnetic nucleon form factors and electroexcitation amplitudes of isobars

    International Nuclear Information System (INIS)

    Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.

    1989-03-01

    In this paper, we present numerical results for electroproduction amplitudes of proton resonances and electromagnetic nucleon form factors calculated in a relativized quark model. Interactions with both transversely and longitudinally polarized virtual photons were considered. Contributions of the different effects included in our approach have been analysed through a sample comparison with the available data. We also discuss the validity of the usual single-quark transition ansatz and possible parametrizations of the potential acting between the constituent quarks of the baryon. Impressive agreement is obtained with the nucleon form factor data up to squared momentum transfers of 2.5 GeV 2 , but still some problems remain with the Δ(1232) and higher resonances. (orig.)

  16. 48 CFR 2015.304 - Evaluation factors.

    Science.gov (United States)

    2010-10-01

    ... METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Source Selection Processes and Techniques 2015.304... numerically weighted are conflict of interest, estimated cost, and “go/no go” evaluation factors. ...

  17. pySecDec: A toolbox for the numerical evaluation of multi-scale integrals

    Science.gov (United States)

    Borowka, S.; Heinrich, G.; Jahn, S.; Jones, S. P.; Kerner, M.; Schlenk, J.; Zirke, T.

    2018-01-01

    We present pySECDEC, a new version of the program SECDEC, which performs the factorization of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program is now written in the form of python modules, which allow a very flexible usage. The optimization of the C++ code, generated using FORM, is improved, leading to a faster numerical convergence. The new version also creates a library of the integrand functions, such that it can be linked to user-specific codes for the evaluation of matrix elements in a way similar to analytic integral libraries.

  18. Numerical simulation on pollutant dispersion from vehicle exhaust in street configurations.

    Science.gov (United States)

    Yassin, Mohamed F; Kellnerová, R; Janour, Z

    2009-09-01

    The impact of the street configurations on pollutants dispersion from vehicles exhausts within urban canyons was numerically investigated using a computational fluid dynamics (CFD) model. Three-dimensional flow and dispersion of gaseous pollutants were modeled using standard kappa - epsilon turbulence model, which was numerically solved based on Reynolds-averaged Navier-Stokes equations by the commercial CFD code FLUENT. The concentration fields in the urban canyons were examined in three cases of street configurations: (1) a regular-shaped intersection, (2) a T-shaped intersection and (3) a Skew-shaped crossing intersection. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against wind tunnel results in order to optimize the turbulence model. Numerical predictions agreed reasonably well with wind tunnel results. The results obtained indicate that the mean horizontal velocity was very small in the center near the lower region of street canyon. The lowest turbulent kinetic energy was found at the separation and reattachment points associated with the corner of the down part of the upwind and downwind buildings in the street canyon. The pollutant concentration at the upwind side in the regular-shaped street intersection was higher than that in the T-shaped and Skew-shaped street intersections. Moreover, the results reveal that the street intersections are important factors to predict the flow patterns and pollutant dispersion in street canyon.

  19. Numerical and experimental approaches to simulate soil clogging in porous media

    Science.gov (United States)

    Kanarska, Yuliya; LLNL Team

    2012-11-01

    Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. To get more precise understanding of the soil transport in granular filters we investigated sensitivity of particle clogging mechanisms to various aspects such as particle size ration, the amplitude of hydraulic gradient, particle concentration and contact properties. By averaging the results derived from the grain-scale simulations, we investigated how those factors affect the semi-empirical multiphase model parameters in the large-scale simulation tool. The Department of Homeland Security Science and Technology Directorate provided funding for this research.

  20. 3rd International Conference on Numerical Analysis and Optimization : Theory, Methods, Applications and Technology Transfer

    CERN Document Server

    Grandinetti, Lucio; Purnama, Anton

    2015-01-01

    Presenting the latest findings in the field of numerical analysis and optimization, this volume balances pure research with practical applications of the subject. Accompanied by detailed tables, figures, and examinations of useful software tools, this volume will equip the reader to perform detailed and layered analysis of complex datasets. Many real-world complex problems can be formulated as optimization tasks. Such problems can be characterized as large scale, unconstrained, constrained, non-convex, non-differentiable, and discontinuous, and therefore require adequate computational methods, algorithms, and software tools. These same tools are often employed by researchers working in current IT hot topics such as big data, optimization and other complex numerical algorithms on the cloud, devising special techniques for supercomputing systems. The list of topics covered include, but are not limited to: numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, opt...

  1. Direct Numerical Simulations of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Livescu, D; Wei, T; Petersen, M R

    2011-01-01

    The development of the Rayleigh-Taylor mixing layer is studied using data from an extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This includes a suite of simulations with grid size of 1024 2 × 4608 and Atwood number ranging from 0.04 to 0.9, in order to examine small departures from the Boussinesq approximation as well as large Atwood number effects, and a high resolution simulation of grid size 4096 2 × 4032 and Atwood number of 0.75. After the layer width had developed substantially, additional branched simulations have been run under reversed and zero gravity conditions. While the bulk of the results will be published elsewhere, here we present preliminary results on: 1) the long-standing open question regarding the discrepancy between the numerically and experimentally measured mixing layer growth rates and 2) mixing characteristics.

  2. JDiffraction: A GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields

    Science.gov (United States)

    Piedrahita-Quintero, Pablo; Trujillo, Carlos; Garcia-Sucerquia, Jorge

    2017-05-01

    JDiffraction, a GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields, is presented. Angular spectrum, Fresnel transform, and Fresnel-Bluestein transform are the numerical algorithms implemented in the methods and functions of the library to compute the scalar propagation of the complex wavefield. The functionality of the library is tested with the modeling of easy to forecast numerical experiments and also with the numerical reconstruction of a digitally recorded hologram. The performance of JDiffraction is contrasted with a library written for C++, showing great competitiveness in the apparently less complex environment of JAVA language. JDiffraction also includes JAVA easy-to-use methods and functions that take advantage of the computation power of the graphic processing units to accelerate the processing times of 2048×2048 pixel images up to 74 frames per second.

  3. Numerical study of damage evolution and failure in an electromagnetic corner fill operation

    International Nuclear Information System (INIS)

    Imbert, J.M.; Winkler, S.L.; Worswick, M.J.; Oliveira, D.A.; Golovashchenko, S.

    2004-01-01

    A numerical study of an electromagnetic corner fill operation using AA5754 aluminum alloy sheet was performed. Conical parts with side angles of 40 and 45 deg. (included angles of 100 and 90 deg.) were modeled. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Damage evolution was predicted using a damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. Experiments were performed to validate the numerical results. Damage measurements were made using optical microscopy to determine the actual damage produced by the forming operations. Predicted final shape, failure and damage levels are presented and compared with experimental results. The numerical models were able to accurately predict damage trends. Failure was predicted in general agreement with the experiments

  4. Numerical simulations of the thermionic electron gun for electron-beam welding and micromachining

    Czech Academy of Sciences Publication Activity Database

    Jánský, Pavel; Zlámal, J.; Lencová, Bohumila; Zobač, Martin; Vlček, Ivan; Radlička, Tomáš

    2009-01-01

    Roč. 84, č. 2 (2009), s. 357-362 ISSN 0042-207X R&D Projects: GA AV ČR IAA100650805 Institutional research plan: CEZ:AV0Z20650511 Keywords : Numerical simulation * Thermionic emission * Electron gun Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.975, year: 2009

  5. Global optimization numerical strategies for rate-independent processes

    Czech Academy of Sciences Publication Activity Database

    Benešová, Barbora

    2011-01-01

    Roč. 50, č. 2 (2011), s. 197-220 ISSN 0925-5001 R&D Projects: GA ČR GAP201/10/0357 Grant - others:GA MŠk(CZ) LC06052 Program:LC Institutional research plan: CEZ:AV0Z20760514 Keywords : rate-independent processes * numerical global optimization * energy estimates based algorithm Subject RIV: BA - General Mathematics Impact factor: 1.196, year: 2011 http://math.hnue.edu.vn/portal/rss.viewpage.php?id=0000037780&ap=L3BvcnRhbC9ncmFiYmVyLnBocD9jYXRpZD0xMDEyJnBhZ2U9Mg==

  6. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...

  7. Cognitive Strategy Use and Measured Numeric Ability in Immediate- and Long-Term Recall of Everyday Numeric Information

    Science.gov (United States)

    Bermingham, Douglas; Hill, Robert D.; Woltz, Dan; Gardner, Michael K.

    2013-01-01

    The goals of this study were to assess the primary effects of the use of cognitive strategy and a combined measure of numeric ability on recall of every-day numeric information (i.e. prices). Additionally, numeric ability was assessed as a moderator in the relationship between strategy use and memory for prices. One hundred participants memorized twelve prices that varied from 1 to 6 digits; they recalled these immediately and after 7 days. The use of strategies, assessed through self-report, was associated with better overall recall, but not forgetting. Numeric ability was not associated with either better overall recall or forgetting. A small moderating interaction was found, in which higher levels of numeric ability enhanced the beneficial effects of strategy use on overall recall. Exploratory analyses found two further small moderating interactions: simple strategy use enhanced overall recall at higher levels of numeric ability, compared to complex strategy use; and complex strategy use was associated with lower levels of forgetting, but only at higher levels of numeric ability, compared to the simple strategy use. These results provide support for an objective measure of numeric ability, as well as adding to the literature on memory and the benefits of cognitive strategy use. PMID:23483964

  8. Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

    International Nuclear Information System (INIS)

    Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  9. A comparison of numerical and machine-learning modeling of soil water content with limited input data

    Science.gov (United States)

    Karandish, Fatemeh; Šimůnek, Jiří

    2016-12-01

    Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it provides information to make an accurate estimation of crop water demand. Methods for predicting SWC that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for various water-saving irrigation strategies that are required to resolve both food and water security issues under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010 and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors (RMSE) in the range of 0.54-2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from 1.27 to 1.9 mm and mean bias errors of -0.07 to 0.27 mm, respectively. However, the MLR models did not perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process. The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could be favorably used for SWC predictions under water stress conditions, especially when there is a lack of data. However, process-based numerical models are undoubtedly a

  10. Numerical modeling of fires on gas pipelines

    International Nuclear Information System (INIS)

    Zhao Yang; Jianbo Lai; Lu Liu

    2011-01-01

    When natural gas is released through a hole on a high-pressure pipeline, it disperses in the atmosphere as a jet. A jet fire will occur when the leaked gas meets an ignition source. To estimate the dangerous area, the shape and size of the fire must be known. The evolution of the jet fire in air is predicted by using a finite-volume procedure to solve the flow equations. The model is three-dimensional, elliptic and calculated by using a compressibility corrected version of the k - ξ turbulence model, and also includes a probability density function/laminar flamelet model of turbulent non-premixed combustion process. Radiation heat transfer is described using an adaptive version of the discrete transfer method. The model is compared with the experiments about a horizontal jet fire in a wind tunnel in the literature with success. The influence of wind and jet velocity on the fire shape has been investigated. And a correlation based on numerical results for predicting the stoichiometric flame length is proposed. - Research highlights: → We developed a model to predict the evolution of turbulent jet diffusion flames. → Measurements of temperature distributions match well with the numerical predictions. → A correlation has been proposed to predict the stoichiometric flame length. → Buoyancy effects are higher in the numerical results. → The radiative heat loss is bigger in the experimental results.

  11. Numerical abilities in fish: A methodological review.

    Science.gov (United States)

    Agrillo, Christian; Miletto Petrazzini, Maria Elena; Bisazza, Angelo

    2017-08-01

    The ability to utilize numerical information can be adaptive in a number of ecological contexts including foraging, mating, parental care, and anti-predator strategies. Numerical abilities of mammals and birds have been studied both in natural conditions and in controlled laboratory conditions using a variety of approaches. During the last decade this ability was also investigated in some fish species. Here we reviewed the main methods used to study this group, highlighting the strengths and weaknesses of each of the methods used. Fish have only been studied under laboratory conditions and among the methods used with other species, only two have been systematically used in fish-spontaneous choice tests and discrimination learning procedures. In the former case, the choice between two options is observed in a biologically relevant situation and the degree of preference for the larger/smaller group is taken as a measure of the capacity to discriminate the two quantities (e.g., two shoals differing in number). In discrimination learning tasks, fish are trained to select the larger or the smaller of two sets of abstract objects, typically two-dimensional geometric figures, using food or social companions as reward. Beyond methodological differences, what emerges from the literature is a substantial similarity of the numerical abilities of fish with those of other vertebrates studied. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Numerical Analysis of Soil Settlement Prediction and Its Application In Large-Scale Marine Reclamation Artificial Island Project

    Directory of Open Access Journals (Sweden)

    Zhao Jie

    2017-11-01

    Full Text Available In an artificial island construction project based on the large-scale marine reclamation land, the soil settlement is a key to affect the late safe operation of the whole field. To analyze the factors of the soil settlement in a marine reclamation project, the SEM method in the soil micro-structural analysis method is used to test and study six soil samples such as the representative silt, mucky silty clay, silty clay and clay in the area. The structural characteristics that affect the soil settlement are obtained by observing the SEM charts at different depths. By combining numerical calculation method of Terzaghi’s one-dimensional and Biot’s two-dimensional consolidation theory, the one-dimensional and two-dimensional creep models are established and the numerical calculation results of two consolidation theories are compared in order to predict the maximum settlement of the soils 100 years after completion. The analysis results indicate that the micro-structural characteristics are the essential factor to affect the settlement in this area. Based on numerical analysis of one-dimensional and two-dimensional settlement, the settlement law and trend obtained by two numerical analysis method is similar. The analysis of this paper can provide reference and guidance to the project related to the marine reclamation land.

  13. Advanced modelling and numerical strategies in nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    Staedtke, H.

    2001-01-01

    The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)

  14. Factors that contribute to biomarker responses in humans including a study in individuals taking Vitamin C supplementation.

    Science.gov (United States)

    Anderson, D

    2001-09-01

    It is possible in many situations to identify humans exposed to potentially toxic materials in the workplace and in the environment. As in most human studies, there tends to be a high degree of interindividual variability in response to chemical insults. Some non-exposed control individuals exhibit as high a level of damage as some exposed individuals and some of these have levels of damage as low as many of the controls. Thus, it is only the mean values of the groups that can substantiate an exposure-related problem; the data on an individual basis are still of limited use. While human lymphocytes remain the most popular cell type for monitoring purposes, sperm, buccal, nasal, epithelial and placental cells are also used. However, for interpretation of responses, the issue of confounding factors must be addressed. There are endogenous confounding factors, such as age, gender, and genetic make-up and exogenous ones, including lifestyle habits (smoking, drinking, etc.) There are biomarkers of exposure, effect/response and susceptibility and the last may be influenced by the genotype and polymorphism genes existing in a population. From our own studies, confounding effects on cytogenetic damage and ras oncoproteins will be considered in relation to workers exposed to vinyl chloride and petroleum emissions and to volunteers taking Vitamin C supplementation. Smoking history, exposure and duration of employment affected the worker studies. For petroleum emissions, so did gender and season of exposure. For the non-smoking volunteer Vitamin C supplementation study, cholesterol levels, plasma Vitamin C levels, lipid peroxidation products and DNA damage in the Comet assay were also measured. Gender affected differences in Vitamin C levels, antioxidant capacity and the number of chromosome aberrations induced by bleomycin challenge in vitro. The results were the same for both high and low cholesterol subjects. The relationship between biomarkers and the various factors which

  15. Hybrid numerical calculation method for bend waveguides

    OpenAIRE

    Garnier , Lucas; Saavedra , C.; Castro-Beltran , Rigoberto; Lucio , José Luis; Bêche , Bruno

    2017-01-01

    National audience; The knowledge of how the light will behave in a waveguide with a radius of curvature becomes more and more important because of the development of integrated photonics, which include ring micro-resonators, phasars, and other devices with a radius of curvature. This work presents a numerical calculation method to determine the eigenvalues and eigenvectors of curved waveguides. This method is a hybrid method which uses at first conform transformation of the complex plane gene...

  16. [Injuries in France: trends and risk factors].

    Science.gov (United States)

    Richard, J-B; Thélot, B; Beck, F

    2013-06-01

    Whatever the type of injury considered, prevention requires an improvement in health services' awareness of risk factors. The Health Barometer is a general population survey conducted in France since 1992 to contribute to surveillance in this field. The survey's statistical power and the numerous health topics included in the questionnaire provide accurate information for healthcare professionals and decision-makers. The Health Barometer 2010 was a nationwide telephone survey of 9110 persons representative of the 15-85-year-old population. One part of the questionnaire detailed injuries which had occurred during the past year. The numerous variables recorded enabled application of logistic regression models to explore risk factors related to different types of injury by age group. The findings were compared with the Health Barometer 2005 data to search for temporal trends of injury prevalence. The data analysis showed that 10.3% of the 15-85-year-olds reported an injury during the past year. This rate was higher than recorded in 2005; the increase was mainly due to domestic accidents and injuries occurring during recreational activities. Both type of injury and risk factors exhibited age-related variability. Domestic accidents and injuries occurring during recreational activities predominated in the older population and were associated with physical or mental health problems (chronic disease, diability, sleep disorders). For younger people, injuries were related to cannabis use, drunkedness, and insufficient sleep. Risk factors were also depended on type of injury: occupational accident-related injuries were linked with social disadvantage (manual worker population) whereas sports injuries were more common in the socially advantaged population. This survey confirms established knowledge and highlights, at different stages of life, new risk factors that contribute to injuries in France. These findings should be helpful for the development of adapted injury

  17. Zdeněk Kopal: Numerical Analyst

    Science.gov (United States)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  18. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    International Nuclear Information System (INIS)

    Meyers, M.D.; Huang, C.-K.; Zeng, Y.; Yi, S.A.; Albright, B.J.

    2015-01-01

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models

  19. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    Science.gov (United States)

    Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.

    2015-09-01

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.

  20. Benchmarking state-of-the-art numerical simulation techniques for analyzing large photonic crystal membrane line defect cavities

    DEFF Research Database (Denmark)

    Gregersen, Niels; de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn

    2018-01-01

    In this work, we perform numerical studies of two photonic crystal membrane microcavities, a short line-defect L5 cavity with relatively low quality (Q) factor and a longer L9 cavity with high Q. We compute the cavity Q factor and the resonance wavelength λ of the fundamental M1 mode in the two...

  1. On numerical considerations for modeling reactive astrophysical shocks

    International Nuclear Information System (INIS)

    Papatheodore, Thomas L.; Messer, O. E. Bronson

    2014-01-01

    Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds and associated quantities is to prohibit burning inside the numerically broadened shock. We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in models of Type Ia supernovae, including potential impacts on observables.

  2. Analytical and numerical modelling of thermoviscous shocks in their interactions in nonlinear fluids including dissipation

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2010-01-01

    A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. The equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non dissipative limit. An exact...... thermoviscous shock solution is derived. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation, the model equation considered here is capable to describe waves propagating in opposite directions. Studies of head...

  3. Numerical method for two phase flow with a unstable interface

    International Nuclear Information System (INIS)

    Glimm, J.; Marchesin, D.; McBryan, O.

    1981-01-01

    The random choice method is used to compute the oil-water interface for two dimensional porous media equations. The equations used are a pair of coupled equations; the (elliptic) pressure equation and the (hyperbolic) saturation equation. The equations do not include the dispersive capillary pressure term and the computation does not introduce numerical diffusion. The method resolves saturation discontinuities sharply. The main conclusion of this paper is that the random choice is a correct numerical procedure for this problem even in the highly fingered case. Two methods of inducing fingers are considered: deterministically, through choice of Cauchy data and heterogeneity, through maximizing the randomness of the random choice method

  4. Numerical Experiments Providing New Insights into Plasma Focus Fusion Devices

    Directory of Open Access Journals (Sweden)

    Sing Lee

    2010-04-01

    Full Text Available Recent extensive and systematic numerical experiments have uncovered new insights into plasma focus fusion devices including the following: (1 a plasma current limitation effect, as device static inductance is reduced towards very small values; (2 scaling laws of neutron yield and soft x-ray yield as functions of storage energies and currents; (3 a global scaling law for neutron yield as a function of storage energy combining experimental and numerical data showing that scaling deterioration has probably been interpreted as neutron ‘saturation’; and (4 a fundamental cause of neutron ‘saturation’. The ground-breaking insights thus gained may completely change the directions of plasma focus fusion research.

  5. A review on functional and structural brain connectivity in numerical cognition

    Directory of Open Access Journals (Sweden)

    Korbinian eMoeller

    2015-05-01

    Full Text Available Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 26 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intraparietal as well as (prefrontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how grey matter areas associated with specific number-related representations may work together.

  6. Symmetry boost of the fidelity of Shor factoring

    Science.gov (United States)

    Nam, Y. S.; Blümel, R.

    2018-05-01

    In Shor's algorithm quantum subroutines occur with the structure F U F-1 , where F is a unitary transform and U is performing a quantum computation. Examples are quantum adders and subunits of quantum modulo adders. In this paper we show, both analytically and numerically, that if, in analogy to spin echoes, F and F-1 can be implemented symmetrically when executing Shor's algorithm on actual, imperfect quantum hardware, such that F and F-1 have the same hardware errors, a symmetry boost in the fidelity of the combined F U F-1 quantum operation results when compared to the case in which the errors in F and F-1 are independently random. Running the complete gate-by-gate implemented Shor algorithm, we show that the symmetry-induced fidelity boost can be as large as a factor 4. While most of our analytical and numerical results concern the case of over- and under-rotation of controlled rotation gates, in the numerically accessible case of Shor's algorithm with a small number of qubits, we show explicitly that the symmetry boost is robust with respect to more general types of errors. While, expectedly, additional error types reduce the symmetry boost, we show explicitly, by implementing general off-diagonal SU (N ) errors (N =2 ,4 ,8 ), that the boost factor scales like a Lorentzian in δ /σ , where σ and δ are the error strengths of the diagonal over- and underrotation errors and the off-diagonal SU (N ) errors, respectively. The Lorentzian shape also shows that, while the boost factor may become small with increasing δ , it declines slowly (essentially like a power law) and is never completely erased. We also investigate the effect of diagonal nonunitary errors, which, in analogy to unitary errors, reduce but never erase the symmetry boost. Going beyond the case of small quantum processors, we present analytical scaling results that show that the symmetry boost persists in the practically interesting case of a large number of qubits. We illustrate this result

  7. Improvements in scaling of counter-current imbibition recovery curves using a shape factor including permeability anisotropy

    Science.gov (United States)

    Abbasi, Jassem; Sarafrazi, Shiva; Riazi, Masoud; Ghaedi, Mojtaba

    2018-02-01

    Spontaneous imbibition is the main oil production mechanism in the water invaded zone of a naturally fractured reservoir (NFR). Different scaling equations have been presented in the literature for upscaling of core scale imbibition recovery curves to field scale matrix blocks. Various scale dependent parameters such as gravity effects and boundary influences are required to be considered in the upscaling process. Fluid flow from matrix blocks to the fracture system is highly dependent on the permeability value in the horizontal and vertical directions. The purpose of this study is to include permeability anisotropy in the available scaling equations to improve the prediction of imbibition assisted oil production in NFRs. In this paper, a commercial reservoir simulator was used to obtain imbibition recovery curves for different scenarios. Then, the effect of permeability anisotropy on imbibition recovery curves was investigated, and the weakness of the existing scaling equations for anisotropic rocks was demonstrated. Consequently, an analytical shape factor was introduced that can better scale all the curves related to anisotropic matrix blocks.

  8. Towards numerical simulations of supersonic liquid jets using ghost fluid method

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2015-01-01

    Highlights: • A ghost fluid method based solver is developed for numerical simulation of compressible multiphase flows. • The performance of the numerical tool is validated via several benchmark problems. • Emergence of supersonic liquid jets in quiescent gaseous environment is simulated using ghost fluid method for the first time. • Bow-shock formation ahead of the liquid jet is clearly observed in the obtained numerical results. • Radiation of mach waves from the phase-interface witnessed experimentally is evidently captured in our numerical simulations. - Abstract: A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid

  9. A mutually profitable alliance - Asymptotic expansions and numerical computations

    Science.gov (United States)

    Euvrard, D.

    Problems including the flow past a wing airfoil at Mach 1, and the two-dimensional flow past a partially immersed body are used to show the advantages of coupling a standard numerical method for the whole domain where everything is of the order of 1, with an appropriate asymptotic expansion in the vicinity of some singular point. Cases more closely linking the two approaches are then considered. In the localized finite element method, the asymptotic expansion at infinity becomes a convergent series and the problem reduces to a variational form. Combined analytical and numerical methods are used in the singularity distribution method and in the various couplings of finite elements and a Green integral representation to design a subroutine to compute the Green function and its derivatives.

  10. Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Sun

    2018-04-01

    Full Text Available It has been shown that using nanofluids as heat carrier fluids enhances the conductive and convective heat transfer of geothermal heat exchangers. In this paper, we study the stability of nanofluids in a geothermal exchanger by numerically simulating nanoparticle sedimentation during a shut-down process. The nanofluid suspension is modeled as a non-linear complex fluid; the nanoparticle migration is modeled by a particle flux model, which includes the effects of Brownian motion, gravity, turbulent eddy diffusivity, etc. The numerical results indicate that when the fluid is static, the nanoparticle accumulation appears to be near the bottom borehole after many hours of sedimentation. The accumulated particles can be removed by the fluid flow at a relatively high velocity. These observations indicate good suspension stability of the nanofluids, ensuring the operational reliability of the heat exchanger. The numerical results also indicate that a pulsed flow and optimized geometry of the bottom borehole can potentially improve the suspension stability of the nanofluids further.

  11. The factors influencing nonlinear characteristics of the short-circuit current in dye-sensitized solar cells investigated by a numerical model.

    Science.gov (United States)

    Shi, Yushuai; Dong, Xiandui

    2013-06-24

    A numerical model for interpretation of the light-intensity-dependent nonlinear characteristics of the short-circuit current in dye-sensitized solar cells is suggested. The model is based on the continuity equation and includes the influences of the nongeminate recombination between electrons and electron acceptors in the electrolyte and the geminate recombination between electrons and oxidized dye molecules. The influences of the order and rate constant of the nongeminate recombination reaction, the light-absorption coefficient of the dye, the film thickness, the rate constant of geminate recombination, and the regeneration rate constant on the nonlinear characteristics of the short-circuit current are simulated and analyzed. It is proposed that superlinear and sublinear characteristics of the short-circuit current should be attributed to low electron-collection efficiency and low dye-regeneration efficiency, respectively. These results allow a deep understanding of the origin of the nonlinear characteristics of the short-circuit current in solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Industrial numerical analysis

    International Nuclear Information System (INIS)

    McKee, S.; Elliott, C.M.

    1986-01-01

    The applications of mathematics to industrial problems involves the formulation of problems which are amenable to mathematical investigation, mathematical modelling, the solution of the mathematical problem and the inter-pretation of the results. There are 12 chapters describing industrial problems where mathematics and numerical analysis can be applied. These range from the numerical assessment of the flatness of engineering surfaces and plates, the design of chain links, control problems in tidal power generation and low thrust satellite trajectory optimization to mathematical models in welding. One chapter, on the ageing of stainless steels, is indexed separately. (UK)

  13. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  14. Numerical study on drag reduction and heat transfer enhancement in microchannels with superhydrophobic surfaces for electronic cooling

    International Nuclear Information System (INIS)

    Cheng, Yongpan; Xu, Jinliang; Sui, Yi

    2015-01-01

    Microchannels with superhydrophobic surfaces are a promising candidate for electric cooling with mild frictional penalty. Frictional and thermal performance of laminar liquid-water flow in such microchannels is numerically investigated for various shear-free fractions and Reynolds numbers. The structures on superhydrophobic surfaces include square posts and holes, transverse and longitudinal grooves. Combined frictional and thermal performance of microchannels is evaluated by a goodness factor, and is compared with that of smooth plain channels. It is found that with increasing shear-free fractions, both friction factor and average Nusselt number deteriorate for four surface patterns; however, goodness factor is improved significantly over smooth plain channels. In general, superhydrophobic surfaces containing longitudinal and transverse grooves exhibit the lowest and highest frictional and thermal performance, respectively; however, combined performance of these two are on opposite. Among four surface patterns, longitudinal grooves have the highest goodness factors, except at high shear-free fractions or high Reynolds numbers where overall performance is surpassed by square posts. At very low or high shear-free fractions, frictional and thermal performance of two-dimensional square posts and holes approaches that of one-dimensional longitudinal or transverse grooves. Our study suggests microchannels with superhydrophobic surfaces as promising candidates for efficient cooling devices.

  15. Developing Teaching Material Software Assisted for Numerical Methods

    Science.gov (United States)

    Handayani, A. D.; Herman, T.; Fatimah, S.

    2017-09-01

    The NCTM vision shows the importance of two things in school mathematics, which is knowing the mathematics of the 21st century and the need to continue to improve mathematics education to answer the challenges of a changing world. One of the competencies associated with the great challenges of the 21st century is the use of help and tools (including IT), such as: knowing the existence of various tools for mathematical activity. One of the significant challenges in mathematical learning is how to teach students about abstract concepts. In this case, technology in the form of mathematics learning software can be used more widely to embed the abstract concept in mathematics. In mathematics learning, the use of mathematical software can make high level math activity become easier accepted by student. Technology can strengthen student learning by delivering numerical, graphic, and symbolic content without spending the time to calculate complex computing problems manually. The purpose of this research is to design and develop teaching materials software assisted for numerical method. The process of developing the teaching material starts from the defining step, the process of designing the learning material developed based on information obtained from the step of early analysis, learners, materials, tasks that support then done the design step or design, then the last step is the development step. The development of teaching materials software assisted for numerical methods is valid in content. While validator assessment for teaching material in numerical methods is good and can be used with little revision.

  16. Numerical analysis of bifurcations

    International Nuclear Information System (INIS)

    Guckenheimer, J.

    1996-01-01

    This paper is a brief survey of numerical methods for computing bifurcations of generic families of dynamical systems. Emphasis is placed upon algorithms that reflect the structure of the underlying mathematical theory while retaining numerical efficiency. Significant improvements in the computational analysis of dynamical systems are to be expected from more reliance of geometric insight coming from dynamical systems theory. copyright 1996 American Institute of Physics

  17. Robust parameterization of elastic and absorptive electron atomic scattering factors

    International Nuclear Information System (INIS)

    Peng, L.M.; Ren, G.; Dudarev, S.L.; Whelan, M.J.

    1996-01-01

    A robust algorithm and computer program have been developed for the parameterization of elastic and absorptive electron atomic scattering factors. The algorithm is based on a combined modified simulated-annealing and least-squares method, and the computer program works well for fitting both elastic and absorptive atomic scattering factors with five Gaussians. As an application of this program, the elastic electron atomic scattering factors have been parameterized for all neutral atoms and for s up to 6 A -1 . Error analysis shows that the present results are considerably more accurate than the previous analytical fits in terms of the mean square value of the deviation between the numerical and fitted scattering factors. Parameterization for absorptive atomic scattering factors has been made for 17 important materials with the zinc blende structure over the temperature range 1 to 1000 K, where appropriate, and for temperature ranges for which accurate Debye-Waller factors are available. For other materials, the parameterization of the absorptive electron atomic scattering factors can be made using the program by supplying the atomic number of the element, the Debye-Waller factor and the acceleration voltage. For ions or when more accurate numerical results for neutral atoms are available, the program can read in the numerical values of the elastic scattering factors and return the parameters for both the elastic and absorptive scattering factors. The computer routines developed have been tested both on computer workstations and desktop PC computers, and will be made freely available via electronic mail or on floppy disk upon request. (orig.)

  18. QUARTZ: a numerical simulation of an asymmetric electrostatic accelerator

    International Nuclear Information System (INIS)

    Wooten, J.W.; Drooks, L.J.; McCollough, D.H.; McGaffey, R.W.; Whealton, J.H.

    1979-01-01

    The physics and numerical aspects of the development of the computer code QUARTZ are given. This code includes the (1) use of a finite element code to obtain solutions of Poisson's equation in an asymmetric, three-dimensional volume; (2) inclusion of space charge neutralization by electrons; and (3) inclusion of ion space charge through an iterative procedure

  19. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    Energy Technology Data Exchange (ETDEWEB)

    Yanallah, K; Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla (Spain); Pontiga, F; Fernandez-Rueda, A [Departamento de FIsica Aplicada II, Universidad de Sevilla (Spain)

    2009-03-21

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  20. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    International Nuclear Information System (INIS)

    Yanallah, K; Castellanos, A; Pontiga, F; Fernandez-Rueda, A

    2009-01-01

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  1. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    Science.gov (United States)

    Yanallah, K; Pontiga, F; Fernández-Rueda, A; Castellanos, A

    2009-03-01

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  2. XVI 'Jacques-Louis Lions' Spanish-French School on Numerical Simulation in Physics and Engineering

    CERN Document Server

    Roldán, Teo; Torrens, Juan

    2016-01-01

    This book presents lecture notes from the XVI ‘Jacques-Louis Lions’ Spanish-French School on Numerical Simulation in Physics and Engineering, held in Pamplona (Navarra, Spain) in September 2014. The subjects covered include: numerical analysis of isogeometric methods, convolution quadrature for wave simulations, mathematical methods in image processing and computer vision, modeling and optimization techniques in food processes, bio-processes and bio-systems, and GPU computing for numerical simulation. The book is highly recommended to graduate students in Engineering or Science who want to focus on numerical simulation, either as a research topic or in the field of industrial applications. It can also benefit senior researchers and technicians working in industry who are interested in the use of state-of-the-art numerical techniques in the fields addressed here. Moreover, the book can be used as a textbook for master courses in Mathematics, Physics, or Engineering.

  3. Computing the Alexander Polynomial Numerically

    DEFF Research Database (Denmark)

    Hansen, Mikael Sonne

    2006-01-01

    Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically.......Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically....

  4. Numerical Verification Of Equilibrium Chemistry

    International Nuclear Information System (INIS)

    Piro, Markus; Lewis, Brent; Thompson, William T.; Simunovic, Srdjan; Besmann, Theodore M.

    2010-01-01

    A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.

  5. BCJ numerators from reduced Pfaffian

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yi-Jian [Center for Theoretical Physics, School of Physics and Technology, Wuhan University,No. 299 Bayi Road, Wuhan 430072 (China); Teng, Fei [Department of Physics and Astronomy, University of Utah,115 South 1400 East, Salt Lake City, UT 84112 (United States)

    2017-04-07

    By expanding the reduced Pfaffian in the tree level Cachazo-He-Yuan (CHY) integrands for Yang-Mills (YM) and nonlinear sigma model (NLSM), we can get the Bern-Carrasco-Johansson (BCJ) numerators in Del Duca-Dixon-Maltoni (DDM) form for arbitrary number of particles in any spacetime dimensions. In this work, we give a set of very straightforward graphic rules based on spanning trees for a direct evaluation of the BCJ numerators for YM and NLSM. Such rules can be derived from the Laplace expansion of the corresponding reduced Pfaffian. For YM, the each one of the (n−2)! DDM form BCJ numerators contains exactly (n−1)! terms, corresponding to the increasing trees with respect to the color order. For NLSM, the number of nonzero numerators is at most (n−2)!−(n−3)!, less than those of several previous constructions.

  6. Numerical linear algebra theory and applications

    CERN Document Server

    Beilina, Larisa; Karchevskii, Mikhail

    2017-01-01

    This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.

  7. Cortical bone drilling: An experimental and numerical study.

    Science.gov (United States)

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  8. Numerical Simulation of the Coagulation Dynamics of Blood

    Directory of Open Access Journals (Sweden)

    T. Bodnár

    2008-01-01

    Full Text Available The process of platelet activation and blood coagulation is quite complex and not yet completely understood. Recently, a phenomenological meaningful model of blood coagulation and clot formation in flowing blood that extends existing models to integrate biochemical, physiological and rheological factors, has been developed. The aim of this paper is to present results from a computational study of a simplified version of this coupled fluid-biochemistry model. A generalized Newtonian model with shear-thinning viscosity has been adopted to describe the flow of blood. To simulate the biochemical changes and transport of various enzymes, proteins and platelets involved in the coagulation process, a set of coupled advection–diffusion–reaction equations is used. Three-dimensional numerical simulations are carried out for the whole model in a straight vessel with circular cross-section, using a finite volume semi-discretization in space, on structured grids, and a multistage scheme for time integration. Clot formation and growth are investigated in the vicinity of an injured region of the vessel wall. These are preliminary results aimed at showing the validation of the model and of the numerical code.

  9. Numerical linear algebra with applications using Matlab

    CERN Document Server

    Ford, William

    2014-01-01

    Designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, Numerical Linear Algebra with Applications contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. It provides necessary mathematical background information for

  10. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  11. Numerical treatment of elliptic BVP with several solutions and of MHD equilibrium problems

    International Nuclear Information System (INIS)

    Meyer-Spasche, R.

    1975-12-01

    It is found out empirically that Newton iteration and difference methods are very suitable for the numerical treatment of elliptic boundary value problems (Lu)(x) = f(x,u(x)) in D c R 2 , u/deltaD = g having several solutions. Some convergence theorems for these methods are presented. Some notable numerical examples are given, including bifurcation diagrams, which are interesting in themselves and show also the applicability of the methods developed. (orig./WB) [de

  12. SENR /NRPy + : Numerical relativity in singular curvilinear coordinate systems

    Science.gov (United States)

    Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.

    2018-03-01

    We report on a new open-source, user-friendly numerical relativity code package called SENR /NRPy + . Our code extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it ideally suited to modeling physical configurations with approximate or exact symmetries. In the context of modeling black hole dynamics, it is orders of magnitude more efficient than other widely used open-source numerical relativity codes. NRPy + provides a Python-based interface in which equations are written in natural tensorial form and output at arbitrary finite difference order as highly efficient C code, putting complex tensorial equations at the scientist's fingertips without the need for an expensive software license. SENR provides the algorithmic framework that combines the C codes generated by NRPy + into a functioning numerical relativity code. We validate against two other established, state-of-the-art codes, and achieve excellent agreement. For the first time—in the context of moving puncture black hole evolutions—we demonstrate nearly exponential convergence of constraint violation and gravitational waveform errors to zero as the order of spatial finite difference derivatives is increased, while fixing the numerical grids at moderate resolution in a singular coordinate system. Such behavior outside the horizons is remarkable, as numerical errors do not converge to zero near punctures, and all points along the polar axis are coordinate singularities. The formulation addresses such coordinate singularities via cell-centered grids and a simple change of basis that analytically regularizes tensor components with respect to the coordinates. Future plans include extending this formulation to allow dynamical coordinate grids and bispherical-like distribution of points to efficiently capture orbiting compact binary dynamics.

  13. Various methods of numerical estimation of generalized stress intensity factors of bi-material notches

    Directory of Open Access Journals (Sweden)

    Klusák J.

    2009-12-01

    Full Text Available The study of bi-material notches becomes a topical problem as they can model efficiently geometrical or material discontinuities. When assessing crack initiation conditions in the bi-material notches, the generalized stress intensity factors H have to be calculated. Contrary to the determination of the K-factor for a crack in an isotropic homogeneous medium, for the ascertainment of the H-factor there is no procedure incorporated in the calculation systems. The calculation of these fracture parameters requires experience. Direct methods of estimation of H-factors need choosing usually length parameter entering into calculation. On the other hand the method combining the application of the reciprocal theorem (Ψ-integral and FEM does not require entering any length parameter and is capable to extract the near-tip information directly from the far-field deformation.

  14. Numerical modelling of levee stability based on coupled mechanical, thermal and hydrogeological processes

    Directory of Open Access Journals (Sweden)

    Dwornik Maciej

    2016-01-01

    Full Text Available The numerical modelling of coupled mechanical, thermal and hydrogeological processes for a soil levee is presented in the paper. The modelling was performed for a real levee that was built in Poland as a part of the ISMOP project. Only four parameters were changed to build different flood waves: the water level, period of water increase, period of water decrease, and period of low water level after the experiment. Results of numerical modelling shows that it is possible and advisable to calculate simultaneously changes of thermal and hydro-mechanical fields. The presented results show that it is also possible to use thermal sensors in place of more expensive pore pressure sensors, with some limitations. The results of stability analysis show that the levee is less stable when the water level decreases, after which factor of safety decreases significantly. For all flooding wave parameters described in the paper, the levee is very stable and factor of safety variations for any particular stage were not very large.

  15. Analytical and numerical investigation of nonlinear internal gravity waves

    Directory of Open Access Journals (Sweden)

    S. P. Kshevetskii

    2001-01-01

    Full Text Available The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration, we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory

  16. The Next Generation of Numerical Modeling in Mergers- Constraining the Star Formation Law

    Science.gov (United States)

    Chien, Li-Hsin

    2010-09-01

    Spectacular images of colliding galaxies like the "Antennae", taken with the Hubble Space Telescope, have revealed that a burst of star/cluster formation occurs whenever gas-rich galaxies interact. A?The ages and locations of these clusters reveal the interaction history and provide crucial clues to the process of star formation in galaxies. A?We propose to carry out state-of-the-art numerical simulations to model six nearby galaxy mergers {Arp 256, NGC 7469, NGC 4038/39, NGC 520, NGC 2623, NGC 3256}, hence increasing the number with this level of sophistication by a factor of 3. These simulations provide specific predictions for the age and spatial distributions of young star clusters. The comparison between these simulation results and the observations will allow us to answer a number of fundamental questions including: 1} is shock-induced or density-dependent star formation the dominant mechanism; 2} are the demographics {i.e. mass and age distributions} of the clusters in different mergers similar, i.e. "universal", or very different; and 3} will it be necessary to include other mechanisms, e.g., locally triggered star formation, in the models to better match the observations?

  17. Representations of Numerical and Non-Numerical Magnitude Both Contribute to Mathematical Competence in Children

    Science.gov (United States)

    Lourenco, Stella F.; Bonny, Justin W.

    2017-01-01

    A growing body of evidence suggests that non-symbolic representations of number, which humans share with nonhuman animals, are functionally related to uniquely human mathematical thought. Other research suggesting that numerical and non-numerical magnitudes not only share analog format but also form part of a general magnitude system raises…

  18. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  19. Numerical investigations of hybrid rocket engines

    Science.gov (United States)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.

    2018-03-01

    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  20. Numerical relativity

    CERN Document Server

    Nakamura, T

    1993-01-01

    In GR13 we heard many reports on recent. progress as well as future plans of detection of gravitational waves. According to these reports (see the report of the workshop on the detection of gravitational waves by Paik in this volume), it is highly probable that the sensitivity of detectors such as laser interferometers and ultra low temperature resonant bars will reach the level of h ~ 10—21 by 1998. in this level we may expect the detection of the gravitational waves from astrophysical sources such as coalescing binary neutron stars once a year or so. Therefore the progress in numerical relativity is urgently required to predict the wave pattern and amplitude of the gravitational waves from realistic astrophysical sources. The time left for numerical relativists is only six years or so although there are so many difficulties in principle as well as in practice.