Numerical simulation of ultrasonic wave propagation in elastically anisotropic media
International Nuclear Information System (INIS)
Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz
2013-01-01
The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)
Numerical modelling of nonlinear full-wave acoustic propagation
Energy Technology Data Exchange (ETDEWEB)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation
Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla
2014-07-01
Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.
Numerical simulation of stress wave propagation from underground nuclear explosions
International Nuclear Information System (INIS)
Cherry, J.T.; Petersen, F.L.
1970-01-01
This paper presents a numerical model of stress wave propagation (SOC) which uses material properties data from a preshot testing program to predict the stress-induced effects on the rock mass involved in a Plowshare application. SOC calculates stress and particle velocity history, cavity radius, extent of brittle failure, and the rock's efficiency for transmitting stress. The calculations are based on an equation of state for the rock, which is developed from preshot field and laboratory measurements of the rock properties. The field measurements, made by hole logging, determine in situ values of the rock's density, water content, and propagation velocity for elastic waves. These logs also are useful in judging the layering of the rock and in choosing which core samples to test in the laboratory. The laboratory analysis of rock cores includes determination of hydrostatic compressibility to 40 kb, triaxial strength data, tensile strength, Hugoniot elastic limit, and, for the rock near the point of detonation, high-pressure Hugoniot data. Equation-of-state data are presented for rock from three sites subjected to high explosive or underground nuclear shots, including the Hardhat and Gasbuggy sites. SOC calculations of the effects of these two shots on the surrounding rock are compared with the observed effects. In both cases SOC predicts the size of the cavity quite closely. Results of the Gasbuggy calculations indicate that useful predictions of cavity size and chimney height can be made when an adequate preshot testing program is run to determine the rock's equation of state. Seismic coupling is very sensitive to the low-pressure part of the equation of state, and its successful prediction depends on agreement between the logging data and the static compressibility data. In general, it appears that enough progress has been made in calculating stress wave propagation to begin looking at derived numbers, such as number of cracks per zone, for some insight into the
Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation
Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu
2015-01-01
In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...
Wave propagation in fluids models and numerical techniques
Guinot, Vincent
2012-01-01
This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite
Seismoelectric wave propagation numerical modelling in partially saturated materials
Warden, S.; Garambois, S.; Jouniaux, L.; Brito, D.; Sailhac, P.; Bordes, C.
2013-09-01
To better understand and interpret seismoelectric measurements acquired over vadose environments, both the existing theory and the wave propagation modelling programmes, available for saturated materials, should be extended to partial saturation conditions. We propose here an extension of Pride's equations aiming to take into account partially saturated materials, in the case of a water-air mixture. This new set of equations was incorporated into an existing seismoelectric wave propagation modelling code, originally designed for stratified saturated media. This extension concerns both the mechanical part, using a generalization of the Biot-Gassmann theory, and the electromagnetic part, for which dielectric permittivity and electrical conductivity were expressed against water saturation. The dynamic seismoelectric coupling was written as a function of the streaming potential coefficient, which depends on saturation, using four different relations derived from recent laboratory or theoretical studies. In a second part, this extended programme was used to synthesize the seismoelectric response for a layered medium consisting of a partially saturated sand overburden on top of a saturated sandstone half-space. Subsequent analysis of the modelled amplitudes suggests that the typically very weak interface response (IR) may be best recovered when the shallow layer exhibits low saturation. We also use our programme to compute the seismoelectric response of a capillary fringe between a vadose sand overburden and a saturated sand half-space. Our first modelling results suggest that the study of the seismoelectric IR may help to detect a sharp saturation contrast better than a smooth saturation transition. In our example, a saturation contrast of 50 per cent between a fully saturated sand half-space and a partially saturated shallow sand layer yields a stronger IR than a stepwise decrease in saturation.
JDiffraction: A GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields
Piedrahita-Quintero, Pablo; Trujillo, Carlos; Garcia-Sucerquia, Jorge
2017-05-01
JDiffraction, a GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields, is presented. Angular spectrum, Fresnel transform, and Fresnel-Bluestein transform are the numerical algorithms implemented in the methods and functions of the library to compute the scalar propagation of the complex wavefield. The functionality of the library is tested with the modeling of easy to forecast numerical experiments and also with the numerical reconstruction of a digitally recorded hologram. The performance of JDiffraction is contrasted with a library written for C++, showing great competitiveness in the apparently less complex environment of JAVA language. JDiffraction also includes JAVA easy-to-use methods and functions that take advantage of the computation power of the graphic processing units to accelerate the processing times of 2048×2048 pixel images up to 74 frames per second.
An Improved Coupling of Numerical and Physical Models for Simulating Wave Propagation
DEFF Research Database (Denmark)
Yang, Zhiwen; Liu, Shu-xue; Li, Jin-xuan
2014-01-01
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used...... for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and....../or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show...
Directory of Open Access Journals (Sweden)
Hussein Rappel
2014-01-01
integration technique (EFIT as well as its validation with analytical results. Lamb wave method is a long range inspection technique which is considered to have unique future in the field of structural health monitoring. One of the main problems facing the lamb wave method is how to choose the most appropriate frequency to generate the waves for adequate transmission capable of properly propagating in the material, interfering with defects/damages, and being received in good conditions. Modern simulation tools based on numerical methods such as finite integration technique (FIT, finite element method (FEM, and boundary element method (BEM may be used for modeling. In this paper, two sets of simulation are performed. In the first set, group velocities of lamb wave in a steel plate are obtained numerically. Results are then compared with analytical results to validate the simulation. In the second set, EFIT is employed to study fundamental symmetric mode interaction with a surface braking defect.
Ferrarese, Giorgio
2011-01-01
Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics
Hedayatrasa, Saeid; Bui, Tinh Quoc; Zhang, Chuanzeng; Lim, Chee Wah
2014-02-01
Numerical modeling of the Lamb wave propagation in functionally graded materials (FGMs) by a two-dimensional time-domain spectral finite element method (SpFEM) is presented. The high-order Chebyshev polynomials as approximation functions are used in the present formulation, which provides the capability to take into account the through thickness variation of the material properties. The efficiency and accuracy of the present model with one and two layers of 5th order spectral elements in modeling wave propagation in FGM plates are analyzed. Different excitation frequencies in a wide range of 28-350 kHz are investigated, and the dispersion properties obtained by the present model are verified by reference results. The through thickness wave structure of two principal Lamb modes are extracted and analyzed by the symmetry and relative amplitude of the vertical and horizontal oscillations. The differences with respect to Lamb modes generated in homogeneous plates are explained. Zero-crossing and wavelet signal processing-spectrum decomposition procedures are implemented to obtain phase and group velocities and their dispersion properties. So it is attested how this approach can be practically employed for simulation, calibration and optimization of Lamb wave based nondestructive evaluation techniques for the FGMs. The capability of modeling stress wave propagation through the thickness of an FGM specimen subjected to impact load is also investigated, which shows that the present method is highly accurate as compared with other existing reference data.
Numerical study of wave propagation around an underground cavity: acoustic case
Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz
2015-04-01
Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the
Numerical simulation of seismic wave propagation from land-excited large volume air-gun source
Cao, W.; Zhang, W.
2017-12-01
The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of
Experimental and numerical investigations of shock wave propagation through a bifurcation
Marty, A.; Daniel, E.; Massoni, J.; Biamino, L.; Houas, L.; Leriche, D.; Jourdan, G.
2018-02-01
The propagation of a planar shock wave through a split channel is both experimentally and numerically studied. Experiments were conducted in a square cross-sectional shock tube having a main channel which splits into two symmetric secondary channels, for three different shock wave Mach numbers ranging from about 1.1 to 1.7. High-speed schlieren visualizations were used along with pressure measurements to analyze the main physical mechanisms that govern shock wave diffraction. It is shown that the flow behind the transmitted shock wave through the bifurcation resulted in a highly two-dimensional unsteady and non-uniform flow accompanied with significant pressure loss. In parallel, numerical simulations based on the solution of the Euler equations with a second-order Godunov scheme confirmed the experimental results with good agreement. Finally, a parametric study was carried out using numerical analysis where the angular displacement of the two channels that define the bifurcation was changed from 90° , 45° , 20° , and 0° . We found that the angular displacement does not significantly affect the overpressure experience in either of the two channels and that the area of the expansion region is the important variable affecting overpressure, the effect being, in the present case, a decrease of almost one half.
International Nuclear Information System (INIS)
Parchevsky, K. V.; Kosovichev, A. G.
2009-01-01
Investigation of propagation, conversion, and scattering of MHD waves in the Sun is very important for understanding the mechanisms of observed oscillations and waves in sunspots and active regions. We have developed a three-dimensional linear MHD numerical model to investigate the influence of the magnetic field on excitation and properties of the MHD waves. The results show that surface gravity waves (f-modes) are affected by the background magnetic field more than acoustic-type waves (p-modes). Comparison of our simulations with the time-distance helioseismology results from Solar and Heliospheric Observatory/MDI shows that the amplitude of travel time variations with azimuth around sunspots caused by the inclined magnetic field does not exceed 25% of the observed amplitude even for strong fields of 1400-1900 G. This can be an indication that other effects (e.g., background flows and nonuniform distribution of the magnetic field) can contribute to the observed azimuthal travel time variations. The azimuthal travel time variations caused by the wave interaction with the magnetic field are similar for simulated and observed travel times for strong fields of 1400-1900 G if Doppler velocities are taken at the height of 300 km above the photosphere where the plasma parameter β << 1. For the photospheric level the travel times are systematically smaller by approximately 0.12 minutes than for the height of 300 km above the photosphere for all studied ranges of the magnetic field strength and inclination angles. Numerical MHD wave modeling and new data from the HMI instrument of the Solar Dynamics Observatory will substantially advance our knowledge of the wave interaction with strong magnetic fields on the Sun and improve the local helioseismology diagnostics.
Numerical simulation of wave propagation in a realistic model of the human external ear.
Fadaei, Mohaddeseh; Abouali, Omid; Emdad, Homayoun; Faramarzi, Mohammad; Ahmadi, Goodarz
2015-01-01
In this study, a numerical investigation is performed to evaluate the effects of high-pressure sinusoidal and blast wave's propagation around and inside of a human external ear. A series of computed tomography images are used to reconstruct a realistic three-dimensional (3D) model of a human ear canal and the auricle. The airflow field is then computed by solving the governing differential equations in the time domain using a computational fluid dynamics software. An unsteady algorithm is used to obtain the high-pressure wave propagation throughout the ear canal which is validated against the available analytical and numerical data in literature. The effects of frequency, wave shape, and the auricle on pressure distribution are then evaluated and discussed. The results clearly indicate that the frequency plays a key role on pressure distribution within the ear canal. At 4 kHz frequency, the pressure magnitude is much more amplified within the ear canal than the frequencies of 2 and 6 kHz, for the incident wave angle of 90° investigated in this study, attributable to the '4-kHz notch' in patients with noise-induced hearing loss. According to the results, the pressure distribution patterns at the ear canal are very similar for both sinusoidal pressure waveform with the frequency of 2 kHz and blast wave. The ratio of the peak pressure value at the eardrum to that at the canal entrance increases from about 8% to 30% as the peak pressure value of the blast wave increases from 5 to 100 kPa for the incident wave angle of 90° investigated in this study. Furthermore, incorporation of the auricle to the ear canal model is associated with centerline pressure magnitudes of about 50% and 7% more than those of the ear canal model without the auricle throughout the ear canal for sinusoidal and blast waves, respectively, without any significant effect on pressure distribution pattern along the ear canal for the incident wave angle of 90° investigated in this study.
Wu, S. T.
1974-01-01
The responses of the solar atmosphere due to an outward propagation shock are examined by employing the Lax-Wendroff method to solve the set of nonlinear partial differential equations in the model of the solar atmosphere. It is found that this theoretical model can be used to explain the solar phenomena of surge and spray. A criterion to discriminate the surge and spray is established and detailed information concerning the density, velocity, and temperature distribution with respect to the height and time is presented. The complete computer program is also included.
Numerical simulations of wave propagation in long bars with application to Kolsky bar testing
Energy Technology Data Exchange (ETDEWEB)
Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-11-01
Material testing using the Kolsky bar, or split Hopkinson bar, technique has proven instrumental to conduct measurements of material behavior at strain rates in the order of 10^{3} s^{-1}. Test design and data reduction, however, remain empirical endeavors based on the experimentalist's experience. Issues such as wave propagation across discontinuities, the effect of the deformation of the bar surfaces in contact with the specimen, the effect of geometric features in tensile specimens (dog-bone shape), wave dispersion in the bars and other particulars are generally treated using simplified models. The work presented here was conducted in Q3 and Q4 of FY14. The objective was to demonstrate the feasibility of numerical simulations of Kolsky bar tests, which was done successfully.
Directory of Open Access Journals (Sweden)
Tanigaki Kenichi
2015-01-01
Full Text Available Finite element models of closed-cell foam structures were created using the three-dimensional Voronoi tessellation method coupled with the random sequential addition algorithm. The dynamic compressive deformation behaviors of the models were numerically studied using LS-DYNA code. The deformation mode of the models changed gradually as the deformation rate increases. Also, the generation and the propagation of plastic wave was clearly observed with the rate of 100 m/s. The longitudinal elastic wave velocity showed a weak negative dependency on the deformation rate although the strain rate dependence of material properties was not considered. Furthermore, a prediction method for the dynamic stress state on the impact side based on the static stress-strain relationship was presented.
Numerical Investigation of Shock Wave Propagation in Bone-Like Tissue
Nelms, Matt; Rajendran, Arunachalam
In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The penetration resistant fish scale was modeled by simulating a plate impact test configuration using ABAQUS®finite element (FE) software. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile bone. The geometry and variation of elastic modulus were determined from high-resolution scanning electron microscopy and dynamic nanoindentation experimentation to develop an idealized computational model for RVE-based FE simulations. The numerical analysis shows the effects of different functional material property variations on the stress histories and energy dissipation generated by wave propagation. Given the constitutive behaviors of the two layers are distinctly different, a brittle tensile damage model was employed to describe the ganoine and Drucker-Prager plasticity was used for the nonlinear response of the bone.
Esterhazy, Sofi; Schneider, Felix; Schöberl, Joachim; Perugia, Ilaria; Bokelmann, Götz
2016-04-01
The research on purely numerical methods for modeling seismic waves has been more and more intensified over last decades. This development is mainly driven by the fact that on the one hand for subsurface models of interest in exploration and global seismology exact analytic solutions do not exist, but, on the other hand, retrieving full seismic waveforms is important to get insides into spectral characteristics and for the interpretation of seismic phases and amplitudes. Furthermore, the computational potential has dramatically increased in the recent past such that it became worthwhile to perform computations for large-scale problems as those arising in the field of computational seismology. Algorithms based on the Finite Element Method (FEM) are becoming increasingly popular for the propagation of acoustic and elastic waves in geophysical models as they provide more geometrical flexibility in terms of complexity as well as heterogeneity of the materials. In particular, we want to demonstrate the benefit of high-order FEMs as they also provide a better control on the accuracy. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Further we are interested in the generation of synthetic seismograms including direct, refracted and converted waves in correlation to the presence of an underground cavity and the detailed simulation of the comprehensive wave field inside and around such a cavity that would have been created by a nuclear explosion. The motivation of this application comes from the need to find evidence of a nuclear test as they are forbidden by the Comprehensive Nuclear-Test Ban Treaty (CTBT). With this approach it is possible for us to investigate the wave field over a large bandwidth of wave numbers. This again will help to provide a better understanding on the characteristic signatures of an underground cavity, improve the protocols for
Yan, Wen; Xia, Yang; Bi, Zhenhua; Song, Ying; Wang, Dezhen; Sosnin, Eduard A.; Skakun, Victor S.; Liu, Dongping
2017-08-01
A 2D computational study of ionization waves propagating in U-shape channels at atmospheric pressure was performed, with emphasis on the effect of voltage polarity and the curvature of the bend. The discharge was ignited by a HV needle electrode inside the channel, and power was applied in the form of a trapezoidal pulse lasting 2 µs. We have shown that behavior of ionization waves propagating in U-shape channels was quite different with that in straight tubes. For positive polarity of applied voltage, the ionization waves tended to propagate along one side of walls rather than filling the channel. The propagation velocity of ionization waves predicted by the simulation was in good agreement with the experiment results; the velocity was first increasing rapidly in the vicinity of the needle tip and then decreasing with the increment of propagation distance. Then we have studied the influence of voltage polarity on discharge characteristics. For negative polarity, the ionization waves tended to propagate along the opposite side of the wall, while the discharge was more diffusive and volume-filling compared with the positive case. It was found that the propagation velocity for the negative ionization wave was higher than that for the positive one. Meanwhile, the propagation of the negative ionization wave depended less on the pre-ionization level than the positive ionization wave. Finally, the effect of the radius of curvature was studied. Simulations have shown that the propagation speeds were sensitive to the radii of the curvature of the channels for both polarities. Higher radii of curvature tended to have higher speed and longer length of plasma. The simulation results were supported by experimental observations under similar discharge conditions.
A numerical solution to the radial equation of the tidal wave propagation
International Nuclear Information System (INIS)
Makarious, S.H.
1981-08-01
The tidal wave function y(x) is a solution to an inhomogeneous, linear, second-order differential equation with variable coefficient. Numerical values for the height-dependence terms, in the observed tides, have been utilized in finding y(x) as a solution to an initial-value problem. Complex Fast Fourier Transform technique is also used to obtain the solution in a complex form. Based on a realistic temperature structure, the atmosphere - below 110 km - has been divided into layers with distinct characteristics, and thus the technique of propagation in stratified media has been applied. The reduced homogeneous equation assumes the form of Helmholtz equation and with initial conditions the general solution is obtained. (author)
Hardie, Russell C.; Power, Jonathan D.; LeMaster, Daniel A.; Droege, Douglas R.; Gladysz, Szymon; Bose-Pillai, Santasri
2017-07-01
We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation includes spatially varying warping and blurring. To produce the PSF array, we generate a series of extended phase screens. Simulated point sources are numerically propagated from an array of positions on the object plane, through the phase screens, and ultimately to the focal plane of the simulated camera. Note that the optical path for each PSF will be different, and thus, pass through a different portion of the extended phase screens. These different paths give rise to a spatially varying PSF to produce anisoplanatic effects. We use a method for defining the individual phase screen statistics that we have not seen used in previous anisoplanatic simulations. We also present a validation analysis. In particular, we compare simulated outputs with the theoretical anisoplanatic tilt correlation and a derived differential tilt variance statistic. This is in addition to comparing the long- and short-exposure PSFs and isoplanatic angle. We believe this analysis represents the most thorough validation of an anisoplanatic simulation to date. The current work is also unique that we simulate and validate both constant and varying Cn2(z) profiles. Furthermore, we simulate sequences with both temporally independent and temporally correlated turbulence effects. Temporal correlation is introduced
Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory
2016-04-01
The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the
Licer, Matjaz; Mourre, Baptiste; Troupin, Charles; Krietemeyer, Andreas; Tintoré, Joaquín
2017-04-01
A high resolution nested ocean modelling system forced by synthetic atmospheric gravity waves is used to investigate meteotsunami generation, amplification and propagation properties over the Mallorca-Menorca shelf (Balearic Islands, Western Mediterranean Sea). We determine how meteotsunami amplitude outside and inside of the Balearic port of Ciutadella depends on forcing gravity wave direction, speed and trajectory. Contributions of Mallorca shelves and Menorca Channel are quantified for different gravity wave forcing angles and speeds. Results indicate that the Channel is the key build-up region and that Northern and Southern Mallorca shelves do not significantly contribute to the amplitude of substantial harbour oscillations in Ciutadella. This fact seriously reduces early-warning alert times in cases of locally generated pressure perturbations. Tracking meteotsunami propagation paths in the Menorca Channel for several forcing velocities, we show that the Channel bathymetry serves as a focusing lens for meteotsunami waves whose paths are constrained by the forcing direction. Faster meteotsunamis are shown to propagate over deeper ocean regions, as required by the Proudman resonance. Meteotsunami speed under sub- and supercritical forcing is estimated and a first order estimate of its magnitude is derived. Meteotsunamis generated by the supercritical gravity waves are found to propagate with a velocity which is equal to an arithmetic mean of the gravity wave speed and local ocean barotropic wave speed.
Numerical Modelling of Rayleigh Wave Propagation in Course of Rapid Impulse Compaction
Herbut, Aneta; Rybak, Jarosław
2017-10-01
As the soil improvement technologies are the area of a rapid development, they require designing and implementing novel methods of control and calibration in order to ensure the safety of geotechnical works. At Wroclaw University of Science and Technology (Poland), these new methods are continually developed with the aim to provide the appropriate tools for the preliminary design of work process, as well as for the further ongoing on-site control of geotechnical works (steel sheet piling, pile driving or soil improvement technologies). The studies include preliminary numerical simulations and field tests concerning measurements and continuous histogram recording of shocks and vibrations and its ground-born dynamic impact on engineering structures. The impact of vibrations on reinforced concrete and masonry structures in the close proximity of the construction site may be destroying in both architectural and structural meaning. Those limits are juxtaposed in codes of practice, but always need an individual judgment. The results and observations make it possible to delineate specific modifications to the parameters of technology applied (e.g. hammer drop height). On the basis of numerous case studies of practical applications, already summarized and published, we were able to formulate the guidelines for work on the aforementioned sites. This work presents specific aspects of the active design (calibration of building site numerical model) by means of technology calibration, using the investigation of the impact of vibrations that occur during the Impulse Compaction on adjacent structures. A case study entails the impact of construction works on Rayleigh wave propagation in the zone of 100 m (radius) around the Compactor.
International Nuclear Information System (INIS)
Sebelin, E.
1997-01-01
Full-wave calculations based on trial functions are carried out for solving the lower hybrid current drive problem in tokamaks. A variational method is developed and provides an efficient system to describe in a global manner both the propagation and the absorption of the electromagnetic waves in plasmas. The calculation is fully carried out in the case of circular and concentric flux surfaces. The existence and uniqueness of the solution of the wave propagation equation is mathematically proved. The first realistic simulations are performed for the high aspect ratio tokamak TRIAM-1M. It is checked that the main features of the lower-hybrid wave dynamics are well described numerically. (A.C.)
International Nuclear Information System (INIS)
Lau, Stephen R
2004-01-01
For scalar, electromagnetic, or gravitational wave propagation on a fixed Schwarzschild black hole background, we consider the exact nonlocal radiation outer boundary conditions (ROBC) appropriate for a spherical outer boundary of finite radius enclosing the black hole. Such boundary conditions feature temporal integral convolution between each spherical harmonic mode of the wave field and a time-domain radiation kernel (TDRK). For each orbital angular integer l the associated TDRK is the inverse Laplace transform of a frequency-domain radiation kernel (FDRK). Drawing upon theory and numerical methods developed in a previous article, we numerically implement the ROBC via a rapid algorithm involving approximation of the FDRK by a rational function. Such an approximation is tailored to have relative error ε uniformly along the axis of imaginary Laplace frequency. Theoretically, ε is also a long-time bound on the relative convolution error. Via study of one-dimensional radial evolutions, we demonstrate that the ROBC capture the phenomena of quasinormal ringing and decay tails. We also consider a three-dimensional evolution based on a spectral code, one showing that the ROBC yield accurate results for the scenario of a wave packet striking the boundary at an angle. Our work is a partial generalization to Schwarzschild wave propagation and Heun functions of the methods developed for flatspace wave propagation and Bessel functions by Alpert, Greengard, and Hagstrom
A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation
Liu, Yang
2010-03-01
We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.
Directory of Open Access Journals (Sweden)
Yang Yu
2017-10-01
Full Text Available Recently, guided wave (GW-based non-destructive evaluation (NDE techniques have been developed and considered as a potential candidate for integrity assessment of wood structures, such as wood utility poles. However, due to the lack of understanding on wave propagation in such structures, especially under the effect of surroundings such as soil, current GW-based NDE methods fail to properly account for the propagation of GWs and to contribute reliable and correct results. To solve this critical issue, this work investigates the behaviour of wave propagation in the wood utility pole with the consideration of the influence of soil. The commercial finite element (FE analysis software ANSYS is used to simulate GW propagation in a wood utility pole. In order to verify the numerical findings, the laboratory testing is also conducted in parallel with the numerical results to experimentally verify the effectiveness of developed FE models. Finally, sensitivity analysis is also carried out based on FE models of wood pole under different material properties, boundary conditions and excitation types.
Chen, Wen; Maurel, Olivier; La Borderie, Christian; Reess, Thierry; De Ferron, Antoine; Matallah, Mohammed; Pijaudier-Cabot, Gilles; Jacques, Antoine; Rey-Bethbeder, Frank
2014-05-01
The objective of this study is to simulate the propagation of the shock wave in water due to an explosion. The study is part of a global research program on the development of an alternative stimulation technique to conventional hydraulic fracturing in tight gas reservoirs aimed at inducing a distributed state of microcracking of rocks instead of localized fracture. We consider the possibility of increasing the permeability of rocks with dynamic blasts. The blast is a shock wave generated in water by pulsed arc electrohydraulic discharges. The amplitude of these shock waves is prescribed by the electrohydraulic discharges which generate high pressures of several kilobars within microseconds. A simplified method has been used to simulate the injected electrical energy as augmentation of enthalpy in water locally. The finite element code EUROPLEXUS is used to perform fluid fast dynamic computation. The predicted pressure is consistent with the experimental results. In addition, shock wave propagation characteristics predicted with simulation can be valuable reference for design of underwater structural elements and engineering of underwater explosion.
Dorville, Jean-François; Cayol, Claude; Palany, Philippe
2016-04-01
Many numerical models based on equation of action conservation (N = E/σ) enables the simulation of sea states (WAM, WW3,...). They allow through parametric equations to define sources and sinks of wave energy (E(f,σ)) in spectral form. Statistics of the sea states can be predicted at medium or long term as the significant wave height, the wave pic direction, mean wave period, etc. Those predictions are better if initials and boundaries conditions together with 10m wind field are well defined. Basically the more homogeneous the marine area bathymetry is the more accurate the prediction will be. Météo-France for French West Indies and French Guiana (MF-DIRAG) is in charge of the safety of persons and goods tries to improve knowledge and capacity to evaluate the sea state at the coast and the marine submersion height using among other statistical methods (as return periods) and numerical simulations. The area of responsibility is large and includes different territory, type of coast and sea wave climate. Up today most part of the daily simulations were done for large areas and with large meshes (10km). The needs of more accurate values in the assessment of the marine submersion pushed to develop new strategies to estimate the level of the sea water on the coast line and therefore characterize the marine submersion hazard. Since 2013 new data are available to enhance the capacity to simulate the mechanical process at the coast. High resolution DEM Litto 3D for Guadeloupe and Martinique coasts with grid-spacing of 5m up to 5km of the coast are free of use. The study presents the methodology applied at MF-DIRAG in study mode to evaluate effects of wave breaking on coastline. The method is based on wave simulation downscaling form the Atlantic basin to the coastal area using MF-WAM to an sub kilometric unstructured WW3 or SWAN depending to the domain studied. At the final step a non-hydrostatic wave flow as SWASH is used on the coast completed by an analytical method
Directory of Open Access Journals (Sweden)
Hisham Elkenani
2017-01-01
Full Text Available The aim of this study is to present a reliable computational scheme to serve in pulse wave velocity (PWV assessment in large arteries. Clinicians considered it as an indication of human blood vessels’ stiffness. The simulation of PWV was conducted using a 3D elastic tube representing an artery. The constitutive material model specific for vascular applications was applied to the tube material. The fluid was defined with an equation of state representing the blood material. The onset of a velocity pulse was applied at the tube inlet to produce wave propagation. The Coupled Eulerian-Lagrangian (CEL modeling technique with fluid structure interaction (FSI was implemented. The scaling of sound speed and its effect on results and computing time is discussed and concluded that a value of 60 m/s was suitable for simulating vascular biomechanical problems. Two methods were used: foot-to-foot measurement of velocity waveforms and slope of the regression line of the wall radial deflection wave peaks throughout a contour plot. Both methods showed coincident results. Results were approximately 6% less than those calculated from the Moens-Korteweg equation. The proposed method was able to describe the increase in the stiffness of the walls of large human arteries via the PWV estimates.
Esterhazy, Sofi; Schneider, Felix; Perugia, Ilaria; Bokelmann, Götz
2017-04-01
Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as "resonance seismometry" - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and so far, there are only very few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in numerical modeling of wave propagation problems. Our numerical study includes the full elastic wave field in three dimensions. We consider the effects from an incoming plane wave as well as point source located in the surrounding of the cavity at the surface. While the former can be considered as passive source like a tele-seismic earthquake, the latter represents a man-made explosion or a viborseis as used for/in active seismic techniques. Further we want to demonstrate the specific characteristics of the scattered wave field from a P-waves and S-wave separately. For our simulations in 3D we use the discontinuous Galerkin Spectral Element Code SPEED developed by MOX (The Laboratory for Modeling and Scientific Computing, Department of Mathematics) and DICA (Department of Civil and Environmental Engineering) at the Politecnico di Milano. The computations are carried out on the Vienna Scientific Cluster (VSC). The accurate numerical modeling can facilitate the development of proper analysis techniques to detect the remnants of an
International Nuclear Information System (INIS)
Dupuy, B.
2011-11-01
Seismic wave propagation in multiphasic porous media have various environmental (natural risks, geotechnics, groundwater pollutions...) and resources (aquifers, oil and gas, CO 2 storage...) issues. When seismic waves are crossing a given material, they are distorted and thus contain information on fluid and solid phases. This work focuses on the characteristics of seismic waves propagating in multiphasic media, from the physical complex description to the parameter characterisation by inversion, including 2D numerical modelling of the wave propagation. The first part consists in the description of the physics of multiphasic media (each phase and their interactions), using several up-scaling methods, in order to obtain an equivalent mesoscale medium defined by seven parameters. Thus, in simple porosity saturated media and in complex media (double porosity, patchy saturation, visco-poro-elasticity), I can compute seismic wave propagation without any approximation. Indeed, I use a frequency-space domain for the numerical method, which allows to consider all the frequency dependent terms. The spatial discretization employs a discontinuous finite elements method (discontinuous Galerkin), which allows to take into account complex interfaces.The computation of the seismic attributes (velocities and attenuations) of complex porous media shows strong variations in respect with the frequency. Waveforms, computed without approximation, are strongly different if we take into account the full description of the medium or an homogenisation by averages. The last part of this work deals with the poro-elastic parameters characterisation by inversion. For this, I develop a two-steps method: the first one consists in a classical inversion (tomography, full waveform inversion) of seismograms data to obtain macro-scale parameters (seismic attributes). The second step allows to recover, from the macro-scale parameters, the poro-elastic micro-scale properties. This down-scaling step
David, P
2013-01-01
Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear
On all-FLR order numerical modelling of RF wave propagation and damping
Directory of Open Access Journals (Sweden)
Van Eester Dirk
2017-01-01
Full Text Available Determining the fate of waves in hot magnetized plasmas in magnetic confinement fusion machines close to arbitrary cyclotron harmonics retaining finite Larmor radius effects requires solving the relevant integro-differential wave equation for waves of arbitrary wavelength. Anticipating exploitation in as realistic geometry as possible this requires massive computer resources. Work is ongoing to attempt reducing the required CPU memory and time. As Morlet wavelets are localised in x-space as well as k-space, they potentially offer a means to solve the relevant wave equation at reduced CPU requirement cost. Encouraging first results are obtained.
Radio wave propagation and parabolic equation modeling
Apaydin, Gokhan
2018-01-01
A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...
Papacharalampopoulos, Alexios; Vavva, Maria G; Protopappas, Vasilios C; Fotiadis, Dimitrios I; Polyzos, Demosthenes
2011-08-01
Cortical bone is a multiscale heterogeneous natural material characterized by microstructural effects. Thus guided waves propagating in cortical bone undergo dispersion due to both material microstructure and bone geometry. However, above 0.8 MHz, ultrasound propagates rather as a dispersive surface Rayleigh wave than a dispersive guided wave because at those frequencies, the corresponding wavelengths are smaller than the thickness of cortical bone. Classical elasticity, although it has been largely used for wave propagation modeling in bones, is not able to support dispersion in bulk and Rayleigh waves. This is possible with the use of Mindlin's Form-II gradient elastic theory, which introduces in its equation of motion intrinsic parameters that correlate microstructure with the macrostructure. In this work, the boundary element method in conjunction with the reassigned smoothed pseudo Wigner-Ville transform are employed for the numerical determination of time-frequency diagrams corresponding to the dispersion curves of Rayleigh and guided waves propagating in a cortical bone. A composite material model for the determination of the internal length scale parameters imposed by Mindlin's elastic theory is exploited. The obtained results demonstrate the dispersive nature of Rayleigh wave propagating along the complex structure of bone as well as how microstructure affects guided waves.
International Nuclear Information System (INIS)
Iooss, B.
2009-01-01
The present document constitutes my Habilitation thesis report. It recalls my scientific activity of the twelve last years, since my PhD thesis until the works completed as a research engineer at CEA Cadarache. The two main chapters of this document correspond to two different research fields both referring to the uncertainty treatment in engineering problems. The first chapter establishes a synthesis of my work on high frequency wave propagation in random medium. It more specifically relates to the study of the statistical fluctuations of acoustic wave travel-times in random and/or turbulent media. The new results mainly concern the introduction of the velocity field statistical anisotropy in the analytical expressions of the travel-time statistical moments according to those of the velocity field. This work was primarily carried by requirements in geophysics (oil exploration and seismology). The second chapter is concerned by the probabilistic techniques to study the effect of input variables uncertainties in numerical models. My main applications in this chapter relate to the nuclear engineering domain which offers a large variety of uncertainty problems to be treated. First of all, a complete synthesis is carried out on the statistical methods of sensitivity analysis and global exploration of numerical models. The construction and the use of a meta-model (inexpensive mathematical function replacing an expensive computer code) are then illustrated by my work on the Gaussian process model (kriging). Two additional topics are finally approached: the high quantile estimation of a computer code output and the analysis of stochastic computer codes. We conclude this memory with some perspectives about the numerical simulation and the use of predictive models in industry. This context is extremely positive for future researches and application developments. (author)
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Flood Wave Propagation-The Saint Venant Equations. P P Mujumdar. General Article Volume 6 Issue 5 May 2001 pp 66-73. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/05/0066-0073 ...
Indian Academy of Sciences (India)
I available for forecasting the propagation of the flood wave. Introduction. Among all natural disasters, floods are the most frequently occurring phenomena that affect a large section of population all over the world, every year. Throughout the last century, flood- ing has been one of the most devastating disasters both in terms.
Local solution method for numerical solving of the wave propagation problem
Moiseenko, V. E.; Pilipenko, V. V.
2001-12-01
A new method for numerical solving of boundary problem for ordinary differential equations with slowly varying coefficients which is aimed at better representation of solutions in the regions of their rapid oscillations or exponential increase (decrease) is proposed. It is based on the approximation of the solution sought for in the form of a superposition of certain polynomial-exponential basic functions. The method is studied for the Helmholtz equation in comparison with the standard finite difference and finite element methods. The numerical tests have shown the convergence of the method proposed. In comparison with the standard methods the same accuracy is obtained on substantially coarser mesh. This advantage becomes more pronounced, if the solution varies very rapidly.
Klemens, R.; Oleszczak, P.; Zydak, P.
2013-05-01
In a number of industrial facilities and factory buildings dust layers cover floors, walls, ceilings and various installations. The dust can be easily dispersed by pressure waves generated by weak explosions or as a result of damage of a compressed gas systems. If the obtained explosive dust-air mixture is ignited, a devastating explosion may occur. The aim of the work was to study the dust lifting process from the layer behind the propagating shock wave and to determine some important parameters, which later could be used for development and validation of the numerical model of the process. The experiments were conducted with the use of a shock tube. For measuring the dust concentration in the mixture with air, a special five-channel optical device was constructed, enabling measurements at five positions located in one vertical plane along the height of the tube. The delay in lifting of the dust from the layer and the vertical velocity of the dust cloud were calculated from the dust concentration measurements. The research was carried out for various initial conditions and for various types of dusts. The results obtained in tests with black coal dust are presented in the paper. Three shock wave velocities: 450, 490 and 518 m/s and three dust layer thicknesses, equal to 1.0, 1.5 and 2.0 mm, were taken into consideration. Measurements results of the mean vertical component of the dust cloud velocity between the layer and the first laser beam were used in a new model, where the dust dispersing process is modeled as an injection of the dust from the layer. The numerical simulations were based on the Euler or Lagrange model of the dust phase. In case of Euler model, the dust layer was replaced by injection of dust from the bottom of the channel. The calculations were performed for two models of the investigated process. In the first model, correlation was worked out for all tested dusts and in the new model, the individual correlations for every tested dust were
Rolla, L. Barrera; Rice, H. J.
2006-09-01
In this paper a "forward-advancing" field discretization method suitable for solving the Helmholtz equation in large-scale problems is proposed. The forward wave expansion method (FWEM) is derived from a highly efficient discretization procedure based on interpolation of wave functions known as the wave expansion method (WEM). The FWEM computes the propagated sound field by means of an exclusively forward advancing solution, neglecting the backscattered field. It is thus analogous to methods such as the (one way) parabolic equation method (PEM) (usually discretized using standard finite difference or finite element methods). These techniques do not require the inversion of large system matrices and thus enable the solution of large-scale acoustic problems where backscatter is not of interest. Calculations using FWEM are presented for two propagation problems and comparisons to data computed with analytical and theoretical solutions and show this forward approximation to be highly accurate. Examples of sound propagation over a screen in upwind and downwind refracting atmospheric conditions at low nodal spacings (0.2 per wavelength in the propagation direction) are also included to demonstrate the flexibility and efficiency of the method.
Making and Propagating Elastic Waves: Overview of the new wave propagation code WPP
Energy Technology Data Exchange (ETDEWEB)
McCandless, K P; Petersson, N A; Nilsson, S; Rodgers, A; Sjogreen, B; Blair, S C
2006-05-09
We are developing a new parallel 3D wave propagation code at LLNL called WPP (Wave Propagation Program). WPP is being designed to incorporate the latest developments in embedded boundary and mesh refinement technology for finite difference methods, as well as having an efficient portable implementation to run on the latest supercomputers at LLNL. We are currently exploring seismic wave applications, including a recent effort to compute ground motions for the 1906 Great San Francisco Earthquake. This paper will briefly describe the wave propagation problem, features of our numerical method to model it, implementation of the wave propagation code, and results from the 1906 Great San Francisco Earthquake simulation.
Wave propagation scattering theory
Birman, M Sh
1993-01-01
The papers in this collection were written primarily by members of the St. Petersburg seminar in mathematical physics. The seminar, now run by O. A. Ladyzhenskaya, was initiated in 1947 by V. I. Smirnov, to whose memory this volume is dedicated. The papers in the collection are devoted mainly to wave propagation processes, scattering theory, integrability of nonlinear equations, and related problems of spectral theory of differential and integral operators. The book is of interest to mathematicians working in mathematical physics and differential equations, as well as to physicists studying va
Energy Technology Data Exchange (ETDEWEB)
Luquet, David; Marchiano, Régis; Coulouvrat, François, E-mail: francois.coulouvrat@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris (France)
2015-10-28
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
Luquet, David; Marchiano, Régis; Coulouvrat, François
2015-10-01
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
International Nuclear Information System (INIS)
Luquet, David; Marchiano, Régis; Coulouvrat, François
2015-01-01
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
Wave propagation in elastic solids
Achenbach, Jan
1984-01-01
The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat
Wave propagation in electromagnetic media
Davis, Julian L
1990-01-01
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...
Energy Technology Data Exchange (ETDEWEB)
Sebelin, E
1997-12-15
Full-wave calculations based on trial functions are carried out for solving the lower hybrid current drive problem in tokamaks. A variational method is developed and provides an efficient system to describe in a global manner both the propagation and the absorption of the electromagnetic waves in plasmas. The calculation is fully carried out in the case of circular and concentric flux surfaces. The existence and uniqueness of the solution of the wave propagation equation is mathematically proved. The first realistic simulations are performed for the high aspect ratio tokamak TRIAM-1M. It is checked that the main features of the lower-hybrid wave dynamics are well described numerically. (A.C.) 81 refs.
Wave Propagation in Bimodular Geomaterials
Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim
2016-04-01
Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.
International Nuclear Information System (INIS)
Liu, J. Chien-Chih
1993-01-01
The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of failing molten lithium or Li 2 BeF 4 (Flibe) jets encircles the reactors central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel
Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A
2018-03-01
Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.
Wan, Xiang; Tse, Peter W.; Zhang, Xuhui; Xu, Guanghua; Zhang, Qing; Fan, Hongwei; Mao, Qinghua; Dong, Ming; Wang, Chuanwei; Ma, Hongwei
2018-04-01
Under the discipline of nonlinear ultrasonics, in addition to second harmonic generation, static component generation is another frequently used nonlinear ultrasonic behavior in non-destructive testing (NDT) and structural health monitoring (SHM) communities. However, most previous studies on static component generation are mainly based on using longitudinal waves. It is desirable to extend static component generation from primary longitudinal waves to primary Lamb waves. In this paper, static component generation from the primary Lamb waves is studied. Two major issues are numerically investigated. First, the mode of static displacement component generated from different primary Lamb wave modes is identified. Second, cumulative effect of static displacement component from different primary Lamb wave modes is also discussed. Our study results show that the static component wave packets generated from the primary S0, A0 and S1 modes share the almost same group velocity equal to the phase velocity of S0 mode tending to zero frequency c plate . The finding indicates that whether the primary mode is S0, A0 or S1, the static components generated from these primary modes always share the nature of S0 mode. This conclusion is also verified by the displacement filed of these static components that the horizontal displacement field is almost uniform and the vertical displacement filed is antisymmetric across the thickness of the plate. The uniform distribution of horizontal displacement filed enables the static component, regardless of the primary Lamb modes, to be a promising technique for evaluating microstructural damages buried in the interior of a structure. Our study also illustrates that the static components are cumulative regardless of whether the phase velocity of the primary and secondary waves is matched or not. This observation indicates that the static component overcomes the limitations of the traditional nonlinear Lamb waves satisfying phase velocity
Solitary wave propagation in solar flux tubes
International Nuclear Information System (INIS)
Erdelyi, Robert; Fedun, Viktor
2006-01-01
The aim of the present work is to investigate the excitation, time-dependent dynamic evolution, and interaction of nonlinear propagating (i.e., solitary) waves on vertical cylindrical magnetic flux tubes in compressible solar atmospheric plasma. The axisymmetric flux tube has a field strength of 1000 G at its footpoint, which is typical for photospheric regions. Nonlinear waves that develop into solitary waves are excited by a footpoint driver. The propagation of the nonlinear signal is investigated by solving numerically a set of fully nonlinear 2.0D magnetohydrodynamic (MHD) equations in cylindrical coordinates. For the initial conditions, axisymmetric solutions of the linear dispersion relation for wave modes in a magnetic flux tube are applied. In the present case, we focus on the sausage mode only. The dispersion relation is solved numerically for a range of plasma parameters. The equilibrium state is perturbed by a Gaussian at the flux tube footpoint. Two solitary solutions are found by solving the full nonlinear MHD equations. First, the nonlinear wave propagation with external sound speed is investigated. Next, the solitary wave propagating close to the tube speed, also found in the numerical solution, is studied. In contrast to previous analytical and numerical works, here no approximations were made to find the solitary solutions. A natural application of the present study may be spicule formation in the low chromosphere. Future possible improvements in modeling and the relevance of the photospheric chromospheric transition region coupling by spicules is suggested
Energy Technology Data Exchange (ETDEWEB)
Chien-Chih Liu, James [Univ. of California, Berkeley, CA (United States)
1993-01-01
The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of falling molten lithium or Li_{2}BeF_{4} (Flibe) jets encircles the reactor`s central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel. X-rays from the fusion microexplosion will ablate a thin layer of blanket material from the surfaces which face toward the fusion site. This generates a highly energetic vapor, which mostly coalesces in the central cavity. The blast expansion from the central cavity generates a shock which propagates through the segmented blanket - a complex geometry, gas-continuous two-phase medium. The impulse that the blast gives to the liquid as it vents past, the gas shock on the chamber wall, and ultimately the liquid impact on the wall are all important quantities to the HYLIFE structural designers.
DEFF Research Database (Denmark)
Xie, Zhinan; Komatitsch, Dimitri; Martin, Roland
2014-01-01
the auxiliary differential equation (ADE) form of CFS-UPML, which allows for extension to higher order time schemes and is easier to implement. Secondly, we rigorously derive the CFS-UPML formulation for time-domain adjoint elastic wave problems, which to our knowledge has never been done before. Thirdly...... an efficient infinite-domain truncation method suitable for accurately truncating an infinite domain governed by the second-order elastic wave equation written in displacement and computed based on a finite-element (FE) method. In this paper, we make several steps towards this goal. First, we make the 2-D...... in both formulations, in particular if very small mesh elements are present inside the absorbing layer, but we explain how these instabilities can be delayed as much as needed by using a stretching factor to reach numerical stability in practice for applications. Fourthly, in the case of adjoint problems...
Wave propagation in electromagnetic media
International Nuclear Information System (INIS)
Davis, J.L.
1990-01-01
This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed
Directory of Open Access Journals (Sweden)
X. Xu
2016-09-01
Full Text Available Powerful high-frequency (HF radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012 model and the neutral atmosphere model (NRLMSISE-00, including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W, Wuhan (30.52° N, 114.32° E and Jicamarca (11.95° S, 76.87° W at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature
Enhancing propagation characteristics of truncated localized waves in silica
Salem, Mohamed
2011-07-01
The spectral characteristics of truncated Localized Waves propagating in dispersive silica are analyzed. Numerical experiments show that the immunity of the truncated Localized Waves propagating in dispersive silica to decay and distortion is enhanced as the non-linearity of the relation between the transverse spatial spectral components and the wave vector gets stronger, in contrast to free-space propagating waves, which suffer from early decay and distortion. © 2011 IEEE.
Wave propagation in mechanical metamaterials
Zhou, Y.
2017-01-01
In mechanical metamaterials, large deformations can occur in systems which are topological from the point of view of linear waves. The interplay between such nonlinearities and topology affects wave propagation. Beyond perfectly periodic systems, defects provide a way to modify and control
Energy Technology Data Exchange (ETDEWEB)
Doumic, M
2005-05-15
To simulate the propagation of a monochromatic laser beam in a medium, we use the paraxial approximation of the Klein-Gordon (in the time-varying problem) and of the Maxwell (in the non time-depending case) equations. In a first part, we make an asymptotic analysis of the Klein-Gordon equation. We obtain approximated problems, either of Schroedinger or of transport-Schroedinger type. We prove the existence and uniqueness of a solution for these problems, and estimate the difference between it and the exact solution of the Klein-Gordon equation. In a second part, we study the boundary problem for the advection Schroedinger equation, and show what the boundary condition must be so that the problem on our domain should be the restriction of the problem in the whole space: such a condition is called a transparent or an absorbing boundary condition. In a third part, we use the preceding results to build a numerical resolution method, for which we prove stability and show some simulations. (author)
Investigation into stress wave propagation in metal foams
Directory of Open Access Journals (Sweden)
Li Lang
2015-01-01
Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.
Wave propagation and group velocity
Brillouin, Léon
1960-01-01
Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter
Wave equations for pulse propagation
Energy Technology Data Exchange (ETDEWEB)
Shore, B.W.
1987-06-24
Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.
Pressure wave propagation in sodium loop
International Nuclear Information System (INIS)
Botelho, D.A.
1989-01-01
A study was done on the pressure wave propagation within the pipes and mixture vessel of a termohydraulic loop for thermal shock with sodium. It was used the characteristic method to solve the one-dimensional continuity and momentum equations. The numerical model includes the pipes and the effects of valves and other accidents on pressure losses. The study was based on designer informations and engineering tables. It was evaluated the pressure wave sizes, parametrically as a function of the draining valve closure times. (author) [pt
On the propagation of truncated localized waves in dispersive silica
Salem, Mohamed
2010-01-01
Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.
Gorwade, Chandragupt V.; Ashcroft, Ian A.; Silberschmidt, Vadim V.; Hughes, Foz T. R.; Swallowe, Gerry M.
2012-12-01
Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid of a finite element model of the test. It is seen that the phenomenon of impedance mismatch at interfaces plays an important role in the levels of stress and deformation seen in the sample. A multi-layer armour system is then investigated using the finite element model. This case study illustrates the role of impedance mismatch and interface engineering in the design and optimisation of armour solutions.
Propagation of sound waves in ducts
DEFF Research Database (Denmark)
Jacobsen, Finn
2000-01-01
Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....
Surface wave propagation characteristics in atmospheric pressure plasma column
International Nuclear Information System (INIS)
Pencheva, M; Benova, E; Zhelyazkov, I
2007-01-01
In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance
Bertoldi, Katia; Boyce, M.C.
2008-01-01
Wave propagation in elastomeric materials undergoing large deformations is relevant in numerous application areas, including nondestructive testing of materials and ultrasound techniques, where finite deformations and corresponding stress states can influence wave propagation and hence
Nonlinear transient wave propagation in homgeneous plasmas
International Nuclear Information System (INIS)
Thomsen, K.
1983-01-01
The transient phenomena associated with the propagation of nonlinear high frequency waves in homogeneous and isotropic or anisotropic plasma are considered. The basic equation for the different wave types included in this analysis are derived by using a two-fluid description of the plasma. Before discussing the importance of different nonlinearities the main results from a linear treatment are given. Generation of harmonic and local changes in the plasma frequency caused by ponderomotive forces are the nonlinear phenomena which are included in the nonlinear treatment. Generation of harmonics is only important for extraordinary waves and this case is discussed in detail. The density perturbations are described either as forced non-dispersive or as forced dispersive low frequency electrostatic waves. The differences between these two descriptions are first considered analytically then by a numerical analysis of the problem with the influence of the density variations on the propagation of the high frequency wave included. A one-dimensional description is used in all cases. (Auth.)
Wave Propagation in Jointed Geologic Media
Energy Technology Data Exchange (ETDEWEB)
Antoun, T
2009-12-17
Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.
Seismic Wave Propagation in Layered Viscoelastic Media
Borcherdt, R. D.
2008-12-01
Advances in the general theory of wave propagation in layered viscoelastic media reveal new insights regarding seismic waves in the Earth. For example, the theory predicts: 1) P and S waves are predominantly inhomogeneous in a layered anelastic Earth with seismic travel times, particle-motion orbits, energy speeds, Q, and amplitude characteristics that vary with angle of incidence and hence, travel path through the layers, 2) two types of shear waves exist, one with linear and the other with elliptical particle motions each with different absorption coefficients, and 3) surface waves with amplitude and particle motion characteristics not predicted by elasticity, such as Rayleigh-Type waves with tilted elliptical particle motion orbits and Love-Type waves with superimposed sinusoidal amplitude dependencies that decay exponentially with depth. The general theory provides closed-form analytic solutions for body waves, reflection-refraction problems, response of multiple layers, and surface wave problems valid for any material with a viscoelastic response, including the infinite number of models, derivable from various configurations of springs and dashpots, such as elastic, Voight, Maxwell, and Standard Linear. The theory provides solutions independent of the amount of intrinsic absorption and explicit analytic expressions for physical characteristics of body waves in low-loss media such as the deep Earth. The results explain laboratory and seismic observations, such as travel-time and wide-angle reflection amplitude anomalies, not explained by elasticity or one dimensional Q models. They have important implications for some forward modeling and inverse problems. Theoretical advances and corresponding numerical results as recently compiled (Borcherdt, 2008, Viscoelastic Waves in Layered Media, Cambridge University Press) will be reviewed.
Seismic Wave Propagation on the Tablet Computer
Emoto, K.
2015-12-01
Tablet computers widely used in recent years. The performance of the tablet computer is improving year by year. Some of them have performance comparable to the personal computer of a few years ago with respect to the calculation speed and the memory size. The convenience and the intuitive operation are the advantage of the tablet computer compared to the desktop PC. I developed the iPad application of the numerical simulation of the seismic wave propagation. The numerical simulation is based on the 2D finite difference method with the staggered-grid scheme. The number of the grid points is 512 x 384 = 196,608. The grid space is 200m in both horizontal and vertical directions. That is the calculation area is 102km x 77km. The time step is 0.01s. In order to reduce the user waiting time, the image of the wave field is drawn simultaneously with the calculation rather than playing the movie after the whole calculation. P and S wave energies are plotted on the screen every 20 steps (0.2s). There is the trade-off between the smooth simulation and the resolution of the wave field image. In the current setting, it takes about 30s to calculate the 10s wave propagation (50 times image updates). The seismogram at the receiver is displayed below of the wave field updated in real time. The default medium structure consists of 3 layers. The layer boundary is defined by 10 movable points with linear interpolation. Users can intuitively change to the arbitrary boundary shape by moving the point. Also users can easily change the source and the receiver positions. The favorite structure can be saved and loaded. For the advance simulation, users can introduce the random velocity fluctuation whose spectrum can be changed to the arbitrary shape. By using this application, everyone can simulate the seismic wave propagation without the special knowledge of the elastic wave equation. So far, the Japanese version of the application is released on the App Store. Now I am preparing the
Simulations of Seismic Wave Propagation on Mars
Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan; Khan, Amir; Leng, Kuangdai; van Driel, Martin; Wieczorek, Mark; Rivoldini, Attilio; Larmat, Carène S.; Giardini, Domenico; Tromp, Jeroen; Lognonné, Philippe; Banerdt, Bruce W.
2017-10-01
We present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust (Sohl and Spohn in J. Geophys. Res., Planets 102(E1):1613-1635, 1997). For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE (Komatitsch and Tromp in Geophys. J. Int. 149(2):390-412, 2002a; 150(1):303-318, 2002b) against the 2D axisymmetric wave propagation solver AxiSEM (Nissen-Meyer et al. in Solid Earth 5(1):425-445, 2014) at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on ray theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars' northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D (Fichtner et al. Geophys. J. Int. 179:1703-1725, 2009) based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. We conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.
Observations of Obliquely Propagating Electron Bernstein Waves
DEFF Research Database (Denmark)
Armstrong, R. J.; Juul Rasmussen, Jens; Stenzel, R. L.
1981-01-01
Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation.......Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation....
Topology optimization of wave-propagation problems
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2006-01-01
Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....
Terrestrial propagation of long electromagnetic waves
Galejs, Janis; Fock, V A
2013-01-01
Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte
Energy Technology Data Exchange (ETDEWEB)
Leutbecher, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere
1998-07-01
Flow over mountains in the stably stratified atmosphere excites gravity waves. The three-dimensional propagation of these waves into the stratosphere is studied using linear theority as well as idealized and realistic numerical simulations. Stagnation, momentum fluxes and temperature anomalies are analyzed for idealized types of flow. Isolated mountains with elliptical contours are considered. The unperturbed atmosphere has constant wind speed and constant static stability or two layers (troposphere/stratosphere) of constant stability each. Real flow over orography is investigated where gravity waves in the stratosphere have been observed. Characteristics of the gravity wave event over the southern tip of Greenland on 6 January 1992 were recorded on a flight of the ER-2 at an altitude of 20 km. In the second case polar stratospheric clouds (PSC) were observed by an airborne Lidar over Northern Scandinavia on 9 January 1997. The PSC were induced by temperature anomalies in orographic gravity waves. (orig.)
Adaptive numerical modeling of dynamic crack propagation
International Nuclear Information System (INIS)
Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.
2006-01-01
We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)
Nonlinear multi-frequency electromagnetic wave propagation phenomena
Valovik, Dmitry V.
2017-11-01
A generalisation of the concept of monochromatic electromagnetic waves guided by layered waveguide structures filled with non-linear medium is introduced. This generalisation leads to guided waves of a novel type: a non-linear multi-frequency guided wave. The existence of such waves, in particular guide structures, is proven using the perturbation method. Numerical experiments are presented for non-linear 1- and 2-frequency guided waves in plane and cylindrical (with a circular cross-section) waveguides. Numerically, a novel non-linear effect is found for particular cases of non-linear multi-frequency guided waves. The suggested generalisation gives not only a unified approach to treat various electromagnetic wave propagation problems but also paves the way to study non-linear interactions of guided waves.
Some considerations of wave propagation
Verdonk, P. L. F. M.
The meaning of group velocity and its relation to conserved quantities are demonstrated. The origin of wave dispersion in terms of nonlocal and relaxation phenomena are clarified. The character of a wave described by an equation with a general type of nonlinearity and general dispersion terms is explained. The steepening of a wave flank and the occurrence of stationary waves are discussed.
Directional bending wave propagation in periodically perforated plates
DEFF Research Database (Denmark)
Andreassen, Erik; Manktelow, Kevin; Ruzzene, Massimo
2015-01-01
We report on the investigation of wave propagation in a periodically perforated plate. A unit cell with double-C perforations is selected as a test article suitable to investigate two-dimensional dispersion characteristics, group velocities, and internal resonances. A numerical model, formulated...... using Mindlin plate elements, is developed to predict relevant wave characteristics such as dispersion, and group velocity variation as a function of frequency and direction of propagation. Experimental tests are conducted through a scanning laser vibrometer, which provides full wave field information....... The analysis of time domain wave field images allows the assessment of plate dispersion, and the comparison with numerical predictions. The obtained results show the predictive ability of the considered numerical approach and illustrate how the considered plate configuration could be used as the basis...
Near-perfect conversion of a propagating plane wave into a surface wave using metasurfaces
Tcvetkova, S. N.; Kwon, D.-H.; Díaz-Rubio, A.; Tretyakov, S. A.
2018-03-01
In this paper theoretical and numerical studies of perfect/nearly perfect conversion of a plane wave into a surface wave are presented. The problem of determining the electromagnetic properties of an inhomogeneous lossless boundary which would fully transform an incident plane wave into a surface wave propagating along the boundary is considered. An approximate field solution which produces a slowly growing surface wave and satisfies the energy conservation law is discussed and numerically demonstrated. The results of the study are of great importance for the future development of such devices as perfect leaky-wave antennas and can potentially lead to many novel applications.
Electromagnetic wave propagation in relativistic magnetized plasmas
International Nuclear Information System (INIS)
Weiss, I.
1985-01-01
An improved mathematical technique and a new code for deriving the conductivity tensor for collisionless plasmas have been developed. The method is applicable to a very general case, including both hot (relativistic) and cold magnetized plasmas, with only isotropic equilibrium distributions being considered here. The usual derivation starts from the relativistic Vlasov equation and leads to an integration over an infinite sum of Bessel functions which has to be done numerically. In the new solution the integration is carried out over a product of two Bessel functions only. This reduces the computing time very significantly. An added advantage over existing codes is our capability to perform the computations for waves propagating obliquely to the magnetic field. Both improvements greatly facilitate investigations of properties of the plasma under conditions hitherto unexplored
Carcione, José M
2014-01-01
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and ...
Propagation of SLF/ELF electromagnetic waves
Pan, Weiyan
2014-01-01
This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).
Wave propagation and scattering in random media
Ishimaru, Akira
1978-01-01
Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an
Coupled seismic and electromagnetic wave propagation
Schakel, M.D.
2011-01-01
Coupled seismic and electromagnetic wave propagation is studied theoretically and experimentally. This coupling arises because of the electrochemical double layer, which exists along the solid-grain/fluid-electrolyte boundaries of porous media. Within the double layer, charge is redistributed,
Propagating waves in human motor cortex
Directory of Open Access Journals (Sweden)
Kazutaka eTakahashi
2011-04-01
Full Text Available Previous studies in non-human primates have shown that beta oscillations (15-30Hz of local field potentials (LFPs in the arm/hand areas of primary motor cortex (MI propagate as traveling waves across the cortex. These waves exhibited two stereotypical features across animals and tasks: 1 The waves propagated in two dominant modal directions roughly 180 degrees apart, and 2 their propagation speed ranged from 10 ~ 35 cm/s. It is, however, unknown if such cortical waves occur in the human motor cortex. This study shows that the two properties of propagating beta waves are present in MI of a tetraplegic human patient while he was instructed to perform an instruction delay center out task using a cursor controlled by the chin. Moreover, we show that beta waves are sustained and have similar properties whether the subject was engaged in the task or at rest. The directions of the successive sustained waves both in the human subject and a nonhuman primate (NHP subject tended to switch from one dominant mode to the other, and at least in the NHP subject the estimated distance travelled between successive waves traveling into and out of the central sulcus is consistent with the hypothesis of wave reflection between the border of motor and somatosensory cortices. Further, we show that the occurrence of the beta waves is not uniquely tied to periods of increased power in the beta frequency band. These results demonstrate that traveling beta waves in MI are a general phenomenon occurring in human as well as non-human primates. Consistent with the non-human primate data, the dominant directions of the beta LFP waves in human aligned to the proximal to distal gradient of joint representations in MI somatotopy. This consistent finding of wave propagation may imply the existence of a hardwired organization of motor cortex that mediates this spatio-temporal pattern.
Controlling wave propagation through nonlinear engineered granular systems
Leonard, Andrea
We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave
Variation principle for nonlinear wave propagation
International Nuclear Information System (INIS)
Watanabe, T.; Lee, Y.C.; Nishikawa, Kyoji; Hojo, H.; Yoshida, Y.
1976-01-01
Variation principle is derived which determines stationary nonlinear propagation of electrostatic waves in the self-consistent density profile. Example is given for lower-hybrid waves and the relation to the variation principle for the Lagrangian density of electromagnetic fluids is discussed
Wave propagation in thermoelastic saturated porous medium
Indian Academy of Sciences (India)
tural engineering or to hydrocarbon/geothermal processes. References. Bear J, Sorek S, Ben-Dor G and Mazor G 1992 Displacement waves in saturated thermoelastic porous media, I. Basic equations; Fluid Dyn. Res. 9 155–164. Biot M A 1956a The theory of propagation of elastic waves in a fluid-saturated porous solid, ...
Nonlinear propagation of weakly relativistic ion-acoustic waves in ...
Indian Academy of Sciences (India)
2016-10-06
Oct 6, 2016 ... Abstract. This work presents theoretical and numerical discussion on the dynamics of ion-acoustic solitary wave for weakly relativistic regime in unmagnetized plasma comprising non-extensive electrons, Boltzmann positrons and relativistic ions. In order to analyse the nonlinear propagation phenomena, ...
Seismic wave propagation in fractured media: A discontinuous Galerkin approach
De Basabe, Jonás D.
2011-01-01
We formulate and implement a discontinuous Galekin method for elastic wave propagation that allows for discontinuities in the displacement field to simulate fractures or faults using the linear- slip model. We show numerical results using a 2D model with one linear- slip discontinuity and different frequencies. The results show a good agreement with analytic solutions. © 2011 Society of Exploration Geophysicists.
Propagation of Elastic Waves in Prestressed Media
Directory of Open Access Journals (Sweden)
Inder Singh
2010-01-01
Full Text Available 3D solutions of the dynamical equations in the presence of external forces are derived for a homogeneous, prestressed medium. 2D plane waves solutions are obtained from general solutions and show that there exist two types of plane waves, namely, quasi-P waves and quasi-SV waves. Expressions for slowness surfaces and apparent velocities for these waves are derived analytically as well as numerically and represented graphically.
Radiation and propagation of electromagnetic waves
Tyras, George; Declaris, Nicholas
1969-01-01
Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a
Lamb wave propagation in monocrystalline silicon wafers.
Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard
2018-01-01
Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.
Acoustical Wave Propagation in Sonic Composites
Directory of Open Access Journals (Sweden)
Iulian Girip
2015-09-01
Full Text Available The goal of this paper is to discuss the technique of controlling the mechanical properties of sonic composites. The idea is to architecture the scatterers and material from which they are made, their number and geometry in order to obtain special features in their response to external waves. We refer to perfectly reflecting of acoustical waves over a desired range of frequencies or to prohibit their propagation in certain directions, or confining the waves within specified volumes. The internal structure of the material has to be chosen in such a way that to avoid the scattering of acoustical waves inside the material. This is possible if certain band-gaps of frequencies can be generated for which the waves are forbidden to propagate in certain directions. These bandgaps can be extended to cover all possible directions of propagation by resulting a full band-gap. If the band-gaps are not wide enough, their frequency ranges do not overlap. These band-gaps can overlap due to reflections on the surface of thick scatterers, as well as due to wave propagation inside them. growth.
Sun, Yao-Chong; Zhang, Wei; Xu, Jian-Kuan; Chen, Xiaofei
2017-09-01
This study simulates seismic wave propagation across a 2-D topographic fluid (acoustic) and solid (elastic) interface at the sea bottom by the finite-difference method (FDM). In this method, seismic waves in sea water are governed by acoustic wave equations, whereas seismic waves in solid earth are governed by elastic wave equations. The fluid-solid interface condition is implemented on the interface. Body-conforming grids are used to fit the topographic fluid-solid interface which naturally avoids spurious diffractions due to staircase approximation. A collocated-grid MacCormack FDM is utilized to update the wavefields in the fluid and solid media. The fluid-solid interface condition is explicitly implemented by decomposing the velocity and stress components to the normal and tangential directions with respect to the interface within a fourth-order Runge-Kutta time-marching scheme. The algorithm solutions for both flat and topographic fluid-solid interface models are compared with analytical solutions and spectral element solutions to validate the proposed method. Results show a suitable agreement with the reference solutions and hence confirms the validity of this method. The proposed FDM enforces the numerical solutions to satisfy the exact interface condition and it is more accurate than the conventional FDM that uses effective media parameters to approximate the interface condition.
Submillimeter wave propagation in tokamak plasmas
International Nuclear Information System (INIS)
Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.
1986-01-01
Propagation of submillimeter waves (smm) in tokamak plasma was investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses were carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system was employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes were developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements. 5 references, 2 figures
Wave propagation phenomena in metamaterials for retrieving of effective parameters
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Ha, S.
2011-01-01
reveal so-called wave effective parameters, assigned for particular ligh propagation direction in numerical or real experiments. Therefore, finding the EP is a tricky problem, which still requires a lot of contribution to get deeper insight in it. We report on our advances in restoration MMs EP taking...... into account propagation of eigen-waves in multilayered structures (thicknesses 10-100 unit cells). Thus, the question of pa-rameters convergence is naturally resolved in our approach. The method has been tested on complex three-dimensional structures like a split-cube-in-carcass and with circular polarized...... waves on chiral MMs [1, 2]. Elaborating our approach the new method has been established, where the unit-cell volume and face field averaging procedures define wave and input (Bloch) impedances correspond-ingly. The first part of the method involves the extraction of the dominating (fundamental) Bloch...
International Nuclear Information System (INIS)
Kolkoori, Sanjeevareddy
2014-01-01
Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase
Energy Technology Data Exchange (ETDEWEB)
Kolkoori, Sanjeevareddy
2014-07-01
Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase
Wave Propagation in Smart Materials
DEFF Research Database (Denmark)
Pedersen, Michael
1999-01-01
In this paper we deal with the behavior of solutions to hyperbolicequations such as the wave equation:\\begin{equation}\\label{waveeq1}\\frac{\\partial^2}{\\partial t^2}u-\\Delta u=f,\\end{equation}or the equations of linear elasticity for an isotropic medium:\\begin{equation}\\label{elasteq1}\\frac......{\\partial^2}{\\partial t^2}u -(\\lambda+\\mu){\\text{\\rm grad div}} u -\\mu\\Deltau=0,\\end{equation}where $u=u(t,x)$ denotes a 3-vector field on $\\Bbb R\\times\\Bbb R^3$,and $\\lambda$ and $\\mu$ are the Lame-constants....
Wave Propagation in Smart Materials
DEFF Research Database (Denmark)
Pedersen, Michael
1999-01-01
In this paper we deal with the behavior of solutions to hyperbolic equations such as the wave equation: \\begin{equation}\\label{waveeq1} \\frac{\\partial^2}{\\partial t^2}u-\\Delta u=f, \\end{equation} or the equations of linear elasticity for an isotropic medium: \\begin{equation}\\label{elasteq1} \\frac......{\\partial^2}{\\partial t^2}u -(\\lambda+\\mu){\\text{\\rm grad div}} u -\\mu\\Delta u=0, \\end{equation} where $u=u(t,x)$ denotes a 3-vector field on $\\Bbb R\\times\\Bbb R^3$, and $\\lambda$ and $\\mu$ are the Lame-constants....
Antenna Construction and Propagation of Radio Waves.
Marine Corps Inst., Washington, DC.
Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…
Electromagnetic Wave Propagation in Random Media
DEFF Research Database (Denmark)
Pécseli, Hans
1984-01-01
The propagation of a narrow frequency band beam of electromagnetic waves in a medium with randomly varying index of refraction is considered. A novel formulation of the governing equation is proposed. An equation for the average Green function (or transition probability) can then be derived...
An optimal design problem in wave propagation
DEFF Research Database (Denmark)
Bellido, J.C.; Donoso, Alberto
2007-01-01
We consider an optimal design problem in wave propagation proposed in Sigmund and Jensen (Roy. Soc. Lond. Philos. Trans. Ser. A 361:1001-1019, 2003) in the one-dimensional situation: Given two materials at our disposal with different elastic Young modulus and different density, the problem consists...
Ionospheric Plasma Heating During Powerful Wave Propagation ...
African Journals Online (AJOL)
Ionospheric Plasma Heating During Powerful Wave Propagation. S Ram. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/dai.v12i1.15563 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...
Shallow water sound propagation with surface waves.
Tindle, Chris T; Deane, Grant B
2005-05-01
The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.
Topology Optimization for Transient Wave Propagation Problems
DEFF Research Database (Denmark)
Matzen, René
as for vectorial elastic wave propagation problems using finite element analysis [P2], [P4]. The concept is implemented in a parallel computing code that includes efficient techniques for performing gradient based topology optimization. Using the developed computational framework the thesis considers four...... are derived by use of the adjoint variable method. Many wave propagation problems are open-region problems, i.e. the outer boundaries of the modeling domain must be re ection-less. The thesis contains new and independent developments within perfectly matched layer techniques for scalar as well......The study of elastic and optical waves together with intensive material research has revolutionized everyday as well as cutting edge technology in very tangible ways within the last century. Therefore it is important to continue the investigative work towards improving existing as well as innovate...
Book Review: Wave propagation in materials and structures
Ferguson, Neil
2018-02-01
This book's remit is to provide a very extensive and detailed coverage of many one and two dimensional wave propagating behaviours primarily in structures such as rods, beams and plates of complexity covering laminated, sandwich plates, smart configurations and complex material compositions. This is potentially where the detailed presentation, including the derivation of the governing equations of motion from first principles, i.e. Hamilton's method, for example, distracts slightly from the subsequent wave solutions, the numerical simulations showing time responses, the wave speeds and importantly the dispersion characteristics. The author introduces a number of known analytical methodologies and means to obtain wave solutions, including the spectral finite element approach and also provides numerical examples showing the approach being applied to joints and framed structures.
Gravitational wave propagation in isotropic cosmologies
International Nuclear Information System (INIS)
Hogan, P.A.; O'Shea, E.M.
2002-01-01
We study the propagation of gravitational waves carrying arbitrary information through isotropic cosmologies. The waves are modeled as small perturbations of the background Robertson-Walker geometry. The perfect fluid matter distribution of the isotropic background is, in general, modified by small anisotropic stresses. For pure gravity waves, in which the perturbed Weyl tensor is radiative (i.e. type N in the Petrov classification), we construct explicit examples for which the presence of the anisotropic stress is shown to be essential and the histories of the wave fronts in the background Robertson-Walker geometry are shear-free null hypersurfaces. The examples derived in this case are analogous to the Bateman waves of electromagnetic theory
Propagation of an ionizing surface electromagnetic wave
Energy Technology Data Exchange (ETDEWEB)
Boev, A.G.; Prokopov, A.V.
1976-11-01
The propagation of an rf surface wave in a plasma which is ionized by the wave itself is analyzed. The exact solution of the nonlinear Maxwell equations is discussed for the case in which the density of plasma electrons is an exponential function of the square of the electric field. The range over which the surface wave exists and the frequency dependence of the phase velocity are found. A detailed analysis is given for the case of a plasma whose initial density exceeds the critical density at the wave frequency. An increase in the wave amplitude is shown to expand the frequency range over which the plasma is transparent; The energy flux in the plasma tends toward a certain finite value which is governed by the effective ionization field.
Solitary-wave propagation and interactions for a sixth-order generalized Boussinesq equation
Directory of Open Access Journals (Sweden)
Bao-Feng Feng
2005-01-01
based on the phase plane analysis around the equilibrium point, is used to construct the solitary-wave solutions for this nonintegrable equation. A symmetric three-level implicit finite difference scheme with a free parameter θ is proposed to study the propagation and interactions of solitary waves. Numerical simulations show the propagation of a single solitary wave of SGBE, and two solitary waves pass by each other without changing their shapes in the head-on collisions.
Carcione, José M
2007-01-01
This book examines the differences between an ideal and a real description of wave propagation, where ideal means an elastic (lossless), isotropic and single-phase medium, and real means an anelastic, anisotropic and multi-phase medium. The analysis starts by introducing the relevant stress-strain relation. This relation and the equations of momentum conservation are combined to give the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. The book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may als...
Stress Wave Propagation due to a Moving Force
DEFF Research Database (Denmark)
Rasmussen, K. M.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning
1999-01-01
In this paper the performance of two numerical methods of solving the problem of a time dependent moving force on the surface of an elastic continuum will be evaluated. One method is the finite element method (FEM) formulated in convected coordinates coupled with an absorbing boundary condition...... of the impedance type. The other method to be considered is the boundary element method (BEM), where a new formulation using Green's functions transformed to a moving coordinate system is introduced. The methods are tested by the classic wave propagation problem of a Ricker Pulse propagating from the surface...... of an elastic halfspace. The time integral net impulse of the considered loading must be null for the considered FEM to work. Further, the FEM is unable to absorb Rayleigh waves, since the considered impedance condition has been tuned P- and S-waves. By contrast the BEM is able to handle also these cases...
The effect of lower-hybrid waves on the propagation of hydromagnetic waves
International Nuclear Information System (INIS)
Hamabata, Hiromitsu; Namikawa, Tomikazu; Mori, Kazuhiro
1988-01-01
Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves. (author)
Numerically generated black-hole spacetimes: Interaction with gravitational waves
International Nuclear Information System (INIS)
Abrahams, A.; Bernstein, D.; Hobill, D.; Seidel, E.; Smarr, L.
1992-01-01
In this paper we present results from a new two-dimensional numerical relativity code used to study the interaction of gravitational waves with a black hole. The initial data correspond to a single black hole superimposed with time-symmetric gravitational waves (Brill waves). A gauge-invariant method is presented for extracting the gravitational waves from the numerically generated spacetime. We show that the interaction between the gravitational wave and the black hole excites the quasinormal modes of the black hole. An extensive comparison of these results is made to black-hole perturbation theory. For low-amplitude initial gravitational waves, we find excellent agreement between the theoretically predicted scrl=2 and scrl=4 wave forms and the wave forms generated by the code. Additionally, a code test is performed wherein the propagation of the wave on the black-hole background is compared to the evolution predicted by perturbation theory
Simulation of the acoustic wave propagation using a meshless method
Directory of Open Access Journals (Sweden)
Bajko J.
2017-01-01
Full Text Available This paper presents numerical simulations of the acoustic wave propagation phenomenon modelled via Linearized Euler equations. A meshless method based on collocation of the strong form of the equation system is adopted. Moreover, the Weighted least squares method is used for local approximation of derivatives as well as stabilization technique in a form of spatial ltering. The accuracy and robustness of the method is examined on several benchmark problems.
Wave propagation in axially moving periodic strings
DEFF Research Database (Denmark)
Sorokin, Vladislav S.; Thomsen, Jon Juel
2017-01-01
The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives...... for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers....... This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus...
Propagating wave correlations in complex systems
International Nuclear Information System (INIS)
Creagh, Stephen C; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor
2017-01-01
We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures. (paper)
Wave propagation retrieval method for chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei
2010-01-01
In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence...... of artificial branches of the refractive index and simplicity in implementation. We prove the validity of the method on three case studies of homogeneous magnetized plasma, bi-cross and U-shaped metamaterials....
Wave propagation in the magnetosphere of Jupiter
Liemohn, H. B.
1972-01-01
A systematic procedure is developed for identifying the spatial regimes of various modes of wave propagation in the Jupiter magnetosphere that may be encountered by flyby missions. The Clemmow-Mullaly-Allis (CMA) diagram of plasma physics is utilized to identify the frequency regimes in which different modes of propagation occur in the magnetoplasma. The Gledhill model and the Ioannidis and Brice model of the magnetoplasma are summarized, and configuration-space CMA diagrams are constructed for each model for frequencies from 10 Hz to 1 MHz. The distinctive propagation features, the radio noise regimes, and the wave-particle interactions are discussed. It is concluded that the concentration of plasma in the equatorial plane makes this region of vital importance for radio observations with flyby missions. Local radio noise around the electron cyclotron frequency will probably differ appreciably from its terrestrial counterpart due to the lack of field-line guidance. Hydromagnetic wave properties at frequencies near the ion cyclotron frequency and below will probably be similar to the terrestrial case.
Modeling ocean wave propagation under sea ice covers
Zhao, Xin; Shen, Hayley H.; Cheng, Sukun
2015-02-01
Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology
Preliminary Modeling of Global Seismic Wave Propagation in the Whole Mars
Toyokuni, G.; Ishihara, Y.; Takenaka, H.
2011-03-01
Global seismic wave propagation in the whole Mars is simulated by an accurate and efficient numerical scheme which has been developed for the Earth. Simple Mars models are used to obtain preliminary results of martian seismic waveform modeling.
Simulation of Wave Overtopping of Maritime Structures in a Numerical Wave Flume
Directory of Open Access Journals (Sweden)
Tiago C. A. Oliveira
2012-01-01
Full Text Available A numerical wave flume based on the particle finite element method (PFEM is applied to simulate wave overtopping for impermeable maritime structures. An assessment of the performance and robustness of the numerical wave flume is carried out for two different cases comparing numerical results with experimental data. In the first case, a well-defined benchmark test of a simple low-crested structure overtopped by regular nonbreaking waves is presented, tested in the lab, and simulated in the numerical wave flume. In the second case, state-of-the-art physical experiments of a trapezoidal structure placed on a sloping beach overtopped by regular breaking waves are simulated in the numerical wave flume. For both cases, main overtopping events are well detected by the numerical wave flume. However, nonlinear processes controlling the tests proposed, such as nonlinear wave generation, energy losses along the wave propagation track, wave reflection, and overtopping events, are reproduced with more accuracy in the first case. Results indicate that a numerical wave flume based on the PFEM can be applied as an efficient tool to supplement physical models, semiempirical formulations, and other numerical techniques to deal with overtopping of maritime structures.
Ultrasonic Guided Wave Propagation through Welded Lap Joints
Directory of Open Access Journals (Sweden)
Audrius Jankauskas
2016-12-01
Full Text Available The objective of the research presented here is the investigation of ultrasonic guided wave (UGW propagation through the lap joint welded plates used in the construction of a storage tank floors. The investigations have been performed using numerical simulation by finite element method (FEM and tested by measurement of the transmission losses of the guided waves transmitted through the welded lap joints. Propagation of the symmetric S0 mode in the welded stainless steel plates in the cases of different lap joint overlap width, operation frequency, and additional plate bonding caused by corrosion were investigated. It was shown that the transmission losses of the S0 mode can vary in the range of 2 dB to 8 dB depending on the ratio between lap joint width and wavelength. It was also demonstrated that additional bonding in the overlap zone caused by corrosion can essentially reduce transmission losses.
SPATIAL DAMPING OF PROPAGATING KINK WAVES IN PROMINENCE THREADS
International Nuclear Information System (INIS)
Soler, R.; Oliver, R.; Ballester, J. L.
2011-01-01
Transverse oscillations and propagating waves are frequently observed in threads of solar prominences/filaments and have been interpreted as kink magnetohydrodynamic (MHD) modes. We investigate the spatial damping of propagating kink MHD waves in transversely nonuniform and partially ionized prominence threads. Resonant absorption and ion-neutral collisions (Cowling's diffusion) are the damping mechanisms taken into account. The dispersion relation of resonant kink waves in a partially ionized magnetic flux tube is numerically solved by considering prominence conditions. Analytical expressions of the wavelength and damping length as functions of the kink mode frequency are obtained in the thin tube and thin boundary approximations. For typically reported periods of thread oscillations, resonant absorption is an efficient mechanism for the kink mode spatial damping, while ion-neutral collisions have a minor role. Cowling's diffusion dominates both the propagation and damping for periods much shorter than those observed. Resonant absorption may explain the observed spatial damping of kink waves in prominence threads. The transverse inhomogeneity length scale of the threads can be estimated by comparing the observed wavelengths and damping lengths with the theoretically predicted values. However, the ignorance of the form of the density profile in the transversely nonuniform layer introduces inaccuracies in the determination of the inhomogeneity length scale.
Modeling Propagation of Shock Waves in Metals
Howard, W. M.; Molitoris, J. D.
2006-07-01
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜ 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.
Nurhandoko, Bagus Endar B.; Wardaya, Pongga Dikdya; Adler, John; Siahaan, Kisko R.
2012-06-01
Seismic wave parameter plays very important role to characterize reservoir properties whereas pore parameter is one of the most important parameter of reservoir. Therefore, wave propagation phenomena in pore media is important to be studied. By referring this study, in-direct pore measurement method based on seismic wave propagation can be developed. Porosity play important role in reservoir, because the porosity can be as compartment of fluid. Many type of porosity like primary as well as secondary porosity. Carbonate rock consist many type of porosity, i.e.: inter granular porosity, moldic porosity and also fracture porosity. The complexity of pore type in carbonate rocks make the wave propagation in these rocks is more complex than sand reservoir. We have studied numerically wave propagation in carbonate rock by finite difference modeling in time-space domain. The medium of wave propagation was modeled by base on the result of pattern recognition using artificial neural network. The image of thin slice of carbonate rock is then translated into the velocity matrix. Each mineral contents including pore of thin slice image are translated to velocity since mineral has unique velocity. After matrix velocity model has been developed, the seismic wave is propagated numerically in this model. The phenomena diffraction is clearly shown while wave propagates in this complex carbonate medium. The seismic wave is modeled in various frequencies. The result shows dispersive phenomena where high frequency wave tends to propagate in matrix instead pores. In the other hand, the low frequency waves tend to propagate through pore space even though the velocity of pore is very low. Therefore, this dispersive phenomena of seismic wave propagation can be the future indirect measurement technology for predicting the existence or intensity of pore space in reservoir rock. It will be very useful for the future reservoir characterization.
On the Relation Between Complex Modes and Wave Propagation Phenomena
Ahmida, K. M.; Arruda, J. R. F.
2002-08-01
This paper discusses the well-known, but often misunderstood, concept of complex modes of dynamic structures. It shows how complex modes can be interpreted in terms of wave propagation phenomena caused by either localized damping or propagation to the surrounding media. Numerical simulation results are presented for different kinds of structures exhibiting modal and wave propagation characteristics: straight beams, an L-shaped beam, and a three-dimensional frame structure. The input/output transfer relations of these structures are obtained using a spectral formulation known as the spectral element method (SEM). With this method, it is straightforward to use infinite elements, usually known as throw-off elements, to represent the propagation to infinity, which is a possible cause of modal complexity. With the SEM model, the exact dynamic behavior of structures can be investigated. The mode complexity of these structures is investigated. It is shown that mode complexity characterizes a behavior that is half-way between purely modal and purely propagative. A coefficient for quantifying mode complexity is introduced. The mode complexity coefficient consists of the correlation coefficient between the real and imaginary parts of the eigenvector, or of the operational deflection shape (ODS). It is shown that, far from discontinuities, this coefficient is zero in the case of pure wave propagation in which case the plot of the ODS in the complex plane is a perfect circle. In the other extreme situation, a finite structure without damping (or with proportional damping), where the mode shape (or the ODS) is a straight line on the complex plane, has a unitary complexity coefficient. For simple beam structures, it is shown that the mode complexity factor can also be calculated by curve-fitting the mode to an ellipse and computing the ratio of its radii.
Full wave simulations of lower hybrid wave propagation in tokamaks
Wright, J. C.; Bonoli, P. T.; Phillips, C. K.; Valeo, E.; Harvey, R. W.
2009-11-01
Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons at (2.5-3)×vte, where vte ≡ (2Te/me)1/2 is the electron thermal speed. Consequently these waves are well-suited to driving current in the plasma periphery where the electron temperature is lower, making LH current drive (LHCD) a promising technique for off-axis (r/a⩾0.60) current profile control in reactor grade plasmas. Established techniques for computing wave propagation and absorption use WKB expansions with non-Maxwellian self-consistent distributions. In typical plasma conditions with electron densities of several 1019 m-3 and toroidal magnetic fields strengths of 4 Telsa, the perpendicular wavelength is of the order of 1 mm and the parallel wavelength is of the order of 1 cm. Even in a relatively small device such as Alcator C-Mod with a minor radius of 22 cm, the number of wavelengths that must be resolved requires large amounts of computational resources for the full wave treatment. These requirements are met with a massively parallel version of the TORIC full wave code that has been adapted specifically for the simulation of LH waves [J. C. Wright, et al., Commun. Comput. Phys., 4, 545 (2008), J. C. Wright, et al., Phys. Plasmas 16 July (2009)]. This model accurately represents the effects of focusing and diffraction that occur in LH propagation. It is also coupled with a Fokker-Planck solver, CQL3D, to provide self-consistent distribution functions for the plasma dielectric as well as a synthetic hard X-ray (HXR) diagnostic for direct comparisons with experimental measurements of LH waves. The wave solutions from the TORIC-LH zero FLR model will be compared to the results from ray tracing from the GENRAY/CQL3D code via the synthetic HXR diagnostic and power deposition.
Full wave simulations of lower hybrid wave propagation in tokamaks
International Nuclear Information System (INIS)
Wright, J. C.; Bonoli, P. T.; Phillips, C. K.; Valeo, E.; Harvey, R. W.
2009-01-01
Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons at (2.5-3)xv te , where v te ≡ (2T e /m e ) 1/2 is the electron thermal speed. Consequently these waves are well-suited to driving current in the plasma periphery where the electron temperature is lower, making LH current drive (LHCD) a promising technique for off-axis (r/a≥0.60) current profile control in reactor grade plasmas. Established techniques for computing wave propagation and absorption use WKB expansions with non-Maxwellian self-consistent distributions.In typical plasma conditions with electron densities of several 10 19 m -3 and toroidal magnetic fields strengths of 4 Telsa, the perpendicular wavelength is of the order of 1 mm and the parallel wavelength is of the order of 1 cm. Even in a relatively small device such as Alcator C-Mod with a minor radius of 22 cm, the number of wavelengths that must be resolved requires large amounts of computational resources for the full wave treatment. These requirements are met with a massively parallel version of the TORIC full wave code that has been adapted specifically for the simulation of LH waves [J. C. Wright, et al., Commun. Comput. Phys., 4, 545 (2008), J. C. Wright, et al., Phys. Plasmas 16 July (2009)]. This model accurately represents the effects of focusing and diffraction that occur in LH propagation. It is also coupled with a Fokker-Planck solver, CQL3D, to provide self-consistent distribution functions for the plasma dielectric as well as a synthetic hard X-ray (HXR) diagnostic for direct comparisons with experimental measurements of LH waves.The wave solutions from the TORIC-LH zero FLR model will be compared to the results from ray tracing from the GENRAY/CQL3D code via the synthetic HXR diagnostic and power deposition.
Plasma and radio waves from Neptune: Source mechanisms and propagation
Wong, H. K.
1994-01-01
This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.
DEFF Research Database (Denmark)
Benzon, Hans-Henrik; Bovith, Thomas
2008-01-01
Weather radars are essential sensors for observation of precipitation in the troposphere and play a major part in weather forecasting and hydrological modelling. Clutter caused by non-standard wave propagation is a common problem in weather radar applications, and in this paper a method...... for prediction of this type of weather radar clutter is presented. The method uses a wave propagator to identify areas of potential non-standard propagation. The wave propagator uses a three dimensional refractivity field derived from the geophysical parameters: temperature, humidity, and pressure obtained from...... a high-resolution Numerical Weather Prediction (NWP) model. The wave propagator is based on the parabolic equation approximation to the electromagnetic wave equation. The parabolic equation is solved using the well-known Fourier split-step method. Finally, the radar clutter prediction technique is used...
Wave propagation in metamaterials and effective parameters retrieving
DEFF Research Database (Denmark)
Andryieuski, Andrei; Ha, S.; Sukhorukov, A.
2011-01-01
of the determined effective parameters and applicability to thin slabs only. The other methods based, for example, on the eigenfunctions calculations [Menzel], or analytical calculations [Simovski] require advanced skills either in numerical methods and programming or in analytical derivations and maybe considered...... as handsome for implementation. We set a goal to develop a method which is unambiguous but at the same time simple and straightforward. We assume that this can be done by observing the wave propagation inside a metamaterial slab thick enough to avoid transient effects. First, we formulated a retrieval method...... complex wave effective parameters. Extending the method further we developed the approach to determine both wave and material effective parameters through the Bloch-mode analysis [3]. The idea is to perform the Bloch mode expansion [4] of the field inside the metamaterial slab when it is illuminated...
Lamb waves propagation in layered piezoelectric/piezomagnetic plates.
Ezzin, Hamdi; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi
2017-04-01
A dynamic solution is presented for the propagation of harmonic waves in magneto-electro-elastic plates composed of piezoelectric BaTiO 3 (B) and magnetostrictive CoFe 2 O 4 (F) material. The state-vector approach is employed to derive the propagator matrix which connects the field variables at the upper interface to those at the lower interface of each layer. The ordinary differential approach is employed to determine the wave propagating characteristics in the plate by imposing the traction-free boundary condition on the top and bottom surfaces of the layered plate. The dispersion curves of the piezoelectric-piezomagnetic plate are shown for different thickness ratios. The numerical results show clearly the influence of different stacking sequences as well as thickness ratio on dispersion curves and on magneto-electromechanical coupling factor. These findings could be relevant to the analysis and design of high-performance surface acoustic wave (SAW) devices constructed from piezoelectric and piezomagnetic materials. Copyright Â© 2016 Elsevier B.V. All rights reserved.
WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.
Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh
2015-04-01
We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.
Numerical modelling of nearshore wave transformation
Digital Repository Service at National Institute of Oceanography (India)
Chandramohan, P.; Nayak, B.U.; SanilKumar, V.
A software has been developed for numerical refraction study based on finite amplitude wave theories. Wave attenuation due to shoaling, bottom friction, bottom percolation and viscous dissipation has also been incorporated. The software...
Propagation of shear wave in nonlinear and dissipative medium
International Nuclear Information System (INIS)
Jeambrun, D.
1995-01-01
The civil engineering projects, like nuclear installations, submitted to vibrations or seismic motions, require the study of the soil behaviour underlying the site under intensive dynamic loading. In order to understand in depth the soil damping phenomenon, a propagation of a shear seismic wave in a dissipative medium has been numerically simulated. The computer code, based on a nonlinear hysteretic model using Newmark-Wilson and Newton-Raphson algorithms and variable spatial steps, passes through the difficulties related to acceleration discontinuities. The simulation should allow the identification of the soil parameters by comparison with in situ measures. (author)
Effect of near-surface topography on high-frequency Rayleigh-wave propagation
Wang, Limin; Xu, Yixian; Xia, Jianghai; Luo, Yinhe
2015-05-01
Rayleigh waves, which are formed due to interference of P- and Sv-waves near the free surface, propagate along the free surface and vanish exponentially in the vertical direction. Their propagation is strongly influenced by surface topography. Due to the high resolution and precision requirements of near-surface investigations, the high-frequency Rayleigh waves are usually used for near-surface structural detecting. Although there are some numerical studies on high-frequency Rayleigh-wave propagation on topographic free surface, detailed analysis of characters of high-frequency Rayleigh-wave propagation on topographic free surface remains untouched. Hence, research of propagation of Rayleigh waves on complex topographic surface becomes critical for Rayleigh-wave methods in near-surface applications. To study the propagation of high-frequency Rayleigh waves on topographic free surface, two main topographic models are designed in this study. One of the models contains a depressed topographic surface, and another contains an uplifted topographic surface. We numerically simulate the propagation of high-frequency Rayleigh waves on these two topographic surfaces by finite-difference method. Soon afterwards, we analyze the propagation character of high-frequency Rayleigh waves on such topographic models, and compare the variations on its energy and frequency before and after passing the topographic region. At last, we discuss the relationship between the variations and topographical steepness of each model. Our numerical results indicate that influence of depressed topography for high-frequency Rayleigh waves is more distinct than influence of uplifted topography. Rayleigh waves produce new scattering body waves during passing the depressed topography with reduction of amplitude and loss of high-frequency components. Moreover, the steeper the depressed topography is, the more energy of Rayleigh waves is lost. The uplifted topography with gentle slope produces similar
Wave propagation in a magnetically structured atmosphere. Pt. 2
International Nuclear Information System (INIS)
Roberts, B.
1981-01-01
Magnetic fields may introduce structure (inhomogeneity) into an otherwise uniform medium and thus change the nature of wave propagation in that medium. As an example of such structuring, wave propagation in an isolated magnetic slab is considered. It is supposed that disturbances outside the slab are laterally non-propagating. The effect of gravity is ignored. The field can support the propagation of both body and surface waves. The existence and nature of these waves depends upon the relative magnitudes of the sound speed c 0 and Alfven speed upsilonsub(A) inside the slab, and the sound speed csub(e) in the field-free environment. (orig./WL)
Wave propagation in heterogeneous excitable media
Schebesch, I.; Engel, H.
1998-04-01
Heterogeneities deeply affect pulse dynamics in excitable media. In one dimension, spatially periodic variation of the excitation threshold leads to a characteristic dependence of the propagation speed on the modulation period d with a maximum at a certain optimal value dopt. The maximum speed may be larger than the pulse velocity in an effective homogeneous medium. In two dimensions, the geometry and size of heterogeneities determine the wave dynamics. For example, an excitability distribution made of oblique stripes with different angles of inclination can result in a speedup or a slowdown of the pulse. The calculations are carried out with a modified Oregonator model for light-sensitive Belouzov-Zhabotinskii media where a heterogeneous distribution of excitability can be achieved by inhomogeneous illumination. Nevertheless, the results do not depend on the details of the local kinetics, but apply to the general case of excitable media.
Wave propagation, scattering and emission in complex media
Jin, Ya-Qiu
I. Polarimetric scattering and SAR imagery. EM wave propagation and scattering in polarimetric SAR interferometry / S. R. Cloude. Terrain topographic inversion from single-pass polarimetric SAR image data by using polarimetric stokes parameters and morphological algorithm / Y. Q. Jin, L. Luo. Road detection in forested area using polarimetric SAR / G. W. Dong ... [et al.]. Research on some problems about SAR radiometric resolution / G. Dong ... [et al.]. A fast image matching algorithm for remote sensing applications / Z. Q. Hou ... [et al.]. A new algorithm of noised remote sensing image fusion based on steerable filters / X. Kang ... [et al.]. Adaptive noise reduction of InSAR data based on anisotropic diffusion models and their applications to phase unwrapping / C. Wang, X. Gao, H. Zhang -- II. Scattering from randomly rough surfaces. Modeling tools for backscattering from rough surfaces / A. K. Fung, K. S. Chen. Pseudo-nondiffracting beams from rough surface scattering / E. R. Méndez, T. A. Leskova, A. A. Maradudin. Surface roughness clutter effects in GPR modeling and detection / C. Rappaport. Scattering from rough surfaces with small slopes / M. Saillard, G. Soriano. Polarization and spectral characteristics of radar signals reflected by sea-surface / V. A. Butko, V. A. Khlusov, L. I. Sharygina. Simulation of microwave scattering from wind-driven ocean surfaces / M. Y. Xia ... [et al.]. HF surface wave radar tests at the Eastern China Sea / X. B. Wu ... [et al.] -- III. Electromagnetics of complex materials. Wave propagation in plane-parallel metamaterial and constitutive relations / A. Ishimaru ... [et al.]. Two dimensional periodic approach for the study of left-handed metamaterials / T. M. Grzegorczyk ... [et al.]. Numerical analysis of the effective constitutive parameters of a random medium containing small chiral spheres / Y. Nanbu, T. Matsuoka, M. Tateiba. Wave propagation in inhomogeneous media: from the Helmholtz to the Ginzburg -Landau equation / M
Numerical Tests and Properties of Waves in Radiating Fluids
Energy Technology Data Exchange (ETDEWEB)
Johnson, B M; Klein, R I
2009-09-03
We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare the solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.
Sources and propagation of atmospherical acoustic shock waves
Coulouvrat, François
2012-09-01
Sources of aerial shock waves are numerous and produce acoustical signals that propagate in the atmosphere over long ranges, with a wide frequency spectrum ranging from infrasonic to audible, and with a complex human response. They can be of natural origin, like meteors, lightning or volcanoes, or human-made as for explosions, so-called "buzz-saw noise" (BSN) from aircraft engines or sonic booms. Their description, modeling and data analysis within the viewpoint of nonlinear acoustics will be the topic of the present lecture, with focus on two main points: the challenges of the source description, and the main features of nonlinear atmospheric propagation. Inter-disciplinary aspects, with links to atmospheric and geo-sciences will be outlined. Detailed description of the source is very dependent on its nature. Mobile supersonic sources can be rotating (fan blades of aircraft engines) or in translation (meteors, sonic boom). Mach numbers range from transonic to hypersonic. Detailed knowledge of geometry is critical for the processes of boom minimization and audible frequency spectrum of BSN. Sources of geophysical nature are poorly known, and various mechanisms for explaining infrasound recorded from meteors or thunderstorms have been proposed. Comparison between recorded data and modeling may be one way to discriminate between them. Moreover, the nearfield of these sources is frequently beyond the limits of acoustical approximation, or too complex for simple modeling. A proper numerical description hence requires specific matching procedures between nearfield behavior and farfield propagation. Nonlinear propagation in the atmosphere is dominated by temperature and wind stratification. Ray theory is an efficient way to analyze observations, but is invalid in various situations. Nonlinear effects are enhanced locally at caustics, or in case of grazing propagation over a rigid surface. Absorption, which controls mostly the high frequency part of the spectrum contained
Wu, Z.; Zheng, Y.; Wang, K. W.
2018-02-01
We present an approach to achieve adaptable band structures and nonreciprocal wave propagation by exploring and exploiting the concept of metastable modular metastructures. Through studying the dynamics of wave propagation in a chain composed of finite metastable modules, we provide experimental and analytical results on nonreciprocal wave propagation and unveil the underlying mechanisms that facilitate such unidirectional energy transmission. In addition, we demonstrate that via transitioning among the numerous metastable states, the proposed metastructure is endowed with a large number of bandgap reconfiguration possibilities. As a result, we illustrate that unprecedented adaptable nonreciprocal wave propagation can be realized using the metastable modular metastructure. Overall, this research elucidates the rich dynamics attainable through the combinations of periodicity, nonlinearity, spatial asymmetry, and metastability and creates a class of adaptive structural and material systems capable of realizing tunable bandgaps and nonreciprocal wave transmissions.
International Nuclear Information System (INIS)
Niu, Keishiro; Shimojo, Takashi.
1978-02-01
Increase in kinetic energy of a charged particle, affected by an electrostatic wave propagating perpendicularly to a uniform magnetic field, is obtained for both the initial and later stages. Detrapping time of the particle from the potential dent of the electrostatic wave and energy increase during trapping of the particle is analytically derived. Numerical simulations are carried out to support theoretical results. (auth.)
Nonlinear sausage-wave propagation in a magnetic slab in an incompressible fluid
Ruderman, M. S.
1993-04-01
Long nonlinear sausage-wave propagation in a magnetic slab in an incompressible plasma is considered. The governing equation is derived with the aid of the reductive perturbation method. The solutions of this equation in the form of periodic waves of permanent shape are found numerically.
A comparative study on propagation of elastic waves in random particulate composites
Directory of Open Access Journals (Sweden)
Mohammad Rahimzadeh
Full Text Available This paper aims to conduct a comparative study on four different models of effective field and effective medium for modeling propagation of plane elastic waves through the composites containing spherical particles with random distribution. Effective elastic properties along with the normalized phase velocity and attenuation of the average wave was numerically evaluated by the models. The plane incident wave was considered longitudinal to get the results. The numerical analyses were performed on four types of composites in the range of low to intermediate frequency and different volume fractions. Judgment about this comparative study is done based on physical and theoretical concepts in the wave propagation phenomenon. The obtained results provide a good viewpoint in using different models for studying propagation of the plane elastic waves in various particulate composites.
Effect of Resolution on Propagating Detonation Wave
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-07-10
Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.
Mathematical problems in wave propagation theory
1970-01-01
The papers comprising this collection are directly or indirectly related to an important branch of mathematical physics - the mathematical theory of wave propagation and diffraction. The paper by V. M. Babich is concerned with the application of the parabolic-equation method (of Academician V. A. Fok and M. A, Leontovich) to the problem of the asymptotic behavior of eigenfunc tions concentrated in a neighborhood of a closed geodesie in a Riemannian space. The techniques used in this paper have been föund useful in solving certain problems in the theory of open resonators. The topic of G. P. Astrakhantsev's paper is similar to that of the paper by V. M. Babich. Here also the parabolic-equation method is used to find the asymptotic solution of the elasticity equations which describes Love waves concentrated in a neighborhood of some surface ray. The paper of T. F. Pankratova is concerned with finding the asymptotic behavior of th~ eigenfunc tions of the Laplace operator from the exact solution for the surf...
Research on Band-limited Local Plane Wave Propagator and Imaging Method in TI Medium
Han, B.; Gu, H.; Liu, S.
2017-12-01
Traditional ray-based seismic wave propagators, under the infinite frequency assumption, are widely used in seismic wave propagation and imaging due to its efficiency and flexibility. Seismic wave is a typical band-limited signal; consequently, the high-frequency ray theory is difficult to accurately describe the propagation characteristics of the band-limited signals, and it cannot avoid ray shading zones and caustics. As for wave equation based operators, even though they can propagate band-limited waves accurately, they are computationally demanding. In this study, under the framework of traditional ray theory, a seismic wave propagator applicable to transverse anisotropic medium is proposed, which is based on the local plane wave assumption. The proposed band-limited local plane wave propagator not only preserves the advantages of conventional ray-based propagators but also propagates band-limited waves accurately. To be detailed, a band-limited Snell's Law is constructed by solving the Kirchhoff boundary integral in a local plane, which is perpendicular to the central ray. Then band-limited rays are traced following the band-limited Snell's Law, and equivalent ray parameters are calculated by averaging local plane wave parameters. Physically, band-limited Snell's Law depicts that the directions of band-limited wavefields with maximum energy rays in the first Fresnel zone. Finally, the band-limited beam migration method in TI medium is developed by combining the paraxial beams with the band-limited central rays. Numerical experiments show that the local plane wave propagator can enhance the illumination in shadow zone and the imaging qualities of complex structures, such as rugose salt boundaries. Compared to conventional beam migration, our method generates better angle domain common imaging gathers (ADCIGs).
Wang, Wei; Zhang, Xin; Meng, Qingyu; Zheng, Yuetao
2017-10-16
Phase-induced amplitude apodization (PIAA) is a promising technique in high contrast coronagraphs due to the characteristics of high efficiency and small inner working angle. In this letter, we present a new method for calculating the diffraction effects in PIAA coronagraphs based on boundary wave diffraction theory. We propose a numerical propagator in an azimuth boundary integral form, and then delve into its analytical propagator using stationary phase approximation. This propagator has straightforward physical meaning and obvious advantage on calculating efficiency, compared with former methods based on numerical integral or angular spectrum propagation method. Using this propagator, we can make a more direct explanation to the significant impact of pre-apodizer. This propagator can also be used to calculate the aberration propagation properties of PIAA optics. The calculating is also simplified since the decomposing procedure is not needed regardless of the form of the aberration.
International Nuclear Information System (INIS)
Maraghechi, B.; Willett, J.e.
1979-01-01
The stimulated Raman backscattering of an intense electromagnetic wave propagating in the extraordinary mode along a uniform, static magnetic field is considered. The dispersion relation for a homogeneous magnetized plasma in the presence of the circularly polarized pump waves is developed in the cold-plasma approximation with the pump frequency above the plasma frequency. Formulas are derived for the threshold νsub(OT) of the parametric instability and for the growth rate γ of the backscattered extraordinary wave and Langmuir wave. The effects of the magnetic field parallel to the direction of propagation on νsub(0T) and γ are studied numerically. (author)
Propagation of waves in a multicomponent plasma having charged ...
Indian Academy of Sciences (India)
Abstract. Propagation of both low and high frequency waves in a plasma consisting of electrons, ions, positrons and charged dust particles have been theoretically studied. The characteristics of dust acoustic wave propagating through the plasma has been analysed and the dispersion relation deduced is a generalization of ...
Topology Optimization in wave-propagation and flow problems
DEFF Research Database (Denmark)
Sigmund, Ole; Jensen, Jakob Søndergaard; Gersborg-Hansen, A.
2004-01-01
We discuss recent extensions of the topology optimization method to wave-propagation and flow problems. More specifically, we optimize material distribution in scalar wave propagation problems modelled by Helmholtz equation. Moreover, we investigate the influence of the inertia term on the optimal...
Models for seismic wave propagation in periodically layered porous media
Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.
2014-01-01
Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation
Sound wave propagation in weakly polydisperse granular materials
Mouraille, O.J.P.; Luding, Stefan
2008-01-01
Dynamic simulations of wave propagation are performed in dense granular media with a narrow polydisperse size-distribution and a linear contact-force law. A small perturbation is created on one side of a static packing and its propagation, for both P- and S-waves, is examined. A size variation
Wave Packet Propagation and Electric Conductivity of Nanowires
Maeda, Munehiko; Saito, Keiji; Miyashita, Seiji; Raedt, Hans De
2004-01-01
We compute the electric conductivity of nanowires in the presence of magnetic domain walls by the method of wave packet propagation. We demonstrate that the propagation through the wire depends on the initial state used in the wave packet simulation. We propose a procedure, based on the Landauer
Analysis of flexural wave propagation in poroelastic composite ...
African Journals Online (AJOL)
Wave propagation in an infinitely long poroelastic composite hollow cylinder in is examined by employing Biot's theory of wave propagation in poroelastic media. A poroelastic composite hollow cylinder consists of two concentric poroelastic cylindrical layers both of which are made of different poroelastic materials with each ...
Linear wave propagation in a hot axisymmetric toroidal plasma
Energy Technology Data Exchange (ETDEWEB)
Jaun, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1995-03-01
Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell`s equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models` resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs.
Wave propagation in plasma-filled wave-guide
International Nuclear Information System (INIS)
Leprince, Philippe
1966-01-01
This research thesis reports the study of wave propagation along a plasma column without external magnetic field. The author first present and comment various theoretical results, and dispersion curves plotted for the main modes (particularly, the bipolar mode). He tries to define fundamental magnitudes which characterise a plasma-filled wave-guide. He reports the comparison of some experimental results with the previous theoretical results. Based on the study of the bipolar mode, the author develops a method of measurement of plasma column density. In the last part, the author reports the study of the resonance of a plasma-containing cavity. Several resonances are highlighted and new dispersion curves are plotted by using a varying length cavity. He also addresses the coupling of plasma modes with guide modes, and thus indicates the shape of Brillouin diagrams for a plasma-filled wave-guide. Moreover, some phenomena highlighted during plasma column density measurements by using the cavity method could then be explained [fr
Energy Technology Data Exchange (ETDEWEB)
Puckett, Anthony D. [Colorado State Univ., Fort Collins, CO (United States)
2000-09-01
The ability to model wave propagation in circular cylindrical bars of finite length numerically or analytically has many applications. In this thesis the capability of an explicit finite element method to model longitudinal waves in cylindrical rods with circular cross-sections is explored. Dispersion curves for the first four modes are compared to the analytical solution to determine the accuracy of various element sizes and time steps. Values for the time step and element size are determined that retain accuracy while minimizing computational time. The modeling parameters are validated by calculating a signal propagated with a broadband input force. Limitations on the applicability are considered along with modeling parameters that should be applicable to more general geometries.
Wave propagation in damage assessment of ground anchors
Zima, B.; Rucka, M.
2015-07-01
The inspection possibilities of ground anchors are limited to destructive test such as pull-out test. Guided wave propagation gives an opportunity to develop an inspection system dedicated to determine the condition of inspected element without violation of their integrity. In this paper the experimental study on wave propagation in laboratory models of ground anchors are presented. Experiments were conducted for different bonding lengths and different frequencies of excitation. Waves were generated by a piezoelectric actuator and the laser vibrometry technique was used to register velocity signals. For all tested anchors it was possible to identify the boundary between steel and concrete based on the registered reflections in wave propagation signals.
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)
2017-02-12
High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.
Effects of pore fluids in the subsurface on ultrasonic wave propagation
Energy Technology Data Exchange (ETDEWEB)
Seifert, Patricia Katharina [Univ. of California, Berkeley, CA (United States)
1998-05-01
This thesis investigates ultrasonic wave propagation in unconsolidated sands in the presence of different pore fluids. Laboratory experiments have been conducted in the sub-MHz range using quartz sand fully saturated with one or two liquids. Elastic wave propagation in unconsolidated granular material is computed with different numerical models: in one-dimension a scattering model based on an analytical propagator solution, in two dimensions a numerical approach using the boundary integral equation method, in three dimensions the local flow model (LFM), the combined Biot and squirt flow theory (BISQ) and the dynamic composite elastic medium theory (DYCEM). The combination of theoretical and experimental analysis yields a better understanding of how wave propagation in unconsolidated sand is affected by (a) homogeneous phase distribution; (b) inhomogeneous phase distribution, (fingering, gas inclusions); (c) pore fluids of different viscosity; (d) wettabilities of a porous medium. The first study reveals that the main ultrasonic P-wave signatures, as a function of the fraction on nonaqueous-phase liquids in initially water-saturated sand samples, can be explained by a 1-D scattering model. The next study investigates effects of pore fluid viscosity on elastic wave propagation, in laboratory experiments conducted with sand samples saturated with fluids of different viscosities. The last study concentrates on the wettability of the grains and its effect on elastic wave propagation and electrical resistivity.
A wave propagation matrix method in semiclassical theory
International Nuclear Information System (INIS)
Lee, S.Y.; Takigawa, N.
1977-05-01
A wave propagation matrix method is used to derive the semiclassical formulae of the multiturning point problem. A phase shift matrix and a barrier transformation matrix are introduced to describe the processes of a particle travelling through a potential well and crossing a potential barrier respectively. The wave propagation matrix is given by the products of phase shift matrices and barrier transformation matrices. The method to study scattering by surface transparent potentials and the Bloch wave in solids is then applied
International Nuclear Information System (INIS)
Paćko, P; Bielak, T; Staszewski, W J; Uhl, T; Spencer, A B; Worden, K
2012-01-01
This paper demonstrates new parallel computation technology and an implementation for Lamb wave propagation modelling in complex structures. A graphical processing unit (GPU) and computer unified device architecture (CUDA), available in low-cost graphical cards in standard PCs, are used for Lamb wave propagation numerical simulations. The local interaction simulation approach (LISA) wave propagation algorithm has been implemented as an example. Other algorithms suitable for parallel discretization can also be used in practice. The method is illustrated using examples related to damage detection. The results demonstrate good accuracy and effective computational performance of very large models. The wave propagation modelling presented in the paper can be used in many practical applications of science and engineering. (paper)
Propagation characteristics of ultrasonic guided waves in continuously welded rail
Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan
2017-07-01
Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.
Fully resolved simulations of expansion waves propagating into particle beds
Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.
2017-11-01
There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material.
Barshinger, James N; Rose, Joseph L
2004-11-01
The propagation of ultrasonic guided waves in an elastic hollow cylinder with a viscoelastic coating is studied. The principle motivation is to provide tools for performing a guided wave, nondestructive inspection of piping and tubing with viscoelastic coatings. The theoretical boundary value problem is solved that describes the guided wave propagation in these structures for the purpose of finding the guided wave modes that propagate with little or no attenuation. The model uses the global matrix technique to generate the dispersion equation for the longitudinal modes of a system of an arbitrary number of perfectly bonded hollow cylinders with traction-free outer surfaces. A numerical solution of the dispersion equation produces the phase velocity and attenuation dispersion curves that describe the nature of the guided wave propagation. The attenuation dispersion curves show some guided wave modes that propagate with little or no attenuation in the coated structures of interest. The wave structure is examined for two of the modes to verify that the boundary conditions are satisfied and to explain their attenuation behavior. Experimental results are produced using an array of transducers positioned circumferentially around the pipe to evaluate the accuracy of the numerical solution.
Propagation law of impact elastic wave based on specific materials
Directory of Open Access Journals (Sweden)
Chunmin CHEN
2017-02-01
Full Text Available In order to explore the propagation law of the impact elastic wave on the platform, the experimental platform is built by using the specific isotropic materials and anisotropic materials. The glass cloth epoxy laminated plate is used for anisotropic material, and an organic glass plate is used for isotropic material. The PVDF sensors adhered on the specific materials are utilized to collect data, and the elastic wave propagation law of different thick plates and laminated plates under impact conditions is analyzed. The Experimental results show that in anisotropic material, transverse wave propagation speed along the fiber arrangement direction is the fastest, while longitudinal wave propagation speed is the slowest. The longitudinal wave propagation speed in anisotropic laminates is much slower than that in the laminated thick plates. In the test channel arranged along a particular angle away from the central region of the material, transverse wave propagation speed is larger. Based on the experimental results, this paper proposes a material combination mode which is advantageous to elastic wave propagation and diffusion in shock-isolating materials. It is proposed to design a composite material with high acoustic velocity by adding regularly arranged fibrous materials. The overall design of the barrier material is a layered structure and a certain number of 90°zigzag structure.
Heale, C. J.; Snively, J. B.
2014-12-01
Short-period (~5-15 minute), small-scale (10s of km) gravity waves propagating through the middle atmosphere will encounter and interact with other atmospheric waves and flows, which can vary horizontally, vertically, and temporally across a wide range of scales. Simulations of gravity wave impacts over global scales generally consider vertical propagation and atmospheric variations, and neglect small scale wave reflection and interactions between waves of different scales and the time dependent background atmosphere [e.g., Fritts and Alexander, Rev. Geo., 41, 1, 2003, and references cited therein]. Short period gravity waves , which are often subject to reflection, nevertheless carry significant momentum through the atmosphere [Hines, 1997, J. Atmos. Sol. Terr. Phys., 59]. Prior studies have investigated gravity wave propagation through horizontally sheared winds [e.g., Basovich and Tsimring, J. Fluid. Mech., 142, 1984], or in altitude and time varying backgrounds [e.g., Broutman and Young, J. Fluid. Mech., 166, 1986]. Senf and Achatz [JGR, 116, D24, 2011, and references cited therein] have also considered propagation through vertically, horizontally, and temporally varying background winds, finding significant reduction of dissipation by critical levels. We here use a combination of 2D numerical simulations and ray-tracing to study the effects of medium scale background wave wind fields on the upward propagation of small-scale, short-period waves. In particular, we consider cases where the short-period waves would be classically reflected or ducted in static realistic background temperature and wind structures. Results suggest an important role for medium-scale temporal and spatial atmospheric variability in reducing the strength of reflections and facilitating the upward propagation of small-scale waves.
Generation and propagation of elastic waves on a pipe by open-shell transducers
International Nuclear Information System (INIS)
Kim, Dae Seung; Kim, Jin Oh
2011-01-01
This paper deals with the generation and propagation of elastic waves on an empty pipe and on a water-filled pipe by open-shell transducers theoretically, numerically, and experimentally. The dispersion equations relating wave speed to frequency were derived by using the cylindrical shell theory. The theoretical analysis was verified by comparing the calculated dispersion curves with the frequency wavenumber spectrums obtained from the finite-element analysis and by comparing the calculated wave speeds with the results measured by using open-shell transducers as transmitters and receivers. The finite-element analysis revealed that the waves of only even numbered wave modes were generated by the open-shell transducers symmetrically located along the circumference of the pipe and that the axisymmetric wave propagates faster than non-axisymmetric waves
Errors when shock waves interact due to numerical shock width
Energy Technology Data Exchange (ETDEWEB)
Menikoff, R.
1993-03-04
A simple test problem proposed by Noh, a strong shock reflecting from a rigid wall, demonstrates a generic problem with numerical shock capturing algorithms at boundaries that Noh called ``excess wall heating.`` We show that the same type of numerical error occurs in general when shock waves interact. The underlying cause is the non-uniform convergence to the hyperbolic solution of the inviscid limit of the solution to the PDEs with viscosity. The error can be understood from an analysis of the asymptotic solution. For a propagating shock, there is a difference in the total energy of the parabolic wave relative to the hyperbolic shock. Moreover, the relative energy depends on the strength of the shock. The error when shock waves interact is due to the difference in the relative energies between the incoming and outgoing shock waves. It is analogous to a phase shift in a scattering matrix. A conservative differencing scheme correctly describes the Hugoniot jump conditions for a steady propagating shock. Therefore, the error from the asymptotics occurs in the transient when the waves interact. The entropy error that occurs in the interaction region remains localized but does not dissipate. A scaling argument shows that as the viscosity coefficient goes to zero, the error shrinks in spatial extend but is constant in magnitude. Noh`s problem of the reflection of a shock from a rigid wall is equivalent to the symmetric impact of two shock waves of the opposite family. The asymptotic argument shows that the same type of numerical error would occur when the shocks are of unequal strength. Thus, Noh`s problem is indicative of a numerical error that occurs when shocks interact due to the numerical shock width.
Errors when shock waves interact due to numerical shock width
Energy Technology Data Exchange (ETDEWEB)
Menikoff, R.
1993-03-04
A simple test problem proposed by Noh, a strong shock reflecting from a rigid wall, demonstrates a generic problem with numerical shock capturing algorithms at boundaries that Noh called excess wall heating.'' We show that the same type of numerical error occurs in general when shock waves interact. The underlying cause is the non-uniform convergence to the hyperbolic solution of the inviscid limit of the solution to the PDEs with viscosity. The error can be understood from an analysis of the asymptotic solution. For a propagating shock, there is a difference in the total energy of the parabolic wave relative to the hyperbolic shock. Moreover, the relative energy depends on the strength of the shock. The error when shock waves interact is due to the difference in the relative energies between the incoming and outgoing shock waves. It is analogous to a phase shift in a scattering matrix. A conservative differencing scheme correctly describes the Hugoniot jump conditions for a steady propagating shock. Therefore, the error from the asymptotics occurs in the transient when the waves interact. The entropy error that occurs in the interaction region remains localized but does not dissipate. A scaling argument shows that as the viscosity coefficient goes to zero, the error shrinks in spatial extend but is constant in magnitude. Noh's problem of the reflection of a shock from a rigid wall is equivalent to the symmetric impact of two shock waves of the opposite family. The asymptotic argument shows that the same type of numerical error would occur when the shocks are of unequal strength. Thus, Noh's problem is indicative of a numerical error that occurs when shocks interact due to the numerical shock width.
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
Local principles of wave propagation in inhomogeneous media
Gingold, Harry; She, Jianming; Zorumski, William E.
1993-01-01
Four local principles are proven for waves propagating in a layered medium with a variable wave speed. These principles are (1) that inhomogeneities increase the amplitude of waves generated by a source of fixed strength, (2) that inhomogeneities reduce spatial oscillation, or increase the wavelength, (3) that inhomogeneities decrease transmission, or increase reflection, and (4) that transmission increases monotonically with frequency. Definitions of inhomogeneity, local wave function, and local reflection and transmission coefficients are made as a basis for stating these principles.
Love wave propagation in functionally graded piezoelectric material layer.
Du, Jianke; Jin, Xiaoying; Wang, Ji; Xian, Kai
2007-03-01
An exact approach is used to investigate Love waves in functionally graded piezoelectric material (FGPM) layer bonded to a semi-infinite homogeneous solid. The piezoelectric material is polarized in z-axis direction and the material properties change gradually with the thickness of the layer. We here assume that all material properties of the piezoelectric layer have the same exponential function distribution along the x-axis direction. The analytical solutions of dispersion relations are obtained for electrically open or short circuit conditions. The effects of the gradient variation of material constants on the phase velocity, the group velocity, and the coupled electromechanical factor are discussed in detail. The displacement, electric potential, and stress distributions along thickness of the graded layer are calculated and plotted. Numerical examples indicate that appropriate gradient distributing of the material properties make Love waves to propagate along the surface of the piezoelectric layer, or a bigger electromechanical coupling factor can be obtained, which is in favor of acquiring a better performance in surface acoustic wave (SAW) devices.
Analytical and numerical investigation of nonlinear internal gravity waves
Directory of Open Access Journals (Sweden)
S. P. Kshevetskii
2001-01-01
Full Text Available The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration, we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory
Whistler Wave Propagation Through the Ionosphere of Venus
Pérez-Invernón, F. J.; Lehtinen, N. G.; Gordillo-Vázquez, F. J.; Luque, A.
2017-11-01
We investigate the attenuation of whistler waves generated by hypotetical Venusian lightning occurring at the altitude of the cloud layer under different ionospheric conditions. We use the Stanford full-wave method for stratified media of Lehtinen and Inan (2008) to model wave propagation through the ionosphere of Venus. This method calculates the electromagnetic field created by an arbitrary source in a plane-stratified medium (i.e., uniform in the horizontal direction). We see that the existence of holes in electronic densities and the magnetic field configuration caused by solar wind play an important role in the propagation of electromagnetic waves through the Venusian ionosphere.
Surface wave propagation in a fluid-saturated incompressible ...
Indian Academy of Sciences (India)
saturated incompressible porous media. Many studies have discussed the surface wave propagation in elastic media and a com- prehensive review is available in the standard texts, e.g., Ewing et al (1957) and Achenbach. (1976). The surface ...
Topics in Computational Modeling of Shock and Wave Propagation
National Research Council Canada - National Science Library
Gazonas, George A; Main, Joseph A; Laverty, Rich; Su, Dan; Santare, Michael H; Raghupathy, R; Molinari, J. F; Zhou, F
2006-01-01
This report contains reprints of four papers that focus on various aspects of shock and wave propagation in cellular, viscoelastic, microcracked, and fragmented media that appear in the Proceedings...
Theoretical Studies of Stress Wave Propagation in Laterally Confined Soils
National Research Council Canada - National Science Library
Rohani, Behzad
1999-01-01
.... A considerable body of scientific literature on one-dimensional stress wave propagation for such models has been published in recent years by various researchers, both in the United States and abroad...
Influence of Sea Surface Roughness on the Electromagnetic Wave Propagation in the Duct Environment
Directory of Open Access Journals (Sweden)
X. Zhao
2010-12-01
Full Text Available This paper deals with a study of the influence of sea surface roughness on the electromagnetic wave propagation in the duct environment. The problem of electromagnetic wave propagation is modeled by using the parabolic equation method. The roughness of the sea surface is computed by modifying the smooth surface Fresnel reflection coefficient to account for the reduction in the specular reflection due to the roughness resulting from sea wind speed. The propagation model is solved by the mixed Fourier split-step algorithm. Numerical experiments indicate that wind-driven roughened sea surface has an impact on the electromagnetic wave propagation in the duct environment, and the strength is intensified along with the increment of sea wind speeds and/or the operating frequencies. In a fixed duct environment, however, proper disposition of the transmitter could reduce these impacts.
On wave propagation in a random micropolar generalized thermoelastic medium
Mitra Manindra; Bhattacharyya Rabindra Kumar
2017-01-01
This paper endeavours to study aspects of wave propagation in a random generalized-thermal micropolar elastic medium. The smooth perturbation technique conformable to stochastic differential equations has been employed. Six different types of waves propagate in the random medium. The dispersion equations have been derived. The effects due to random variations of micropolar elastic and generalized thermal parameters have been computed. Randomness causes change of phase speed and attenuation of...
Numerical Simulation of Cylindrical Solitary Waves in Periodic Media
Quezada de Luna, Manuel
2013-07-14
We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.
Free wave propagation in continuous pipes carrying a flowing fluid
International Nuclear Information System (INIS)
Espindola, J.J. de; Silva, J.B. da
1982-01-01
The propagation constants of a periodically supported pipe are computed. Use is made of a general free wave-propagation theory, based on transfer matrices. Comparison is made with previously published results, computed through a simpler, limited scope theory. (Author) [pt
Wave propagation of spectral energy content in a granular chain
Directory of Open Access Journals (Sweden)
Shrivastava Rohit Kumar
2017-01-01
Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.
Ansari, M. H.; Attarzadeh, M. A.; Nouh, M.; Karami, M. Amin
2018-01-01
In this paper, a physical platform is proposed to change the properties of phononic crystals in space and time in order to achieve nonreciprocal wave transmission. The utilization of magnetoelastic materials in elastic phononic systems is studied. Material properties of magnetoelastic materials change significantly with an external magnetic field. This property is used to design systems with a desired wave propagation pattern. The properties of the magnetoelastic medium are changed in a traveling wave pattern, which changes in both space and time. A phononic crystal with such a modulation exhibits one-way wave propagation behavior. An extended transfer matrix method (TMM) is developed to model a system with time varying properties. The stop band and the pass band of a reciprocal and a nonreciprocal bar are found using this method. The TMM is used to find the transfer function of a magnetoelastic bar. The obtained results match those obtained via the theoretical Floquet-Bloch approach and numerical simulations. It is shown that the stop band in the transfer function of a system with temporal varying property for the forward wave propagation is different from the same in the backward wave propagation. The proposed configuration enables the physical realization of a class of smart structures that incorporates nonreciprocal wave propagation.
APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Kaneko, T.; Yokoyama, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Goossens, M.; Doorsselaere, T. Van [Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, Bus 2400, B-3001 Herverlee (Belgium); Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Wright, A. N., E-mail: kaneko@eps.s.u-tokyo.ac.jp [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)
2015-10-20
In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation across the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.
On wave propagation in a random micropolar generalized thermoelastic medium
Directory of Open Access Journals (Sweden)
Mitra Manindra
2017-06-01
Full Text Available This paper endeavours to study aspects of wave propagation in a random generalized-thermal micropolar elastic medium. The smooth perturbation technique conformable to stochastic differential equations has been employed. Six different types of waves propagate in the random medium. The dispersion equations have been derived. The effects due to random variations of micropolar elastic and generalized thermal parameters have been computed. Randomness causes change of phase speed and attenuation of waves. Attenuation coefficients for high frequency waves have been computed. Second moment properties have been briefly discussed with application to wave propagation in the random micropolar elastic medium. Integrals involving correlation functions have been transformed to radial forms. A special type of generalized thermo-mechanical auto-correlation functions has been used to approximately compute effects of random variations of parameters. Uncoupled problem has been briefly outlined.
Propagation of gravitational waves in the nonperturbative spinor vacuum
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); Al-Farabi Kazakh National University, Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Eurasian National University, Institute for Basic Research, Astana (Kazakhstan); Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Folomeev, Vladimir [Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan)
2014-09-15
The propagation of gravitational waves on the background of a nonperturbative vacuum of a spinor field is considered. It is shown that there are several distinctive features in comparison with the propagation of plane gravitational waves through empty space: there exists a fixed phase difference between the h{sub yy,zz} and h{sub yz} components of the wave; the phase and group velocities of gravitational waves are not equal to the velocity of light; the group velocity is always less than the velocity of light; under some conditions the gravitational waves are either damped or absent; for given frequency, there exist two waves with different wave vectors. We also discuss the possibility of an experimental verification of the obtained effects as a tool to investigate nonperturbative quantum field theories. (orig.)
Wave propagation in metamaterials mimicking the topology of a cosmic string
Fernández-Núñez, Isabel; Bulashenko, Oleg
2018-04-01
We study the interference and diffraction of light when it propagates through a metamaterial medium mimicking the spacetime of a cosmic string—a topological defect with curvature singularity. The phenomenon may look like a gravitational analogue of the Aharonov-Bohm effect, since the light propagates in a region where the Riemann tensor vanishes, being nonetheless affected by the non-zero curvature confined to the string core. We carry out the full-wave numerical simulation of the metamaterial medium and give the analytical interpretation of the results by use of the asymptotic theory of diffraction, which turns out to be in excellent agreement. In particular, we show that the main features of wave propagation in a medium with conical singularity can be explained by four-wave interference involving two geometrical optics and two diffracted waves.
Propagation-invariant waves in acoustic, optical, and radio-wave fields
Salo, Janne
2003-01-01
The physical phenomena considered in this thesis are associated with electromagnetic and acoustic waves that propagate in free space or in homogeneous media without diffraction. The concept of rotationally periodic wave propagation is introduced in the first journal article included in the thesis and it is subsequently used to analyse waves that avoid diffractive deterioration by repeatedly returning to their initial shape, possibly rotated around the optical axis. Such waves constitute an es...
Numerical Analysis on the Stability of Hydraulic Fracture Propagation
Directory of Open Access Journals (Sweden)
Zhaobin Zhang
2015-09-01
Full Text Available The formation of dense spacing fracture network is crucial to the hydraulic fracturing treatment of unconventional reservoir. However, one difficulty for fracturing treatment is the lack of clear understanding on the nature of fracture complexity created during the treatment. In this paper, fracture propagation is numerically investigated to find the conditions needed for the stable propagation of complex fracture network. Firstly, starting from a parallel fracture system, the stability of fracture propagation is analyzed and a dimensionless number M is obtained. Then, by developing a hydraulic fracturing simulation model based on displacement discontinuity method, the propagation of parallel fractures is simulated and a clear relation between M and the stability of parallel fractures is obtained. Finally, the investigation on parallel fractures is extended to complex fracture networks. The propagation of complex fracture networks is simulated and the results show that the effects of M on complex fracture networks is the same to that of parallel fractures. The clear relation between M and fracture propagation stability is important for the optimization of hydraulic fracturing operation.
Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments
Yucel, Abdulkadir C.
2013-01-01
A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier transform and fast multipole method accelerated surface integral equation-based EM simulator to statistically characterize fields from wireless transmitters in complex mine environments. 1536-1225 © 2013 IEEE.
Mathematical modelling of generation and forward propagation of dispersive waves
Lie She Liam, L.S.L.
2013-01-01
This dissertation concerns the mathematical theory of forward propagation and generation of dispersive waves. We derive the AB2-equation which describes forward traveling waves in two horizontal dimension. It is the generalization of the Kadomtsev-Petviashvilli (KP) equation. The derivation is based
Nonlinear wave propagation through a ferromagnet with damping in ...
Indian Academy of Sciences (India)
magnetic waves in a ferromagnet can be reduced to an integro-differential equation. Keywords. Solitons; integro-differential equations; reductive perturbation method. PACS Nos 41.20 Jb; 05.45 Yv; 03.50 De; 78.20 Ls. 1. Introduction. The phenomenon of propagation of electromagnetic waves in ferromagnets are not only.
Nonlinear wave propagation through a ferromagnet with damping in ...
Indian Academy of Sciences (India)
wavelength in (2+1) dimensions. The purpose of the present work is to study the property of electromagnetic waves of long wavelength propagating through an isotropic ferromagnet in the classical continuum limit in (2+1) dimensions taking into account the dissipative effect. By using the long wave approximation of the ...
A theory of coherent propagation of light wave in semiconductors
International Nuclear Information System (INIS)
Zi-zhao, G.; Guo-zhen, Y.
1980-05-01
In this paper, we suggest a theory to describe the pheonmena of coherent propagation of light wave in semiconductors. Basing on two band system and considering the interband and intraband transitions induced by light wave and the interaction between electrons, we obtain the nonlinear equations for the description of interaction between carriers and coherent light wave. We have made use of the equations to analyse the phenomena which arise from the interaction between semiconductors and coherent light, for example, the multiphoton transitions, the saturation of light absorption of exciton, the shift of exciton line in intense light field, and the coherent propagation phenomena such as self-induced transparency, etc. (author)
Proportional-integral control of propagating wave segments in excitable media
Katsumata, Hisatoshi; Konishi, Keiji; Hara, Naoyuki
2017-04-01
Numerical simulations are performed to demonstrate that proportional-integral control, one of the most commonly used feedback schemes in control engineering, can stabilize propagating wave segments in excitable media to a desired size. The proportional-integral controller measures the size of a wave segment and applies a spatially uniform signal to the medium. This controller has the following features: difficult trial-and-error adjustment is not necessary, wave segments can be stabilized to different sizes without readjusting the controller, and the wave segment size can be maintained even in media having position-dependent parameters.
Computer modeling of inelastic wave propagation in porous rock
International Nuclear Information System (INIS)
Cheney, J.A.; Schatz, J.F.; Snell, C.
1979-01-01
Computer modeling of wave propagation in porous rock has several important applications. Among them are prediction of fragmentation and permeability changes to be caused by chemical explosions used for in situ resource recovery, and the understanding of nuclear explosion effects such as seismic wave generation, containment, and site hardness. Of interest in all these applications are the distance from the source to which inelastic effects persist and the amount of porosity change within the inelastic region. In order to study phenomena related to these applications, the Cam Clay family of models developed at Cambridge University was used to develop a similar model that is applicable to wave propagation in porous rock. That model was incorporated into a finite-difference wave propagation computer code SOC. 10 figures, 1 table
Asymmetric wave propagation through nonlinear PT-symmetric oligomers
D'Ambroise, J.; Kevrekidis, P. G.; Lepri, S.
2012-11-01
In the present paper, we consider nonlinear PT-symmetric dimers and trimers (more generally, oligomers) embedded within a linear Schrödinger lattice. We examine the stationary states of such chains in the form of plane waves, and analytically compute their reflection and transmission coefficients through the nonlinear PT symmetric oligomer, as well as the corresponding rectification factors which clearly illustrate the asymmetry between left and right propagation in such systems. We examine not only the existence but also the dynamical stability of the plane wave states and interestingly find them to be unstable except in the vicinity of the linear limit. Lastly, we generalize our numerical considerations to the more physically relevant case of Gaussian initial wavepackets and confirm that the asymmetry in the transmission properties persists in the case of such wavepackets, as well. The role of potential asymmetries in the nonlinearity or in the gain/loss pattern is also considered. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.
Propagation of waves in shear flows
Fabrikant, A L
1998-01-01
The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside
Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
Modeling Anisotropic Elastic Wave Propagation in Jointed Rock Masses
Hurley, R.; Vorobiev, O.; Ezzedine, S. M.; Antoun, T.
2016-12-01
We present a numerical approach for determining the anisotropic stiffness of materials with nonlinearly-compliant joints capable of sliding. The proposed method extends existing ones for upscaling the behavior of a medium with open cracks and inclusions to cases relevant to natural fractured and jointed rocks, where nonlinearly-compliant joints can undergo plastic slip. The method deviates from existing techniques by incorporating the friction and closure states of the joints, and recovers an anisotropic elastic form in the small-strain limit when joints are not sliding. We present the mathematical formulation of our method and use Representative Volume Element (RVE) simulations to evaluate its accuracy for joint sets with varying complexity. We then apply the formulation to determine anisotropic elastic constants of jointed granite found at the Nevada Nuclear Security Site (NNSS) where the Source Physics Experiments (SPE), a campaign of underground chemical explosions, are performed. Finally, we discuss the implementation of our numerical approach in a massively parallel Lagrangian code Geodyn-L and its use for studying wave propagation from underground explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
International Nuclear Information System (INIS)
Macia, R.; Correig, A.M.
1987-01-01
Seismic wave propagation is described by a second order differential equation for medium displacement. By Fourier transforming with respect to time and space, wave equation transforms into a system of first order linear differential equations for the Fourier transform of displacement and stress. This system of differential equations is solved by means of Matrix Propagator and applied to the propagation of body waves in stratified media. The matrix propagators corresponding to P-SV and SH waves in homogeneous medium are found as an intermediate step to obtain the spectral response of body waves propagating through a stratified medium with homogeneous layers. (author) 14 refs
On the rogue waves propagation in non-Maxwellian complex space plasmas
Energy Technology Data Exchange (ETDEWEB)
El-Tantawy, S. A., E-mail: samireltantawy@yahoo.com; El-Awady, E. I., E-mail: eielawady@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Tribeche, M., E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Physics, University of Bab-Ezzouar, USTHB, BP 32, El Alia, Algiers 16111 (Algeria)
2015-11-15
The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.
Stress Wave Propagation in Cracked Geological Solids Using Finite Difference Scheme
Kakavas, P. A.; Kalapodis, N. A.
The aim of this study is the numerical computation of the wave propagation in crack geological solids. The finite difference method was applied to solve the differential equations involved in the problem. Since the problem is symmetric, we prefer to use this technique instead of the finite element method and/or boundary elements technique. A comparison of the numerical results with analytical solutions is provided.
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
DEFF Research Database (Denmark)
Bertelli, N.; Balakin, A.A.; Westerhof, E.
2010-01-01
A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...... are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667]...
Directory of Open Access Journals (Sweden)
Ibrahim K. Abu Seif
2015-01-01
Full Text Available In this paper a fast numerical algorithm to solve an integral equation model for wave propagation along a perfectly conducting two-dimensional terrain is suggested. It is applied to different actual terrain profiles and the results indicate very good agreement with published work. In addition, the proposed algorithm has achieved considerable saving in processing time. The formulation is extended to solve the propagation over lossy dielectric surfaces. A combined field integral equation (CFIE for wave propagation over dielectric terrain is solved efficiently by utilizing the method of moments with complex basis functions. The numerical results for different cases of dielectric surfaces are compared with the results of perfectly conducting surface evaluated by the IE conventional algorithm.
Detection of Electromechanical Wave Propagation Using Synchronized Phasor Measurements
Suryawanshi, Prakash; Dambhare, Sanjay; Pramanik, Ashutosh
2014-01-01
Considering electrical network as a continuum has become popular for electromechanical wave analysis. This paper reviews the concept of electromechanical wave propagation. Analysis of large number of generator ring system will be an easy way to illustrate wave propagation. The property of traveling waves is that the maximum and minimum values do not occur at the same time instants and hence the difference between these time delays can be easily calculated. The homogeneous, isotropic 10 generator ring system is modeled using electromagnetic transient simulation programs. The purpose of this study is to investigate the time delays and wave velocities using Power System Computer Aided Design (PSCAD)/Electromagnetic Transient Program (EMTP). The disturbances considered here are generator disconnections and line trips.
Propagation of shear waves in viscoelastic medium at irregular boundaries
Chattopadhyay, Amares; Gupta, Shishir; Sharma, Vikash; Kumari, Pato
2010-04-01
The aim of the paper is to study the shear wave propagation in a viscoelastic layer over a semi-infinite viscoelastic half space due to irregularity in the viscoelastic layer. It is of great interest to study the propaga-tion of shear waves in the assumed medium having a non planar boundary due to its similarity to most of the real situations. The perturbation method is applied to find the displacement field. The effect of complex wave number on dissipation factor is analysed. Finally, as an application, the result obtained has been used to get the reflected field in viscoelastic layer when the shear wave is incident on an irregular boundary in the shape of parabolic irregularity as well as triangular notch. It is observed that the amplitude of this reflected wave decreases with increasing length of the notch, and increases with increasing depth of the irregularity.
Spatial damping of propagating sausage waves in coronal cylinders
Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui
2015-09-01
Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.
Propagation and attenuation of Rayleigh waves in a semi-infinite unsaturated poroelastic medium
Lo, Wei-Cheng
2008-10-01
An analytical model for describing the propagation and attenuation of Rayleigh waves along the free surface of an elastic porous medium containing two immiscible, viscous, compressible fluids is developed in the present study based on the poroelastic equations formulated by Lo et al. [Lo WC, Sposito G, Majer E. Wave propagation through elastic porous media containing two immiscible fluids. Water Resour Res 2005;41:W02025]. The dispersion equation obtained is complex-valued due to viscous dissipation resulting from the relative motion of the solid to the pore fluids. As an excitation frequency is stipulated, the dispersion equation that is a cubic polynomial is numerically solved to determine the phase speed and attenuation coefficient of Rayleigh waves in Columbia fine sandy loam permeated by an air-water mixture. Our numerical results show that, corresponding to three dilatational waves, there is also the existence of three different modes of Rayleigh wave in an unsaturated porous medium, which are designated as the R1, R2, and R3 waves in descending order of phase speed, respectively. The phase speed of the R1 wave is non-dispersive (frequency-independent) in the frequency range we examined (10 Hz-10 kHz) and decreases as water saturation increases, whose magnitude ranges from 20% to 49% of that of the first dilatational wave with respect to water content. However, it is revealed numerically that the R2 and R3 waves are functions of excitation frequency. Given the same water saturation and excitation frequency, the phase speeds of the R2 and R3 waves are found to be approximately 90% of those of the second and third dilatational waves, respectively. The R1 wave has the lowest attenuation coefficient whereas the R3 wave attenuates highest.
Wave propagation and absorption in the electron cyclotron frequency range for TCA and TCV machines
International Nuclear Information System (INIS)
Cardinali, A.
1990-01-01
The main theoretical aspects of the propagation and absorption of electron cyclotron frequency waves are reviewed and applied to TCA and TCV tokamak plasmas. In particular the electromagnetic cold dispersion relation is solved analytically and numerically in order to recall the basic properties of mode propagation and to calculate the ray-trajectories by means of geometric optics. A numerical code which integrates the coupled first order differential ray-equations, has been developed and applied to the cases of interest. (author) 4 figs., 23 refs
Wave Propagation in Pipe-like Structures
DEFF Research Database (Denmark)
Morsbøl, Jonas
pipe with changing radius, which is known as the shell of revolution, it is found that classical rod and beam theory, to some extent, can be used to approximate the fundamental modes of the torsional, axial, and breathing wave. However, by means of the shell model some remarkable effects are predicted...... when even these very fundamental waves are travelling along a shell of revolution. The effects cover modal changes and excitation of localised resonances. For modes of higher order similar excitations of localised resonances are also predicted....
Unidirectional wave propagation in media with complex principal axes
Horsley, S. A. R.
2018-02-01
In an anisotropic medium, the refractive index depends on the direction of propagation. Zero index in a fixed direction implies a stretching of the wave to uniformity along that axis, reducing the effective number of dimensions by 1. Here we investigate two-dimensional gyrotropic media where the refractive index is 0 in a complex valued direction, finding that the wave becomes an analytic function of a single complex variable z . For simply connected media this analyticity implies unidirectional propagation of electromagnetic waves, similar to the edge states that occur in photonic "topological insulators." For a medium containing holes the propagation is no longer unidirectional. We illustrate the sensitivity of the field to the topology of the space using an exactly solvable example. To conclude we provide a generalization of transformation optics where a complex coordinate transformation can be used to relate ordinary anisotropic media to the recently highlighted gyrotropic ones supporting one-way edge states.
Detecting electromagnetic cloaks using backward-propagating waves
Salem, Mohamed
2011-08-01
A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.
Transient Aspects of Wave Propagation Connected with Spatial Coherence
Directory of Open Access Journals (Sweden)
Ezzat G. Bakhoum
2013-01-01
Full Text Available This study presents transient aspects of light wave propagation connected with spatial coherence. It is shown that reflection and refraction phenomena involve spatial patterns which are created within a certain transient time interval. After this transient time interval, these patterns act like a memory, determining the wave vector for subsequent sets of reflected/refracted waves. The validity of this model is based on intuitive aspects regarding phase conservation of energy for waves reflected/refracted by multiple centers in a certain material medium.
Seismic wave propagation on heterogeneous systems with CHAPEL
Gokhberg, Alexey; Fichtner, Andreas
2014-05-01
Simulations of seismic wave propagation play a key role in the exploration of the Earth's internal structure, the prediction of earthquake-induced ground motion, and numerous other applications. In order to harness modern heterogeneous HPC systems, we implement a spectral-element discretization of the seismic wave equation using the emerging parallel programming language Chapel. High-performance massively parallel computing systems are widely used for solving seismological problems. A recent trend in the evolution of such systems is a transition from homogeneous architectures based on the conventional CPU to faster and more energy-efficient heterogeneous architectures that combine CPU with the special purpose GPU accelerators. These new heterogeneous architectures have much higher hardware complexity and are thus more difficult to program. Therefore transition to heterogeneous computing systems widens the well known gap between the performance of the new hardware and the programmers' productivity. In particular, programming heterogeneous systems typically involves a mix of various programming technologies like MPI, CUDA, or OpenACC. This conventional approach increases complexity of application code, limits its portability and reduces the programmers' productivity. We are approaching this problem by introducing a unified high-level programming model suitable for both conventional and hybrid architectures. Our model is based on the Partitioned Global Address Space (PGAS) paradigm used by several modern parallel programming languages. We implemented this model by extending Chapel, the emerging parallel programming language created at Cray Inc. In particular, we introduced the language abstractions for GPU-based domain mapping and extended the open source Chapel compiler (version 1.8.0) with facilities designed to translate Chapel high-level parallel programming constructs into CUDA kernels. We used this extended Chapel implementation to re-program the package for the
Wave propagation in elastic layers with damping
DEFF Research Database (Denmark)
Sorokin, Sergey; Darula, Radoslav
2016-01-01
The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...
In Situ Observations of Seismic Wave Propagation
Hudson, Kenneth Stewart
Instrumented geotechnical field sites are designed to capture the infrequent but critically important in situ case histories of ground response, deformation, and liquefaction during significant earthquakes that generate high intensity ground shaking and large strains. The University of California at Santa Barbara has been monitoring densely instrumented geotechnical array field sites for almost three decades, with continuous recording now for more than a decade. When seismic waves travel into soil with sufficiently large ground motions, the soil behaves nonlinearly meaning the shear modulus of the material decreases from the linear value observed during weak ground motions. The degraded shear modulus can continue to affect a site for a period of time by changing the soil response during smaller ground motions after the large event. Decreased shear modulus is inferred when a decrease of shear wave velocity between two sensors in a vertical downhole array is observed. This velocity is calculated by measuring the difference in shear wave arrival times between the sensors using normalized cross correlation. The trend of decreasing shear wave velocity with increasing peak ground acceleration is observed at multiple geotechnical array field sites. The length of time the decreased velocity remains following stronger shaking is analyzed using more than 450 events over more than a decade at the Wildlife Liquefaction Array (WLA). Using both monthly and yearly velocity averages between sensors, there is evidence that suggests the shear wave velocity remains low over a period of months following larger significant shaking events at the site. In addition, at WLA there is evidence that the decrease in shear wave velocity can be detected at ground motion levels as low as 20 cm/s2. Additionally at the Garner Valley Downhole Array, a permanent cross-hole experiment is used to measure velocity changes in the soil with changing water table height. An underground hammer source swings
Analysis of stress wave propagation in an elasto-viscoplastic plate
International Nuclear Information System (INIS)
Nakagawa, Noritoshi; Kawai, Ryoji; Urushi, Norio.
1986-01-01
Stress waves which propagate in the body are reflected at the boundary, and due to the interaction of the reflected stress waves, the focussing of stress waves will take place and a high stress level can be caused. The focussing of stress waves due to the reflection from the boundary may bring about fracture of the body, so that this is an important problem from a viewpoint of dynamic strength of structures. In this paper the process of stress wave focussing and the strain-rate dependence of constitutive equation in elastic and plastic regions are investigated. In the case where an in-plane step load uniformly acts on the straight edge of the plate with a semi-circular boundary, the propagation of stress waves in the plate was numerically analyzed by the finite element method, applying viscoelastic, elasto-plastic and elasto-viscoplastic constitutive equations. As the result, the process of focussing of stress waves due to reflection from the semi-circular boundary was observed and the difference in propagation behaviour of stress waves was discussed in materials represented by some kinds of constitutive equations. (author)
Model for small arms fire muzzle blast wave propagation in air
Aguilar, Juan R.; Desai, Sachi V.
2011-11-01
Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.
Propagation of steel corrosion in concrete: Experimental and numerical investigations
DEFF Research Database (Denmark)
Michel, Alexander; Otieno, M.; Stang, Henrik
2016-01-01
This paper focuses on experimental and numerical investigations of the propagation phase of reinforcement corrosion to determine anodic and cathodic Tafel constants and exchange current densities, from corrosion current density and corrosion potential measurements. The experimental program includ...... through numerical simulations of the experimental data. Anodic and cathodic exchange current densities ranged from 1.0E-12 to 1.0E-09 A/mm2 and 1.0E-12 to 1.1E-09 A/mm2, respectively.......This paper focuses on experimental and numerical investigations of the propagation phase of reinforcement corrosion to determine anodic and cathodic Tafel constants and exchange current densities, from corrosion current density and corrosion potential measurements. The experimental program included....... The numerical model was, furthermore, used to identify electrochemical parameters, which are independent of concrete cover thickness and crack width and at the same time allow for determination of the corrosion current density and corrosion potential of concrete structures within an acceptable error.Very good...
Radio Wave Propagation Scene Partitioning for High-Speed Rails
Directory of Open Access Journals (Sweden)
Bo Ai
2012-01-01
Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.
Ultrasonic guided wave propagation in pipes with elbows
Breon, Luke J.
Guided wave inspection of pipelines is an important and growing area of Non-Destructive Evaluation (NDE). This technique can be used for remote inspection or monitoring of buried pipelines, or pipelines with insulation. Guided waves are sensitive to flaws such as corrosion pits and cracks. They can be used to locate flaws existing on either the outer or the inner surface of a pipe. Guided wave energy focusing can be performed to concentrate guided wave energy at particular combinations of circumferential and axial locations in straight pipes. When it can be used, this practice enhances the circumferential resolution of defects. Elbows in a piping system are sufficiently disruptive to guided wave energy that the focusing methods used in practical inspections of straight pipe have not been extended to the region beyond an elbow. Counter-intuitively, elbows with a 45 degree bend are more harmful to guided waves than those with a 90 degree bend. A simple and elegant explanation for this phenomenon is provided in this dissertation. Theoretical advancements to guided wave physics propagating around an elbow have tended to be few and slow. This is at least partly due to the complexity of the mathematics involved in the conventional description of guided wave mechanics. Parametric focusing for pipes with bends has not been previously possible as it is for straight sections of pipes. While some techniques such as time-reversal mirrors and blind finite-element-method modeling have existed for focusing beyond elbows, these techniques have been limited and largely of academic value. Also, the understanding of wave behavior in a pipe elbow has in the past been generally unclear. Consequently, signal interpretation has also been very limited for guided waves initiating in, or returning from, the far side of an elbow. A new approach to understanding guided wave propagation is developed in this work. This understanding consists of the idea that the pathway a guided wave will take
Propagation of sound waves in tubes of noncircular cross section
Richards, W. B.
1986-01-01
Plane-acoustic-wave propagation in small tubes with a cross section in the shape of a flattened oval is described. Theoretical descriptions of a plane wave propagating in a tube with circular cross section and between a pair of infinite parallel plates, including viscous and thermal damping, are expressed in similar form. For a wide range of useful duct sizes, the propagation constant (whose real and imaginary parts are the amplitude attenuation rate and the wave number, respectively) is very nearly the same function of frequency for both cases if the radius of the circular tube is the same as the distance between the parallel plates. This suggests that either a circular-cross-section model or a flat-plate model can be used to calculate wave propagation in flat-oval tubing, or any other shape tubing, if its size is expressed in terms of an equivalent radius, given by g = 2 x (cross-sectional area)/(length of perimeter). Measurements of the frequency response of two sections of flat-oval tubing agree with calculations based on this idea. Flat-plate formulas are derived, the use of transmission-line matrices for calculations of plane waves in compound systems of ducts is described, and examples of computer programs written to carry out the calculations are shown.
TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION
Directory of Open Access Journals (Sweden)
Lorand Catalin STOENESCU
2011-05-01
Full Text Available The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishing of the flood wave is important in the case of sinuous courses of water or with urban settlements very close to the minor river bed. In the case of Poiana Uzului dam, 2 scenarios were simulated with the help of Ph.D. Eng. Dan Stematiu, plausible scenarios but with very little chances of actually producing. The results were presented as animations with flooded surfaces at certain time steps successively.
A Temporal Millimeter Wave Propagation Model for Tunnels Using Ray Frustum Techniques and FFT
Directory of Open Access Journals (Sweden)
Choonghyen Kwon
2014-01-01
Full Text Available A temporal millimeter wave propagation model for tunnels is presented using ray frustum techniques and fast Fourier transform (FFT. To directly estimate or simulate effects of millimeter wave channel properties on the performance of communication services, time domain impulse responses of demodulated signals should be obtained, which needs rather large computation time. To mitigate the computational burden, ray frustum techniques are used to obtain frequency domain transfer function of millimeter wave propagation environment and FFT of equivalent low pass signals are used to retrieve demodulated waveforms. This approach is numerically efficient and helps to directly estimate impact of tunnel structures and surfaces roughness on the performance of millimeter wave communication services.
Badiey, M.; Lynch, J. F.
2012-11-01
In the past half-century numerous scientific research programs have been conducted which have advanced our understanding of shallow water acoustics far beyond the original and pioneering work by Ewing, Worzel, and Pekeris (1948). In particular, during the last three decades several major initiatives have focused on both observation and modeling of acoustic waves in shallow water region with extremely variable environmental properties. We now realize that the shallow water acoustic wave propagation problem is a complicated study of wave propagation in a 4D partially random media with anisotropic, time and space dependent physical properties. The nonlinear internal wave field, the shelf break front, and coastal eddies are good examples of oceanographic processes that cause this type of variability. A review of our progress, which focuses on the effects of the water column, is presented, as well as an assessment of what future questions will be of interest and importance.
Numerical simulation of crack propagation in pressure equipments
International Nuclear Information System (INIS)
Le Grognec, P.; Hariri, S.; Afzali, M.; Jaffal, H.
2008-01-01
The aim of this work is to determine the evolution of the degree of noxiousness of a defect in a pressure equipment during its propagation. The estimation of the degree of noxiousness involves the calculation of stress intensity factors at each advance of the crack front. The cracks considered are semi-elliptic. The geometries and loads can be complex in order to cover the main industrial cases. Numerical modelling by finite element method is based on the creation of a crack-block, representing the optimized mesh near the discontinuity. The Paris law allows to describe the fatigue behaviour under cyclic load. A specific program (Python), having the advantages of the calculation codes Castem and Abaqus, allows to compute the propagation approach and makes easier the estimation of the residual lifetime of a structure under cracked pressure. (O.M.)
Estimating propagation velocity through a surface acoustic wave sensor
Xu, Wenyuan; Huizinga, John S.
2010-03-16
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
Love wave propagation in piezoelectric layered structure with dissipation.
Du, Jianke; Xian, Kai; Wang, Ji; Yong, Yook-Kong
2009-02-01
We investigate analytically the effect of the viscous dissipation of piezoelectric material on the dispersive and attenuated characteristics of Love wave propagation in a layered structure, which involves a thin piezoelectric layer bonded perfectly to an unbounded elastic substrate. The effects of the viscous coefficient on the phase velocity of Love waves and attenuation are presented and discussed in detail. The analytical method and the results can be useful for the design of the resonators and sensors.
Wave propagation in thermoelastic saturated porous medium
Indian Academy of Sciences (India)
computed for a numerical model of liquid-saturated sandstone. Their variations with thermal as well as poroelastic ... hyperbolic equation of heat conduction with a relaxation time ensured the finite speed for ther- ... Consider a thermally conducting isotropic porous solid saturated with a non-viscous fluid. The stresses (τij) in ...
Millimetre Wave Propagation Over the Sea
1990-10-29
gases in the atmospherei (in particular oxygen and water vapour) causes part of the energy transmitted in millimetre waves to be absorbed. In order to...respectively to water vapour and oxygen reach 0.5 dB/km and 0.03 dB/km. Mlecular attenuation may vary substantially according to the meteorological conditions...significatifs de houle et d’un capteur embarcable utdl- sant cer algorithmex, Th~se de doctorat de 3tme cycle, Universiti Pierre et Marie Curie, Paris VI
Shock Wave Propagation in Functionally Graded Mineralized Tissue
Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.
2017-06-01
In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.
Seismic Wave Propagation in Icy Ocean Worlds
Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; vanÂ Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon
2018-01-01
Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.
Balvantín, A J; Diosdado-De-la-Peña, J A; Limon-Leyva, P A; Hernández-Rodríguez, E
2018-02-01
In this work, fundamental symmetric Lamb wave S0 mode is characterized in terms of its velocity variation as function of the interfacial conditions between solid bodies in contact. Imperfect contact conditions are numerically and experimentally determined by using ultrasonic Lamb wave propagation parameters. For the study, an experimental system was used, formed by two solid aluminum rods (25.4mm in diameter) axially loading a thin aluminum plate to control contact interfacial stiffness. The axially applied load on the aluminum plate was varied from 0MPa to 10MPa. Experimental Lamb wave signals were excited on the plate through two longitudinal contact transducers (1MHz of central frequency) using a pitch-catch configuration. Numerical simulations of contact conditions and Lamb wave propagation were performed through Finite Element Analysis (FEA) in commercial software, ANSYS 15®. Simulated Lamb wave signals were generated by means of a 5 cycles tone burst signals with different frequency values. Results indicate a velocity change in both, experimental and simulated Lamb wave signals as function of the applied load. Finally, a comparison between numerical results and experimental measurements was performed obtaining a good agreement. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Kijanka, P; Radecki, R; Packo, P; Staszewski, W J; Uhl, T
2013-01-01
Temperature has a significant effect on Lamb wave propagation. It is important to compensate for this effect when the method is considered for structural damage detection. The paper explores a newly proposed, very efficient numerical simulation tool for Lamb wave propagation modelling in aluminum plates exposed to temperature changes. A local interaction approach implemented with a parallel computing architecture and graphics cards is used for these numerical simulations. The numerical results are compared with the experimental data. The results demonstrate that the proposed approach could be used efficiently to produce a large database required for the development of various temperature compensation procedures in structural health monitoring applications. (paper)
Oblique Propagation and Dissipation of Alfven Waves in Coronal ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... We investigate the effect of viscosity and magnetic diffusivity on the oblique propagation and dissipation of Alfvén waves with respect to the normal outward direction, making use of MHD equations, density, temperature and magnetic field structure in coronal holes and underlying magnetic funnels. We find ...
Propagation of waves in a gravitating and rotating anisotropic heat ...
African Journals Online (AJOL)
Bheema
(1956) equations neglecting the heat flux vector. Gravitational instability on propagation of magnetohydrodynamic (MHD) waves in astrophysical plasma is investigated by Alemayehu and Tessema (2013a) by considering the effect of gravitational instability and viscosity with anisotropic pressure tensor and heat conducting.
Chiral metamaterials characterisation using the wave propagation retrieval method
DEFF Research Database (Denmark)
Andryieuski, Andrei; Lavrinenko, Andrei; Malureanu, Radu
2010-01-01
In this presentation we extend the wave propagation method for the retrieval of the effective properties to the case of chiral metamaterials with circularly polarised eigenwaves. The method is unambiguous, simple and provides bulk effective parameters. Advantages and constraints are discussed...
Propagation of waves in a multicomponent plasma having charged ...
Indian Academy of Sciences (India)
Propagation of waves in a multicomponent plasma having charged dust particles has been investigated by various authors in recent times as the presence of charged dust grains give rise to a new kind of modes called dust modes and it has wide applications in magneto- sphere and space plasma [1–3]. In fact, Rao et al [4] ...
Wave propagation in coated cylinders with reference to fretting fatigue
Indian Academy of Sciences (India)
The frequency of vibration or contact loading is an important parameter. The general frequency regime ... dicting initiation and propagation of micro cracks during fretting demands a proper study of stress wave .... The following expressions give the stresses and displacements in terms of potential func- tions. 2μur = ∂. ∂r. +.
Statistical characterization of wave propagation in mine environments
Bakir, Onur
2012-07-01
A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation (ME-PC) method with a novel domain-decomposition (DD) integral equation-based EM simulator to obtain statistics of electric fields due to wireless transmitters in realistic mine environments. © 2012 IEEE.
Wave propagation in a general anisotropic poroelastic medium ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Earth System Science; Volume 116; Issue 4. Wave propagation in a general anisotropic poroelastic medium: Biot's theories and homogenisation theory. M D Sharma. Volume 116 Issue 4 August ... Keywords. Anisotropic poroelastic (APE) solid; Biot's theory; homogenisation theory; phase velocity.
Analysis of flexural wave propagation in poroelastic composite ...
African Journals Online (AJOL)
DR OKE
wave propagation in poroelastic media. A poroelastic composite hollow cylinder consists of two concentric poroelastic cylindrical layers both of which are made of different poroelastic materials with each poroelastic material as homogeneous and isotropic. The inner and outer boundaries of composite hollow poroelastic ...
Influence of support viscoelastic properties on the structural wave propagation
International Nuclear Information System (INIS)
Park, Jun Hong
2007-01-01
The dissipation of the structural vibration energy at viscoelastic supports is an efficient method of reducing modal resonances and consequent noise and fatigue related problems. The support stiffness has significant impact on the modal characteristics. The dissipation capabilities of the viscoelastic support depend on its stiffness. Methods to optimally tune this support stiffness are proposed in this study. The characteristic mechanical impedance for structural vibration is obtained from wave propagation analysis and non-reflecting boundary conditions. The wave propagation is analyzed near the supports installed at edges, middle of a structure, and for the tuned vibration absorber. The dependence of the optimal stiffness on the location and mass of the supports is identified. A simple analytical solution for optimal support stiffness for maximum dissipation of propagating vibration energy at supports is presented
Effective constants for wave propagation through partially saturated porous media
International Nuclear Information System (INIS)
Berryman, J.G.; Thigpen, L.
1985-01-01
The multipole scattering coefficients for elastic wave scattering from a spherical inhomogeneity in a fluid-saturated porous medium have been calculated. These coefficients may be used to obtain estimates of the effective macroscopic constants for long-wavelength propagation of elastic waves through partially saturated media. If the volume average of the single scattering from spherical bubbles of gas and liquid is required to vanish, the resulting equations determine the effective bulk modulus, density, and viscosity of the multiphase fluid filling the pores. The formula for the effective viscosity during compressional wave excitation is apparently new
Spin wave propagation in a uniformly biased curved magnonic waveguide
Sadovnikov, A. V.; Davies, C. S.; Kruglyak, V. V.; Romanenko, D. V.; Grishin, S. V.; Beginin, E. N.; Sharaevskii, Y. P.; Nikitov, S. A.
2017-08-01
Using Brillouin light scattering microscopy and micromagnetic simulations, we study the propagation and transformation of magnetostatic spin waves across uniformly biased curved magnonic waveguides. Our results demonstrate that the spin wave transmission through the bend can be enhanced or weakened by modifying the distribution of the inhomogeneous internal magnetic field spanning the structure. Our results open up the possibility of optimally molding the flow of spin waves across networks of magnonic waveguides, thereby representing a step forward in the design and construction of the more complex magnonic circuitry.
Extraction of gravitational waves in numerical relativity.
Bishop, Nigel T; Rezzolla, Luciano
2016-01-01
A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.
Vertical elliptic operator for efficient wave propagation in TTI media
Waheed, Umair bin
2015-08-19
Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.
Wave propagation at the human muscle-compact bone interface
Directory of Open Access Journals (Sweden)
Hsia Shao-Yi
2006-01-01
Full Text Available Due to the improvement of the signal processing and image technology, the clinical ultrasound system becomes an important tool to assist doctors in detecting diseases. Hence, it is necessary to know the biological effects of ultrasound in human tissue. In ultrasonic waves, the discrepancy between classic elasticity and experimental elasticity becomes a particularly important problem, especially when there are higher frequencies and smaller wavelengths, i.e., in the case of wave propagation in human muscle and compact bone. Consequently, the influence of the microstructure is important and this fact leads to the generation of new types of waves unknown in classic elasticity. General continuum theories, such as couple stress theory and micropolar theory, have degrees of freedom in addition to those of classic elasticity. Such theories are thought to be applicable to composites with granular or porous structure, effective chiral composite, and human compact bone. In this work, a theoretical analysis concerning the reflected and transmitted fields of an incident plane wave P propagating at the human muscle-compact bone interface has been investigated. The results show that the wave fields are affected by microstructures of the human bone. Knowledge of this occurrence may offer some contribution to the understanding of the ultrasound propagation in the biological effects of human tissue.
Energy Technology Data Exchange (ETDEWEB)
Kang, To; Song, Sung Jin; Kim, Hark Joon [Sungkyunkwan University, Suwon (Korea, Republic of); Cho, Young Do; Lee, Dong Hoon [Korea Gas Safety Corporation, Seongnam (Korea, Republic of); Cho, Hyun Joon [Advanced Institute of Quality and Safety, Uiwang (Korea, Republic of)
2009-12-15
Excitation and propagation of guided waves are very complex problems in pipes due to their dispersive nature. Pipes are commonly used in the oil, chemical or nuclear industry and hence must be inspected regularly to ensure continued safe operation. The normal mode expansion(NME) method is given for the amplitude with which any propagating waveguide mode is generated in the pipes by applied surface tractions. Numerical results are calculated based on the NME method using different sources, i.e., non-axisymmetric partial loading and quasi-axisymmetric loading sources. The sum of amplitude coefficients for 0{approx}ninth order of the harmonic modes are calculated based on the NME method and the dispersion curves in pipes. The superimposed total field which is namely the angular profile, varies with propagating distance and circumferential angle. This angular profile of guided waves provides information for setting the transducer position to find defects in pipes.
Propagation and application of waves in the ionosphere.
Yeh, K. C.; Liu, C. H.
1972-01-01
This review deals with the propagation of waves, especially radio waves in the ionosphere. In the macroscopic electromagnetic theory, the mathematical structure of wave propagation problems depends entirely on the properties of the dielectric operator in a magnetically nonpermeable medium. These properties can be deduced from general discussions of symmetry and considerations of physical principles. When the medium is specifically the ionosphere, various physical phenomena may occur. Because of a large number of parameters, it is desirable to define a parameter space. A point in the parameter space corresponds to a specific plasma. The parameter space is subdivided into regions whose boundaries correspond to conditions of resonance and cutoff. As the point crosses these boundaries, the refractive index surface transforms continuously.
Excitation of coherent propagating spin waves by pure spin currents.
Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O
2016-01-28
Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.
Spiral Calcium Wave Propagation and Annihilation in Xenopus laevis Oocytes
Lechleiter, James; Girard, Steven; Peralta, Ernest; Clapham, David
1991-04-01
Intracellular calcium (Ca2+) is a ubiquitous second messenger. Information is encoded in the magnitude, frequency, and spatial organization of changes in the concentration of cytosolic free Ca2+. Regenerative spiral waves of release of free Ca2+ were observed by confocal microscopy in Xenopus laevis oocytes expressing muscarinic acetylcholine receptor subtypes. This pattern of Ca2+ activity is characteristic of an intracellular milieu that behaves as a regenerative excitable medium. The minimal critical radius for propagation of focal Ca2+ waves (10.4 micrometers) and the effective diffusion constant for the excitation signal (2.3 x 10-6 square centimeters per second) were estimated from measurements of velocity and curvature of circular wavefronts expanding from foci. By modeling Ca2+ release with cellular automata, the absolute refractory period for Ca2+ stores (4.7 seconds) was determined. Other phenomena expected of an excitable medium, such as wave propagation of undiminished amplitude and annihilation of colliding wavefronts, were observed.
Quasinormal modes and classical wave propagation in analogue black holes
International Nuclear Information System (INIS)
Berti, Emanuele; Cardoso, Vitor; Lemos, Jose P.S.
2004-01-01
Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the 'draining bathtub' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Because of the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute superradiant reflection coefficients and instability time scales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a nonrotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow
Topology Optimization for Wave Propagation Problems with Experimental Validation
DEFF Research Database (Denmark)
Christiansen, Rasmus Ellebæk
discussion of the finite element method and a hybrid ofa wave based method and the finite element method, used to discretize the modelproblems under consideration. A short discussion of the benefits and drawbacks of applying the hybrid method compared to the finite element method, used in conjunction......This Thesis treats the development and experimental validation of density-based topology optimization methods for wave propagation problems. Problems in the frequency regime where design dimensions are between approximately one fourth and ten wavelengths are considered. All examples treat problems...... from acoustics, however problems for TE or TM polarized electromagnetic waves and shear waves in solids in two dimensions may be treated using the proposed methods with minor modifications. A brief introduction to wave problems and to density-based topology optimizationis included, as is a brief...
Nonlinear internal wave effects on acoustic propagation and scattering
McMahon, Kara Grace
Experimental observations and theoretical studies show that nonlinear internal waves occur widely in shallow water and cause acoustic propagation effects including ducting and mode coupling. Horizontal ducting results when acoustic modes travel between internal wave fronts that form waveguide boundaries. For small grazing angles between a mode trajectory and a front, an interference pattern may arise that is a horizontal Lloyd mirror pattern. An analytic description for this feature is provided, along with comparisons between results from the formulated model predicting a horizontal Lloyd mirror pattern and an adiabatic mode parabolic equation. Different waveguide models are considered, including boxcar and jump sound speed profiles where change in sound speed is assumed 12 m/s. Modifications to the model are made to include multiple and moving fronts. The focus of this analysis is on different front locations relative to the source, as well as on the number of fronts and their curvatures and speeds. Curvature influences mode incidence angles and thereby changes the interference patterns. For sources oriented so that the front appears concave, the areas with interference patterns shrink as curvature increases, while convexly oriented fronts cause patterns to expand. Curvature also influence how energy is distributed in the internal wave duct. For certain curvatures and duct widths energy forms a whispering gallery or becomes fully ducted. Angular constraints which indicate when to expect these phenomena are presented. Results are compared to propagation calculations and were found to agree in most examples. In some cases trailing internal waves are present in the duct and disturb horizontal propagation. This type of propagation is characterized as a scattering process as a result of broken internal wave fronts between the lead waves. Traditionally this is handled in regimes where adiabatic normal modes are valid using sound speed perturbations to describe energy
A numerical method for determining the radial wave motion correction in plane wave couplers
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni
2016-01-01
solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model......Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... calibration, carried out in plane wave couplers, is the most extended. Here plane wave propagation is assumed. While this assumption is valid at low and mid frequencies, it fails at higher frequencies because the membrane of the microphones is not moving uniformly, and there are viscous losses. An existing...
The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion
International Nuclear Information System (INIS)
Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.
2006-01-01
Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)
Topics in the Analysis of Shear-Wave Propagation in Oblique-Plate Impact Tests
National Research Council Canada - National Science Library
Scheidler, Mike
2007-01-01
This report addresses several topics in the theoretical analysis of shock waves, acceleration waves, and centered simple waves, with emphasis on the propagation of shear waves generated in oblique-plate impact tests...
Evaluation of approaches for modeling temperature wave propagation in district heating pipelines
DEFF Research Database (Denmark)
Gabrielaitiene, I.; Bøhm, Benny; Sunden, B.
2008-01-01
The limitations of a pseudo-transient approach for modeling temperature wave propagation in district heating pipes were investigated by comparing numerical predictions with experimental data. The performance of two approaches, namely a pseudo-transient approach implemented in the finite element...... code ANSYS and a node method, was examined for a low turbulent Reynolds number regime and small velocity fluctuations. Both approaches are found to have limitations in predicting the temperature response time and predicting the peak values of the temperature wave, which is further hampered by the fact...... that the fluid is represented as an ideal fluid. The approaches failed to adequately predict the temperature wave propagation in the case of rapid inlet temperature changes. The overall conclusion from this case study was that in order to improve the prediction of the transient temperature, attention has...
Propagation behavior of the stress wave in a hollow Hopkinson transmission bar
Zou, G.; Shen, X.; Guo, C.; Vecchio, K. S.; Jiang, F.
2018-03-01
In order to investigate the stress wave propagation behavior through a hollow elastic bar that is used in a Hopkinson-bar-loaded fracture testing system, three-point bending fracture experiments were performed in such a system. The effects of sample span and diameter and wall thickness of the hollow elastic bar on the stress wave propagation behavior were studied numerically using the software of ANSYS/LS-DYNA. The experimental results demonstrated that the incident, reflected, and transmitted pulses calculated by the finite element method are coincident with those obtained from the Hopkinson-bar-loaded fracture tests. Compared to the solid transmission bar, the amplitude of the transmitted pulse is relatively larger in the hollow transmission bar under the same loading conditions and decreases with increasing wall thickness. On the other hand, when the inside diameter is fixed, the effect of the wall thickness on the stress wave characteristics is more obvious.
Driving Perpendicular Decay by the Parametric Instabilities of Parallel Propagating Alfven Waves
Comisel, H.; Nariyuki, Y.; Narita, Y.; Motschmann, U. M.
2017-12-01
The decay of monochromatic Alfven waves is studied by means of 2-D and 3-D hybrid simulations. The goal of the work is to follow up the long-time nonlinear development of theparametric decays after the saturation process in a multi-spatial dimension for coherent Alfven waves with three different polarizations: left-handed circularly polarized -, right-handed circularly polarized - and linearly polarized - Alfven pump waves. The analyzing is restricted for the parallel propagation with respect to the direction of the mean magnetic field in low beta plasmas. Numerical results suggest that the parametric instabilities can lead to broadband decays along the perpendicular direction, in which the magnetic field spectrum is extended towards the perpendicular direction.Perpendicular propagating daughter waves are observed atfinite perpendicular wave numbers as well as direct incompressible energy cascades driven by plasma turbulence.The density power spectrum shows inverse compressible cascades at smallerperpendicular wave numbers and direct cascades at larger wave numbers. The one-dimensional reduced spectra of the magnetic field and densities show correlations for a significant large range of perpendicular wave numbers beforedissipation. The time evolution of the anisotropy index is also determined for all the three analyzed setups.
A numerical study of laminar flames propagating in stratified mixtures
Zhang, Jiacheng
Numerical simulations are carried out to study the structure and speed of laminar flames propagating in compositionally and thermally stratified fuel-air mixtures. The study is motivated by the need to understand the physics of flame propagation in stratified-charge engines and model it. The specific question of interest in this work is: how does the structure and speed of the flame in the stratified mixture differ from that of the flame in a corresponding homogeneous mixture at the same equivalence ratio, temperature, and pressure? The studies are carried out in hydrogen-air, methane-air, and n-heptane-air mixtures. A 30-species 184-step skeletal mechanism is employed for methane oxidation, a 9-species 21-step mechanism for hydrogen oxidation, and a 37-species 56-step skeletal mechanism for n-heptane oxidation. Flame speed and structure are compared with corresponding values for homogeneous mixtures. For compositionally stratified mixtures, as shown in prior experimental work, the numerical results suggest that when the flame propagates from a richer mixture to a leaner mixture, the flame speed is faster than the corresponding speed in the homogeneous mixture. This is caused by enhanced diffusion of heat and species from the richer mixture to the leaner mixture. In fact, the effects become more pronounced in leaner mixtures. Not surprisingly, the stratification gradient influences the results with shallower gradients showing less effect. The controlling role that diffusion plays is further assessed and confirmed by studying the effect of a unity Lewis number assumption in the hydrogen/air mixtures. Furthermore, the effect of stratification becomes less important when using methane or n-heptane as fuel. The laminar flame speed in a thermally stratified mixture is similar to the laminar flame speed in homogeneous mixture at corresponding unburned temperature. Theoretical analysis is performed and the ratio of extra thermal diffusion rate to flame heat release rate
Effect of the Blood Vessel Viscoelasticity on Periodic Blood Pressure Wave Propagation
Kitawaki, Tomoki; Shimizu, Masashi
Clinical arterial stiffness indexes such as PWV (pulse wave velocity) or PP (pulse pressure), which are obtained by analyzing blood pressure pulse waveforms in vivo, are used in the prognosis of cardiovascular diseases and thus analyses of pulse waveform are clinically important. The pulse wave in vivo, however, is complicated because of the complex viscoelastic property of the blood vessel wall. In addition, numerical flow simulations are useful for understanding pulse wave propagation in circulatory systems. Our proposed nonlinear one-dimensional numerical simulation model can accurately simulate the measurements of pressure waves in a silicone rubber tube and indicate that the viscoelasticity of the tube wall was significantly influenced by a single pulse waveform; however, the influence of viscoelasticity change on periodic pulsatile wave propagation has not yet been studied. The purpose of this study was therefore to investigate the effect of viscoelasticity change on the periodic pulsatile wave. For this purpose, we examined the effect of the viscoelasticity of a single silicone tube on periodic pulse wave propagation by comparing the calculated results using a one-dimensional model. As a result, the one-dimensional model could accurately express the experimental results with periodic pulsatile waves. In addition, both PWV and PP increase when the viscoelastic value of the dynamic modulus elasticity ratio increases, because increasing the elastic modulus is more effective than the energy dissipation effect by viscoelasticity change. Consequently, it is necessary to measure the viscoelastic property of the vessel wall accurately in order to estimate the arterial stiffness index (PWV and PP) accurately.
Wave Propagation in Periodic Shells with Tapered Wall Thickness and Changing Material Properties
Directory of Open Access Journals (Sweden)
M. Toso
2004-01-01
Full Text Available A theoretical method based on the Transfer Matrix Formulation and Wavelet Transforms is developed in order to effectively investigate the influence of periodicity, variable geometry and material properties on the wave propagation characteristics of axis-symmetric shells. Several experiments have been conducted to verify the numerical predictions and to demonstrate that the Wavelet Transform is a very powerful tool to uniquely identify and compare the energy distribution both in the time and frequency domain.
International Nuclear Information System (INIS)
Liu Jicai; Wang Chuankui; Gel'mukhanov, Faris
2007-01-01
Dynamics of multilevel molecules and pulse propagation is studied near the two-photon resonance. We have found a strict solution of this problem beyond the rotating wave approximation. Our analytical solution is in close agreement with the strict numerical solution for the 4,4 ' -bis(dimethylamino) stilbene molecule. The compensation of the dynamical Stark shift is studied for fixed-in-space molecules. It is shown that the orientational disorder does not allow complete compensation of the dynamical Stark shift
Pitois, S; Fatome, J; Millot, G
2008-04-28
In this work, we report the experimental observation of a polarization attraction process which can occur in optical fibers at telecommunication wavelengths. More precisely, we have numerically and experimentally shown that a polarization attractor, based on the injection of two counter-propagating waves around 1.55microm into a 2-m long high nonlinear fiber, can transform any input polarization state into a unique well-defined output polarization state.
International Nuclear Information System (INIS)
Rohatgi, R.; Chen, K.; Bekefi, G.; Bonoli, P.; Luckhardt, S.C.; Mayberry, M.; Porkolab, M.; Villasenor, J.
1991-01-01
A series of 139 GHz microwave scattering experiments has been performed on the Versator II tokamak (B. Richards, Ph.D. thesis, Massachusetts Institute of Technology, 1981) to study the propagation of externally launched 0.8 GHz lower-hybrid waves. During lower-hybrid current drive, the launched waves are found to follow a highly directional resonance cone in the outer portion of the plasma. Wave power is also detected near the center of the plasma, and evidence of wave absorption is seen. Scattering of lower-hybrid waves in k space by density fluctuations appears to be a weak effect, although measurable frequency broadening by density fluctuations is found, Δω/ω=3x10 -4 . In the detectable range (2.5 parallel parallel spectra inferred from the scattering measurements are quite similar above and below the current drive density limit. Numerical modeling of these experiments using ray tracing is also presented
Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G
2007-01-01
..., for waves propagating over fringing reefs. The model evaluation had two goals: (a) investigate differences between laboratory and field characteristics of wave transformation processes over reefs, and (b...
International Nuclear Information System (INIS)
Romeo, Francesco; Rega, Giuseppe
2006-01-01
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration
A two-step FEM-SEM approach for wave propagation analysis in cable structures
Zhang, Songhan; Shen, Ruili; Wang, Tao; De Roeck, Guido; Lombaert, Geert
2018-02-01
Vibration-based methods are among the most widely studied in structural health monitoring (SHM). It is well known, however, that the low-order modes, characterizing the global dynamic behaviour of structures, are relatively insensitive to local damage. Such local damage may be easier to detect by methods based on wave propagation which involve local high frequency behaviour. The present work considers the numerical analysis of wave propagation in cables. A two-step approach is proposed which allows taking into account the cable sag and the distribution of the axial forces in the wave propagation analysis. In the first step, the static deformation and internal forces are obtained by the finite element method (FEM), taking into account geometric nonlinear effects. In the second step, the results from the static analysis are used to define the initial state of the dynamic analysis which is performed by means of the spectral element method (SEM). The use of the SEM in the second step of the analysis allows for a significant reduction in computational costs as compared to a FE analysis. This methodology is first verified by means of a full FE analysis for a single stretched cable. Next, simulations are made to study the effects of damage in a single stretched cable and a cable-supported truss. The results of the simulations show how damage significantly affects the high frequency response, confirming the potential of wave propagation based methods for SHM.
Energy Technology Data Exchange (ETDEWEB)
Mahmood, S., E-mail: shahzadm100@gmail.com; Sadiq, Safeer; Haque, Q. [Theoretical Physics Division, PINSTECH, P. O. Nilore, Islamabad 44000 (Pakistan); Ali, Munazza Z. [Department of Physics, University of the Punjab, Lahore 54590 (Pakistan)
2016-06-15
The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.
Energy Technology Data Exchange (ETDEWEB)
Romeo, Francesco [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: francesco.romeo@uniromal.it; Rega, Giuseppe [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: giuseppe.rega@uniromal.it
2006-02-01
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.
Efficient techniques for wave-based sound propagation in interactive applications
Mehra, Ravish
Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data
The energy transport by the propagation of sound waves in wave guides with a moving medium
le Grand, P.
1977-01-01
The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between two parallel walls or inside a cylindrical tube is considered in [2], The most interesting thing of this problem is that waves may occur with constant amplitude coming from infinity.
Propagation of bottom-trapped waves over variable topography
Digital Repository Service at National Institute of Oceanography (India)
Shetye, S.R.
on a topographic slope, as they propagate towards a deeper region of constant depth, is examined using a quasi-geostrophic model. It is seen that there can be no free transmitted wave to the region of constant depth. The bottom-trapped energy is thus... currents farther away. 1. INTRODUCTION Rhines (1970) showed that a stratified rotating fluid over sloping bottom topography can support free waves that are bottom-intensified. The in- crease in the kinetic energy of the currents with depth...
Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides
DEFF Research Database (Denmark)
Bæk, David; Willatzen, Morten
2008-01-01
A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...
Wave propagation in a quasi-chemical equilibrium plasma
Fang, T.-M.; Baum, H. R.
1975-01-01
Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.
On the lamb wave propagation in anisotropic laminated composite plates
International Nuclear Information System (INIS)
Park, Soo Keun; Jeong, Hyun Jo; Kim, Moon Saeng
1998-01-01
This paper examines the propagation of Lamb (or plate) waves in anisotropic laminated composite plates. The dispersion relations are explicitly derived using the classical plate theory (CLT), the first-order shear deformation theory (FSDT) and the exact solution (ES), Attention is paid to the lowest antisymmetric (flexural) and lowest symmetric(extensional) modes in the low frequency, long wavelength limit. Different values of shear correction factor were tested in FSDT and comparisons between flexural wave dispersion curves were made with exact results to asses the range of validity of approximate plate theories in the frequency domain.
Wave propagation in layered anisotropic media with application to composites
Nayfeh, AH
1995-01-01
Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.
24 GHz cmWave Radio Propagation Through Vegetation
DEFF Research Database (Denmark)
Rodriguez, Ignacio; Abreu, Renato Barbosa; Portela Lopes de Almeida, Erika
2016-01-01
This paper presents a measurement-based analysis of cm-wave radio propagation through vegetation at 24 GHz. A set of dedicated directional measurements were performed with horn antennas located close to street level inside a densely-vegetated area illuminated from above. The full azimuth...... along the paper are useful for simulation and radio network planning of future wireless systems operating at 24 GHz in presence of vegetation....
Singular value decomposition methods for wave propagation analysis
Czech Academy of Sciences Publication Activity Database
Santolík, Ondřej; Parrot, M.; Lefeuvre, F.
2003-01-01
Roč. 38, č. 1 (2003), s. 10-1-10-13 ISSN 0048-6604 R&D Projects: GA ČR GA205/01/1064 Grant - others:Barrande(CZ) 98039/98055 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : wave propagation * singular value decomposition Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.832, year: 2003
Flat lens effect on seismic waves propagation in the subsoil.
Brûlé, Stéphane; Javelaud, Emmanuel H; Enoch, Stefan; Guenneau, Sébastien
2017-12-22
We show that seismic energy simulated by an artificial source that mainly propagates Rayleigh surface waves, is focused in structured soil made of a grid of holes distributed in the ground. We carry out large-scale field tests with a structured soil made of a grid consisting of cylindrical and vertical holes in the ground and a low frequency artificial source (seismic metamaterials to counteract partially or totally the most devastating components of seismic signals.
Monograph on propagation of sound waves in curved ducts
Rostafinski, Wojciech
1991-01-01
After reviewing and evaluating the existing material on sound propagation in curved ducts without flow, it seems strange that, except for Lord Rayleigh in 1878, no book on acoustics has treated the case of wave motion in bends. This monograph reviews the available analytical and experimental material, nearly 30 papers published on this subject so far, and concisely summarizes what has been learned about the motion of sound in hard-wall and acoustically lined cylindrical bends.
Surface wave propagation in a fluid-saturated incompressible ...
Indian Academy of Sciences (India)
Surface wave propagation in a fluid-saturated incompressible porous medium157 where ˙xi˙xi˙xi and ¨xi¨xi¨xi(i = F,S) denote the velocities and accelerations of solid and fluid phases respectively and p is the effective pore pressure of the incompressible pore fluid. ρS and ρF are the densities of the solid and fluid phases ...
Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures
2016-08-03
Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures E. Kim,1 F. Li,1 C. Chong,2 G. Theocharis ,3 J. Yang,1 and P.G. Kevrekidis2...Kevrekidis, IMA J. Appl. Math. 76, 389 (2011). [4] G. Theocharis , N. Boechler, and C. Daraio, in Phononic Crystals and Metamaterials, Ch. 6, Springer...9] N. Boechler, G. Theocharis , and C. Daraio, Nature Ma- terials 10, 665 (2011). [10] F. Li, P. Anzel, J. Yang, P.G. Kevrekidis, and C. Daraio, Nat
Energy Technology Data Exchange (ETDEWEB)
Lo, W.-C.; Sposito, G.; Majer, E.
2007-02-01
An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of 'low frequency' underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g. seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.
Radio Wave Propagation Handbook for Communication on and Around Mars
Ho, Christian; Golshan, Nasser; Kliore, Arvydas
2002-01-01
This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.
Modification of sonic boom wave forms during propagation from the source to the ground.
Bass, Henry E; Raspet, Richard; Chambers, James P; Kelly, Mark
2002-01-01
A number of physical processes work to modify the shape of sonic boom wave forms as the wave form propagates from the aircraft to a receiver on the ground. These include frequency-dependent absorption, nonlinear steepening, and scattering by atmospheric turbulence. In the past two decades, each of these effects has been introduced into numerical prediction algorithms and results compared to experimental measurements. There is still some disagreement between measurements and prediction, but those differences are now in the range of tens of percent. The processes seem to be understood. The present understanding of sonic boom evolution will be presented along with experimental justification.
The surface effect on axisymmetric wave propagation in piezoelectric cylindrical shells
Directory of Open Access Journals (Sweden)
Yunying Zhou
2015-02-01
Full Text Available Based on the surface piezoelectricity theory and first-order shear deformation theory, the surface effect on the axisymmetric wave propagating in piezoelectric cylindrical shells is analyzed. The Gurtin–Murdoch theory is utilized to get the nontraditional boundary conditions and constitutive equations of the surface, in company with classical governing equations of the bulk, from which the basic formulations are obtained. Numerical results show that the surface layer has a profound effect on wave characteristics in nanostructure at a higher mode.
Theoretical Model of Acoustic Wave Propagation in Shallow Water
Directory of Open Access Journals (Sweden)
Kozaczka Eugeniusz
2017-06-01
Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.
Propagation characteristics of acoustic emission wave in reinforced concrete
Directory of Open Access Journals (Sweden)
Haoxiong Feng
Full Text Available Due to the complexity of components and damage mechanism of reinforced concrete, the wave propagation characteristics in reinforced concrete are always complicated and difficult to determine. The objective of this article is to study the failure process of reinforced concrete structure under the damage caused by pencil-broken. A new method on the basis of the acoustic emission technique and the Hilbert-Huang transform theory is proposed in this work. By using acoustic emission technique, the acoustic emission wave signal is generating while the real-time damage information and the strain field of the reinforced concrete structure is receiving simultaneously. Based on the Hilbert-Huang transform (HHT theory, the peak frequency characteristics of the acoustic emission signals were extracted to identify the damage modes of the reinforced concrete structure. The results demonstrate that this method can quantitatively investigate the acoustic emission wave propagation characteristic in reinforced concrete structures and might also be promising in other civil constructions. Keywords: Acoustic emission, Reinforced concrete structure, Hilbert-Huang transform (HHT, Propagation characteristics
Regulatory effects on the population dynamics and wave propagation in a cell lineage model.
Wang, Mao-Xiang; Ma, Yu-Qiang; Lai, Pik-Yin
2016-03-21
We consider the interplay of cell proliferation, cell differentiation (and de-differentiation), cell movement, and the effect of feedback regulations on the population and propagation dynamics of different cell types in a cell lineage model. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the cell lineage. The cell densities are described by coupled reaction-diffusion partial differential equations, and the propagating wave front solutions in one dimension are investigated analytically and by numerical solutions. In particular, wavefront propagation speeds are obtained analytically and verified by numerical solutions of the equations. The emphasis is on the effects of the feedback regulations on different stages in the cell lineage. It is found that when the progenitor cell is negatively regulated, the populations of the cell lineage are strongly down-regulated with the steady growth rate of the progenitor cell being driven to zero beyond a critical regulatory strength. An analytic expression for the critical regulation strength in terms of the model parameters is derived and verified by numerical solutions. On the other hand, if the inhibition is acting on the differentiated cells, the change in the population dynamics and wave propagation speed is small. In addition, it is found that only the propagating speed of the progenitor cells is affected by the regulation when the diffusion of the differentiated cells is large. In the presence of de-differentiation, the effect on down-regulating the progenitor population is weakened and there is no effect on the propagation speed due to regulation, suggesting that the effect of regulatory control is diminished by de-differentiation pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.
1989-12-01
Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs
Propagation of extensional waves in a piezoelectric semiconductor rod
Directory of Open Access Journals (Sweden)
C.L. Zhang
2016-04-01
Full Text Available We studied the propagation of extensional waves in a thin piezoelectric semiconductor rod of ZnO whose c-axis is along the axis of the rod. The macroscopic theory of piezoelectric semiconductors was used which consists of the coupled equations of piezoelectricity and the conservation of charge. The problem is nonlinear because the drift current is the product of the unknown electric field and the unknown carrier density. A perturbation procedure was used which resulted in two one-way coupled linear problems of piezoelectricity and the conservation of charge, respectively. The acoustic wave and the accompanying electric field were obtained from the equations of piezoelectricity. The motion of carriers was then determined from the conservation of charge using a trigonometric series. It was found that while the acoustic wave was approximated by a sinusoidal wave, the motion of carriers deviates from a sinusoidal wave qualitatively because of the contributions of higher harmonics arising from the originally nonlinear terms. The wave crests become higher and sharper while the troughs are shallower and wider. This deviation is more pronounced for acoustic waves with larger amplitudes.
Ezzin, Hamdi; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi
2016-07-01
A theoretical approach is taken into consideration to investigate Love wave propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. The magneto-electrically open and short conditions are applied to solve the problem. The phase and group velocity of the Love wave is numerically calculated for the magneto-electrically open and short cases, respectively. The variations of magneto-electromechanical coupling factor, mechanical displacements, electric and magnetic potentials along the thickness direction of the layers are obtained and discussed. The numerical results clearly show the influence of different stacking sequences on dispersion curves and on magneto-electromechanical coupling factor. This work may be relevant to analysis and design of various acoustic surface wave devices constructed from piezoelectric and piezomagnetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs
Directory of Open Access Journals (Sweden)
Zhi-Bin Wang
2016-05-01
Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.
Van Allen Probe observations of EMIC wave propagation in the inner magnetosphere
Saikin, A.; Zhang, J.; Smith, C. W.; Spence, H. E.; Torbert, R. B.; Kletzing, C.; Wygant, J. R.
2017-12-01
This study examines the propagation of inner magnetosphere (L vector, , analysis on all observed EMIC wave events to determine the direction of propagation, with bi-directionally propagating EMIC waves indicating the presence of the EMIC wave source region. EMIC waves were considered bi-directional (i.e., in the source region) if at least two wave packets exhibited opposing flux components, and (W/km2), consistently for 60 seconds. Events not observed to have opposing flux components are considered unidirectional. EMIC wave events observed at relatively high magnetic latitudes, generally, are found to propagate away from the magnetic equator (i.e., unidirectional). Bi-directionally propagating EMIC waves are preferably observed at lower magnetic latitudes. The occurrence rate, spatial distribution, and the energy propagation angle of both unidirectionally and bi-directionally propagating EMIC waves are examined with respect to L, MLT, and MLAT.
Waves and particles in the Fermi accelerator model. Numerical simulation
International Nuclear Information System (INIS)
Meplan, O.
1996-01-01
This thesis is devoted to a numerical study of the quantum dynamics of the Fermi accelerator which is classically chaotic: it is particle in a one dimensional box with a oscillating wall. First, we study the classical dynamics: we show that the time of impact of the particle with the moving wall and its energy in the wall frame are conjugated variables and that Poincare surface of sections in these variables are more understandable than the usual stroboscopic sections. Then, the quantum dynamics of this systems is studied by the means of two numerical methods. The first one is a generalization of the KKR method in the space-time; it is enough to solve an integral equation on the boundary of a space-time billiard. The second method is faster and is based on successive free propagations and kicks of potential. This allows us to obtain Floquet states which we can on one hand, compare to the classical dynamics with the help of Husimi distributions and on the other hand, study as a function of parameters of the system. This study leads us to nice illustrations of phenomenons such as spatial localizations of a wave packet in a vibrating well or tunnel effects. In the adiabatic situation, we give a formula for quasi-energies which exhibits a phase term independent of states. In this regime, there exist some particular situations where the quasi-energy spectrum presents a total quasi-degeneracy. Then, the wave packet energy can increase significantly. This phenomenon is quite surprising for smooth motion of the wall. The third part deals with the evolution of a classical wave in the Fermi accelerator. Using generalized KKR method, we show a surprising phenomenon: in most of situations (so long as the wall motion is periodic), a wave is localized exponentially in the well and its energy increases in a geometric way. (author). 107 refs., 66 figs., 5 tabs. 2 appends
Liu, Xu; Chen, Lunjin; Yang, Lixia; Xia, Zhiyang; Malaspina, David M.
2018-01-01
The effect of the plasmapause on equatorially radially propagating fast magnetosonic (MS) waves in the Earth's dipole magnetic field is studied by using finite difference time domain method. We run 1-D simulation for three different density profiles: (1) no plasmapause, (2) with a plasmapause, and (3) with a plasmapause accompanied with fine-scale density irregularity. We find that (1) without plasmapause the radially inward propagating MS wave can reach ionosphere and continuously propagate to lower altitude if no damping mechanism is considered. The wave properties follow the cold plasma dispersion relation locally along its trajectory. (2) For simulation with a plasmapause with a scale length of 0.006 RE compared to wavelength, only a small fraction of the MS wave power is reflected by the plasmapause. WKB approximation is generally valid for such plasmapause. (3) The multiple fine-scale density irregularities near the outer edge of plasmapause can effectively block the MS wave propagation, resulting in a terminating boundary for MS waves near the plasmapause.
Theory of electromagnetic wave propagation in ferromagnetic Rashba conductor
Shibata, Junya; Takeuchi, Akihito; Kohno, Hiroshi; Tatara, Gen
2018-02-01
We present a comprehensive study of various electromagnetic wave propagation phenomena in a ferromagnetic bulk Rashba conductor from the perspective of quantum mechanical transport. In this system, both the space inversion and time reversal symmetries are broken, as characterized by the Rashba field α and magnetization M, respectively. First, we present a general phenomenological analysis of electromagnetic wave propagation in media with broken space inversion and time reversal symmetries based on the dielectric tensor. The dependence of the dielectric tensor on the wave vector q and M is retained to first order. Then, we calculate the microscopic electromagnetic response of the current and spin of conduction electrons subjected to α and M, based on linear response theory and the Green's function method; the results are used to study the system optical properties. First, it is found that a large α enhances the anisotropic properties of the system and enlarges the frequency range in which the electromagnetic waves have hyperbolic dispersion surfaces and exhibit unusual propagations known as negative refraction and backward waves. Second, we consider the electromagnetic cross-correlation effects (direct and inverse Edelstein effects) on the wave propagation. These effects stem from the lack of space inversion symmetry and yield q-linear off-diagonal components in the dielectric tensor. This induces a Rashba-induced birefringence, in which the polarization vector rotates around the vector (α ×q ) . In the presence of M, which breaks time reversal symmetry, there arises an anomalous Hall effect and the dielectric tensor acquires off-diagonal components linear in M. For α ∥M , these components yield the Faraday effect for the Faraday configuration q ∥M and the Cotton-Mouton effect for the Voigt configuration ( q ⊥M ). When α and M are noncollinear, M- and q-induced optical phenomena are possible, which include nonreciprocal directional dichroism in the
Directory of Open Access Journals (Sweden)
Ravinder Kumar
2014-01-01
Full Text Available The present investigation is concerned with the study of propagation of shear waves in an anisotropic fluid saturated porous layer over a semi-infinite homogeneous elastic half-space lying under an elastic homogeneous layer with irregularity present at the interface with rigid boundary. The rectangular irregularity has been taken in the half-space. The dispersion equation for shear waves is derived by using the perturbation technique followed by Fourier transformation. Numerically, the effect of irregularity present is analysed. It is seen that the phase velocity is significantly influenced by the wave number and the depth of the irregularity. The variations of dimensionless phase velocity against dimensionless wave number are shown graphically for the different size of rectangular irregularities with the help of MATLAB.
One-dimensional plane wave simulation of laser beam propagation and breakdown in the atmosphere
Energy Technology Data Exchange (ETDEWEB)
Mayhall, D.J.; Yee, J.H. [Lawrence Livermore National Lab., CA (United States); Sieger, G.E.
1994-12-31
For several years, numerical simulation of intense microwave and laser beam propagation in the atmosphere has been conducted at Lawrence Livermore National Laboratory. For very short pulses of 20 ns or less, full-wave electron fluid computer codes have investigated atmospheric propagation, as well as propagation in low-pressure, air-filled waveguides. These one- and two-dimensional codes solved time-dependent equations for electron number, momentum, and energy conservation self-consistently with Maxwell`s curl equations. Because of machine limitations, these codes, which resolve variations within a wave cycle, have been impractical for pulses longer than several hundred cycles. A one-dimensional, time-harmonic, envelope electron fluid code has been developed for calculation of long-pulse, cascade ionization microwave and laser beam effects in the atmosphere. In this investigation, the authors consider envelope code calculations for incident pulses from 0.1--100 ns in the laser wavelength regime for propagation in the lower atmosphere. Both CO{sub 2} and neodymium glass laser wavelengths are addressed. Square pulse breakdown electric field thresholds are calculated and compared with analytic predictions from the literature. Gaussian envelope thresholds are also calculated. Propagated and tail-eroded electric field waveshapes and electric density and energy profiles for several incident amplitudes, waveshapes, and pulse lengths will be presented.
Coherent-wave Monte Carlo method for simulating light propagation in tissue
Kraszewski, Maciej; Pluciński, Jerzy
2016-03-01
Simulating propagation and scattering of coherent light in turbid media, such as biological tissues, is a complex problem. Numerical methods for solving Helmholtz or wave equation (e.g. finite-difference or finite-element methods) require large amount of computer memory and long computation time. This makes them impractical for simulating laser beam propagation into deep layers of tissue. Other group of methods, based on radiative transfer equation, allows to simulate only propagation of light averaged over the ensemble of turbid medium realizations. This makes them unuseful for simulating phenomena connected to coherence properties of light. We propose a new method for simulating propagation of coherent light (e.g. laser beam) in biological tissue, that we called Coherent-Wave Monte Carlo method. This method is based on direct computation of optical interaction between scatterers inside the random medium, what allows to reduce amount of memory and computation time required for simulation. We present the theoretical basis of the proposed method and its comparison with finite-difference methods for simulating light propagation in scattering media in Rayleigh approximation regime.
Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones
Energy Technology Data Exchange (ETDEWEB)
Desjouy, C., E-mail: cyril.desjouy@gmail.com; Ollivier, S.; Dragna, D.; Blanc-Benon, P. [Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509, École Centrale de Lyon, Université de Lyon, 69134 Ecully Cedex (France); Marsden, O. [European Center For Medium Range Weather Forecasts, United Kingdom Shinfield (United Kingdom)
2015-10-28
The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.
Induced wave propagation from a vibrating containment envelope
International Nuclear Information System (INIS)
Stout, R.B.; Thigpen, L.; Rambo, J.T.
1985-09-01
Low frequency wave forms are observed in the particle velocity measurements around the cavity and containment envelope formed by an underground nuclear test. The vibration solution for a spherical shell is used to formulate a model for the low frequency wave that propagates outward from this region. In this model the containment envelope is the zone of material that is crushed by the compressive shock wave of the nuclear explosion. The containment envelope is approximated by a spherical shell of material. The material in the spherical shell is densified and is given a relatively high kinetic energy density because of the high compressive stress and particle velocity of the shock wave. After the shock wave has propagated through the spherical shell, the spherical shell vibrates in order to dissipate the kinetic energy acquired from the shock wave. Based on the model, the frequency of vibration depends on the dimensions and material properties of the spherical shell. The model can also be applied in an inverse mode to obtain global estimates of averaged materials properties. This requires using experimental data and semi-empirical relationships involving the material properties. A particular case of estimating a value for shear strength is described. Finally, the oscillation time period of the lowest frequency from five nuclear tests is correlated with the energy of the explosion. The correlation provides another diagnostic to estimate the energy of a nuclear explosion. Also, the longest oscillation time period measurement provides additional experimental data that can be used to assess and validate various computer models. 11 refs., 2 figs
ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES
Energy Technology Data Exchange (ETDEWEB)
Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)
2013-05-10
Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.
Propagation of photosensitive chemical waves on the circular routes.
Kitahata, Hiroyuki; Yamada, Akiko; Nakata, Satoshi; Ichino, Takatoshi
2005-06-09
The propagation of chemical waves in the photosensitive Belousov-Zhabotinsky (BZ) reaction was investigated using an excitable field in the shape of a circular ring or figure "8" that was drawn by computer software and then projected on a film soaked with BZ solution using a liquid-crystal projector. For a chemical wave in a circular reaction field, the shape of the chemical wave was investigated depending on the ratio of the inner and outer radii. When two chemical waves were generated on a field shaped like a figure "8" (one chemical wave in each circle) as the initial condition, the location of the collision of the waves either was constant or alternated depending on the degree of overlap of the two circular rings. These experimental results were analyzed on the basis of a geometrical discussion and theoretically reproduced on the basis of a reaction-diffusion system using a modified Oregonator model. These results suggest that the photosensitive BZ reaction may be useful for creating spatio-temporal patterns depending on the geometric arrangement of excitable fields.
Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA
Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.
2014-12-01
The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the
Sikdar, Shirsendu; Banerjee, Sauvik
2016-09-01
A coordinated theoretical, numerical and experimental study is carried out in an effort to interpret the characteristics of propagating guided Lamb wave modes in presence of a high-density (HD) core region in a honeycomb composite sandwich structure (HCSS). Initially, a two-dimensional (2D) semi-analytical model based on the global matrix method is used to study the response and dispersion characteristics of the HCSS with a soft core. Due to the complex structural characteristics, the study of guided wave (GW) propagation in HCSS with HD-core region inherently poses many challenges. Therefore, a numerical simulation of GW propagation in the HCSS with and without the HD-core region is carried out, using surface-bonded piezoelectric wafer transducer (PWT) network. From the numerical results, it is observed that the presence of HD-core significantly decreases both the group velocity and the amplitude of the received GW signal. Laboratory experiments are then conducted in order to verify the theoretical and numerical results. A good agreement between the theoretical, numerical and experimental results is observed in all the cases studied. An extensive parametric study is also carried out for a range of HD-core sizes and densities in order to study the effect due to the change in size and density of the HD zone on the characteristics of propagating GW modes. It is found that the amplitudes and group velocities of the GW modes decrease with the increase in HD-core width and density. Copyright © 2016 Elsevier B.V. All rights reserved.
Kinetic description of the oblique propagating spin-electron acoustic waves in degenerate plasmas
Andreev, Pavel A.
2018-03-01
An oblique propagation of the spin-electron acoustic waves in degenerate magnetized plasmas is considered in terms of quantum kinetics with the separate spin evolution, where the spin-up electrons and the spin-down electrons are considered as two different species with different equilibrium distributions. It is considered in the electrostatic limit. The corresponding dispersion equation is derived. Analysis of the dispersion equation is performed in the long-wavelength limit to find an approximate dispersion equation describing the spin-electron acoustic wave. The approximate dispersion equation is solved numerically. Real and imaginary parts of the spin-electron acoustic wave frequency are calculated for different values of the parameters describing the system. It is found that the increase in the angle between the direction of wave propagation and the external magnetic field reduces the real and imaginary parts of spin-electron acoustic wave frequency. The increase in the spin polarization decreases the real and imaginary parts of frequency either. The imaginary part of frequency has a nonmonotonic dependence on the wave vector which shows a single maximum. The imaginary part of frequency is small in comparison with the real part for all parameters in the area of applicability of the obtained dispersion equation.
Radio wave propagation in the inhomogeneous magnetic field of the solar corona
International Nuclear Information System (INIS)
Zheleznyakov, V.V.; Zlotnik, E.Ya.
1977-01-01
Various types of linear coupling between ordinary and extra-ordinary waves in the coronal plasma with the inhomogeneous magnetic field and the effect of this phenomenon upon the polarization characteristics of solar radio emission are considered. A qualitative analysis of the wave equation indicates that in a rarefied plasma the coupling effects can be displayed in a sufficiently weak magnetic field or at the angles between the magnetic field and the direction of wave propagation close enough to zero or π/2. The wave coupling parameter are found for these three cases. The radio wave propagation through the region with a quasi-transverse magnetic field and through the neutral current sheet is discussed more in detail. A qualitative picture of coupling in such a layer is supported by a numerical solution of the ''quasi-isotropic approximation'' equations. The role of the coupling effects in formation of polarization characteristics of different components of solar radio emission has been investigated. For cm wave range, the polarization is essentially dependent on the conditions in the region of the transverse magnetic field
Modeling the Propagation of Shock Waves in Metals
Howard, W. Michael
2005-07-01
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and bulk modulus depends on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and bulk modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that gives the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov. We also discuss the dependence of our results upon our material model for aluminum.
Eckermann, S. D.; Broutman, D.; Ma, J.; Doyle, J. D.; Pautet, P. D.; Taylor, M. J.; Bossert, K.; Williams, B. P.; Fritts, D. C.; Smith, R. B.; Kuhl, D.; Hoppel, K.; McCormack, J. P.; Ruston, B. C.; Baker, N. L.; Viner, K.; Whitcomb, T.; Hogan, T. F.; Peng, M.
2016-12-01
The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was an international aircraft-based field program to observe and study the end-to-end dynamics of atmospheric gravity waves from 0-100 km altitude and the effects on atmospheric circulations. On 14 July 2014, aircraft remote-sensing instruments detected large-amplitude gravity-wave oscillations within mesospheric airglow and sodium layers downstream of the Auckland Islands, located 1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event from the surface to the mesosphere. At 0700 UTC when first observations were made, surface flow across the islands' terrain generated linear three-dimensional wavefields that propagated rapidly to ˜78 km altitude, where intense breaking occurred in a narrow layer beneath a zero-wind region at ˜83 km altitude. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wavefields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wavefields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward mean-flow accelerations of ˜350 m s-1 hour-1 and dynamical heating rates of ˜8 K hour-1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter. We also study deep orographic gravity waves from islands during DEEPWAVE more widely using observations from the Atmospheric Infrared Sounder (AIRS) and high-resolution high
Non-homogeneous polymer model for wave propagation and its ...
African Journals Online (AJOL)
This article concerns certain aspects of four parameter polymer models to study harmonic waves in the non-homogeneous polymer rods of varying density. There are two sections of this paper, in first section, the rheological behaviour of the model is discussed numerically and then it is solved analytically with the help of ...
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...
Aeroacoustics: Acoustic wave propagation; Aircraft noise prediction; Aeroacoustic instrumentation
Schwartz, I. R.
1976-01-01
The papers in this volume deal with recent research into acoustic-wave propagation through the atmosphere and progress in aeroacoustic instrumentation, facilities, and test techniques. Topics include the propagation of aircraft noise over long distances in the lower atmosphere, measured effects of turbulence on the rise time of a weak shock, sound scattering from atmospheric turbulence, saturation effects associated with sound propagation in a turbulent medium, and a computer model of the lightning-thunder process. Other papers discuss the development of a computer system for aircraft noise prediction; aircraft flyover noise measurements; and theories and methods for the prediction of ground effects on aircraft noise propagation, for the prediction of airframe aerodynamic noise, for turbine noise prediction, and for combustion noise prediction. Attention is also given to the use of Hartmann generators as sources of high-intensity sound in a large absorption flow-duct facility, an outdoor jet noise facility, factors in the design and performance of free-jet acoustic wind tunnels, and the use of a laser shadowgraph for jet noise diagnosis.
Effects of internal waves on sound propagation in the shallow waters of the continental shelves
Ong, Ming Yi
2016-01-01
Approved for public release; distribution is unlimited Sound waves propagating through the oceans are refracted by internal waves. In the shallow waters of the continental shelves, an additional downward refraction of sound waves due to internal waves can cause them to interact more often with the seabed, resulting in additional energy from the sound waves being dissipated into the seabed. This study investigates how internal waves affect sound propagation on the continental shelves. It fi...
Propagation of three-dimensional electron-acoustic solitary waves
Shalaby, M.; El-Labany, S. K.; Sabry, R.; El-Sherif, L. S.
2011-06-01
Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.
Propagation of three-dimensional electron-acoustic solitary waves
International Nuclear Information System (INIS)
Shalaby, M.; El-Sherif, L. S.; El-Labany, S. K.; Sabry, R.
2011-01-01
Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.
Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation
Directory of Open Access Journals (Sweden)
Gustavo Krause
2014-01-01
Full Text Available When the Hall effect is included in the magnetohydrodynamics equations (Hall-MHD model the wave propagation modes become coupled, but for propagation parallel to the ambient magnetic field the Alfvén mode decouples from the magnetosonic ones, resulting in circularly polarized waves that are described by the derivative nonlinear Schrödinger (DNLS equation. In this paper, the DNLS equation is numerically solved using spectral methods for the spatial derivatives and a fourth order Runge-Kutta scheme for time integration. Firstly, the nondiffusive DNLS equation is considered to test the validity of the method by verifying the analytical condition of modulational stability. Later, diffusive and excitatory effects are incorporated to compare the numerical results with those obtained by a three-wave truncation model. The results show that different types of attractors can exist depending on the diffusion level: for relatively large damping, there are fixed points for which the truncation model is a good approximation; for low damping, chaotic solutions appear and the three-wave truncation model fails due to the emergence of new nonnegligible modes.
International Nuclear Information System (INIS)
Zak, A; Ostachowicz, W; Krawczuk, M
2011-01-01
Damage of aircraft structural elements in any form always present high risks. Failures of these elements can be caused by various reasons including material fatigue or impact leading to damage initiation and growth. Detection of these failures at their earliest stage of development, estimation of their size and location, are one of the most crucial factors for each damage detection method. Structural health monitoring strategies based on propagation of guided elastic waves in structures and wave interaction with damage related discontinuities are very promising tools that offer not only damage detection capabilities, but are also meant to provide precise information about the state of the structures and their remaining lifetime. Because of that various techniques are employed to simulate and mimic the wave-discontinuity interactions. The use of various types of sensors, their networks together with sophisticated contactless measuring techniques are investigated both numerically and experimentally. Certain results of numerical simulations obtained by the use of the spectral finite element method are presented by the authors and related with propagation of guided elastic waves in shell-type aircraft structures. Two types of structures are considered: flat 2D panels with or without stiffeners and 3D shell structures. The applicability of two different damage detection approaches is evaluated in order to detect and localise damage in these structures. Selected results related with the use of laser scanning vibrometry are also presented and discussed by the authors.
Shan, Zhendong; Ling, Daosheng
2018-02-01
This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.
Wave propagation downstream of a high power helicon in a dipolelike magnetic field
International Nuclear Information System (INIS)
Prager, James; Winglee, Robert; Roberson, B. Race; Ziemba, Timothy
2010-01-01
The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.
Jiao, Fengyu; Wei, Peijun; Li, Yueqiu
2018-01-01
Reflection and transmission of plane waves through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces are studied in this paper. The secular equations in the flexoelectric piezoelectric material are first derived from the general governing equation. Different from the classical piezoelectric medium, there are five kinds of coupled elastic waves in the piezoelectric material with the microstructure effects taken into consideration. The state vectors are obtained by the summation of contributions from all possible partial waves. The state transfer equation of flexoelectric piezoelectric slab is derived from the motion equation by the reduction of order, and the transfer matrix of flexoelectric piezoelectric slab is obtained by solving the state transfer equation. By using the continuous conditions at the interface and the approach of partition matrix, we get the resultant algebraic equations in term of the transfer matrix from which the reflection and transmission coefficients can be calculated. The amplitude ratios and further the energy flux ratios of various waves are evaluated numerically. The numerical results are shown graphically and are validated by the energy conservation law. Based on these numerical results, the influences of two characteristic lengths of microstructure and the flexoelectric coefficients on the wave propagation are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical Solution of the Modified Equal Width Wave Equation
Directory of Open Access Journals (Sweden)
Seydi Battal Gazi Karakoç
2012-01-01
Full Text Available Numerical solution of the modified equal width wave equation is obtained by using lumped Galerkin method based on cubic B-spline finite element method. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. Accuracy of the proposed method is discussed by computing the numerical conserved laws 2 and ∞ error norms. The numerical results are found in good agreement with exact solution. A linear stability analysis of the scheme is also investigated.
Investigation of guided waves propagation in pipe buried in sand
International Nuclear Information System (INIS)
Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.
2014-01-01
The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence
Modeling of Electromagnetic Wave Propagation with Tapered Transmission Line
Lee, Kun-A.; Ko, Kwang-Cheol
2012-09-01
Tapered transmission line was used for impedance matching, for high voltage pulse, and atmospheric medium is applied to characteristic equation of tapered transmission line and reflection coefficient so that nonlinear load and circuit modeling of atmospheric medium was simulated by electromagnetic transient program (EMTP). A characteristic of atmospheric medium and Time delay are decided by inductance and capacitance of tapered transmission line. For electromagnetic wave propagation modeling, in this paper, tapered transmission line is implemented. It is difficult to model tapered transmission line directly. Other transmission line that can be expressed by the circuit is used. So object of this paper is efficient modeling of tapered transmission line.
Development of an analysis code for pressure wave propagation, (1)
International Nuclear Information System (INIS)
Tanaka, Yoshihisa; Sakano, Kosuke; Shindo, Yoshihisa
1974-11-01
We analyzed the propagation of the pressure-wave in the piping system of SWAT-1B rig by using SWAC-5 Code. We carried out analyses on the following parts. 1) A straight pipe 2) Branches 3) A piping system The results obtained in these analyses are as follows. 1) The present our model simulates well the straight pipe and the branch with the same diameters. 2) The present our model simulates approximately the branch with the different diameters and the piping system. (auth.)
Torsional Wave Propagation in a Pre-Stressed Structure with Corrugated and Loosely Bonded Surfaces
Directory of Open Access Journals (Sweden)
Singh Manoj K.
2017-12-01
Full Text Available An analytical model is presented to study the behaviour of propagation of torsional surface waves in initially stressed porous layer, sandwiched between an orthotropic half-space with initial stress and pre-stressed inhomogeneous anisotropic half-space. The boundary surfaces of the layer and halfspaces are taken as corrugated, as well as loosely bonded. The heterogeneity of the lower half-space is due to trigonometric variation in elastic parameters of the pre-stressed inhomogeneous anisotropic medium. Expression for dispersion relation has been obtained in closed form for the present analytical model to observe the effect of undulation parameter, flatness parameter and porosity on the propagation of torsional surface waves. The obtained dispersion relation is found to be in well agreement with classical Love wave equation for a particular case. The cases of ideally smooth interface and welded interface have also been analysed. Numerical example and graphical illustrations are made to demonstrate notable effect of initial stress, wave number, heterogeneity parameter and initial stress on the phase velocity of torsional surface waves.
Measurements on wave propagation characteristics of spiraling electron beams
Singh, A.; Getty, W. D.
1976-01-01
Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.
Elastic Wave Propagation in Concrete and Continuous Wavelet Transform
Chiang, Chih-Hung; Gi, Yu-Fung; Pan, Chi-Ling; Cheng, Chia-Chi
2005-04-01
Elastic wave methods, such as the ultrasonic pulse velocity and the impact echo, are often subject to multiple reflections at the boundaries of various constituents of concrete. Current study aims to improve the feature identification of elastic wave propagation due to buried objects in concrete slabs and cylinders. Embedded steel reinforcement, steel and PVC tubes, wooden disks, and rubber spheres are tested. The received signals are analyzed using continuous wavelet transform. As a result, signals are decomposed into distinctive frequency bands with transient information preserved. The interpretation of multiple reflections at different boundary conditions thus becomes more straightforward. Features related to reflections from steel bar, PVC tube, and steel tube can be readily identified in the magnitude plot of wavelet coefficients. Vibration modes of the concrete slab corresponding to different buried objects can also be separated based on corresponding time duration.
Propagation of pulsed waves in a magnetized chiroplasma
International Nuclear Information System (INIS)
Torres S, H.
1998-01-01
When subject to a constant magnetic field, chiroplasmas exhibit anisotropic constitutive parameters. For electronic chiroplasmas, the focus of this paper, this anisotropy must be described by using a permittivity tensor instead of the usual scalar permittivity. Each member of this tensor is also highly frequency dependent. This paper describes a finite difference time-domain formulation which incorporates both anisotropy and frequency dispersion at the same time , enabling the wide-band transient analysis of magnetoactive chiroplasma. Results are shown for the reflection and transmission through a magnetized chiroplasma layer which show the growing modes in the RCP chiro transverse wave. This stratified model can be scaled to solar photonic frequencies and plasma density to study the wave propagation in the ionosphere contaminated by aerosols and Cfc molecules. (Author)
Numerical Simulation and Experiment for Underwater Shock Wave in Newly Designed Pressure Vessel
Directory of Open Access Journals (Sweden)
M Shibuta
2016-09-01
Full Text Available Modern eating habits depend in large part on the development of food processing technology. Thermal treatments are often performed in the conventional food processing, but it can cause discoloration and loss of nutrients of the food by thermal processing or treatment. On the other hand, food processing using an underwater shock wave has little influence of heat and its processing time is very short, preventing the loss of nutrients. In this research optical observation experiment and the numerical simulation were performed, in order to understand and control the behavior of the underwater shock wave in the development of the processing container using an underwater shock wave for the factory and home. In this experiment a rectangular container was used to observe the behavior of the underwater shock wave. In the experiment, the shock wave was generated by using explosive on the shock wave generation side. The shock wave, which passed through the phosphor bronze and propagated from the aluminum sidewall, was observed on the processing container side. Numerical simulation of an analogous experimental model was investigated, where LS-DYNA software was used for the numerical simulation. The comparative study of the experiment and the numerical simulation was investigated. The behavior of a precursor shock wave from the device wall was able to be clarified. This result is used for development of the device in numerical simulation.
Effect of soil texture on the propagation and attenuation of acoustic wave at unsaturated conditions
Lo, Wei-Cheng; Yeh, Chao-Lung; Tsai, Chang-Tai
2007-05-01
SummaryA central issue in the successful application of acoustic wave method to detect subsurface hydrological properties is a better understanding of the influence of soil texture on the propagation and attenuation of acoustic wave as moisture content is varied, which was numerically investigated in the present study. Our earlier studies have demonstrated the existence of three different modes of acoustic wave in an elastic porous medium containing two immiscible, viscous, compressible fluids. Based on the dispersion equation obtained in the Lo-Sposito-Majer (LSM) model, the phase velocity and attenuation coefficient of the P1 and P2 waves which respectively propagate the fastest and second fastest were determined as a function of water saturation for 11 soil texture classes. The slowest wave (P3) was not characterized in this study since it does not travel far, due to very high attenuation. To provide a more general result, the calculated phase velocity and attenuation coefficient for different soil textures were normalized by those computed for sand. The normalization leads the resulting dimensionless parameters to be frequency independent throughout the whole range (up to 500 Hz) with Darcy's law remaining valid for the description of each fluid flow under wave excitation. The normalized phase velocity of the P1 wave was shown to have a substantially constant value at higher water saturations, but in the lower saturation range it first increases to reach a certain maximum value for different soil types and then decreases. The physical parameter controlling this phenomenon is the ratio of two effective non-wetting fluid storativity factors. Numerical results reveal that the normalized attenuation coefficient of the P1 wave is sensitive to soil texture and water saturation. Sand and loamy sand have the highest and second highest attenuation coefficients for the P1 wave, respectively. The magnitude of the normalized phase velocity of the P2 wave is found to be
Anisotropic capillary wave propagation in a ripple tank
Velazquez, Daniel; Crowder, Daniel; Linville, Jon; Wilson, Thomas
2007-10-01
A preliminary study has been undertaken to demonstrate the anisotropic wave propagation of capillary waves in a water ripple tank. We have fabricated, using a computer-controlled milling machine, a contoured surface upon a 12'' square, .5ex1-.1em/ -.15em.25ex2 '' thick Plexiglas plate with gradually deepened (˜4 mm) angular channels emanating from the center of the plate and spaced every ninety degrees, with an additional cylindrical well in the plate's center, to accept the vibrating ball of the wave generator. The plate is submerged in the ripple tank, with the cylindrical well aligned with the point source (ball), and the water level adjusted such that the minimum and maximum water depths are 2 and 6 mm respectively and resulting wavefronts have been photographed. Provided the difference between the minimum and maximum of the phase velocities (˜17, 23 cm/s) for the corresponding depths (2 and 6 mm) of the capillary waves, can be made appropriately large (˜25%) at a fixed frequency (˜5 Hz), then one would expect to observe interesting folds (`caustics') in the wavefront in the directions of largest phase velocity (along the channels), corresponding to zero-curvature inflection points in the slowness surface. (See J.P. Wolfe ``Phonon Imaging'' (Cambridge University Press, 1998)). We have observed anisotropic wavefronts but as yet, no evidence for the expected folds.
A combined ADER-DG and PML approach for simulating wave propagation in unbounded domains
Amler, Thomas
2012-09-19
In this work, we present a numerical approach for simulating wave propagation in unbounded domains which combines discontinuous Galerkin methods with arbitrary high order time integration (ADER-DG) and a stabilized modification of perfectly matched layers (PML). Here, the ADER-DG method is applied to Bérenger’s formulation of PML. The instabilities caused by the original PML formulation are treated by a fractional step method that allows to monitor whether waves are damped in PML region. In grid cells where waves are amplified by the PML, the contribution of damping terms is neglected and auxiliary variables are reset. Results of 2D simulations in acoustic media with constant and discontinuous material parameters are presented to illustrate the performance of the method.
Analysis of sound propagation in ducts using the wave envelope concept
Baumeister, K. J.
1974-01-01
A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow for plane wave input. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution does not oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude, and the number of grid points becomes independent of the sound frequency. Physically, the transformed pressure represents the amplitude of the conventional sound wave. Example solutions are presented for sound propagation in a one-dimensional straight hard-wall duct and in a two-dimensional straight soft-wall duct without steady flow. The numerical solutions show evidence of the existence along the duct wall of a developing acoustic pressure diffusion boundary layer which is similar in nature to the conventional viscous flow boundary layer. In order to better illustrate this concept, the wave equation and boundary conditions are written such that the frequency no longer appears explicitly in them. The frequency effects in duct propagation can be visualized solely as an expansion and stretching of the suppressor duct.
Directory of Open Access Journals (Sweden)
Hosein Ghaffarzadeh
Full Text Available Abstract This paper investigates the numerical modeling of the flexural wave propagation in Euler-Bernoulli beams using the Hermite-type radial point interpolation method (HRPIM under the damage quantification approach. HRPIM employs radial basis functions (RBFs and their derivatives for shape function construction as a meshfree technique. The performance of Multiquadric(MQ RBF to the assessment of the reflection ratio was evaluated. HRPIM signals were compared with the theoretical and finite element responses. Results represent that MQ is a suitable RBF for HRPIM and wave propagation. However, the range of the proper shape parameters is notable. The number of field nodes is the main parameter for accurate wave propagation modeling using HRPIM. The size of support domain should be less thanan upper bound in order to prevent high error. With regard to the number of quadrature points, providing the minimum numbers of points are adequate for the stable solution, but the existence of more points in damage region does not leads to necessarily the accurate responses. It is concluded that the pure HRPIM, without any polynomial terms, is acceptable but considering a few terms will improve the accuracy; even though more terms make the problem unstable and inaccurate.
Attarzadeh, M. A.; Nouh, M.
2018-05-01
One-dimensional phononic materials with material fields traveling simultaneously in space and time have been shown to break elastodynamic reciprocity resulting in unique wave propagation features. In the present work, a comprehensive mathematical analysis is presented to characterize and fully predict the non-reciprocal wave dispersion in two-dimensional space. The analytical dispersion relations, in the presence of the spatiotemporal material variations, are validated numerically using finite 2D membranes with a prescribed number of cells. Using omnidirectional excitations at the membrane's center, wave propagations are shown to exhibit directional asymmetry that increases drastically in the direction of the material travel and vanishes in the direction perpendicular to it. The topological nature of the predicted dispersion in different propagation directions are evaluated using the computed Chern numbers. Finally, the degree of the 2D non-reciprocity is quantified using a non-reciprocity index (NRI) which confirms the theoretical dispersion predictions as well as the finite simulations. The presented framework can be extended to plate-type structures as well as 3D spatiotemporally modulated phononic crystals.
Directory of Open Access Journals (Sweden)
Wenwan Ding
2016-01-01
Full Text Available An improved fractal sea surface model, which can describe the capillary waves very well, is introduced to simulate the one-dimension rough sea surface. In this model, the propagation of electromagnetic waves (EWs is computed by the parabolic equation (PE method using the finite-difference (FD algorithm. The numerical simulation results of the introduced model are compared with those of the Miller-Brown model and the Elfouhaily spectrum inversion model. It has been shown that the effects of the fine structure of the sea surface on the EWs propagation in the introduced model are more apparent than those in the other two models.
Regional wave propagation using the discontinuous Galerkin method
Directory of Open Access Journals (Sweden)
S. Wenk
2013-01-01
Full Text Available We present an application of the discontinuous Galerkin (DG method to regional wave propagation. The method makes use of unstructured tetrahedral meshes, combined with a time integration scheme solving the arbitrary high-order derivative (ADER Riemann problem. This ADER-DG method is high-order accurate in space and time, beneficial for reliable simulations of high-frequency wavefields over long propagation distances. Due to the ease with which tetrahedral grids can be adapted to complex geometries, undulating topography of the Earth's surface and interior interfaces can be readily implemented in the computational domain. The ADER-DG method is benchmarked for the accurate radiation of elastic waves excited by an explosive and a shear dislocation source. We compare real data measurements with synthetics of the 2009 L'Aquila event (central Italy. We take advantage of the geometrical flexibility of the approach to generate a European model composed of the 3-D EPcrust model, combined with the depth-dependent ak135 velocity model in the upper mantle. The results confirm the applicability of the ADER-DG method for regional scale earthquake simulations, which provides an alternative to existing methodologies.
Surface Waves Propagating on Grounded Anisotropic Dielectric Slab
Directory of Open Access Journals (Sweden)
Zhuozhu Chen
2018-01-01
Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.
Wecpos - Wave Energy Coastal Protection Oscillating System: A Numerical Assessment
Dentale, Fabio; Pugliese Carratelli, Eugenio; Rzzo, Gianfranco; Arsie, Ivan; Davide Russo, Salvatore
2010-05-01
In recent years, the interest in developing new technologies to produce energy with low environmental impact by using renewable sources has grown exponentially all over the world. In this context, the experiences made to derive electricity from the sea (currents, waves, etc.) are of particular interest. At the moment, due to the many existing experiments completed or still in progress, it is quite impossible explain what has been obtained but it is worth mentioning the EMEC, which summarizes the major projects in the world. Another important environmental aspect, also related to the maritime field, is the coastal protection from the sea waves. Even in this field, since many years, the structural and non-structural solutions which can counteract this phenomenon are analyzed, in order to cause the least possible damage to the environment. The studies in development by the researchers of the University of Salerno are based on these two aspect previously presented. Considering the technologies currently available, a submerged system has been designed, WECPOS (Wave Energy Coastal Protection Oscillating System), to be located on relatively shallow depths, to can be used simultaneously for both electricity generation and for the coastal protection using the oscillating motion of the water particles. The single element constituting the system is realized by a fixed base and three movable panels that can fluctuate in a fixed angle. The waves interact with the panels generating an alternative motion which can be exploited to produce electricity. At the same time, the constraint movement imposed for the rotation of the panels is a barrier to the wave propagation phenomena, triggering the breaking in the downstream part of the device. So the wave energy will be dissipated obtaining a positive effect for the coastal protection. Currently, the efficiency and effectiveness of the system (WECPOS single module) has been studied by using numerical models. Using the FLOW-3D
Numerical Modelling of Wave Run-Up
DEFF Research Database (Denmark)
Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...
High-resolution seismic wave propagation using local time stepping
Peter, Daniel
2017-03-13
High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.
Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials
Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.
2018-01-01
The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.
Plasma and radio waves from Neptune: Source mechamisms and propagation
Menietti, J. Douglas
1994-01-01
The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.
Wave propagation simulation of radio occultations based on ECMWF refractivity profiles
DEFF Research Database (Denmark)
von Benzon, Hans-Henrik; Høeg, Per
2015-01-01
This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated...... of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get...... a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise...
Directory of Open Access Journals (Sweden)
Xiaozhong Ren
2015-01-01
Full Text Available A three-dimensional numerical flume is developed to study cnoidal wave interaction with multiple arranged perforated quasi-ellipse caissons. The continuity equation and the Navier-Stokes equations are used as the governing equation, and the VOF method is adopted to capture the free surface elevation. The equations are discretized on staggered cells and then solved using a finite difference method. The generation and propagation of cnoidal waves in the numerical flume are tested first. And the ability of the present model to simulate interactions between waves and structures is verified by known experimental results. Then cnoidal waves with varying incident wave height and period are generated and interact with multiple quasi-ellipse caissons with and without perforation. It is found that the perforation plays an effective role in reducing wave runup/rundown and wave forces on the caissons. The wave forces on caissons reduce with the decreasing incident wave period. The influence of the transverse distance of multiple caissons on wave forces is also investigated. A closer transverse distance between caissons can produce larger wave forces. But when relative adjacent distance L/D (L is the transverse distance and D is the width of the quasi-ellipse caisson is larger than 3, the effect of adjacent distance is limited.
Wave propagation in fractal-inspired self-similar beam lattices
Energy Technology Data Exchange (ETDEWEB)
Lim, Qi Jian [Engineering Science Programme, National University of Singapore, Singapore 117576 (Singapore); Wang, Pai [Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Koh, Soo Jin Adrian [Engineering Science Programme, National University of Singapore, Singapore 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, Singapore 117576 (Singapore); Khoo, Eng Huat [Engineering Science Programme, National University of Singapore, Singapore 117576 (Singapore); A*STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Bertoldi, Katia [Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Kavli Institute, Harvard University, Cambridge, Massachusetts 02138 (United States)
2015-11-30
We combine numerical analysis and experiments to investigate the effect of hierarchy on the propagation of elastic waves in triangular beam lattices. While the response of the triangular lattice is characterized by a locally resonant band gap, both Bragg-type and locally resonant gaps are found for the hierarchical lattice. Therefore, our results demonstrate that structural hierarchy can be exploited to introduce an additional type of band gaps, providing a robust strategy for the design of lattice-based metamaterials with hybrid band gap properties (i.e., possessing band gaps that arises from both Bragg scattering and localized resonance)
Excitation of Structures Near Railway Tracks-Analysis of the Wave Propagation Path
DEFF Research Database (Denmark)
Bucinskas, Paulius; Andersen, Lars Vabbersgaard
2017-01-01
High-speed rails are an attractive alternative to other forms of intercity transportation. It is a fast, cost-efficient and environmentally friendly solution, which is being developed in various countries across the world. However, in order to be successful, high-speed rails need to transport....... This work aims to analyse how different features in the wave propagation path affect the excitation of a structure. A numerical model is constructed to account for the track structure and the underlying soil. The model utilizes a finite-element model for the structures together with a semi-analytical model...
A generalized multiscale finite element method for elastic wave propagation in fractured media
Chung, Eric T.
2016-02-26
In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.
Numerical Modelling of Wave Run-Up: Regular Waves
DEFF Research Database (Denmark)
Ramirez, Jorge; Frigaard, Peter; Andersen, Thomas Lykke
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...
Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates
International Nuclear Information System (INIS)
Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng
2015-01-01
Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)
Pelat, Adrien; Felix, Simon; Pagneux, Vincent
2011-03-01
In modeling the wave propagation within a street canyon, particular attention must be paid to the description of both the multiple reflections of the wave on the building facades and the radiation in the free space above the street. The street canyon being considered as an open waveguide with a discontinuously varying cross-section, a coupled modal-finite element formulation is proposed to solve the three-dimensional wave equation within. The originally open configuration-the street canyon open in the sky above-is artificially turned into a close waveguiding structure by using perfectly matched layers that truncate the infinite sky without introducing numerical reflection. Then the eigenmodes of the resulting waveguide are determined by a finite element method computation in the cross-section. The eigensolutions can finally be used in a multimodal formulation of the wave propagation along the canyon, given its geometry and the end conditions at its extremities: initial field condition at the entrance and radiation condition at the output. © 2011 Acoustical Society of America
Features of propagation and recordingof the stress waves in plates of finite thickness
Directory of Open Access Journals (Sweden)
Cherednichenko Rostislav Andreevich
2014-02-01
Full Text Available This work was carried out to study at the same time the dynamics of wave propagation in plane and axisymmetric plates by finite-difference numerical calculation and by the method of dynamic photoelasticity.In many cases it is possible to carry out the investigation of the dynamic stressed state of solid structures under the impact of seismic waves in plane statement, observing the foundation and the building itself in the conditions of plane deformation. Such problems in structural mechanics are usually investigated on plates providing the conditions of generalized plane stressed condition and accounting for the necessity of the known substitution of elastic constants. In case of applying the model of generalized plane stressed state for investigating two-dimensional waves’ propagation in three-dimensional elastic medium it may be necessary to observe certain additional conditions, which for example limit the class of external impacts of high frequencies (short waves. The use of candling for wave recording in plane models explored with the method of dynamic photoelasticity in the observed cases of impulse loading of the plates with finite thickness gives satisfactory results.
Nakata, Satoshi; Ezaki, Takato; Ikura, Yumihiko S; Kitahata, Hiroyuki
2013-10-17
The propagation of a chemical wave on an inhibitory field, which was wedged between two excitable fields, was investigated for the photosensitive Belousov-Zhabotinsky (BZ) reaction. With an increase in the width of the inhibitory field between the excitable fields (W), the chemical wave divided into two waves at W = Wα. The divided chemical waves then coalesced at W = Wβ with a decrease in W. Wα was larger than Wβ, i.e., hysteresis on the width of the inhibitory field was observed between the division and coalescence of the chemical wave. The experimental results were qualitatively reproduced by a numerical calculation based on a three-variable Oregonator model modified for the photosensitive BZ reaction. These results suggest that the chemical wave may be preserved on the inhibitory field due to an activator supplied from a chemical wave on the excitable field.
Bulk elastic wave propagation in partially saturated porous solids
International Nuclear Information System (INIS)
Berryman, J.G.; Thigpen, L.; Chin, R.C.Y.
1988-01-01
The linear equations of motion that describe the behavior of small disturbances in a porous solid containing both liquid and gas are solved for bulk wave propagation. The equations have been simplified by neglecting effects due to changes in capillary pressure. With this simplifying assumption, the equations reduce to two coupled (vector) equations of the form found in Biot's equations (for full saturation) but with more complicated coefficients. As in fully saturated solids, two shear waves with the same speed but different polarizations exist as do two compressional waves with distinct speeds. Attenuation effects can be enhanced in the partially saturated solid, depending on the distribution of gas in the pore space. Two models of the liquid/gas spatial distribution are considered: a segregated-fluids model and a mixed-fluids model. The two models predict comparable attentuation when the gas saturation is low, but the segregated-fluids model predicts a more rapid roll-off of attenuation as the gas saturation increases
Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza
2014-01-01
The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates. Copyright © 2013 Elsevier B.V. All rights reserved.
Numerical simulation of wave interactions during sudden stratospheric warming
Gavrilov, N. M.; Koval, A. V.; Pogoreltsev, A. I.; Savenkova, E. N.
2017-11-01
Parameterizations of normal atmospheric modes (NAMs) and orographic gravity waves (OGWs) are implemented into the mechanistic general circulation model of the middle and upper atmosphere (MUA). Numerical experiments of sudden stratospheric warming (SSW) events are performed for climatological conditions typical for January and February using meteorological reanalysis data from the UK MET Office in the MUA model averaged over the years 1992-2011 with the easterly phase of quasi-biennial oscillation (QBO). The simulation shows that an increase in the OGW amplitudes occurs at altitudes higher than 30 km in the Northern Hemisphere after SSW. The OGW amplitudes have maximums at altitudes of about 50 km over the North American and European mountain systems before and during SSW, as well as over the Himalayas after SSW. At high latitudes of the Northern Hemisphere, significant (up to 50-70%) variations in the amplitudes of stationary planetary waves (SPWs) are observed during and after the SSW. Westward travelling NAMs have local amplitude maximums not only in the Northern Hemisphere, but also in the Southern Hemisphere, where there are waveguides for the propagation of these modes. Calculated variations of SPW and NAM amplitudes correspond to changes in the mean temperature and wind fields, as well as the Eliassen-Palm flux and atmospheric refractive index for the planetary waves, during SSW. Including OGW thermal and dynamical effects leads to an increase in amplitude (by 30-70%) of almost all SPWs before and during SSW and to a decrease (up to 20-100%) after the SSW at middle and high latitudes of the Northern Hemisphere.
Iterative procedures for wave propagation in the frequency domain
Energy Technology Data Exchange (ETDEWEB)
Kim, Seongjai [Rice Univ., Houston, TX (United States); Symes, W.W.
1996-12-31
A parallelizable two-grid iterative algorithm incorporating a domain decomposition (DD) method is considered for solving the Helmholtz problem. Since a numerical method requires choosing at least 6 to 8 grid points per wavelength, the coarse-grid problem itself is not an easy task for high frequency applications. We solve the coarse-grid problem using a nonoverlapping DD method. To accelerate the convergence of the iteration, an artificial damping technique and relaxation parameters are introduced. Automatic strategies for finding efficient parameters are discussed. Numerical results are presented to show the effectiveness of the method. It is numerically verified that the rate of convergence of the algorithm depends on the wave number sub-linearly and does not deteriorate as the mesh size decreases.
Bou Matar, Olivier; Gasmi, Noura; Zhou, Huan; Goueygou, Marc; Talbi, Abdelkrim
2013-03-01
A numerical method to compute propagation constants and mode shapes of elastic waves in layered piezoelectric-piezomagnetic composites, potentially deposited on a substrate, is described. The basic feature of the method is the expansion of particle displacement, stress fields, electric and magnetic potentials in each layer on different polynomial bases: Legendre for a layer of finite thickness and Laguerre for the semi-infinite substrate. The exponential convergence rate of the method for propagation of Love waves is numerically verified. The main advantage of the method is to directly determine complex wave numbers for a given frequency via a matricial eigenvalue problem, in a way that no transcendental equation has to be solved. Results are presented and the method is discussed.
Huang, Wei; Ji, Hongli; Qiu, Jinhao; Cheng, Li
2018-03-01
An Acoustic Black Hole (ABH) indentation embedded in thin-walled structures has been proved remarkably useful for broadband flexural wave focalization, in which the phase velocity of the flexural waves and the refractive index of the media undergo gradual changes from the outside towards the center of the indentation. A generalized two-dimensional ABH indentation can be defined by three geometric parameters: a power index, an extra thickness and a radius of a plateau at the indentation center. The dependence of the energy focalization on these parameters as well as the energy focalization process is of paramount importance for the understanding and design of effective ABH indentations. This work aims at investigating the energy focalization characteristics of flexural waves in such generalized ABH indentations. The calculation of the flexural ray trajectories is conducted to reveal and analyze the wave propagation features through numerical integration of the eikonal equation from the Geometric Acoustics Approximation (GAA). The theoretical results are verified by both experiment using wave visualization technique based on laser acoustic scanning method and finite element (FE) simulations. Finally, the influence of the geometric parameters on the flexural wave focalization characteristics in ABH indentations is discussed in detail.
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2008-01-01
, the model equation considered here is capable to describe waves propagating in opposite directions. Owing to the Hamiltonian structure of the proposed model equation, the front solution is in agreement with the classical Rankine Hugoniot relations. The exact front solution propagates at supersonic speed...
Variational structure of inverse problems in wave propagation and vibration
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
1995-03-01
Practical algorithms for solving realistic inverse problems may often be viewed as problems in nonlinear programming with the data serving as constraints. Such problems are most easily analyzed when it is possible to segment the solution space into regions that are feasible (satisfying all the known constraints) and infeasible (violating some of the constraints). Then, if the feasible set is convex or at least compact, the solution to the problem will normally lie on the boundary of the feasible set. A nonlinear program may seek the solution by systematically exploring the boundary while satisfying progressively more constraints. Examples of inverse problems in wave propagation (traveltime tomography) and vibration (modal analysis) will be presented to illustrate how the variational structure of these problems may be used to create nonlinear programs using implicit variational constraints.
Radio-wave propagation for space communications systems
Ippolito, L. J.
1981-01-01
The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.
Modes in light wave propagating in semiconductor laser
Manko, Margarita A.
1994-01-01
The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.
Chan, Jesse
2018-03-01
Weight-adjusted inner products are easily invertible approximations to weighted $L^2$ inner products. These approximations can be paired with a discontinuous Galerkin (DG) discretization to produce a time-domain method for wave propagation which is low storage, energy stable, and high order accurate for arbitrary heterogeneous media and curvilinear meshes. In this work, we extend weight-adjusted DG (WADG) methods to the case of matrix-valued weights, with the linear elastic wave equation as an application. We present a DG formulation of the symmetric form of the linear elastic wave equation, with upwind-like dissipation incorporated through simple penalty fluxes. A semi-discrete convergence analysis is given, and numerical results confirm the stability and high order accuracy of WADG for several problems in elastic wave propagation.
An Experimental and Numerical Study of Long Wave Run-Up on a Plane Beach
Directory of Open Access Journals (Sweden)
Ulrike Drähne
2015-12-01
Full Text Available This research is to facilitate the current understanding of long wave dynamics at coasts and during on-land propagation; experimental and numerical approaches are compared against existing analytical expressions for the long wave run-up. Leading depression sinusoidal waves are chosen to model these dynamics. The experimental study was conducted using a new pump-driven wave generator and the numerical experiments were carried out with a one-dimensional discontinuous Galerkin non-linear shallow water model. The numerical model is able to accurately reproduce the run-up elevation and velocities predicted by the theoretical expressions. Depending on the surf similarity of the generated waves and due to imperfections of the experimental wave generation, riding waves are observed in the experimental results. These artifacts can also be confirmed in the numerical study when the data from the physical experiments is assimilated. Qualitatively, scale effects associated with the experimental setting are discussed. Finally, shoreline velocities, run-up and run-down are determined and shown to largely agree with analytical predictions.
International Nuclear Information System (INIS)
Johnson, R.S.
1984-01-01
The propagation of surface waves - that is 'third' sound -on superfluid helium is considered. The fluid is treated as a continuum, using the two-fluid model of Landau, and incorporating the effects of healing, relaxation, thermal conductivity and Newtonian viscosity. A linear theory is developed which includes some discussion of the matching to the outer regions of the vapour. This results in a comprehensive propagation speed for linear waves, although a few properties of the flow are left undetermined at this order. A nonlinear theory is then outlined which leads to the Burgers equation in an appropriate far field, and enables the leading-order theory to be concluded. Some numerical results, for two temperatures, are presented by first recording the Helmholtz free energy as a polynomial in densities, but only the equilibrium state can be satisfactorily reproduced. The propagation speed, as a function of film thickness, is roughly estimated. The looked-for reduction in the predicted speeds is evident, but the magnitude of this reduction is too large for very thin films. However, these analytical results should prove more effective when a complete and accurate description of the Helmholtz free energy is available. (author)
Radio wave propagation in the Martian polar deposits: models and implications for radar sounding.
Ilyushin, Ya. A.
In the present study the propagation of electromagnetic waves in the northern polar ice sheet of Mars is considered Several different scenarios of the structure of the polar deposits and composition of the ice compatible with previously published observational data are proposed Both analytical and numerical simulations of ultra wide band chirp radar pulse propagating through the cap are performed Approximate approach based on the non-coherent theory of the radiative transfer in layered media has been applied to the problem of the propagation of radar pulses in the polar caps Both 1D and 2D and 3D geometry applicable to the orbital and landed radar instruments are studied The side clutter and phase distortions of the signal are also addressed analyzed The possibilities of retrieval of the geological information depending on transparency of the polar cap for radio waves are discussed If the polar cap is relatively transparent the echo from the base of the sheet should be clearly distinctive and interpretable in terms of basal topography of the cap In the case of moderate optical thickness coherent basal echo is corrupted by strong multiple scattering in the layered structure However some conclusions about basal conditions could be made from the signals for example the subglacial lakes may be detected Finally optically thick polar caps prevent any sounding of the base so only the medium itself can be characterized by GPR measurements e g the impurity content in the ice can be found Ilyushin Y A R Seu
International Nuclear Information System (INIS)
Bakkali, M El; Lhémery, A; Baronian, V; Chapuis, B
2015-01-01
Elastic guided waves (GW) are used to inspect pipeworks in various industries. Modelling tools for simulating GW inspection are necessary to understand complex scattering phenomena occurring at specific features (welds, elbows, junctions...). In pipeworks, straight pipes coexist with elbows. GW propagation in the former cases is well-known, but is less documented in the latter. Their scattering at junction of straight and curved pipes constitutes a complex phenomenon. When a curved part is joined to two straight parts, these phenomena couple and give rise to even more complex wave structures. In a previous work, the SemiAnalytic Finite Element method extended to curvilinear coordinates was used to handle GW propagation in elbows, combined with a mode matching method to predict their scattering at the junction with a straight pipe. Here, a pipework comprising an arbitrary number of elbows of finite length and of different curvature linking straight pipes is considered. A modal scattering matrix is built by cascading local scattering and propagation matrices. The overall formulation only requires meshing the pipe section to compute both the modal solutions and the integrals resulting from the mode-matching method for computing local scattering matrices. Numerical predictions using this approach are studied and compared to experiments
Stekovic, Svjetlana; Nissen, Erin; Bhowmick, Mithun; Stewart, Donald S.; Dlott, Dana D.
2017-06-01
The objective of this work is to numerically analyze shock behavior as it propagates through compressed, unreactive and reactive liquid, such as liquid water and liquid nitromethane. Parameters, such as pressure and density, are analyzed using the Mie-Gruneisen EOS and each multi-material system is modeled using the ALE3D software. The motivation for this study is based on provided high-resolution, optical interferometer (PDV) and optical pyrometer measurements. In the experimental set-up, a liquid is placed between an Al 1100 plate and Pyrex BK-7 glass. A laser-driven Al 1100 flyer impacts the plate, causing the liquid to be highly compressed. The numerical model investigates the influence of the high pressure, shock-compressed behavior in each liquid, the energy transfer, and the wave impedance at the interface of each material in contact. The numerical results using ALE3D will be validated by experimental data. This work aims to provide further understanding of shock-compressed behavior and how the shock influences phase transition in each liquid.
High-Order Wave Propagation Algorithms for Hyperbolic Systems
Ketcheson, David I.
2013-01-22
We present a finite volume method that is applicable to hyperbolic PDEs including spatially varying and semilinear nonconservative systems. The spatial discretization, like that of the well-known Clawpack software, is based on solving Riemann problems and calculating fluctuations (not fluxes). The implementation employs weighted essentially nonoscillatory reconstruction in space and strong stability preserving Runge--Kutta integration in time. The method can be extended to arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near steady state. This well-balancing is achieved through the $f$-wave Riemann solver and a novel wave-slope WENO reconstruction procedure. The wide applicability and advantageous properties of the method are demonstrated through numerical examples, including problems in nonconservative form, problems with spatially varying fluxes, and problems involving near-equilibrium solutions of balance laws.
Numerical modelling of extreme waves by Smoothed Particle Hydrodynamics
Directory of Open Access Journals (Sweden)
M. H. Dao
2011-02-01
Full Text Available The impact of extreme/rogue waves can lead to serious damage of vessels as well as marine and coastal structures. Such extreme waves in deep water are characterized by steep wave fronts and an energetic wave crest. The process of wave breaking is highly complex and, apart from the general knowledge that impact loadings are highly impulsive, the dynamics of the breaking and impact are still poorly understood. Using an advanced numerical method, the Smoothed Particle Hydrodynamics enhanced with parallel computing is able to reproduce well the extreme waves and their breaking process. Once the waves and their breaking process are modelled successfully, the dynamics of the breaking and the characteristics of their impact on offshore structures could be studied. The computational methodology and numerical results are presented in this paper.
Surface wave propagation effects on buried segmented pipelines
Directory of Open Access Journals (Sweden)
Peixin Shi
2015-08-01
Full Text Available This paper deals with surface wave propagation (WP effects on buried segmented pipelines. Both simplified analytical model and finite element (FE model are developed for estimating the axial joint pullout movement of jointed concrete cylinder pipelines (JCCPs of which the joints have a brittle tensile failure mode under the surface WP effects. The models account for the effects of peak ground velocity (PGV, WP velocity, predominant period of seismic excitation, shear transfer between soil and pipelines, axial stiffness of pipelines, joint characteristics, and cracking strain of concrete mortar. FE simulation of the JCCP interaction with surface waves recorded during the 1985 Michoacan earthquake results in joint pullout movement, which is consistent with the field observations. The models are expanded to estimate the joint axial pullout movement of cast iron (CI pipelines of which the joints have a ductile tensile failure mode. Simplified analytical equation and FE model are developed for estimating the joint pullout movement of CI pipelines. The joint pullout movement of the CI pipelines is mainly affected by the variability of the joint tensile capacity and accumulates at local weak joints in the pipeline.
International Nuclear Information System (INIS)
Appert, K.; Vaclavik, J.; Villard, L.; Hellsten, T.
1986-01-01
A system of two second-order ordinary differential equations describing wave propagation in a hot plasma is solved numerically by the finite element method involving standard linear and cubic elements. Evanescent short-wavelength modes do not constitute a problem because of the variational nature of the method. It is straightforward to generalize the method to systems of equations with more than two equations. The performance of the method is demonstrated on known physical situations and is measured by investigating the convergence properties. Cubic elements perform much better than linear ones. In an application it is shown that global plasma oscillations might have an importance for the linear wave conversion in the ion-cyclotron range of frequency. (orig.)
Ying, Wenjun; Henriquez, Craig S
2015-01-01
A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented.
Directory of Open Access Journals (Sweden)
Wenjun Ying
2015-01-01
Full Text Available A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented.
Seismic wave propagation in non-homogeneous elastic media by boundary elements
Manolis, George D; Rangelov, Tsviatko V; Wuttke, Frank
2017-01-01
This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both ...
Asymmetric first order shear horizontal guided waves propagation in a tapered plate
International Nuclear Information System (INIS)
Chen, Jiu-Jiu; Song, Guang-Huang; Han, Xu
2015-01-01
In this paper, through numerical simulation of the first order shear horizontal guided waves propagation in a homogeneous tapered plate, we have realized sound unidirectional transmission based on the mode conversion mechanism. We also find that the contrast transmission ratio of unidirectional transmission is highly influenced by the slope angle of tapered edge. And the working frequency range of the asymmetric transmission can be easily controlled by the height of tapered surface or the thickness of slab. This asymmetric system shows potentially significant applications in various sound devices. - Highlights: • We study the sound unidirectional transmission for SH 1 guided wave in a homogeneous tapered plate. • The contrast transmission ratio of unidirectional transmission is highly influenced by the slope angle. • The working frequency range of unidirectional transmission can be easily controlled by structure parameters
Anton, Steven M.
2008-04-01
While graphene has been studied by theoreticians for over half a century, the two dimensional crystal lattice has only recently been realized experimentally. As such, theoretical work in the properties of graphene has exploded. A variety of these properties, which are truly exceptional and unique, have engendered much research into carbon based electronics, of which graphene is generally the most fundamental unit. In this thesis, we seek to characterize basic electronic properties of graphene nanoribbons. We begin with a tight-binding model of graphene and an analysis of the electronic band structure of the infinite sheet and semi-infinite nanoribbons. Also employing the spectral method, we create, inject, and propagate various types of wave packets infinite wires. A key effect that is expected is the so called Zitterbewegung oscillation of the wave packet center. Results are compared to theoretical predictions based on analytical methods rather than numerical simulations.
Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Agio, Mario [Iowa State Univ., Ames, IA (United States)
2002-12-31
This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.
Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals
International Nuclear Information System (INIS)
Mario Agio
2002-01-01
This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser
Propagation of Love waves in an elastic layer with void pores
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
of longitudinal and shear waves in void media and came to the conclusion that there may be two wave fronts for ... The present paper attempts to examine Love waves in elastic media containing voids. The mechanical ..... References. Achenbach J D 1973 Wave propagation in elastic solids (New York: North Holland).
Local numerical modelling of ultrasonic guided waves in linear and nonlinear media
Packo, Pawel; Radecki, Rafal; Kijanka, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear ultrasonic techniques provide improved damage sensitivity compared to linear approaches. The combination of attractive properties of guided waves, such as Lamb waves, with unique features of higher harmonic generation provides great potential for characterization of incipient damage, particularly in plate-like structures. Nonlinear ultrasonic structural health monitoring techniques use interrogation signals at frequencies other than the excitation frequency to detect changes in structural integrity. Signal processing techniques used in non-destructive evaluation are frequently supported by modeling and numerical simulations in order to facilitate problem solution. This paper discusses known and newly-developed local computational strategies for simulating elastic waves, and attempts characterization of their numerical properties in the context of linear and nonlinear media. A hybrid numerical approach combining advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE) is proposed for unique treatment of arbitrary strain-stress relations. The iteration equations of the method are derived directly from physical principles employing stress and displacement continuity, leading to an accurate description of the propagation in arbitrarily complex media. Numerical analysis of guided wave propagation, based on the newly developed hybrid approach, is presented and discussed in the paper for linear and nonlinear media. Comparisons to Finite Elements (FE) are also discussed.
The impact of crustal density variations on seismic wave propagation
Plonka, A.; Fichtner, A.
2014-12-01
Lateral density variations are the source of mass transport in the Earth at all scales, acting as drivers of convective motion. However, the density structure of the Earth remains largely unknown since classic seismic observables and gravity provide only weak constraints with strong trade-offs. Current density models are therefore often based on velocity scaling, making strong assumptions on the origin of structural heterogeneities, which may not necessarily be correct.We propose to develop a seismic tomography technique that directly inverts for density, using complete seismograms rather than arrival times of certain waves only. The first task in this challenge is to systematically study the imprints of density on synthetic seismograms.To compute the full seismic wavefield in a 3D heterogeneous medium without making significant approximations, we usenumerical wave propagation based on a spectral-element discretization of the seismic wave equation. We consider a 2000 by 1000 km wide and 500 km deep spherical section, with the 1D Earth model PREM (with 40 km crust thickness) as a background. Onto this (in the uppermost 40 km) we superimpose 3D randomly generated velocity and density heterogeneities of various magnitudes and correlation lenghts. We use different random realizations of heterogeneity distribution.We compare the synthetic seismograms for 3D velocity and density structure with 3D velocity structure and with the 1D background, calculating relative amplitude differences and timeshifts as functions of time and frequency.Our analyses indicate that reasonably sized density variations within the crust can leave a strong imprint on both traveltimes and amplitudes. This suggests (1) that crustal tomography can be significantly biased when density heterogeneities are not properly accounted for, and (2) that the solution of the seismic inverse problem for density may become feasible.
Impact of inhomogeneity on SH-type wave propagation in an initially stressed composite structure
Saha, S.; Chattopadhyay, A.; Singh, A. K.
2018-02-01
The present analysis has been made on the influence of distinct form of inhomogeneity in a composite structure comprised of double superficial layers lying over a half-space, on the phase velocity of SH-type wave propagating through it. Propagation of SH-type wave in the said structure has been examined in four distinct cases of inhomogeneity viz. when inhomogeneity in double superficial layer is due to exponential variation in density only (Case I); when inhomogeneity in double superficial layers is due to exponential variation in rigidity only (Case II); when inhomogeneity in double superficial layer is due to exponential variation in rigidity, density and initial stress (Case III) and when inhomogeneity in double superficial layer is due to linear variation in rigidity, density and initial stress (Case IV). Closed-form expression of dispersion relation has been accomplished for all four aforementioned cases through extensive application of Debye asymptotic analysis. Deduced dispersion relations for all the cases are found in well-agreement to the classical Love-wave equation. Numerical computation has been carried out to graphically demonstrate the effect of inhomogeneity parameters, initial stress parameters as well as width ratio associated with double superficial layers in the composite structure for each of the four aforesaid cases on dispersion curve. Meticulous examination of distinct cases of inhomogeneity and initial stress in context of considered problem has been carried out with detailed analysis in a comparative approach.
Propagation of multidimensional nonlinear waves and kinematical conservation laws
Prasad, Phoolan
2017-01-01
This book formulates the kinematical conservation laws (KCL), analyses them and presents their applications to various problems in physics. Finally, it addresses one of the most challenging problems in fluid dynamics: finding successive positions of a curved shock front. The topics discussed are the outcome of collaborative work that was carried out mainly at the Indian Institute of Science, Bengaluru, India. The theory presented in the book is supported by referring to extensive numerical results. The book is organised into ten chapters. Chapters 1–4 offer a summary of and briefly discuss the theory of hyperbolic partial differential equations and conservation laws. Formulation of equations of a weakly nonlinear wavefront and those of a shock front are briefly explained in Chapter 5, while Chapter 6 addresses KCL theory in space of arbitrary dimensions. The remaining chapters examine various analyses and applications of KCL equations ending in the ultimate goal-propagation of a three-dimensional curved sho...
Homogeneous microwave field emitted propagating spin waves: Direct imaging and modeling
Lohman, Mathis; Mozooni, Babak; McCord, Jeffrey
2018-03-01
We explore the generation of propagating dipolar spin waves by homogeneous magnetic field excitation in the proximity of the boundaries of magnetic microstructures. Domain wall motion, precessional dynamics, and propagating spin waves are directly imaged by time-resolved wide-field magneto-optical Kerr effect microscopy. The aspects of spin wave generation are clarified by micromagnetic calculations matching the experimental results. The region of dipolar spin wave formation is confined to the local resonant excitation due to non-uniform internal demagnetization fields at the edges of the patterned sample. Magnetic domain walls act as a border for the propagation of plane and low damped spin waves, thus restraining the spin waves within the individual magnetic domains. The findings are of significance for the general understanding of structural and configurational magnetic boundaries for the creation, the propagation, and elimination of spin waves.
Remarks on the parallel propagation of small-amplitude dispersive Alfvénic waves
Directory of Open Access Journals (Sweden)
S. Champeaux
1999-01-01
Full Text Available The envelope formalism for the description of a small-amplitude parallel-propagating Alfvén wave train is tested against direct numerical simulations of the Hall-MHD equations in one space dimension where kinetic effects are neglected. It turns out that the magnetosonic-wave dynamics departs from the adiabatic approximation not only near the resonance between the speed of sound and the Alfvén wave group velocity, but also when the speed of sound lies between the group and phase velocities of the Alfvén wave. The modulational instability then does not anymore affect asymptotically large scales and strong nonlinear effects can develop even in the absence of the decay instability. When the Hall-MHD equations are considered in the long-wavelength limit, the weakly nonlinear dynamics is accurately reproduced by the derivative nonlinear Schrödinger equation on the expected time scale, provided no decay instabilities are present. The stronger nonlinear regime which develops at later time is captured by including the coupling to the nonlinear dynamics of the magnetosonic waves.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, T.; Isei, T. (National Research Inst. for Pollution and Resources., Tsukuba, (Japan))
1990-03-25
UHF radio wave propagation along underground galleries is formulated using two methods so far proposed by other authors; one is based on characteristic equations and the other one makes use of simple geometrical image sources. Experimental measurements are carried out on the propagation of UHF waves of frequency 100 - 1500 MHz sent along two underground galleries; one of reinforced concrete wall and the other one of wooden timbering, the length being 400m or 200m and the area of cross section being 5.4 or 3.8 square meter respectively. It is demonstracted that the characteristics of wave propagation calculated by means of the geometrical image source method are in better agreement with the result obtained by the measurement compared with those by the characteristic equation method. Furthermore, numerical analysis using the geometrical image source method gives the following results; as the frequency of wave is increased, the attenuation constant of the wave propagating along an underground gallery decreases, becomes almost independent on the area of cross section of the gallery and insensitive to the kind of timbering materials. 5 refs., 11 figs.
Numerical simulation of hydraulic fracture propagation in heterogeneous unconventional reservoir
Liu, Chunting; Li, Mingzhong; Hao, Lihua; Hu, Hang
2017-10-01
The distribution of the unconventional reservoir fracture network is influenced by many factors. For the natural fracture undeveloped reservoir, the reservoir heterogeneity, construction factors (fracturing fluid flow rate, fluid viscosity, perforation clusters spacing), horizontal stress difference and stress different coefficient are the main factors that affect the fracture propagation. In the study, first, calculate the reservoir physics mechanics parameters that affect the fracture propagation on the base of the logging date from one actual horizontal well. Set the formation parameters according to the calculation that used to simulate the reservoir heterogeneity. Then, using damage mechanics method, the 2D fracture propagation model with seepage-stress-damage coupling of multi-fracture tight sand reservoir was established. Study the influences of different fracturing ways (open whole fracturing and oriented perforation fracturing) and the position of the perforation clusters to the fracture propagation for heterogeneity reservoir. Analyze the effects of flow rate, fracturing fluid viscosity, perforation clusters spacing, horizontal stress difference and stress different coefficient to fracture morphology for the heterogeneity reservoir and contrast with the homogeneous reservoir. The simulation results show that: the fracture morphology is more complexity formed by oriented perforation crack than open whole crack; For natural fracture undeveloped reservoir, as the flow rate or the fracturing fluid viscosity increases within a certain range, the fracture network tends to be more complexity and the effect is more obvious to heterogeneous reservoir than homogeneous reservoir; As the perforation clusters spacing decreases, the interaction of each fracture will increase, it tends to form more complexity fracture network but with short major fracture; If the horizontal stress difference and stress different coefficient is large (The stress different coefficient >0
Energy Technology Data Exchange (ETDEWEB)
Light, Max Eugene [Los Alamos National Laboratory
2017-04-13
This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density n_{e}(r), which will modify the wave propagation in the direction of the gradient rn_{e}(r).
Effect of fluid viscosity on wave propagation in a cylindrical bore in ...
Indian Academy of Sciences (India)
Wave propagation in a cylindrical bore filled with viscous liquid and situated in a micropolar elastic medium of infinite extent is studied. Frequency equation for surface wave propagation near the surface of the cylindrical bore is obtained and the effect of viscosity and micropolarity on dispersion curves is observed.
Propagation of nonlinear waves in bi-inductance nonlinear transmission lines
Kengne, Emmanuel; Lakhssassi, Ahmed
2014-10-01
We consider a one-dimensional modified complex Ginzburg-Landau equation, which governs the dynamics of matter waves propagating in a discrete bi-inductance nonlinear transmission line containing a finite number of cells. Employing an extended Jacobi elliptic functions expansion method, we present new exact analytical solutions which describe the propagation of periodic and solitary waves in the considered network.
Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates with Damages - Years 3-4
2014-05-23
2012.01.001. Ichchou, M.N., Berthaut, J., Collet , M., 2008a. Multi-mode wave propagation ribbed plates: part I, wavenumber-space characteristics. Int. J...Solids Struct. 45 (5), 1179- 1195. Ichchou, M.N., Berthaut, J., Collet , M., 2008b. Multi-mode wave propagation ribbed plates: part II, predictions
Surface wave propagation in a double liquid layer over a liquid ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
So, some parts or the whole may be considered inhomogeneous. Propagation of plane waves in inhomogeneous media was discussed by. Pekeris (1935, 1946), Scholte (1961, 1962), Eason (1967) and Scott (1970) among many others. Wave propagation in inhomogeneous liquid media was discussed by Gupta (1965),.
Ferroics and Multiferroics for Dynamically Controlled Terahertz Wave Propagation
Dutta, Moumita
The terahertz (THz) region of electromagnetic spectra, referred roughly to the frequency range of 100 GHz (0.1 THz) to 10 THz, is the bridging gap between the microwave and infrared spectral bands. Previously confined only to astronomy and analytical sciences due to the unavailability of technology, with the recent advancements in non-linear optics, this novel field has now started emerging as a promising area of research and study. Considerable efforts are underway to fill this 'THz gap' by developing efficient THz sources, detectors, switches, modulators etc. Be it any field, to realize this regime as one of the active frontiers, it is essential to have an efficient control over the wave propagation. In this research, functional materials (ferroics/multiferroics) have been explored to attain dynamic control over the THz beam propagation. The objective is to expand the horizon by enabling different family of materials to be incorporated in the design of THz modulators, exploiting the novel properties they exhibit. To reach that goal, following a comprehensive but selective (to dielectrics) review on the current-status of this research field, some preliminary studies on ferroic materials have been performed to understand the crux of ferroism and the novel functionalities they have to offer. An analytical study on microstructural and nanoscale properties of solid-solution ferroelectric Pb(Zr0.52Ti 0.48)O3 (PZT) and composite bio-ferroic seashells have been performed to elucidate the significance of structure-property relationship in intrinsic ferroelectrics. Moving forward, engineered ferroelectricity has been demonstrated. A precise control over fabrication parameters has been exploited to introduce oxygen-vacancy defined nanoscale polar-domains in centrosymmetric BaZrO3. Realizing that structure-property relationship can significantly influence the material properties and therefore the device performance, models for figure of merit analysis have been developed for
A Novel Numerical Approach for Generation and Propagation of Rotor-Stator Interaction Noise
Patel, Krishna
As turbofan engine designs move towards bypass ratios ≥12 and corresponding low pressure ratios, fan rotor blade tip Mach numbers are reduced, leading to rotor-stator interaction becoming an important contributor to tonal fan noise. For future aircraft configurations employing boundary layer ingestion, non-uniform flow enters the fan. The impact of such non-uniform flows on the generation and propagation of rotor-stator interaction tones has yet to be assessed. In this thesis, a novel approach is proposed to numerically predict the generation and propagation of rotor-stator interaction noise with distorted inflow. The approach enables a 42% reduction in computational cost compared to traditional approaches employing a sliding interface between the rotor and stator. Such an interface may distort rotor wakes and can cause non-physical acoustic wave reflections if time steps are not sufficiently small. Computational costs are reduced by modelling the rotor using distributed, volumetric body forces. This eliminates the need for a sliding interface and thus allows a larger time step size. The force model responds to local flow conditions and thus can capture the effects of long-wavelength flow distortions. Since interaction noise is generated by the incidence of the rotor wakes onto the stator vanes, the key challenge is to produce the wakes using a body force field since the rotor blades are not directly modelled. It is shown that such an approach can produce wakes by concentrating the viscous forces along streamtubes in the last 15% chord. The new approach to rotor wake generation is assessed on the GE R4 fan from NASA's Source Diagnostic Test, for which the computed overall aerodynamic performance matches the experiment to within 1%. The rotor blade wakes are generated with widths in excellent agreement and depths in fair agreement with the experiment. An assessment of modal sound power levels computed in the exhaust duct indicates that this approach can be used
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei
2012-03-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
Symplectic Hamiltonian HDG methods for wave propagation phenomena
Sánchez, M. A.; Ciuca, C.; Nguyen, N. C.; Peraire, J.; Cockburn, B.
2017-12-01
We devise the first symplectic Hamiltonian hybridizable discontinuous Galerkin (HDG) methods for the acoustic wave equation. We discretize in space by using a Hamiltonian HDG scheme, that is, an HDG method which preserves the Hamiltonian structure of the wave equation, and in time by using symplectic, diagonally implicit and explicit partitioned Runge-Kutta methods. The fundamental feature of the resulting scheme is that the conservation of a discrete energy, which is nothing but a discrete version of the original Hamiltonian, is guaranteed. We present numerical experiments which indicate that the method achieves optimal approximations of order k + 1 in the L2-norm when polynomials of degree k ≥ 0 and Runge-Kutta time-marching methods of order k + 1 are used. In addition, by means of post-processing techniques and by increasing the order of the Runge-Kutta method to k + 2, we obtain superconvergent approximations of order k + 2 in the L2-norm for the displacement and the velocity. We also present numerical examples that corroborate that the methods conserve energy and that they compare favorably with dissipative HDG schemes, of similar accuracy properties, for long-time simulations.
Nguyen, Vu-Hieu; Naili, Salah
2013-01-01
This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally graded anisotropic material coupled with fluids. The viscous effects are taken into account. The geometrical configuration mimics the one of axial transmission technique used for evaluating the bone quality. We present a numerical procedure adapted for this purpose which is based on the spectral finite element method (FEM). By using a combined Laplace-Fourier transform, the vibroacoustic problem may be transformed into the frequency-wavenumber domain in which, as radiation conditions may be exactly introduced in the infinite fluid halfspaces, only the heterogeneous solid layer needs to be analysed using FEM. Several numerical tests are presented showing very good performance of the proposed approach. We present some results to study the influence of the frequency on the first arriving signal velocity in (visco)elastic bone plate.
Simulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm
International Nuclear Information System (INIS)
Amanifard, N.; Mahnama, S. M.; Neshaei, S. A. L.; Mehrdad, M. A.; Farahani, M. H.
2012-01-01
This paper presents an incompressible smoothed particle hydrodynamics model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include the viscosity effects. A Poisson equation is employed in the third step as an alternative for the equation of state in order to evaluate pressure. This Poisson equation considers a trade-off between density and pressure which is utilized in the third step to impose the incompressibility effect. The computations are compared with the experimental as well as numerical data and a good agreement is observed. In order to validate proposed algorithm, a dam-break problem is solved as a benchmark solution and the computational results are compared with the previous numerical ones.
A 2D Time Domain DRBEM Computer Model for MagnetoThermoelastic Coupled Wave Propagation Problems
Directory of Open Access Journals (Sweden)
Mohamed Abdelsabour Fahmy
2014-07-01
Full Text Available A numerical computer model based on the dual reciprocity boundary element method (DRBEM is extended to study magneto-thermoelastic coupled wave propagation problems with relaxation times involving anisotropic functionally graded solids. The model formulation is tested through its application to the problem of a solid placed in a constant primary magnetic field acting in the direction of the z-axis and rotating about this axis with a constant angular velocity. In the case of two-dimensional deformation, an implicit-explicit time domain DRBEM was presented and implemented to obtain the solution for the displacement and temperature fields. A comparison of the results is presented graphically in the context of Lord and Shulman (LS and Green and Lindsay (GL theories. Numerical results that demonstrate the validity of the proposed method are also presented graphically.
Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingnan [Iowa State Univ., Ames, IA (United States)
2009-01-01
Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based
A Numerical Implementation of a Nonlinear Mild Slope Model for Shoaling Directional Waves
Directory of Open Access Journals (Sweden)
Justin R. Davis
2014-02-01
Full Text Available We describe the numerical implementation of a phase-resolving, nonlinear spectral model for shoaling directional waves over a mild sloping beach with straight parallel isobaths. The model accounts for non-linear, quadratic (triad wave interactions as well as shoaling and refraction. The model integrates the coupled, nonlinear hyperbolic evolution equations that describe the transformation of the complex Fourier amplitudes of the deep-water directional wave field. Because typical directional wave spectra (observed or produced by deep-water forecasting models such as WAVEWATCH III™ do not contain phase information, individual realizations are generated by associating a random phase to each Fourier mode. The approach provides a natural extension to the deep-water spectral wave models, and has the advantage of fully describing the shoaling wave stochastic process, i.e., the evolution of both the variance and higher order statistics (phase correlations, the latter related to the evolution of the wave shape. The numerical implementation (a Fortran 95/2003 code includes unidirectional (shore-perpendicular propagation as a special case. Interoperability, both with post-processing programs (e.g., MATLAB/Tecplot 360 and future model coupling (e.g., offshore wave conditions from WAVEWATCH III™, is promoted by using NetCDF-4/HD5 formatted output files. The capabilities of the model are demonstrated using a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation. The simulated wave transformation under combined shoaling, refraction and nonlinear interactions shows the expected generation of directional harmonics of the spectral peak and of infragravity (frequency <0.05 Hz waves. Current development efforts focus on analytic testing, development of additional physics modules essential for applications and validation with laboratory and field observations.
On the propagation of sound waves in a stellar wind traversed by periodic strong shocks
Pijpers, F. P.
1994-01-01
It has been claimed that in stellar winds traversed by strong shocks the mechanism for driving the wind by sound wave pressure cannot operate because sound waves cannot propagate past the shocks. It is shown here that sound waves can propagate through shocks in one direction and that this is a sufficient condition for the sound wave pressure mechanism to work. A strong shock amplifies a sound wave passing through it and can drag the sound wave away from the star. It is immaterial for the soun...
Influence of Sea Surface Roughness on the Electromagnetic Wave Propagation in the Duct Environment
Zhao, X.; Huang, S.
2010-01-01
This paper deals with a study of the influence of sea surface roughness on the electromagnetic wave propagation in the duct environment. The problem of electromagnetic wave propagation is modeled by using the parabolic equation method. The roughness of the sea surface is computed by modifying the smooth surface Fresnel reflection coefficient to account for the reduction in the specular reflection due to the roughness resulting from sea wind speed. The propagation model is solved by the mixed ...
Zhang, Bo; Chen, Tianning; Zhao, Yuyuan; Zhang, Weiyong; Zhu, Jian
2012-09-01
On the basis of the work of Wilson et al. [J. Acoust. Soc. Am. 84, 350-359 (1988)], a more exact numerical approach was constructed for predicting the nonlinear sound propagation and absorption properties of rigid porous media at high sound pressure levels. The numerical solution was validated by the experimental results for sintered fibrous porous steel samples and its predictions were compared with the numerical solution of Wilson et al. An approximate analytical solution was further put forward for the normalized surface acoustic admittance of rigid air-saturated porous materials with infinite thickness, based on the wave perturbation method developed by Lambert and McIntosh [J. Acoust. Soc. Am. 88, 1950-1959 (1990)]. Comparisons were made with the numerical results.
Directory of Open Access Journals (Sweden)
Ilhan Özgen
2017-10-01
Full Text Available In urban flood modeling, so-called porosity shallow water equations (PSWEs, which conceptually account for unresolved structures, e.g., buildings, are a promising approach to addressing high CPU times associated with state-of-the-art explicit numerical methods. The PSWE can be formulated with a single porosity term, referred to as the single porosity shallow water model (SP model, which accounts for both the reduced storage in the cell and the reduced conveyance, or with two porosity terms: one accounting for the reduced storage in the cell and another accounting for the reduced conveyance. The latter form is referred to as an integral or anisotropic porosity shallow water model (AP model. The aim of this study was to analyze the differences in wave propagation speeds of the SP model and the AP model and the implications of numerical model results. First, augmented Roe-type solutions were used to assess the influence of the source terms appearing in both models. It is shown that different source terms have different influences on the stability of the models. Second, four computational test cases were presented and the numerical models were compared. It is observed in the eigenvalue-based analysis as well as in the computational test cases that the models converge if the conveyance porosity in the AP model is close to the storage porosity. If the porosity values differ significantly, the AP model yields different wave propagation speeds and numerical fluxes from those of the BP model. In this study, the ratio between the conveyance and storage porosities was determined to be the most significant parameter.
Sound Propagation in a Duct with Wall Corrugations Having Square-Wave Profiles
Directory of Open Access Journals (Sweden)
Muhammad A. Hawwa
2015-01-01
Full Text Available Acoustic wave propagation in ducts with rigid walls having square-wave wall corrugations is considered in the context of a perturbation formulation. Using the ratio of wall corrugation amplitude to the mean duct half width, a small parameter is defined and a two levels of approximations are obtained. The first-order solution produces an analytical description of the pressure field inside the duct. The second-order solution yields an analytical estimate of the phase speed of waves transmitting through the duct. The effect of wall corrugation density on acoustic impedance and wave speeds is highlighted. The analysis reveals that waves propagating in a duct with square-wave wall corrugation are slower than waves propagating in a duct with sinusoidal wave corrugation having the same corrugation wavelength.
Jia, T.; Liang, J. J.; Li, X.-M.; Sha, J.
2018-01-01
The refraction and reconnection of internal solitary waves (ISWs) around the Dongsha Atoll (DSA) in the northern South China Sea (SCS) are investigated based on spaceborne synthetic aperture radar (SAR) observations and numerical simulations. In general, a long ISW front propagating from the deep basin of the northern SCS splits into northern and southern branches when it passes the DSA. In this study, the statistics of Envisat Advanced SAR (ASAR) images show that the northern and southern wave branches can reconnect behind the DSA, but the reconnection location varies. A previously developed nonlinear refraction model is set up to simulate the refraction and reconnection of the ISWs behind the DSA, and the model is used to evaluate the effects of ocean stratification, background currents, and incoming ISW characteristics at the DSA on the variation in reconnection locations. The results of the first realistic simulation agree with consecutive TerraSAR-X (TSX) images captured within 12 h of each other. Further sensitivity simulations show that ocean stratification, background currents, and initial wave amplitudes all affect the phase speeds of wave branches and therefore shift their reconnection locations while shapes and locations of incoming wave branches upstream of the DSA profoundly influence the subsequent propagation paths. This study clarifies the variation in reconnection locations of ISWs downstream of the DSA and reveals the important mechanisms governing the reconnection process, which can improve our understanding of the propagation of ISWs near the DSA.
Study of acoustic wave propagation through the cross section of green wood
Dikrallah, Adil; Kabouchi, Bousselham; Hakam, Abdelillah; Brancheriau, Loïc; Bailleres, Henri; Famiri, Abderrahim; Ziani, Mohsine
2010-02-01
An experimental approach was used to model stress wave propagation in green wood (Douglas fir). Based on the assumption that wood is an orthotropic material, the stress wave velocity through the cross section was calculated using plane strain motion equations. The experiments were carried out in two steps under axial restraint, while the wave propagation time was measured on discs and bars sliced from the discs. Mechanical and physical properties were determined in free vibration. The results showed a significant difference in propagation velocity between waves propagating throughout the whole disc volume and guided waves in bars. The acoustic anisotropy of green wood is discussed and the stress wave form simulation is presented. Good agreement between the simulation and experimental results was obtained.
DEFF Research Database (Denmark)
Carci, Enric; Rivero, Francisco J.; Burcharth, Hans Falk
2003-01-01
takes place on the breakwater, and it was finally suggested to complement the numerical analysis with physical model tests in a multidirectional wave basin. Due to the large dimensions of the prototype area, several numerical models were applied to optimize the physical model lay-out (model scale......, boundary conditions, location of wave gauges). All physical model test results were compared with results from a spectral wave propagation model GHOST simulations, showing good agreement on wave amplification in the focusing area behind the shoal. The combination of both numerical and physical modeling...... improved the knowledge on the problem studied. Read More: http://www.worldscientific.com/doi/abs/10.1142/9789812791306_0042?prevSearch=The+Use+of+Numerical+Modeling+in+the+Planning+of+Physical+Model+Tests+in+a+Multidirectional+Wave+Basin&searchHistoryKey=...
Chabot, S.; Glinsky, N.; Mercerat, E. D.; Bonilla Hidalgo, L. F.
2018-02-01
We propose a nodal high-order discontinuous Galerkin method for 1D wave propagation in nonlinear media. We solve the elastodynamic equations written in the velocity-strain formulation and apply an upwind flux adapted to heterogeneous media with nonlinear constitutive behavior coupling stress and strain. Accuracy, convergence and stability of the method are studied through several numerical applications. Hysteresis loops distinguishing loading and unloading-reloading paths are also taken into account. We investigate several effects of nonlinearity in wave propagation, such as the generation of high frequencies and the frequency shift of resonant peaks to lower frequencies. Finally, we compare the results for both nonlinear models, with and without hysteresis, and highlight the effects of the former on the stabilization of the numerical scheme.
A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation.
Bou Matar, Olivier; Guerder, Pierre-Yves; Li, YiFeng; Vandewoestyne, Bart; Van Den Abeele, Koen
2012-05-01
A nodal discontinuous Galerkin finite element method (DG-FEM) to solve the linear and nonlinear elastic wave equation in heterogeneous media with arbitrary high order accuracy in space on unstructured triangular or quadrilateral meshes is presented. This DG-FEM method combines the geometrical flexibility of the finite element method, and the high parallelization potentiality and strongly nonlinear wave phenomena simulation capability of the finite volume method, required for nonlinear elastodynamics simulations. In order to facilitate the implementation based on a numerical scheme developed for electromagnetic applications, the equations of nonlinear elastodynamics have been written in a conservative form. The adopted formalism allows the introduction of different kinds of elastic nonlinearities, such as the classical quadratic and cubic nonlinearities, or the quadratic hysteretic nonlinearities. Absorbing layers perfectly matched to the calculation domain of the nearly perfectly matched layers type have been introduced to simulate, when needed, semi-infinite or infinite media. The developed DG-FEM scheme has been verified by means of a comparison with analytical solutions and numerical results already published in the literature for simple geometrical configurations: Lamb's problem and plane wave nonlinear propagation.
Ben Salah, Issam; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi
2015-08-01
Numerical examples for wave propagation in a three-layer structure have been investigated for both electrically open and shorted cases. The first order differential equations are solved by both methods ODE and Stiffness matrix. The solutions are used to study the effects of thickness and gradient coefficient of soft middle layer on the phase velocity and on the electromechanical coupling factor. We demonstrate that the electromechanical coupling factor is substantially increased when the equivalent thickness is in the order of the wavelength. The effects of gradient coefficients are plotted for the first mode when electrical and mechanical gradient variations are applied separately and altogether. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. The impact related to the gradient coefficient of the soft middle layer, on the mechanical displacement and the Poynting vector, is carried out. The numericals results are illustrated by a set of appropriate curves related to various profiles. The obtained results set guidelines not only for the design of high-performance surface acoustic wave (SAW) devices, but also for the measurement of material properties in a functionally graded piezoelectric layered system using Love waves. Copyright © 2015 Elsevier B.V. All rights reserved.
Baumeister, K. J.
1977-01-01
Finite difference equations are derived for sound propagation in a two dimensional, straight, soft wall duct with a uniform flow by using the wave envelope concept. This concept reduces the required number of finite difference grid points by one to two orders of magnitude depending on the length of the duct and the frequency of the sound. The governing acoustic difference equations in complex notation are derived. An exit condition is developed that allows a duct of finite length to simulate the wave propagation in an infinitely long duct. Sample calculations presented for a plane wave incident upon the acoustic liner show the numerical theory to be in good agreement with closed form analytical theory. Complete pressure and velocity printouts are given to some sample problems and can be used to debug and check future computer programs.
Energy Technology Data Exchange (ETDEWEB)
Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-25
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.
On the propagation of low-hybrid waves of finite amplitude
International Nuclear Information System (INIS)
Kozyrev, A.N.; Piliya, A.D.; Fedorov, V.I.
1979-01-01
Propagation of low-hybrid waves of a finite amplitude with allowance for variation in plasma density caused by HF field pressure is studied. Considered is wave ''overturning'' which takes place in the absence of space dispersion. With taking account of dispersion the wave propagation is described by the third-order nonlinear equation which differs in shape from the complex modified Korteweg-de-Vries (Hirota) equation. Solutions of this equation of the space solution type are found
Molecular hydrodynamics: Vortex formation and sound wave propagation
Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Karniadakis, George Em; Lee, Eok Kyun
2018-01-01
In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to or larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale.
Acoustic wave propagation in fluids with coupled chemical reactions
International Nuclear Information System (INIS)
Margulies, T.S.; Schwarz, W.H.
1984-08-01
This investigation presents a hydroacoustic theory which accounts for sound absorption and dispersion in a multicomponent mixture of reacting fluids (assuming a set of first-order acoustic equations without diffusion) such that several coupled reactions can occur simultaneously. General results are obtained in the form of a biquadratic characteristic equation (called the Kirchhoff-Langevin equation) for the complex propagation variable chi = - (α + iω/c) in which α is the attenuation coefficient, c is the phase speed of the progressive wave and ω is the angular frequency. Computer simulations of sound absorption spectra have been made for three different chemical systems, each comprised of two-step chemical reactions using physico-chemical data available in the literature. The chemical systems studied include: (1) water-dioxane, (2) aqueous solutions of glycine and (3) cobalt polyphosphate mixtures. Explicit comparisons are made between the exact biquadratic characteristic solution and the approximate equation (sometimes referred to as a Debye equation) previously applied to interpret the experimental data for the chemical reaction contribution to the absorption versus frequency. The relative chemical reaction and classical viscothermal contributions to the sound absorption are also presented. Several discrepancies that can arise when estimating thermodynamic data (chemical reaction heats or volume changes) for multistep chemical reaction systems when making dilute solution or constant density assumptions are discussed
A numerical method for predicting Rayleigh surface wave velocity in anisotropic crystals
Cherry, Matthew R.; Sathish, Shamachary; Grandhi, Ramana
2017-12-01
A numerical method was developed for calculating the Rayleigh Surface Wave (RSW) velocity in arbitrarily oriented single crystals in 360 degrees of propagation. This method relies on the results from modern analysis of RSW behavior with the Stroh formalism to restrict the domain in which to search for velocities by first calculating the limiting velocity. This extension of existing numerical methods also leads to a natural way of determining both the existence of the RSW as well as the possibility of encountering a pseudo-surface wave. Furthermore, the algorithm is applied to the calculation of elastic properties from measurement of the surface wave velocity in multiple different directions on a single crystal sample. The algorithm was tested with crystal symmetries and single crystal elastic moduli from literature. It was found to be very robust and efficient in calculating RSW velocity curves in all cases.
Energy Technology Data Exchange (ETDEWEB)
Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)
2015-07-28
Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.
International Nuclear Information System (INIS)
Kowalewski, Markus; Mukamel, Shaul
2015-01-01
Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings
Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part I
Centrella, Joan
2012-01-01
This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this first lecture, we introduce the basic ideas of numerical relativity, highlighting the challenges that arise in simulating gravitational wave sources on a computer.
Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part III
Centrella, Joan
2012-01-01
This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this third and final lecture, we present applications of the results of numerical relativity simulations to gravitational wave detection and astrophysics.
Visualization of terahertz surface waves propagation on metal foils
Wang, Xinke; Wang, Sen; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Yan, Haitao; Ye, Jiasheng; Zhang, Yan
2016-01-01
Exploitation of surface plasmonic devices (SPDs) in the terahertz (THz) band is always beneficial for broadening the application potential of THz technologies. To clarify features of SPDs, a practical characterization means is essential for accurately observing the complex field distribution of a THz surface wave (TSW). Here, a THz digital holographic imaging system is employed to coherently exhibit temporal variations and spectral properties of TSWs activated by a rectangular or semicircular slit structure on metal foils. Advantages of the imaging system are comprehensively elucidated, including the exclusive measurement of TSWs and fall-off of the time consumption. Numerical simulations of experimental procedures further verify the imaging measurement accuracy. It can be anticipated that this imaging system will provide a versatile tool for analyzing the performance and principle of SPDs. PMID:26729652
Propagation of capillary waves and ejection of small droplets in rapid droplet spreading
Ding, Hang
2012-03-12
A new regime of droplet ejection following the slow deposition of drops onto a near-complete wetting solid substrate is identified in experiments and direct numerical simulations; a coalescence cascade subsequent to pinch-off is also observed for the first time. Results of numerical simulations indicate that the propagation of capillary waves that lead to pinch-off is closely related to the self-similar behaviour observed in the inviscid recoil of droplets, and that motions of the crests and troughs of capillary waves along the interface do not depend on the wettability and surface tension (or Ohnesorge number). The simulations also show that a self-similar theory for universal pinch-off can be used for the time evolution of the pinching neck. However, although good agreement is also found with the double-cone shape of the pinching neck for droplet ejection in drop deposition on a pool of the same liquid, substantial deviations are observed in such a comparison for droplet ejection in rapid drop spreading (including the newly identified regime). This deviation is shown to result from interference by the solid substrate, a rapid downwards acceleration of the top of the drop surface and the rapid spreading process. The experiments also confirm non-monotonic spreading behaviour observed previously only in numerical simulations, and suggest substantial inertial effects on the relation between an apparent contact angle and the dimensionless contact-line speed. © 2012 Cambridge University Press.
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)
2003-01-01
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates
Propagation and dispersion of transverse wave trains in magnetic flux tubes
Energy Technology Data Exchange (ETDEWEB)
Oliver, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Ruderman, M. S., E-mail: ramon.oliver@uib.es [School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2014-07-01
The dispersion of small-amplitude, impulsively excited wave trains propagating along a magnetic flux tube is investigated. The initial disturbance is a localized transverse displacement of the tube that excites a fast kink wave packet. The spatial and temporal evolution of the perturbed variables (density, plasma displacement, velocity, ...) is given by an analytical expression containing an integral that is computed numerically. We find that the dispersion of fast kink wave trains is more important for shorter initial disturbances (i.e., more concentrated in the longitudinal direction) and for larger density ratios (i.e., for larger contrasts of the tube density with respect to the environment density). This type of excitation generates a wave train whose signature at a fixed position along a coronal loop is a short event (duration ≅ 20 s) in which the velocity and density oscillate very rapidly with typical periods of the order of a few seconds. The oscillatory period is not constant but gradually declines during the course of this event. Peak values of the velocity are of the order of 10 km s{sup –1} and are accompanied by maximum density variations of the order of 10%-15% the unperturbed loop density.
Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer
Gupta, Shishir; Sultana, Rehena; Kundu, Santimoy
2015-02-01
The present work illustrates a theoretical study on the effect of rigid boundary for the propagation of torsional surface wave in an inhomogeneous crustal layer over an inhomogeneous half space. It is believed that the inhomogeneity in the half space arises due to hyperbolic variation in shear modulus and density whereas the layer has linear variation in shear modulus and density. The dispersion equation has been obtained in a closed form by using Whittaker's function, which shows the variation of phase velocity with corresponding wave number. Numerical results show the dispersion equations, which are discussed and presented by means of graphs. Results in some special cases are also compared with existing solutions available from analytical methods, which show a close resemblance. It is also observed that, for a layer over a homogeneous half space, the velocity of torsional waves does not coincide with that of Love waves in the presence of the rigid boundary, whereas it does at the free boundary. Graphical user interface (GUI) software has been developed using MATLAB 7.5 to generalize the effect of various parameter discussed.
Gao, Kai
2015-04-14
It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both boundaries and the interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.
International Nuclear Information System (INIS)
Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin
2015-01-01
It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system
Numerical method for wave forces acting on partially perforated caisson
Jiang, Feng; Tang, Xiao-cheng; Jin, Zhao; Zhang, Li; Chen, Hong-zhou
2015-04-01
The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid-structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier-Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.
Analytical approximation and numerical simulations for periodic travelling water waves.
Kalimeris, Konstantinos
2018-01-28
We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
Generalized Multiscale Finite Element Methods for Wave Propagation in Heterogeneous Media
Chung, Eric T.
2014-11-13
Numerical modeling of wave propagation in heterogeneous media is important in many applications. Due to their complex nature, direct numerical simulations on the fine grid are prohibitively expensive. It is therefore important to develop efficient and accurate methods that allow the use of coarse grids. In this paper, we present a multiscale finite element method for wave propagation on a coarse grid. The proposed method is based on the generalized multiscale finite element method (GMsFEM) (see [Y. Efendiev, J. Galvis, and T. Hou, J. Comput. Phys., 251 (2012), pp. 116--135]). To construct multiscale basis functions, we start with two snapshot spaces in each coarse-grid block, where one represents the degrees of freedom on the boundary and the other represents the degrees of freedom in the interior. We use local spectral problems to identify important modes in each snapshot space. These local spectral problems are different from each other and their formulations are based on the analysis. To the best of knowledge, this is the first time that multiple snapshot spaces and multiple spectral problems are used and necessary for efficient computations. Using the dominant modes from local spectral problems, multiscale basis functions are constructed to represent the solution space locally within each coarse block. These multiscale basis functions are coupled via the symmetric interior penalty discontinuous Galerkin method which provides a block diagonal mass matrix and, consequently, results in fast computations in an explicit time discretization. Our methods\\' stability and spectral convergence are rigorously analyzed. Numerical examples are presented to show our methods\\' performance. We also test oversampling strategies. In particular, we discuss how the modes from different snapshot spaces can affect the proposed methods\\' accuracy.
Numerical Modeling and Experimental Testing of a Wave Energy Converter
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Kramer, Morten; Ferri, Francesco
numerical values for comparison with the experimental test results which were carried out in the same time. It is for this reason why Chapter 4 does consist exclusively of numerical values. Experimental values and measured time series of wave elevations have been used throughout the report in order to a......) validate the numerical model and b) preform stochastic analysis. The latter technique is introduced in order to optimize the control parameters of the power take off system....
An experimental and numerical investigation on wave-mud interactions
Hsu, W. Y.; Hwung, H. H.; Hsu, T. J.; Torres-Freyermuth, A.; Yang, R. Y.
2013-03-01
Wave attenuation over a mud (kaolinite) layer is investigated via laboratory experiments and numerical modeling. The rheological behavior of kaolinite exhibits hybrid properties of a Bingham and pseudoplastic fluid. Moreover, the measured time-dependent velocity profiles in the mud layer reveal that the shear rate under wave loading is highly phase dependent. The measured shear rate and rheological data allow us to back-calculate the time-dependent viscosity of the mud layer under various wave loadings, which is also shown to fluctuate up to 1 order of magnitude during one wave period. However, the resulting time-dependent bottom stress is shown to only fluctuate within 25% of its mean. The back-calculated wave-averaged bottom stress is well correlated with the wave damping rate in the intermediate-wave energy condition. The commonly adopted constant viscosity assumption is then evaluated via linear and nonlinear wave-mud interaction models. When driving the models with measured wave-averaged mud viscosity (forward modeling), the wave damping rate is generally overpredicted under the low wave energy condition. On the other hand, when a constant viscosity is chosen to match the observed wave damping rate (inverse modeling), the predicted velocity profiles in the mud layer are not satisfactory and the corresponding viscosity is lower than the measured value. These discrepancies are less pronounced when waves become more energetic. Differences between the linear and nonlinear model results become significant under low-energy conditions, suggesting an amplification of wave nonlinearity due to non-Newtonian rheology. In general, the constant viscosity assumption for modeling wave-mud interaction is only appropriate for more energetic wave conditions.
Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.
Zhang, Yuning; Guo, Zhongyu; Gao, Yuhang; Du, Xiaoze
2018-01-01
Presence of bubbles in liquids could significantly alter the acoustic waves in terms of wave speed and attenuation. In the present paper, acoustic wave propagation in bubbly flows with gas, vapor and gas/vapor mixtures is theoretically investigated in a wide range of parameters (including frequency, bubble radius, void fraction, and vapor mass fraction). Our finding reveals two types of wave propagation behavior depending on the vapor mass fraction. Furthermore, the minimum wave speed (required for the closure of cavitation modelling in the sonochemical reactor design) is analyzed and the influences of paramount parameters on it are quantitatively discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Du, Jianke; Xian, Kai; Wang, Ji
2009-01-01
SH surface acoustic wave (SH-SAW) propagation in a cylindrically layered magneto-electro-elastic structure is investigated analytically, where a piezomagnetic (or piezoelectric) material layer is bonded to a piezoelectric (or piezomagnetic) substrate. By means of transformation, the governing equations of the coupled waves are reduced to Bessel equation and Laplace equation. The boundary conditions imply that the displacements, shear stresses, electric potential, and electric displacements are continuous across the interface between the layer and the substrate together with the traction free at the surface of the layer. The magneto-electrically open and shorted conditions at cylindrical surface are taken to solve the problem. The phase velocity is numerically calculated for different thickness of the layer and wavenumber for piezomagnetic ceramics CoFe(2)O(4) and piezoelectric ceramics BaTiO(3). The effects of magnetic permeability on propagation properties of SH-SAW are discussed in detail. The distributions of displacement, magnetic potential and magneto-electromechanical coupling factor are also figured and discussed.
Lambrecht, L.; Lamert, A.; Friederich, W.; Möller, T.; Boxberg, M. S.
2018-03-01
A nodal discontinuous Galerkin (NDG) approach is developed and implemented for the computation of viscoelastic wavefields in complex geological media. The NDG approach combines unstructured tetrahedral meshes with an element-wise, high-order spatial interpolation of the wavefield based on Lagrange polynomials. Numerical fluxes are computed from an exact solution of the heterogeneous Riemann problem. Our implementation offers capabilities for modelling viscoelastic wave propagation in 1-D, 2-D and 3-D settings of very different spatial scale with little logistical overhead. It allows the import of external tetrahedral meshes provided by independent meshing software and can be run in a parallel computing environment. Computation of adjoint wavefields and an interface for the computation of waveform sensitivity kernels are offered. The method is validated in 2-D and 3-D by comparison to analytical solutions and results from a spectral element method. The capabilities of the NDG method are demonstrated through a 3-D example case taken from tunnel seismics which considers high-frequency elastic wave propagation around a curved underground tunnel cutting through inclined and faulted sedimentary strata. The NDG method was coded into the open-source software package NEXD and is available from GitHub.
Numerical Investigation of Rockburst Effect of Shock Wave on Underground Roadway
Directory of Open Access Journals (Sweden)
Cai-Ping Lu
2015-01-01
Full Text Available Using UDEC discrete element numerical simulation software and a cosine wave as vibration source, the whole process of rockburst failure and the propagation and attenuation characteristics of shock wave in coal-rock medium were investigated in detail based on the geological and mining conditions of 1111(1 working face at Zhuji coal mine. Simultaneously, by changing the thickness and strength of immediate roof overlying the mining coal seam, the whole process of rockburst failure of roadway and the attenuation properties of shock wave were understood clearly. The presented conclusions can provide some important references to prevent and control rockburst hazards triggered by shock wave interferences in deep coal mines.
WAVE PROPAGATION in the HOT DUCT of VHTR
Energy Technology Data Exchange (ETDEWEB)
Richard Schultz; Jim C. P. Liou
2013-07-01
In VHTR, helium from the reactor vessel is conveyed to a power conversion unit through a hot duct. In a hypothesized Depressurized Conduction Cooldown event where a rupture of the hot duct occurs, pressure waves will be initiated and reverberate in the hot duct. A numerical model is developed to quantify the transients and the helium mass flux through the rupture for such events. The flow path of the helium forms a closed loop but only the hot duct is modeled in this study. The lower plum of the reactor vessel and the steam generator are treated as specified pressure and/or temperature boundary to the hot duct. The model is based on the conservation principles of mass, momentum and energy, and on the equations of state for helium. The numerical solution is based on the method of characteristics with specified time intervals with a predictor and corrector algorithm. The rupture sub-model gives reasonable results. Transients induced by ruptures with break area equaling 20%, 10%, and 5% of the duct cross-sectional area are described.
Directory of Open Access Journals (Sweden)
Q. Li
2007-01-01
Full Text Available The probability density on a height-meridional plane of negative refractive index squared f(nk2<0 is introduced as a new analysis tool to investigate the climatology of the propagation conditions of stationary planetary waves based on NCEP/NCAR reanalysis data for 44 Northern Hemisphere boreal winters (1958–2002. This analysis addresses the control of the atmospheric state on planetary wave propagation. It is found that not only the variability of atmospheric stability with altitudes, but also the variability with latitudes has significant influence on planetary wave propagation. Eliassen-Palm flux and divergence are also analyzed to investigate the eddy activities and forcing on zonal mean flow. Only the ultra-long planetary waves with zonal wave number 1, 2 and 3 are investigated. In Northern Hemisphere winter the atmosphere shows a large possibility for stationary planetary waves to propagate from the troposphere to the stratosphere. On the other hand, waves induce eddy momentum flux in the subtropical troposphere and eddy heat flux in the subpolar stratosphere. Waves also exert eddy momentum forcing on the mean flow in the troposphere and stratosphere at middle and high latitudes. A similar analysis is also performed for stratospheric strong and weak polar vortex regimes, respectively. Anomalies of stratospheric circulation affect planetary wave propagation and waves also play an important role in constructing and maintaining of interannual variations of stratospheric circulation.
Directory of Open Access Journals (Sweden)
L. Sun
2007-10-01
Full Text Available In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1 The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2 Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3 The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.
Stojadinovic, Bojana; Nestorovic, Zorica; Djuric, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikic, Dejan
2017-01-01
The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system.…
International Nuclear Information System (INIS)
Guo Bin
2009-01-01
Based on the electromagnetic theory and by using an analytical technique-the transfer matrix method, the obliquely incident electromagnetic waves propagating in one-dimension plasma photonic crystals is studied. The dispersion relations for both the P-polarization waves and S-polarization waves, depending on the plasma density, plasma thickness and period, are discussed. (basic plasma phenomena)
Nonlinear Propagation of Mag Waves Through the Transition Region
Jatenco-Pereira, V.; Steinolfson, R. S.; Mahajan, S.; Tajima, T.
1990-11-01
RESUMEN. Una onda de gravitaci5n magneto acustica (GMA), se inicia en el regimen de alta beta cerca de la basa de fot5sfera solar y es segui- da, usando simulaciones numericas, mientras viaja radialmente a traves de la cromosfera, la regi5n de transici6n y dentro de la corona. Se ha' seleccionado parametros iniciales de manera que la beta resulte menor que uno cerca de la parte alta de la regi6n de transici6n. Nuestro interes maximo se concentra en la cantidad y forma del flujo de energia que puede ser llevada por la onda hasta la corona dados una atm6sfera inicial y amplitud de onda especificas. Segun los estudios a la fecha, el flujo de energ1a termico domina, aumentando linealmente con la ampli tud deonda y resulta de aproximadamente i05 ergs/cm2-s en una amplitud de 0.5. El flujo de energia cinetica siempre permanece despreciable, mientras que el flujo de energia magnetica depende de la orientaci5n inicial del campo. Un modo GMA rapido y casi paralelo, el cual es esen- cialmente un modo MHD en la corona se convierte a un modo rapido modificado y a uno lento, cuando la beta atmosferica disminuye a uno. ABSTRACT: A magneto-acoustic-gravity (MAG) wave is initiated in the high-beta regime near the base of the solar photosphere and followed, using numerical siriiulations, as it travels radially through the chromosphere, the transition region, and into the corona. Initial parameters are selected such that beta becomes less than one near the top of the transition region. Our primary interest is in the amount and form of energy flux that can be carried by the wave train into the corona for a specified initial atmosphere and wave amplitude. For the studies conducted to date, the thermal energy flux dominates, it about linearly with wave amplitude and becomes approximately 10 ergs/cm2-s at an amplitude of 0.5. The kinetic energy flux always remains negligible, while the magnetic energy flux depends on the inLtial field orientation. A nearly parallel fast MAG mode, which
A numerical study of wave dispersion curves in cylindrical rods with circular cross-section
Directory of Open Access Journals (Sweden)
Valsamos G.
2013-06-01
Full Text Available This work presents a finite element approach for modeling longitudinal wave propagation in thick cylindrical rods with circular cross-section. The formulation is based on simple time domain response of the structure to a properly chosen excitation, and is calculated with an explicit finite element solver. The proposed post-treatment procedure identifies the wavenumber for each mode of wave propagation at the desired frequency. The procedure is implemented and integrated in an efficient way in the explicit finite element code Europlexus. The numerical results are compared to the analytical ones obtained from the solution of the Pochhammer — Chree equation, which provides the dispersion curves for wavetrains in solid cylinders of infinite length.
Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.
2015-12-01
We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.
Vayron, Romain; Nguyen, Vu-Hieu; Bosc, Romain; Naili, Salah; Haïat, Guillaume
2015-10-01
Dental implant stability, which is an important parameter for the surgical outcome, can now be assessed using quantitative ultrasound. However, the acoustical propagation in dental implants remains poorly understood. The objective of this numerical study was to understand the propagation phenomena of ultrasonic waves in cylindrically shaped prototype dental implants and to investigate the sensitivity of the ultrasonic response to the surrounding bone quantity and quality. The 10-MHz ultrasonic response of the implant was calculated using an axisymetric 3D finite element model, which was validated by comparison with results obtained experimentally and using a 2D finite difference numerical model. The results show that the implant ultrasonic response changes significantly when a liquid layer is located at the implant interface compared to the case of an interface fully bounded with bone tissue. A dedicated model based on experimental measurements was developed in order to account for the evolution of the bone biomechanical properties at the implant interface. The effect of a gradient of material properties on the implant ultrasonic response is determined. Based on the reproducibility of the measurement, the results indicate that the device should be sensitive to the effects of a healing duration of less than one week. In all cases, the amplitude of the implant response is shown to decrease when the dental implant primary and secondary stability increase, which is consistent with the experimental results. This study paves the way for the development of a quantitative ultrasound method to evaluate dental implant stability.
Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media
Luna, Manuel
2011-05-01
Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.
International Nuclear Information System (INIS)
Wen Jihong; Yu, Dianlong; Wang Gang; Zhao Honggang; Liu Yaozong; Wen Xisen
2007-01-01
The directional propagation characteristics of elastic wave during pass bands in two-dimensional thin plate phononic crystals are analyzed by using the lumped-mass method to yield the phase constant surface. The directions and regions of wave propagation in phononic crystals for certain frequencies during pass bands are predicted with the iso-frequency contour lines of the phase constant surface, which are then validated with the harmonic responses of a finite two-dimensional thin plate phononic crystals with 16x16 unit cells. These results are useful for controlling the wave propagation in the pass bands of phononic crystals
Near-Field Ground Motion Modal versus Wave Propagation Analysis
Directory of Open Access Journals (Sweden)
Artur Cichowicz
2010-01-01
Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.
Wave propagation in tyres and the resultant noise radiation
Gi-Jeon, Kim
Tyre noise has become an increasingly important road traffic noise source. This is because other sources on the vehicle, such as the air intake system, the exhaust system and the engine, have tended to become relatively quieter. This situation forces the tyre noise component to be reduced in order to achieve a reduction in the overall traffic noise level. In the research reported here, vibration, sound radiation and sound transmission of a passenger car radial tyre were investigated. The first half of this thesis discusses the vibration characteristics using two methods; (1)FEM to analysis modal behaviour in detail, (2)Analytical models to interpret the FEM results. These methods have both advantages and disadvantages in investigating tyre vibration. Combining the two methods is necessary in order to a fully understand the vibration behaviour of a tyre. Dispersion relationships and the related frequency of tyre modes is analysed by FEM and the flexural wave propagation in the tyre shell and the sound radiation of the tyre wall by flexural modes is analyzed using plate and shell theory. The second part of this thesis discusses the radiation and transmission of tyre noise. To predict the radiation of sound with only a knowledge of the surface vibration velocity, the experimental Green's functions were estimated by using the acoustic reciprocity principle. This technique was also applied to separate airborne structure borne noise for identification of the transmission path of tyre noise into a vehicle cabin and quantification of the relative contribution of various regions of the vibrating tyre surface to vehicle interior noise. The application of acoustic reciprocity for the tyre noise problem was verified and compared with BEM analysis.
Surface wave propagation over sinusoidally varying topography: Theory and observation
Davies, A. G.; Heathershaw, A. D.
Linear perturbation theory is used to show that the reflection coefficient of a patch of sinusoidal ripples on an otherwise flat bed is oscillatory in the quotient of the length of the patch and the surface wave length, and strongly dependent upon the quotient of the surface and bed wave numbers. Resonant interaction between the surface waves and the ripples if the surface wavenumber is half the ripple wavenumber is demonstrated. Few ripples, of relatively small steepness, are required to produce a substantial reflected wave. In resonant cases, the partially standing wave on the up-wave side of the ripple patch gives way, in an almost linear manner over the the ripple patch itself, to a progressive (transmitted) wave on the down-wave side. Wave tank data agree well with predictions, and suggest coupling between wave reflection and ripple growth on an erodible bed.
Wave propagation in ducts using the finite element method. [for aircraft noise reduction
Majjigi, R. K.; Sigman, R. K.; Zinn, B. T.
1979-01-01
The paper outlines a comparative study designed to assess and compare the accuracy of the finite element method (FEM) for linear and quadratic elements as applied to problems in duct acoustics. The acoustic disturbances are assumed to be irrotational and isentropic so that the problem can be formulated in terms of the acoustic velocity potential. It is shown that for the case of plane wave propagation in a hard-walled annular cylinder, the accuracy of the FEM solution can be increased at higher frequencies by using quadratic triangular elements instead of linear triangular elements. Evidence is presented to enhance the confidence in applying the developed FEM by comparing results with those obtained by other independently developed numerical approaches such as an integral equation technique and a finite difference method.
Modeling seismic wave propagation using staggered-grid mimetic finite differences
Directory of Open Access Journals (Sweden)
Freysimar Solano-Feo
2017-04-01
Full Text Available Mimetic finite difference (MFD approximations of continuous gradient and divergence operators satisfy a discrete version of the Gauss-Divergence theorem on staggered grids. On the mimetic approximation of this integral conservation principle, an unique boundary flux operator is introduced that also intervenes on the discretization of a given boundary value problem (BVP. In this work, we present a second-order MFD scheme for seismic wave propagation on staggered grids that discretized free surface and absorbing boundary conditions (ABC with same accuracy order. This scheme is time explicit after coupling a central three-level finite difference (FD stencil for numerical integration. Here, we briefly discuss the convergence properties of this scheme and show its higher accuracy on a challenging test when compared to a traditional FD method. Preliminary applications to 2-D seismic scenarios are also presented and show the potential of the mimetic finite difference method.
Alberucci, Alessandro; Laudyn, Urszula A; Piccardi, Armando; Kwasny, Michał; Klus, Bartlomiej; Karpierz, Mirosław A; Assanto, Gaetano
2017-07-01
We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals. We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach. Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-4'-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.
Propagation of mechanical waves through a stochastic medium with spherical symmetry
Avendaño, Carlos G.; Reyes, J. Adrián
2018-01-01
We theoretically analyze the propagation of outgoing mechanical waves through an infinite isotropic elastic medium possessing spherical symmetry whose Lamé coefficients and density are spatial random functions characterized by well-defined statistical parameters. We derive the differential equation that governs the average displacement for a system whose properties depend on the radial coordinate. We show that such an equation is an extended version of the well-known Bessel differential equation whose perturbative additional terms contain coefficients that depend directly on the squared noise intensities and the autocorrelation lengths in an exponential decay fashion. We numerically solve the second order differential equation for several values of noise intensities and autocorrelation lengths and compare the corresponding displacement profiles with that of the exact analytic solution for the case of absent inhomogeneities.
Rossby wave propagation and teleconnections for the Northern Hemisphere summer flow
International Nuclear Information System (INIS)
Ambrizzi, T.; Hoskins, B.J.
1994-01-01
To produce more confident predictions of global climate change, we have first to understand the climate itself. One way to do this is to use a numerical model in order to simulate a specific aspect observed in the atmosphere in an attempt to gain an insight into its dynamics. Teleconnection analysis comprises a global view of atmospheric circulation where local phenomena act to influence remote regions in the atmosphere. They have been used mainly to study large-scale low frequency fluctuations in the atmosphere. Their importance for long range weather forecasting, for instance, is obvious. The theory of Rossby wave propagation can largely explain patterns of wavetrains obtained in observations and in the results of models
Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.
2010-01-01
As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.
Advanced numerical techniques for modeling tensile crack propagation in gravity dams
Dias, I.F.; Oliver Olivella, Xavier; Lemos, J.V.; Lloberas Valls, Oriol
2015-01-01
Cracks propagating deep inside gravity dams can seriously affect their structural safety. Due to the potential catastrophic scenarios associated to the collapse of large concrete dams, it is a fundamental issue to realistically predict the eventual crack profiles and the ultimate structural resistance associated to the failure mechanisms. This work investigates tensile crack propagation in concrete gravity dams by using some new recently developed numerical techniques (crack-path field and...
Numerical Modeling of a Wave Energy Point Absorber
DEFF Research Database (Denmark)
Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning
2009-01-01
The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....
Numerical Relativity for Space-Based Gravitational Wave Astronomy
Baker, John G.
2011-01-01
In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.
Nonlinear propagation of whistler wave and turbulent spectrum in reconnection region of magnetopause
Sharma, R. P.; Pathak, Neha; Yadav, Nitin; Sharma, Prachi
2017-09-01
Whistler waves have ample of observations in the magnetosphere near the dayside magnetopause. Also, the role of whistler waves is well established in the context of magnetic reconnection as well as turbulence generation. In the present work, we examine the combined effect of guide field and nonlinearity in the development of turbulence in magnetic reconnection sites. We have derived the dynamical equation of 3D whistler wave propagating through Harris sheet assuming that background number density and background field are perturbed. The nonlinear dynamical equation is then solved numerically using pseudo-spectral method and finite difference method. Simulation results represent the nonlinear evolution of X-O field line in the presence of nonlinearity, which causes the generation of turbulence. We have also investigated the formation of current sheet/coherent structures as a result of the proposed mechanism. These localized structures have transverse scale size of the order of electron inertial length. When the system reaches quasi steady state, we have evaluated power spectrum in magnetopause and it shows two different scaling having k-3 /2 for k λe1 .The obtained results are consistent with the THEMIS observations. Energy distribution at smaller scales leads to the formation of thermal tail of energetic particles. The energy of these electrons is also calculated and comes out to be in the order of 100 keV.
Propagation of the lower hybrid wave in a density fluctuating scrape-off layer (SOL)
International Nuclear Information System (INIS)
Madi, M; Peysson, Y; Decker, J; Kabalan, K Y
2015-01-01
The perturbation of the lower hybrid wave (LH) power spectrum by fluctuations of the plasma in the vicinity of the antenna is investigated by solving the full wave equation in a slab geometry using COMSOL Multiphysics®. The numerical model whose generality allows to study the effect of various types of fluctuations, including those with short characteristic wavelengths is validated against a coupling code in quiescent regimes. When electron density fluctuations along the toroidal direction are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the LH wave propagates. The diffraction effect by density fluctuations leads to the appearance of multiple satellite lobes with randomly varying positions and the averaged perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength. This highlights that fast toroidal inhomogeneities with short characteristics length scales in front of the grill may change significantly the initial LH power spectrum used in coupled ray-tracing and Fokker–Planck calculations. (paper)
Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei
2018-03-01
This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.
Modeling paraxial wave propagation in free-electron laser oscillators
Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.
2006-01-01
Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for
ANALYTIC APPROXIMATE SEISMOLOGY OF PROPAGATING MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR CORONA
Energy Technology Data Exchange (ETDEWEB)
Goossens, M.; Soler, R. [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium); Arregui, I. [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2012-12-01
Observations show that propagating magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. The technique of MHD seismology uses the wave observations combined with MHD wave theory to indirectly infer physical parameters of the solar atmospheric plasma and magnetic field. Here, we present an analytical seismological inversion scheme for propagating MHD waves. This scheme uses the observational information on wavelengths and damping lengths in a consistent manner, along with observed values of periods or phase velocities, and is based on approximate asymptotic expressions for the theoretical values of wavelengths and damping lengths. The applicability of the inversion scheme is discussed and an example is given.
Deep currents in the Gulf of Guinea: along slope propagation of intraseasonal waves
Directory of Open Access Journals (Sweden)
C. Guiavarc'h
2009-05-01
Full Text Available In the Gulf of Guinea, intraseasonal variability is large at the equator and along the coast. Current data on the continental slope near 7.5° S show very energetic biweekly oscillations at 1300 m depth. A high resolution primitive equation numerical model demonstrates that this deep variability is forced by equatorial winds, through the generation of equatorial Yanai waves that propagate eastward and at depth, and then poleward as coastally-trapped waves upon reaching the coast of Africa. Intraseasonal variability is intensified along the coast of the Gulf of Guinea, especially in the 10–20 day period range and at depths between 500 and 1500 m. The kinetic energy distribution is well explained at first order by linear theory. Along the equator, eastward intensification of energy and bottom intensification are in qualitative agreement with vertically propagating Yanai waves, although the signal is influenced by the details of the bathymetry. Along the coast, baroclinic modes 3 to 5 are important close to the equator, and the signal is dominated by lower vertical modes farther south. Additional current meter data on the continental slope near 3° N display an energy profile in the 10–20 day period band that is strikingly different from the one at 7.5° S, with surface intensification rather than bottom intensification and a secondary maximum near 800 m. The model reproduces these features and explains them: the surface intensification in the north is due to the regional wind forcing, and the north-south asymmetry of the deep signal is due to the presence of the zonal African coast near 5° N. A 4 years time series of current measurements at 7.5° S shows that the biweekly oscillations are intermittent and vary from year to year. This intermittency is not well correlated with fluctuations of the equatorial winds and does not seem to be a simple linear response to the wind forcing.
Energy Technology Data Exchange (ETDEWEB)
Kim, Jung Yul; Hyun, Hye ja; Kim, Yoo Sung [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)
1997-12-01
In petroleum exploration seismic reflection method is by far the most widely used. The resulting seismogram or seismic trace consists of many wavelets with different strengths and arrival times, due to the wavefront that have traveled different source-to receiver paths. In this sense, the seismic trace may be represented as a convolution of a wavelet with an impulse response denoting the various wavelet amplitudes and arrival times present in the trace. However, the wavelet suffers different attenuations while traveling through the earth layers. For example, the weathered layer (near-surface structure : e.g. valley) affect the propagating seismic wave in ways that cannot be simply modeled, but rather described in terms of an overall time delay and significant distortion of the source wavelet as it travels downward. Of course, the weathered layer will also affect the upgoing wave. Thus, the reflection method does not always lead to a desirable resolution in reflection section, because some specific constraints on the illumination of the deeper reflectors can be often imposed by the near-surface effect. Among other things, the mechanism for attenuation in many types of rocks is not very well understood. The present work is then mostly focussed on studying problems of wave propagation especially dealing with the near-surface structure problem by using physical modeling. An attempt was made to compare the measured data in detail with those from numerical method (ray theory). Besides, various kinds of physical models were additionally built to simulate the complex geological structures comprising wavy layer, coal seam structure, absorbing inhomogeneities, gradient layer that are not simply amenable to theory. Hereby, an attention was given on the reflection and transmission responses. The results illustrated in this work will provide a basis for the future oil exploration in Korea and demonstrate the potential of physical modeling as well. (author). 7 refs., 4 tabs., 62
LHR effects in nonducted whistler propagation - new observations and numerical modelling
Czech Academy of Sciences Publication Activity Database
Jiříček, František; Shklyar, D. R.; Tříska, Pavel
2001-01-01
Roč. 19, - (2001), s. 147-157 ISSN 0992-7689 R&D Projects: GA ČR GA102/98/1141; GA AV ČR IAA3042801 Institutional research plan: CEZ:AV0Z3042911 Keywords : magnetospheric physics * plasmasphere * wave propagation Subject RIV: JV - Space Technology Impact factor: 1.199, year: 2001
Propagation of S-waves in a non-homogeneous anisotropic ...
African Journals Online (AJOL)
homogeneous anisotropic incompressible and initially stressed medium. Analytical analysis reveals that the velocities of the shear waves depend upon the direction of propagation, the anisotropy, the non-homogeneity of the medium and the initial ...
Vertical propagation of baroclinic Kelvin waves along the west coast of India
Digital Repository Service at National Institute of Oceanography (India)
Nethery, D.; Shankar, D.
, this paper is intended to provide the motivation for studying the vertical propagation of coastal Kelvin waves with a general circulation model, allowing the influence of density variations, basin geometry, and mixing processes to be examined...
Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks
DEFF Research Database (Denmark)
Wright, J.C.; Bonoli, P.T.; Brambilla, M.
2004-01-01
Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k(perpendi......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......(perpendicular to)rho(i)similar to1 which leads to a scaling of the maximum poloidal mode number, M-max, proportional to 1/rho(*) (rho(*)equivalent torho(i)/L). The computational resources needed scale with the number of radial (N-r), poloidal (N-theta), and toroidal (N-phi) elements as N-r * N-phi * N-theta(3...... time are capable of achieving the resolution and speed necessary to address mode conversion phenomena in full two-dimensional (2-D) toroidal geometry. These codes have been used in conjunction with theory and experimental data from the Alcator C-Mod [I. H. Hutchinson , Phys. Plasmas 1, 1511 (1994...
Directory of Open Access Journals (Sweden)
Vojkan M. Radonjić
2011-01-01
Full Text Available Quality transmission of digital signals from a transmitting radio-relay device to a receiving one depends on the impact of environmental effects on the propagation of electromagnetic waves. In this paper some of the most important effects are explained and modeled, especially those characteristic for the frequency range within which the GRC 408E operates. The modeling resulted in the conclusions about the quality of transmission of digital signals in the GRC 408E radio-relay equipment. Propagation of electromagnetic waves A radio-relay link is achieved by direct electromagnetic waves, provided there is a line of sight between the transmitting and receiving antenna of a radio-relay device. Electromagnetic waves on the road are exposed to various environmental influences causing phenomena such as bending, reflection, refraction, absorption and multiple propagation. Due to these environmental effects, the quality of information transmission is not satisfactory and a radio-relay link is not reliable. The approach to the analysis of the quality of links in digital radiorelay devices is different from the one in analog radio-relay devices. Therefore, the quality is seen through errors in the received bit ( BER , the propagation conditions are taken into account, a reservation for the fading is determined by other means, etc.. Phenomena which accompany the propagation of electromagnetic waves in digital radio-relay links The propagation of direct EM waves is followed by the following phenomena: - attenuation due to propagation, - diffraction (changing table, - refraction (refraction, - reflection (refusing, - absorption (absorption and - multiple wave propagation. Each of these has a negative effect on the quality of the received signal at the receiving antenna of the radio-relay device. Attenuation due to propagation of electromagnetic waves The main parameter for evaluating the quality of radio-relay links is the level of the field at the reception
Numerical prediction of wave impact loads on multiple rectangular beams
DEFF Research Database (Denmark)
Mayer, Stefan; Nielsen, Kristian Bendix; Hansen, E.A.
2005-01-01
Wave impact on one and two structural beams with rectangular cross section is simulated with a two-dimensional finite volume method, solving the unsteady Euler equations and employing a VOF-type method for the description of the free surface. Four different test series are carried out, each...... corresponding to a wave impact scenario in the experimental database of Sterndorff [2002]. For the case of wave impact on a single structural element the numerical results show good agreement with measured force time histories. In the computations featuring two beams, the prediction of the shadowing effect...
Energy Technology Data Exchange (ETDEWEB)
Le Grognec, P.; Hariri, S. [Ecole des Mines de Douai, 59 (France); Afzali, M.; Jaffal, H. [Centre Technique des Industries Mecaniques, 60 - Senlis (France)
2008-11-15
The aim of this work is to determine the evolution of the degree of noxiousness of a defect in a pressure equipment during its propagation. The estimation of the degree of noxiousness involves the calculation of stress intensity factors at each advance of the crack front. The cracks considered are semi-elliptic. The geometries and loads can be complex in order to cover the main industrial cases. Numerical modelling by finite element method is based on the creation of a crack-block, representing the optimized mesh near the discontinuity. The Paris law allows to describe the fatigue behaviour under cyclic load. A specific program (Python), having the advantages of the calculation codes Castem and Abaqus, allows to compute the propagation approach and makes easier the estimation of the residual lifetime of a structure under cracked pressure. (O.M.)
Numerical simulation of tsunami-scale wave boundary layers
DEFF Research Database (Denmark)
Williams, Isaac A.; Fuhrman, David R.
2016-01-01
This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...... duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow...