WorldWideScience

Sample records for numerical typing systems

  1. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  2. Numerical simulation for dynamic response of interactive system between soil and RC duct-type structures in nuclear power plants

    International Nuclear Information System (INIS)

    Minh, Nguyen Nguyen; Aoyagi, Yukio; Kanazu, Tsutomu; Ohtomo, Keizo; Matsumoto, Yasuaki

    2000-01-01

    Dynamic numerical simulation of a coupled soil-structure system by non-linear finite element method is presented. The target structure is the underground duct-type structure for emergency services in nuclear power plants. By appropriately modeling, including refinements in dynamic soil model and introduction of interface element, etc., the simulated results are in a very good agreement with the experimental results in terms of dynamic amplitudes and damaging process. A simple mesh generation program specific for the system with optimization concern is made. Some issues on computational aspects are then addressed. (author)

  3. Numerical Study on the Cooling Characteristics of a Passive-Type PEMFC Stack

    International Nuclear Information System (INIS)

    Lee, Jae Hyuk; Kim, Bo Sung; Lee, Yong Taek; Kim, Yong Chan

    2010-01-01

    In a passive-type PEMFC stack, axial fans operate to supply both oxidant and coolant to cathode side of the stack. It is possible to make a simple system because the passive-type PEMFC stack does not require additional cooling equipment. However, the performance of a cooling system in which water is used as a coolant is better than that of the air-cooling system. To ensure system reliability, it is essential to make cooling system effective by adopting an optimal stack design. In this study, a numerical investigation has been carried out to identify an optimum cooling strategy. Various channel configurations were applied to the test section. The passive-type PEMFC was tested by varying airflow rate distribution at the cathode side and external heat transfer coefficient of the stack. The best cooling performance was achieved when a channel with thick ribs was used, and the overheating at the center of the stack was reduced when a case in which airflow was concentrated at the middle of the stack was used

  4. A numerical study of boiling flow instability of a reactor thermosyphon system

    International Nuclear Information System (INIS)

    Nayak, A.K.; Lathouwers, D.; Hagen, T.H.J.J. van der; Schrauwen, Frans; Molenaar, Peter; Rogers, Andrew

    2006-01-01

    A numerical study has been carried out to investigate the boiling flow instability of a reactor thermosyphon system. The numerical model solves the conservation equations of mass, momentum and energy applicable to a two-fluid and three-field steam-water system using a finite difference technique. The computer code MONA was used for this purpose. The code was applied to the thermosyphon system of an EO (ethylene oxide) chemical reactor in which the heat released by a catalytic reaction is carried by boiling water under natural circulation conditions. The steady-state characteristics of the reactor thermosyphon system were predicted using the MONA code and conventional two-phase flow models in order to understand the model applicability for this type of thermosyphon system. The two-fluid model was found to predict the flow closest to the measured value of the plant. The stability behaviour of the thermosyphon system was investigated for a wide range of operating conditions. The effects of power, subcooling, riser length and riser diameter on the boiling flow instability were determined. The system was found to be unstable at higher power conditions which is typical for a Type II instability. However, with an increase in riser diameter, oscillations at low power were observed as well. These are classified as Type I instabilities. Stability maps were predicted for both Type I and Type II instabilities. Methods of improving the stability of the system are discussed

  5. A numerical study of boiling flow instability of a reactor thermosyphon system

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, A.K.; Lathouwers, D.; Hagen, T.H.J.J. van der [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Schrauwen, Frans; Molenaar, Peter; Rogers, Andrew [Shell Research and Technology Centre, Badhuisweg 3, 1031 CM Amsterdam (Netherlands)

    2006-04-01

    A numerical study has been carried out to investigate the boiling flow instability of a reactor thermosyphon system. The numerical model solves the conservation equations of mass, momentum and energy applicable to a two-fluid and three-field steam-water system using a finite difference technique. The computer code MONA was used for this purpose. The code was applied to the thermosyphon system of an EO (ethylene oxide) chemical reactor in which the heat released by a catalytic reaction is carried by boiling water under natural circulation conditions. The steady-state characteristics of the reactor thermosyphon system were predicted using the MONA code and conventional two-phase flow models in order to understand the model applicability for this type of thermosyphon system. The two-fluid model was found to predict the flow closest to the measured value of the plant. The stability behaviour of the thermosyphon system was investigated for a wide range of operating conditions. The effects of power, subcooling, riser length and riser diameter on the boiling flow instability were determined. The system was found to be unstable at higher power conditions which is typical for a Type II instability. However, with an increase in riser diameter, oscillations at low power were observed as well. These are classified as Type I instabilities. Stability maps were predicted for both Type I and Type II instabilities. Methods of improving the stability of the system are discussed. [Author].

  6. Conservation properties of numerical integration methods for systems of ordinary differential equations

    Science.gov (United States)

    Rosenbaum, J. S.

    1976-01-01

    If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.

  7. Numerical analysis and experiment research on fluid orbital performance of vane type propellant management device

    International Nuclear Information System (INIS)

    Hu, Q; Li, Y; Pan, H L; Liu, J T; Zhuang, B T

    2015-01-01

    Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment

  8. Numerical evaluation of two-center integrals over Slater type orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, S. A., E-mail: slaykurt@gmail.com [Department of Physics, Natural Sciences Institute, Ondokuz Mayıs University, 55139, Samsun (Turkey); Yükçü, N., E-mail: nyukcu@gmail.com [Department of Energy Systems Engineering, Faculty of Technology, Adıyaman University, 02040, Adıyaman (Turkey)

    2016-03-25

    Slater Type Orbitals (STOs) which one of the types of exponential type orbitals (ETOs) are used usually as basis functions in the multicenter molecular integrals to better understand physical and chemical properties of matter. In this work, we develop algorithms for two-center overlap and two-center two-electron hybrid and Coulomb integrals which are calculated with help of translation method for STOs and some auxiliary functions by V. Magnasco’s group. We use Mathematica programming language to produce algorithms for these calculations. Numerical results for some quantum numbers are presented in the tables. Consequently, we compare our obtained numerical results with the other known literature results and other details of evaluation method are discussed.

  9. Numerical evaluation of two-center integrals over Slater type orbitals

    International Nuclear Information System (INIS)

    Kurt, S. A.; Yükçü, N.

    2016-01-01

    Slater Type Orbitals (STOs) which one of the types of exponential type orbitals (ETOs) are used usually as basis functions in the multicenter molecular integrals to better understand physical and chemical properties of matter. In this work, we develop algorithms for two-center overlap and two-center two-electron hybrid and Coulomb integrals which are calculated with help of translation method for STOs and some auxiliary functions by V. Magnasco’s group. We use Mathematica programming language to produce algorithms for these calculations. Numerical results for some quantum numbers are presented in the tables. Consequently, we compare our obtained numerical results with the other known literature results and other details of evaluation method are discussed.

  10. The chaotic region of Lorenz-type system in the parametric space

    International Nuclear Information System (INIS)

    Liao Haohui; Zhou Tianshou; Tang Yun

    2004-01-01

    A Lorenz-type system is introduced in this paper. The system contains as special cases the Lorenz system, Chen system and Lue system. The distribution of chaos of the system in the parametric space is numerically investigated. At the same time a set of conditions for possible existence of chaos are given, which guideline the range of searching chaos in the numerical simulation

  11. Numerical algorithms for uniform Airy-type asymptotic expansions

    NARCIS (Netherlands)

    N.M. Temme (Nico)

    1997-01-01

    textabstractAiry-type asymptotic representations of a class of special functions are considered from a numerical point of view. It is well known that the evaluation of the coefficients of the asymptotic series near the transition point is a difficult problem. We discuss two methods for computing

  12. Analytical and numerical tools for vacuum systems

    CERN Document Server

    Kersevan, R

    2007-01-01

    Modern particle accelerators have reached a level of sophistication which require a thorough analysis of all their sub-systems. Among the latter, the vacuum system is often a major contributor to the operating performance of a particle accelerator. The vacuum engineer has nowadays a large choice of computational schemes and tools for the correct analysis, design, and engineering of the vacuum system. This paper is a review of the different type of algorithms and methodologies which have been developed and employed in the field since the birth of vacuum technology. The different level of detail between simple back-of-the-envelope calculations and more complex numerical analysis is discussed by means of comparisons. The domain of applicability of each method is discussed, together with its pros and cons.

  13. Large quantum systems: a mathematical and numerical perspective

    International Nuclear Information System (INIS)

    Lewin, M.

    2009-06-01

    This thesis is devoted to the mathematical study of variational models for large quantum systems. The mathematical methods are that of nonlinear analysis, calculus of variations, partial differential equations, spectral theory, and numerical analysis. The first part contains some results on finite systems. We study several approximations of the N-body Schroedinger equation for electrons in an atom or a molecule, and then the so-called Hartree-Fock- Bogoliubov model for a system of fermions interacting via the gravitational force. In a second part, we propose a new method allowing to prove the existence of the thermodynamic limit of Coulomb quantum systems. Then, we construct two Hartree-Fock-type models for infinite systems. The first is a relativistic theory deduced from Quantum Electrodynamics, allowing to describe the behavior of electrons, coupled to that of Dirac's vacuum which can become polarized. The second model describes a nonrelativistic quantum crystal in the presence of a charged defect. A new numerical method is also proposed. The last part of the thesis is devoted to spectral pollution, a phenomenon which is observed when trying to approximate eigenvalues in a gap of the essential spectrum of a self-adjoint operator, for instance for periodic Schroedinger operators or Dirac operators. (author)

  14. Numeral-Incorporating Roots in Numeral Systems: A Comparative Analysis of Two Sign Languages

    Science.gov (United States)

    Fuentes, Mariana; Massone, Maria Ignacia; Fernandez-Viader, Maria del Pilar; Makotrinsky, Alejandro; Pulgarin, Francisca

    2010-01-01

    Numeral-incorporating roots in the numeral systems of Argentine Sign Language (LSA) and Catalan Sign Language (LSC), as well as the main features of the number systems of both languages, are described and compared. Informants discussed the use of numerals and roots in both languages (in most cases in natural contexts). Ten informants took part in…

  15. Numerical and algebraic studies for the control of finite-dimensional quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Uwe

    2010-11-18

    In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)

  16. Numerical and algebraic studies for the control of finite-dimensional quantum systems

    International Nuclear Information System (INIS)

    Sander, Uwe

    2010-01-01

    In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)

  17. One-dimensional numerical simulation of the Stirling-type pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2007-01-01

    Change of title: One-dimensional numerical simulation of the Stirling-type pulse-tube cooler. Pulse-tube refrigeration (PTR) is a new technology for cooling down to extremely low temperatures. In this paper a particular type, the so-called Stirling single-stage refrigerator, is considered. A

  18. Two systems of non-symbolic numerical cognition

    Directory of Open Access Journals (Sweden)

    Daniel C. Hyde

    2011-11-01

    Full Text Available Studies of human adults, infants, and non-human animals demonstrate that non-symbolic numerical cognition is supported by at least two distinct cognitive systems: a ‘parallel individuation system’ that encodes the numerical identity of individual items and an ‘approximate number system’ that encodes the approximate numerical magnitude, or numerosity, of a set. The exact nature of these systems, however, have been debated for over a hundred years. Some argue that the non-symbolic representation of small numbers (< 4 is carried out solely by the parallel individuation system and the non-symbolic representation of large numbers (> 4 is carried out solely by the approximate number system. Others argue that all numbers are represented by the approximate number system. This debate has been fueled largely by some studies showing dissociations in processing and other studies showing similar processing of small and large numbers. Recent work has addressed this debate by showing that the two systems are present and distinct from early infancy, persist despite the acquisition of a symbolic number system, activate distinct cortical networks, and engage differentially based attentional constraints. Based on the recent discoveries, I provide a hypothesis that may explain the puzzling findings and makes testable predictions as to when each system will be engaged. In particular, when items are presented under conditions that allow selection of individuals, they will be represented as distinct mental items through parallel individuation and not as a numerical magnitude. In contrast, when items are presented outside attentional limits (e.g. too many, too close together, under high attentional load, they will be represented as a single mental numerical magnitude and not as distinct mental items. These predictions provide a basis on which researchers can further investigate the role of each system in the development of uniquely human numerical thought.

  19. Reactions, accuracy and response complexity of numerical typing on touch screens.

    Science.gov (United States)

    Lin, Cheng-Jhe; Wu, Changxu

    2013-01-01

    Touch screens are popular nowadays as seen on public kiosks, industrial control panels and personal mobile devices. Numerical typing is one frequent task performed on touch screens, but this task on touch screen is subject to human errors and slow responses. This study aims to find innate differences of touch screens from standard physical keypads in the context of numerical typing by eliminating confounding issues. Effects of precise visual feedback and urgency of numerical typing were also investigated. The results showed that touch screens were as accurate as physical keyboards, but reactions were indeed executed slowly on touch screens as signified by both pre-motor reaction time and reaction time. Provision of precise visual feedback caused more errors, and the interaction between devices and urgency was not found on reaction time. To improve usability of touch screens, designers should focus more on reducing response complexity and be cautious about the use of visual feedback. The study revealed that slower responses on touch screens involved more complex human cognition to formulate motor responses. Attention should be given to designing precise visual feedback appropriately so that distractions or visual resource competitions can be avoided to improve human performance on touch screens.

  20. Numerical continuation methods for dynamical systems path following and boundary value problems

    CERN Document Server

    Krauskopf, Bernd; Galan-Vioque, Jorge

    2007-01-01

    Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel''s 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects ...

  1. Interagency mechanical operations group numerical systems group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report consists of the minutes of the May 20-21, 1971 meeting of the Interagency Mechanical Operations Group (IMOG) Numerical Systems Group. This group looks at issues related to numerical control in the machining industry. Items discussed related to the use of CAD and CAM, EIA standards, data links, and numerical control.

  2. Improved numerical algorithm and experimental validation of a system thermal-hydraulic/CFD coupling method for multi-scale transient simulations of pool-type reactors

    International Nuclear Information System (INIS)

    Toti, A.; Vierendeels, J.; Belloni, F.

    2017-01-01

    Highlights: • A system thermal-hydraulic/CFD coupling methodology is proposed for high-fidelity transient flow analyses. • The method is based on domain decomposition and implicit numerical scheme. • A novel interface Quasi-Newton algorithm is implemented to improve stability and convergence rate. • Preliminary validation analyses on the TALL-3D experiment. - Abstract: The paper describes the development and validation of a coupling methodology between the best-estimate system thermal-hydraulic code RELAP5-3D and the CFD code FLUENT, conceived for high fidelity plant-scale safety analyses of pool-type reactors. The computational tool is developed to assess the impact of three-dimensional phenomena occurring in accidental transients such as loss of flow (LOF) in the research reactor MYRRHA, currently in the design phase at the Belgian Nuclear Research Centre, SCK• CEN. A partitioned, implicit domain decomposition coupling algorithm is implemented, in which the coupled domains exchange thermal-hydraulics variables at coupling boundary interfaces. Numerical stability and interface convergence rates are improved by a novel interface Quasi-Newton algorithm, which is compared in this paper with previously tested numerical schemes. The developed computational method has been assessed for validation purposes against the experiment performed at the test facility TALL-3D, operated by the Royal Institute of Technology (KTH) in Sweden. This paper details the results of the simulation of a loss of forced convection test, showing the capability of the developed methodology to predict transients influenced by local three-dimensional phenomena.

  3. Valx: A System for Extracting and Structuring Numeric Lab Test Comparison Statements from Text.

    Science.gov (United States)

    Hao, Tianyong; Liu, Hongfang; Weng, Chunhua

    2016-05-17

    To develop an automated method for extracting and structuring numeric lab test comparison statements from text and evaluate the method using clinical trial eligibility criteria text. Leveraging semantic knowledge from the Unified Medical Language System (UMLS) and domain knowledge acquired from the Internet, Valx takes seven steps to extract and normalize numeric lab test expressions: 1) text preprocessing, 2) numeric, unit, and comparison operator extraction, 3) variable identification using hybrid knowledge, 4) variable - numeric association, 5) context-based association filtering, 6) measurement unit normalization, and 7) heuristic rule-based comparison statements verification. Our reference standard was the consensus-based annotation among three raters for all comparison statements for two variables, i.e., HbA1c and glucose, identified from all of Type 1 and Type 2 diabetes trials in ClinicalTrials.gov. The precision, recall, and F-measure for structuring HbA1c comparison statements were 99.6%, 98.1%, 98.8% for Type 1 diabetes trials, and 98.8%, 96.9%, 97.8% for Type 2 diabetes trials, respectively. The precision, recall, and F-measure for structuring glucose comparison statements were 97.3%, 94.8%, 96.1% for Type 1 diabetes trials, and 92.3%, 92.3%, 92.3% for Type 2 diabetes trials, respectively. Valx is effective at extracting and structuring free-text lab test comparison statements in clinical trial summaries. Future studies are warranted to test its generalizability beyond eligibility criteria text. The open-source Valx enables its further evaluation and continued improvement among the collaborative scientific community.

  4. Rigorous numerical modeling of scattering-type scanning near-field optical microscopy and spectroscopy

    Science.gov (United States)

    Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun

    2017-11-01

    Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.

  5. In silico dissection of Type VII Secretion System components across

    Indian Academy of Sciences (India)

    Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacteriun tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information ...

  6. A parallel architecture system dedicated to fast numerical calculus

    International Nuclear Information System (INIS)

    Harmanci, A.E.

    1982-04-01

    The project described here is the first result of a careful reflection oriented to the implementation of a machine intended for fast scientific computation, having in mind applications in the field of nuclear reactor safety. The selected structure is a data processing system of the MIMD type (Multiple Instruction, Multiple Data Stream). It is built by generalizing a basic cell constituted by associating an host processor and one or several processors dedicated to numerical computation, both operating alternatively on two areas of a common memory block. The principle of simultaneous operation of a large number of identical resources is used at every level of the structure. The system described here is hence modular and reconfigurable. The number of cells, the size and number of memory blocks may be chosen according to the needs. The communication between processors is carried out through the switching of the allocation of memory blocks. Moreover the numerical processors make the best use of private interconnections for synchronisation and fast data interchange. The present study devoted to the definition of the main hardware structures, will be followed by a simulation phase while suitable software tools will be developed [fr

  7. Optimal hydraulic design of new-type shaft tubular pumping system

    International Nuclear Information System (INIS)

    Zhu, H G; Zhang, R T; Zhou, J R

    2012-01-01

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-ε turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m 3 /s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  8. Numerical solutions of a ODE's system for neutronics

    International Nuclear Information System (INIS)

    Lima, Suzylaine da Silva; Ramos, Alexandre F.

    2017-01-01

    The preliminary results that were obtained in the computational implementation to solve numerically a System of Coupled Differential Equations were presented. This system is intended to describe the kinetics of nuclear reactions occurring in the interior of a fusion-fission hybrid reactor in which fusion occurs in periodic pulses, which may be laser, for example. The hybrid reactor contains a core in which the nuclear fusion fuel is injected and is enveloped by two layers both composed of subcritical fission fuel. Our results show that a fusion-fission hybrid reactor composed of two layers of fission can maximize the energy utilization in this type of reactor

  9. An integrated numerical protection system (SPIN)

    International Nuclear Information System (INIS)

    Savornin, J.L.; Bouchet, J.M.; Furet, J.L.; Jover, P.; Sala, A.

    1978-01-01

    Developments in technology have now made it possible to perform more sophisticated protection functions which follow more closely the physical phenomena to be monitored. For this reason the Commissariat a l'energie atomique, Merlin-Gerin, Cerci and Framatome have embarked on the joint development of an Integrated Numerical Protection System (SPIN) which will fulfil this objective and will improve the safety and availability of power stations. The system described involves the use of programmed numerical techniques and a structure based on multiprocessors. The architecture has a redundancy of four. Throughout the development of the project the validity of the studies was confirmed by experiments. A first numerical model of a protection function was tested in the laboratory and is now in operation in a power station. A set of models was then introduced for checking the main components of the equipment finally chosen prior to building and testing a prototype. (author)

  10. Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    Science.gov (United States)

    Freund, Roland

    1989-01-01

    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  11. Numerical modeling and design of a disk-type rotating permanent magnet induction pump

    Energy Technology Data Exchange (ETDEWEB)

    Koroteeva, E., E-mail: koroteeva@physics.msu.ru [Institute of Physics of University of Latvia, Salaspils 2169 (Latvia); Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Ščepanskis, M. [Laboratory for Mathematical Modelling of Environmental and Technological Processes, University of Latvia, Rīga 1002 (Latvia); Bucenieks, I.; Platacis, E. [Institute of Physics of University of Latvia, Salaspils 2169 (Latvia)

    2016-05-15

    Highlights: • The design and performance of a disk-type induction pump are described. • A 3D numerical model based on an iterative coupling between EM and hydrodynamic solvers is developed. • The model is verified by comparing with the experiments in a Pb-Bi loop facility. • The suggestions are given to estimate the pump performance in a Pb-Li loop at high pressures. - Abstract: Electromagnetic induction pumps with rotating permanent magnets appear to be the most promising devices to transport liquid metals in high-temperature applications. Here we present a numerical methodology to simulate the operation of one particular modification of these types of pumps: a disk-type induction pump. The numerical model allows for the calculation and analysis of the flow parameters, including the pressure–flow rate characteristics of the pump. The simulations are based on an iterative fully coupled scheme for electromagnetic and hydrodynamic solvers. The developed model is verified by comparing with experimental data obtained using a Pb-Bi loop test facility, for pressures up to 4 bar and flow rates up to 9 kg/s. The verified model is then expanded to higher pressures, beyond the limits of the experimental loop. Based on the numerical simulations, suggestions are given to extrapolate experimental data to higher (industrially important) pressure ranges. Using the numerical model and analytical estimation, the pump performance for the Pb-Li loop is also examined, and the ability of the designed pump to develop pressure heads over 6 bar and to provide flow rates over 15 kg/s is shown.

  12. A numerical analysis on the heat transfer and pressure drop characteristics of welding type plate heat exchangers

    International Nuclear Information System (INIS)

    Jeong, Jong Yun; Kang, Yong Tae; Nam, Sang Chul

    2008-01-01

    Numerical analysis was carried out to examine the heat transfer and pressure drop characteristics of plate heat exchangers for absorption application using computational Fluid Dynamics(CFD) technique. A commercial CFD software package, FLUENT was used to predict the characteristics of heat transfer, pressure drop and flow distribution within plate heat exchangers. In this paper, a welded plate heat exchanger with the plate of chevron embossing type was numerically analyzed by controlling mass flow rate, solution concentration, and inlet temperatures. The working fluid is H 2 O/LiBr solution with the LiBr concentration of 50∼60% in mass. The numerical simulation show reasonably good agreement with the experimental results. Also, the numerical results show that plate of the chevron shape gives better results than plate of the elliptical shape from the view points of heat transfer and pressure drop. These results provide a guideline to apply the welded PHE for the solution heat exchanger of absorption systems

  13. A Study of Enhanced, Higher Order Boussinesq-Type Equations and Their Numerical Modelling

    DEFF Research Database (Denmark)

    Banijamali, Babak

    model is designated for the solution of higher-order Boussinesq-type equations, formulated in terms of the horizontal velocity at an arbitrary depth vector. Various discretisation techniques and grid definitions have been considered in this endeavour, undertaking a detailed analysis of the selected......This project has encompassed efforts in two separate veins: on the one hand, the acquiring of highly accurate model equations of the Boussinesq-type, and on the other hand, the theoretical and practical work in implementing such equations in the form of conventional numerical models, with obvious...... potential for applications to the realm of numerical modelling in coastal engineering. The derivation and analysis of several forms of higher-order in dispersion and non-linearity Boussinesq-type equations have been undertaken, obtaining and investigating the properties of a new and generalised class...

  14. Numerical Feedback Stabilization with Applications to Networks

    Directory of Open Access Journals (Sweden)

    Simone Göttlich

    2017-01-01

    Full Text Available The focus is on the numerical consideration of feedback boundary control problems for linear systems of conservation laws including source terms. We explain under which conditions the numerical discretization can be used to design feedback boundary values for network applications such as electric transmission lines or traffic flow systems. Several numerical examples illustrate the properties of the results for different types of networks.

  15. Testability of numerical systems

    International Nuclear Information System (INIS)

    Soulas, B.

    1992-01-01

    In order to face up to the growing complexity of systems, the authors undertook to define a new approach for the qualification of systems. This approach is based on the concept of Testability which, supported by system modelization, validation and verification methods and tools, would allow Integrated Qualification process, applied throughout the life-span of systems. The general principles of this approach are introduced in the general case of numerical systems; in particular, this presentation points out the difference between the specification activity and the modelization and validation activity. This approach is illustrated firstly by the study of a global system and then by case of communication protocol as the software point of view. Finally MODEL which support this approach is described. MODEL tool is a commercial tool providing modelization and validation techniques based on Petri Nets with triple extension: Predicate/Transition, Timed and Stochastic Petri Nets

  16. Numerical investigation into the existence of limit cycles in two-dimensional predator�prey systems

    Directory of Open Access Journals (Sweden)

    Quay van der Hoff

    2013-05-01

    Full Text Available There has been a surge of interest in developing and analysing models of interacting species in ecosystems, with specific interest in investigating the existence of limit cycles in systems describing the dynamics of these species. The original Lotka–Volterra model does not possess any limit cycles. In recent years this model has been modified to take disturbances into consideration and allow populations to return to their original numbers. By introducing logistic growth and a Holling Type II functional response to the traditional Lotka–Volterra-type models, it has been proven analytically that a unique, stable limit cycle exists. These proofs make use of Dulac functions, Liénard equations and invariant regions, relying on theory developed by Poincaré, Poincaré-Bendixson, Dulac and Liénard, and are generally perceived as difficult. Computer algebra systems are ideally suited to apply numerical methods to confirm or refute the analytical findings with respect to the existence of limit cycles in non-linear systems. In this paper a class of predator–prey models of a Gause type is used as the vehicle to illustrate the use of a simple, yet novel numerical algorithm. This algorithm confirms graphically the existence of at least one limit cycle that has analytically been proven to exist. Furthermore, adapted versions of the proposed algorithm may be applied to dynamic systems where it is difficult, if not impossible, to prove analytically the existence of limit cycles.

  17. Analysis and synthesis for interval type-2 fuzzy-model-based systems

    CERN Document Server

    Li, Hongyi; Lam, Hak-Keung; Gao, Yabin

    2016-01-01

    This book develops a set of reference methods capable of modeling uncertainties existing in membership functions, and analyzing and synthesizing the interval type-2 fuzzy systems with desired performances. It also provides numerous simulation results for various examples, which fill certain gaps in this area of research and may serve as benchmark solutions for the readers. Interval type-2 T-S fuzzy models provide a convenient and flexible method for analysis and synthesis of complex nonlinear systems with uncertainties.

  18. A Lymph Node Staging System for Gastric Cancer: A Hybrid Type Based on Topographic and Numeric Systems.

    Directory of Open Access Journals (Sweden)

    Yoon Young Choi

    Full Text Available Although changing a lymph node staging system from an anatomically based system to a numerically based system in gastric cancer offers better prognostic performance, several problems can arise: it does not offer information on the anatomical extent of disease and cannot represent the extent of lymph node dissection. The purpose of this study was to discover an alternative lymph node staging system for gastric cancer. Data from 6025 patients who underwent gastrectomy for primary gastric cancer between January 2000 and December 2010 were reviewed. The lymph node groups were reclassified into lesser-curvature, greater-curvature, and extra-perigastric groups. Presence of any metastatic lymph node in one group was considered positive. Lymph node groups were further stratified into four (new N0-new N3 according to the number of positive lymph node groups. Survival outcomes with this new N staging were compared with those of the current TNM system. For validation, two centers in Japan (large center, n = 3443; medium center, n = 560 were invited. Even among the same pN stages, the more advanced new N stage showed worse prognosis, indicating that the anatomical extent of metastatic lymph nodes is important. The prognostic performance of the new staging system was as good as that of the current TNM system for overall advanced gastric cancer as well as lymph node-positive gastric cancer (Harrell C-index was 0.799, 0.726, and 0.703 in current TNM and 0.799, 0.727, and 0.703 in new TNM stage. Validation sets supported these outcomes. The new N staging system demonstrated prognostic performance equal to that of the current TNM system and could thus be used as an alternative.

  19. Research on ARM Numerical Control System

    Science.gov (United States)

    Wei, Xu; JiHong, Chen

    Computerized Numerical Control (CNC) machine tools is the foundation of modern manufacturing systems, whose advanced digital technology is the key to solve the problem of sustainable development of machine tool manufacturing industry. The paper is to design CNC system embedded on ARM and indicates the hardware design and the software systems supported. On the hardware side: the driving chip of the motor control unit, as the core of components, is MCX314AL of DSP motion control which is developed by NOVA Electronics Co., Ltd. of Japan. It make convenient to control machine because of its excellent performance, simple interface, easy programming. On the Software side, the uC/OS-2 is selected as the embedded operating system of the open source, which makes a detailed breakdown of the modules of the CNC system. Those priorities are designed according to their actual requirements. The ways of communication between the module and the interrupt response are so different that it guarantees real-time property and reliability of the numerical control system. Therefore, it not only meets the requirements of the current social precision machining, but has good man-machine interface and network support to facilitate a variety of craftsmen use.

  20. Six types Monte Carlo for estimating the current unavailability of Markov system with dependent repair

    International Nuclear Information System (INIS)

    Xiao Gang; Li Zhizhong

    2004-01-01

    Based on integral equaiton describing the life-history of Markov system, six types of estimators of the current unavailability of Markov system with dependent repair are propounded. Combining with the biased sampling of state transition time of system, six types of Monte Carlo for estimating the current unavailability are given. Two numerical examples are given to deal with the variances and efficiencies of the six types of Monte Carlo methods. (authors)

  1. Numerical analysis on centrifugal compressor with membrane type dryer

    Science.gov (United States)

    Razali, M. A.; Zulkafli, M. F.; Mat Isa, N.; Subari, Z.

    2017-09-01

    Moisture content is a common phenomenon in industrial processes especially in oil and gas industries. This contaminant has a lot of disadvantages which can lead to mechanical failure DEC (Deposition, Erosion & Corrosion) problems. To overcome DEC problem, this study proposed to design a centrifugal compressor with a membrane type dryer to reduce moisture content of a gas. The effectiveness of such design has been analyzed in this study using Computational Fluid Dynamics (CFD) approach. Numerical scheme based on multiphase flow technique is used in ANSYS Fluent software to evaluate the moisture content of the gas. Through this technique, two kind of centrifugal compressor, with and without membrane type dryer has been tested. The results show that the effects of pressure on dew point temperature of the gas change the composition of its moisture content, where high value lead more condensation to occur. However, with the injection of cool dry gas through membrane type dryer in the centrifugal compressor, the pressure and temperature of moisture content as well as mass fraction of H2O in centrifugal compressor show significant reduction.

  2. Uralic numerals : is the evolution of numeral system reconstructable? : (Reading new Václav Balzhek's book on numerals in Eurasia) / Vladimir Napolskich

    Index Scriptorium Estoniae

    Napolskich, Vladimir

    2003-01-01

    Rmt.: Balzhek, Václav. Numerals. Comparative-etymological analyses of numeral systems and their implications (saharan, nubian, egyptian, berber, kartvelian, ralic, altaic and indo-european languages). Brno, 1999. (Spisy Masarykovy Univerzity v Brné. Filozofická fakulta; 322). Ülevaade uurali keelte arvsõnu käsitlevast osast

  3. Experimental and Numerical Analysis of the Compressive and Shear Behavior for a New Type of Self-Insulating Concrete Masonry System

    Directory of Open Access Journals (Sweden)

    Abu-Bakre Abdelmoneim Elamin Mohamad

    2016-08-01

    Full Text Available The developed study aimed at investigating the mechanical behavior of a new type of self-insulating concrete masonry unit (SCMU. A total of 12 full-grouted wall assemblages were prepared and tested for compression and shear strength. In addition, different axial stress ratios were used in shear tests. Furthermore, numerical models were developed to predict the behavior of grouted specimens using simplified micro-modeling technique. The mortar joints were modeled with zero thickness and their behavior was applied using the traction–separation model of the cohesive element. The experimental results revealed that the shear resistance increases as the level of precompression increases. A good agreement between the experimental results and numerical models was observed. It was concluded that the proposed models can be used to deduct the general behavior of grouted specimens.

  4. Thermal diffusivity measurement of erythritol and numerical analysis of heat storage performance on a fin-type heat exchanger

    International Nuclear Information System (INIS)

    Zamengo, Massimiliano; Funada, Tomohiro; Morikawa, Junko

    2017-01-01

    Highlights: • Thermal diffusivity of Erythritol was measured by temperature wave method. • Thermal diffusivity was measured in function of temperature and during phase change. • Database of temperature-dependent thermal properties is used for numerical analysis. • Heat transfer and heat storage were analyzed in a fin-type heat exchanger. • Use of temperature-dependent properties in calculations lead to longer melting time. - Abstract: Temperature dependency of thermal diffusivity of erythritol was measured by temperature wave analysis (TWA) method. This modulating technique allowed measuring thermal diffusivity continuously, even during the phase transition solid-liquid. Together with specific heat capacity and specific enthalpy measured by differential scanning calorimetry, the values of measured properties were utilized in a bi-dimensional numerical model for analysis of heat transfer and heat storage performance. The geometry of the model is representative of a cross section of a fin-type heat exchanger, in which erythritol is filling the interspaces between fins. Time-dependent temperature change and heat storage performance were analyzed by considering the variation of thermophysical properties as a function of temperature. The numerical method can be utilized for a fast parametric analysis of heat transfer and heat storage performance into heat storage systems of phase-change materials and composites.

  5. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    International Nuclear Information System (INIS)

    Cuntz, M.

    2015-01-01

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ( r adiative habitable zone ; RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington

  6. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M., E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059 (United States)

    2015-01-10

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington.

  7. Combined Effects of Numerical Method Type and Time Step on Water Stressed Actual Crop ET

    Directory of Open Access Journals (Sweden)

    B. Ghahraman

    2016-02-01

    Full Text Available Introduction: Actual crop evapotranspiration (Eta is important in hydrologic modeling and irrigation water management issues. Actual ET depends on an estimation of a water stress index and average soil water at crop root zone, and so depends on a chosen numerical method and adapted time step. During periods with no rainfall and/or irrigation, actual ET can be computed analytically or by using different numerical methods. Overal, there are many factors that influence actual evapotranspiration. These factors are crop potential evapotranspiration, available root zone water content, time step, crop sensitivity, and soil. In this paper different numerical methods are compared for different soil textures and different crops sensitivities. Materials and Methods: During a specific time step with no rainfall or irrigation, change in soil water content would be equal to evapotranspiration, ET. In this approach, however, deep percolation is generally ignored due to deep water table and negligible unsaturated hydraulic conductivity below rooting depth. This differential equation may be solved analytically or numerically considering different algorithms. We adapted four different numerical methods, as explicit, implicit, and modified Euler, midpoint method, and 3-rd order Heun method to approximate the differential equation. Three general soil types of sand, silt, and clay, and three different crop types of sensitive, moderate, and resistant under Nishaboor plain were used. Standard soil fraction depletion (corresponding to ETc=5 mm.d-1, pstd, below which crop faces water stress is adopted for crop sensitivity. Three values for pstd were considered in this study to cover the common crops in the area, including winter wheat and barley, cotton, alfalfa, sugar beet, saffron, among the others. Based on this parameter, three classes for crop sensitivity was considered, sensitive crops with pstd=0.2, moderate crops with pstd=0.5, and resistive crops with pstd=0

  8. Study on natural convection in core barrel. Experimental and numerical results for band type spacer pads

    International Nuclear Information System (INIS)

    Hayashi, Kenji; Kawamata, Nobuhiro; Kamide, Hideki

    2003-03-01

    In a fast reactor an Inter-Wrapper Flow (IWF) is one of significant phenomena for decay heat removal under natural circulation condition, when a direct reactor auxiliary cooling system (DRACS) is adopted for decay heat removal system. Cold coolant provided by dipped heat exchangers (DHX) of DRACS can penetrate into the core barrel (region between the subassemblies) and it makes natural convection int he core barrel. Such IWF will depend on a spacer pad geometry of subassemblies. Water experiment, TRIF (Test Rig for Inter-wrapper Flow), was carried out for IWF in a reactor core. The test section modeled a 1/12th sector of the core and upper plenum of reactor vessel. Experimental parameters were the spacer pad geometry and flow path geometries connecting the upper plenum and core barrel. Numerical simulation using AQUA code was also performed to confirm applicability of a simulation method. An experimental series using a button type spacer pad had been carried out. Here a band type spacer pad was examined. Temperatures at subassembly wall were measured with parameter of the flow path geometries; one was a connection pipe between the upper plenum and core barrel and the other was flow hole in core former plates between the outermost subassemblies and the core barrel. It was found that these flow paths were effective to remove heat in the core in case of the band type spacer pad. A general purpose three dimensional analysis code, AQUA, was applied to the experimental analysis. Each subassembly and inter wrapper gap region were modeled by slab mesh geometry. Pressure loss coefficient at the pacer pad was set based on the geometry. The numerical simulation results were in good agreement with measured temperature profiles in the core. (author)

  9. Turing patterns in parabolic systems of conservation laws and numerically observed stability of periodic waves

    Science.gov (United States)

    Barker, Blake; Jung, Soyeun; Zumbrun, Kevin

    2018-03-01

    Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability conditions - remains an interesting open problem.

  10. Numerical Investigation of Startup Instabilities in Parallel-Channel Natural Circulation Boiling Systems

    Directory of Open Access Journals (Sweden)

    S. P. Lakshmanan

    2010-01-01

    Full Text Available The behaviour of a parallel-channel natural circulation boiling water reactor under a low-pressure low-power startup condition has been studied numerically (using RELAP5 and compared with its scaled model. The parallel-channel RELAP5 model is an extension of a single-channel model developed and validated with experimental results. Existence of in-phase and out-of-phase flashing instabilities in the parallel-channel systems is investigated through simulations under equal and unequal power boundary conditions in the channels. The effect of flow resistance on Type-I oscillations is explored. For nonidentical condition in the channels, the flow fluctuations in the parallel-channel systems are found to be out-of-phase.

  11. Generalized Database Management System Support for Numeric Database Environments.

    Science.gov (United States)

    Dominick, Wayne D.; Weathers, Peggy G.

    1982-01-01

    This overview of potential for utilizing database management systems (DBMS) within numeric database environments highlights: (1) major features, functions, and characteristics of DBMS; (2) applicability to numeric database environment needs and user needs; (3) current applications of DBMS technology; and (4) research-oriented and…

  12. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    Science.gov (United States)

    Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng

    2012-12-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.

  13. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    International Nuclear Information System (INIS)

    Zhang Tie-Yan; Zhao Yan; Xie Xiang-Peng

    2012-01-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach. (general)

  14. Numerical Investigation of Floor Heating Systems in Low Energy Houses

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Jensen, Claus Franceos

    2002-01-01

    In this paper an investigation of floor heating systems is performed with respect to heating demand and room temperature. Presently (2001) no commercially available building simulation programs that can be used to evaluate heating demand and thermal comfort in buildings with building integrated....... The model calculates heating demand, room temperatures, and thermal comfort parameters for a person in the room. The model is based on a numerical Finite Control Volume (FCV) method for the heat transfer in walls, ceiling, windows and floor. The model uses both convective and radiative heat transfer...... to the room air and between the room surfaces. The simulation model has been used to calculate heating demand and room temperature in a typical well insulated Danish single-family house with a heating demand of approximately 6000 kWh per year, for a 130 m² house. Two different types of floor heating systems...

  15. Stochastic coalescence in finite systems: an algorithm for the numerical solution of the multivariate master equation.

    Science.gov (United States)

    Alfonso, Lester; Zamora, Jose; Cruz, Pedro

    2015-04-01

    The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.

  16. Explicit appropriate basis function method for numerical solution of stiff systems

    International Nuclear Information System (INIS)

    Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling

    2015-01-01

    Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations

  17. Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.

    Science.gov (United States)

    Khrustalyov, Yu V; Vaulina, O S

    2012-04-01

    Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.

  18. Numerical solution of large sparse linear systems

    International Nuclear Information System (INIS)

    Meurant, Gerard; Golub, Gene.

    1982-02-01

    This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr

  19. A Numerical Approach to the Dynamic Response of the Deployment System during a Circular Cylinder Crossing through the Wave Zone

    Directory of Open Access Journals (Sweden)

    Xiaozhou Hu

    2017-01-01

    Full Text Available The dynamic response of the deployment system while deploying a circular cylinder crossing wave surface and the following submerging process are investigated numerically. The present numerical approach is based on the combination of solution methods of cable dynamics and computational fluid dynamics (CFD. For the implementation of the numerical approach, a cosimulation platform based on a CFD code and MATLAB is developed to study the fluid-solid interaction problem in the process. To generate regular waves, a numerical wave tank is built based on a piston-type wave generation method and a wave damping method applying porous media. Numerical simulations are performed based on the cosimulation platform. The sensitivities of cable tension, velocity, and acceleration of deployed body to different input parameters are investigated, including phase angles, wave heights, and periods of regular waves and deploying velocities, and the effects of those input parameters on dynamic responses of the deployment system are also discussed.

  20. Numerical simulation system for environmental studies: SPEEDI-MP

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Chino, Masamichi; Terada, Hiroaki; Harayama, Takaya; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok; Furuno, Akiko

    2006-09-01

    A numerical simulation system SPEEDI-MP has been developed to apply for various environmental studies. SPEEDI-MP consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical database for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. System utility GUIs are based on the Web technology, allowing users to manipulate all the functions on the system using their own PCs via the internet. In this system, the source estimation function in the atmospheric transport model can be executed on the grid computer system. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)

  1. Biofouling in forward osmosis systems: An experimental and numerical study

    KAUST Repository

    Bucs, Szilard; Valladares Linares, Rodrigo; Vrouwenvelder, Johannes S.; Picioreanu, Cristian

    2016-01-01

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute

  2. China's numerical management system for reducing national energy intensity

    International Nuclear Information System (INIS)

    Li, Huimin; Zhao, Xiaofan; Yu, Yuqing; Wu, Tong; Qi, Ye

    2016-01-01

    In China, the national target for energy intensity reduction, when integrated with target disaggregation and information feedback systems, constitutes a numerical management system, which is a hallmark of modern governance. This paper points out the technical weaknesses of China's current numerical management system. In the process of target disaggregation, the national target cannot be fully disaggregated to local governments, sectors and enterprises without omissions. At the same time, governments at lower levels face pressure for reducing energy intensity that exceeds their respective jurisdictions. In the process of information feedback, information failure is inevitable due to statistical inaccuracy. Furthermore, the monitoring system is unable to correct all errors, and data verification plays a limited role in the examination system. To address these problems, we recommend that the government: use total energy consumption as the primary indicator of energy management; reform the accounting and reporting of energy statistics toward greater consistency, timeliness and transparency; clearly define the responsibility of the higher levels of government. - Highlights: •We assess drawbacks of China's numerical management system for energy intensity. •The national energy intensity target cannot be fully disaggregated without omissions. •Data distortion is due to failures in statistics, monitoring and examination system. •Lower-level governments’ ability to meet energy target is weaker than their pressure. •We provide three policy recommendations for China's policy-makers.

  3. Relativistic positioning systems: Numerical simulations

    Science.gov (United States)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  4. Numerical solution of the polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Haugse, V.; Karlsen, K.H.; Lie, K.-A.; Natvig, J.R.

    1999-05-01

    The paper describes the application of front tracking to the polymer system, an example of a nonstrictly hyperbolic system. Front tracking computes piecewise constant approximations based on approximate Remain solutions and exact tracking of waves. It is well known that the front tracking method may introduce a blow-up of the initial total variation for initial data along the curve where the two eigenvalues of the hyperbolic system are identical. It is demonstrated by numerical examples that the method converges to the correct solution after a finite time that decreases with the discretization parameter. For multidimensional problems, front tracking is combined with dimensional splitting and numerical experiments indicate that large splitting steps can be used without loss of accuracy. Typical CFL numbers are in the range of 10 to 20 and comparisons with the Riemann free, high-resolution method confirm the high efficiency of front tracking. The polymer system, coupled with an elliptic pressure equation, models two-phase, tree-component polymer flooding in an oil reservoir. Two examples are presented where this model is solved by a sequential time stepping procedure. Because of the approximate Riemann solver, the method is non-conservative and CFL members must be chosen only moderately larger than unity to avoid substantial material balance errors generated in near-well regions after water breakthrough. Moreover, it is demonstrated that dimensional splitting may introduce severe grid orientation effects for unstable displacements that are accentuated for decreasing discretization parameters. 9 figs., 2 tabs., 26 refs.

  5. Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2015-11-01

    Full Text Available The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation, and type of anchored structural supports. Secondly a 3D coupled complex model based on Computational Fluid Dynamics (CFD, using a Finite Element Method (FEM, is also applied to predict and distinguish the FSI events. Herein, a specific hydrodynamic model of viscosity to replicate the operation of a valve was also developed to minimize the number of mesh elements and the complexity of the system. The importance of integrated analysis of fluid–structure interaction, especially in non-rigidity anchored pipe systems, is equally emphasized. The developed models are validated through experimental tests.

  6. The Cognitive Advantages of Counting Specifically: A Representational Analysis of Verbal Numeration Systems in Oceanic Languages.

    Science.gov (United States)

    Bender, Andrea; Schlimm, Dirk; Beller, Sieghard

    2015-10-01

    The domain of numbers provides a paradigmatic case for investigating interactions of culture, language, and cognition: Numerical competencies are considered a core domain of knowledge, and yet the development of specifically human abilities presupposes cultural and linguistic input by way of counting sequences. These sequences constitute systems with distinct structural properties, the cross-linguistic variability of which has implications for number representation and processing. Such representational effects are scrutinized for two types of verbal numeration systems-general and object-specific ones-that were in parallel use in several Oceanic languages (English with its general system is included for comparison). The analysis indicates that the object-specific systems outperform the general systems with respect to counting and mental arithmetic, largely due to their regular and more compact representation. What these findings reveal on cognitive diversity, how the conjectures involved speak to more general issues in cognitive science, and how the approach taken here might help to bridge the gap between anthropology and other cognitive sciences is discussed in the conclusion. Copyright © 2015 Cognitive Science Society, Inc.

  7. Numerical perturbative methods in the quantum theory of physical systems

    International Nuclear Information System (INIS)

    Adam, G.

    1980-01-01

    During the last two decades, development of digital electronic computers has led to the deployment of new, distinct methods in theoretical physics. These methods, based on the advances of modern numerical analysis as well as on specific equations describing physical processes, enabled to perform precise calculations of high complexity which have completed and sometimes changed our image of many physical phenomena. Our efforts have concentrated on the development of numerical methods with such intrinsic performances as to allow a successful approach of some Key issues in present theoretical physics on smaller computation systems. The basic principle of such methods is to translate, in numerical analysis language, the theory of perturbations which is suited to numerical rather than to analytical computation. This idea has been illustrated by working out two problems which arise from the time independent Schroedinger equation in the non-relativistic approximation, within both quantum systems with a small number of particles and systems with a large number of particles, respectively. In the first case, we are led to the numerical solution of some quadratic ordinary differential equations (first section of the thesis) and in the second case, to the solution of some secular equations in the Brillouin area (second section). (author)

  8. Object-Oriented Type Systems

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff; Palsberg, Jens

    binding. Existing languages employ different type systems, and it can be difficult to compare, evaluate and improve them, since there is currently no uniform theory for such languages. This book provides such a theory. The authors review the type systems of Simula, Smalltalk, C++ and Eiffel and present......Object-Oriented Type Systems Jens Palsberg and Michael I. Schwartzbach Aarhus University, Denmark Type systems are required to ensure reliability and efficiency of software. For object-oriented languages, typing is an especially challenging problem because of inheritance, assignment, and late...... a type system that generalizes and explains them. The theory is based on an idealized object-oriented language called BOPL (Basic Object Programming Language), containing common features of the above languages. A type system, type inference algorithm, and typings of inheritance and genericity...

  9. Microwave Breast Imaging System Prototype with Integrated Numerical Characterization

    Directory of Open Access Journals (Sweden)

    Mark Haynes

    2012-01-01

    Full Text Available The increasing number of experimental microwave breast imaging systems and the need to properly model them have motivated our development of an integrated numerical characterization technique. We use Ansoft HFSS and a formalism we developed previously to numerically characterize an S-parameter- based breast imaging system and link it to an inverse scattering algorithm. We show successful reconstructions of simple test objects using synthetic and experimental data. We demonstrate the sensitivity of image reconstructions to knowledge of the background dielectric properties and show the limits of the current model.

  10. Formal languages, automata and numeration systems introduction to combinatorics on words

    CERN Document Server

    Rigo, Michel

    2014-01-01

    Formal Languages, Automaton and Numeration Systems presents readers with a review of research related to formal language theory, combinatorics on words or numeration systems, such as Words, DLT (Developments in Language Theory), ICALP, MFCS (Mathematical Foundation of Computer Science), Mons Theoretical Computer Science Days, Numeration, CANT (Combinatorics, Automata and Number Theory). Combinatorics on words deals with problems that can be stated in a non-commutative monoid, such as subword complexity of finite or infinite words, construction and properties of infinite words, unavoidabl

  11. Numerical simulation of roadway support in a sandstone-type uranium mine

    International Nuclear Information System (INIS)

    Liu Huipeng; Li Yu; Song Lixia

    2009-01-01

    At present, the most surrounding rocks of sandstone-type uranium mines in China are mudstone, sandstone, pelitic siltstone, and so on. They show the characteristics of soft rock. Such uranium deposit is not fit for in-situ leaching. If the uranium ores are mined by conventional mining method, one of the problems to be solved is the support technique in the soft rock roadway. So, taking a uranium mine in Inner Mongolia as the research object, the support technique in the soft rock roadway of the sandstone-type uranium deposits is studied. Through on-site engineering geological investigation and laboratory test, the main reasons for roadway damage are analyzed. A technique of support in the soft rock roadway of sandstone-type uranium deposits is put forward by drawing on the expericnce of soft rock roadway support in coal mines. The roadway shape and support parameters are optimized by using a numerical simulation method. The results verified the feasibility of the supporting technique. (authors)

  12. A numeric-analytic method for approximating the chaotic Chen system

    International Nuclear Information System (INIS)

    Mossa Al-sawalha, M.; Noorani, M.S.M.

    2009-01-01

    The epitome of this paper centers on the application of the differential transformation method (DTM) the renowned Chen system which is described as a three-dimensional system of ODEs with quadratic nonlinearities. Numerical comparisons are made between the DTM and the classical fourth-order Runge-Kutta method (RK4). Our work showcases the precision of the DTM as the Chen system transforms from a non-chaotic system to a chaotic one. Since the Lyapunov exponent for this system is much higher compared to other chaotic systems, we shall highlight the difficulties of the simulations with respect to its accuracy. We wrap up our investigations to reveal that this direct symbolic-numeric scheme is effective and accurate.

  13. Experimental and numerical investigation of the roll motion behavior of a floating liquefied natural gas system

    Science.gov (United States)

    Zhao, WenHua; Yang, JianMin; Hu, ZhiQiang; Xiao, LongFei; Peng, Tao

    2013-03-01

    The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas (FLNG) system, which is a new type of floating LNG (Liquid Natural Gas) platform that consists of a ship-type FPSO hull equipped with LNG storage tanks and liquefaction plants. In particular, this study focuses on the investigation of the roll response of FLNG hull in free-decay motions, white noise waves and also in irregular waves. Model tests of the FLNG system in 60%H filling condition excited by both white noise waves and irregular waves combined with steady wind and current have been carried out. Response Amplitude Operators (RAOs) and time histories of the responses are obtained for sway, roll and yaw motions. Obvious Low Frequency (LF) components of the roll motions are observed, which may be out of expectation. To facilitate the physical understanding of this phenomenon, we filter the roll motions at the period of 30 s into two parts: the Wave Frequency (WF) motions and the Low Frequency (LF) motions respectively. The results indicate that the LF motions are closely related to the sway and yaw motions. Possible reasons for the presence of the LF motions of roll have been discussed in detail, through the comparison with the sway and yaw motions. As for the numerical part, the simulation of the modeled case is conducted with the help of the software SESAM®. A good agreement between experiments and calculations is reported within the scope of trends. However, the numerical simulations should be further improved for the prediction of the FLNG system in the heading sea.

  14. Equilibrium magnetization and microstructure of the system of superparamagnetic interacting particles: numerical simulation

    CERN Document Server

    Pshenichnikov, A F

    2000-01-01

    The Monte Carlo method is used to study the equilibrium magnetization of a 3D system of superparamagnetic particles taking into account the steric and dipole-dipole interparticle interactions. Two types of systems are considered: magnetic fluids and solidified ferrocolloids containing randomly spatially distributed particles with negligible energy of magnetic anisotropy. The results of numerical simulations confirm the universality of Langevin susceptibility as a main dimensionless parameter determining the influence of interparticle interactions on the magnetization of the system for moderate values of the aggregation parameter. The obtained results are in good agreement with theoretical and experimental data. At large values of the aggregation parameter, the clustering of particles in magnetic fluids is observed resulting in a reduction of their magnetization as compared to solidified systems. It is shown that the magnetization of solidified systems can be well described by the modified effective field appr...

  15. Application of numerical environment system to regional atmospheric radioactivity transport simulations

    International Nuclear Information System (INIS)

    Yamazawa, H.; Ohkura, T.; Iida, T.; Chino, M.; Nagai, H.

    2003-01-01

    Main functions of the Numerical Environment System (NES), as a part of the Information Technology Based Laboratory (ITBL) project implemented by Japan Atomic Energy Research Institute, became available for test use purposes although the development of the system is still underway. This system consists of numerical models of meteorology and atmospheric dispersion, database necessary for model simulations, post- and pre-processors such as data conversion and visualization, and a suite of system software which provide the users with system functions through a web page access. The system utilizes calculation servers such as vector- and scalar-parallel processors for numerical model execution, a EWS which serves as a hub of the system. This system provides users in the field of nuclear emergency preparedness and atmospheric environment with easy-to-use functions of atmospheric dispersion simulations including input meteorological data preparation and visualization of simulation results. The performance of numerical models in the system was examined with observation data of long-range transported radon-222. The models in the system reproduced quite well temporal variations in the observed radon-222 concentrations in air which were caused by changes in the meteorological field in the synoptic scale. By applying the NES models in combination with the idea of backward-in-time atmospheric dispersion simulation, seasonal shift of source areas of radon-222 in the eastern Asian regions affecting the concentrations in Japan was quantitatively illustrated. (authors)

  16. An impulsive predator-prey system with modified Leslie-Gower and Holling type II schemes

    International Nuclear Information System (INIS)

    Guo Hongjian; Song Xinyu

    2008-01-01

    An impulsive predator-prey system with modified Leslie-Gower and Holling-type II schemes is presented. By using the Floquet theory of impulsive equation and small amplitude perturbation method, the globally asymptotical stability of prey-free positive periodic solution and the permanence of system are discussed. The corresponding threshold conditions are obtained respectively. Finally, numerical simulations are given

  17. Development of evaluation method for heat removal design of dry storage facilities. Pt. 4. Numerical analysis on vault storage system of cross flow type

    International Nuclear Information System (INIS)

    Sakamoto, Kazuaki; Hattori, Yasuo; Koga, Tomonari; Wataru, Masumi

    1999-01-01

    On the basis of the result of the heat removal test on vault storage system of cross flow type using the 1/5 scale model, an evaluation method for the heat removal design was established. It was composed of the numerical analysis for the convection phenomena of air flow inside the whole facility and that for the natural convection and the detailed turbulent mechanism near the surface of the storage tube. In the former analysis, air temperature distribution in the storage area obtained by the calculation gave good agreement within ±3degC with the test result. And fine turbulence models were introduced in the latter analysis to predict the separation flow in the boundary layer near the surface of the storage tube and the buoyant flow generated by the heat from the storage tube. Furthermore, the properties of removing the heat in a designed full-scale storage facility, such as flow pattern in the storage area, temperature and heat transfer rate of the storage tubes, were evaluated by using each of three methods, which were the established numerical analysis method, the experimental formula demonstrated in the heat removal test and the conventional evaluation method applied to the past heat removal design. As a result, the safety margin and issues included in the methods were grasped, and the measures to make a design more rational were proposed. (author)

  18. Large quantum systems: a mathematical and numerical perspective; Systemes quantiques a grand nombre de particules: une perspective mathematique et numerique

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, M.

    2009-06-15

    This thesis is devoted to the mathematical study of variational models for large quantum systems. The mathematical methods are that of nonlinear analysis, calculus of variations, partial differential equations, spectral theory, and numerical analysis. The first part contains some results on finite systems. We study several approximations of the N-body Schroedinger equation for electrons in an atom or a molecule, and then the so-called Hartree-Fock- Bogoliubov model for a system of fermions interacting via the gravitational force. In a second part, we propose a new method allowing to prove the existence of the thermodynamic limit of Coulomb quantum systems. Then, we construct two Hartree-Fock-type models for infinite systems. The first is a relativistic theory deduced from Quantum Electrodynamics, allowing to describe the behavior of electrons, coupled to that of Dirac's vacuum which can become polarized. The second model describes a nonrelativistic quantum crystal in the presence of a charged defect. A new numerical method is also proposed. The last part of the thesis is devoted to spectral pollution, a phenomenon which is observed when trying to approximate eigenvalues in a gap of the essential spectrum of a self-adjoint operator, for instance for periodic Schroedinger operators or Dirac operators. (author)

  19. A model selection support system for numerical simulations of nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1990-01-01

    In order to execute efficiently a dynamic simulation of a large-scaled engineering system such as a nuclear power plant, it is necessary to develop intelligent simulation support system for all phases of the simulation. This study is concerned with the intelligent support for the program development phase and is engaged in the adequate model selection support method by applying AI (Artificial Intelligence) techniques to execute a simulation consistent with its purpose and conditions. A proto-type expert system to support the model selection for numerical simulations of nuclear thermal-hydraulics in the case of cold leg small break loss-of-coolant accident of PWR plant is now under development on a personal computer. The steps to support the selection of both fluid model and constitutive equations for the drift flux model have been developed. Several cases of model selection were carried out and reasonable model selection results were obtained. (author)

  20. Object-Oriented Type Systems

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff; Palsberg, Jens

    a type system that generalizes and explains them. The theory is based on an idealized object-oriented language called BOPL (Basic Object Programming Language), containing common features of the above languages. A type system, type inference algorithm, and typings of inheritance and genericity......Object-Oriented Type Systems Jens Palsberg and Michael I. Schwartzbach Aarhus University, Denmark Type systems are required to ensure reliability and efficiency of software. For object-oriented languages, typing is an especially challenging problem because of inheritance, assignment, and late...... are provided for BOPL. Throughout, the results are related to the languages on which BOPL is based. This text offers advanced undergraduates and professional software developers a sound understanding of the key aspects of object-oriented type systems. All algorithms are implemented in a freely available...

  1. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando

    2013-01-01

    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  2. Numerical Analysis of Impulse Turbine for Isolated Pilot OWC System

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2013-01-01

    Full Text Available Oscillating water column (OWC is the most widely used wave energy converting technology in the world. The impulse turbine is recently been employed as the radial turbine in OWC facilities to convert bidirectional mechanical air power into electricity power. 3D numerical model for the impulse turbine is established in this paper to investigate its operating performance of the designed impulse turbine for the pilot OWC system which is under the construction on Jeju Island, Republic of Korea. The proper mesh style, turbulence model, and numerical solutions are employed to study the velocity and air pressure distribution especially around the rotor blade. The operating coefficients obtained from the numerical simulation are compared with corresponding experimental data, which demonstrates that the 3D numerical model proposed here can be applied to the research of impulse turbines for OWC system. Effects of tip clearances on flow field distribution characteristics and operating performances are also studied.

  3. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.

    Science.gov (United States)

    Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier

    2018-01-01

    Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.

  4. Highly uniform parallel microfabrication using a large numerical aperture system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Yu; Su, Ya-Hui, E-mail: ustcsyh@ahu.edu.cn, E-mail: dongwu@ustc.edu.cn [School of Electrical Engineering and Automation, Anhui University, Hefei 230601 (China); Zhang, Chen-Chu; Hu, Yan-Lei; Wang, Chao-Wei; Li, Jia-Wen; Chu, Jia-Ru; Wu, Dong, E-mail: ustcsyh@ahu.edu.cn, E-mail: dongwu@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026 (China)

    2016-07-11

    In this letter, we report an improved algorithm to produce accurate phase patterns for generating highly uniform diffraction-limited multifocal arrays in a large numerical aperture objective system. It is shown that based on the original diffraction integral, the uniformity of the diffraction-limited focal arrays can be improved from ∼75% to >97%, owing to the critical consideration of the aperture function and apodization effect associated with a large numerical aperture objective. The experimental results, e.g., 3 × 3 arrays of square and triangle, seven microlens arrays with high uniformity, further verify the advantage of the improved algorithm. This algorithm enables the laser parallel processing technology to realize uniform microstructures and functional devices in the microfabrication system with a large numerical aperture objective.

  5. Numerical Thermodynamic Analysis of Two-Phase Solid-Liquid Abrasive Flow Polishing in U-Type Tube

    Directory of Open Access Journals (Sweden)

    Junye Li

    2014-08-01

    Full Text Available U-type tubes are widely used in military and civilian fields and the quality of the internal surface of their channel often determines the merits and performance of a machine in which they are incorporated. Abrasive flow polishing is an effective method for improving the channel surface quality of a U-type tube. Using the results of a numerical analysis of the thermodynamic energy balance equation of a two-phase solid-liquid flow, we carried out numerical simulations of the heat transfer and surface processing characteristics of a two-phase solid-liquid abrasive flow polishing of a U-type tube. The distribution cloud of the changes in the inlet turbulent kinetic energy, turbulence intensity, turbulent viscosity, and dynamic pressure near the wall of the tube were obtained. The relationships between the temperature and the turbulent kinetic energy, between the turbulent kinetic energy and the velocity, and between the temperature and the processing velocity were also determined to develop a theoretical basis for controlling the quality of abrasive flow polishing.

  6. Type Systems for Bigraphs

    DEFF Research Database (Denmark)

    Elsborg, Ebbe; Hildebrandt, Thomas; Sangiorgi, Davide

    of controls and a set of reaction rules, collectively a bigraphical reactive system (BRS). Possible advantages of developing bigraphical type systems include: a deeper understanding of a type system itself and its properties; transfer of the type systems to the concrete family of calculi that the BRS models...

  7. Efficient numerical methods for fluid- and electrodynamics on massively parallel systems

    Energy Technology Data Exchange (ETDEWEB)

    Zudrop, Jens

    2016-07-01

    In the last decade, computer technology has evolved rapidly. Modern high performance computing systems offer a tremendous amount of computing power in the range of a few peta floating point operations per second. In contrast, numerical software development is much slower and most existing simulation codes cannot exploit the full computing power of these systems. Partially, this is due to the numerical methods themselves and partially it is related to bottlenecks within the parallelization concept and its data structures. The goal of the thesis is the development of numerical algorithms and corresponding data structures to remedy both kinds of parallelization bottlenecks. The approach is based on a co-design of the numerical schemes (including numerical analysis) and their realizations in algorithms and software. Various kinds of applications, from multicomponent flows (Lattice Boltzmann Method) to electrodynamics (Discontinuous Galerkin Method) to embedded geometries (Octree), are considered and efficiency of the developed approaches is demonstrated for large scale simulations.

  8. Equilibrium magnetization and microstructure of the system of superparamagnetic interacting particles: numerical simulation

    International Nuclear Information System (INIS)

    Pshenichnikov, A.F.; Mekhonoshin, V.V.

    2000-01-01

    The Monte Carlo method is used to study the equilibrium magnetization of a 3D system of superparamagnetic particles taking into account the steric and dipole-dipole interparticle interactions. Two types of systems are considered: magnetic fluids and solidified ferrocolloids containing randomly spatially distributed particles with negligible energy of magnetic anisotropy. The results of numerical simulations confirm the universality of Langevin susceptibility as a main dimensionless parameter determining the influence of interparticle interactions on the magnetization of the system for moderate values of the aggregation parameter. The obtained results are in good agreement with theoretical and experimental data. At large values of the aggregation parameter, the clustering of particles in magnetic fluids is observed resulting in a reduction of their magnetization as compared to solidified systems. It is shown that the magnetization of solidified systems can be well described by the modified effective field approximation within the whole investigated range of parameters

  9. A survey of Type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons; phasevarions

    Science.gov (United States)

    Atack, John M; Yang, Yuedong; Jennings, Michael P

    2018-01-01

    Abstract Many bacteria utilize simple DNA sequence repeats as a mechanism to randomly switch genes on and off. This process is called phase variation. Several phase-variable N6-adenine DNA-methyltransferases from Type III restriction-modification systems have been reported in bacterial pathogens. Random switching of DNA methyltransferases changes the global DNA methylation pattern, leading to changes in gene expression. These epigenetic regulatory systems are called phasevarions — phase-variable regulons. The extent of these phase-variable genes in the bacterial kingdom is unknown. Here, we interrogated a database of restriction-modification systems, REBASE, by searching for all simple DNA sequence repeats in mod genes that encode Type III N6-adenine DNA-methyltransferases. We report that 17.4% of Type III mod genes (662/3805) contain simple sequence repeats. Of these, only one-fifth have been previously identified. The newly discovered examples are widely distributed and include many examples in opportunistic pathogens as well as in environmental species. In many cases, multiple phasevarions exist in one genome, with examples of up to 4 independent phasevarions in some species. We found several new types of phase-variable mod genes, including the first example of a phase-variable methyltransferase in pathogenic Escherichia coli. Phasevarions are a common epigenetic regulation contingency strategy used by both pathogenic and non-pathogenic bacteria. PMID:29554328

  10. Numerical analysis and comparison of three types of herringbone frame structure for highway subgrade slopes protection

    Science.gov (United States)

    Nie, Yihua; Tang, Saiqian; Xu, Yang; Mao, Kunli

    2018-04-01

    In order to obtain mechanical response distribution of herringbone frame structure for highway subgrade slopes protection and select the best structure type, 3D numerical models of three types herringbone frame structure were established and analyzed in finite element software ANSYS. Indoor physical model of soil slope protected by herringbone frame structure was built and mechanical response of the frame structure was measured by loading tests. Numerical results indicate slope foot is the stress most disadvantageous location. Comparative analysis shows that structure composed of mortar rubble base layer and precast concrete blocks paving layer is the best one for resisting deformation and structure with cement mortar base layer and precast concrete blocks paving layer is the best one for being of low stress.

  11. Validation of a numerical release model (REPCOM) for the Finnish reactor waste disposal systems: Pt.1

    International Nuclear Information System (INIS)

    Nykyri, Mikko

    1987-05-01

    The aim of the work is to model experimentally the inner structures and materials of two reactor waste repositories and to use the results for the validation work of a numerical near field release model, REPCOM. The experimental modelling of the multibarrier systems is conducted on a laboratory scale by using the same principal materials as are employed in the Finnish reactor waste disposal concepts. The migration of radionuclides is studied in two or more consecutive material layers. The laboratory arrangements include the following test materials: bituminized resin, cemented resin, concrete, crushed rock, and water. The materials correspond to the local materials in the planned disposal systems. Cs-137, Co-60, Sr-85, and Sr-90 are used as tracers, with which the resin, water, and crushed rock are labeled depending on the specimen type. The basic specimen geometries are cylindrical and cubic. In the cylindrical geometry the test materials were placed into PVC-tubes. The corresponding numerical model is one-dimensional. In the cubic geometry the materials were placed inside each other. The boundaries form cubes, and the numerical model is three-dimensional. Altogether 12 test system types were produced. The gamma active nuclides in the cylindrical samples were measured nondestructively with a scanner in order to determine the activity profiles in the specimens. The gamma active nuclides in the cubic samples and the beta emeitting Sr-90 in separate samples will be measured after splitting the samples. One to five activity profiles were determined for each cylindrical gamma-active sample. There are already clear diffusion profiles to be had for strontium in crushed rock, and for cesium in crushed rock and in concrete. Cobalt indicated no diffusion. No activity profiles were measured for the cubic samples or for the beta active, Sr-90-doped samples

  12. Impact-friction vibrations of tubular systems. Numerical simulation and experimental validation

    International Nuclear Information System (INIS)

    Jacquart, G.

    1993-05-01

    This note presents a summary on the numerical developments made to simulate impact-friction vibrations of tubular systems, detailing the algorithms used and the expression of impact and friction forces. A synthesis of the experimental results obtained on MASSIF workbench is also presented, as well as their comparison with numerical computations in order to validate the numerical approach. (author). 5 refs

  13. Numerical Oscillations Analysis for Nonlinear Delay Differential Equations in Physiological Control Systems

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-01-01

    Full Text Available This paper deals with the oscillations of numerical solutions for the nonlinear delay differential equations in physiological control systems. The exponential θ-method is applied to p′(t=β0ωμp(t−τ/(ωμ+pμ(t−τ−γp(t and it is shown that the exponential θ-method has the same order of convergence as that of the classical θ-method. Several conditions under which the numerical solutions oscillate are derived. Moreover, it is proven that every nonoscillatory numerical solution tends to positive equilibrium of the continuous system. Finally, the main results are illustrated with numerical examples.

  14. Polynomial model inversion control: numerical tests and applications

    OpenAIRE

    Novara, Carlo

    2015-01-01

    A novel control design approach for general nonlinear systems is described in this paper. The approach is based on the identification of a polynomial model of the system to control and on the on-line inversion of this model. Extensive simulations are carried out to test the numerical efficiency of the approach. Numerical examples of applicative interest are presented, concerned with control of the Duffing oscillator, control of a robot manipulator and insulin regulation in a type 1 diabetic p...

  15. Children, algorithm and the decimal numeral system

    Directory of Open Access Journals (Sweden)

    Clélia Maria Ignatius Nogueira

    2010-08-01

    Full Text Available A large number of studies in Mathematics Education approach some possible problems in the study of algorithms in the early school years of arithmetic teaching. However, this discussion is not exhausted. In this feature, this article presents the results of a research which proposed to investigate if the arithmetic’s teaching, with emphasis in the fundamental operation’s algorithm, cooperate to build the mathematics knowledge, specifically of the Decimal Numeral System. In order to achieve this purpose, we interviewed, using the Piaget Critique Clinical Method, twenty students from a public school. The result’s analysis indicates that they mechanically reproduce the regular algorithm’s techniques without notice the relations between the techniques and the principle and the Decimal Numeral System’s properties.

  16. Residents' numeric inputting error in computerized physician order entry prescription.

    Science.gov (United States)

    Wu, Xue; Wu, Changxu; Zhang, Kan; Wei, Dong

    2016-04-01

    Computerized physician order entry (CPOE) system with embedded clinical decision support (CDS) can significantly reduce certain types of prescription error. However, prescription errors still occur. Various factors such as the numeric inputting methods in human computer interaction (HCI) produce different error rates and types, but has received relatively little attention. This study aimed to examine the effects of numeric inputting methods and urgency levels on numeric inputting errors of prescription, as well as categorize the types of errors. Thirty residents participated in four prescribing tasks in which two factors were manipulated: numeric inputting methods (numeric row in the main keyboard vs. numeric keypad) and urgency levels (urgent situation vs. non-urgent situation). Multiple aspects of participants' prescribing behavior were measured in sober prescribing situations. The results revealed that in urgent situations, participants were prone to make mistakes when using the numeric row in the main keyboard. With control of performance in the sober prescribing situation, the effects of the input methods disappeared, and urgency was found to play a significant role in the generalized linear model. Most errors were either omission or substitution types, but the proportion of transposition and intrusion error types were significantly higher than that of the previous research. Among numbers 3, 8, and 9, which were the less common digits used in prescription, the error rate was higher, which was a great risk to patient safety. Urgency played a more important role in CPOE numeric typing error-making than typing skills and typing habits. It was recommended that inputting with the numeric keypad had lower error rates in urgent situation. An alternative design could consider increasing the sensitivity of the keys with lower frequency of occurrence and decimals. To improve the usability of CPOE, numeric keyboard design and error detection could benefit from spatial

  17. A numerical analysis on the performance of a pressurized twin power piston gamma-type Stirling engine

    International Nuclear Information System (INIS)

    Chen, Wen-Lih; Wong, King-Leung; Po, Li-Wen

    2012-01-01

    Highlights: ► A numerical model has been applied to study the performance of a gamma-type Stirling engine. ► A prototype engine has been built to correct the values of some factors in the model. ► The regeneration effectiveness is most prominent on efficiency. ► Engine speed is most effective on the engine power. ► The rotation arm and initial gas pressure are also influential factors on engine power. - Abstract: In this study, a prototype helium-changed twin-power-piston γ-type Stirling engine has been built, and some of its geometrical and operational parameters have been investigated by a numerical model. Data taken from the prototype engine have been used to correct the values of some factors in the numerical model. The results include volume and temperature variations in the expansion and compression chambers, p–v diagrams, and the effects of regeneration effectiveness, the crank radius of the power piston, the initial pressure of working gas, and the rotation speed on engine’s power and efficiency. It has been found that regeneration effectiveness poses the most prominent effect on efficiency, while engine speed is most effective on the engine power within the range of engine speed investigated in this study. This study offers invaluable guides for the design and optimization of γ-type Stirling engines with similar construction.

  18. Numerical solution of ordinary differential equations. For classical, relativistic and nano systems

    International Nuclear Information System (INIS)

    Greenspan, D.

    2006-01-01

    An up-to-date survey on numerical solutions with theory, intuition and applications. Ordinary differential equations (ODE) play a significant role in mathematics, physics and engineering sciences, and thus are part of relevant college and university courses. Many problems, however, both traditional and modern, do not possess exact solutions, and must be treated numerically. Usually this is done with software packages, but for this to be efficient requires a sound understanding of the mathematics involved. This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic and nano systems. The examples are carefully explained and compiled into an algorithm, each of which is presented generically, independent of a specific programming language, while each chapter is rounded off with exercises. The text meets the demands of MA200 courses and of the newly created Numerical Solution of Differential Equations courses, making it ideal for both students and lecturers in physics, mathematics, mechanical engineering, electrical engineering, as well as for physicists, mathematicians, engineers, and electrical engineers. From the Contents - Euler's Method - Runge-Kutta Methods - The Method of Taylor Expansions - Large Second Order Systems with Application to Nano Systems - Completely Conservative, Covariant Numerical Methodology - Instability - Numerical Solution of Tridiagonal Linear Algebraic Systems and Related Nonlinear Systems - Approximate Solution of Boundary Value Problems - Special Relativistic Motion - Special Topics - Appendix: Basic Matrix Operations - Bibliography. (orig.) (orig.)

  19. Numerical heat transfer studies of PCMs used in a box-type solar cooker

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.R.; Sharma, Atul [Department of Mechanical Engineering, Kun Shan University, 949 Da-Wan Road, Yung-Kung City, Tainan Hsien 710 (China); Tyagi, S.K. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (China); Buddhi, D. [Thermal Energy Storage Laboratory, School of Energy and Environmental Studies, Khandwa Road Campus, Devi Ahilya University, Indore 452017 (India)

    2008-05-15

    Theoretical investigations on the phase change materials (PCMs) used as the heat storage media for box-type solar cookers have been conducted in this study. The selected PCMs are magnesium nitrate hexahydrate, stearic acid, acetamide, acetanilide and erythritol. For a two-dimensional simulation model based on the enthalpy approach, calculations have been made for the melt fraction with conduction only. Different materials such as glass, stainless steel, tin, aluminum mixed, aluminum and copper are used as the heat exchanger container materials in the numerical calculations. The large value of thermal conductivity of heat exchanger container material did not make a significant contribution on the melt fraction except for at very low thermal conductivities. Based on the theoretical results, stearic acid and acetamide are found to be good compatibility with latent heat storage system. It is also found that the initial temperature of PCM does not have very important effects on the melting time, while the boundary wall temperature plays an important role during the melting and has a strong effect on the melt fraction. The results also show that the effect of thickness of container material on the melt fraction is insignificant. The results obtained in this paper show that in a box-type solar cooker, acetamide and stearic acid should be used as a latent heat storage materials. (author)

  20. Time delay systems theory, numerics, applications, and experiments

    CERN Document Server

    Ersal, Tulga; Orosz, Gábor

    2017-01-01

    This volume collects contributions related to selected presentations from the 12th IFAC Workshop on Time Delay Systems, Ann Arbor, June 28-30, 2015. The included papers present novel techniques and new results of delayed dynamical systems. The topical spectrum covers control theory, numerical analysis, engineering and biological applications as well as experiments and case studies. The target audience primarily comprises research experts in the field of time delay systems, but the book may also be beneficial for graduate students alike. .

  1. Numerical and experimental analysis of a horizontal ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, University of Firat, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, University of Firat, 23119 Elazig (Turkey)

    2007-03-15

    The main objective of this work is to evaluate a heat pump system using the ground as a source of heat. A ground-coupled heat pump (GCHP) system has been installed and tested at the test room, University of Firat, Elazig, Turkey. Results obtained during experimental testing are presented and discussed here. The coefficient of performance (COP{sub sys}) of the GCHP system is determined from the measured data. A numerical model of heat transfer in the ground was developed for determining the temperature distribution in the vicinity of the pipe. The finite difference approximation is used for numerical analysis. It is observed that the numerical results agree with the experimental results. (author) (author)

  2. Modelling of cardiovascular system: development of a hybrid (numerical-physical) model.

    Science.gov (United States)

    Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Mimmo, R; Guaragno, M; Tosti, G; Darowski, M

    2003-12-01

    Physical models of the circulation are used for research, training and for testing of implantable active and passive circulatory prosthetic and assistance devices. However, in comparison with numerical models, they are rigid and expensive. To overcome these limitations, we have developed a model of the circulation based on the merging of a lumped parameter physical model into a numerical one (producing therefore a hybrid). The physical model is limited to the barest essentials and, in this application, developed to test the principle, it is a windkessel representing the systemic arterial tree. The lumped parameters numerical model was developed in LabVIEW environment and represents pulmonary and systemic circulation (except the systemic arterial tree). Based on the equivalence between hydraulic and electrical circuits, this prototype was developed connecting the numerical model to an electrical circuit--the physical model. This specific solution is valid mainly educationally but permits the development of software and the verification of preliminary results without using cumbersome hydraulic circuits. The interfaces between numerical and electrical circuits are set up by a voltage controlled current generator and a voltage controlled voltage generator. The behavior of the model is analyzed based on the ventricular pressure-volume loops and on the time course of arterial and ventricular pressures and flow in different circulatory conditions. The model can represent hemodynamic relationships in different ventricular and circulatory conditions.

  3. Evidence for two numerical systems that are similar in humans and guppies.

    Directory of Open Access Journals (Sweden)

    Christian Agrillo

    Full Text Available BACKGROUND: Humans and non-human animals share an approximate non-verbal system for representing and comparing numerosities that has no upper limit and for which accuracy is dependent on the numerical ratio. Current evidence indicates that the mechanism for keeping track of individual objects can also be used for numerical purposes; if so, its accuracy will be independent of numerical ratio, but its capacity is limited to the number of items that can be tracked, about four. There is, however, growing controversy as to whether two separate number systems are present in other vertebrate species. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we compared the ability of undergraduate students and guppies to discriminate the same numerical ratios, both within and beyond the small number range. In both students and fish the performance was ratio-independent for the numbers 1-4, while it steadily increased with numerical distance when larger numbers were presented. CONCLUSIONS/SIGNIFICANCE: Our results suggest that two distinct systems underlie quantity discrimination in both humans and fish, implying that the building blocks of uniquely human mathematical abilities may be evolutionarily ancient, dating back to before the divergence of bony fish and tetrapod lineages.

  4. SENR /NRPy + : Numerical relativity in singular curvilinear coordinate systems

    Science.gov (United States)

    Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.

    2018-03-01

    We report on a new open-source, user-friendly numerical relativity code package called SENR /NRPy + . Our code extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it ideally suited to modeling physical configurations with approximate or exact symmetries. In the context of modeling black hole dynamics, it is orders of magnitude more efficient than other widely used open-source numerical relativity codes. NRPy + provides a Python-based interface in which equations are written in natural tensorial form and output at arbitrary finite difference order as highly efficient C code, putting complex tensorial equations at the scientist's fingertips without the need for an expensive software license. SENR provides the algorithmic framework that combines the C codes generated by NRPy + into a functioning numerical relativity code. We validate against two other established, state-of-the-art codes, and achieve excellent agreement. For the first time—in the context of moving puncture black hole evolutions—we demonstrate nearly exponential convergence of constraint violation and gravitational waveform errors to zero as the order of spatial finite difference derivatives is increased, while fixing the numerical grids at moderate resolution in a singular coordinate system. Such behavior outside the horizons is remarkable, as numerical errors do not converge to zero near punctures, and all points along the polar axis are coordinate singularities. The formulation addresses such coordinate singularities via cell-centered grids and a simple change of basis that analytically regularizes tensor components with respect to the coordinates. Future plans include extending this formulation to allow dynamical coordinate grids and bispherical-like distribution of points to efficiently capture orbiting compact binary dynamics.

  5. The dynamical complexity of a Ivlev-type prey-predator system with impulsive effect

    International Nuclear Information System (INIS)

    Wang Hailing; Wang Weiming

    2008-01-01

    Based on the classical predator-prey system with Ivlev-type functional response, an impulsive differential equations to model the process of periodic perturbations on the predator at different fixed time is established. It proves that there exists a locally asymptotically stable prey-eradication periodic solution when the impulse period is less than some critical value, and otherwise, the system can be permanent. Numerical results show that the system considered has more complicated dynamics. such as quasi-periodic oscillation, narrow periodic window, wide periodic window, chaotic bands, symmetry-breaking pitchfork bifurcation and crises, etc

  6. Numerical Development

    Science.gov (United States)

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  7. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    Science.gov (United States)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  8. A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events

    DEFF Research Database (Denmark)

    Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei

    2017-01-01

    numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS...

  9. Efficient numerical simulations of many-body localized systems

    Energy Technology Data Exchange (ETDEWEB)

    Pollmann, Frank [Max-Planck-Institut fuer Physik komplexer Systeme, 01187 Dresden (Germany); Khemani, Vedika; Sondhi, Shivaji [Physics Department, Princeton University, Princeton, NJ 08544 (United States)

    2016-07-01

    Many-body localization (MBL) occurs in isolated quantum systems when Anderson localization persists in the presence of finite interactions. To understand this phenomenon, the development of new, efficient numerical methods to find highly excited eigenstates is essential. We introduce a variant of the density-matrix renormalization group (DMRG) method that obtains individual highly excited eigenstates of MBL systems to machine precision accuracy at moderate-large disorder. This method explicitly takes advantage of the local spatial structure characterizing MBL eigenstates.

  10. Numerical and experimental study of the slug-flow regime in a mixture of castor and paraffin oils in a T-type microchannel

    Science.gov (United States)

    Minakov, A. V.; Shebeleva, A. A.; Yagodnitsyna, A. A.; Kovalev, A. V.; Bilsky, A. V.

    2017-09-01

    The slow-flug regime in a mixture of castor and paraffin oils in a T-type microchannel with crosssectional dimensions of 200 × 400 μm has been studied by numerical and experimental methods. The domain of existence of the slow-flug regime in this system has been determined. Dependence of the paraffin-oil slug length on the ratio of flow rates of the mixture components is established. Comparison of the calculated and experimental data shows their good agreement.

  11. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    International Nuclear Information System (INIS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-01-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems

  12. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  13. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ge; Wang, Jun [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Fang, Wen, E-mail: fangwen@bjtu.edu.cn [School of Economics and Management, Beijing Jiaotong University, Beijing 100044 (China)

    2015-04-15

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  14. Numerical modelling of multi-vane expander operating conditions in ORC system

    Science.gov (United States)

    Rak, Józef; Błasiak, Przemysław; Kolasiński, Piotr

    2017-11-01

    Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.

  15. A new type of simplified fuzzy rule-based system

    Science.gov (United States)

    Angelov, Plamen; Yager, Ronald

    2012-02-01

    Over the last quarter of a century, two types of fuzzy rule-based (FRB) systems dominated, namely Mamdani and Takagi-Sugeno type. They use the same type of scalar fuzzy sets defined per input variable in their antecedent part which are aggregated at the inference stage by t-norms or co-norms representing logical AND/OR operations. In this paper, we propose a significantly simplified alternative to define the antecedent part of FRB systems by data Clouds and density distribution. This new type of FRB systems goes further in the conceptual and computational simplification while preserving the best features (flexibility, modularity, and human intelligibility) of its predecessors. The proposed concept offers alternative non-parametric form of the rules antecedents, which fully reflects the real data distribution and does not require any explicit aggregation operations and scalar membership functions to be imposed. Instead, it derives the fuzzy membership of a particular data sample to a Cloud by the data density distribution of the data associated with that Cloud. Contrast this to the clustering which is parametric data space decomposition/partitioning where the fuzzy membership to a cluster is measured by the distance to the cluster centre/prototype ignoring all the data that form that cluster or approximating their distribution. The proposed new approach takes into account fully and exactly the spatial distribution and similarity of all the real data by proposing an innovative and much simplified form of the antecedent part. In this paper, we provide several numerical examples aiming to illustrate the concept.

  16. Numerical modeling of underground storage system for natural gas

    Science.gov (United States)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  17. Biofouling in forward osmosis systems: An experimental and numerical study.

    Science.gov (United States)

    Bucs, Szilárd S; Valladares Linares, Rodrigo; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2016-12-01

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biofouling in forward osmosis systems: An experimental and numerical study

    KAUST Repository

    Bucs, Szilard

    2016-09-20

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling. © 2016 Elsevier Ltd

  19. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  20. Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool

    Science.gov (United States)

    Stauber, Laurel J.; Naiman, Cynthia G.

    2002-01-01

    The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing

  1. Numerical methods and modelling for engineering

    CERN Document Server

    Khoury, Richard

    2016-01-01

    This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...

  2. A review of numerical simulation of hydrothermal systems.

    Science.gov (United States)

    Mercer, J.W.; Faust, C.R.

    1979-01-01

    Many advances in simulating single and two-phase fluid flow and heat transport in porous media have recently been made in conjunction with geothermal energy research. These numerical models reproduce system thermal and pressure behaviour and can be used for other heat-transport problems, such as high-level radioactive waste disposal and heat-storage projects. -Authors

  3. Numerical solution of distributed order fractional differential equations

    Science.gov (United States)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  4. Numerical modelling of multi-vane expander operating conditions in ORC system

    Directory of Open Access Journals (Sweden)

    Rak Józef

    2017-01-01

    Full Text Available Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.

  5. Development of SOVAT: a numerical-spatial decision support system for community health assessment research.

    Science.gov (United States)

    Scotch, Matthew; Parmanto, Bambang

    2006-01-01

    The development of numerical-spatial routines is frequently required to solve complex community health problems. Community health assessment (CHA) professionals who use information technology need a complete system that is capable of supporting the development of numerical-spatial routines. Currently, there is no decision support system (DSS) that is effectively able to accomplish this task as the majority of public health geospatial information systems (GIS) are based on traditional (relational) database architecture. On-Line Analytical Processing (OLAP) is a multidimensional data warehouse technique that is commonly used as a decision support system in standard industry. OLAP alone is not sufficient for solving numerical-spatial problems that frequently occur in CHA research. Coupling it with GIS technology offers the potential for a very powerful and useful system. A community health OLAP cube was created by integrating health and population data from various sources. OLAP and GIS technologies were then combined to develop the Spatial OLAP Visualization and Analysis Tool (SOVAT). The synergy of numerical and spatial environments within SOVAT is shown through an elaborate and easy-to-use drag and drop and direct manipulation graphical user interface (GUI). Community health problem-solving examples (routines) using SOVAT are shown through a series of screen shots. The impact of the difference between SOVAT and existing GIS public health applications can be seen by considering the numerical-spatial problem-solving examples. These examples are facilitated using OLAP-GIS functions. These functions can be mimicked in existing GIS public applications, but their performance and system response would be significantly worse since GIS is based on traditional (relational) backend. OLAP-GIS system offer great potential for powerful numerical-spatial decision support in community health analysis. The functionality of an OLAP-GIS system has been shown through a series of

  6. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems.

    Science.gov (United States)

    Silas, Sukrit; Lucas-Elio, Patricia; Jackson, Simon A; Aroca-Crevillén, Alejandra; Hansen, Loren L; Fineran, Peter C; Fire, Andrew Z; Sánchez-Amat, Antonio

    2017-08-17

    CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea . One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an 'arms race' in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems.

  7. Propagation of a general-type beam through a truncated fractional Fourier transform optical system.

    Science.gov (United States)

    Zhao, Chengliang; Cai, Yangjian

    2010-03-01

    Paraxial propagation of a general-type beam through a truncated fractional Fourier transform (FRT) optical system is investigated. Analytical formulas for the electric field and effective beam width of a general-type beam in the FRT plane are derived based on the Collins formula. Our formulas can be used to study the propagation of a variety of laser beams--such as Gaussian, cos-Gaussian, cosh-Gaussian, sine-Gaussian, sinh-Gaussian, flat-topped, Hermite-cosh-Gaussian, Hermite-sine-Gaussian, higher-order annular Gaussian, Hermite-sinh-Gaussian and Hermite-cos-Gaussian beams--through a FRT optical system with or without truncation. The propagation properties of a Hermite-cos-Gaussian beam passing through a rectangularly truncated FRT optical system are studied as a numerical example. Our results clearly show that the truncated FRT optical system provides a convenient way for laser beam shaping.

  8. Numerical investigation of spray combustion in jet mixing type combustor for low NOx emission

    International Nuclear Information System (INIS)

    Watanabe, Hirotatsu; Suwa, Yoshikazu; Matsushita, Yohsuke; Morozumi, Yoshio; Aoki, Hideyuki; Tanno, Shoji; Miura, Takatoshi

    2008-01-01

    The present paper describes a numerical investigation of spray combustion in a jet mixing type combustor. In this combustor, kerosene spray was injected with a pressure atomizer, and high speed combustion air was introduced towards the spray flow through some inlet air nozzles to improve mixing of the spray and the air. In the numerical simulation, the conservative equations of mass, momentum and energy in the turbulent flow field were solved in conjunction with the k-ε two equation turbulence model. The effects of the diameter and the number of air inlet nozzles on the combustion behavior and NO emission were numerically investigated. When the diameter of the inlet air nozzle decreased from 8 to 4 mm, the calculated NO mole fraction in the exhaust gas was drastically decreased by about 80%. An increase in the inlet velocity resulted in improvement of the mixing of the spray and the air, and hence, the high temperature region where thermal NO was formed became narrow. As a result, the exhaust NO mole fraction decreased. Furthermore, a decrease in exhaust NO mole fraction was explained by a decrease in the residence time in the high temperature region above 1800 K

  9. Numerical stability in problems of linear algebra.

    Science.gov (United States)

    Babuska, I.

    1972-01-01

    Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

  10. Experimental and numerical study of the MYRRHA control rod system dynamics

    International Nuclear Information System (INIS)

    Kennedy, G.; Lamberts, D.; Van Tichelen, K.; Profir, M.; Moreau, V.

    2017-01-01

    This paper presents an experimental and numerical investigation of the buoyancy driven MYRRHA control rod (CR) insertion during an emergency SCRAM. The study aimed to support the MYRRHA reactor design and characterise the hydrodynamic behaviour of the CR system while demonstrating the proof-of-principle. A full-scale mock-up test section of the MYRRHA CR was constructed to test the hydrodynamics in Lead Bismuth Eutectic over a wide range of operating conditions, to provide experimental data for the qualification of the CR system. A numerical CFD model of the CR test section was also setup in STAR-CCM+. The simulations make use of the recently developed overset mesh method to simulate the dynamic two-way coupling between the moving CR bundle and the fluid domain. The numerical methodology and post-test simulation results are validated against the experimental results. The steady state hydraulic results and the transient insertion results from both the experimental and numerical efforts are presented. The influence of the global process conditions on the CR insertion time are presented as well. This investigation successfully demonstrates the CR insertion proof-of-principle during a SCRAM. (author)

  11. Compactly Supported Curvelet-Type Systems

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann; Nielsen, Morten

    2012-01-01

    We study a flexible method for constructing curvelet-type frames. These curvelet-type systems have the same sparse representation properties as curvelets for appropriate classes of smooth functions, and the flexibility of the method allows us to give a constructive description of how to construct...... curvelet-type systems with a prescribed nature such as compact support in direct space. The method consists of using the machinery of almost diagonal matrices to show that a system of curvelet molecules which is sufficiently close to curvelets constitutes a frame for curvelet-type spaces. Such a system...

  12. Numerical simulation of the flow through a compressor-valve model using an immersed-boundary method

    Directory of Open Access Journals (Sweden)

    Franco Barbi

    2016-01-01

    Full Text Available Hermetic reciprocating compressors are widely used in small- and medium-size refrigeration systems based on the vapor-compression cycle. One of the main parts of this type of compressor is the automatic valve system used to control the suction and discharge processes. As the suction and discharge losses represent a large amount of the total thermodynamic losses (47%, a small improvement in the suction and discharge processes can produce expressive increases in the thermodynamic efficiency of the compressor. In this work, a new numerical methodology is applied to solve the flow through reed-type valves. The numerical results were experimentally validated through the pressure distribution acting on the frontal disk of a radial diffuser, which is a geometry usually used to model this type of valve. The numerical results for the velocity and pressure fields were comprehensively explored during the opening and closing movement imposed to the reed. The good quality of these results show that the numerical methodology is very promising in terms of solving the flow in the actual dynamics of reed-type valves.

  13. Parameters in pure type systems

    NARCIS (Netherlands)

    Bloo, C.J.; Kamareddine, F.; Laan, T.D.L.; Nederpelt, R.P.; Rajsbaum, S.

    2002-01-01

    In this paper we study the addition of parameters to typed ¿-calculus with definitions. We show that the resulting systems have nice properties and illustrate that parameters allow for a better fine-tuning of the strength of type systems as well as staying closer to type systems used in practice in

  14. ADVANCED DRIVER SAFETY SUPPORT SYSTEMS FOR THE URBAN TYPE VEHICLE

    Directory of Open Access Journals (Sweden)

    Katarzyna JEZIERSKA-KRUPA

    2015-12-01

    Full Text Available Smart Power Team is currently working on the design of an urban electric vehicle designed to compete in the Shell Eco-marathon. One important aspect of this type of vehicle characteristics is it safety. The project of advanced driver assistance systems has included some proposals of such systems and the concept of their execution. The first concept, BLIS (Blind Spot Information System, is to build a system of informing a driver about vehicles appearing in the blind spot. The system constitutes a second concept, CDIS (Collision Detection and Information System, and it is designed to detect a vehicle collision and inform the team. Further systems are: DPMS (Dew Point Measurement System - a system which does not allow a situation, where the windows are fogged, OHRS (Overtaking Horn Reminder System - a system which checks overtaking and MSS (main supervision system - a supervisory system. These concepts are based on the assumption of the use of laser sensors, photoelectric, humidity and temperature, and other commercially available systems. The article presents a detailed description of driver assistance systems and virtual prototyping methodology for these systems, as well as the numerical results of the verification of one of the systems.

  15. Time-dependent magnetization of a type-II superconductor numerically calculated by using the flux-creep equation

    International Nuclear Information System (INIS)

    Lee, J. H.; Park, I. S.; Ahmad, D.; Kim, D.; Kim, Y. C.; Ko, R. K.; Jeong, D. Y.

    2012-01-01

    The macroscopic magnetic behaviors of a type-II superconductor, such as the field- or the temperature-dependent magnetization, have been described by using critical state models. However, because the models are time-independent, the magnetic relaxation in a type-II superconductor cannot be described by them, and the time dependence of the magnetization can affect the field or the temperature-dependent magnetization curve described by the models. In order to avoid the time independence of critical state models, we try the numerical calculation used by Qin et al., who mainly calculated the temperature dependence of the ac susceptibility χ(T). Their calculation showed that the frequency-dependent χ(T) could be obtained by using the flux-creep equation. We calculated the field-dependent magnetization and magnetic relaxation by using a numerical method. The calculated field-dependent magnetization M(H) curves shows the shapes of a typical type-II superconductor. The calculated magnetic relaxation do not show a logarithmic decay of the magnetization, but the addition of a surface barrier to the relaxation calculation caused a clear logarithmic decay of the magnetization, producing a crossover at a mid-time. This means that the logarithmic magnetic relaxation is caused by not only flux creep but also a combination of flux creep and a surface barrier.

  16. Vulnerability analysis of power systems considering uncertainty in variables using fuzzy logic type 2

    Directory of Open Access Journals (Sweden)

    Julian Alexander Melo Rodriguez

    2016-09-01

    Full Text Available Objectives: This paper presents a new methodology for analyzing the vulnerability of power systems including uncertainty in some variables. Method: The methodology optimizes a Bi-level mixed integer model. Costs associated with power generation and load shedding are minimized at the lowest level whereas at the higher level the damage in the power system, represented by the load shedding, is maximized. Fuzzy logic type 2 is used to model the uncertainty in both linguistic variables and numeric variables. The linguistic variables model the factors of the geographical environment while numeric variables model parameters of the power system. Results: The methodology was validated by using a modified IEEE RTS-96 test system. The results show that by including particularities of the geographical environment different vulnerabilities are detected in the power system. Moreover, it was possible to identify that the most critical component is the line 112-123 because it had 16 attacks in 18 scenarios, and that the maximum load shedding of the system varies from 145 to 1258 MW. Conclusions: This methodology can be used to coordinate and refine protection plans of the power system infrastructure. Funding: EMC-UN research group.

  17. Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems

    International Nuclear Information System (INIS)

    Dai Xiao-Lin

    2014-01-01

    This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi–Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result. (general)

  18. Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems

    Science.gov (United States)

    Dai, Xiao-Lin

    2014-04-01

    This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result.

  19. Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors

    Directory of Open Access Journals (Sweden)

    Y. Saiki

    2007-09-01

    Full Text Available An infinite number of unstable periodic orbits (UPOs are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.

  20. Research status and some results of numerical system to study regional environment: SPEEDI-MP

    International Nuclear Information System (INIS)

    Chino, Masamichi

    2004-01-01

    Research status and some results of 'Numerical system to study regional environment: SPEEDI-MP', which reproduces circulations of materials in the atmospheric, oceanic and terrestrial environments, are introduced. The purpose of this system are the development of various environmental models, the connection of atmospheric, oceanic and terrestrial models and the construction of research bases for numerical environmental studies. In addition to the accurate prediction of environmental behavior of radionuclides, the system has been applied to the non-nuclear fields, e.g., numerical analysis of environmental effects to volcanic gases from Miyake Jima, real-time prediction of the migration of rice planthoppers from Eastern Asia. (author)

  1. On a numerical algorithm for uncertain system | Abiola | Science ...

    African Journals Online (AJOL)

    A numerical method for computing stable control signals for system with bounded input disturbance is developed. The algorithm is an elaboration of the gradient technique and variable metric method for computing control variables in linear and non-linear optimization problems. This method is developed for an integral ...

  2. Wind laws for shockless initialization. [numerical forecasting model

    Science.gov (United States)

    Ghil, M.; Shkoller, B.

    1976-01-01

    A system of diagnostic equations for the velocity field, or wind laws, was derived for each of a number of models of large-scale atmospheric flow. The derivation in each case is mathematically exact and does not involve any physical assumptions not already present in the prognostic equations, such as nondivergence or vanishing of derivatives of the divergence. Therefore, initial states computed by solving these diagnostic equations should be compatible with the type of motion described by the prognostic equations of the model and should not generate initialization shocks when inserted into the model. Numerical solutions of the diagnostic system corresponding to a barotropic model are exhibited. Some problems concerning the possibility of implementing such a system in operational numerical weather prediction are discussed.

  3. Experimental and Numerical Analyses of New Massive Wooden Shear-Wall Systems

    Directory of Open Access Journals (Sweden)

    Luca Pozza

    2014-07-01

    Full Text Available Three innovative massive wooden shear-wall systems (Cross-Laminated-Glued Wall, Cross-Laminated-Stapled Wall, Layered Wall with dovetail inserts were tested and their structural behaviour under seismic action was assessed with numerical simulations. The wall specimens differ mainly in the method used to assemble the layers of timber boards composing them. Quasi-static cyclic loading tests were carried out and then reproduced with a non-linear numerical model calibrated on the test results to estimate the most appropriate behaviour factor for each system. Non-linear dynamic simulations of 15 artificially generated seismic shocks showed that these systems have good dissipative capacity when correctly designed and that they can be assigned to the medium ductility class of Eurocode 8. This work also shows the influence of deformations in wooden panels and base connectors on the behaviour factor and dissipative capacity of the system.

  4. The dynamics of a harvested predator-prey system with Holling type IV functional response.

    Science.gov (United States)

    Liu, Xinxin; Huang, Qingdao

    2018-05-31

    The paper aims to investigate the dynamical behavior of a predator-prey system with Holling type IV functional response in which both the species are subject to capturing. We mainly consider how the harvesting affects equilibria, stability, limit cycles and bifurcations in this system. We adopt the method of qualitative and quantitative analysis, which is based on the dynamical theory, bifurcation theory and numerical simulation. The boundedness of solutions, the existence and stability of equilibrium points of the system are further studied. Based on the Sotomayor's theorem, the existence of transcritical bifurcation and saddle-node bifurcation are derived. We use the normal form theorem to analyze the Hopf bifurcation. Simulation results show that the first Lyapunov coefficient is negative and a stable limit cycle may bifurcate. Numerical simulations are performed to make analytical studies more complete. This work illustrates that using the harvesting effort as control parameter can change the behaviors of the system, which may be useful for the biological management. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The dynamics of a Beddington-type system with impulsive control strategy

    International Nuclear Information System (INIS)

    Li Zhenqing; Wang Weiming; Wang Hailing

    2006-01-01

    In this paper, by using the theories and methods of ecology and ordinary differential equation, a prey-predator system with Beddington-type functional response and impulsive control strategy is established. Conditions for the system to be extinct are given by using the theories of impulsive equation and small amplitude perturbation skills. It is proved that the system is permanent via the method of comparison involving multiple Liapunov functions. Furthermore, by using the method of numerical simulation, the influence of the impulsive control strategy on the inherent oscillation are investigated, which shows rich dynamics, such as period doubling bifurcation, crises, symmetry-breaking pitchfork bifurcations, chaotic bands, quasi-periodic oscillation, narrow periodic window, wide periodic window, period-halving bifurcation, etc. That will be useful for study of the dynamic complexity of ecosystems

  6. Theoretical Hill-type muscle and stability: numerical model and application.

    Science.gov (United States)

    Schmitt, S; Günther, M; Rupp, T; Bayer, A; Häufle, D

    2013-01-01

    The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator.

  7. Numerical Diffusion Effect in Dynamic Simulation of Thermohydraulic Systems

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo; Delmastro, Dario

    2003-01-01

    In this work, the behavior of the explicit - up-wind method is studied in two phase natural convection circuit, near the instabilities boundaries.The effect of the numerical diffusion of the scheme upon the system stability is evaluated by means of linearization by small perturbations.The results are compared with a non-diffusive method, in the frequency domain, that solves analytically the linearized equations around a steady state condition.Moreover, a conservation equation transport model using the method of characteristics is implemented and studied.This method is compared with the explicit - up-wind scheme and it is found that it significantly reduces numerical diffusion in the equations solution. Several advantages are visualized for particular cases

  8. Numerical simulation of avascular tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, D Fernandez; Suarez, C; Soba, A; Risk, M; Marshall, G [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EGA) Buenos Aires (Argentina)

    2007-11-15

    A mathematical and numerical model for the description of different aspects of microtumor development is presented. The model is based in the solution of a system of partial differential equations describing an avascular tumor growth. A detailed second-order numeric algorithm for solving this system is described. Parameters are swiped to cover a range of feasible physiological values. While previous published works used a single set of parameters values, here we present a wide range of feasible solutions for tumor growth, covering a more realistic scenario. The model is validated by experimental data obtained with a multicellular spheroid model, a specific type of in vitro biological model which is at present considered to be optimum for the study of complex aspects of avascular microtumor physiology. Moreover, a dynamical analysis and local behaviour of the system is presented, showing chaotic situations for particular sets of parameter values at some fixed points. Further biological experiments related to those specific points may give potentially interesting results.

  9. Numerical distance protection

    CERN Document Server

    Ziegler, Gerhard

    2011-01-01

    Distance protection provides the basis for network protection in transmission systems and meshed distribution systems. This book covers the fundamentals of distance protection and the special features of numerical technology. The emphasis is placed on the application of numerical distance relays in distribution and transmission systems.This book is aimed at students and engineers who wish to familiarise themselves with the subject of power system protection, as well as the experienced user, entering the area of numerical distance protection. Furthermore it serves as a reference guide for s

  10. Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow

    Science.gov (United States)

    Gao, Zheng

    A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the

  11. Computable Types for Dynamic Systems

    NARCIS (Netherlands)

    P.J. Collins (Pieter); K. Ambos-Spies; B. Loewe; W. Merkle

    2009-01-01

    textabstractIn this paper, we develop a theory of computable types suitable for the study of dynamic systems in discrete and continuous time. The theory uses type-two effectivity as the underlying computational model, but we quickly develop a type system which can be manipulated abstractly, but for

  12. Intersection Types and Related Systems

    Directory of Open Access Journals (Sweden)

    Paweł Parys

    2017-02-01

    Full Text Available We present a new approach to the following meta-problem: given a quantitative property of trees, design a type system such that the desired property for the tree generated by an infinitary ground lambda-term corresponds to some property of a derivation of a type for this lambda-term, in this type system. Our approach is presented in the particular case of the language finiteness problem for nondeterministic higher-order recursion schemes (HORSes: given a nondeterministic HORS, decide whether the set of all finite trees generated by this HORS is finite. We give a type system such that the HORS can generate a tree of an arbitrarily large finite size if and only if in the type system we can obtain derivations that are arbitrarily large, in an appropriate sense; the latter condition can be easily decided.

  13. Numerical analysis on the performance of solar chimney power plant system

    International Nuclear Information System (INIS)

    Xu Guoliang; Ming Tingzhen; Pan Yuan; Meng Fanlong; Zhou Cheng

    2011-01-01

    Power generating technology based on renewable energy resources will definitely become a new trend of future energy utilization. Numerical simulations on air flow, heat transfer and power output characteristics of a solar chimney power plant model with energy storage layer and turbine similar to the Spanish prototype were carried out in this paper, and mathematical model of flow and heat transfer for the solar chimney power plant system was established. The influences of solar radiation and pressure drop across the turbine on the flow and heat transfer, output power and energy loss of the solar chimney power plant system were analyzed. The numerical simulation results reveal that: when the solar radiation and the turbine efficiency are 600 W/m 2 and 80%, respectively, the output power of the system can reach 120 kW. In addition, large mass flow rate of air flowing through the chimney outlet become the main cause of energy loss in the system, and the collector canopy also results in large energy loss.

  14. Practical integrated simulation systems for coupled numerical simulations in parallel

    Energy Technology Data Exchange (ETDEWEB)

    Osamu, Hazama; Zhihong, Guo [Japan Atomic Energy Research Inst., Centre for Promotion of Computational Science and Engineering, Tokyo (Japan)

    2003-07-01

    In order for the numerical simulations to reflect 'real-world' phenomena and occurrences, incorporation of multidisciplinary and multi-physics simulations considering various physical models and factors are becoming essential. However, there still exist many obstacles which inhibit such numerical simulations. For example, it is still difficult in many instances to develop satisfactory software packages which allow for such coupled simulations and such simulations will require more computational resources. A precise multi-physics simulation today will require parallel processing which again makes it a complicated process. Under the international cooperative efforts between CCSE/JAERI and Fraunhofer SCAI, a German institute, a library called the MpCCI, or Mesh-based Parallel Code Coupling Interface, has been implemented together with a library called STAMPI to couple two existing codes to develop an 'integrated numerical simulation system' intended for meta-computing environments. (authors)

  15. Dispersive shock waves in systems with nonlocal dispersion of Benjamin-Ono type

    Science.gov (United States)

    El, G. A.; Nguyen, L. T. K.; Smyth, N. F.

    2018-04-01

    We develop a general approach to the description of dispersive shock waves (DSWs) for a class of nonlinear wave equations with a nonlocal Benjamin-Ono type dispersion term involving the Hilbert transform. Integrability of the governing equation is not a pre-requisite for the application of this method which represents a modification of the DSW fitting method previously developed for dispersive-hydrodynamic systems of Korteweg-de Vries (KdV) type (i.e. reducible to the KdV equation in the weakly nonlinear, long wave, unidirectional approximation). The developed method is applied to the Calogero-Sutherland dispersive hydrodynamics for which the classification of all solution types arising from the Riemann step problem is constructed and the key physical parameters (DSW edge speeds, lead soliton amplitude, intermediate shelf level) of all but one solution type are obtained in terms of the initial step data. The analytical results are shown to be in excellent agreement with results of direct numerical simulations.

  16. Numerical Model of the Human Cardiovascular System-Korotkoff Sounds Simulation

    Czech Academy of Sciences Publication Activity Database

    Maršík, František; Převorovská, Světlana; Brož, Z.; Štembera, V.

    Vol.4, č. 2 (2004), s. 193-199 ISSN 1432-9077 R&D Projects: GA ČR GA106/03/1073 Institutional research plan: CEZ:AV0Z2076919 Keywords : cardiovascular system * Korotkoff sounds * numerical simulation Subject RIV: BK - Fluid Dynamics

  17. A deteriorating two-system with two repair modes and sojourn times phase-type distributed

    International Nuclear Information System (INIS)

    Montoro-Cazorla, Delia; Perez-Ocon, Rafael

    2006-01-01

    We study a two-unit cold standby system in steady-state. The online unit goes through a finite number of stages of successive degradation preceding the failure. The units are reparable, there is a repairman and two types of maintenance are considered, preventive and corrective. The preventive repair aims to improve the degradation of a unit being operative. The corrective repair is necessary when the unit fails. We will assume that the preventive repair will be interrupted in favour of a corrective repair in order to increase the availability of the system. The random operational and repair times follow phase-type distributions. For this system, the stationary probability vector, the replacement times, and the involved costs are calculated. An optimisation problem is illustrated by a numerical example. In this, the optimal degradation stage for the preventive repair of the online unit is determined by taking into account the system availability and the incurred costs

  18. A deteriorating two-system with two repair modes and sojourn times phase-type distributed

    Energy Technology Data Exchange (ETDEWEB)

    Montoro-Cazorla, Delia [Departamento de Estadistica e I.O., Escuela Politecnica de Linares, Universidad de Jaen, 23700 Linares, Jaen (Spain); Perez-Ocon, Rafael [Departamento de Estadistica e I.O., Facultad de Ciencias, Universidad de Granada, Granada 18071 (Spain)]. E-mail: rperezo@ugr.es

    2006-01-01

    We study a two-unit cold standby system in steady-state. The online unit goes through a finite number of stages of successive degradation preceding the failure. The units are reparable, there is a repairman and two types of maintenance are considered, preventive and corrective. The preventive repair aims to improve the degradation of a unit being operative. The corrective repair is necessary when the unit fails. We will assume that the preventive repair will be interrupted in favour of a corrective repair in order to increase the availability of the system. The random operational and repair times follow phase-type distributions. For this system, the stationary probability vector, the replacement times, and the involved costs are calculated. An optimisation problem is illustrated by a numerical example. In this, the optimal degradation stage for the preventive repair of the online unit is determined by taking into account the system availability and the incurred costs.

  19. A qualitative numerical study of high dimensional dynamical systems

    Science.gov (United States)

    Albers, David James

    Since Poincare, the father of modern mathematical dynamical systems, much effort has been exerted to achieve a qualitative understanding of the physical world via a qualitative understanding of the functions we use to model the physical world. In this thesis, we construct a numerical framework suitable for a qualitative, statistical study of dynamical systems using the space of artificial neural networks. We analyze the dynamics along intervals in parameter space, separating the set of neural networks into roughly four regions: the fixed point to the first bifurcation; the route to chaos; the chaotic region; and a transition region between chaos and finite-state neural networks. The study is primarily with respect to high-dimensional dynamical systems. We make the following general conclusions as the dimension of the dynamical system is increased: the probability of the first bifurcation being of type Neimark-Sacker is greater than ninety-percent; the most probable route to chaos is via a cascade of bifurcations of high-period periodic orbits, quasi-periodic orbits, and 2-tori; there exists an interval of parameter space such that hyperbolicity is violated on a countable, Lebesgue measure 0, "increasingly dense" subset; chaos is much more likely to persist with respect to parameter perturbation in the chaotic region of parameter space as the dimension is increased; moreover, as the number of positive Lyapunov exponents is increased, the likelihood that any significant portion of these positive exponents can be perturbed away decreases with increasing dimension. The maximum Kaplan-Yorke dimension and the maximum number of positive Lyapunov exponents increases linearly with dimension. The probability of a dynamical system being chaotic increases exponentially with dimension. The results with respect to the first bifurcation and the route to chaos comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss. Moreover, results regarding the high

  20. A numerical scheme for optimal transition paths of stochastic chemical kinetic systems

    International Nuclear Information System (INIS)

    Liu Di

    2008-01-01

    We present a new framework for finding the optimal transition paths of metastable stochastic chemical kinetic systems with large system size. The optimal transition paths are identified to be the most probable paths according to the Large Deviation Theory of stochastic processes. Dynamical equations for the optimal transition paths are derived using the variational principle. A modified Minimum Action Method (MAM) is proposed as a numerical scheme to solve the optimal transition paths. Applications to Gene Regulatory Networks such as the toggle switch model and the Lactose Operon Model in Escherichia coli are presented as numerical examples

  1. An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine

    Directory of Open Access Journals (Sweden)

    Sinpyo Hong

    2015-05-01

    Full Text Available An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG, mooring line spring constant, and fair-lead location on the turbine’s motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT, the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.

  2. Researching on YH100 Numerical Control Servo Press Hydraulic Control System and Control Algorithm

    Directory of Open Access Journals (Sweden)

    Kai LI

    2014-09-01

    Full Text Available In order to study the numerical control (NC servo press hydraulic control system and its control algorithm. The numerical control servo press performance and control principle of hydraulic control system are analyzed. According to the flow equation of the hydraulic control valve, hydraulic cylinder flow continuity equation and the force balance equation of the hydraulic cylinder with load press, the mathematical model of hydraulic control system is established. And the servo press hydraulic system transfer function is deduced. Introducing the suitable immune particle swarm control algorithm for servo press hydraulic system, and the control system block diagram is established. Immune algorithm is used to optimize new control parameters of the system and adopt the new optimization results to optimize the system simulation. The simulation result shows that the hydraulic system’s transition time controlled by the immune particle swarm algorithm is shorter than traditional ones, and the control performance is obviously improved. Finally it can be concluded that immune particle swarm PID control have these characteristics such as quickness, stability and accuracy. Applying this principle into application, the obtained YH100 numerical control servo press hydraulic control system meets the requirement.

  3. Pure type systems with subtyping

    NARCIS (Netherlands)

    Zwanenburg, J.; Girard, J.-Y.

    1999-01-01

    We extend the framework of Pure Type Systems with subtyping, as found in F = ¿ . This leads to a concise description of many existing systems with subtyping, and also to some new interesting systems. We develop the meta-theory for this framework, including Subject Reduction and Minimal Typing. The

  4. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    Science.gov (United States)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  5. Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling

    Science.gov (United States)

    Zhang, X. Y.; Zhou, Y. H.; Guo, Y. Q.; Yi, X. X.

    2018-03-01

    We explore the photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling, i.e. H_int˜\\hat{a}\\dagger2\\hat{a}^2(\\hat{b}_1^\\dagger+\\hat{b}_1) . We find that the Kerr-type nonlinear coupling can enhance the photon blockade greatly. We evaluate the equal-time second-order correlation function of the cavity photons and find that the optimal photon blockade does not happen at the single photon resonance. By working within the few-photon subspace, we get an approximate analytical expression for the correlation function and the condition for the optimal photon blockade. We also find that the photon blockade effect is not always enhanced as the Kerr-type nonlinear coupling strength g 2 increases. At some values of g 2, the photon blockade is even weakened. For the system we considered here, the second-order correlation function can be smaller than 1 even in the unresolved sideband regime. By numerically simulating the master equation of the system, we also find that the thermal noise of the mechanical environment can enhance the photon blockade. We give out an explanation for this counter-intuitive phenomenon qualitatively.

  6. Numerical Study of an Ejector as an Expansion Device in Split-type Air Conditioners for Energy Savings

    Directory of Open Access Journals (Sweden)

    Kasni Sumeru

    2013-07-01

    Full Text Available The present study describes a numerical approach for determining both the motive nozzle and constant-area diameters of an ejector as an expansion device, based on the cooling capacity of a split-type air-conditioner using R290 as refrigerant. Previous studies have shown that replacement of HCFC R22 with HC290 (propane in the air conditioner can improve the coefficient of performance (COP. The purpose of replacing the capillary tube with an ejector as an expansion device in a split-type air conditioner using HC290 is to further improve the COP. In developing the model, conservation laws of mass, momentum and energy equations were applied to each part of the ejector. The numerical results show that the motive nozzle diameter remains constant (1.03 mm under varying condenser temperatures, whereas the diameter of the constant-area decreases as the condenser temperature increases. It was also found that improvement of the COP can reach 32.90% at a condenser temperature of 55 °C. From the results mentioned above, it can be concluded that the use of an ejector can further improve the COP of a split-type air conditioner using HC290 as working fluid.

  7. A Type System for Tom

    Directory of Open Access Journals (Sweden)

    Claude Kirchner

    2010-03-01

    Full Text Available Extending a given language with new dedicated features is a general and quite used approach to make the programming language more adapted to problems. Being closer to the application, this leads to less programming flaws and easier maintenance. But of course one would still like to perform program analysis on these kinds of extended languages, in particular type checking and inference. In this case one has to make the typing of the extended features compatible with the ones in the starting language. The Tom programming language is a typical example of such a situation as it consists of an extension of Java that adds pattern matching, more particularly associative pattern matching, and reduction strategies. This paper presents a type system with subtyping for Tom, that is compatible with Java's type system, and that performs both type checking and type inference. We propose an algorithm that checks if all patterns of a Tom program are well-typed. In addition, we propose an algorithm based on equality and subtyping constraints that infers types of variables occurring in a pattern. Both algorithms are exemplified and the proposed type system is showed to be sound and complete.

  8. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    International Nuclear Information System (INIS)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y.

    2014-01-01

    precisely by the valve manufacturer. As a matter of fact, attempts were made to obtain flow characteristic curves resorting to analytical as well as numerical methods. The flow characteristic curve relates the stem lift with mass flow rate at a specific temperature and pressure. This paper focuses on computational and numerical analysis of the combined stop and control valve. Combined Airflow Regulation Analysis (CARA) is performed to check on the hydrodynamic characteristic, which is represented by flow coefficient characteristic. CATIA V.5 and ANSYS CFX are used for three-dimensional computer-aided design and computational fluid dynamics (CFD) analysis, respectively. Flow characteristic curves are plotted by calculating theoretical and numerical mass flow rate. Hydrodynamic analysis was made of the combined stop and control valve for the turbine system using ANSYS CFX. The result of the numerical study represented by the valve flow coefficient with different normalized values of valve stem movement L/D and different pressure ratios of valve outlet and inlet agrees well with the ideal case and other similar previous experimental results. This study also provided a solid understanding with versatile options for analyzing the hydrodynamics of the combined valve considering the various internal geometry, seat, plug, and the inlet plus outlet boundary conditions to improve the efficiency, performance and reliability of the turbine system of small as well as large power conversion system using the numerical analysis with minimal cost and time

  9. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    precisely by the valve manufacturer. As a matter of fact, attempts were made to obtain flow characteristic curves resorting to analytical as well as numerical methods. The flow characteristic curve relates the stem lift with mass flow rate at a specific temperature and pressure. This paper focuses on computational and numerical analysis of the combined stop and control valve. Combined Airflow Regulation Analysis (CARA) is performed to check on the hydrodynamic characteristic, which is represented by flow coefficient characteristic. CATIA V.5 and ANSYS CFX are used for three-dimensional computer-aided design and computational fluid dynamics (CFD) analysis, respectively. Flow characteristic curves are plotted by calculating theoretical and numerical mass flow rate. Hydrodynamic analysis was made of the combined stop and control valve for the turbine system using ANSYS CFX. The result of the numerical study represented by the valve flow coefficient with different normalized values of valve stem movement L/D and different pressure ratios of valve outlet and inlet agrees well with the ideal case and other similar previous experimental results. This study also provided a solid understanding with versatile options for analyzing the hydrodynamics of the combined valve considering the various internal geometry, seat, plug, and the inlet plus outlet boundary conditions to improve the efficiency, performance and reliability of the turbine system of small as well as large power conversion system using the numerical analysis with minimal cost and time.

  10. Numerical simulations of type II gradient drift irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Ferch, R.L.; Sudan, R.N.

    1977-01-01

    Two-dimensional numerical studies of the development of type II irregularities in the equatorial electrojet have been carried out using a method similar to that of McDonald et al., (1974) except that ion inertia has been neglected. This simplification is shown to be a valid approximation whenever the electron drift velocity is small in comparison with the ion acoustic velocity and the values of the other parameters are those appropriate for the equatorial E layer. This code enables us to follow the development of quasi-steady state turbulence from appropriate initial pertubations. The two-dimensional turbulent spectrum of electron density perturbations excited is studied both for the case of devlopment from initial perturbations and for the case of a continuously pumped single driving wave

  11. A numerical study on the performance evaluation of ventilation systems for indoor radon reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Eun; Park, Hoon Chae; Choi, Hang Seok; Cho, Seung Yeon; Jeong, Tae Young; Roh, Sung Cheoul [Yonsei University, Wonju (Korea, Republic of)

    2016-03-15

    Numerical simulations were conducted using computational fluid dynamics to evaluate the effect of ventilation conditions on radon ({sup 222}Rn) reduction performance in a residential building. The results indicate that at the same ventilation rate, a mechanical ventilation system is more effective in reducing indoor radon than a natural ventilation system. For the same ventilation type, the indoor radon concentration decreases as the ventilation rate increases. When the air change per hour (ACH) was 1, the indoor radon concentration was maintained at less than 100 Bq/m{sup 3}. However, when the ACH was lowered to 0.01, the average indoor radon concentration in several rooms exceeded 148 Bq/ m{sup 3}. The angle of the inflow air was found to affect the indoor air stream and consequently the distribution of the radon concentration. Even when the ACH was 1, the radon concentrations of some areas were higher than 100 Bq/m{sup 3} for inflow air angles of 5 .deg. and 175 .deg.

  12. Numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system

    Science.gov (United States)

    Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.

    2000-01-01

    In this paper, two numerical models are presented to simulate an enhanced very early time electromagnetic (VETEM) prototype system, which is used for buried-object detection and environmental problems. Usually, the VETEM system contains a transmitting loop antenna and a receiving loop antenna, which run on a lossy ground to detect buried objects. In the first numerical model, the loop antennas are accurately analyzed using the Method of Moments (MoM) for wire antennas above or buried in lossy ground. Then, Conjugate Gradient (CG) methods, with the use of the fast Fourier transform (FFT) or MoM, are applied to investigate the scattering from buried objects. Reflected and scattered magnetic fields are evaluated at the receiving loop to calculate the output electric current. However, the working frequency for the VETEM system is usually low and, hence, two magnetic dipoles are used to replace the transmitter and receiver in the second numerical model. Comparing these two models, the second one is simple, but only valid for low frequency or small loops, while the first modeling is more general. In this paper, all computations are performed in the frequency domain, and the FFT is used to obtain the time-domain responses. Numerical examples show that simulation results from these two models fit very well when the frequency ranges from 10 kHz to 10 MHz, and both results are close to the measured data.

  13. Mathematical and numerical study of non-linear models used in plasma physics

    International Nuclear Information System (INIS)

    Ebrard, G.

    2005-12-01

    We study the interaction of several crossing beams with a plasma in the Laser-Megajoule context. We start from Euler-Maxwell. The formal asymptotic is the Zakharov system. For simplified systems of Klein-Gordon-wave type, we justify an approximation by a Zakharov equation for solutions of large amplitude. We construct a new system that simulates the interaction of 2 beams and present a whole hierarchy of models. We introduce a numerical scheme using the known results on Zakharov-wave equations which are valid for short pulses. We give a scheme which eliminate the backscattering wave. We give some numerical results. Finally, we do several numerical simulations of laser-plasma interaction for the initial value problem and the boundary value problem. (author)

  14. Atmospheric models in the numerical simulation system (SPEEDI-MP) for environmental studies

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Terada, Hiroaki

    2007-01-01

    As a nuclear emergency response system, numerical models to predict the atmospheric dispersion of radionuclides have been developed at Japan Atomic Energy Agency (JAEA). Evolving these models by incorporating new schemes for physical processes and up-to-date computational technologies, a numerical simulation system, which consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, has been constructed to apply for various environmental studies. In this system, the combination of a non-hydrostatic atmospheric dynamic model and Lagrangian particle dispersion model is used for the emergency response system. The utilization of detailed meteorological field by the atmospheric model improves the model performance for diffusion and deposition calculations. It also calculates a large area domain with coarse resolution and local area domain with high resolution simultaneously. The performance of new model system was evaluated using measurements of surface deposition of 137 Cs over Europe during the Chernobyl accident. (author)

  15. Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System

    Science.gov (United States)

    Majumdar, Alok; Saxon, Jeff (Technical Monitor)

    2002-01-01

    In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.

  16. Variation of Student Numerical and Figural Reasoning Approaches by Pattern Generalization Type, Strategy Use and Grade Level

    Science.gov (United States)

    El Mouhayar, Rabih; Jurdak, Murad

    2016-01-01

    This paper explored variation of student numerical and figural reasoning approaches across different pattern generalization types and across grade level. An instrument was designed for this purpose. The instrument was given to a sample of 1232 students from grades 4 to 11 from five schools in Lebanon. Analysis of data showed that the numerical…

  17. Numerical modeling of the agricultural-hydrologic system in Punjab, India

    Science.gov (United States)

    Nyblade, M.; Russo, T. A.; Zikatanov, L.; Zipp, K.

    2017-12-01

    The goal of food security for India's growing population is threatened by the decline in freshwater resources due to unsustainable water use for irrigation. The issue is acute in parts of Punjab, India, where small landholders produce a major quantity of India's food with declining groundwater resources. To further complicate this problem, other regions of the state are experiencing groundwater logging and salinization, and are reliant on canal systems for fresh water delivery. Due to the lack of water use records, groundwater consumption for this study is estimated with available data on crop yields, climate, and total canal water delivery. The hydrologic and agricultural systems are modeled using appropriate numerical methods and software. This is a state-wide hydrologic numerical model of Punjab that accounts for multiple aquifer layers, agricultural water demands, and interactions between the surface canal system and groundwater. To more accurately represent the drivers of agricultural production and therefore water use, we couple an economic crop optimization model with the hydrologic model. These tools will be used to assess and optimize crop choice scenarios based on farmer income, food production, and hydrologic system constraints. The results of these combined models can be used to further understand the hydrologic system response to government crop procurement policies and climate change, and to assess the effectiveness of possible water conservation solutions.

  18. Theoretical Hill-Type Muscle and Stability: Numerical Model and Application

    Directory of Open Access Journals (Sweden)

    S. Schmitt

    2013-01-01

    Full Text Available The construction of artificial muscles is one of the most challenging developments in today’s biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator.

  19. Development and successful operation of the enhanced-interlink system of experiment data and numerical simulation in LHD

    International Nuclear Information System (INIS)

    Emoto, M.; Suzuki, C.; Suzuki, Y.; Yokoyama, M.; Seki, R.; Ida, K.

    2014-10-01

    The enhanced-interlink system of experiment data and numerical simulation has been developed, and successfully operated routinely in the Large Helical Device (LHD). This system consists of analyzed diagnostic data, real-time coordinate mapping, and automatic data processing. It has enabled automated data handling/transferring between experiment and numerical simulation, to extensively perform experiment analyses. It can be considered as one of the prototypes for a seamless data-centric approach for integrating experiment data and numerical simulation/modellings in fusion experiments. Utilizing this system, experimental analyses by numerical simulations have extensively progressed. The authors believe this data-centric approach for integrating experiment data and numerical simulation/modellings will contribute to not only the LHD but to other plasma fusion projects including DEMO reactor in the future. (author)

  20. Numerical model for the thermal behavior of thermocline storage tanks

    Science.gov (United States)

    Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.

    2018-03-01

    Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.

  1. Numerical simulation of a cabin ventilation subsystem in a space station oriented real-time system

    Directory of Open Access Journals (Sweden)

    Zezheng QIU

    2017-12-01

    Full Text Available An environment control and life support system (ECLSS is an important system in a space station. The ECLSS is a typical complex system, and the real-time simulation technology can help to accelerate its research process by using distributed hardware in a loop simulation system. An implicit fixed time step numerical integration method is recommended for a real-time simulation system with time-varying parameters. However, its computational efficiency is too low to satisfy the real-time data interaction, especially for the complex ECLSS system running on a PC cluster. The instability problem of an explicit method strongly limits its application in the ECLSS real-time simulation although it has a high computational efficiency. This paper proposes an improved numerical simulation method to overcome the instability problem based on the explicit Euler method. A temperature and humidity control subsystem (THCS is firstly established, and its numerical stability is analyzed by using the eigenvalue estimation theory. Furthermore, an adaptive operator is proposed to avoid the potential instability problem. The stability and accuracy of the proposed method are investigated carefully. Simulation results show that this proposed method can provide a good way for some complex time-variant systems to run their real-time simulation on a PC cluster. Keywords: Numerical integration method, Real-time simulation, Stability, THCS, Time-variant system

  2. Numerical Three-Dimensional Model of Airport Terminal Drainage System

    Directory of Open Access Journals (Sweden)

    Strzelecki Michał

    2014-03-01

    Full Text Available During the construction of an airport terminal it was found that as a result of the hydrostatic pressure of underground water the foundation plate of the building had dangerously shifted in the direction opposite to that of the gravitational forces. The only effective measure was to introduce a drainage system on the site. The complex geology of the area indicated that two independent drainage systems, i.e., a horizontal system in the Quaternary beds and a vertical system in the Tertiary water-bearing levels, were necessary. This paper presents numerical FEM calculations of the two drainage systems being part of the airport terminal drainaged esign. The computer simulation which was carried out took into consideration the actual effect of the drainage systems and their impact on the depression cone being formed in the two aquifers.

  3. System for automatic checking of nuclear radiation detectors of sparkle type

    International Nuclear Information System (INIS)

    Gutierrez O, E.; Vilchis P, A.; Romero G, M.; Torres B, M.A.; Garcia H, J.M.

    2001-01-01

    In this work an automatic system of checking of nuclear detectors of sparkle type is described. This system is used in laboratory for the checking of the parameters which define the reliable operation of each detector, also it compares the obtained results with those proportionated by the manufacturer for the operator can emit the acceptance or rejection criteria. The checking system consists of an acquisition data card with a digital signal processor (DSP) as central device, a programmable high voltage source and an insertion and conversion module. These components interact with a personal computer to provide to the operator the energy spectra, the nuclear pulse form and the merit figure. The obtained results are showed in graphic form and/or numerical values and it is possible store them in a data file and/or in printed form. For facilitating the interaction of the computer with the user, the system software was realized with a commercial language of graphic programming (virtual instrumentation). (Author)

  4. Comparing numerical methods for the solutions of the Chen system

    International Nuclear Information System (INIS)

    Noorani, M.S.M.; Hashim, I.; Ahmad, R.; Bakar, S.A.; Ismail, E.S.; Zakaria, A.M.

    2007-01-01

    In this paper, the Adomian decomposition method (ADM) is applied to the Chen system which is a three-dimensional system of ODEs with quadratic nonlinearities. The ADM yields an analytical solution in terms of a rapidly convergent infinite power series with easily computable terms. Comparisons between the decomposition solutions and the classical fourth-order Runge-Kutta (RK4) numerical solutions are made. In particular we look at the accuracy of the ADM as the Chen system changes from a non-chaotic system to a chaotic one. To highlight some computational difficulties due to a high Lyapunov exponent, a comparison with the Lorenz system is given

  5. Numerical methods for semiconductor heterostructures with band nonparabolicity

    International Nuclear Information System (INIS)

    Wang Weichung; Hwang Tsungmin; Lin Wenwei; Liu Jinnliang

    2003-01-01

    This article presents numerical methods for computing bound state energies and associated wave functions of three-dimensional semiconductor heterostructures with special interest in the numerical treatment of the effect of band nonparabolicity. A nonuniform finite difference method is presented to approximate a model of a cylindrical-shaped semiconductor quantum dot embedded in another semiconductor matrix. A matrix reduction method is then proposed to dramatically reduce huge eigenvalue systems to relatively very small subsystems. Moreover, the nonparabolic band structure results in a cubic type of nonlinear eigenvalue problems for which a cubic Jacobi-Davidson method with an explicit nonequivalence deflation method are proposed to compute all the desired eigenpairs. Numerical results are given to illustrate the spectrum of energy levels and the corresponding wave functions in rather detail

  6. Controlling Unknown Saddle Type Steady States of Dynamical Systems with Latency in the Feedback Loop

    DEFF Research Database (Denmark)

    Tamasevicius, Arunas; Bumeliene, Skaidra; Tamaseviciute, Elena

    2009-01-01

    We suggest an adaptive control technique for stabilizing saddle type unstable steady states of dynamical systems. The controller is composed of an unstable and a stable high-pass filters operating in parallel. The mathematical model is considered analytically and numerically. The conjoint...... controller is sufficiently robust to time latencies in the feedback loop. In addition, it is not sensitive to the damping parameters of the system and is relatively fast. Experiments have been performed using a simplified version of the electronic Young-Silva circuit imitating behavior of the Duffing...

  7. Increased-accuracy numerical modeling of electron-optical systems with space-charge

    International Nuclear Information System (INIS)

    Sveshnikov, V.

    2011-01-01

    This paper presents a method for improving the accuracy of space-charge computation for electron-optical systems. The method proposes to divide the computational region into two parts: a near-cathode region in which analytical solutions are used and a basic one in which numerical methods compute the field distribution and trace electron ray paths. A numerical method is used for calculating the potential along the interface, which involves solving a non-linear equation. Preliminary results illustrating the improvement of accuracy and the convergence of the method for a simple test example are presented.

  8. Numerical and experimental analysis of the vibratory behavior of a nuclear power plant piping system excitated by a pump

    International Nuclear Information System (INIS)

    Vatin, E.; Guillou, J.; Tephany, F.; Trollat, C.

    1993-08-01

    This paper presents a study on the dynamic response of piping systems installed in the French 1300 MWe Nuclear Power Plants. Variations in pressure are generated by a multi-staged centrifugal pump mounted on the piping system and provide a dynamic excitation of the pipe. This type of dynamic loading has led to nozzle cracks for some of the pipes, whereas, for other installations, it has not be found detrimental. This study presents an explanation of the different dynamic behavior observed at the various plants. To this end, a numerical model, calibrated with on-site measurements, is impleted. (authors). 8 figs., 1 tab., 5 refs

  9. Experimental and Numerical Investigation of Metal Type and Thickness Effects on the Impact Resistance of Fiber Metal Laminates

    NARCIS (Netherlands)

    Sadighi, M.; Pärnänen, T.; Alderliesten, R.C.; Sayeaftabi, M.; Benedictus, R.

    2012-01-01

    The impact response of fiber metal laminates (FMLs), has been investigated with experiments and numerical simulations, which is reported in this article. Low-velocity impacts were carried out to study the effects of metal type and thickness within FMLs. Glare5-3/2 laminates with two aluminum layer

  10. ON A NUMERICAL ALGORITHM FOR UNCERTAIN SYSTEM ∫ Φ ...

    African Journals Online (AJOL)

    Administrator

    Science World Journal Vol 7 (No 1) 2012 www.scienceworldjournal.org. ISSN 1597-6343. On a Numerical Algorithm for Uncertain System. Newton's Algorithm. Step 1 Calculate. )(),().(k k k. xAxgxF. Step 2. Check if ε. <. )(k xg for a predetermined ,ε if so stop, else. Step3. Set k k. PxA. )( = )(k xg. -. Step4. Set k k k. Px x. +. = +1.

  11. Numerical Analysis for Dynamic Instability of Electrodynamic Maglev Systems

    Directory of Open Access Journals (Sweden)

    Y. Cai

    1995-01-01

    Full Text Available Suspension instabilities in an electrodynamic maglev system with three- and five-degrees-of-freedom DOF vehicles traveling on a double L-shaped set of guideway conductors were investigated with various experimentally measured magnetic force data incorporated into theoretical models. Divergence and flutter were obtained from both analytical and numerical solutions for coupled vibration of the three-DOF maglev vehicle model. Instabilities of five direction motion (heave, slip, roll, pitch, and yaw were observed for the five-DOF vehicle model. The results demonstrate that system parameters such as system damping, vehicle geometry, and coupling effects among five different motions play very important roles in the occurrence of dynamic instabilities of maglev vehicles.

  12. Preliminary Study of 1D Thermal-Hydraulic System Analysis Code Using the Higher-Order Numerical Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The existing nuclear system analysis codes such as RELAP5, TRAC, MARS and SPACE use the first-order numerical scheme in both space and time discretization. However, the first-order scheme is highly diffusive and less accurate due to the first order of truncation error. So, the numerical diffusion problem which makes the gradients to be smooth in the regions where the gradients should be steep can occur during the analysis, which often predicts less conservatively than the reality. Therefore, the first-order scheme is not always useful in many applications such as boron solute transport. RELAP7 which is an advanced nuclear reactor system safety analysis code using the second-order numerical scheme in temporal and spatial discretization is being developed by INL (Idaho National Laboratory) since 2011. Therefore, for better predictive performance of the safety of nuclear reactor systems, more accurate nuclear reactor system analysis code is needed for Korea too to follow the global trend of nuclear safety analysis. Thus, this study will evaluate the feasibility of applying the higher-order numerical scheme to the next generation nuclear system analysis code to provide the basis for the better nuclear system analysis code development. The accuracy is enhanced in the spatial second-order scheme and the numerical diffusion problem is alleviated while indicates significantly lower maximum Courant limit and the numerical dispersion issue which produces spurious oscillation and non-physical results in the higher-order scheme. If the spatial scheme is the first order scheme then the temporal second-order scheme provides almost the same result with the temporal firstorder scheme. However, when the temporal second order scheme and the spatial second-order scheme are applied together, the numerical dispersion can occur more severely. For the more in-depth study, the verification and validation of the NTS code built in MATLAB will be conducted further and expanded to handle two

  13. Numerical investigation on thermal and fluid dynamic behaviors of solar chimney building systems

    International Nuclear Information System (INIS)

    Manca, O.; Nardini, S.; Romano, P.; Mihailov, E.

    2013-01-01

    Full text: Buildings as big energy-consuming systems require large amount of energy to operate. Globally, buildings are responsible for approximately 40% of total world annual energy consumption. Sustainable buildings with renewable energy systems are trying to operate independently without consumption of conventional resources. Renewable energy is a significant approach to reduce resource consumption in sustainable building. A solar chimney is essentially divided into two parts, one - the solar air heater (collector) and second - the chimney. Two configurations of solar chimney are usually used: vertical solar chimney with vertical absorber geometry, and roof solar chimney. For vertical solar chimney, vertical glass is used to gain solar heat. Designing a solar chimney includes height, width and depth of cavity, type of glazing, type of absorber, and inclusion of insulation or thermal mass. Besides these system parameters, other factors such as the location, climate, and orientation can also affect its performance. In this paper a numerical investigation on a prototypal solar chimney system integrated in a south facade of a building is presented. The analysis is carried out on a three-dimensional model in air flow and the governing equations are given in terms of k-s turbulence model. Two geometrical configurations are investigated: 1) a channel with vertical parallel walls and 2) a channel with principal walls one vertical and the other inclined. The problem is solved by means of the commercial code Ansys-Fluent and the results are performed for a uniform wall heat flux on the vertical wall is equal to 300 and 600 W/m2. Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles in order to evaluate the differences between the two base configurations and thermal and fluid dynamic behaviors. Further, the ground effect on thermal performances is examined. key words: mathematical modeling, solar chimney

  14. A numerical method for transient gas-liquid two-phase flow using a general curvilinear coordinate system. 1. Governing equations and numerical method

    International Nuclear Information System (INIS)

    Tomiyama, Akio; Matsuoka, Toshiyuki.

    1995-01-01

    A simple numerical method for solving a transient incompressible two-fluid model was proposed in the present study. A general curvilinear coordinate system was adopted in this method for predicting transient flows in practical engineering devices. The simplicity of the present method is due to the fact that the field equations and constitutive equations were expressed in a tensor form in the general curvilinear coordinate system. When a conventional rectangular mesh is adopted in a calculation, the method reduces to a numerical method for a Cartesian coordinate system. As an example, the present method was applied to transient air-water bubbly flow in a vertical U-tube. It was confirmed that the effects of centrifugal and gravitational forces on the phase distribution in the U-tube were reasonably predicted. (author)

  15. Nonfragile Guaranteed Cost Control and Optimization for Interconnected Systems of Neutral Type

    Directory of Open Access Journals (Sweden)

    Heli Hu

    2013-01-01

    Full Text Available The design and optimization problems of the nonfragile guaranteed cost control are investigated for a class of interconnected systems of neutral type. A novel scheme, viewing the interconnections with time-varying delays as effective information but not disturbances, is developed to decrease the conservatism. Many techniques on decomposing and magnifying the matrices are utilized to obtain the guaranteed cost of the considered system. Also, an algorithm is proposed to solve the nonlinear problem of the interconnected matrices. Based on this algorithm, the minimization of the guaranteed cost of the considered system is obtained by optimization. Further, the state feedback control is extended to the case in which the underlying system is dependent on uncertain parameters. Finally, two numerical examples are given to illustrate the proposed method, and some comparisons are made to show the advantages of the schemes of dealing with the interconnections.

  16. Generalized Roe's numerical scheme for a two-fluid model

    International Nuclear Information System (INIS)

    Toumi, I.; Raymond, P.

    1993-01-01

    This paper is devoted to a mathematical and numerical study of a six equation two-fluid model. We will prove that the model is strictly hyperbolic due to the inclusion of the virtual mass force term in the phasic momentum equations. The two-fluid model is naturally written under a nonconservative form. To solve the nonlinear Riemann problem for this nonconservative hyperbolic system, a generalized Roe's approximate Riemann solver, is used, based on a linearization of the nonconservative terms. A Godunov type numerical scheme is built, using this approximate Riemann solver. 10 refs., 5 figs,

  17. Numerical simulation and experimental results of horizontal tube falling film generator working in a NH3-LiNO3 absorption refrigeration system

    International Nuclear Information System (INIS)

    Herrera, J.V.; Garcia-Valladares, O.; Gomez, V.H.; Best, R.

    2010-01-01

    This paper describes the work made at the Centro de Investigacion en Energia in the development of an absorption refrigeration system for cooling and refrigeration applications with a capacity of 10 kW. The single effect unit utilizes ammonia-lithium nitrate as working pair and it is air cooled. The generator is a falling film type with horizontal tubes where the heating oil flows inside the tube bank and the ammonia-lithium nitrate solution flows as a falling film on the tube outside, where it is heated and ammonia vapor is generated. The generator consists of tree columns and four rows per column of horizontal tubes. The system was tested at controlled conditions with heating oil obtained from an electric resistance heating loop. A numerical model of the horizontal falling film generator was developed that divided the system into three different thermal elements: the flow inside the tube, the heat conduction in the tube wall and the falling film solution flow. The mathematical model was tested and validated with experimental data and a study of the influence of the heat transfer coefficient for ammonia-lithium nitrate solution in the numerical model was carried out. A comparison between experimental and numerical data for the heat flux in the system and the temperature profiles in the oil and solution flows shown a good degree of correlation.

  18. Numerical study of a novel dew point evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Riangvilaikul, B.; Kumar, S. [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120 (Thailand)

    2010-11-15

    Dew point evaporative cooling system is an alternative to vapor compression air conditioning system for sensible cooling of ventilation air. This paper presents the theoretical performance of a novel dew point evaporative cooling system operating under various inlet air conditions (covering dry, moderate and humid climate) and influence of major operating parameters (namely, velocity, system dimension and the ratio of working air to intake air). A model of the dew point evaporative cooling system has been developed to simulate the heat and mass transfer processes. The outlet air conditions and system effectiveness predicted by the model using numerical method for known inlet parameters have been validated with experimental findings and with recent literature. The model was used to optimize the system parameters and to investigate the system effectiveness operating under various inlet air conditions. (author)

  19. Numerical Modelling of Electrical Discharges

    International Nuclear Information System (INIS)

    Durán-Olivencia, F J; Pontiga, F; Castellanos, A

    2014-01-01

    The problem of the propagation of an electrical discharge between a spherical electrode and a plane has been solved by means of finite element methods (FEM) using a fluid approximation and assuming weak ionization and local equilibrium with the electric field. The numerical simulation of this type of problems presents the usual difficulties of convection-diffusion-reaction problems, in addition to those associated with the nonlinearities of the charged species velocities, the formation of steep gradients of the electric field and particle densities, and the coexistence of very different temporal scales. The effect of using different temporal discretizations for the numerical integration of the corresponding system of partial differential equations will be here investigated. In particular, the so-called θ-methods will be used, which allows to implement implicit, semi-explicit and fully explicit schemes in a simple way

  20. Structure of unilamellar vesicles: Numerical analysis based on small-angle neutron scattering data

    International Nuclear Information System (INIS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zbytovska, J.; Almasy, L.; Aswal, V. K.; Strunz, P.; Wartewig, S.; Neubert, R.

    2006-01-01

    The structure of polydispersed populations of unilamellar vesicles is studied by small-angle neutron scattering for three types of lipid systems, namely, single-, two-and four-component vesicular systems. Results of the numerical analysis based on the separated-form-factor model are reported

  1. Numerical results on noise-induced dynamics in the subthreshold regime for thermoacoustic systems

    Science.gov (United States)

    Gupta, Vikrant; Saurabh, Aditya; Paschereit, Christian Oliver; Kabiraj, Lipika

    2017-03-01

    Thermoacoustic instability is a serious issue in practical combustion systems. Such systems are inherently noisy, and hence the influence of noise on the dynamics of thermoacoustic instability is an aspect of practical importance. The present work is motivated by a recent report on the experimental observation of coherence resonance, or noise-induced coherence with a resonance-like dependence on the noise intensity as the system approaches the stability margin, for a prototypical premixed laminar flame combustor (Kabiraj et al., Phys. Rev. E, 4 (2015)). We numerically investigate representative thermoacoustic models for such noise-induced dynamics. Similar to the experiments, we study variation in system dynamics in response to variations in the noise intensity and in a critical control parameter as the systems approach their stability margins. The qualitative match identified between experimental results and observations in the representative models investigated here confirms that coherence resonance is a feature of thermoacoustic systems. We also extend the experimental results, which were limited to the case of subcritical Hopf bifurcation, to the case of supercritical Hopf bifurcation. We identify that the phenomenon has qualitative differences for the systems undergoing transition via subcritical and supercritical Hopf bifurcations. Two important practical implications are associated with the findings. Firstly, the increase in noise-induced coherence as the system approaches the onset of thermoacoustic instability can be considered as a precursor to the instability. Secondly, the dependence of noise-induced dynamics on the bifurcation type can be utilised to distinguish between subcritical and supercritical bifurcation prior to the onset of the instability.

  2. Current system of the solar wind: results of numerical calculation

    International Nuclear Information System (INIS)

    Pisanko, Yu.V.

    1985-01-01

    Results of numerical calculations of surface current in the interplanetary current layer and steady volume current in the solar wind for heliocentric distances (1-10)Rsub(s) (Rsub(s) is the Sun radius) are given. The strength of current dependence on spatial coordinates is considered. Stationary nondissipative magnetohydrodynamic corona expansion (SNMCE) in the reference system rotating with the Sun is studied. Calculations show that three-dimensional current system of nonaxial-symmetric and nonsymmetric relatively to helioequator plane of SNMCE is more complicated than the zonal ring current around the Sun, which is the only component of the current system in spatial symmetric case

  3. A New Method to Solve Numeric Solution of Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Min Hu

    2016-01-01

    Full Text Available It is well known that the cubic spline function has advantages of simple forms, good convergence, approximation, and second-order smoothness. A particular class of cubic spline function is constructed and an effective method to solve the numerical solution of nonlinear dynamic system is proposed based on the cubic spline function. Compared with existing methods, this method not only has high approximation precision, but also avoids the Runge phenomenon. The error analysis of several methods is given via two numeric examples, which turned out that the proposed method is a much more feasible tool applied to the engineering practice.

  4. Laboratory Experiment and Numerical Analysis of a New Type of Solar Tower Efficiently Generating a Thermal Updraft

    Directory of Open Access Journals (Sweden)

    Yuji Ohya

    2016-12-01

    Full Text Available A new type of solar tower was developed through laboratory experiments and numerical analyses. The solar tower mainly consists of three components. The transparent collector area is an aboveground glass roof, with increasing height toward the center. Attached to the center of the inside of the collector is a vertical tower within which a wind turbine is mounted at the lower entry to the tower. When solar radiation heats the ground through the glass roof, ascending warm air is guided to the center and into the tower. A solar tower that can generate electricity using a simple structure that enables easy and less costly maintenance has considerable advantages. However, conversion efficiency from sunshine energy to mechanical turbine energy is very low. Aiming to improve this efficiency, the research project developed a diffuser-type tower instead of a cylindrical tower, and investigated a suitable diffuser shape for practical use. After changing the tower height and diffuser open angle, with a temperature difference between the ambient air aloft and within the collector, various diffuser tower shapes were tested by laboratory experiments and numerical analyses. As a result, it was found that a diffuser tower with a semi-open angle of 4° is an optimal shape, producing the fastest updraft at each temperature difference in both the laboratory experiments and numerical analyses. The relationships between thermal updraft speed and temperature difference and/or tower height were confirmed. It was found that the thermal updraft velocity is proportional to the square root of the tower height and/or temperature difference.

  5. Numerical and experimental assessment of thermal performance of vertical energy piles: An application

    International Nuclear Information System (INIS)

    Gao Jun; Zhang Xu; Liu Jun; Li Kuishan; Yang Jie

    2008-01-01

    A district space heating and cooling system using geothermal energy from bearing piles was designed in Shanghai and will be installed in two years before 2010. This paper describes the pile-foundation heat exchangers applied in an energy pile system for an actual architectural complex in Shanghai, 30% of whose cooling/heating load was designed to be provided by a ground-source heat pump (GSHP) system using the energy piles. In situ performance tests of heat transfer are carried out to figure out the most efficient type of energy pile and to specify the design of energy pile system. Numerical investigation is also performed to confirm the test results and to demonstrate the medium temperature variations along the pipes. The averaged heat resistance and heat injection rate of different types of energy piles are calculated from the test and numerical results. The effect of pile type, medium flow rate and inlet temperature on thermal performance is separately discussed. From the viewpoint of energy efficiency and adjustability, the W-shaped underground heat exchanger with moderate medium flow rate is finally adopted for the energy pile system

  6. Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

    International Nuclear Information System (INIS)

    Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah

    2014-01-01

    We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean–Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices. -- Highlights: •Different PT-symmetries lead to qualitatively different systems. •Construction of non-perturbative Dyson maps and isospectral Hermitian counterparts. •Numerical discussion of the eigenvalue spectra for one of the E(2)-systems. •Established link to systems studied in the context of optical lattices. •Setup for the E(3)-algebra is provided

  7. Numerical Solution and Simulation of Second-Order Parabolic PDEs with Sinc-Galerkin Method Using Maple

    Directory of Open Access Journals (Sweden)

    Aydin Secer

    2013-01-01

    Full Text Available An efficient solution algorithm for sinc-Galerkin method has been presented for obtaining numerical solution of PDEs with Dirichlet-type boundary conditions by using Maple Computer Algebra System. The method is based on Whittaker cardinal function and uses approximating basis functions and their appropriate derivatives. In this work, PDEs have been converted to algebraic equation systems with new accurate explicit approximations of inner products without the need to calculate any numeric integrals. The solution of this system of algebraic equations has been reduced to the solution of a matrix equation system via Maple. The accuracy of the solutions has been compared with the exact solutions of the test problem. Computational results indicate that the technique presented in this study is valid for linear partial differential equations with various types of boundary conditions.

  8. Mathematical and numerical analysis of hyper-elastic systems and introduction of plasticity

    International Nuclear Information System (INIS)

    Kluth, G.

    2008-12-01

    The goal is to model mathematically and numerically the dynamic phenomenons for solids in finite plasticity. We suggest a model that we call hyper-elasto-plastic based on hyper-elastic systems of conservation laws and on the use of an equation of state that we have constructed so as to achieve the plastic yield criterion of Von Mises. This model gives exact (analytic) solutions with shock split to flyer-plate experiments. The mathematical analysis of this model is done (hyperbolicity, characteristic fields, involutions and entropy). In the numerical part, we give 1D and 2D Lagrangian schemes which satisfy an entropy criterion. Moreover, thanks to a special discretization of the equations on deformation gradient, we satisfy some discrete involutions. In this work, the degeneracy of the solid model into hydrodynamic models is studied at the continuous level, and achieved at the numerical one. On different problems, we show the validity of our model and our numerical schemes. (author)

  9. Numerical and experimental analysis of a darrieus-type cross flow water turbine in bare and shrouded configurations

    International Nuclear Information System (INIS)

    Roa, A M; Aumelas, V; MaItre, T; Pellone, C

    2010-01-01

    The aim of this paper is to present the results of the analysis of a Darrieus-type cross flow water turbine in bare and shrouded configurations. Numerical results are compared to experimental data and differences found in values are also highlighted. The benefit of the introduction of a channelling device, which generates an efficiency increment factor varying from 2 to 5, depending on the configuration, is discussed.

  10. Development and implementation of a set of numerical quadratures SQN and EQN type in the transport code AZTRAN

    International Nuclear Information System (INIS)

    Chepe P, M.; Xolocostli M, J. V.; Gomez T, A. M.; Del Valle G, E.

    2015-09-01

    The deterministic transport codes for analysis of nuclear reactors have been used for several years already, these codes have evolved in terms of the methodology used and the degree of accuracy, because at the present time has more computer power. In this paper, the transport code used considers the classical technique of multi-group for discretization energy, for space discretization uses the nodal methods, while for the angular discretization the discrete ordinates method is used; so that presents the development and implementation of a set of numerical quadratures of SQ N type symmetrical with the same weight for each angular direction and these are compared with the quadratures of EQ N type. The two sets of numerical quadratures were implemented in the program AZTRAN to a problem with isotropic medium in XYZ geometry, in steady state using the nodal method RTN-0 (Raviart-Thomas-Nedelec). The analyzed results correspond to the effective multiplication factor k eff and neutron angular flux with approximations from S 4 to S 16 . (Author)

  11. Numerical investigations on cavitating flows with thermodynamic effects in a diffuser-type centrifugal pump

    International Nuclear Information System (INIS)

    Xuelin, Tang Xue; Liyuan, Bian; Fujun, Wang; Xiaoqin, Lin; Man, Hao

    2013-01-01

    A cavitation model with thermodynamic effects for cavitating flows in a diffuser-type centrifugal pump is developed based on the bubble two-phase flow model. The proposed cavitation model includes mass, momentum, and energy transportations according to the thermodynamic mechanism of cavitation. Numerical simulations are conducted inside the entire passage of the centrifugal pump by using the proposed cavitation model and the renormalization group-based k - ε turbulent model coupled with the energy transportation equation. By using the commercial computational fluid dynamics software FLUENT 6.3, we have shown that the predicted performance characteristics of the pump, as well as the pressure, vapor, and density distributions in the impeller, agree well with that calculated by the full cavitation model. Simulation results show that cavitation initially occurs slightly behind the inlet of the blade suction surface, i.e., the area with maximum vapor concentration and minimum pressure. The predicted temperature field shows that the reduction in temperature restrains the growth of cavitating bubbles. Therefore, the thermodynamic effect should be treated as a necessary factor in cavitation models. Comparison results validate the efficiency and accuracy of the numerical technique in simulating cavitation flows in centrifugal pumps.

  12. Harnessing type I and type III CRISPR-Cas systems for genome editing

    DEFF Research Database (Denmark)

    Li, Yingjun; Pan, Saifu; Zhang, Yan

    2016-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are widespread in archaea and bacteria, and research on their molecular mechanisms has led to the development of genome-editing techniques based on a few Type II systems. However, there has not been any...... report on harnessing a Type I or Type III system for genome editing. Here, a method was developed to repurpose both CRISPR-Cas systems for genetic manipulation in Sulfolobus islandicus, a thermophilic archaeon. A novel type of genome-editing plasmid (pGE) was constructed, carrying an artificial mini-CRISPR...... and selectively retained as transformants. Using this strategy, different types of mutation were generated, including deletion, insertion and point mutations. We envision this method is readily applicable to different bacteria and archaea that carry an active CRISPR-Cas system of DNA interference provided...

  13. 46 CFR 153.310 - Ventilation system type.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation system type. 153.310 Section 153.310... Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent forced ventilation system of the exhaust type. ...

  14. One language, two number-word systems and many problems: numerical cognition in the Czech language.

    Science.gov (United States)

    Pixner, S; Zuber, J; Heřmanová, V; Kaufmann, L; Nuerk, H-C; Moeller, K

    2011-01-01

    Comparing numerical performance between different languages does not only mean comparing different number-word systems, but also implies a comparison of differences regarding culture or educational systems. The Czech language provides the remarkable opportunity to disentangle this confound as there exist two different number-word systems within the same language: for instance, "25" can be either coded in non-inverted order "dvadsetpät" [twenty-five] or in inverted order "pätadvadset" [five-and-twenty]. To investigate the influence of the number-word system on basic numerical processing within one culture, 7-year-old Czech-speaking children had to perform a transcoding task (i.e., writing Arabic numbers to dictation) in both number-word systems. The observed error pattern clearly indicated that the structure of the number-word system determined transcoding performance reliably: In the inverted number-word system about half of all errors were inversion-related. In contrast, hardly any inversion-related errors occurred in the non-inverted number-word system. We conclude that the development of numerical cognition does not only depend on cultural or educational differences, but is indeed related to the structure and transparency of a given number-word system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Hanger-type laundry monitor system

    International Nuclear Information System (INIS)

    Aoyama, Kei; Kouno, Yoshio; Yanagishima, Ryouhei; Ikeda, Yasuyuki; Nakatani, Masahiro

    1987-01-01

    Laundry monitor is installed in nuclear power plants or other nuclear facilities in order to efficiently detect radioactive contamination remains on the surfaces of the working clothes which were used in the controlled area and washed afterward. The number of the working clothes which must be measured has been increasing in accordance with the increase of the nuclear facilities. This fact and recent intensified radiation control require automatic, high-speed and high sensitive measurement. Conveyer-type laundry monitor in which the working clothes are inserted by the metal net conveyer has been generally used, and recently new system with an automatic folder has become more popular. But, this type of system has not so big capacity because the clothes are conveyed longitudinally and also requires considerable wide space when installed. Fuji electric Co., Ltd. has been engaging in research and development for an optimum laundry monitor system used in nuclear facilities since the joint investigation with ten electric power companies in Japan in 1982. Consequently hanger-type laundry monitor system using automatic hanger conveyer was developed and 2 systems were delivered to Chubu Electric Power Co., Ltd. in 1986. This system permits to detect radioactive contamination on the working clothes, pick the contaminated clothes out and fold the uncontaminated clothes fully automatically and continuously. Moreover it allows to shorten the measurement time because the clothes are conveyed transversely and save the installation space, so that this will be regarded as considerably complete system in the world. This report describes the outline of the hanger-type laundry monitor system. (author)

  16. Hindi Numerals.

    Science.gov (United States)

    Bright, William

    In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…

  17. Dynamical Systems Method and Applications Theoretical Developments and Numerical Examples

    CERN Document Server

    Ramm, Alexander G

    2012-01-01

    Demonstrates the application of DSM to solve a broad range of operator equations The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and

  18. Direct numerical simulation of annular flows

    Science.gov (United States)

    Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  19. INCREASE OF QUEUING SYSTEM EFFECTIVENESS OF TRADING ENTERPRISE BY MEANS OF NUMERICAL STATISTICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Knyazheva Yu. V.

    2014-06-01

    Full Text Available The market economy causes need of development of the economic analysis first of all at microlevel, that is at the level of the separate enterprises as the enterprises are basis for market economy. Therefore improvement of the queuing system trading enterprise is an important economic problem. Analytical solutions of problems of the mass servicing are in described the theory, don’t correspond to real operating conditions of the queuing systems. Therefore in this article optimization of customer service process and improvement of settlement and cash service system trading enterprise are made by means of numerical statistical simulation of the queuing system trading enterprise. The article describe integrated statistical numerical simulation model of queuing systems trading enterprise working in nonstationary conditions with reference to different distribution laws of customers input stream. This model takes account of various behavior customers output stream, includes checkout service model which takes account of cashier rate of working, also this model includes staff motivation model, profit earning and profit optimization models that take into account possible revenue and costs. The created statistical numerical simulation model of queuing systems trading enterprise, at its realization in the suitable software environment, allows to perform optimization of the most important parameters of system. And when developing the convenient user interface, this model can be a component of support decision-making system for rationalization of organizational structure and for management optimization by trading enterprise.

  20. Local and global Hopf bifurcation analysis in a neutral-type neuron system with two delays

    Science.gov (United States)

    Lv, Qiuyu; Liao, Xiaofeng

    2018-03-01

    In recent years, neutral-type differential-difference equations have been applied extensively in the field of engineering, and their dynamical behaviors are more complex than that of the delay differential-difference equations. In this paper, the equations used to describe a neutral-type neural network system of differential difference equation with two delays are studied (i.e. neutral-type differential equations). Firstly, by selecting τ1, τ2 respectively as a parameter, we provide an analysis about the local stability of the zero equilibrium point of the equations, and sufficient conditions of asymptotic stability for the system are derived. Secondly, by using the theory of normal form and applying the theorem of center manifold introduced by Hassard et al., the Hopf bifurcation is found and some formulas for deciding the stability of periodic solutions and the direction of Hopf bifurcation are given. Moreover, by applying the theorem of global Hopf bifurcation, the existence of global periodic solution of the system is studied. Finally, an example is given, and some computer numerical simulations are taken to demonstrate and certify the correctness of the presented results.

  1. Efficient numerical method for district heating system hydraulics

    International Nuclear Information System (INIS)

    Stevanovic, Vladimir D.; Prica, Sanja; Maslovaric, Blazenka; Zivkovic, Branislav; Nikodijevic, Srdjan

    2007-01-01

    An efficient method for numerical simulation and analyses of the steady state hydraulics of complex pipeline networks is presented. It is based on the loop model of the network and the method of square roots for solving the system of linear equations. The procedure is presented in the comprehensive mathematical form that could be straightforwardly programmed into a computer code. An application of the method to energy efficiency analyses of a real complex district heating system is demonstrated. The obtained results show a potential for electricity savings in pumps operation. It is shown that the method is considerably more effective than the standard Hardy Cross method still widely used in engineering practice. Because of the ease of implementation and high efficiency, the method presented in this paper is recommended for hydraulic steady state calculations of complex networks

  2. Introduction to precise numerical methods

    CERN Document Server

    Aberth, Oliver

    2007-01-01

    Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations ofthe various numerical methods· Two new types of numerical problems; accurately solving partial differential equations with the included software and computing line integrals in the complex plane.

  3. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    Science.gov (United States)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  4. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    International Nuclear Information System (INIS)

    Kasahara, R; Takano, G; Komaki, K; Murakami, T; Kanemoto, T

    2012-01-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  5. Understanding information retrieval systems management, types, and standards

    CERN Document Server

    Bates, Marcia J

    2011-01-01

    In order to be effective for their users, information retrieval (IR) systems should be adapted to the specific needs of particular environments. The huge and growing array of types of information retrieval systems in use today is on display in Understanding Information Retrieval Systems: Management, Types, and Standards, which addresses over 20 types of IR systems. These various system types, in turn, present both technical and management challenges, which are also addressed in this volume. In order to be interoperable in a networked environment, IR systems must be able to use various types of

  6. Experimental and numerical analysis of vibration stability for a high-Tc superconducting levitation system

    International Nuclear Information System (INIS)

    Wen Zheng; Liu Yu; Yang Wenjiang; Qiu Ming

    2007-01-01

    In this paper, we present a study of the quasi-static and dynamic behaviour of high-T c superconductors (HTS hereafter) using a model suspension vibration testing system based on the magnetic launch assistance concept. The stiffness and damping of the levitation system under specified vibration circumstances was calculated by drawing on harmonic response analysis and half-power points method. Also, the equation of motion of the suspension system was presented in this paper, and with an attempt to analyse and predict mechanical characteristics of HTS in dynamic conditions. The obtained results of the suspending motion behaviour by numerical calculation are compared with experimental analytical results. Experimental technique combined with a numerical simulation method is a useful tool for measuring and analysing motion-dependent magnetic forces for the prediction and control of suspension systems

  7. Operational Numerical Weather Prediction systems based on Linux cluster architectures

    International Nuclear Information System (INIS)

    Pasqui, M.; Baldi, M.; Gozzini, B.; Maracchi, G.; Giuliani, G.; Montagnani, S.

    2005-01-01

    The progress in weather forecast and atmospheric science has been always closely linked to the improvement of computing technology. In order to have more accurate weather forecasts and climate predictions, more powerful computing resources are needed, in addition to more complex and better-performing numerical models. To overcome such a large computing request, powerful workstations or massive parallel systems have been used. In the last few years, parallel architectures, based on the Linux operating system, have been introduced and became popular, representing real high performance-low cost systems. In this work the Linux cluster experience achieved at the Laboratory far Meteorology and Environmental Analysis (LaMMA-CNR-IBIMET) is described and tips and performances analysed

  8. Numerical study on lateral wall displacement of deep excavation supported by IPS earth retention system

    Directory of Open Access Journals (Sweden)

    Tugen Feng

    2017-12-01

    Full Text Available The objective of this study is to investigate the 3D behavior characteristics of an excavation supported by an innovative prestressed support (IPS earth retention system. A numerical simulation was conducted in order to provide insight into the IPS system behavior by using the FLAC3D package. Prior to the parametric study, validation work was conducted by means of a comparison of the deformation between the field test data and numerical analysis results, and strong agreement was obtained. The reasonable excavation location, layered excavation thickness, and blocked excavation sequence are presented according to variable parameter analysis. In view of the previous findings, certain measurements are proposed in order to control the foundation pit deformation. The results indicate that prestress compensation has a significant effect on the IPS system behavior, while an optimized excavation sequence slightly improves its behavior. With the conclusion proposed based on the numerical results, the aim is to provide reference data for optimization design and the construction sequence. Keywords: FLAC3D, IPS system, Prestress compensation, Layered excavation, Blocked excavation, Deformation control

  9. Numerical modeling of a downwind-developing mesoscale convective system over the Masurian Lake District

    Directory of Open Access Journals (Sweden)

    Wójcik Damian K.

    2017-01-01

    Full Text Available Meteorological data concerning the severe convective system from the 21 August 2007 are analyzed in this study. Compiled information allows to understand the reason for the storm development and to identify its fundamental convective mode. Next, the EULAG model is utilized to perform an idealized test that shows a downwind–developing storm growth in an environment comparable to the one that was observed on the 21 August 2007 in the Masurian Lake District. Finally, the COSMO numerical weather prediction model is applied to reconstruct the storm development. The experiment is carried out for various computational grids having the horizontal grid length between 7.0 and 0.55 km. It turns out that the COSMO model is capable in simulating storms of that type. Since the model is used for operational weather forecasting in Poland the evaluation of this skill contributes to the increase of public safety.

  10. Numerical considerations for Lagrangian stochastic dispersion models: Eliminating rogue trajectories, and the importance of numerical accuracy

    Science.gov (United States)

    When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...

  11. New type radiation management system

    International Nuclear Information System (INIS)

    Mogi, Kenichi; Uranaka, Yasuo; Fujita, Kazuhiko

    2001-01-01

    The radiation management system is a system to carry out entrance and leaving room management of peoples into radiation management area, information management on radiation obtained from a radiation testing apparatus, and so on. New type radiation management system developed by the Mitsubishi Electric Corp. is designed by concepts of superior maintenance and system practice by using apparatus and its interface with standard specification, upgrading of processing response by separating exposure management processing from radiation monitoring processing on a computer, and a backup system not so as to lose its function by a single accident of the constructed computer. Therefore, the system is applied by the newest hardware, package software, and general use LAN, and can carry out a total system filled with requirements and functions for various radiation management of customers by preparing a basic system from radiation testing apparatus to entrance and leaving room management system. Here were described on outline of the new type management system, concept of the system, and functions of every testing apparatus. (G.K.)

  12. Eruption cycles in a basaltic andesite system: insights from numerical modeling

    Science.gov (United States)

    Smekens, J. F.; Clarke, A. B.; De'Michieli Vitturi, M.

    2015-12-01

    Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. Many of these systems present relatively evolved compositions (andesite to rhyolite), and their cyclic activity has been the subject of extensive work (e.g., Soufriere Hills Volcano, Montserrat). However, the same periodic behavior can also be observed at open systems of more mafic compositions, such as Semeru in Indonesia or Karymsky in Kamchatka for example. In this work, we use DOMEFLOW, a 1D transient numerical model of magma ascent, to identify the conditions that lead to and control periodic eruptions in basaltic andesite systems, where the viscosity of the liquid phase can be drastically lower. Periodic behavior occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly generates a viscous plug, pressurizes the magma beneath the plug, and then explosively disrupts it. The characteristic timescale and magnitude of the eruptive cycles are controlled by the overall viscosity of the magmatic mixture, with higher viscosities leading to longer cycles and lower flow rates at the top of the conduit. Cyclic eruptions in basaltic andesite systems are observed for higher crystal contents, smaller conduit radii, and over a wider range of chamber pressures than the andesitic system, all of which are the direct consequence of a decrease in viscosity of the melt phase, and in turn in the intensity of the viscous forces generated by the system. Results suggest that periodicity can exist in more mafic systems with relatively lower chamber pressures than andesite and rhyolite systems, and may explain why more mafic magmas sometimes remain active for decades.

  13. Numerical approaches to complex quantum, semiclassical and classical systems

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Gerald

    2008-11-03

    In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and

  14. Numerical approaches to complex quantum, semiclassical and classical systems

    International Nuclear Information System (INIS)

    Schubert, Gerald

    2008-01-01

    In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and

  15. Numerical analysis of bifurcations

    International Nuclear Information System (INIS)

    Guckenheimer, J.

    1996-01-01

    This paper is a brief survey of numerical methods for computing bifurcations of generic families of dynamical systems. Emphasis is placed upon algorithms that reflect the structure of the underlying mathematical theory while retaining numerical efficiency. Significant improvements in the computational analysis of dynamical systems are to be expected from more reliance of geometric insight coming from dynamical systems theory. copyright 1996 American Institute of Physics

  16. Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System

    Science.gov (United States)

    Jorgenson, Philip C. E.; Loh, Ching Y.

    2004-01-01

    The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.

  17. Developmental and Individual Differences in Pure Numerical Estimation

    Science.gov (United States)

    Booth, Julie L.; Siegler, Robert S.

    2006-01-01

    The authors examined developmental and individual differences in pure numerical estimation, the type of estimation that depends solely on knowledge of numbers. Children between kindergarten and 4th grade were asked to solve 4 types of numerical estimation problems: computational, numerosity, measurement, and number line. In Experiment 1,…

  18. Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity

    Science.gov (United States)

    Sweilam, N. H.; Abou Hasan, M. M.

    2017-05-01

    In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.

  19. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Directory of Open Access Journals (Sweden)

    YaoHan Chen

    Full Text Available The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS overestimated the space temperature before water spraying in the case of the same water spray system.

  20. A computable type theory for control systems

    NARCIS (Netherlands)

    P.J. Collins (Pieter); L. Guo; J. Baillieul

    2009-01-01

    htmlabstractIn this paper, we develop a theory of computable types suitable for the study of control systems. The theory uses type-two effectivity as the underlying computational model, but we quickly develop a type system which can be manipulated abstractly, but for which all allowable operations

  1. Spectrophotometry of VV Cephei-type systems

    International Nuclear Information System (INIS)

    Piccirillo, J.

    1974-01-01

    Photoelectric spectrophotometry of four VV Cephei-type systems and two related objects is analyzed to derive the visual magnitude differences of the binary components. The results are in good agreement with previous photometric determinations. An extension of the present technique to other types of binary systems is briefly discussed. (U.S.)

  2. ABOUT THE WAYS OF THE SYSTEM ANALYSIS OF METAL MOVEMENT IN GATING SYSTEMS BASED ON THE NUMERICAL SOLUTIONS OF NAVIER-STOKES EQUATIONS

    Directory of Open Access Journals (Sweden)

    S. G. Lizouzov

    2014-01-01

    Full Text Available Numerical modeling of distribution of the fields of speeds projections on axes X, Y, Z in gating system with the casting “Case of conical pair” for various temporal values is carried out. Numerical criteria for assessment of metal movement through the feeders having various spatial location relative to the gating system are offered. Dynamics of change of the offered criteria on the basis of integral average value of the speed component on axes X, Y, Z in the gating systems at the outlet from feeder is calculated.

  3. A numerical study on thermal behavior of a D-type water-cooled steam boiler

    International Nuclear Information System (INIS)

    Moghari, M.; Hosseini, S.; Shokouhmand, H.; Sharifi, H.; Izadpanah, S.

    2012-01-01

    To achieve a precise assessment on thermal performance of a D-type water-cooled natural gas-fired boiler the present paper was aimed at determining temperature distribution of water and flue gas flows in its different heat exchange equipment. Using the zonal method to predict thermal radiation treatment in the boiler furnace and a numerical iterative approach, in which heat and fluid flow relations associated with different heat surfaces in the boiler convective zone were employed to estimate heat transfer characteristics, enabled this numerical study to obtain results in good agreement with experimental data measured in the utility site during steady state operation. A constant flow rate for a natural gas fuel of specified chemical composition was assumed to be mixed with a given excess ratio of air flow at a full boiler load. Significant results attributed to distribution of heat flux on different furnace walls and that of flue gas and water/steam temperature in different convective stages including superheater, evaporating risers and downcomers modules, and economizer were obtained. Besides the rate of heat absorption in every stage and other essential parameters in the boiler design too, inherent thermal characteristics like radiative and convective heat transfer coefficients as well as overall heat transfer conductance and effectiveness of convective stages considered as cross-flow heat exchangers were eventually presented for the given operating condition. - Highlights: ► Detailed distribution of heat flux on all of the boiler furnace walls was obtained. ► Flue gas and water thermal behaviors in different heating sections were evaluated. ► A good agreement was made between numerical results and experimental data. ► Contribution of the boiler furnace to the total thermal absorption was 39%. ► Contribution of the boiler tube banks to the total thermal absorption was 61%.

  4. Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes

    Directory of Open Access Journals (Sweden)

    Makarova Kira S

    2009-06-01

    Full Text Available Abstract Background The prokaryotic toxin-antitoxin systems (TAS, also referred to as TA loci are widespread, mobile two-gene modules that can be viewed as selfish genetic elements because they evolved mechanisms to become addictive for replicons and cells in which they reside, but also possess "normal" cellular functions in various forms of stress response and management of prokaryotic population. Several distinct TAS of type 1, where the toxin is a protein and the antitoxin is an antisense RNA, and numerous, unrelated TAS of type 2, in which both the toxin and the antitoxin are proteins, have been experimentally characterized, and it is suspected that many more remain to be identified. Results We report a comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems in prokaryotes. Using sensitive methods for distant sequence similarity search, genome context analysis and a new approach for the identification of mobile two-component systems, we identified numerous, previously unnoticed protein families that are homologous to toxins and antitoxins of known type 2 TAS. In addition, we predict 12 new families of toxins and 13 families of antitoxins, and also, predict a TAS or TAS-like activity for several gene modules that were not previously suspected to function in that capacity. In particular, we present indications that the two-gene module that encodes a minimal nucleotidyl transferase and the accompanying HEPN protein, and is extremely abundant in many archaea and bacteria, especially, thermophiles might comprise a novel TAS. We present a survey of previously known and newly predicted TAS in 750 complete genomes of archaea and bacteria, quantitatively demonstrate the exceptional mobility of the TAS, and explore the network of toxin-antitoxin pairings that combines plasticity with selectivity. Conclusion The defining properties of the TAS, namely, the typically small size of the toxin and antitoxin genes, fast evolution, and

  5. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes.

    Science.gov (United States)

    Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2009-06-03

    The prokaryotic toxin-antitoxin systems (TAS, also referred to as TA loci) are widespread, mobile two-gene modules that can be viewed as selfish genetic elements because they evolved mechanisms to become addictive for replicons and cells in which they reside, but also possess "normal" cellular functions in various forms of stress response and management of prokaryotic population. Several distinct TAS of type 1, where the toxin is a protein and the antitoxin is an antisense RNA, and numerous, unrelated TAS of type 2, in which both the toxin and the antitoxin are proteins, have been experimentally characterized, and it is suspected that many more remain to be identified. We report a comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems in prokaryotes. Using sensitive methods for distant sequence similarity search, genome context analysis and a new approach for the identification of mobile two-component systems, we identified numerous, previously unnoticed protein families that are homologous to toxins and antitoxins of known type 2 TAS. In addition, we predict 12 new families of toxins and 13 families of antitoxins, and also, predict a TAS or TAS-like activity for several gene modules that were not previously suspected to function in that capacity. In particular, we present indications that the two-gene module that encodes a minimal nucleotidyl transferase and the accompanying HEPN protein, and is extremely abundant in many archaea and bacteria, especially, thermophiles might comprise a novel TAS. We present a survey of previously known and newly predicted TAS in 750 complete genomes of archaea and bacteria, quantitatively demonstrate the exceptional mobility of the TAS, and explore the network of toxin-antitoxin pairings that combines plasticity with selectivity. The defining properties of the TAS, namely, the typically small size of the toxin and antitoxin genes, fast evolution, and extensive horizontal mobility, make the task of

  6. Numerical simulation of subwoofer array congurations using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Xavier Banyuls-Juan

    2017-08-01

    Full Text Available Teaching in the Master of Acoustic Engineering includes contents that require the modeling of acoustic systems of two types: simple systems through analytical theory and complex models using simulation techniques. In the present work, we describe an example of complex acoustic sources modeling using the finite element method: subwoofer sound radiation in different configurations. Numerical simulations in the frequency domain can calculate the radiation pattern of systems that do not have a simple analytical solution.

  7. On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    H. Montazeri

    2012-01-01

    Full Text Available We consider a system of nonlinear equations F(x=0. A new iterative method for solving this problem numerically is suggested. The analytical discussions of the method are provided to reveal its sixth order of convergence. A discussion on the efficiency index of the contribution with comparison to the other iterative methods is also given. Finally, numerical tests illustrate the theoretical aspects using the programming package Mathematica.

  8. Scaling behavior of Anderson transition in system with two types of disorder

    International Nuclear Information System (INIS)

    Xiong Shijie; Xing, D.Y.; Evangelou, S.N.; Sheng, D.N.

    2003-01-01

    We present numerical results for a specific phase diagram of the Anderson transition in a model with two types of disorder: the diagonal disorder W 1 , and the off-diagonal disorder W 2 originated from double-exchange interactions. The critical line separating localization and delocalization regions in the W 1 -W 2 phase diagram exhibits zigzag oscillations. This results in multiple critical values of W 2 if W 1 is fixed, although a single critical value of W 1 usually appears when W 2 is fixed. By applying magnetic field the period of oscillations is shortened. Near the critical line the system shows universal scaling behavior with critical exponent dependent only on the field

  9. Numerical analysis of a natural convection cooling system for radioactive canisters storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsal, R.J.; Anwar, S.; Mercada, M.G. [Fluor Daniel Inc., Irvine, CA (United States)

    1995-02-01

    This paper describes the use of numerical analysis for studying natural convection cooling systems for long term storage of heat producing radioactive materials, including special nuclear materials and nuclear waste. The paper explains the major design philosophy, and shares the experiences of numerical modeling. The strategy of storing radioactive material is to immobilize nuclear high-level waste by a vitrification process, convertion it into borosilicate glass, and cast the glass into stainless steel canisters. These canisters are seal welded, decontaminated, inspected, and temporarily stored in an underground vault until they can be sent to a geologic repository for permanent storage. These canisters generate heat by nuclear decay of radioactive isotopes. The function of the storage facility ventilation system is to ensure that the glass centerline temperature does not exceed the glass transition temperature during storage and the vault concrete temperatures remain within the specified limits. A natural convection cooling system was proposed to meet these functions. The effectiveness of a natural convection cooling system is dependent on two major factors that affect air movement through the vault for cooling the canisters: (1) thermal buoyancy forces inside the vault which create a stack effect, and (2) external wind forces, that may assist or oppose airflow through the vault. Several numerical computer models were developed to analyze the thermal and hydraulic regimes in the storage vault. The Site Model is used to simulate the airflow around the building and to analyze different air inlet/outlet devices. The Airflow Model simulates the natural convection, thermal regime, and hydraulic resistance in the vault. The Vault Model, internal vault temperature stratification; and, finally, the Hot Area Model is used for modeling concrete temperatures within the vault.

  10. On Some Sufficiency-Type Stability and Linear State-Feedback Stabilization Conditions for a Class of Multirate Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    M. De la Sen

    2018-05-01

    Full Text Available This paper presents and discusses the stability of a discrete multirate sampling system whose sets of sampling rates (or sampling periods are the integer multiple of those operating on all the preceding substates. Each of such substates is associated with a particular sampling rate. The sufficiency-type stability conditions are derived based on simple conditions on the norm, spectral radius and numerical radius of the matrix of the dynamics of a system parameterized at the largest sampling period.

  11. Development of high velocity gas gun with a new trigger system-numerical analysis

    Science.gov (United States)

    Husin, Z.; Homma, H.

    2018-02-01

    In development of high performance armor vests, we need to carry out well controlled experiments using bullet speed of more than 900 m/sec. After reviewing trigger systems used for high velocity gas guns, this research intends to develop a new trigger system, which can realize precise and reproducible impact tests at impact velocity of more than 900 m/sec. A new trigger system developed here is called a projectile trap. A projectile trap is placed between a reservoir and a barrel. A projectile trap has two functions of a sealing disk and triggering. Polyamidimide is selected for the trap material and dimensions of the projectile trap are determined by numerical analysis for several levels of launching pressure to change the projectile velocity. Numerical analysis results show that projectile trap designed here can operate reasonably and stresses caused during launching operation are less than material strength. It means a projectile trap can be reused for the next shooting.

  12. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    Science.gov (United States)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  13. Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system.

    Science.gov (United States)

    Moon, Han Seb; Noh, Heung-Ryoul

    2013-03-25

    We have experimentally and theoretically studied resonant two-photon absorption (TPA) and electromagnetically induced transparency (EIT) in the open ladder-type atomic system of the 5S(1/2) (F = 1)-5P(3/2) (F' = 0, 1, 2)-5D(5/2) (F″ = 1, 2, 3) transitions in (87)Rb atoms. As the coupling laser intensity was increased, the resonant TPA was transformed to EIT for the 5S(1/2) (F = 1)-5P(3/2) (F' = 2)-5D(5/2) (F″ = 3) transition. The transformation of resonant TPA into EIT was numerically calculated for various coupling laser intensities, considering all the degenerate magnetic sublevels of the 5S(1/2)-5P(3/2)-5D(5/2) transition. From the numerical results, the crossover from TPA to EIT could be understood by the decomposition of the spectrum into an EIT component owing to the pure two-photon coherence and a TPA component caused by the mixed term.

  14. Simulations of floor cooling system capacity

    International Nuclear Information System (INIS)

    Odyjas, Andrzej; Górka, Andrzej

    2013-01-01

    Floor cooling system capacity depends on its physical and operative parameters. Using numerical simulations, it appears that cooling capacity of the system largely depends on the type of cooling loads occurring in the room. In the case of convective cooling loads capacity of the system is small. However, when radiation flux falls directly on the floor the system significantly increases productivity. The article describes the results of numerical simulations which allow to determine system capacity in steady thermal conditions, depending on the type of physical parameters of the system and the type of cooling load occurring in the room. Moreover, the paper sets out the limits of system capacity while maintaining a minimum temperature of the floor surface equal to 20 °C. The results are helpful for designing system capacity in different type of cooling loads and show maximum system capacity in acceptable thermal comfort condition. -- Highlights: ► We have developed numerical model for simulation of floor cooling system. ► We have described floor system capacity depending on its physical parameters. ► We have described floor system capacity depending on type of cooling loads. ► The most important in the obtained cooling capacities is the type of cooling loads. ► The paper sets out the possible maximum cooling floor system capacity

  15. A multiscale numerical algorithm for heat transfer simulation between multidimensional CFD and monodimensional system codes

    Science.gov (United States)

    Chierici, A.; Chirco, L.; Da Vià, R.; Manservisi, S.; Scardovelli, R.

    2017-11-01

    Nowadays the rapidly-increasing computational power allows scientists and engineers to perform numerical simulations of complex systems that can involve many scales and several different physical phenomena. In order to perform such simulations, two main strategies can be adopted: one may develop a new numerical code where all the physical phenomena of interest are modelled or one may couple existing validated codes. With the latter option, the creation of a huge and complex numerical code is avoided but efficient methods for data exchange are required since the performance of the simulation is highly influenced by its coupling techniques. In this work we propose a new algorithm that can be used for volume and/or boundary coupling purposes for both multiscale and multiphysics numerical simulations. The proposed algorithm is used for a multiscale simulation involving several CFD domains and monodimensional loops. We adopt the overlapping domain strategy, so the entire flow domain is simulated with the system code. We correct the system code solution by matching averaged inlet and outlet fields located at the boundaries of the CFD domains that overlap parts of the monodimensional loop. In particular we correct pressure losses and enthalpy values with source-sink terms that are imposed in the system code equations. The 1D-CFD coupling is a defective one since the CFD code requires point-wise values on the coupling interfaces and the system code provides only averaged quantities. In particular we impose, as inlet boundary conditions for the CFD domains, the mass flux and the mean enthalpy that are calculated by the system code. With this method the mass balance is preserved at every time step of the simulation. The coupling between consecutive CFD domains is not a defective one since with the proposed algorithm we can interpolate the field solutions on the boundary interfaces. We use the MED data structure as the base structure where all the field operations are

  16. Mathematical and numerical analysis of systems of compressible hydrodynamics and photonics with polar coordinates

    International Nuclear Information System (INIS)

    Meltz, Bertrand

    2015-01-01

    This thesis deals with the mathematical and numerical analysis of the systems of compressible hydrodynamics and radiative transfer. More precisely, we study the derivation of numerical methods with 2D polar coordinates (one for the radius, one for the angle) where equations are discretized on regular polar grids. On one hand, these methods are well-suited for the simulation of flows with polar symmetries since they preserve these symmetries by construction. On the other hand, such coordinates systems introduce geometrical singularities as well as geometrical source terms which must be carefully treated. The first part of this document is devoted to the study of hydrodynamics equations, or Euler equations. We propose a new class of arbitrary high-order numerical schemes in both space and time and rely on directional splitting methods for the resolution of 2D equations. Each sub-system is solved using a Lagrange+Remap solver. We study the influence of the r=0 geometrical singularities of the cylindrical and spherical coordinates systems on the precision of the 2D numerical solutions. The second part of this document is devoted to the study of radiative transfer equations. In these equations, the unknowns depend on a large number of variables and a stiff source term is involved. The main difficulty consists in capturing the correct asymptotic behavior on coarse grids. We first construct a class of models where the radiative intensity is projected on a truncated spherical harmonics basis in order to lower the number of mathematical dimensions. Then we propose an Asymptotic Preserving scheme built in polar coordinates and we show that the scheme capture the correct diffusion limit in the radial direction as well as in the polar direction. (author) [fr

  17. Real-time numerical simulation with high efficiency for an experimental reactor system

    International Nuclear Information System (INIS)

    Ding Shuling; Li Fu; Li Sifeng; Chu Xinyuan

    2006-01-01

    The paper presents a systematic and efficient method for numerical real-time simulation of an experimental reactor. The reactor models were built based on the physical characteristics of the experimental reactor, and several real-time simulation approaches were discussed and compared in the paper. How to implement the real-time reactor simulation system in Windows platform for the sake of hardware-in-loop experiment for the reactor power control system was discussed. (authors)

  18. Infinite occupation number basis of bosons: Solving a numerical challenge

    Science.gov (United States)

    Geißler, Andreas; Hofstetter, Walter

    2017-06-01

    In any bosonic lattice system, which is not dominated by local interactions and thus "frozen" in a Mott-type state, numerical methods have to cope with the infinite size of the corresponding Hilbert space even for finite lattice sizes. While it is common practice to restrict the local occupation number basis to Nc lowest occupied states, the presence of a finite condensate fraction requires the complete number basis for an exact representation of the many-body ground state. In this work we present a truncation scheme to account for contributions from higher number states. By simply adding a single coherent-tail state to this common truncation, we demonstrate increased numerical accuracy and the possible increase in numerical efficiency of this method for the Gutzwiller variational wave function and within dynamical mean-field theory.

  19. The Navier-Stokes-Fourier system: From weak solutions to numerical analysis

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard

    2015-01-01

    Roč. 35, č. 3 (2015), s. 185-193 ISSN 0174-4747 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes-Fourier system * weak solution * mixed finite-volume finite-element numerical scheme Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/anly.2015.35.issue-3/anly-2014-1300/anly-2014-1300. xml

  20. Mechanical Behavior Analysis of Y-Type S-SRC Column in a Large-Space Vertical Hybrid Structure Using Local Fine Numerical Simulation Method

    Directory of Open Access Journals (Sweden)

    Jianguang Yue

    2018-01-01

    Full Text Available In a large spatial structure, normally the important members are of special type and are the safety key for the global structure. In order to study the mechanical behavior details of the local member, it is difficult for the common test method to realize the complex spatial loading state of the local member. Therefore, a local-fine finite element model was proposed and a large-space vertical hybrid structure was numerically simulated. The seismic responses of the global structure and the Y-type S-SRC column were analyzed under El Centro seismic motions with the peak acceleration of 35 gal and 220 gal. The numerical model was verified with the results of the seismic shaking table test of the structure model. The failure mechanism and stiffness damage evolution of the Y-type S-SRC column were analyzed. The calculated results agreed well with the test results. It indicates that the local-fine FEM could reflect the mechanical details of the local members in a large spatial structure.

  1. Experimental and numerical investigation of a scalable modular geothermal heat storage system

    Science.gov (United States)

    Nordbeck, Johannes; Bauer, Sebastian; Beyer, Christof

    2017-04-01

    Storage of heat will play a significant role in the transition towards a reliable and renewable power supply, as it offers a way to store energy from fluctuating and weather dependent energy sources like solar or wind power and thus better meet consumer demands. The focus of this study is the simulation-based design of a heat storage system, featuring a scalable and modular setup that can be integrated with new as well as existing buildings. For this, the system can be either installed in a cellar or directly in the ground. Heat supply is by solar collectors, and heat storage is intended at temperatures up to about 90°C, which requires a verification of the methods used for numerical simulation of such systems. One module of the heat storage system consists of a helical heat exchanger in a fully water saturated, high porosity cement matrix, which represents the heat storage medium. A lab-scale storage prototype of 1 m3 volume was set up in a thermally insulated cylinder equipped with temperature and moisture sensors as well as flux meters and temperature sensors at the inlet and outlet pipes in order to experimentally analyze the performance of the storage system. Furthermore, the experimental data was used to validate an accurate and spatially detailed high-resolution 3D numerical model of heat and fluid flow, which was developed for system design optimization with respect to storage efficiency and environmental impacts. Three experiments conducted so far are reported and analyzed in this work. The first experiment, consisting of cooling of the fully loaded heat storage by heat loss across the insulation, is designed to determine the heat loss and the insulation parameters, i.e. heat conductivity and heat capacity of the insulation, via inverse modelling of the cooling period. The average cooling rate experimentally found is 1.2 °C per day. The second experiment consisted of six days of thermal loading up to a storage temperature of 60°C followed by four days

  2. Self-organized crystallization mechanism of non-equilibrium 2:1 type phyllosilicate systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The crystallization mechanism of 2:1 type regular interstratified minerals is investigated in views of non-equilibrium thermodynamics. The structural chemistry of relative layers and their interstratified combinations is analyzed and six kinds of non-equilibrium chemical systems have been induced. The universal laws of chemical reactions which happened in the interface region of these non-equilibrium systems have been summarized. From these laws, two reaction systems crystallizing out Tosudite and Rectorite respectively have been recovered. The kinetic model of chemical reactions has been developed by means of the mass conservation law. The oscillatory solution showing regular interstratified features has also been obtained numerically. These results indicate that the difference in original chemical composition among systems can affect the chemical connotation of reactants, intermediate products and resultants, and the flow chart of chemical reaction, but cannot change their crystallization behavior of network-forming cations, bigger and smaller network-modifying cations during crystallization. Hence, their kinetic model reflecting the universal crystallization law of these cations is just the same. These systems will crystallize out regular interstratified minerals at suitable parameters, which always exist as domain with nanometer-sized in thickness and can be called the self-organized ordering structure.

  3. Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection

    International Nuclear Information System (INIS)

    Wang Chi; Zhou Yu-Qiu; Shen Gao-Wei; Wu Wen-Wen; Ding Wei

    2013-01-01

    The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the ''soil-mine'' system could be equivalent to a damping ''mass-spring'' resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil—mine system could be investigated by changing the parameter setup in a flexible manner. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. A numerical scheme for the one-dimensional pressureless gases system

    OpenAIRE

    Boudin , Laurent; Mathiaud , Julien

    2012-01-01

    International audience; In this work, we investigate the numerical solving of the one-dimensional pressureless gases system. After briefly recalling the mathematical framework of the duality solutions introduced by Bouchut and James, we point out that the upwind scheme for the density and momentum does not satisfy the one-sided Lipschitz (OSL) condition on the expansion rate required for the duality solutions. Then we build a diffusive scheme which allows to recover the OSL condition by follo...

  5. New type fuel exchange system

    International Nuclear Information System (INIS)

    Meshii, Toshio; Maita, Yasushi; Hirota, Koichi; Kamishima, Yoshio.

    1988-01-01

    When the reduction of the construction cost of FBRs is considered from the standpoint of the machinery and equipment, to make the size small and to heighten the efficiency are the assigned mission. In order to make a reactor vessel small, it is indispensable to decrease the size of the equipment for fuel exchange installed on the upper part of a core. Mitsubishi Heavy Industries Ltd. carried out the research on the development of a new type fuel exchange system. As for the fuel exchange system for FBRs, it is necessary to change the mode of fuel exchange from that of LWRs, such as handling in the presence of chemically active sodium and inert argon atmosphere covering it and handling under heavy shielding against high radiation. The fuel exchange system for FBRs is composed of a fuel exchanger which inserts, pulls out and transfers fuel and rotary plugs. The mechanism adopted for the new type fuel exchange system that Mitsubishi is developing is explained. The feasibility of the mechanism on the upper part of a core was investigated by water flow test, vibration test and buckling test. The design of the mechanism on the upper part of the core of a demonstration FBR was examined, and the new type fuel exchange system was sufficiently applicable. (Kako, I.)

  6. One Language, Two Number-Word Systems and Many Problems: Numerical Cognition in the Czech Language

    Science.gov (United States)

    Pixner, S.; Zuber, J.; Hermanova, V.; Kaufmann, L.; Nuerk, H.-C.; Moeller, K.

    2011-01-01

    Comparing numerical performance between different languages does not only mean comparing different number-word systems, but also implies a comparison of differences regarding culture or educational systems. The Czech language provides the remarkable opportunity to disentangle this confound as there exist two different number-word systems within…

  7. The Dynamics of an Impulsive Predator-Prey System with Stage Structure and Holling Type III Functional Response

    Directory of Open Access Journals (Sweden)

    Zhixiang Ju

    2015-01-01

    Full Text Available Based on the biological resource management of natural resources, a stage-structured predator-prey model with Holling type III functional response, birth pulse, and impulsive harvesting at different moments is proposed in this paper. By applying comparison theorem and some analysis techniques, the global attractivity of predator-extinction periodic solution and the permanence of this system are studied. At last, examples and numerical simulations are given to verify the validity of the main results.

  8. Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems

    Directory of Open Access Journals (Sweden)

    Florian Thüroff

    2014-11-01

    Full Text Available Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system’s dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system’s ordered state nematic, despite purely polar interactions on the level of single particles.

  9. Numerical modelling of two phase flow with hysteresis in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, E. [Instituto Nacional de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, RJ (Brazil); Furtado, F.; Pereira, F. [University of Wyoming, Laramie, WY (United States). Dept. of Mathematicsatics; Souza, G. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2008-07-01

    Numerical simulators are necessary for the understanding of multiphase flow in porous media in order to optimize hydrocarbon recovery. In this work, the immiscible flow of two incompressible phases, a problem very common in waterflooding of petroleum reservoirs, is considered and numerical simulation techniques are presented. The system of equations which describe this type of flow form a coupled, highly nonlinear system of time-dependent partial differential equations (PDEs). The equation for the saturation of the invading fluid is a convection-dominated, degenerate parabolic PDE whose solutions typically exhibit sharp fronts (i.e., internal layers with strong gradients) and is very difficult to approximate numerically. It is well known that accurate modeling of convective and diffusive processes is one of the most daunting tasks in the numerical approximation of PDEs. Particularly difficult is the case where convection dominates diffusion. Specifically, we consider the injection problem for a model of two-phase (water/oil) flow in a core sample of porous rock, taking into account hysteresis effects in the relative permeability of the oil phase. (author)

  10. Numerical Simulation of an Oscillatory-Type Tidal Current Powered Generator Based on Robotic Fish Technology

    Directory of Open Access Journals (Sweden)

    Ikuo Yamamoto

    2017-10-01

    Full Text Available The generation of clean renewable energy is becoming increasingly critical, as pollution and global warming threaten the environment in which we live. While there are many different kinds of natural energy that can be harnessed, marine tidal energy offers reliability and predictability. However, harnessing energy from tidal flows is inherently difficult, due to the harsh environment. Current mechanisms used to harness tidal flows center around propeller-based solutions but are particularly prone to failure due to marine fouling from such as encrustations and seaweed entanglement and the corrosion that naturally occurs in sea water. In order to efficiently harness tidal flow energy in a cost-efficient manner, development of a mechanism that is inherently resistant to these harsh conditions is required. One such mechanism is a simple oscillatory-type mechanism based on robotic fish tail fin technology. This uses the physical phenomenon of vortex-induced oscillation, in which water currents flowing around an object induce transverse motion. We consider two specific types of oscillators, firstly a wing-type oscillator, in which the optimal elastic modulus is being sort. Secondly, the optimal selection of shape from 6 basic shapes for a reciprocating oscillating head-type oscillator. A numerical analysis tool for fluid structure-coupled problems—ANSYS—was used to select the optimum softness of material for the first type of oscillator and the best shape for the second type of oscillator, based on the exhibition of high lift coefficients. For a wing-type oscillator, an optimum elastic modulus for an air-foil was found. For a self-induced vibration-type mechanism, based on analysis of vorticity and velocity distribution, a square-shaped head exhibited a lift coefficient of more than two times that of a cylindrically shaped head. Analysis of the flow field clearly showed that the discontinuous flow caused by a square-headed oscillator results in

  11. Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator

    International Nuclear Information System (INIS)

    Liu Xianning; Chen Lansun

    2003-01-01

    This paper develops the Holling type II Lotka-Volterra predator-prey system, which may inherently oscillate, by introducing periodic constant impulsive immigration of predator. Condition for the system to be extinct is given and permanence condition is established via the method of comparison involving multiple Liapunov functions. Further influences of the impulsive perturbations on the inherent oscillation are studied numerically, which shows that with the increasing of the amount of the immigration, the system experiences process of quasi-periodic oscillating→cycles→periodic doubling cascade→chaos→periodic halfing cascade→cycles, which is characterized by (1) quasi-periodic oscillating, (2) period doubling, (3) period halfing, (4) non-unique dynamics, meaning that several attractors coexist

  12. Modeling and numerical study of two phase flow

    International Nuclear Information System (INIS)

    Champmartin, A.

    2011-01-01

    This thesis describes the modelization and the simulation of two-phase systems composed of droplets moving in a gas. The two phases interact with each other and the type of model to consider directly depends on the type of simulations targeted. In the first part, the two phases are considered as fluid and are described using a mixture model with a drift relation (to be able to follow the relative velocity between the two phases and take into account two velocities), the two-phase flows are assumed at the equilibrium in temperature and pressure. This part of the manuscript consists of the derivation of the equations, writing a numerical scheme associated with this set of equations, a study of this scheme and simulations. A mathematical study of this model (hyperbolicity in a simplified framework, linear stability analysis of the system around a steady state) was conducted in a frame where the gas is assumed baro-tropic. The second part is devoted to the modelization of the effect of inelastic collisions on the particles when the time of the simulation is shorter and the droplets can no longer be seen as a fluid. We introduce a model of inelastic collisions for droplets in a spray, leading to a specific Boltzmann kernel. Then, we build caricatures of this kernel of BGK type, in which the behavior of the first moments of the solution of the Boltzmann equation (that is mass, momentum, directional temperatures, variance of the internal energy) are mimicked. The quality of these caricatures is tested numerically at the end. (author) [fr

  13. A numerical study of the supercritical CO2 plate heat exchanger subject to U-type, Z-type, and multi-pass arrangements

    Science.gov (United States)

    Zhu, Chen-Xi; Wang, Chi-Chuan

    2018-01-01

    This study proposes a numerical model for plate heat exchanger that is capable of handling supercritical CO2 fluid. The plate heat exchangers under investigation include Z-type (1-pass), U-type (1-pass), and 1-2 pass configurations. The plate spacing is 2.9 mm with a plate thickness of 0.8 mm, and the size of the plate is 600 mm wide and 218 mm in height with 60 degrees chevron angle. The proposed model takes into account the influence of gigantic change of CO2 properties. The simulation is first compared with some existing data for water-to-water plate heat exchangers with good agreements. The flow distribution, pressure drop, and heat transfer performance subject to the supercritical CO2 in plate heat exchangers are then investigated. It is found that the flow velocity increases consecutively from the entrance plate toward the last plate for the Z-type arrangement, and this is applicable for either water side or CO2 side. However, the flow distribution of the U-type arrangement in the water side shows opposite trend. Conversely, the flow distribution for U-type arrangement of CO2 depends on the specific flow ratio (C*). A lower C* like 0.1 may reverse the distribution, i.e. the flow velocity increases moderately alongside the plate channel like Z-type while a large C* of 1 would resemble the typical distribution in water channel. The flow distribution of CO2 side at the first and last plate shows a pronounced drop/surge phenomenon while the channels in water side does not reveal this kind of behavior. The performance of 2-pass plate heat exchanger, in terms of heat transfer rate, is better than that of 1-pass design only when C* is comparatively small (C* < 0.5). Multi-pass design is more effective when the dominant thermal resistance falls in the CO2 side.

  14. Modelling of multidimensional quantum systems by the numerical functional integration

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Zhidkov, E.P.

    1990-01-01

    The employment of the numerical functional integration for the description of multidimensional systems in quantum and statistical physics is considered. For the multiple functional integrals with respect to Gaussian measures in the full separable metric spaces the new approximation formulas exact on a class of polynomial functionals of a given summary degree are constructed. The use of the formulas is demonstrated on example of computation of the Green function and the ground state energy in multidimensional Calogero model. 15 refs.; 2 tabs

  15. Control of Grid Connected Photovoltaic System Using Three-Level T-Type Inverter

    Science.gov (United States)

    Zorig, Abdelmalik; Belkeiri, Mohammed; Barkat, Said; Rabhi, Abdelhamid

    2016-08-01

    Three-level T-Type inverter (3LT2I) topology has numerous advantageous compared to three-level neutral-point-clamped (NPC) inverter. The main benefits of 3LT2I inverter are the efficiency, inverter cost, switching losses, and the quality of output voltage waveforms. In this paper, a photovoltaic distributed generation system based on dual-stage topology of DC-DC boost converter and 3LT2I is introduced. To that end, a decoupling control strategy of 3LT2I is proposed to control the current injected into the grid, reactive power compensation, and DC-link voltage. The resulting system is able to extract the maximum power from photovoltaic generator, to achieve sinusoidal grid currents, and to ensure reactive power compensation. The voltage-balancing control of two split DC capacitors of the 3LT2I is achieved using three-level space vector modulation with balancing strategy based on the effective use of the redundant switching states of the inverter voltage vectors. The proposed system performance is investigated at different operating conditions.

  16. How to Circumvent Church Numerals

    DEFF Research Database (Denmark)

    Goldberg, Mayer; Torgersen, Mads

    2002-01-01

    In this work we consider a standard numeral system in the lambda-calculus, and the elementary arithmetic and Boolean functions and predicates defined on this numeral system, and show how to construct terms that "circumvent" or "defeat" these functions: The equality predicate is satisfied when com...

  17. Early-type semidetached system LY Aurigae

    International Nuclear Information System (INIS)

    Li, Y.F.; Leung, K.C.

    1985-01-01

    In an effort to resolve a controversy regarding the configuration, mass ratio, and evolutionary status of the early-type close binary system LY Aur, the six bandpass OAO 2 observations of Heap and the ground-based observations combined by Eaton were analyzed. The Wilson and Devinney approach was used. The system is found to be semidetached, with the cooler and less massive component filling its Roche lobe, while the hotter component is close to its Roche surface. The system is not an early-type zero-age contact, as was suspected earlier. 20 references

  18. Numerical model describing the heat transfer between combustion products and ventilation-system duct walls

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    A package of physical models simulating the heat transfer processes occurring between combustion gases and ducts in ventilation systems is described. The purpose of the numerical model is to predict how the combustion gas in a system heats up or cools down as it flows through the ducts in a ventilation system under fire conditions. The model treats a duct with (forced convection) combustion gases flowing on the inside and stagnant ambient air on the outside. The model is composed of five submodels of heat transfer processes along with a numerical solution procedure to evaluate them. Each of these quantities is evaluated independently using standard correlations based on experimental data. The details of the physical assumptions, simplifications, and ranges of applicability of the correlations are described. A typical application of this model to a full-scale fire test is discussed, and model predictions are compared with selected experimental data

  19. Comparison of Numerical Analyses with a Static Load Test of a Continuous Flight Auger Pile

    Science.gov (United States)

    Hoľko, Michal; Stacho, Jakub

    2014-12-01

    The article deals with numerical analyses of a Continuous Flight Auger (CFA) pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed. Our analyses show that both types of software permit the modelling of pile foundations. The Plaxis software uses advanced material models as well as the modelling of the impact of groundwater or overconsolidation. The load-settlement curve calculated using Plaxis is equal to the results of a static load test with a more than 95 % degree of accuracy. In comparison, the load-settlement curve calculated using Ansys allows for the obtaining of only an approximate estimate, but the software allows for the common modelling of large structure systems together with a foundation system.

  20. Hyperchaos Numerical Simulation and Control in a 4D Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Junhai Ma

    2013-01-01

    Full Text Available A hyperchaotic system is introduced, and the complex dynamical behaviors of such system are investigated by means of numerical simulations. The bifurcation diagrams, Lyapunov exponents, hyperchaotic attractors, the power spectrums, and time charts are mapped out through the theory analysis and dynamic simulations. The chaotic and hyper-chaotic attractors exist and alter over a wide range of parameters according to the variety of Lyapunov exponents and bifurcation diagrams. Furthermore, linear feedback controllers are designed for stabilizing the hyperchaos to the unstable equilibrium points; thus, we achieve the goal of a second control which is more useful in application.

  1. Numerical continuation of families of heteroclinic connections between periodic orbits in a Hamiltonian system

    Science.gov (United States)

    Barrabés, E.; Mondelo, J. M.; Ollé, M.

    2013-10-01

    This paper is devoted to the numerical computation and continuation of families of heteroclinic connections between hyperbolic periodic orbits (POs) of a Hamiltonian system. We describe a method that requires the numerical continuation of a nonlinear system that involves the initial conditions of the two POs, the linear approximations of the corresponding manifolds and a point in a given Poincaré section where the unstable and stable manifolds match. The method is applied to compute families of heteroclinic orbits between planar Lyapunov POs around the collinear equilibrium points of the restricted three-body problem in different scenarios. In one of them, for the Sun-Jupiter mass parameter, we provide energy ranges for which the transition between different resonances is possible.

  2. Towards the generic conceptual and numerical framework for the simulation of CO 2 sequestration in different types of georeservoirs

    DEFF Research Database (Denmark)

    Görke, Uwe Jens; Taron, Joshua; Singh, Ashok

    2011-01-01

    In this paper, conceptual and numerical modeling of coupled thermo-hydro-mechanical (THM) processes during CO 2 injection and storage is presented. The commonly used averaging procedure combining the Theory of Mixtures and the Concept of Volume Fractions serves as background for the complex porous...... mathematical models are of similar structure. Thus, the paper is mainly focused on a generic theoretical framework for the coupled processes under consideration. Within this context, CO 2 sequestration in georeservoirs of different type can be simulated (e.g., saline aquifers, (nearly) depleted hydrocarbon...... media approach presented here. Numerical models are based on a generalized formulation of the individual and overall balance equations for mass and momentum, as well as, in non-isothermal case, the energy balance equation. Within the framework of a standard Galerkin approach, the method of weighted...

  3. Numerical investigation of passive heat removal system via steam generator in VVER 1200

    International Nuclear Information System (INIS)

    Dinh Anh Tuan; Duong Thanh Tung; Tran Chi Thanh; Nguyen Van Thai

    2015-01-01

    Passive heat removal system (PHRS) via Steam Generator is an important part in VVER design. In case of Design Basic Accidents such as blackout, failure of feed water supply to steam generator or coolant leakage with failure of emergency core cooling at high pressure. PHRS is designed to remove the residual heat from reactor core through steam generator to heat exchanger which is placed outside reactor vessel. In order to evaluate the passive system, a numerical investigation using a CFD code is performed. However, PHRS has complex geometry for using CFD simulation. Thus, RELAP5 is applied to provide the wall heat flux of tube in the heat exchanger tank. The natural convection in the heat exchanger tank is investigated in this report. Numerical results show temperature and velocity distribution in the heat exchanger tank are calculated with different wall heat flux corresponding to various transient conditions. The calculated results contribute to the capacity analysis of passive heat removal system and giving valuable information for safe operation of VVER 1200. (author)

  4. Dynamic optimization of distributed biological systems using robust and efficient numerical techniques.

    Science.gov (United States)

    Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A

    2012-07-02

    Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of

  5. Numerical experiments of dynamical processes during the 2011-2013 surge of the Bering-Bagley Glacier System, using a full-Stokes finite element model

    Science.gov (United States)

    Trantow, Thomas

    The Bering-Bagley Glacial System (BBGS) is the largest glacier system outside of the Greenland and Antarctic ice sheets, and is the Earth's largest surge-type glacier. Surging is one of three types of glacial acceleration and the least understood one. Understanding glacial acceleration is paramount when trying to explain ice discharge to the oceans and the glacial contribution to sea-level rise, yet there are currently no numerical glacial models that account for surging. The recent 2011-2013 surge of the BBGS provides a rare opportunity to study the surge process through observations and the subsequent data analysis and numerical modeling. Using radar, altimeter, and image data collected from airborne and satellite missions, various descriptions of ice geometry are created at different times throughout the surge. Using geostatistical estimation techniques including variography and ordinary kriging, surface and bedrock Digital Elevation Maps (DEMs) are derived. A time series analysis of elevation change during the current surge is then conducted and validated using a complete error analysis along with airborne observations. The derived DEMs are then used as inputs to a computer simulated model of glacier dynamics in the BBGS. Using the Finite Element software Elmer/Ice, a full-Stokes simulation, with Glen's flow law for temperate ice, is created for numerical experiments. With consideration of free surface evolution, glacial hydrology and surface mass balance, the model is able to predict a variety of field variables including velocity, stress, strain-rate, pressure and surface elevation change at any point forward in time. These outputs are compared and validated using observational data such as CryoSat-2 altimetry, airborne field data, imagery and previous detailed analysis of the BBGS. Preliminary results reveal that certain surge phenomena such as surface elevation changes, surge progression and locations at which the surge starts, can be recreated using the

  6. Transportation package design using numerical optimization

    International Nuclear Information System (INIS)

    Harding, D.C.; Witkowski, W.R.

    1991-01-01

    The purpose of this overview is twofold: first, to outline the theory and basic elements of numerical optimization; and second, to show how numerical optimization can be applied to the transportation packaging industry and used to increase efficiency and safety of radioactive and hazardous material transportation packages. A more extensive review of numerical optimization and its applications to radioactive material transportation package design was performed previously by the authors (Witkowski and Harding 1992). A proof-of-concept Type B package design is also presented as a simplified example of potential improvements achievable using numerical optimization in the design process

  7. Stability and dynamical features of solitary wave solutions for a hydrodynamic-type system taking into account nonlocal effects

    Science.gov (United States)

    Vladimirov, Vsevolod A.; Maçzka, Czesław; Sergyeyev, Artur; Skurativskyi, Sergiy

    2014-06-01

    We consider a hydrodynamic-type system of balance equations for mass and momentum closed by the dynamical equation of state taking into account the effects of spatial nonlocality. We study higher symmetry admitted by this system and establish its non-integrability for the generic values of parameters. A system of ODEs obtained from the system under study through the group theory reduction is investigated. The reduced system is shown to possess a family of the homoclinic solutions describing solitary waves of compression and rarefaction. The waves of compression are shown to be unstable. On the contrary, the waves of rarefaction are likely to be stable. Numerical simulations reveal some peculiarities of solitary waves of rarefaction, and, in particular, the recovery of their shape after the collisions.

  8. Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems

    Science.gov (United States)

    Bäcker, A.

    Summary: We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown. Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard. We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.

  9. Propagation of sech2-type solitary waves in higher-order KdV-type systems

    International Nuclear Information System (INIS)

    Ilison, O.; Salupere, A.

    2005-01-01

    Wave propagation in microstructured media is essentially influenced by nonlinear and dispersive effects. The simplest model governing these effects results in the Korteweg-de Vries (KdV) equation. In the present paper a KdV-type evolution equation, including the third- and fifth-order dispersive and the fourth-order nonlinear terms, is used for modelling the wave propagation in microstructured solids like martensitic-austenitic alloys. The model equation is solved numerically under localised initial conditions. Possible solution types are defined and discussed. The existence of a threshold is established. Below the threshold, the relatively small solitary waves decay in time. However, if the amplitude exceeds a certain threshold, i.e., the critical value, then such a solitary wave can propagate with nearly a constant speed and amplitude and consequently conserve the energy

  10. Ambiguity in the m-bonacci numeration system

    Directory of Open Access Journals (Sweden)

    Petra Kocábová

    2007-05-01

    Full Text Available We study the properties of the function R (m (n defined as the number of representations of an integer n as a sum of distinct m-Bonacci numbers F (m k, given by F i (m =2 i-1, for i∈ { 1, 2, …, m}, F k+m (m =F k+m-1 (m +F k+m-2 (m + ⋯ + F k (m, for k ≥ 1. We give a matrix formula for calculating R (m (n from the greedy expansion of n. We determine the maximum of R (m (n for n with greedy expansion of fixed length k, i.e. for F (m k ≤ nnumeration system.

  11. Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Navy Operational Global Atmospheric Prediction System (NOGAPS) provides numerical guidance and products in support of a wide range of Navy oceanographic and...

  12. Extensive numerical study of a D-brane, anti-D-brane system in AdS5/CFT4

    International Nuclear Information System (INIS)

    Hegedűs, Árpád

    2015-01-01

    In this paper the hybrid-NLIE approach of http://dx.doi.org/10.1007/JHEP08(2012)022 is extended to the ground state of a D-brane anti-D-brane system in AdS/CFT. The hybrid-NLIE equations presented in the paper are finite component alternatives of the previously proposed TBA equations and they admit an appropriate framework for the numerical investigation of the ground state of the problem. Straightforward numerical iterative methods fail to converge, thus new numerical methods are worked out to solve the equations. Our numerical data confirm the previous TBA data. In view of the numerical results the mysterious L=1 case is also commented in the paper.

  13. Type systems for distributed programs components and sessions

    CERN Document Server

    Dardha, Ornela

    2016-01-01

    In this book we develop powerful techniques based on formal methods for the verification of correctness, consistency and safety properties related to dynamic reconfiguration and communication in complex distributed systems. In particular, static analysis techniques based on types and type systems are an adequate methodology considering their success in guaranteeing not only basic safety properties, but also more sophisticated ones like deadlock or lock freedom in concurrent settings. The main contributions of this book are twofold. i) We design a type system for a concurrent object-oriented calculus to statically ensure consistency of dynamic reconfigurations. ii) We define an encoding of the session pi-calculus, which models communication in distributed systems, into the standard typed pi-calculus. We use this encoding to derive properties like type safety and progress in the session pi-calculus by exploiting the corresponding properties in the standard typed pi-calculus.

  14. Extending Dylan's type system for better type inference and error detection

    DEFF Research Database (Denmark)

    Mehnert, Hannes

    2010-01-01

    a dynamically typed language. Dylan poses several special challenges for gradual typing, such as multiple return values, variable-arity methods and generic functions (multiple dispatch). In this paper Dylan is extended with function types and parametric polymorphism. We implemented the type system...... and aunification-based type inference algorithm in the mainstream Dylan compiler. As case study we use the Dylan standard library (roughly 32000 lines of code), which witnesses that the implementation generates faster code with fewer errors. Some previously undiscovered errors in the Dylan library were revealed....

  15. Configuration Management File Manager Developed for Numerical Propulsion System Simulation

    Science.gov (United States)

    Follen, Gregory J.

    1997-01-01

    One of the objectives of the High Performance Computing and Communication Project's (HPCCP) Numerical Propulsion System Simulation (NPSS) is to provide a common and consistent way to manage applications, data, and engine simulations. The NPSS Configuration Management (CM) File Manager integrated with the Common Desktop Environment (CDE) window management system provides a common look and feel for the configuration management of data, applications, and engine simulations for U.S. engine companies. In addition, CM File Manager provides tools to manage a simulation. Features include managing input files, output files, textual notes, and any other material normally associated with simulation. The CM File Manager includes a generic configuration management Application Program Interface (API) that can be adapted for the configuration management repositories of any U.S. engine company.

  16. Numerical Construction of Viable Sets for Autonomous Conflict Control Systems

    Directory of Open Access Journals (Sweden)

    Nikolai Botkin

    2014-04-01

    Full Text Available A conflict control system with state constraints is under consideration. A method for finding viability kernels (the largest subsets of state constraints where the system can be confined is proposed. The method is related to differential games theory essentially developed by N. N. Krasovskii and A. I. Subbotin. The viability kernel is constructed as the limit of sets generated by a Pontryagin-like backward procedure. This method is implemented in the framework of a level set technique based on the computation of limiting viscosity solutions of an appropriate Hamilton–Jacobi equation. To fulfill this, the authors adapt their numerical methods formerly developed for solving time-dependent Hamilton–Jacobi equations arising from problems with state constraints. Examples of computing viability sets are given.

  17. Complex dynamics of a Holling type II prey-predator system with state feedback control

    International Nuclear Information System (INIS)

    Jiang Guirong; Lu Qishao; Qian Linning

    2007-01-01

    The complex dynamics of a Holling type II prey-predator system with impulsive state feedback control is studied in both theoretical and numerical ways. The sufficient conditions for the existence and stability of semi-trivial and positive periodic solutions are obtained by using the Poincare map and the analogue of the Poincare criterion. The qualitative analysis shows that the positive periodic solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams, Lyapunov exponents, and phase portraits are illustrated by an example, in which the chaotic solutions appear via a cascade of period-doubling bifurcations. The superiority of the state feedback control strategy is also discussed

  18. Decentralized H∞ Control for Uncertain Interconnected Systems of Neutral Type via Dynamic Output Feedback

    Directory of Open Access Journals (Sweden)

    Heli Hu

    2014-01-01

    Full Text Available The design of the dynamic output feedback H∞ control for uncertain interconnected systems of neutral type is investigated. In the framework of Lyapunov stability theory, a mathematical technique dealing with the nonlinearity on certain matrix variables is developed to obtain the solvability conditions for the anticipated controller. Based on the corresponding LMIs, the anticipated gains for dynamic output feedback can be achieved by solving some algebraic equations. Also, the norm of the transfer function from the disturbance input to the controlled output is less than the given index. A numerical example and the simulation results are given to show the effectiveness of the proposed method.

  19. Principal Typings in a Restricted Intersection Type System for Beta Normal Forms with De Bruijn Indices

    Directory of Open Access Journals (Sweden)

    Daniel Ventura

    2010-01-01

    Full Text Available The lambda-calculus with de Bruijn indices assembles each alpha-class of lambda-terms in a unique term, using indices instead of variable names. Intersection types provide finitary type polymorphism and can characterise normalisable lambda-terms through the property that a term is normalisable if and only if it is typeable. To be closer to computations and to simplify the formalisation of the atomic operations involved in beta-contractions, several calculi of explicit substitution were developed mostly with de Bruijn indices. Versions of explicit substitutions calculi without types and with simple type systems are well investigated in contrast to versions with more elaborate type systems such as intersection types. In previous work, we introduced a de Bruijn version of the lambda-calculus with an intersection type system and proved that it preserves subject reduction, a basic property of type systems. In this paper a version with de Bruijn indices of an intersection type system originally introduced to characterise principal typings for beta-normal forms is presented. We present the characterisation in this new system and the corresponding versions for the type inference and the reconstruction of normal forms from principal typings algorithms. We briefly discuss the failure of the subject reduction property and some possible solutions for it.

  20. Modeling and numerical analysis of non-equilibrium two-phase flows

    International Nuclear Information System (INIS)

    Rascle, P.; El Amine, K.

    1997-01-01

    We are interested in the numerical approximation of two-fluid models of nonequilibrium two-phase flows described by six balance equations. We introduce an original splitting technique of the system of equations. This technique is derived in a way such that single phase Riemann solvers may be used: moreover, it allows a straightforward extension to various and detailed exchange source terms. The properties of the fluids are first approached by state equations of ideal gas type and then extended to real fluids. For the construction of numerical schemes , the hyperbolicity of the full system is not necessary. When based on suitable kinetic unwind schemes, the algorithm can compute flow regimes evolving from mixture to single phase flows and vice versa. The whole scheme preserves the physical features of all the variables which remain in the set of physical states. Several stiff numerical tests, such as phase separation and phase transition are displayed in order to highlight the efficiency of the proposed method. The document is a PhD thesis divided in 6 chapters and two annexes. They are entitled: 1. - Introduction (in French), 2. - Two-phase flow, modelling and hyperbolicity (in French), 3. - A numerical method using upwind schemes for the resolution of two-phase flows without exchange terms (in English), 4. - A numerical scheme for one-phase flow of real fluids (in English), 5. - An upwind numerical for non-equilibrium two-phase flows (in English), 6. - The treatment of boundary conditions (in English), A.1. The Perthame scheme (in English) and A.2. The Roe scheme (in English)

  1. Numerical Solution of Piecewise Constant Delay Systems Based on a Hybrid Framework

    Directory of Open Access Journals (Sweden)

    H. R. Marzban

    2016-01-01

    Full Text Available An efficient numerical scheme for solving delay differential equations with a piecewise constant delay function is developed in this paper. The proposed approach is based on a hybrid of block-pulse functions and Taylor’s polynomials. The operational matrix of delay corresponding to the proposed hybrid functions is introduced. The sparsity of this matrix significantly reduces the computation time and memory requirement. The operational matrices of integration, delay, and product are employed to transform the problem under consideration into a system of algebraic equations. It is shown that the developed approach is also applicable to a special class of nonlinear piecewise constant delay differential equations. Several numerical experiments are examined to verify the validity and applicability of the presented technique.

  2. Numerical simulation of groundwater flow for the Yakima River basin aquifer system, Washington

    Science.gov (United States)

    Ely, D.M.; Bachmann, M.P.; Vaccaro, J.J.

    2011-01-01

    A regional, three-dimensional, transient numerical model of groundwater flow was constructed for the Yakima River basin aquifer system to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate proposed alternative management strategies that consider the interrelation between groundwater availability and surface-water resources.

  3. RELAP-7 Numerical Stabilization: Entropy Viscosity Method

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Berry; M. O. Delchini; J. Ragusa

    2014-06-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

  4. Research on numerical control system based on S3C2410 and MCX314AL

    Science.gov (United States)

    Ren, Qiang; Jiang, Tingbiao

    2008-10-01

    With the rapid development of micro-computer technology, embedded system, CNC technology and integrated circuits, numerical control system with powerful functions can be realized by several high-speed CPU chips and RISC (Reduced Instruction Set Computing) chips which have small size and strong stability. In addition, the real-time operating system also makes the attainment of embedded system possible. Developing the NC system based on embedded technology can overcome some shortcomings of common PC-based CNC system, such as the waste of resources, low control precision, low frequency and low integration. This paper discusses a hardware platform of ENC (Embedded Numerical Control) system based on embedded processor chip ARM (Advanced RISC Machines)-S3C2410 and DSP (Digital Signal Processor)-MCX314AL and introduces the process of developing ENC system software. Finally write the MCX314AL's driver under the embedded Linux operating system. The embedded Linux operating system can deal with multitask well moreover satisfy the real-time and reliability of movement control. NC system has the advantages of best using resources and compact system with embedded technology. It provides a wealth of functions and superior performance with a lower cost. It can be sure that ENC is the direction of the future development.

  5. Numerical analysis

    CERN Document Server

    Brezinski, C

    2012-01-01

    Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<

  6. Type VI secretion system.

    Science.gov (United States)

    Salomon, Dor; Orth, Kim

    2015-03-30

    Bacteria employ a variety of tools to survive in a competitive environment. Salomon and Orth describe one such tool-the Type 6 Secretion Systems used by bacteria to deliver a variety of toxins into competing cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Żymełka Piotr

    2017-12-01

    Full Text Available Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS data.

  8. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    Science.gov (United States)

    Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł

    2017-12-01

    Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.

  9. Numerical Investigation of a Tuned Heave Plate Energy-Harvesting System of a Semi-Submersible Platform

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2016-01-01

    Full Text Available A novel tuned heave plate energy-harvesting system (THPEH is presented for the motion suppressing and energy harvesting of a semi-submersible platform. This THPEH system is designed based on the principle of a tuned mass damper (TMD and is composed of spring supports, a power take-off system (PTO and four movable heave plates. The permanent magnet linear generators (PMLG are used as the PTO system in this design. A semi-submersible platform operating in the South China Sea is selected as the research subject for investigating the effects of the THPEH system on motion reduction and harvesting energy through numerical simulations. The numerical model of the platform and the THPEH system, which was established based on hydrodynamic analysis, is modified and validated by the results of the flume test of a 1:70 scale model. The effects of the parameters, including the size, the frequency ratio and the damping ratio of the THPEH system, are systematically investigated. The results show that this THPEH system, with proper parameters, could significantly reduce the motions of the semi-submersible platform and generate considerable power under different wave conditions.

  10. Numerical modelling of series-parallel cooling systems in power plant

    Directory of Open Access Journals (Sweden)

    Regucki Paweł

    2017-01-01

    Full Text Available The paper presents a mathematical model allowing one to study series-parallel hydraulic systems like, e.g., the cooling system of a power boiler's auxiliary devices or a closed cooling system including condensers and cooling towers. The analytical approach is based on a set of non-linear algebraic equations solved using numerical techniques. As a result of the iterative process, a set of volumetric flow rates of water through all the branches of the investigated hydraulic system is obtained. The calculations indicate the influence of changes in the pipeline's geometrical parameters on the total cooling water flow rate in the analysed installation. Such an approach makes it possible to analyse different variants of the modernization of the studied systems, as well as allowing for the indication of its critical elements. Basing on these results, an investor can choose the optimal variant of the reconstruction of the installation from the economic point of view. As examples of such a calculation, two hydraulic installations are described. One is a boiler auxiliary cooling installation including two screw ash coolers. The other is a closed cooling system consisting of cooling towers and condensers.

  11. Comparative Analysis of the Numeral Systems of Ígálà, Yoruba, German and English

    Directory of Open Access Journals (Sweden)

    Gideon S. Omachonu

    2012-01-01

    Full Text Available This study undertakes a comparative analysis of the numeral systems of Igala, Yoruba, English and German. An essential part of data collation for the study comprises compilation of comparative wordlists of Ígálà, Yoruba, German and English numeral systems in addition to the writer's personal observation and knowledge of the systems. The investigation reveals that the complexity of deriving especially non-basic numerals in the languages involves three predominant arithmetic processes of addition, subtraction (Yoruba in particular and multiplication in addition to certain grammatical processes, especially vowel elision, clipping, compounding and so on. In addition, the summary of the quasi constraints or derivational patterns for the languages reveals that whereas German and English maintain very similar patterns because of their very close affinity as sisters from the same parent, it is not so with Ígálà and Yoruba even though both belong to the same language family. Incorporating insights from optimality theory, the paper argues that even though numeracy and the constraints that ensure well-formedness of numerals are somewhat universal, parametric variations abound. The actual patterning of the sequences of the derivational processes in individual languages may be very similar but definitely not the same, no matter how closely related the languages concerned may be. If not, they would cease to represent core grammars of different languages.

  12. Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis

    International Nuclear Information System (INIS)

    Brokate, M.; Botkin, N.D.; Pykhteev, O.A.

    2012-01-01

    The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcy's law. The hysteretic relation between the capillary pressures and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating the arising system of equations, discuss finite element schemes and present simulation results for the case of two phases.

  13. Substructuring of multibody systems for numerical transfer path analysis in internal combustion engines

    Science.gov (United States)

    Acri, Antonio; Offner, Guenter; Nijman, Eugene; Rejlek, Jan

    2016-10-01

    Noise legislations and the increasing customer demands determine the Noise Vibration and Harshness (NVH) development of modern commercial vehicles. In order to meet the stringent legislative requirements for the vehicle noise emission, exact knowledge of all vehicle noise sources and their acoustic behavior is required. Transfer path analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. Transmission paths from different sources to target points of interest and their contributions can be analyzed by applying TPA. This technique is applied on test measurements, which can only be available on prototypes, at the end of the designing process. In order to overcome the limits of TPA, a numerical transfer path analysis methodology based on the substructuring of a multibody system is proposed in this paper. Being based on numerical simulation, this methodology can be performed starting from the first steps of the designing process. The main target of the proposed methodology is to get information of noise sources contributions of a dynamic system considering the possibility to have multiple forces contemporary acting on the system. The contributions of these forces are investigated with particular focus on distribute or moving forces. In this paper, the mathematical basics of the proposed methodology and its advantages in comparison with TPA will be discussed. Then, a dynamic system is investigated with a combination of two methods. Being based on the dynamic substructuring (DS) of the investigated model, the methodology proposed requires the evaluation of the contact forces at interfaces, which are computed with a flexible multi-body dynamic (FMBD) simulation. Then, the structure-borne noise paths are computed with the wave based method (WBM). As an example application a 4-cylinder engine is investigated and the proposed methodology is applied on the

  14. Transportation package design using numerical optimization

    International Nuclear Information System (INIS)

    Harding, D.C.; Witkowski, W.R.

    1992-01-01

    The design of structures and engineering systems has always been an iterative process whose complexity was dependent upon the boundary conditions, constraints and available analytical tools. Transportation packaging design is no exception with structural, thermal and radiation shielding constraints based on regulatory hypothetical accident conditions. Transportation packaging design is often accomplished by a group of specialists, each designing a single component based on one or more simple criteria, pooling results with the group, evaluating the open-quotes pooledclose quotes design, and then reiterating the entire process until a satisfactory design is reached. The manual iterative methods used by the designer/analyst can be summarized in the following steps: design the part, analyze the part, interpret the analysis results, modify the part, and re-analyze the part. The inefficiency of this design practice and the frequently conservative result suggests the need for a more structured design methodology, which can simultaneously consider all of the design constraints. Numerical optimization is a structured design methodology whose maturity in development has allowed it to become a primary design tool in many industries. The purpose of this overview is twofold: first, to outline the theory and basic elements of numerical optimization; and second, to show how numerical optimization can be applied to the transportation packaging industry and used to increase efficiency and safety of radioactive and hazardous material transportation packages. A more extensive review of numerical optimization and its applications to radioactive material transportation package design was performed previously by the authors (Witkowski and Harding 1992). A proof-of-concept Type B package design is also presented as a simplified example of potential improvements achievable using numerical optimization in the design process

  15. Gaps in nonsymmetric numerical semigroups

    International Nuclear Information System (INIS)

    Fel, Leonid G.; Aicardi, Francesca

    2006-12-01

    There exist two different types of gaps in the nonsymmetric numerical semigroups S(d 1 , . . . , d m ) finitely generated by a minimal set of positive integers {d 1 , . . . , d m }. We give the generating functions for the corresponding sets of gaps. Detailed description of both gap types is given for the 1st nontrivial case m = 3. (author)

  16. Numerical modelling techniques of soft soil improvement via stone columns: A brief review

    Science.gov (United States)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.

  17. Integration of artificial intelligence and numerical optimization techniques for the design of complex aerospace systems

    International Nuclear Information System (INIS)

    Tong, S.S.; Powell, D.; Goel, S.

    1992-02-01

    A new software system called Engineous combines artificial intelligence and numerical methods for the design and optimization of complex aerospace systems. Engineous combines the advanced computational techniques of genetic algorithms, expert systems, and object-oriented programming with the conventional methods of numerical optimization and simulated annealing to create a design optimization environment that can be applied to computational models in various disciplines. Engineous has produced designs with higher predicted performance gains that current manual design processes - on average a 10-to-1 reduction of turnaround time - and has yielded new insights into product design. It has been applied to the aerodynamic preliminary design of an aircraft engine turbine, concurrent aerodynamic and mechanical preliminary design of an aircraft engine turbine blade and disk, a space superconductor generator, a satellite power converter, and a nuclear-powered satellite reactor and shield. 23 refs

  18. Conceptual clustering and its relation to numerical taxonomy

    International Nuclear Information System (INIS)

    Fisher, D.; Langley, P.

    1986-01-01

    Artificial Intelligence (AI) methods for machine learning can be viewed as forms of exploratory data analysis, even though they differ markedly from the statistical methods generally connoted by the term. The distinction between methods of machine learning and statistical data analysis is primarily due to differences in the way techniques of each type represent data and structure within data. That is, methods of machine learning are strongly biased toward symbolic (as opposed to numeric) data representations. The authors explore this difference within a limited context, devoting the bulk of our chapter to the explication of conceptual clustering, an extension to the statistically based methods of numerical taxonomy. In conceptual clustering the formation of object cluster is dependent on the quality of 'higher level' characterization, termed concepts, of the clusters. The form of concepts used by existing conceptual clustering systems (sets of necessary and sufficient conditions) is described in some detail. This is followed by descriptions of several conceptual clustering techniques, along with sample output. They conclude with a discussion of how alternative concept representations might enhance the effectiveness of future conceptual clustering systems

  19. Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington

    Science.gov (United States)

    Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.

    2014-01-01

    A three-dimensional numerical model of groundwater flow was constructed for the Columbia Plateau Regional Aquifer System (CPRAS), Idaho, Oregon, and Washington, to evaluate and test the conceptual model of the system and to evaluate groundwater availability. The model described in this report can be used as a tool by water-resource managers and other stakeholders to quantitatively evaluate proposed alternative management strategies and assess the long‑term availability of groundwater. The numerical simulation of groundwater flow in the CPRAS was completed with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater.

  20. Numerical modeling of coanda effect in a novel propulsive system

    Directory of Open Access Journals (Sweden)

    S Das

    2016-09-01

    Full Text Available Coanda effect (adhesion of jet flow over curved surface is fundamental characteristics of jet flow. In the present paper, we carried out numerical simulations to investigate Coanda flow over a curved surface and its application in a newly proposed Propulsive system "A.C.H.E.O.N" (Aerial Coanda High Efficiency Orienting jet Nozzle which supports thrust vectoring. The ACHEON system is presently being proposed for propelling a new V/STOL airplane in European Union. This system is based on cumulative effects of three physical effects such as (1 High speed jet mixing speeds (2 Coanda effect control by electrostatic fields (3 Coanda effect adhesion of an high speed jet to a convex surface. The performance of this nozzle can be enhanced by increasing the jet deflection angle of synthetic jet over the Coanda surface. This newly proposed nozzle has wide range of applications. It can be used in industrial sector such as plasma spray gun and for direct injection in combustion chamber to enhance the efficiency of the combustion chamber. Also, we studied the effect of Dielectric barrier discharge (DBD plasma actuators on A.C.H.E.O.N system. Dielectric barrier discharge (DBD plasma actuators are active control devices for controlling boundary layer and to delay the flow separation over any convex surfaces. Computations were performed under subsonic condition. Two dimensional CFD calculations were carried out using Reynolds averaged Navier stokes equations (RANS. A numerical method based on finite volume formulation (FVM was used. SST k-ω model was considered to model turbulent flow inside nozzle. DBD model was used to model the plasma. Moreover, a body force treatment was devised to model the effect of plasma and its coupling with the fluid. This preliminary result shows that, the presence of plasma near Coanda surface accelerates the flow and delays the separation and enhances the efficiency of the nozzle.

  1. Numerical solution of continuous-time DSGE models under Poisson uncertainty

    DEFF Research Database (Denmark)

    Posch, Olaf; Trimborn, Timo

    We propose a simple and powerful method for determining the transition process in continuous-time DSGE models under Poisson uncertainty numerically. The idea is to transform the system of stochastic differential equations into a system of functional differential equations of the retarded type. We...... classes of models. We illustrate the algorithm simulating both the stochastic neoclassical growth model and the Lucas model under Poisson uncertainty which is motivated by the Barro-Rietz rare disaster hypothesis. We find that, even for non-linear policy functions, the maximum (absolute) error is very...

  2. Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman Filter With Enhanced Numerical Stability

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Junjian; Sun, Kai; Wang, Jianhui; Liu, Hui

    2018-03-01

    In this paper, in order to enhance the numerical stability of the unscented Kalman filter (UKF) used for power system dynamic state estimation, a new UKF with guaranteed positive semidifinite estimation error covariance (UKFGPS) is proposed and compared with five existing approaches, including UKFschol, UKF-kappa, UKFmodified, UKF-Delta Q, and the squareroot UKF (SRUKF). These methods and the extended Kalman filter (EKF) are tested by performing dynamic state estimation on WSCC 3-machine 9-bus system and NPCC 48-machine 140-bus system. For WSCC system, all methods obtain good estimates. However, for NPCC system, both EKF and the classic UKF fail. It is found that UKFschol, UKF-kappa, and UKF-Delta Q do not work well in some estimations while UKFGPS works well in most cases. UKFmodified and SRUKF can always work well, indicating their better scalability mainly due to the enhanced numerical stability.

  3. Numerical investigation of the effect of the configuration of ExoMars landing platform propulsion system on the interaction of supersonic jets with the surface of Mars

    Science.gov (United States)

    Kagenov, Anuar; Glazunov, Anatoliy; Kostyushin, Kirill; Eremin, Ivan; Shuvarikov, Vladimir

    2017-10-01

    This paper presents the results of numerical investigations of the interaction with the Mars surface of four supersonic jets of ExoMars landing platform propulsion system. The cases of impingement of supersonic jets on a curved surface are considered depending on the values of propulsion system thrust. According to the results of numerical studies are obtained the values of normal stresses on the surface of Mars at altitudes of 1.0, 0.5 and 0.3 meter to the surface of the landing. To define the occurring shear stresses Mohr-Coulomb theory was used. The maximum values of shear stresses were defined for the following types of soil of Mars: drift material, crusty to cloddy material, blocky material, sand and Mojave Mars simulant. The conducted evaluations showed, regardless of the propulsion system configuration, that when the final stage of the controlled landing of the ExoMars landing platform, the erosion of the Mars regolith would be insignificant. The estimates are consistent with the available data from previous Mars missions.

  4. Numerical transport of an arbitrary number of components

    International Nuclear Information System (INIS)

    Jaouen, S.; Lagoutiere, F.

    2007-01-01

    This paper deals with the numerical transport of an arbitrary number of materials having the same velocity. One difficulty is to derive numerical algorithms that are conservative for the mass of each component and that satisfy some inequality and equality constraints: each mass fraction has to stay in [0, 1] and the sum of all mass fractions should be 1. These constraints are satisfied by the classical upwind scheme (which is very dissipative) but not for most of nonlinear (high-order or anti-dissipative) schemes. Here we propose local conditions of inequality type for the finite volume fluxes of mass fractions to ensure the aforementioned constraints. More precisely, we give explicit stability intervals for each flux. This is done in the manner of Despres and Lagoutiere for hyperbolic systems, for the transport of two components, for the same type of inequality constraints for nonlinear conservation laws. Comparisons on two dimensional test-cases with the Youngs' interface reconstruction algorithm show that results are qualitatively comparable. The advantages of this approach are its simplicity, its low computational cost, and its flexibility since it can deal with interfaces as well as mixing zones. (authors)

  5. Numerical study on cavitation inception in the rotary valve of the hydraulic power steering system

    International Nuclear Information System (INIS)

    Ryu, Gwang Nyeon; Cho, Myung Hwan; Yoo, Jung Yul; Park, Sun Hong

    2009-01-01

    The rotary valve directs the power steering oil to either side of a power piston and relieves the driver of the effort to turn the wheel, when a driver begins to operate the vehicle. It is well known that the hiss noise occurring at that moment is caused mainly by cavitation of the oil inside the rotary valve. In this paper, two types of rotary valve (round and straight type) have been analyzed numerically using three-dimensional cavitation model embedded in the commercial code, FLUENT v6.2 and the results have been compared with the measured hiss noise level in a semi-anechoic chamber. The volume of the oil vapor generated from cavitation was larger in Round type valve which has a convex shape of the sleeve grooves than in Straight type valve which has a rectangular shape of the sleeve grooves. The hiss noise level of Round type valve was higher than that of Straight type valve as well. These results mean that the hiss noise can be reduced by the change of the shape of the grooves.

  6. Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling.

    Science.gov (United States)

    Bumgarner, Johnathan R; McCray, John E

    2007-06-01

    During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates.

  7. Numerical and experimental investigation on a new type of compound parabolic concentrator solar collector

    International Nuclear Information System (INIS)

    Zheng, Wandong; Yang, Lin; Zhang, Huan; You, Shijun; Zhu, Chunguang

    2016-01-01

    Highlights: • A serpentine compound parabolic concentrator solar collector is proposed. • A mathematical model for the new collector is developed and verified by experiments. • The thermal efficiency of the collector can be up to 60.5% during the experiments. • The effects of key parameters on the thermal performance are mathematically studied. - Abstract: In order to improve the thermal efficiency, reduce the heat losses and achieve high freezing resistance of the solar device for space heating in cold regions, a new type of serpentine compound parabolic concentrator solar collector is presented in this paper, which is a combination of a compound parabolic concentrator solar collector and a flat plate solar collector. A detailed mathematical model for the new collector based on the analysis of heat transfer is developed and then solved by the software tool Matlab. The numerical results are compared with the experimental data and the maximum deviation is 8.07%, which shows a good agreement with each other. The experimental results show that the thermal efficiency of the collector can be as high as 60.5%. The model is used to predict the thermal performance of the new collector. The effects of structure and operating parameters on the thermal performance are mathematically discussed. The numerical and experimental results show that the new collector is more suitable to provide low temperature hot water for space heating in cold regions and the mathematical model will be much helpful in the designing and optimizing of the solar collectors.

  8. Numerical Analysis of a Passive Containment Filtered Venting System

    International Nuclear Information System (INIS)

    Kim, Taejoon; Ha, Huiun; Heo, Sun

    2014-01-01

    The passive Containment Filtered Venting system (CFVS) does not have principally any kind of isolation valves or filtering devices which need periodic maintenance. In this study, the hydro-thermal analysis is presented to investigate the existence of flow instability in the passive CFVS and its performance under the pressure change of APR+ containment building with LB-LOCA M/E data. The Passive Containment Filtered Venting System was suggested as a part in i-Power development project and the operation mechanism was investigated by numerical modeling and simulation using GOTHIC8.0 system code. There are four Phases for consideration to investigate the pressurization of the containment building, loss of hydrostatic head in the pipe line of CFVS, opening of pipe line and gas ejection to the coolant tank, and the head recovery inside the pipe as the containment gas exhausted. The simulation results show that gas generation rate determine the timing of head recovery in the CFVS pipe line and that the equipment of various devices inducing pressure loss at the pipe can give the capacity of Phase control of the passive CFVS operation

  9. Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law

    Science.gov (United States)

    Želi, Velibor; Zorica, Dušan

    2018-02-01

    Generalization of the heat conduction equation is obtained by considering the system of equations consisting of the energy balance equation and fractional-order constitutive heat conduction law, assumed in the form of the distributed-order Cattaneo type. The Cauchy problem for system of energy balance equation and constitutive heat conduction law is treated analytically through Fourier and Laplace integral transform methods, as well as numerically by the method of finite differences through Adams-Bashforth and Grünwald-Letnikov schemes for approximation derivatives in temporal domain and leap frog scheme for spatial derivatives. Numerical examples, showing time evolution of temperature and heat flux spatial profiles, demonstrate applicability and good agreement of both methods in cases of multi-term and power-type distributed-order heat conduction laws.

  10. CHEMSIMUL - A program package for numerical simulation of chemical reaction systems

    International Nuclear Information System (INIS)

    Lang Rasmussen, O.; Bjergbakke, E.

    1984-01-01

    A description is given of a program package, CHEMSIMUL, for numerical simulation of chemical reaction systems. The main components in the package are a translator of chemical equations to differential equations, a balance equation program, a differential equation solver, EPISODE, and an input/output program. The performance of the program is demonstrated by four examples. A manual for the input file and the complete program text with comments are given in Appendices I and II. (author)

  11. A cone-beam tomography system with a reduced size planar detector: A backprojection-filtration reconstruction algorithm as well as numerical and practical experiments

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Zhang Li; Xing Yuxiang; Kang Kejun

    2007-01-01

    In a traditional cone-beam computed tomography (CT) system, the cost of product and computation is very high. In this paper, we develop a transversely truncated cone-beam X-ray CT system with a reduced-size detector positioned off-center, in which X-ray beams only cover half of the object. The existing filtered backprojection (FBP) or backprojection-filtration (BPF) algorithms are not directly applicable in this new system. Hence, we develop a BPF-type direct backprojection algorithm. Different from the traditional rebinning methods, our algorithm directly backprojects the pretreated projection data without rebinning. This makes the algorithm compact and computationally more efficient. Because of avoiding interpolation errors of rebinning process, higher spatial resolution is obtained. Finally, some numerical simulations and practical experiments are done to validate the proposed algorithm and compare with rebinning algorithm

  12. Numerical Modelling of Sediment Transport in Combined Sewer Systems

    DEFF Research Database (Denmark)

    Schlütter, Flemming

    A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed.......A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed....

  13. Numerical study on anaerobic digestion of fruit and vegetable waste: Biogas generation

    Science.gov (United States)

    Wardhani, Puteri Kusuma; Watanabe, Masaji

    2016-02-01

    The study provides experimental results and numerical results concerning anaerobic digestion of fruit and vegetable waste. Experiments were carried out by using batch floating drum type digester without mixing and temperature setting. The retention time was 30 days. Numerical results based on Monod type model with influence of temperature is introduced. Initial value problems were analyzed numerically, while kinetic parameters were analyzed by using trial error methods. The numerical results for the first five days seems appropriate in comparison with the experimental outcomes. However, numerical results shows that the model is inappropriate for 30 days of fermentation. This leads to the conclusion that Monod type model is not suitable for describe the mixture degradation of fruit and vegetable waste and horse dung.

  14. AN ANALYTIC METHOD TO DETERMINE HABITABLE ZONES FOR S-TYPE PLANETARY ORBITS IN BINARY STAR SYSTEMS

    International Nuclear Information System (INIS)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Gyergyovits, Markus; Funk, Barbara; Georgakarakos, Nikolaos

    2012-01-01

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical habitable zone have arisen. Do the radiative and gravitational perturbations of the second star influence the extent of the habitable zone significantly, or is it sufficient to consider the host star only? In this article, we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time-independent analytical estimates and compare them to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of habitable zones toward the secondary in close binary systems.

  15. Numerical model for the analysis of unbounded prestressed structures using the hybrid type finite element method

    International Nuclear Information System (INIS)

    Barbieri, R.A.; Gastal, F.P.S.L.; Filho, A.C.

    2005-01-01

    Unbounded prestressed concrete has a growing importance all over the world and may be an useful technique for the structures involved in the construction of nuclear facilities. The absence of bonding means no strain compatibility so that equations developed for reinforced concrete are no longer valid. Practical estimates about the ultimate stress in the unbounded tendons may be obtained with empirical or numerical methods only. In order to contribute to the understanding on the behaviour of unbounded prestressed concrete members, a numerical model has been developed using a hybrid type finite element formulation for planar frame structures. Instead of short elements, as in the conventional finite element formulation, long elements may be used, improving computational efficiency. A further advantage is that the curvature variation within the element is obtained with higher accuracy if compared to the traditional formulation. This feature is important for unbounded tendons since its stresses depend on the whole member deformation. Second order effects in the planar frame are considered with either Updated or Partially Updated Lagrangian approaches. Instantaneous and time dependent behaviour as well as cyclic loads are considered too. Comparison with experimental results for prestressed concrete beams shows the adequacy of the proposed model. (authors)

  16. Control of a maintenance system when failure and repair times have phase type distributions

    Science.gov (United States)

    Decassiamenesesrodrigues, Rita

    1990-09-01

    In the model of machine repair discussed there are M + R identical machines, M operating, and R spares. All machines are independent of one another. When an operating machine fails, it is sent to a single server repair station and immediately replaced by a spare machine, if one is available. The server has two available service types to choose from. There are waiting costs, repair costs, lost production costs, and switch-over costs. The following decision problem is treated: to obtain a stationary policy which determines the service type as a function of the state of the system in order to minimize the long-run average cost when failure and repair times have second-order Coxian distribution. This control problem is represented by a semi-Markov decision process. The policy-iteration algorithm and the value-iteration algorithm are used to obtain the optimal policy. Numerical results are given for these two optimization methods.

  17. The Ndynamics package—Numerical analysis of dynamical systems and the fractal dimension of boundaries

    Science.gov (United States)

    Avellar, J.; Duarte, L. G. S.; da Mota, L. A. C. P.; de Melo, N.; Skea, J. E. F.

    2012-09-01

    A set of Maple routines is presented, fully compatible with the new releases of Maple (14 and higher). The package deals with the numerical evolution of dynamical systems and provide flexible plotting of the results. The package also brings an initial conditions generator, a numerical solver manager, and a focusing set of routines that allow for better analysis of the graphical display of the results. The novelty that the package presents an optional C interface is maintained. This allows for fast numerical integration, even for the totally inexperienced Maple user, without any C expertise being required. Finally, the package provides the routines to calculate the fractal dimension of boundaries (via box counting). New version program summary Program Title: Ndynamics Catalogue identifier: %Leave blank, supplied by Elsevier. Licensing provisions: no. Programming language: Maple, C. Computer: Intel(R) Core(TM) i3 CPU M330 @ 2.13 GHz. Operating system: Windows 7. RAM: 3.0 GB Keywords: Dynamical systems, Box counting, Fractal dimension, Symbolic computation, Differential equations, Maple. Classification: 4.3. Catalogue identifier of previous version: ADKH_v1_0. Journal reference of previous version: Comput. Phys. Commun. 119 (1999) 256. Does the new version supersede the previous version?: Yes. Nature of problem Computation and plotting of numerical solutions of dynamical systems and the determination of the fractal dimension of the boundaries. Solution method The default method of integration is a fifth-order Runge-Kutta scheme, but any method of integration present on the Maple system is available via an argument when calling the routine. A box counting [1] method is used to calculate the fractal dimension [2] of the boundaries. Reasons for the new version The Ndynamics package met a demand of our research community for a flexible and friendly environment for analyzing dynamical systems. All the user has to do is create his/her own Maple session, with the system to

  18. RELAP5 two-phase fluid model and numerical scheme for economic LWR system simulation

    International Nuclear Information System (INIS)

    Ransom, V.H.; Wagner, R.J.; Trapp, J.A.

    1981-01-01

    The RELAP5 two-phase fluid model and the associated numerical scheme are summarized. The experience accrued in development of a fast running light water reactor system transient analysis code is reviewed and example of the code application are given

  19. Numerical solution of multiband k.p model for tunnelling in type-II heterostructures

    Directory of Open Access Journals (Sweden)

    A.E. Botha

    2010-01-01

    Full Text Available A new and very general method was developed for calculating the charge and spin-resolved electron tunnelling in type-II heterojunctions. Starting from a multiband k.p description of the bulk energy-band structure, a multiband k.p Riccati equation was derived. The reflection and transmission coefficients were obtained for each channel by integrating the Riccati equation over the entire heterostructure. Numerical instability was reduced through this method, in which the multichannel log-derivative of the envelope function matrix, rather than the envelope function itself, was propagated. As an example, a six-band k.p Hamiltonian was used to calculate the current-voltage characteristics of a 10-nm wide InAs/ GaSb/InAs single quantum well device which exhibited negative differential resistance at room temperature. The calculated current as a function of applied (bias voltage was found to be in semiquantitative agreement with the experiment, a result which indicated that inelastic transport mechanisms do not contribute significantly to the valley currents measured in this particular device.

  20. Numerical Comparison of NASA's Dual Brayton Power Generation System Performance Using CO2 or N2 as the Working Fluid

    Science.gov (United States)

    Ownens, Albert K.; Lavelle, Thomas M.; Hervol, David S.

    2010-01-01

    A Dual Brayton Power Conversion System (DBPCS) has been tested at the NASA Glenn Research Center using Nitrogen (N2) as the working fluid. This system uses two closed Brayton cycle systems that share a common heat source and working fluid but are otherwise independent. This system has been modeled using the Numerical Propulsion System Simulation (NPSS) environment. This paper presents the results of a numerical study that investigated system performance changes resulting when the working fluid is changed from gaseous (N2) to gaseous carbon dioxide (CO2).

  1. Numerical simulation of a three-stage stirling-type pulse-tube refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Etaati, M.A.

    2011-06-22

    The pulse-tube refrigerator (PTR) is a rather new device for cooling down to extremely low temperatures, i.e. below 4 K. The PTR works by the cyclic compression and expansion of helium that flows through a regenerator made of porous material, a cold heat exchanger, a tube, a hot heat exchanger and an orifice, in series. In a Stirling-type PTR compression and expansion are generated by a piston. The compression increases the temperature of the helium in the tube and makes it flow towards the orifice; the expansion decreases the temperature and makes the helium flow backwards to the regenerator. The net effect of warmer helium flowing in one direction and colder helium in the opposite direction is that of cooling power at the cold heat exchanger. Three PTRs are inter-connected aiming to obtain the desired 4 K lowest temperature. The conservation laws of mass, momentum and energy, and an equation of state, are simplified using asymptotic analysis based on low Mach-numbers. The regenerator is modelled one-dimensionally with Darcy's law for flow resistance. The tube is modelled either one-dimensionally without resistance or two-dimensionally with axisymmetric laminar viscous flow. The heat transfer in the porous medium of the regenerator and in the solid tube wall is taken into account. The gas can be either ideal or real. All the material properties, including viscosity and conductivity, are taken temperature and pressure dependent. Three single-stage PTRs are connected with the regenerators in series and the tubes in parallel and six flow possibilities at the junctions are considered. Three by-passes (double-inlets) are used to enhance and tune the performance. The governing equations are numerically solved with a finite-difference method of nominally second-order accuracy in space and time. Pressure correction, flux limiter, 1D-2D connections and domain decomposition are the keywords here. Special attention is paid to suitable initial conditions, high resolution

  2. Effect of Various Excitation Conditions on Vibrational Energy in a Multi-Degree-of-Freedom Torsional System with Piecewise-Type Nonlinearities

    Directory of Open Access Journals (Sweden)

    Jong-Yun Yoon

    2015-09-01

    Full Text Available Dynamic behaviors in practical driveline systems for wind turbines or vehicles are inherently affected by multiple nonlinearities such as piecewise-type torsional springs. However, various excitation conditions with different levels of magnitudes also show strong relationships to the dynamic behaviors when system responses are examined in both frequency and time domains. This study investigated the nonlinear responses of torsional systems under various excitations by using the harmonic balance method and numerical analysis. In order to understand the effect of piecewise-type nonlinearities on vibrational energy with different excitations, the nonlinear responses were investigated with various comparisons. First, two different jumping phenomena with frequency up- and down-sweeping conditions were determined under severe excitation levels. Second, practical system analysis using the phase plane and Poincaré map was conducted in various ways. When the system responses were composed of quasi-periodic components, Poincaré map analysis clearly revealed the nonlinear dynamic characteristics and thus it is suggested to investigate complicated nonlinear dynamic responses in practical driveline systems.

  3. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system.

    Science.gov (United States)

    Sowale, Ayodeji; Kolios, Athanasios J; Fidalgo, Beatriz; Somorin, Tosin; Parker, Alison; Williams, Leon; Collins, Matt; McAdam, Ewan; Tyrrel, Sean

    2018-06-01

    The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.

  4. Using session types as an effect system

    Directory of Open Access Journals (Sweden)

    Dominic Orchard

    2016-02-01

    Full Text Available Side effects are a core part of practical programming. However, they are often hard to reason about, particularly in a concurrent setting. We propose a foundation for reasoning about concurrent side effects using sessions. Primarily, we show that session types are expressive enough to encode an effect system for stateful processes. This is formalised via an effect-preserving encoding of a simple imperative language with an effect system into the pi-calculus with session primitives and session types (into which we encode effect specifications. This result goes towards showing a connection between the expressivity of session types and effect systems. We briefly discuss how the encoding could be extended and applied to reason about and control concurrent side effects.

  5. Numerical Investigation of Multiple-, Interacting-Scale Variable-Density Ground Water Flow Systems

    Science.gov (United States)

    Cosler, D.; Ibaraki, M.

    2004-12-01

    The goal of our study is to elucidate the nonlinear processes that are important for multiple-, interacting-scale flow and solute transport in subsurface environments. In particular, we are focusing on the influence of small-scale instability development on variable-density ground water flow behavior in large-scale systems. Convective mixing caused by these instabilities may mix the fluids to a greater extent than would be the case with classical, Fickian dispersion. Most current numerical schemes for interpreting field-scale variable-density flow systems do not explicitly account for the complexities caused by small-scale instabilities and treat such processes as "lumped" Fickian dispersive mixing. Such approaches may greatly underestimate the mixing behavior and misrepresent the overall large-scale flow field dynamics. The specific objectives of our study are: (i) to develop an adaptive (spatial and temporal scales) three-dimensional numerical model that is fully capable of simulating field-scale variable-density flow systems with fine resolution (~1 cm); and (ii) to evaluate the importance of scale-dependent process interactions by performing a series of simulations on different problem scales ranging from laboratory experiments to field settings, including an aquifer storage and freshwater recovery (ASR) system similar to those planned for the Florida Everglades and in-situ contaminant remediation systems. We are examining (1) methods to create instabilities in field-scale systems, (2) porous media heterogeneity effects, and (3) the relation between heterogeneity characteristics (e.g., permeability variance and correlation length scales) and the mixing scales that develop for varying degrees of unstable stratification. Applications of our work include the design of new water supply and conservation measures (e.g., ASR systems), assessment of saltwater intrusion problems in coastal aquifers, and the design of in-situ remediation systems for aquifer restoration

  6. Long-time behavior in numerical solutions of certain dynamical systems

    International Nuclear Information System (INIS)

    Vazquez, L.

    1987-01-01

    A general discretization of the ordinary nonlinear differential equations d 2 v/dt 2 =f(v) and dv/dt=g(v) is studied. The discrete scheme conserves the discrete analogous of a quantity that is conserved by the corresponding equations. This method is applied to two cases and no ''ghost solutions'' were observed for the long range calculation. In these cases we analyze the stability of the corresponding numerical scheme as a dynamical system and in the sense studied by Kuo Pen-Yu and Stetter. In particular we find a correspondence between both kinds of stability. (author)

  7. Type I interferon signature in systemic lupus erythematosus.

    Science.gov (United States)

    Bezalel, Shira; Guri, Keren Mahlab; Elbirt, Daniel; Asher, Ilan; Sthoeger, Zev Moshe

    2014-04-01

    Type I interferons (IFN) are primarily regarded as an inhibitor of viral replication. However, type I IFN, mainly IFNalpha, plays a major role in activation of both the innate and adaptive immune systems. Systemic lupus erythematosus (SLE) is a chronic, multi-systemic, inflammatory autoimmune disease with undefined etiology. SLE is characterized by dysregulation of both the innate and the adaptive immune systems. An increased expression of type I IFN-regulated genes, termed IFN signature, has been reported in patients with SLE. We review here the role of IFNalpha in the pathogenesis and course of SLE and the possible role of IFNalpha inhibition as a novel treatment for lupus patients.

  8. A program for the numerical control of a pulse increment system

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.C.

    1963-08-21

    This report will describe the important features of the development of magnetic tapes for the numerical control of a pulse-increment system consisting of a modified Gorton lathe and its associated control unit developed by L. E. Foley of Equipment Development Service, Engineering Services, General Electric Co., Schenectady, N.Y. Included is a description of CUPID (Control and Utilization of Pulse Increment Devices), a FORTRAN program for the design of these tapes on the IBM 7090 computer, and instructions for its operation.

  9. Numerical treatments for solving nonlinear mixed integral equation

    Directory of Open Access Journals (Sweden)

    M.A. Abdou

    2016-12-01

    Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

  10. A common type system for clinical natural language processing.

    Science.gov (United States)

    Wu, Stephen T; Kaggal, Vinod C; Dligach, Dmitriy; Masanz, James J; Chen, Pei; Becker, Lee; Chapman, Wendy W; Savova, Guergana K; Liu, Hongfang; Chute, Christopher G

    2013-01-03

    One challenge in reusing clinical data stored in electronic medical records is that these data are heterogenous. Clinical Natural Language Processing (NLP) plays an important role in transforming information in clinical text to a standard representation that is comparable and interoperable. Information may be processed and shared when a type system specifies the allowable data structures. Therefore, we aim to define a common type system for clinical NLP that enables interoperability between structured and unstructured data generated in different clinical settings. We describe a common type system for clinical NLP that has an end target of deep semantics based on Clinical Element Models (CEMs), thus interoperating with structured data and accommodating diverse NLP approaches. The type system has been implemented in UIMA (Unstructured Information Management Architecture) and is fully functional in a popular open-source clinical NLP system, cTAKES (clinical Text Analysis and Knowledge Extraction System) versions 2.0 and later. We have created a type system that targets deep semantics, thereby allowing for NLP systems to encapsulate knowledge from text and share it alongside heterogenous clinical data sources. Rather than surface semantics that are typically the end product of NLP algorithms, CEM-based semantics explicitly build in deep clinical semantics as the point of interoperability with more structured data types.

  11. Phase transitions and dynamic entropy in small two-dimensional systems: Experiment and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koss, K. G.; Petrov, O. F.; Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; Statsenko, K. B.; Vasiliev, M. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-07-15

    The results of experimental and numerical analysis are presented for phase transitions in strongly nonequilibrium small systems of strongly interacting Brownian particles. The dynamic entropy method is applied to analysis of the state of these systems. Experiments are carried out with kinetic heating of the structures of micron-size particles in a laboratory rf discharge plasma. Three phase states of these small systems are observed: crystalline, liquid, and transient. The mechanism of phase transitions in cluster structures of strongly interacting particles is described.

  12. Simulation model structure numerically robust to changes in magnitude and combination of input and output variables

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1999-01-01

    Mathematical models of refrigeration systems are often based on a coupling of component models forming a “closed loop” type of system model. In these models the coupling structure of the component models represents the actual flow path of refrigerant in the system. Very often numerical...... instabilities prevent the practical use of such a system model for more than one input/output combination and for other magnitudes of refrigerating capacities.A higher numerical robustness of system models can be achieved by making a model for the refrigeration cycle the core of the system model and by using...... variables with narrow definition intervals for the exchange of information between the cycle model and the component models.The advantages of the cycle-oriented method are illustrated by an example showing the refrigeration cycle similarities between two very different refrigeration systems....

  13. Various types of numerical schema for the one-dimensional spherical geometry transport equation

    International Nuclear Information System (INIS)

    Jaber, Abdelouhab.

    1981-07-01

    Mathematical and numerical studies of new schemas possessing high accuracy spatial variable properties are described and the corresponding studies presented. In order to do this, the [0,R] x [-1,+1] rectangle is decomposad into Ksub(ij) = [rsub(i),rsub(i+1)] x [μsub(j),μsub(j+1) ] rectangles. Continuous finite element methods employing polynominals of degree 1 in μ and degree 2 in r are defined for each elements. In chapter I, different ways of rendering the particular equation (for μ = -1) discrete are studied. In chapter II, numerical schemas are described and their stability investigated. In chapter III, error estimation theories are exposed and numerical results for different second members, S, given [fr

  14. Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis

    KAUST Repository

    Brokate, M.

    2012-05-01

    The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcys law. The hysteretic relation between the capillary pressures and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating the arising system of equations, discuss finite element schemes and present simulation results for the case of two phases. © 2011 Elsevier B.V. All rights reserved.

  15. Influence of Axisymmetrically Deformed Explosions in Type II Supernovae on the Reproduction of the Solar System Abundances

    Science.gov (United States)

    Nagataki, Shigehiro

    1999-01-01

    We have tried to reproduce the solar system abundances using the nucleosynthesis products of Type Ia and Type II supernovae. In particular, we examined the effects of axisymmetrically deformed explosions in Type II supernovae. 44Ca and 47,48Ti are enhanced considerably in axisymmetrically deformed explosion models because of the active alpha-rich freezeout. The enhancement of nuclei around A=45 is a welcome result since it solves the problem of the nuclei shortage. Moreover, 59Co, 63,65Cu, and 66Zn are enhanced enough to reproduce the solar system abundances. The enhancement of Cu and Zn means the possibility that these nuclei, which have been said to be produced by the slow process, can be synthesized fairly well during the explosive nucleosynthesis. To discuss their origin quantitatively, the position of the mass cut is a very important parameter that is very difficult to determine numerically at present. We also stress that an axisymmetrically deformed explosion of Type II supernovae of the degree that is considered in this analysis is not excluded by the results of calculations of explosive nucleosynthesis, that is, the nucleosynthesis products are not extremely disturbed and the solar system abundances can be reproduced fairly well by the axisymmetrically deformed explosion models. This conclusion will be good for the theory of core collapse including the rotation of an iron core, magnetic field, and axisymmetrically modified neutrino radiation from a rotating protoneutron star, which possibly can cause an axisymmetrically deformed explosion.

  16. Error estimates for a numerical method for the compressible Navier-Stokes system on sufficiently smooth domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Hošek, Radim; Maltese, D.; Novotný, A.

    2017-01-01

    Roč. 51, č. 1 (2017), s. 279-319 ISSN 0764-583X EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Navier-Stokes system * finite element numerical method * finite volume numerical method Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.727, year: 2016 http://www.esaim-m2an.org/ articles /m2an/abs/2017/01/m2an150157/m2an150157.html

  17. Projection preconditioning for Lanczos-type methods

    Energy Technology Data Exchange (ETDEWEB)

    Bielawski, S.S.; Mulyarchik, S.G.; Popov, A.V. [Belarusian State Univ., Minsk (Belarus)

    1996-12-31

    We show how auxiliary subspaces and related projectors may be used for preconditioning nonsymmetric system of linear equations. It is shown that preconditioned in such a way (or projected) system is better conditioned than original system (at least if the coefficient matrix of the system to be solved is symmetrizable). Two approaches for solving projected system are outlined. The first one implies straightforward computation of the projected matrix and consequent using some direct or iterative method. The second approach is the projection preconditioning of conjugate gradient-type solver. The latter approach is developed here in context with biconjugate gradient iteration and some related Lanczos-type algorithms. Some possible particular choices of auxiliary subspaces are discussed. It is shown that one of them is equivalent to using colorings. Some results of numerical experiments are reported.

  18. Intelligent micro blood typing system using a fuzzy algorithm

    International Nuclear Information System (INIS)

    Kang, Taeyun; Cho, Dong-Woo; Lee, Seung-Jae; Kim, Yonggoo; Lee, Gyoo-Whung

    2010-01-01

    ABO typing is the first analysis performed on blood when it is tested for transfusion purposes. The automated machines used in hospitals for this purpose are typically very large and the process is complicated. In this paper, we present a new micro blood typing system that is an improved version of our previous system (Kang et al 2004 Trans. ASME, J. Manuf. Sci. Eng. 126 766, Lee et al 2005 Sensors Mater. 17 113). This system, fabricated using microstereolithography, has a passive valve for controlling the flow of blood and antibodies. The intelligent micro blood typing system has two parts: a single-line micro blood typing device and a fuzzy expert system for grading the strength of agglutination. The passive valve in the single-line micro blood typing device makes the blood stop at the entrance of a micro mixer and lets it flow again after the blood encounters antibodies. Blood and antibodies are mixed in the micro mixer and agglutination occurs in the chamber. The fuzzy expert system then determines the degree of agglutination from images of the agglutinated blood. Blood typing experiments using this device were successful, and the fuzzy expert system produces a grading decision comparable to that produced by an expert conducting a manual analysis

  19. Numerical approaches to time evolution of complex quantum systems

    International Nuclear Information System (INIS)

    Fehske, Holger; Schleede, Jens; Schubert, Gerald; Wellein, Gerhard; Filinov, Vladimir S.; Bishop, Alan R.

    2009-01-01

    We examine several numerical techniques for the calculation of the dynamics of quantum systems. In particular, we single out an iterative method which is based on expanding the time evolution operator into a finite series of Chebyshev polynomials. The Chebyshev approach benefits from two advantages over the standard time-integration Crank-Nicholson scheme: speedup and efficiency. Potential competitors are semiclassical methods such as the Wigner-Moyal or quantum tomographic approaches. We outline the basic concepts of these techniques and benchmark their performance against the Chebyshev approach by monitoring the time evolution of a Gaussian wave packet in restricted one-dimensional (1D) geometries. Thereby the focus is on tunnelling processes and the motion in anharmonic potentials. Finally we apply the prominent Chebyshev technique to two highly non-trivial problems of current interest: (i) the injection of a particle in a disordered 2D graphene nanoribbon and (ii) the spatiotemporal evolution of polaron states in finite quantum systems. Here, depending on the disorder/electron-phonon coupling strength and the device dimensions, we observe transmission or localisation of the matter wave.

  20. Multiple-step fault estimation for interval type-II T-S fuzzy system of hypersonic vehicle with time-varying elevator faults

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2017-03-01

    Full Text Available This article proposes a multiple-step fault estimation algorithm for hypersonic flight vehicles that uses an interval type-II Takagi–Sugeno fuzzy model. An interval type-II Takagi–Sugeno fuzzy model is developed to approximate the nonlinear dynamic system and handle the parameter uncertainties of hypersonic firstly. Then, a multiple-step time-varying additive fault estimation algorithm is designed to estimate time-varying additive elevator fault of hypersonic flight vehicles. Finally, the simulation is conducted in both aspects of modeling and fault estimation; the validity and availability of such method are verified by a series of the comparison of numerical simulation results.

  1. A common type system for clinical natural language processing

    Directory of Open Access Journals (Sweden)

    Wu Stephen T

    2013-01-01

    Full Text Available Abstract Background One challenge in reusing clinical data stored in electronic medical records is that these data are heterogenous. Clinical Natural Language Processing (NLP plays an important role in transforming information in clinical text to a standard representation that is comparable and interoperable. Information may be processed and shared when a type system specifies the allowable data structures. Therefore, we aim to define a common type system for clinical NLP that enables interoperability between structured and unstructured data generated in different clinical settings. Results We describe a common type system for clinical NLP that has an end target of deep semantics based on Clinical Element Models (CEMs, thus interoperating with structured data and accommodating diverse NLP approaches. The type system has been implemented in UIMA (Unstructured Information Management Architecture and is fully functional in a popular open-source clinical NLP system, cTAKES (clinical Text Analysis and Knowledge Extraction System versions 2.0 and later. Conclusions We have created a type system that targets deep semantics, thereby allowing for NLP systems to encapsulate knowledge from text and share it alongside heterogenous clinical data sources. Rather than surface semantics that are typically the end product of NLP algorithms, CEM-based semantics explicitly build in deep clinical semantics as the point of interoperability with more structured data types.

  2. Numerical verification of B-WIM system using reaction force signals

    International Nuclear Information System (INIS)

    Chang, Sung Jin; Kim, Nam Sik

    2012-01-01

    Bridges are ones of fundamental facilities for roads which become social overhead capital facilities and they are designed to get safety in their life cycles. However as time passes, bridge can be damaged by changes of external force and traffic environments. Therefore, a bridge should be repaired and maintained for extending its life cycle. The working load on a bridge is one of the most important factors for safety, it should be calculated accurately. The most important load among working loads is live load by a vehicle. Thus, the travel characteristics and weight of vehicle can be useful for bridge maintenance if they were estimated with high reliability. In this study, a B-WIM system in which the bridge is used for a scale have been developed for measuring the vehicle loads without the vehicle stop. The vehicle loads can be estimated by the developed B-WIM system with the reaction responses from the supporting points. The algorithm of developed B-WIM system have been verified by numerical analysis

  3. Stability Analysis of a Type of Takagi-Sugeno PI Fuzzy Control Systems Using Circle Criterion

    Directory of Open Access Journals (Sweden)

    Kairui Cao

    2011-04-01

    Full Text Available A type of Takagi-Sugeno (T-S Proportional-Integral (PI fuzzy controllers is studied. The T-S PI fuzzy controller is formed by a T-S Proportional-Derivative (PD fuzzy controller connected with an integrator. In this particular structure, the T-S PD fuzzy controller is a weighted sum of some linear PD sub-controllers. The mathematical properties of our T-S PI fuzzy controller are also investigated. Based on these properties, the global asymptotic stability of the fuzzy control systems, in which the T-S PI fuzzy controllers are employed, are analyzed by using the well-known circle criterion. A sufficient condition with an elegant graphical interpretation in the frequency domain is further derived to guarantee the global asymptotic stability of the above fuzzy control systems. Finally, two numerical examples are provided to demonstrate how to deploy this method in analyzing the T-S PI fuzzy control systems in the frequency domain with the aid of some simple graphs.

  4. Direct numerical simulation of electrokinetic instability and transition to chaotic motion

    Science.gov (United States)

    Demekhin, E. A.; Nikitin, N. V.; Shelistov, V. S.

    2013-12-01

    A new type of instability—electrokinetic instability—and an unusual transition to chaotic motion near a charge-selective surface (semiselective electric membrane, electrode, or system of micro-/nanochannels) was studied by the numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. A special finite-difference method was used for the space discretization along with a semi-implicit 31/3-step Runge-Kutta scheme for the integration in time. Two kinds of initial conditions were considered: (a) white-noise initial conditions to mimic "room disturbances" and subsequent natural evolution of the solution, and (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. Our weakly nonlinear analysis and numerical integration of the entire system predict possibility of both kinds of bifurcations at the critical point, supercritical and subcritical, depending on the system parameters. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution, two-dimensional steady electroconvective vortices (stationary point in a proper phase space), unsteady vortices aperiodically changing their parameters (homoclinic contour), periodic motion (limit cycle), and chaotic motion. The transition to chaotic motion does not include Hopf bifurcation. The numerical resolution of the thin concentration polarization layer showed spike-like charge profiles along the surface, which could be, depending on the regime, either steady or aperiodically coalescent. The numerical investigation confirmed the

  5. Direct numerical simulation of electrokinetic instability and transition to chaotic motion

    International Nuclear Information System (INIS)

    Demekhin, E. A.; Nikitin, N. V.; Shelistov, V. S.

    2013-01-01

    A new type of instability—electrokinetic instability—and an unusual transition to chaotic motion near a charge-selective surface (semiselective electric membrane, electrode, or system of micro-/nanochannels) was studied by the numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. A special finite-difference method was used for the space discretization along with a semi-implicit 31/3 -step Runge-Kutta scheme for the integration in time. Two kinds of initial conditions were considered: (a) white-noise initial conditions to mimic “room disturbances” and subsequent natural evolution of the solution, and (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. Our weakly nonlinear analysis and numerical integration of the entire system predict possibility of both kinds of bifurcations at the critical point, supercritical and subcritical, depending on the system parameters. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution, two-dimensional steady electroconvective vortices (stationary point in a proper phase space), unsteady vortices aperiodically changing their parameters (homoclinic contour), periodic motion (limit cycle), and chaotic motion. The transition to chaotic motion does not include Hopf bifurcation. The numerical resolution of the thin concentration polarization layer showed spike-like charge profiles along the surface, which could be, depending on the regime, either steady or aperiodically coalescent. The numerical investigation confirmed the

  6. Direct numerical simulation of electrokinetic instability and transition to chaotic motion

    Energy Technology Data Exchange (ETDEWEB)

    Demekhin, E. A., E-mail: edemekhi@gmail.com [Laboratory of Micro- and Nanofluidics, Moscow State University, Moscow 119192 (Russian Federation); Department of Computation Mathematics and Computer Science, Kuban State University, Krasnodar 350040 (Russian Federation); Institute of Mechanics, Moscow State University, Moscow 117192 (Russian Federation); Nikitin, N. V. [Institute of Mechanics, Moscow State University, Moscow 117192 (Russian Federation); Shelistov, V. S. [Institute of Mechanics, Moscow State University, Moscow 117192 (Russian Federation); Scientific Research Department, Kuban State University, Krasnodar 350040 (Russian Federation)

    2013-12-15

    A new type of instability—electrokinetic instability—and an unusual transition to chaotic motion near a charge-selective surface (semiselective electric membrane, electrode, or system of micro-/nanochannels) was studied by the numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. A special finite-difference method was used for the space discretization along with a semi-implicit 31/3 -step Runge-Kutta scheme for the integration in time. Two kinds of initial conditions were considered: (a) white-noise initial conditions to mimic “room disturbances” and subsequent natural evolution of the solution, and (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. Our weakly nonlinear analysis and numerical integration of the entire system predict possibility of both kinds of bifurcations at the critical point, supercritical and subcritical, depending on the system parameters. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution, two-dimensional steady electroconvective vortices (stationary point in a proper phase space), unsteady vortices aperiodically changing their parameters (homoclinic contour), periodic motion (limit cycle), and chaotic motion. The transition to chaotic motion does not include Hopf bifurcation. The numerical resolution of the thin concentration polarization layer showed spike-like charge profiles along the surface, which could be, depending on the regime, either steady or aperiodically coalescent. The numerical investigation confirmed the

  7. Development of a phage typing system for Staphylococcus hyicus

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    1993-01-01

    Bacteriophages were released by 98% of 100 Staphylococcus hyicus strains studied after treatment with mitomycin C. Twenty-three phages with different lytic spectra were included in a phage typing system and used f or typing S. hyicus. On a test-set of 100 epidemiologically unrelated S. hyicus...... strains isolated from Danish pig herds, the phages were able to type 92% of the strains, producing 16 different phage types. Reproducibility of the phage typing system after subculture of the strains and using fresh phage stock was 96%. Typability ranged from 52 to 80% when typing porcine strains...... originating from other countries. Although phages were isolated from porcine skin strains exclusively, the system produced phage types in S. hyicus strains of bovine origin. Ten strains of S. aureus and S. chromogenes were not typable by these phages. Strains belonging to one phage type (A/B/C/W) were...

  8. Foundations of children's numerical and mathematical skills: the roles of symbolic and nonsymbolic representations of numerical magnitude.

    Science.gov (United States)

    Lyons, Ian M; Ansari, Daniel

    2015-01-01

    Numerical and mathematical skills are critical predictors of academic success. The last three decades have seen a substantial growth in our understanding of how the human mind and brain represent and process numbers. In particular, research has shown that we share with animals the ability to represent numerical magnitude (the total number of items in a set) and that preverbal infants can process numerical magnitude. Further research has shown that similar processing signatures characterize numerical magnitude processing across species and developmental time. These findings suggest that an approximate system for nonsymbolic (e.g., dot arrays) numerical magnitude representation serves as the basis for the acquisition of cultural, symbolic (e.g., Arabic numerals) representations of numerical magnitude. This chapter explores this hypothesis by reviewing studies that have examined the relation between individual differences in nonsymbolic numerical magnitude processing and symbolic math abilities (e.g., arithmetic). Furthermore, we examine the extent to which the available literature provides strong evidence for a link between symbolic and nonsymbolic representations of numerical magnitude at the behavioral and neural levels of analysis. We conclude that claims that symbolic number abilities are grounded in the approximate system for the nonsymbolic representation of numerical magnitude are not strongly supported by the available evidence. Alternative models and future research directions are discussed. © 2015 Elsevier Inc. All rights reserved.

  9. Numerical analysis of the Anderson localization

    International Nuclear Information System (INIS)

    Markos, P.

    2006-01-01

    The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper (Author)

  10. Comparison Between Numerical Modeling and Experimental Testing of a Point Absorber WEC Using Linear Power Take-Off System

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Kramer, Morten; Sichani, Mahdi Teimouri

    2012-01-01

    systems into a central wave to wire model. The power production then depends on the control strategy which is applied to the device. The objective of this paper is to develop numerical methods for motion analysis of marine structures with a special emphasis on wave energy converters. Two different time...... domain models are applied to a point absorber system working in pitch mode only. The device is similar to the well-known Wavestar prototype located in the Danish North Sea. A laboratory model has been set up in order to validate the numerical simulations of the dynamics. Wave Excitation force...... interaction assumption and linearized equation of motion. The region over which the numerical model is valid will be presented in terms of non-dimensional parameters describing the different wave states....

  11. S-type and P-type habitability in stellar binary systems: A comprehensive approach. I. Method and applications

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M., E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059 (United States)

    2014-01-01

    A comprehensive approach is provided for the study of both S-type and P-type habitability in stellar binary systems, which in principle can also be expanded to systems of higher order. P-type orbits occur when the planet orbits both binary components, whereas in the case of S-type orbits, the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach encapsulates a variety of different aspects, which include: (1) the consideration of a joint constraint, including orbital stability and a habitable region for a putative system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ), needs to be met; (2) the treatment of conservative, general, and extended zones of habitability for the various systems as defined for the solar system and beyond; (3) the provision of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are presented for the kind of system in which S-type and P-type habitability is realized; (4) applications of the attained theoretical approach to standard (theoretical) main-sequence stars. In principle, five different cases of habitability are identified, which are S-type and P-type habitability provided by the full extent of the RHZs; habitability, where the RHZs are truncated by the additional constraint of planetary orbital stability (referred to as ST- and PT-type, respectively); and cases of no habitability at all. Regarding the treatment of planetary orbital stability, we utilize the formulae of Holman and Wiegert as also used in previous studies. In this work, we focus on binary systems in circular orbits. Future applications will also consider binary systems in elliptical orbits and provide thorough comparisons to other methods and results given in the literature.

  12. Design type testing for digital instrumentation and control systems

    International Nuclear Information System (INIS)

    Bastl, W.; Mohns, G.

    1997-01-01

    The design type qualification of digital safety instrumentation and control is outlined. Experience shows that the concepts discussed, derived from codes, guidelines and standards, achieve useful results. It has likewise become clear that the systematics of design type qualification of the hardware components is also applicable to the software components. Design type qualification of the software, a premiere, could be performed unexpectedly smoothly. The hardware design type qualification proved that the hardware as a substrate of functionality and reliability is an issue that demands full attention, as compared to conventional systems. Another insight is that design qualification of digital instrumentation and control systems must include plant-independent systems tests. Digital instrumentation and control systems simply work very differently from conventional control systems, so that this testing modality is inevitable. (Orig./CB) [de

  13. Numerical investigation on effect of blade shape for stream water wheel performance.

    Science.gov (United States)

    Yah, N. F.; Oumer, A. N.; Aziz, A. A.; Sahat, I. M.

    2018-04-01

    Stream water wheels are one of the oldest and commonly used types of wheels for the production of energy. Moreover, they are economical, efficient and sustainable. However, few amounts of research works are available in the open literature. This paper aims to develop numerical model for investigation of the effect of blade shape on the performance of stream water wheel. The numerical model was simulated using Computational Fluid Dynamics (CFD) method and the developed model was validated by comparing the simulation results with experimental data obtained from literature. The performance of straight, curved type 1 and curved type 2 was observed and the power generated by each blade design was identified. The inlet velocity was set to 0.3 m/s static pressure outlet. The obtained results indicate that the highest power was generated by the Curved type 2 compared to straight blade and curved type 1. From the CFD result, Curved type 1 was able to generate 0.073 Watt while Curved type 2 generate 0.064 Watt. The result obtained were consistent with the experiment result hence can be used the numerical model as a guide to numerically predict the water wheel performance

  14. Numerical Simulation of Vertical Random Vibration of Train-Slab Track-Bridge Interaction System by PEM

    Directory of Open Access Journals (Sweden)

    Zhi-ping Zeng

    2014-01-01

    Full Text Available The paper describes the numerical simulation of the vertical random vibration of train-slab track-bridge interaction system by means of finite element method and pseudoexcitation method. Each vehicle is modeled as four-wheelset mass-spring-damper system with two-layer suspension systems. The rail, slab, and bridge girder are modeled by three-layer elastic Bernoulli-Euler beams connected with each other by spring and damper elements. The equations of motion for the entire system are derived according to energy principle. By regarding rail irregularity as a series of multipoint, different-phase random excitations, the random load vectors of the equations of motion are obtained by pseudoexcitation method. Taking a nine-span simply supported beam bridge traveled by a train consisting of 8 vehicles as an example, the vertical random vibration responses of the system are investigated. Firstly, the suitable number of discrete frequencies of rail irregularity is obtained by numerical experimentations. Secondly, the reliability and efficiency of pseudoexcitation method are verified through comparison with Monte Carlo method. Thirdly, the random vibration characteristics of train-slab track-bridge interaction system are analyzed by pseudoexcitation method. Finally, applying the 3σ rule for Gaussian stochastic process, the maximum responses of train-slab track-bridge interaction system with respect to various train speeds are studied.

  15. Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson’s 3/8 Rule

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2012-01-01

    Full Text Available The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using this rule the system is converted to a nonlinear block system and then by solving this nonlinear system we find approximate solution of nonlinear Volterra integral equations system. One of the advantages of the proposed method is its simplicity in application. Further, we investigate the convergence of the proposed method and it is shown that its convergence is of order O(h4. Numerical examples are given to show abilities of the proposed method for solving linear as well as nonlinear systems. Our results show that the proposed method is simple and effective.

  16. Magnitude Knowledge: The Common Core of Numerical Development

    Science.gov (United States)

    Siegler, Robert S.

    2016-01-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic…

  17. Numerical solutions of a ODE's system for neutronics; Soluções numéricas de um sistema de EDO’s para neutrônica

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Suzylaine da Silva; Ramos, Alexandre F., E-mail: suzylaine.lima@usp.br, E-mail: alex.ramos@usp.br [Universidade de São Paulo (USP), SP (Brazil). Núcleo Interdisciplinar de Modelagem de Sistemas Complexos

    2017-07-01

    The preliminary results that were obtained in the computational implementation to solve numerically a System of Coupled Differential Equations were presented. This system is intended to describe the kinetics of nuclear reactions occurring in the interior of a fusion-fission hybrid reactor in which fusion occurs in periodic pulses, which may be laser, for example. The hybrid reactor contains a core in which the nuclear fusion fuel is injected and is enveloped by two layers both composed of subcritical fission fuel. Our results show that a fusion-fission hybrid reactor composed of two layers of fission can maximize the energy utilization in this type of reactor.

  18. Safety Analysis in Large Volume Vacuum Systems Like Tokamak: Experiments and Numerical Simulation to Analyze Vacuum Ruptures Consequences

    Directory of Open Access Journals (Sweden)

    A. Malizia

    2014-01-01

    Full Text Available The large volume vacuum systems are used in many industrial operations and research laboratories. Accidents in these systems should have a relevant economical and safety impact. A loss of vacuum accident (LOVA due to a failure of the main vacuum vessel can result in a fast pressurization of the vessel and consequent mobilization dispersion of hazardous internal material through the braches. It is clear that the influence of flow fields, consequence of accidents like LOVA, on dust resuspension is a key safety issue. In order to develop this analysis an experimental facility is been developed: STARDUST. This last facility has been used to improve the knowledge about LOVA to replicate a condition more similar to appropriate operative condition like to kamaks. By the experimental data the boundary conditions have been extrapolated to give the proper input for the 2D thermofluid-dynamics numerical simulations, developed by the commercial CFD numerical code. The benchmark of numerical simulation results with the experimental ones has been used to validate and tune the 2D thermofluid-dynamics numerical model that has been developed by the authors to replicate the LOVA conditions inside STARDUST. In present work, the facility, materials, numerical model, and relevant results will be presented.

  19. Representations of Numerical and Non-Numerical Magnitude Both Contribute to Mathematical Competence in Children

    Science.gov (United States)

    Lourenco, Stella F.; Bonny, Justin W.

    2017-01-01

    A growing body of evidence suggests that non-symbolic representations of number, which humans share with nonhuman animals, are functionally related to uniquely human mathematical thought. Other research suggesting that numerical and non-numerical magnitudes not only share analog format but also form part of a general magnitude system raises…

  20. Feed type based expert systems in mineral processing plants

    International Nuclear Information System (INIS)

    Jamsa-Jounela, S.-L.; Laine, S.; Laurila, H.

    1999-01-01

    Artificial Intelligence includes excellent tools for the control and supervision of industrial processes. Several thousand industrial applications have been reported worldwide. Recently, the designers of the AI systems have begun to hybridize the intelligent techniques, expert systems, fuzzy logic and neural networks, to enhance the capability of the AI systems. Expert systems have proved to be ideal candidates especially for the control of mineral processes. As successful case projects, expert system based on on-line classification of the feed type is described in this paper. The essential feature of this expert system is the classification of different feed types and their distinct control strategies at the plant. In addition to the classification, the expert system has a database containing information about how to handle the determined feed type. This self-learning database scans historical process data to suggest the best treatment for the ore type under processing. The system has been tested in two concentrators, the Outokumpu Finnmines Oy, Hitura mine and Outokumpu Chrome Oy, Kemi mine. (author)

  1. Extensive numerical study of a D-brane, anti-D-brane system in AdS{sub 5}/CFT{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hegedűs, Árpád [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)

    2015-04-20

    In this paper the hybrid-NLIE approach of http://dx.doi.org/10.1007/JHEP08(2012)022 is extended to the ground state of a D-brane anti-D-brane system in AdS/CFT. The hybrid-NLIE equations presented in the paper are finite component alternatives of the previously proposed TBA equations and they admit an appropriate framework for the numerical investigation of the ground state of the problem. Straightforward numerical iterative methods fail to converge, thus new numerical methods are worked out to solve the equations. Our numerical data confirm the previous TBA data. In view of the numerical results the mysterious L=1 case is also commented in the paper.

  2. Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-10-01

    Full Text Available In electric vehicles, the battery pack is one of the most important components that strongly influence the system performance. The battery thermal management system (BTMS is critical to remove the heat generated by the battery pack, which guarantees the appropriate working temperature for the battery pack. Air cooling is one of the most commonly-used solutions among various battery thermal management technologies. In this paper, the cooling performance of the parallel air-cooled BTMS is improved through choosing appropriate system parameters. The flow field and the temperature field of the system are calculated using the computational fluid dynamics method. Typical numerical cases are introduced to study the influences of the operation parameters and the structure parameters on the performance of the BTMS. The operation parameters include the discharge rate of the battery pack, the inlet air temperature and the inlet airflow rate. The structure parameters include the cell spacing and the angles of the divergence plenum and the convergence plenum. The results show that the temperature rise and the temperature difference of the batter pack are not affected by the inlet air flow temperature and are increased as the discharge rate increases. Increasing the inlet airflow rate can reduce the maximum temperature, but meanwhile significantly increase the power consumption for driving the airflow. Adopting smaller cell spacing can reduce the temperature and the temperature difference of the battery pack, but it consumes much more power. Designing the angles of the divergence plenum and the convergence plenum is an effective way to improve the performance of the BTMS without occupying more system volume. An optimization strategy is used to obtain the optimal values of the plenum angles. For the numerical cases with fixed power consumption, the maximum temperature and the maximum temperature difference at the end of the five-current discharge process for

  3. An Abel type cubic system

    Directory of Open Access Journals (Sweden)

    Gary R. Nicklason

    2015-07-01

    Full Text Available We consider center conditions for plane polynomial systems of Abel type consisting of a linear center perturbed by the sum of 2 homogeneous polynomials of degrees n and 2n-1 where $n \\ge 2$. Using properties of Abel equations we obtain two general systems valid for arbitrary values on n. For the cubic n=2 systems we find several sets of new center conditions, some of which show that the results in a paper by Hill, Lloyd and Pearson which were conjectured to be complete are in fact not complete. We also present a particular system which appears to be a counterexample to a conjecture by Zoladek et al. regarding rational reversibility in cubic polynomial systems.

  4. Numerical stabilization of entanglement computation in auxiliary-field quantum Monte Carlo simulations of interacting many-fermion systems.

    Science.gov (United States)

    Broecker, Peter; Trebst, Simon

    2016-12-01

    In the absence of a fermion sign problem, auxiliary-field (or determinantal) quantum Monte Carlo (DQMC) approaches have long been the numerical method of choice for unbiased, large-scale simulations of interacting many-fermion systems. More recently, the conceptual scope of this approach has been expanded by introducing ingenious schemes to compute entanglement entropies within its framework. On a practical level, these approaches, however, suffer from a variety of numerical instabilities that have largely impeded their applicability. Here we report on a number of algorithmic advances to overcome many of these numerical instabilities and significantly improve the calculation of entanglement measures in the zero-temperature projective DQMC approach, ultimately allowing us to reach similar system sizes as for the computation of conventional observables. We demonstrate the applicability of this improved DQMC approach by providing an entanglement perspective on the quantum phase transition from a magnetically ordered Mott insulator to a band insulator in the bilayer square lattice Hubbard model at half filling.

  5. Numerical study with experimental comparison of pressure waves in the air intake system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Carlos E.G.; Vielmo, Horacio A. [Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Mechanical Engineering Dept.], E-mails: vielmoh@mecanica.ufrgs.br; Hanriot, Sergio M. [Pontifical Catholic University of Minas Gerais (PUC-Minas), Belo Horizonte, MG (Brazil). Mechanical Engineering Dept.], E-mail: hanriot@pucminas.br

    2010-07-01

    The work investigates the pressure waves behavior in the intake system of an internal combustion engine. For the purpose of examining this problem, it was chosen an experimental study in order to validate the results of the present simulation. At the literature there are several experimental studies, and some numerical simulations, but the most of the numerical studies treat the problem only in one dimension in practical problems, or two dimensions in specific problems. Using a CFD code it is possible to analyze more complex systems, including tridimensional effects. The pulsating phenomenon is originated from the periodic movement of the intake valve, and produces waves that propagate within the system. The intake system studied was composed by a straight pipe connected to a 1000 cc engine with a single operating cylinder. The experiments were carried out in a flow bench. In the present work, the governing equations was discretized by Finite Volumes Method with an explicit formulation, and the time integration was made using the multi-stage Runge-Kutta time stepping scheme. The solution is independent of mesh or time step. The numerical analysis presents a good agreement with the experimental results. (author)

  6. Computational Analysis of Igbo Numerals in a Number-to-text Conversion System

    Directory of Open Access Journals (Sweden)

    Olufemi Deborah NINAN

    2017-12-01

    Full Text Available System for converting Arabic numerals to their textual equivalence is an important tool in Natural Language processing (NLP especially in high-level speech processing and machine translation. Such system is scarcely available for most African languages including the Igbo language. This translation system is essential as Igbo language is one of the three major Nigerian languages feared to be among the endangered African languages. The system was designed using sequence as well as activity diagram and implemented using the python programming language and PyQt. The qualitative evaluation was done by administering questionnaires to selected native Igbo speakers and experts to provide preferred representation of some random numbers. The responses were compared with the output of the system. The result of the qualitative evaluation showed that the system was able to generate correct and accurate representations for Arabic numbers between 1-1000 in Igbo language being the scope of this study. The resulting system can serve as an effective teaching and learning tool of the Igbo language.

  7. Performance investigation of low – Concentration photovoltaic systems under hot and arid conditions: Experimental and numerical results

    International Nuclear Information System (INIS)

    Yousef, Mohamed S.; Abdel Rahman, Ali K.; Ookawara, S.

    2016-01-01

    Highlights: • Influence of cooling on the performance of photovoltaic systems. • A comprehensive model (optical, thermal, and electrical) was developed. • Experimental measurements were conducted under hot climate conditions. • For conventional photovoltaic with cooling, about 11% more power was obtained. • For concentrated photovoltaic with cooling, about 15% more power was obtained. - Abstract: In this study, a comparative performance analysis was performed between a conventional photovoltaic system and a low-concentration photovoltaic system. Two typical photovoltaic modules and two compound parabolic concentrating photovoltaic systems were examined. A Cooling system was employed to lower the temperature of the solar cells in each of the two configurations. Experimental and numerical investigations of the performance of the two arrangements with and without cooling were presented. Experiments were conducted outdoors at the Egypt-Japan University of Science and Technology, subjected to the hot climate conditions of New Borg El-Arab City, Alexandria, Egypt (Longitude/Latitude: E 029°42′/N 30°55′). A comprehensive system model was established, which comprises an optical model, coupled with thermal and electrical models. The coupled model was developed analytically and solved numerically, using MATLAB software, to assess the overall performance of the two configurations, considering the concentration ratio of the concentrated photovoltaic system to be 2.4X. The results indicated that cooling the solar panels considerably improved the electrical power yield of the photovoltaic systems. By employing cooling, the temperatures of the conventional photovoltaic system and the concentrated photovoltaic system were effectively lowered by approximately 25% and 30%, respectively, resulting in a significant enhancement in the electrical power output of the photovoltaic system by 11% and that of the concentrated photovoltaic system by 15%. Furthermore, the

  8. Comparison of numerical models for calculating dispersion from accidental releases of pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W [Savannah River Lab., Aiken, SC; Cooper, R E; Baker, A J

    1982-01-01

    A modular, data-based system approach has been developed to facilitate computational simulation of multi-dimensional pollutant dispersion in atmospheric, steam, estuary, and groundwater applications. This system is used to assess effects of accidental releases of pollutants to the environment. Model sophistication ranges from simple statistical to complex three-dimensional numerical methods. The system used specifies desired degree of model sophistication from a terminal. The model used depends on the particular type of problem being solved, and on a basis of merit related to computer cost. The results of prediction for several model problems are presented.

  9. Numerical methods in multibody dynamics

    CERN Document Server

    Eich-Soellner, Edda

    1998-01-01

    Today computers play an important role in the development of complex mechanical systems, such as cars, railway vehicles or machines. Efficient simulation of these systems is only possible when based on methods that explore the strong link between numerics and computational mechanics. This book gives insight into modern techniques of numerical mathematics in the light of an interesting field of applications: multibody dynamics. The important interaction between modeling and solution techniques is demonstrated by using a simplified multibody model of a truck. Different versions of this mechanical model illustrate all key concepts in static and dynamic analysis as well as in parameter identification. The book focuses in particular on constrained mechanical systems. Their formulation in terms of differential-algebraic equations is the backbone of nearly all chapters. The book is written for students and teachers in numerical analysis and mechanical engineering as well as for engineers in industrial research labor...

  10. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    International Nuclear Information System (INIS)

    Lee, Hyun Jin; Kim, Jong Kyu; Lee, Sang Nam

    2015-01-01

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m 2 . When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system

  11. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jin [Kookmin Univ., Seoul (Korea, Republic of); Kim, Jong Kyu; Lee, Sang Nam [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-12-15

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m{sup 2}. When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system.

  12. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    Science.gov (United States)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  13. Predicting the Air Quality, Thermal Comfort and Draught Risk for a Virtual Classroom with Desk-Type Personalized Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Eusébio Z. E. Conceição

    2018-02-01

    Full Text Available This paper concerns the prediction of indoor air quality (IAQ, thermal comfort (TC and draught risk (DR for a virtual classroom with desk-type personalized ventilation system (PVS. This numerical study considers a coupling of the computational fluid dynamics (CFD, human thermal comfort (HTC and building thermal behavior (BTB numerical models. The following indexes are used: the predicted percentage of dissatisfied people (PPD index is used for the evaluation of the TC level; the carbon dioxide (CO2 concentration in the breathing zone is used for the calculation of IAQ; and the DR level around the occupants is used for the evaluation of the discomfort due to draught. The air distribution index (ADI, based in the TC level, the IAQ level, the effectiveness for heat removal and the effectiveness for contaminant removal, is used for evaluating the performance of the personalized air distribution system. The numerical simulation is made for a virtual classroom with six desks. Each desk is equipped with one PVS with two air terminal devices located overhead and two air terminal devices located below the desktop. In one numerical simulation six occupants are used, while in another simulation twelve occupants are considered. For each numerical simulation an air supply temperature of 20 °C and 24 °C is applied. The results obtained show that the ADI value is higher for twelve persons than for six persons in the classroom and it is higher for an inlet air temperature of 20 °C than for an inlet air temperature of 24 °C. In future works, more combinations of upper and lower air terminal devices located around the body area and more combinations of occupants located in the desks will be analyzed.

  14. A numerical integration approach suitable for simulating PWR dynamics using a microcomputer system

    International Nuclear Information System (INIS)

    Zhiwei, L.; Kerlin, T.W.

    1983-01-01

    It is attractive to use microcomputer systems to simulate nuclear power plant dynamics for the purpose of teaching and/or control system design. An analysis and a comparison of feasibility of existing numerical integration methods have been made. The criteria for choosing the integration step using various numerical integration methods including the matrix exponential method are derived. In order to speed up the simulation, an approach is presented using the Newton recursion calculus which can avoid convergence limitations in choosing the integration step size. The accuracy consideration will dominate the integration step limited. The advantages of this method have been demonstrated through a case study using CBM model 8032 microcomputer to simulate a reduced order linear PWR model under various perturbations. It has been proven theoretically and practically that the Runge-Kutta method and Adams-Moulton method are not feasible. The matrix exponential method is good at accuracy and fairly good at speed. The Newton recursion method can save 3/4 to 4/5 time compared to the matrix exponential method with reasonable accuracy. Vertical Barhis method can be expanded to deal with nonlinear nuclear power plant models and higher order models as well

  15. Numerical calculations in quantum field theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1984-01-01

    Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references

  16. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Saw, Lip Huat; Shi, Yixiang; Tay, Andrew A.O.

    2015-01-01

    Thermal management is crucial for the operation of electric vehicles because lithium ion batteries are vulnerable to excessive heat generation during fast charging or other severe scenarios. In this work, an optimized heat pipe thermal management system (HPTMS) is proposed for fast charging lithium ion battery cell/pack. A numerical model is developed and comprehensively validated with experimental results. This model is then employed to investigate the thermal performance of the HPTMS under steady state and transient conditions. It is found that a cylinder vortex generator placed in front of the heat pipe condensers in the coolant stream improves the temperature uniformity. The uses of cooper heat spreaders and cooling fins greatly improve the performance of the thermal management system. Experiments and transient simulations of heat pipe thermal management system integrated with batteries prove that the improved HPTMS is capable for thermal management of batteries during fast charging. The air-cooled HPTMS is infeasible for thermal management of batteries during fast charging at the pack level due to the limitation of low specific heat capacity. - Highlights: • We develop a numerical model for optimizing a heat pipe thermal management system for fast charging batteries. • The numerical model is comprehensively validated with experimental data. • A cylinder vortex generator is placed at the inlet of the cooling stream to improve the temperature uniformity. • We validate the effectiveness of the optimized system with integration of prismatic batteries

  17. Expert System Architecture for Rocket Engine Numerical Simulators: A Vision

    Science.gov (United States)

    Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.

    1998-01-01

    Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.

  18. Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods

    Science.gov (United States)

    Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi

    2010-06-01

    Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.

  19. Selecting numerical scales for pairwise comparisons

    International Nuclear Information System (INIS)

    Elliott, Michael A.

    2010-01-01

    It is often desirable in decision analysis problems to elicit from an individual the rankings of a population of attributes according to the individual's preference and to understand the degree to which each attribute is preferred to the others. A common method for obtaining this information involves the use of pairwise comparisons, which allows an analyst to convert subjective expressions of preference between two attributes into numerical values indicating preferences across the entire population of attributes. Key to the use of pairwise comparisons is the underlying numerical scale that is used to convert subjective linguistic expressions of preference into numerical values. This scale represents the psychological manner in which individuals perceive increments of preference among abstract attributes and it has important implications about the distribution and consistency of an individual's preferences. Three popular scale types, the traditional integer scales, balanced scales and power scales are examined. Results of a study of 64 individuals responding to a hypothetical decision problem show that none of these scales can accurately capture the preferences of all individuals. A study of three individuals working on an actual engineering decision problem involving the design of a decay heat removal system for a nuclear fission reactor show that the choice of scale can affect the preferred decision. It is concluded that applications of pairwise comparisons would benefit from permitting participants to choose the scale that best models their own particular way of thinking about the relative preference of attributes.

  20. Numerical computation of inventory policies, based on the EOQ/sigma-x value for order-point systems

    DEFF Research Database (Denmark)

    Alstrøm, Poul

    2001-01-01

    This paper examines the numerical computation of two control parameters, order size and order point in the well-known inventory control model, an (s,Q)system with a beta safety strategy. The aim of the paper is to show that the EOQ/sigma-x value is both sufficient for controlling the system and e...

  1. Numerical computation of inventory policies, based on the EOQ/sigma-x value for order-point systems

    DEFF Research Database (Denmark)

    Alstrøm, Poul

    2000-01-01

    This paper examines the numerical computation of two control parameters, order size and order point in the well-known inventory control model, an (s,Q)system with a beta safety strategy. The aim of the paper is to show that the EOQ/sigma-x value is both sufficient for controlling the system and e...

  2. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices.

    Science.gov (United States)

    Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már

    2014-08-01

    A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. MRI of the spinocerebellar degeneration (multiple system atrophy, Holmes type, and Menzel-Joseph type)

    International Nuclear Information System (INIS)

    Mukai, Eiichiro; Makino, Naoki.

    1991-01-01

    We have analyzed MRI in 33 patients with several forms of spinocerebellar degeneration; 17 with multiple system atrophy, 10 with Holmes type, and 6 with Menzel-Joseph type. The MRIs were obtained using a 1.5-T GEMR System. Patients with multiple system atrophy demonstrated: atrophy of the brain stem, particularly basis pontis; decreased signal intensity of the white matter of pons; atrophy of the white matter of cerebellum; atrophy and decreased signal intensity of the putamen, particularly along their lateral and posterior portions; and atrophy of the cerebrum. Patients with Holmes type showed: atrophy of the cerebellum; atrophy of the vermis more than hemispheres; and nuclei of the cerebellum with no decreased intensity on T 2 -weighted sequences. Patients with Menzel-Joseph type demonstrated moderate atrophy of the brain stem and mild atrophy of the white matter of cerebellum. MRI is a useful diagnostic tool in the management of the spinocerebellar degeneration. (author)

  4. Numerical studies of entangled positive-partial-transpose states in composite quantum systems

    International Nuclear Information System (INIS)

    Leinaas, Jon Magne; Sollid, Per Oyvind; Myrheim, Jan

    2010-01-01

    We report here on the results of numerical searches for PPT states in a series of bipartite quantum systems of low dimensions. PPT states are represented by density matrices that remain positive semidefinite under partial transposition with respect to one of the subsystems, and our searches are for such states with specified ranks for the density matrix and its partial transpose. For a series of different ranks extremal PPT states and nonextremal entangled PPT states have been found. The results are listed in tables and charted in diagrams. Comparison of the results for systems of different dimensions reveals several regularities. We discuss lower and upper bounds on the ranks of extremal PPT states.

  5. Numerical and classical analysis of V/STOL aircraft using selected propulsion systems

    Science.gov (United States)

    Wilson, S. B., III; Kidwell, G. H., Jr.; Christiansen, R. S.

    1981-01-01

    The development needed for the evolution of selected V/STOL research vehicles into optimized antisubmarine warfare (ASW) aircraft configurations, using numerical procedures and traditional analytical methods, has been examined. Three propulsion systems, which represent state-of-the-art development aimed at solving the thrust-vectoring and attitude-control problems of V/STOL aircraft, are analyzed. The use of NASA computer programs for aircraft synthesis (ACSYNT), and for optimizing configurations (COMMIN), coupled with contractor-supplied propulsion system data provides for accurate performance prediction of the selected ASW configurations. Particular emphasis on the transition phase between the research vehicle and the optimized configuration demonstrates the strengths and weaknesses of using generic research aircraft instead of building prototypes to demonstrate new technology

  6. Numerical solution of stiff systems of ordinary differential equations with applications to electronic circuits

    Science.gov (United States)

    Rosenbaum, J. S.

    1971-01-01

    Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.

  7. Evaluation of a stream channel-type system for southeast Alaska.

    Science.gov (United States)

    M.D. Bryant; P.E. Porter; S.J. Paustian

    1991-01-01

    Nine channel types within a hierarchical channel-type classification system (CTCS) were surveyed to determine relations between salmonid densities and species distribution, and channel type. Two other habitat classification systems and the amount of large woody debris also were compared to species distribution and salmonid densities, and to stream channel types....

  8. Mathematical and Numerical Modeling in Maritime Geomechanics

    Directory of Open Access Journals (Sweden)

    Miguel Martín Stickle

    2012-04-01

    Full Text Available A theoretical and numerical framework to model the foundation of marine offshore structures is presented. The theoretical model is composed by a system of partial differential equations describing coupling between seabed solid skeleton and pore fluids (water, air, oil,... combined with a system of ordinary differential equations describing the specific constitutive relation of the seabed soil skeleton. Once the theoretical model is described, the finite element numerical procedure to achieve an approximate solution of the overning equations is outlined. In order to validate the proposed theoretical and numerical framework the seaward tilt mechanism induced by the action of breaking waves over a vertical breakwater is numerically reproduced. The results numerically attained are in agreement with the main conclusions drawn from the literature associated with this failure mechanism.

  9. Numerical analysis of natural convection in a double-layer immiscible system

    International Nuclear Information System (INIS)

    Gubaidullin, A.A.; Sehgal, B.R.

    2001-01-01

    In the present paper numerical analysis has been applied to study the natural convection heat transfer in a system composed of two immiscible fluids with uniform internal heat generation in the lower layer or in both layers enclosed in a rectangular or in a semi-circular vessel. The objective of the work is to perform a parametric study to assess the effect of physical properties on the heat transfer characteristics as well as to complement results obtained from experiments by means of CFD simulations for a range of lower Rayleigh number and combine the experimental data and the computational results. (author)

  10. Water Curtain System Pre-design for Crude Oil Storage URCs : A Numerical Modeling and Genetic Programming Approach

    NARCIS (Netherlands)

    Ghotbi Ravandi, Ebrahim; Rahmannejad, Reza; Karimi-Nasab, Saeed; Sarrafi, Amir; Raoof, Amir

    In this paper the main criteria of the water curtain system for unlined rock caverns (URCs) is described. By the application of numerical modeling and genetic programming (GP), a method for water curtain system pre-design for Iranian crude oil storage URCs (common dimension worldwide) is presented.

  11. Approximate numerical abilities and mathematics: Insight from correlational and experimental training studies.

    Science.gov (United States)

    Hyde, D C; Berteletti, I; Mou, Y

    2016-01-01

    Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test. © 2016 Elsevier B.V. All rights reserved.

  12. Information system conflicts: causes and types

    Directory of Open Access Journals (Sweden)

    Albert Boonstra

    2015-01-01

    Full Text Available Conflicts are an inherent part of organizational life and managers deal with confrontations and conflicts on an almost daily basis. Information Systems (IS implementations are a type of change that often leads to open or hidden conflicts. Managers and others involved can only deal with such conflicts effectively if they understand the nature and causes of information system conflicts (IS conflicts. To contribute to such an understanding, this study focuses on the analysis of IS conflicts. In so doing, it aims to identify various types of IS conflicts and to develop a framework that can be helpful in assessing these conflicts. To this end, we have conducted a meta-ethnographic study – that is, we synthesized earlier case studies in which IS conflicts are described. We purposefully selected 11 descriptions of IS conflicts and we analyzed the topics, contexts, and processes of these conflicts. Based on this analysis, we propose a two-dimensional framework of IS conflicts that leads to a categorization involving four IS conflict types: task; implementation process; structure; and value conflicts. Based on the conflicts that were studied, this paper also reveals that, in reality, many IS conflicts have a hybrid form and develop from one type to another over time.

  13. Mission reliability of semi-Markov systems under generalized operational time requirements

    International Nuclear Information System (INIS)

    Wu, Xiaoyue; Hillston, Jane

    2015-01-01

    Mission reliability of a system depends on specific criteria for mission success. To evaluate the mission reliability of some mission systems that do not need to work normally for the whole mission time, two types of mission reliability for such systems are studied. The first type corresponds to the mission requirement that the system must remain operational continuously for a minimum time within the given mission time interval, while the second corresponds to the mission requirement that the total operational time of the system within the mission time window must be greater than a given value. Based on Markov renewal properties, matrix integral equations are derived for semi-Markov systems. Numerical algorithms and a simulation procedure are provided for both types of mission reliability. Two examples are used for illustration purposes. One is a one-unit repairable Markov system, and the other is a cold standby semi-Markov system consisting of two components. By the proposed approaches, the mission reliability of systems with time redundancy can be more precisely estimated to avoid possible unnecessary redundancy of system resources. - Highlights: • Two types of mission reliability under generalized requirements are defined. • Equations for both types of reliability are derived for semi-Markov systems. • Numerical methods are given for solving both types of reliability. • Simulation procedure is given for estimating both types of reliability. • Verification of the numerical methods is given by the results of simulation

  14. Numerical methods used in simulation

    International Nuclear Information System (INIS)

    Caseau, Paul; Perrin, Michel; Planchard, Jacques

    1978-01-01

    The fundamental numerical problem posed by simulation problems is the stability of the resolution diagram. The system of the most used equations is defined, since there is a family of models of increasing complexity with 3, 4 or 5 equations although only models with 3 and 4 equations have been used extensively. After defining what is meant by explicit or implicit, the best established stability results is given for one-dimension problems and then for two-dimension problems. It is shown that two types of discretisation may be defined: four and eight point diagrams (in one or two dimensions) and six and ten point diagrams (in one or two dimensions). To end, some results are given on problems that are not usually treated very much, i.e. non-asymptotic stability and the stability of diagrams based on finite elements [fr

  15. Convergence of a numerical method for the compressible Navier-Stokes system on general domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Karper, T.; Michálek, Martin

    2016-01-01

    Roč. 134, č. 4 (2016), s. 667-704 ISSN 0029-599X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : numerical methods * Navier-Stokes system Subject RIV: BA - General Mathematics Impact factor: 2.152, year: 2016 http://link.springer.com/article/10.1007%2Fs00211-015-0786-6

  16. Convergence of a numerical method for the compressible Navier-Stokes system on general domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Karper, T.; Michálek, Martin

    2016-01-01

    Roč. 134, č. 4 (2016), s. 667-704 ISSN 0029-599X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : numerical methods * Navier - Stokes system Subject RIV: BA - General Mathematics Impact factor: 2.152, year: 2016 http://link.springer.com/article/10.1007%2Fs00211-015-0786-6

  17. Numerical methods in software and analysis

    CERN Document Server

    Rice, John R

    1992-01-01

    Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm

  18. Developmental and individual differences in pure numerical estimation.

    Science.gov (United States)

    Booth, Julie L; Siegler, Robert S

    2006-01-01

    The authors examined developmental and individual differences in pure numerical estimation, the type of estimation that depends solely on knowledge of numbers. Children between kindergarten and 4th grade were asked to solve 4 types of numerical estimation problems: computational, numerosity, measurement, and number line. In Experiment 1, kindergartners and 1st, 2nd, and 3rd graders were presented problems involving the numbers 0-100; in Experiment 2, 2nd and 4th graders were presented problems involving the numbers 0-1,000. Parallel developmental trends, involving increasing reliance on linear representations of numbers and decreasing reliance on logarithmic ones, emerged across different types of estimation. Consistent individual differences across tasks were also apparent, and all types of estimation skill were positively related to math achievement test scores. Implications for understanding of mathematics learning in general are discussed. Copyright 2006 APA, all rights reserved.

  19. A Type System for Dynamic Web Documents

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff; Sandholm, Anders

    2000-01-01

    Many interactive Web services use the CGI interface for communication with clients. They will dynamically create HTML documents that are presented to the client who then resumes the interaction by submitting data through incorporated form fields. This protocol is difficult to statically type-chec...... system is based on a flow analysis of which we prove soundness. We present an efficient runtime implementation that respects the semantics of only well-typed programs. This work is fully implemented as part of the system for defining interactive Web services.......Many interactive Web services use the CGI interface for communication with clients. They will dynamically create HTML documents that are presented to the client who then resumes the interaction by submitting data through incorporated form fields. This protocol is difficult to statically type...

  20. Iterated Hamiltonian type systems and applications

    Science.gov (United States)

    Tiba, Dan

    2018-04-01

    We discuss, in arbitrary dimension, certain Hamiltonian type systems and prove existence, uniqueness and regularity properties, under the independence condition. We also investigate the critical case, define a class of generalized solutions and prove existence and basic properties. Relevant examples and counterexamples are also indicated. The applications concern representations of implicitly defined manifolds and their perturbations, motivated by differential systems involving unknown geometries.

  1. A Web-Server of Cell Type Discrimination System

    Directory of Open Access Journals (Sweden)

    Anyou Wang

    2014-01-01

    Full Text Available Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and somatic cells (SCs. Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.

  2. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  3. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  4. Experimental and Numerical Analysis of S-CO2 Critical Flow for SFR Recovery System Design

    International Nuclear Information System (INIS)

    Kim, Min Seok; Jung, Hwa-Young; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik

    2016-01-01

    This paper presents both numerical and experimental studies of the critical flow of S-CO 2 while special attention is given to the turbo-machinery seal design. A computational critical flow model is described first. The experiments were conducted to validate the critical flow model. Various conditions have been tested to study the flow characteristic and provide validation data for the model. The comparison of numerical and experimental results of S-CO 2 critical flow will be presented. In order to eliminate SWR, a concept of coupling the Supercritical CO 2 (S-CO 2 ) cycle with SFR has been proposed. It is known that for a closed system controlling the inventory is important for stable operation and achieving high efficiency. Since the S-CO 2 power cycle is a highly pressurized system, certain amount of leakage flow is inevitable in the rotating turbo-machinery via seals. To simulate the CO 2 leak flow in a turbo-machinery with higher accuracy in the future, the real gas effect and friction factor will be considered for the CO 2 critical flow model. Moreover, experimentally obtained temperature data were somewhat different from the numerically obtained temperature due to the insufficient insulation and large thermal inertia of the CO 2 critical flow facility. Insulation in connecting pipes and the low-pressure tank will be added and additional tests will be conducted

  5. Numerical prediction analysis of propeller exciting force for hull–propeller–rudder system in oblique flow

    Directory of Open Access Journals (Sweden)

    Shuai Sun

    2018-01-01

    Full Text Available In order to analyze the characteristics of propeller exciting force, the hybrid grid is adopted and the numerical prediction of KCS ship model is performed for hull–propeller–rudder system by Reynolds-Averaged Navier Stokes (RANS method and volume of fluid (VOF model. Firstly, the numerical simulation of hydrodynamics for bare hull at oblique state is carried out. The results show that with the increasing of the drift angle, the coefficients of resistance, side force and yaw moment are constantly increasing, and the bigger the drift angle, the worse the overall uniformity of propeller disk. Then, propeller bearing force for hull–propeller–rudder system in oblique flow is calculated. It is found that the propeller thrust and torque fluctuation coefficient peak in drift angle are greater than that in straight line navigation, and the negative drift angle is greater than the positive. The fluctuation peak variation law of coefficient of side force and bending moment are different due to various causes.

  6. New Trends in Model Coupling Theory, Numerics and Applications

    International Nuclear Information System (INIS)

    Coquel, F.; Godlewski, E.; Herard, J. M.; Segre, J.

    2010-01-01

    This special issue comprises selected papers from the workshop New Trends in Model Coupling, Theory, Numerics and Applications (NTMC'09) which took place in Paris, September 2 - 4, 2009. The research of optimal technological solutions in a large amount of industrial systems requires to perform numerical simulations of complex phenomena which are often characterized by the coupling of models related to various space and/or time scales. Thus, the so-called multi-scale modelling has been a thriving scientific activity which connects applied mathematics and other disciplines such as physics, chemistry, biology or even social sciences. To illustrate the variety of fields concerned by the natural occurrence of model coupling we may quote: meteorology where it is required to take into account several turbulence scales or the interaction between oceans and atmosphere, but also regional models in a global description, solid mechanics where a thorough understanding of complex phenomena such as propagation of cracks needs to couple various models from the atomistic level to the macroscopic level; plasma physics for fusion energy for instance where dense plasmas and collisionless plasma coexist; multiphase fluid dynamics when several types of flow corresponding to several types of models are present simultaneously in complex circuits; social behaviour analysis with interaction between individual actions and collective behaviour. (authors)

  7. Surgical clothing systems in laminar airflow operating room: a numerical assessment.

    Science.gov (United States)

    Sadrizadeh, Sasan; Holmberg, Sture

    2014-01-01

    This study compared two different laminar airflow distribution strategies - horizontal and vertical - and investigated the effectiveness of both ventilation systems in terms of reducing the sedimentation and distribution of bacteria-carrying particles. Three different staff clothing systems, which resulted in source strengths of 1.5, 4 and 5 CFU/s per person, were considered. The exploration was conducted numerically using a computational fluid dynamics technique. Active and passive air sampling methods were simulated in addition to recovery tests, and the results were compared. Model validation was performed through comparisons with measurement data from the published literature. The recovery test yielded a value of 8.1 min for the horizontal ventilation scenario and 11.9 min for the vertical ventilation system. Fewer particles were captured by the slit sampler and in sedimentation areas with the horizontal ventilation system. The simulated results revealed that under identical conditions in the examined operating room, the horizontal laminar ventilation system performed better than the vertical option. The internal constellation of lamps, the surgical team and objects could have a serious effect on the movement of infectious particles and therefore on postoperative surgical site infections. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  8. Fitting Formulae and Constraints for the Existence of S-type and P-type Habitable Zones in Binary Systems

    International Nuclear Information System (INIS)

    Wang Zhaopeng; Cuntz, Manfred

    2017-01-01

    We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us to gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.

  9. Fitting Formulae and Constraints for the Existence of S-type and P-type Habitable Zones in Binary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhaopeng; Cuntz, Manfred, E-mail: zhaopeng.wang@mavs.uta.edu, E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2017-10-01

    We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us to gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.

  10. Application of CPML to two-dimension numerical simulation of nuclear electromagnetic pulse from air explosions

    International Nuclear Information System (INIS)

    Gao Chunxia; Wang Lianghou

    2005-01-01

    The characteristics of different types of PML were analyzed and the convolutional PML was chosen to truncate the open boundaries in numerical simulation of nuclear electromagnetic pulse from air explosions. On the basis of the split-field PML and the plane-wave solution of electromagnetic field in free space, the unsplit-field PML was constructed. By applying the convolutional theorem of Fourier transform, the discrete iterative equations of electromagnetic field components were presented in the CPML media under the two-dimension prolate-spheroidal coordinate system. The numerical results indicate that the method of CPML can largely decrease calculation errors of boundary fields. (authors)

  11. Analytic and numerical studies of Scyllac equilibrium

    International Nuclear Information System (INIS)

    Barnes, D.C.; Brackbill, J.U.; Dagazian, R.Y.; Freidberg, J.P.; Schneider, W.; Betancourt, O.; Garabedian, P.

    1976-01-01

    The results of both numerical and analytic studies of the Scyllac equilibria are presented. Analytic expansions are used to derive equilibrium equations appropriate to noncircular cross sections, and compute the stellarator fields which produce toroidal force balance. Numerical algorithms are used to solve both the equilibrium equations and the full system of dynamical equations in three dimensions. Numerical equilibria are found for both l = 1,0 and l= 1,2 systems. It is found that the stellarator fields which produce equilibria in the l = 1.0 system are larger for diffuse than for sharp boundary plasma profiles, and that the stability of the equilibria depends strongly on the harmonic content of the stellarator fields

  12. Numerical modeling assistance system in finite element analysis for the structure of an assembly

    International Nuclear Information System (INIS)

    Nakajima, Norihiro; Nishida, Akemi; Kawakami, Yoshiaki; Suzuki, Yoshio; Sawa, Kazuhiro; Iigaki, Kazuhiko

    2015-01-01

    The objective of structural analysis and seismic response analysis are well recognized and utilized as one of sophisticated analysis tools for design objects in the nuclear engineering. The way to design nuclear facilities is always in compromising with many index, such as costs, performance, robustness and so on, but the most important issues is the safety. It is true the structural analysis and seismic response analysis plays an important role to insure the safety, since it is well known that Japan is always facing to the earthquake. In this paper, a numerical analysis's controlling and managing system is implemented on a supercomputer, which controls the modelling process and data treating for structural robustness, although a numerical analysis's manager only controls a structural analysis by finite element method. The modeling process is described by the list of function ID and its procedures in a data base. The analytical modeling manager executes the process by order of the lists for simulation procedures. The manager controls the intention of an analysis by changing the analytical process one to another. Modeling process was experimentally found that may subject to the intention of designing index. The numerical experiments were carried out with static analyses and dynamic analyses. The results of its experiment introduce reasonable discussion to understand the accuracy of simulation. In the numerical experiments, K, supercomputer is utilized by using parallel computing resource with the controlling and managing system. The structural analysis and seismic response analysis are done by the FIEST, finite element analysis for the structure of an assembly, which carries out the simulation by gathering components. As components are attached to one another to build an assembly, and, therefore, the interactions between the components due to differences in material properties and their connection conditions considerably affect the behavior of an assembly. FIESTA is

  13. 3D printing application and numerical simulations in a fracture system

    Science.gov (United States)

    Yoon, H.; Martinez, M. J.

    2017-12-01

    The hydrogeological and mechanical properties in fractured and porous media are fundamental to predicting coupled multiphysics processes in the subsurface. Recent advances in experimental methods and multi-scale imaging capabilities have revolutionized our ability to quantitatively characterize geomaterials and digital counterparts are now routinely used for numerical simulations to characterize petrophysical and mechanical properties across scales. 3D printing is a very effective and creative technique that reproduce the digital images in a controlled way. For geoscience applications, 3D printing can be co-opted to print reproducible porous and fractured structures derived from CT-imaging of actual rocks and theoretical algorithms for experimental testing. In this work we used a stereolithography (SLA) method to create a single fracture network. The fracture in shale was first scanned using a microCT system and then the digital fracture network was printed into two parts and assembled. Aperture ranges from 0.3 to 1 mm. In particular, we discuss the design of single fracture network and the progress of printing practices to reproduce the fracture network system. Printed samples at different scales are used to measure the permeability and surface roughness. Various numerical simulations including (non-)reactive transport and multiphase flow cases are performed to study fluid flow characterization. We will also discuss the innovative advancement of 3D printing techniques applicable for coupled processes in the subsurface. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  14. Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method

    International Nuclear Information System (INIS)

    Mittal, R.C.; Rohila, Rajni

    2016-01-01

    In this paper, we have applied modified cubic B-spline based differential quadrature method to get numerical solutions of one dimensional reaction-diffusion systems such as linear reaction-diffusion system, Brusselator system, Isothermal system and Gray-Scott system. The models represented by these systems have important applications in different areas of science and engineering. The most striking and interesting part of the work is the solution patterns obtained for Gray Scott model, reminiscent of which are often seen in nature. We have used cubic B-spline functions for space discretization to get a system of ordinary differential equations. This system of ODE’s is solved by highly stable SSP-RK43 method to get solution at the knots. The computed results are very accurate and shown to be better than those available in the literature. Method is easy and simple to apply and gives solutions with less computational efforts.

  15. Suspension system vibration analysis with regard to variable type ability to smooth road irregularities

    Science.gov (United States)

    Rykov, S. P.; Rykova, O. A.; Koval, V. S.; Makhno, D. E.; Fedotov, K. V.

    2018-03-01

    The paper aims to analyze vibrations of the dynamic system equivalent of the suspension system with regard to tyre ability to smooth road irregularities. The research is based on static dynamics for linear systems of automated control, methods of correlation, spectral and numerical analysis. Input of new data on the smoothing effect of the pneumatic tyre reflecting changes of a contact area between the wheel and road under vibrations of the suspension makes the system non-linear which requires using numerical analysis methods. Taking into account the variable smoothing ability of the tyre when calculating suspension vibrations, one can approximate calculation and experimental results and improve the constant smoothing ability of the tyre.

  16. Exponential Convergence for Numerical Solution of Integral Equations Using Radial Basis Functions

    Directory of Open Access Journals (Sweden)

    Zakieh Avazzadeh

    2014-01-01

    Full Text Available We solve some different type of Urysohn integral equations by using the radial basis functions. These types include the linear and nonlinear Fredholm, Volterra, and mixed Volterra-Fredholm integral equations. Our main aim is to investigate the rate of convergence to solve these equations using the radial basis functions which have normic structure that utilize approximation in higher dimensions. Of course, the use of this method often leads to ill-posed systems. Thus we propose an algorithm to improve the results. Numerical results show that this method leads to the exponential convergence for solving integral equations as it was already confirmed for partial and ordinary differential equations.

  17. Numerical analysis of the in-well vapor-stripping system demonstration at Edwards Air Force Base

    International Nuclear Information System (INIS)

    White, M.D.; Gilmore, T.J.

    1996-10-01

    Numerical simulations, with the Subsurface Transport Over Multiple Phases (STOMP) simulator, were applied to the field demonstration of an in-well vapor-stripping system at Edwards Air Force Base (AFB), near Mojave, California. The demonstration field site on the Edwards AFB was previously contaminated from traversing groundwater that was contained a varied composition of volatile organic compounds (VOCs), which primarily includes trichloroethylene (TCE). Contaminant TCE originated from surface basin that had been used to collect runoff during the cleaning of experimental rocket powered planes in the 1960s and 1970s. This report documents those simulations and associated numerical analyses. A companion report documents the in- well vapor-stripping demonstration from a field perspective

  18. Relations of Different Types of Numerical Magnitude Representations to Each Other and to Mathematics Achievement

    Science.gov (United States)

    Fazio, Lisa K.; Bailey, Drew H.; Thompson, Clarissa A.; Siegler, Robert S.

    2014-01-01

    We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both…

  19. Identifying generalized Fitzhugh-Nagumo equation from a numerical solution of Hodgkin-Huxley model

    Directory of Open Access Journals (Sweden)

    Nikola V. Georgiev

    2003-01-01

    Full Text Available An analytic time series in the form of numerical solution (in an appropriate finite time interval of the Hodgkin-Huxley current clamped (HHCC system of four differential equations, well known in the neurophysiology as an exact empirical model of excitation of a giant axon of Loligo, is presented. Then we search for a second-order differential equation of generalized Fitzhugh-Nagumo (GFN type, having as a solution the given single component (action potential of the numerical solution. The given time series is used as a basis for reconstructing orders, powers, and coefficients of the polynomial right-hand sides of GFN equation approximately governing the process of action potential. For this purpose, a new geometrical method for determining phase space dimension of the unknown dynamical system (GFN equation and a specific modification of least squares method for identifying unknown coefficients are developed and applied.

  20. Type-IVC Secretion System: A Novel Subclass of Type IV Secretion System (T4SS) Common Existing in Gram-Positive Genus Streptococcus

    Science.gov (United States)

    Chen, Chen; Gao, George F.

    2012-01-01

    A growing number of pathogens are being found to possess specialized secretion systems which they use in various ways to subvert host defenses. Type IV secretion system (T4SS) is one of versatile secretion systems essential for the virulence and even survival of some bacteria species, and they enable the secretion of protein and DNA substrates across the cell envelope. T4SS was once believed to be present only in Gram-negative bacteria. In this study, we present evidence of a new subclass of T4SS, Type-IVC secretion system and indicate its common existence in the Gram-positive bacterial genus Streptococcus. We further identified that VirB1, VirB4, VirB6 and VirD4 are the minimal key components of this system. Using genome comparisons and evolutionary relationship analysis, we proposed that Type-IVC secretion system is movable via transposon factors and mediates the conjugative transfer of DNA, enhances bacterial pathogenicity, and could cause large-scale outbreaks of infections in humans. PMID:23056296

  1. New type of radiation instrumentation system

    International Nuclear Information System (INIS)

    Matsuo, Keichi; Takaoka, Akira; Uranaka, Yasuo

    2000-01-01

    The Mitsubishi Electric Co., Ltd. developed a radiation instrumentation system introduced some recent techniques such as computation technique, network technique and so on into conventional radiation detection aiming at general market except power generation company. In a conventional system, a detector and an operation processing board was placed at a field and center, respectively, and a feeble pulse signal from the detector was transferred to the operation processing board. Then, on establishment of cables, detectors and operation processing board, it is essential to carry out engineering planning and field engineering conceiving on noise countermeasure. Noise resistance of the new type of radiation instrumentation system, not by adding operation processing function and network interface function into a detector unit in a field to transfer feeble signal, but by transferring testing result as a digital signal. And, noise removing function capable of selectively passing only signal pulse waveform from the detector to judge its signal waveform was also added to a detector unit in the field, to carry out a thoroughly removing noise. In addition, by connecting between each apparatus placed at the field with a network a system capable of reducing some cable engineering could be executed. Here were introduced on abstract of this new type of radiation instrumentation system and on noise removing function of its characteristics. (G.K.)

  2. Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor

    International Nuclear Information System (INIS)

    Saha Ray, S.

    2012-01-01

    Highlights: ► In this paper stochastic neutron point kinetic equations have been analyzed. ► Euler–Maruyama method and Strong Taylor 1.5 order method have been discussed. ► These methods are applied for the solution of stochastic point kinetic equations. ► Comparison between the results of these methods and others are presented in tables. ► Graphs for neutron and precursor sample paths are also presented. -- Abstract: In the present paper, the numerical approximation methods, applied to efficiently calculate the solution for stochastic point kinetic equations () in nuclear reactor dynamics, are investigated. A system of Itô stochastic differential equations has been analyzed to model the neutron density and the delayed neutron precursors in a point nuclear reactor. The resulting system of Itô stochastic differential equations are solved over each time-step size. The methods are verified by considering different initial conditions, experimental data and over constant reactivities. The computational results indicate that the methods are simple and suitable for solving stochastic point kinetic equations. In this article, a numerical investigation is made in order to observe the random oscillations in neutron and precursor population dynamics in subcritical and critical reactors.

  3. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    Science.gov (United States)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  4. Numerical study on oil supply system of a rotary compressor

    International Nuclear Information System (INIS)

    Wu, Jianhua; Wang, Gang

    2013-01-01

    The oil supply system is a crucial reliability issue for rotary compressors. This paper provides a general method for analyzing the oil supply system of a rotary compressor by using computational fluid dynamics (CFD). The process includes establishing the physical model, dividing computational grid, setting boundary conditions, calculating leakage rates through the roller end clearances, translating the dynamic issue into the static issue and so on. Validation of the rationality of the oil supply system model has been made by the measurement of the main bearing oil flow rates. The effects of operating conditions of the compressor, the oil level height of the oil sump and the main design parameters of the oil supply system on the oil supply characteristics are analyzed by numerical simulation. It is found that the main bearing oil flow rate varies circularly along with the rotation of the shaft. The shape and inclination angle of the spiral groove also influence the main bearing oil flow rate. The oil leakage rates through the roller end clearances depend largely on the operating conditions. In addition, the oil level height of the oil sump has a huge effect on the total oil flow rate. -- Highlights: • A CFD method for analyzing the oil supply system of rotary compressor is presented. • Leakage through the roller end clearances depends on the operating condition. • Groove shape and inclination angle are the main design parameters of spiral grooves. • A parabolic interface of oil and gas can be formed in the gallery of the shaft. • Single-flow model and steady solver can be applied to the oil supply system

  5. Transportation package design using numerical optimization

    International Nuclear Information System (INIS)

    Harding, D.C.; Witkowski, W.R.

    1993-01-01

    Since the design of transportation packages involves a complex coupling of structural, thermal and radiation shielding analyses and must follow very strict design constraints, numerical optimization provides the potential for more efficient container designs. In numerical optimization, the requirements of the design problem are mathematically formulated through the use of an objective function and constraints. The objective function(s), e.g., package weight, cost, volume, or combination thereof, is the function to be minimized or maximized by altering a set of design variables that define the package's shape and dimensions. Constraints are limitations on the performance of the system, such as resisting structural and thermal accident environments. Two constraints defined for an example wire mesh composite Type B package are: 1) deformation in the containment vessel seal region remains small enough throughout the 10 CFR-71 accident conditions to meet containment criteria, and 2) the elastomeric seal region remains below its operational temperature limit to guarantee seal integrity in the fire environment. The first constraint of a minimum energy absorbing layer thickness is evaluated with finite element analyses of the proposed dynamic crush accident criteria. The second constraint is evaluated with a 1-D transient thermal finite difference code parametrized for variable composite layer thicknesses, and is integrated with the optimization process. (J.P.N.)

  6. Study and simulation of a parallel numerical processing machine

    International Nuclear Information System (INIS)

    Bel Hadj, Slaheddine

    1981-12-01

    This study has been carried out in the perspective of the implementation on a minicomputer of the NEPTUNIX package (software for the resolution of very large algebra-differential equation systems). Aiming at increasing the system performance, a previous research work has shown the necessity of reducing the execution time of certain numerical computation tasks, which are of frequent use. It has also demonstrated the feasibility of handling these tasks with efficient algorithms of parallel type. The present work deals with the study and simulation of a parallel architecture processor adapted to the fast execution of these algorithms. A minicomputer fitted with a connection to such a parallel processor, has a greatly extended computing power. Then the architecture of a parallel numerical processor, based on the use of VLSI microprocessors and co-processors, is described. Its design aims at the best cost / performance ratio. The last part deals with the simulation processor with the 'CHAMBOR' program. Results show an increasing factor of 30 in speed, in comparison with the execution on a MITRA 15 minicomputer. Moreover the conflicts importance, mainly at the level of access to a shared resource is evaluated. Although this implementation has been designed having in mind a dedicated application, other uses could be envisaged, particularly for the simulation of nuclear reactors: operator guiding system, the behavioural study under accidental circumstances, etc. (author) [fr

  7. AUTOMATION OF ACCOUNTING THE NUMERIC PARTS AND UNITS AT MANUFACTURING ENTERPRISES

    Directory of Open Access Journals (Sweden)

    E. S. Vasev

    2017-01-01

    Full Text Available Objectives. The substantiation of the need and disclosure of the substantive and technological features of the design and  development of an information system for the registration of numeric parts and units at a manufacturing enterprise.Methods. Case-technology,object-oriented programming.Results. The development mechanism of an information system for registering numeric parts and units at a manufacturing enterprise is  described. The development process begins with an analysis of the  subject area, wherein the requirements for the information system  are defined. Two business processes related to the activity of the  production preparation engineer are identified and the entities and  types of these attributes are indicated. Using the case-tool  DBdesigner 4, a data scheme is constructed and code is generated for scripts used to create a database in the SQL language. The database is implemented on MySQL. The web-interface of the  information system is designed: website scheme, action sequence  diagram, website logical structure and layout. The resulting data  scheme is implemented within MySQL data base management  system (DBMS and a web-based system interface developed using  object-oriented programming using Notepad ++ text editor. The  web-interface allows a multi-user working mode to be provided with the information system. The separation of basic and summary data among different tabs is performed in order to simplify the work of personnel and minimise the human factor associated with the processing of disparate data. The requirements to be met by the developed information system are defined.All software used in the development process is free.Conclusion. The selection of software tools for the development of a system for accounting of numeric parts and units at a manufacturing enterprise is implemented, allowing the conceptual, logical and physical design of a database – as well as its web  interface – to

  8. Numerical Simulation of a Solar Domestic Hot Water System

    International Nuclear Information System (INIS)

    Mongibello, L; Graditi, G; Bianco, N; Di Somma, M; Naso, V

    2014-01-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed

  9. Numerical Simulation of a Solar Domestic Hot Water System

    Science.gov (United States)

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  10. Numerical FEM Analyses of primary coolant system at NPP Temelin

    International Nuclear Information System (INIS)

    Junek, L.; Slovacek, M.; Ruzek, L.; Moulis, P.

    2003-01-01

    The main goal of this paper is to inform about the beginning and first steps of implementation of an aging management system at the Temelin NPP. The aging management system is important not only for achieving the current safety level but also for reaching operational reliability of a production unit equipment above the life time assumed by the original design, typically over 40 years. A method to locate the most prominent degradation regions is described. A global shell model of the primary coolant system including all loops and their components - reactor pressure vessel (RPV), steam generator (SG), main coolant pump (MCP), pressurizer, feed water and steam pipelines system is presented. The results of stress-strain analysis on the measured service parameters base are given. Validation of the results is very important and the method to compare the service measurement data with the numerical results is described. The global/local approach is mentioned and discussed. The effects of the complete global system on the individual components under monitoring are transformed into more accurate local spatial models. The local spatial models are used to analyze the gradual lifetime exhaustion of a facility during its service operation. Two spatial local models are presented, viz. feed water nozzle of SG and main coolant piping system T-brunch. The results of analysis of the local spatial models are processed by the neural network computing method, which is also described. The actual gradual damage of the material of the components under monitoring can be obtained based on the analyses performed and on the results from the neural network in combination with the knowledge of the real material characteristics. The procedures applied are included in the DIALIFE diagnostic system

  11. Advances in type-2 fuzzy sets and systems theory and applications

    CERN Document Server

    Mendel, Jerry; Tahayori, Hooman

    2013-01-01

    This book explores recent developments in the theoretical foundations and novel applications of general and interval type-2 fuzzy sets and systems, including: algebraic properties of type-2 fuzzy sets, geometric-based definition of type-2 fuzzy set operators, generalizations of the continuous KM algorithm, adaptiveness and novelty of interval type-2 fuzzy logic controllers, relations between conceptual spaces and type-2 fuzzy sets, type-2 fuzzy logic systems versus perceptual computers; modeling human perception of real world concepts with type-2 fuzzy sets, different methods for generating membership functions of interval and general type-2 fuzzy sets, and applications of interval type-2 fuzzy sets to control, machine tooling, image processing and diet.  The applications demonstrate the appropriateness of using type-2 fuzzy sets and systems in real world problems that are characterized by different degrees of uncertainty.

  12. Asymptotic and numerical studies of a differential-delay system

    Science.gov (United States)

    Semak, Matthew Richard

    A singularly-perturbed differential-delay equation is studied the form of which is seen in various fields. Relaxation effects are combined with nonlinear driving from the past in this system. Having an infinite dimensional phase space, this flow is capable of very interesting behavior. Among the rich aspects of the dynamics of such a relation, period doubling can be observed as parameters are varied. Rigorous proofs concerning the existence of such periodic solutions can be found in the literature. Attention is given to the (first) Hopf bifurcation as the periodic structure is born. Key questions concern the limit of fast relaxation. In this limit, one can analytically understand the development of the periodic solution in the neighborhood of the bifurcation along with the frequency shift which is encountered. This limit also reveals the underlying mapping structure present. In the model studied, this is the logistic map the behavior of which is well-known. Convergence of periodic solutions to the mapping's square wave involves central issues in this work. An analogue to Gibb's phenomenon presents itself as the mapping structure is approached for a certain range of parameters. Transition layers also exist and, together with the latter, present a challenge to various computational approaches. A highly accurate and efficient spectral numerical technique is introduced to properly resolve such behavior in the limit studied. This scheme is used to measure the period's dependence on the relaxation rate in this region of parameter space. Also, numerically assisted asymptotic analysis develops relations for the layers. Moreover, regimes of parameter values have been identified for which there exist extremely long-lived transient states of arbitrarily complex form. Finally, initial interval states are designed which lead to specific long-lived multi-layer patterns of significant complexity. Layer-layer interactions are considered concerning the formation and lifetime of

  13. On numerically pluricanonical cyclic coverings

    International Nuclear Information System (INIS)

    Kulikov, V S; Kharlamov, V M

    2014-01-01

    We investigate some properties of cyclic coverings f:Y→X (where X is a complex surface of general type) branched along smooth curves B⊂X that are numerically equivalent to a multiple of the canonical class of X. Our main results concern coverings of surfaces of general type with p g =0 and Miyaoka-Yau surfaces. In particular, such coverings provide new examples of multi-component moduli spaces of surfaces with given Chern numbers and new examples of surfaces that are not deformation equivalent to their complex conjugates

  14. Numerical analysis using Sage

    CERN Document Server

    Anastassiou, George A

    2015-01-01

    This is the first numerical analysis text to use Sage for the implementation of algorithms and can be used in a one-semester course for undergraduates in mathematics, math education, computer science/information technology, engineering, and physical sciences. The primary aim of this text is to simplify understanding of the theories and ideas from a numerical analysis/numerical methods course via a modern programming language like Sage. Aside from the presentation of fundamental theoretical notions of numerical analysis throughout the text, each chapter concludes with several exercises that are oriented to real-world application.  Answers may be verified using Sage.  The presented code, written in core components of Sage, are backward compatible, i.e., easily applicable to other software systems such as Mathematica®.  Sage is  open source software and uses Python-like syntax. Previous Python programming experience is not a requirement for the reader, though familiarity with any programming language is a p...

  15. Numerical study of MHD supersonic flow control

    Science.gov (United States)

    Ryakhovskiy, A. I.; Schmidt, A. A.

    2017-11-01

    Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.

  16. Experimental and numerical study of a flapping tidal stream generator

    Science.gov (United States)

    Kim, Jihoon; Le, Tuyen Quang; Ko, Jin Hwan; Sitorus, Patar Ebenezer; Tambunan, Indra Hartarto; Kang, Taesam

    2017-11-01

    The tidal stream turbine is one of the systems that extract kinetic energy from tidal stream, and there are several types of the tidal stream turbine depending on its operating motion. In this research, we conduct experimental and consecutive numerical analyses of a flapping tidal stream generator with a dual configuration flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted using two-dimensional computational fluid dynamics simulations with an in-house code. Through an experimental analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90-degree phase difference between the two. This research was a part of the project titled `R&D center for underwater construction robotics', funded by the Ministry of Oceans and Fisheries(MOF), Korea Institute of Marine Science & Technology Promotion(KIMST,PJT200539), and Pohang City in Korea.

  17. AtlasT4SS: a curated database for type IV secretion systems.

    Science.gov (United States)

    Souza, Rangel C; del Rosario Quispe Saji, Guadalupe; Costa, Maiana O C; Netto, Diogo S; Lima, Nicholas C B; Klein, Cecília C; Vasconcelos, Ana Tereza R; Nicolás, Marisa F

    2012-08-09

    The type IV secretion system (T4SS) can be classified as a large family of macromolecule transporter systems, divided into three recognized sub-families, according to the well-known functions. The major sub-family is the conjugation system, which allows transfer of genetic material, such as a nucleoprotein, via cell contact among bacteria. Also, the conjugation system can transfer genetic material from bacteria to eukaryotic cells; such is the case with the T-DNA transfer of Agrobacterium tumefaciens to host plant cells. The system of effector protein transport constitutes the second sub-family, and the third one corresponds to the DNA uptake/release system. Genome analyses have revealed numerous T4SS in Bacteria and Archaea. The purpose of this work was to organize, classify, and integrate the T4SS data into a single database, called AtlasT4SS - the first public database devoted exclusively to this prokaryotic secretion system. The AtlasT4SS is a manual curated database that describes a large number of proteins related to the type IV secretion system reported so far in Gram-negative and Gram-positive bacteria, as well as in Archaea. The database was created using the RDBMS MySQL and the Catalyst Framework based in the Perl programming language and using the Model-View-Controller (MVC) design pattern for Web. The current version holds a comprehensive collection of 1,617 T4SS proteins from 58 Bacteria (49 Gram-negative and 9 Gram-Positive), one Archaea and 11 plasmids. By applying the bi-directional best hit (BBH) relationship in pairwise genome comparison, it was possible to obtain a core set of 134 clusters of orthologous genes encoding T4SS proteins. In our database we present one way of classifying orthologous groups of T4SSs in a hierarchical classification scheme with three levels. The first level comprises four classes that are based on the organization of genetic determinants, shared homologies, and evolutionary relationships: (i) F-T4SS, (ii) P-T4SS, (iii

  18. Dynamic of exact perturbations in Bianchi IX type cosmological models

    International Nuclear Information System (INIS)

    Mello Neto, J.R.T. de.

    1985-01-01

    The dynamic of Bianchi IX type cosmological models is studied, after reducing Einstein equations to Hamiltonian system. Using the Melnikov method, the existence of chaos in the dynamic of these models is proved, and some numerical experiments are carried out. (M.C.K.) [pt

  19. Mathematical and numerical analysis of hyper-elastic systems and introduction of plasticity; Analyse mathematique et numerique de systemes hyperelastiques et introduction de la plasticite

    Energy Technology Data Exchange (ETDEWEB)

    Kluth, G

    2008-12-15

    The goal is to model mathematically and numerically the dynamic phenomenons for solids in finite plasticity. We suggest a model that we call hyper-elasto-plastic based on hyper-elastic systems of conservation laws and on the use of an equation of state that we have constructed so as to achieve the plastic yield criterion of Von Mises. This model gives exact (analytic) solutions with shock split to flyer-plate experiments. The mathematical analysis of this model is done (hyperbolicity, characteristic fields, involutions and entropy). In the numerical part, we give 1D and 2D Lagrangian schemes which satisfy an entropy criterion. Moreover, thanks to a special discretization of the equations on deformation gradient, we satisfy some discrete involutions. In this work, the degeneracy of the solid model into hydrodynamic models is studied at the continuous level, and achieved at the numerical one. On different problems, we show the validity of our model and our numerical schemes. (author)

  20. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    Science.gov (United States)

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system.

  1. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems.

    Science.gov (United States)

    Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu

    2015-11-11

    Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.

  2. Numerical convergence for a sewage disposal problem

    OpenAIRE

    Alvarez-Vázquez, L.J.; Martínez, A.; Rodríguez, C.; Vázquez-Méndez, M.E.

    2001-01-01

    The management of sewage disposal and the design of wastewater treatment systems can be formulated as a constrained pointwise optimal control problem. In this paper we study the convergence of the numerical resolution for the corresponding state system by means of a characteristics Galerkin method. The main difficulty of the problem is due to the existence of Radon measures in the right-hand side of the state system. Finally, we present numerical results for a realistic problem posed in a ria...

  3. Comparison Between Numerical Modeling and Experimental Testing of a Point Absorber WEC Using Linear Power Take-Off System

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Kramer, Morten; Sichani, Mahdi Teimouri

    2012-01-01

    and the response of the device for regular and irregular waves were measured. Good correspondence is found between the numerical and the physical model for relatively mild wave conditions. For higher waves the numerical model seems to underestimate the response of the device due to its linear fluidstructure......Currently, a number of wave energy converters are being analyzed by means of numerical models in order to predict the electrical power generation under given wave conditions. A common characteristic of this procedure is to integrate the loadings from the hydrodynamics, power take-off and mooring...... systems into a central wave to wire model. The power production then depends on the control strategy which is applied to the device. The objective of this paper is to develop numerical methods for motion analysis of marine structures with a special emphasis on wave energy converters. Two different time...

  4. Numerical simulation of nonstationary dissipative structures in 3D double-diffusive convection at large Rayleigh numbers

    Science.gov (United States)

    Kozitskiy, Sergey

    2018-05-01

    Numerical simulation of nonstationary dissipative structures in 3D double-diffusive convection has been performed by using the previously derived system of complex Ginzburg-Landau type amplitude equations, valid in a neighborhood of Hopf bifurcation points. Simulation has shown that the state of spatiotemporal chaos develops in the system. It has the form of nonstationary structures that depend on the parameters of the system. The shape of structures does not depend on the initial conditions, and a limited number of spectral components participate in their formation.

  5. On a Nonlocal Ostrovsky-Whitham Type Dynamical System, Its Riemann Type Inhomogeneous Regularizations and Their Integrability

    Directory of Open Access Journals (Sweden)

    Jolanta Golenia

    2010-01-01

    Full Text Available Short-wave perturbations in a relaxing medium, governed by a special reduction of the Ostrovsky evolution equation, and later derived by Whitham, are studied using the gradient-holonomic integrability algorithm. The bi-Hamiltonicity and complete integrability of the corresponding dynamical system is stated and an infinite hierarchy of commuting to each other conservation laws of dispersive type are found. The well defined regularization of the model is constructed and its Lax type integrability is discussed. A generalized hydrodynamical Riemann type system is considered, infinite hierarchies of conservation laws, related compatible Poisson structures and a Lax type representation for the special case N=3 are constructed.

  6. An efficient approach to numerical study of the coupled-BBM system with B-spline collocation method

    Directory of Open Access Journals (Sweden)

    khalid ali

    2016-11-01

    Full Text Available In the present paper, a numerical method is proposed for the numerical solution of a coupled-BBM system with appropriate initial and boundary conditions by using collocation method with cubic trigonometric B-spline on the uniform mesh points. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms2L, ?L are computed. Furthermore, interaction of two and three solitary waves are used to discuss the effect of the behavior of the solitary waves after the interaction. These results show that the technique introduced here is easy to apply. We make linearization for the nonlinear term.

  7. Integration of supercapacitive storage in renewable energy system to compare the response of two level and five level inverter with RL type load

    Science.gov (United States)

    Jana, Suman; Biswas, Pabitra Kumar; Das, Upama

    2018-04-01

    The analytical and simulation-based study in this presented paper shows a comparative report between two level inverter and five-level inverter with the integration of Supercapacitive storage in Renewable Energy system. Sometime dependent numerical models are used to measure the voltage and current response of two level and five level inverter in MATLAB Simulink based environment. In this study supercapacitive sources, which are fed by solar cells are used as input sources to experiment the response of multilevel inverter with integration of su-percapacitor as a storage device of Renewable Energy System. The RL load is used to compute the time response in MATLABSimulink based environment. With the simulation results a comparative study has been made of two different level types of inverters. Two basic types of inverter are discussed in the study with reference to their electrical behavior. It is also simulated that multilevel inverter can convert stored energy within supercapacitor which is extracted from Renewable Energy System.

  8. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies

    Science.gov (United States)

    Rashidi, Saman; Esfahani, Javad Abolfazli; Maskaniyan, Mahla

    2017-10-01

    Magnetohydrodynamic (MHD) fluid flow in different geometries relevant to human body parts is an interesting and important scientific area due to its applications in medical sciences. This article performs a comprehensive review on the applications of MHD and their numerical modelling in biological systems. Applications of MHD in medical sciences are classified into four categories in this paper. Applications of MHD in simple flow, peristaltic flow, pulsatile flow, and drag delivery are these categories. The numerical researches performed for these categories are reviewed and summarized separately. Finally, some conclusions and suggestions for future works based on the literature review are presented. The results indicated that during a surgery when it is necessary to drop blood flow or reduce tissue temperature, it may be achieved by using a magnetic field. Moreover, the review showed that the trapping is an important phenomenon in peristaltic flows that causes the formation of thrombus in blood and the movement of food bolus in gastrointestinal tract. This phenomenon may be disappeared by using a proper magnetic field. Finally, the concentration of particles that are delivered to the target region increases with an increase in the magnetic field intensity.

  9. A numerical reference model for themomechanical subduction

    DEFF Research Database (Denmark)

    Quinquis, Matthieu; Chemia, Zurab; Tosi, Nicola

    2010-01-01

    Building an advanced numerical model of subduction requires choosing values for various geometrical parameters and material properties, among others, the initial lithosphere thicknesses, representative lithological types and their mechanical and thermal properties, rheologies, initial temperature...

  10. Numerical calculation on infrared characteristics of the special vehicle exhaust system

    Science.gov (United States)

    Feng, Yun-song; Li, Xiao-xia; Jin, Wei

    2017-10-01

    For mastery of infrared radiation characteristics and flow field of the special vehicle exhaust system, first, a physical model of the special vehicle exhaust system is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the special vehicle exhaust system, and the datum of flow field, such as temperature, pressure and density, are obtained. Thirdly, based on the plume temperature, the special vehicle exhaust space is divided. The exhaust is equivalent to a gray-body. A calculating model of the vehicle exhaust infrared radiation is established, and the exhaust infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. Finally, the numerical results are analyzing, and the basic laws of the special vehicle exhaust infrared radiation are explored. The results show that with the increase of the engine speed, the temperature of the exhaust pipe wall of the special vehicle increases, and the temperature and pressure of the exhaust gas flow field increase, which leads to the enhancement of the infrared radiation intensity

  11. Numerical simulator of the CANDU fueling machine driving desk

    International Nuclear Information System (INIS)

    Doca, Cezar

    2008-01-01

    As a national and European premiere, in the 2003 - 2005 period, at the Institute for Nuclear Research Pitesti two CANDU fueling machine heads, no.4 and no.5, for the Nuclear Power Plant Cernavoda - Unit 2 were successfully tested. To perform the tests of these machines, a special CANDU fueling machine testing rig was built and was (and is) available for this goal. The design of the CANDU fueling machine test rig from the Institute for Nuclear Research Pitesti is a replica of the similar equipment operating in CANDU 6 type nuclear power plants. High technical level of the CANDU fueling machine tests required the using of an efficient data acquisition and processing Computer Control System. The challenging goal was to build a computer system (hardware and software) designed and engineered to control the test and calibration process of these fuel handling machines. The design takes care both of the functionality required to correctly control the CANDU fueling machine and of the additional functionality required to assist the testing process. Both the fueling machine testing rig and staff had successfully assessed by the AECL representatives during two missions. At same the time, at the Institute for Nuclear Research Pitesti was/is developed a numerical simulator for the CANDU fueling machine operators training. The paper presents the numerical simulator - a special PC program (software) which simulates the graphics and the functions and the operations at the main desk of the computer control system. The simulator permits 'to drive' a CANDU fueling machine in two manners: manual or automatic. The numerical simulator is dedicated to the training of operators who operate the CANDU fueling machine in a nuclear power plant with CANDU reactor. (author)

  12. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests

    Directory of Open Access Journals (Sweden)

    Dethloff Manuel

    2015-09-01

    Full Text Available For the development of the automated processing of a membrane-based rapid allergy test, the flow characteristics in one part of the test, the reagents module, are analysed. This module consists of a multichannel system with several inputs and one output. A return flow from one input channel into another should be avoided. A valveless module with pointed channels at an angle of 12° is analysed with numerical and experimental methods with regard to the flow characteristics.

  13. Numerical simulation of a simple low-speed model for an electrodynamic levitation system based on a Halbach magnet array

    International Nuclear Information System (INIS)

    Iniguez, J.; Raposo, V.

    2010-01-01

    The design and analysis of a small prototype of a magnetic levitation system at low-speed using a Halbach-type magnet array is presented here. For that purpose, we have arranged a copper rim over a carbon fiber wheel, which is driven by an electric motor in presence of the magnet array, in such a manner that allows performing the experiment readily. The analysis of the system is undertaken under a two-dimensional (2D)-approach which permits computing and extending the study of our model to higher speeds. Our work is completed with a series of experimental measurements of lift and drag forces for different circumstances. Initially, the drag force is significant but after the compensation speed (when both forces balance) it slowly decreases. Conversely, the lift force becomes progressively bigger in such a manner that it attains quickly noteworthy values. We observe that the theoretical compensation speed is always minor than the experimental one and that the measured values for both forces are slightly smaller than the expected, although the main features of the experiment are well matched by our numerical simulation.

  14. Numerical simulation of a simple low-speed model for an electrodynamic levitation system based on a Halbach magnet array

    Energy Technology Data Exchange (ETDEWEB)

    Iniguez, J., E-mail: nacho@usal.e [Departamento de Fisica Aplicada, Universidad de Salamanca, E-37071 (Spain); Raposo, V. [Departamento de Fisica Aplicada, Universidad de Salamanca, E-37071 (Spain)

    2010-05-15

    The design and analysis of a small prototype of a magnetic levitation system at low-speed using a Halbach-type magnet array is presented here. For that purpose, we have arranged a copper rim over a carbon fiber wheel, which is driven by an electric motor in presence of the magnet array, in such a manner that allows performing the experiment readily. The analysis of the system is undertaken under a two-dimensional (2D)-approach which permits computing and extending the study of our model to higher speeds. Our work is completed with a series of experimental measurements of lift and drag forces for different circumstances. Initially, the drag force is significant but after the compensation speed (when both forces balance) it slowly decreases. Conversely, the lift force becomes progressively bigger in such a manner that it attains quickly noteworthy values. We observe that the theoretical compensation speed is always minor than the experimental one and that the measured values for both forces are slightly smaller than the expected, although the main features of the experiment are well matched by our numerical simulation.

  15. Adaptive polymeric system for Hebbian type learning

    OpenAIRE

    2011-01-01

    Abstract We present the experimental realization of an adaptive polymeric system displaying a ?learning behaviour?. The system consists on a statistically organized networks of memristive elements (memory-resitors) based on polyaniline. In a such network the path followed by the current increments its conductivity, a property which makes the system able to mimic Hebbian type learning and have application in hardware neural networks. After discussing the working principle of ...

  16. Antiviral type I and type III interferon responses in the central nervous system.

    Science.gov (United States)

    Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas

    2013-03-15

    The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway.

  17. Antiviral Type I and Type III Interferon Responses in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Thomas Michiels

    2013-03-01

    Full Text Available The central nervous system (CNS harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i preventing neuroinvasion and infection of CNS cells; ii the identity of IFN-producing cells in the CNS; iii the antiviral activity of ISGs; and iv the activity of viral proteins of neurotropic viruses that target the IFN pathway.

  18. Numerical design of electron guns and space charge limited transport systems

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1980-10-01

    This paper describes the capabilities and limitations of computer programs used to design electron guns and similarly space-charge limited transport systems. Examples of computer generated plots from several different types of gun problems are included

  19. Information system conflicts: causes and types

    OpenAIRE

    Boonstra, Albert; de Vries, Jan

    2015-01-01

    Conflicts are an inherent part of organizational life and managers deal with confrontations and conflicts on an almost daily basis. Information Systems (IS) implementations are a type of change that often leads to open or hidden conflicts. Managers and others involved can only deal with such conflicts effectively if they understand the nature and causes of information system conflicts (IS conflicts). To contribute to such an understanding, this study focuses on the analysis of IS conflicts. I...

  20. Operating environment threats influence on the maritime ferry technical system safety – the numerical approach

    Directory of Open Access Journals (Sweden)

    Kuligowska Ewa

    2017-06-01

    Full Text Available The material given in this paper delivers the procedure for numerical approach that allows finding the main practically important safety characteristics of the complex technical systems at the variable operation conditions including operating environment threats. The obtained results are applied to the safety evaluation of the maritime ferry technical system. It is assumed that the conditional safety functions are different at various operation states and have the exponential forms. Using the procedure and the program written in Mathematica, the considered maritime ferry technical system main characteristics including: the conditional and the unconditional expected values and standard deviations of the system lifetimes, the unconditional safety function and the risk function are determined.

  1. Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system

    Science.gov (United States)

    Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran

    2014-05-01

    In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.

  2. Large-scale thermal convection of viscous fluids in a faulted system: 3D test case for numerical codes

    Science.gov (United States)

    Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro

    2017-04-01

    In contrast to simple homogeneous 1D and 2D systems, no appropriate analytical solutions exist to test onset of thermal convection against numerical models of complex 3D systems that account for variable fluid density and viscosity as well as permeability heterogeneity (e.g. presence of faults). Owing to the importance of thermal convection for the transport of energy and minerals, the development of a benchmark test for density/viscosity driven flow is crucial to ensure that the applied numerical models accurately simulate the physical processes at hands. The presented study proposes a 3D test case for the simulation of thermal convection in a faulted system that accounts for temperature dependent fluid density and viscosity. The linear stability analysis recently developed by Malkovsky and Magri (2016) is used to estimate the critical Rayleigh number above which thermal convection of viscous fluids is triggered. The numerical simulations are carried out using the finite element technique. OpenGeoSys (Kolditz et al., 2012) and Moose (Gaston et al., 2009) results are compared to those obtained using the commercial software FEFLOW (Diersch, 2014) to test the ability of widely applied codes in matching both the critical Rayleigh number and the dynamical features of convective processes. The methodology and Rayleigh expressions given in this study can be applied to any numerical model that deals with 3D geothermal processes in faulted basins as by example the Tiberas Basin (Magri et al., 2016). References Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B., 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental

  3. Improved Delay-Dependent Robust Stability Criteria for a Class of Uncertain Neutral Type Lur’e Systems with Discrete and Distributed Delays

    Directory of Open Access Journals (Sweden)

    Kaibo Shi

    2014-01-01

    Full Text Available This paper is concerned with the problem of delay-dependent robust stability analysis for a class of uncertain neutral type Lur’e systems with mixed time-varying delays. The system has not only time-varying uncertainties and sector-bounded nonlinearity, but also discrete and distributed delays, which has never been discussed in the previous literature. Firstly, by employing one effective mathematical technique, some less conservative delay-dependent stability results are established without employing the bounding technique and the mode transformation approach. Secondly, by constructing an appropriate new type of Lyapunov-Krasovskii functional with triple terms, improved delay-dependent stability criteria in terms of linear matrix inequalities (LMIs derived in this paper are much brief and valid. Furthermore, both nonlinearities located in finite sector and infinite one have been also fully taken into account. Finally, three numerical examples are presented to illustrate lesser conservatism and the advantage of the proposed main results.

  4. Experimental and Numerical Research Activity on a Packed Bed TES System

    Directory of Open Access Journals (Sweden)

    Mario Cascetta

    2016-09-01

    Full Text Available This paper presents the results of experimental and numerical research activities on a packed bed sensible thermal energy storage (TES system. The TES consists of a cylindrical steel tank filled with small alumina beads and crossed by air used as the heat transfer fluid. Experimental tests were carried out while varying some operating parameters such as the mass flow rate, the inlet–outlet temperature thresholds and the aspect ratio (length over diameter. Numerical simulations were carried out using a one-dimensional model, specifically developed in the Matlab-Simulink environment and a 2D axisymmetric model based on the ANSYS-Fluent platform. Both models are based on a two-equation transient approach to calculate fluid and solid phase temperatures. Thermodynamic properties were considered to be temperature-dependent and, in the Computational Fluid Dynamics (CFD model, variable porosity of the bed in the radial direction, thermal losses and the effective conductivity of the alumina beads were also considered. The simulation results of both models were compared to the experimental ones, showing good agreement. The one-dimensional model has the advantage of predicting the axial temperature distribution with a very low computational cost, but it does not allow calculation of the correct energy stored when the temperature distribution is strongly influenced by the wall. To overcome this problem a 2D CFD model was used in this work.

  5. Finite element circuit theory of the numerical code EDDYMULT for solving eddy current problems in a multi-torus system

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Ozeki, Takahisa

    1986-07-01

    The finite element circuit theory is extended to the general eddy current problem in a multi-torus system, which consists of various torus conductors and axisymmetric coil systems. The numerical procedures are devised to avoid practical restrictions of computer storage and computing time, that is, the reduction technique of eddy current eigen modes to save storage and the introduction of shape function into the double area integral of mode coupling to save time. The numerical code EDDYMULT based on the theory is developed to use in designing tokamak device from the viewpoints of the evaluation of electromagnetic loading on the device components and the control analysis of tokamak equilibrium. (author)

  6. Numerical Analysis of Multiscale Computations

    CERN Document Server

    Engquist, Björn; Tsai, Yen-Hsi R

    2012-01-01

    This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.

  7. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.; Salama, Amgad; Sun, S.

    2012-01-01

    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  8. Numerical

    Directory of Open Access Journals (Sweden)

    M. Boumaza

    2015-07-01

    Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.

  9. Numerical simulation research of 300 kV, 5 electrodes negative ion beam system

    International Nuclear Information System (INIS)

    Wang Huisan; Jian Guangde

    2001-01-01

    According to the characteristic of high current negative ion beam extraction and acceleration system for negative ion-based neutral beam injector, a numerical simulation model and a calculation code of the negative ion beam system are established in order to assist the design of the system. The movement behavior of the negative ion beam and accompanying electron beam in joint effect of the electric and magnetic field of the system is calculated. The effect of relative parameters on the negative ion beam optics characteristic is investigated, such as beam density, negative ion initial temperature and stripping losses, final electrode aperture displacement. The electromagnetic configuration in the system is optimized. The initial optimized results for the 300 kV, 5 electrodes negative ion beam system show that the magnetic field of this system can deflect the electron beam to the extraction electrode as electron acceptor at lower energy and that assuming 20% stripping losses of the H - ion in extraction region and 21 mA ·cm -2 extracted H - beam density, the r.m.s. divergence angle of all output beam lets and divergence angle of 85% output beam lets are 0.327 deg. and 0.460 deg., respectively

  10. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian; Sparber, Christof; Markowich, Peter A.

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass

  11. Experimental and numerical study of the thermal performance of a new type of phase change material room

    International Nuclear Information System (INIS)

    Meng, Erlin; Yu, Hang; Zhan, Guangyi; He, Yang

    2013-01-01

    Highlights: • A new type of PCM room is proposed, two kinds of PCM were used in the room. • The new room can decrease the indoor air temperature fluctuation by 4.3 °C in summer. • Indoor air temperature fluctuation was decreased by 14.2 °C in winter for the new room. • Important factors that affect the thermal performance of the new room were studied. - Abstract: A new type of phase change material (PCM) room was proposed in this paper to control the indoor air temperature for a better thermal comfort for human beings. That is to place two different kinds of PCM into room envelopes of different orientations. Both experimental and numerical studies were carried out for rooms with/without PCM. Indoor air temperature and interior surface heat flux of the two rooms were studied in typical summer and winter climate of Shanghai (31.2N, 121.5E). Important factors that affect the thermal performance of the PCM were studied, such as phase change temperature, thickness of the PCM and the arrangement of the two kinds of PCM in the room. Results showed that this new type of PCM room can decrease the indoor air temperature fluctuation by 4.3 °C in summer and 14.2 °C in winter. Different arrangements of the two kinds of PCM in the room can cause an indoor air temperature difference to be 6.9 °C in summer and 2.7 °C in winter

  12. Numerical linear algebra theory and applications

    CERN Document Server

    Beilina, Larisa; Karchevskii, Mikhail

    2017-01-01

    This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.

  13. Wecpos - Wave Energy Coastal Protection Oscillating System: A Numerical Assessment

    Science.gov (United States)

    Dentale, Fabio; Pugliese Carratelli, Eugenio; Rzzo, Gianfranco; Arsie, Ivan; Davide Russo, Salvatore

    2010-05-01

    In recent years, the interest in developing new technologies to produce energy with low environmental impact by using renewable sources has grown exponentially all over the world. In this context, the experiences made to derive electricity from the sea (currents, waves, etc.) are of particular interest. At the moment, due to the many existing experiments completed or still in progress, it is quite impossible explain what has been obtained but it is worth mentioning the EMEC, which summarizes the major projects in the world. Another important environmental aspect, also related to the maritime field, is the coastal protection from the sea waves. Even in this field, since many years, the structural and non-structural solutions which can counteract this phenomenon are analyzed, in order to cause the least possible damage to the environment. The studies in development by the researchers of the University of Salerno are based on these two aspect previously presented. Considering the technologies currently available, a submerged system has been designed, WECPOS (Wave Energy Coastal Protection Oscillating System), to be located on relatively shallow depths, to can be used simultaneously for both electricity generation and for the coastal protection using the oscillating motion of the water particles. The single element constituting the system is realized by a fixed base and three movable panels that can fluctuate in a fixed angle. The waves interact with the panels generating an alternative motion which can be exploited to produce electricity. At the same time, the constraint movement imposed for the rotation of the panels is a barrier to the wave propagation phenomena, triggering the breaking in the downstream part of the device. So the wave energy will be dissipated obtaining a positive effect for the coastal protection. Currently, the efficiency and effectiveness of the system (WECPOS single module) has been studied by using numerical models. Using the FLOW-3D

  14. On numerical Bessel transformation

    International Nuclear Information System (INIS)

    Sommer, B.; Zabolitzky, J.G.

    1979-01-01

    The authors present a computer program to calculate the three dimensional Fourier or Bessel transforms and definite integrals with Bessel functions. Numerical integration of systems containing Bessel functions occurs in many physical problems, e.g. electromagnetic form factor of nuclei, all transitions involving multipole expansions at high momenta. Filon's integration rule is extended to spherical Bessel functions. The numerical error is of the order of the Simpson error term of the function which has to be transformed. Thus one gets a stable integral even at large arguments of the transformed function. (Auth.)

  15. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    In equilibrium symbiotic power plant system containing both thermal reactors and fast breeders, excess plutonium produced by the fast breeders is used to enrich the fuel of the thermal reactors. In plutonium deficient symbiotic power plant system plutonium is supplied both by thermal plants and fast breeders. Mathematical models were constructed and different equations solved to characterize the fuel utilization of both systems if they contain only a single thermal type and a single fast type reactor. The more plutonium is produced in the system, the higher output ratio of thermal to fast reactors is achieved in equilibrium symbiotic power plant system. Mathematical equations were derived to calculate the doubling time and the breeding gain of the equilibrium symbiotic system. (V.N.) 2 figs.; 2 tabs

  16. Hamiltonian Dynamics of Spider-Type Multirotor Rigid Bodies Systems

    International Nuclear Information System (INIS)

    Doroshin, Anton V.

    2010-01-01

    This paper sets out to develop a spider-type multiple-rotor system which can be used for attitude control of spacecraft. The multirotor system contains a large number of rotor-equipped rays, so it was called a 'Spider-type System', also it can be called 'Rotary Hedgehog'. These systems allow using spinups and captures of conjugate rotors to perform compound attitude motion of spacecraft. The paper describes a new method of spacecraft attitude reorientation and new mathematical model of motion in Hamilton form. Hamiltonian dynamics of the system is investigated with the help of Andoyer-Deprit canonical variables. These variables allow obtaining exact solution for hetero- and homoclinic orbits in phase space of the system motion, which are very important for qualitative analysis.

  17. A Type System for Required/Excluded Elements in CLS

    Directory of Open Access Journals (Sweden)

    Mariangiola Dezani-Ciancaglini

    2009-11-01

    Full Text Available The calculus of looping sequences is a formalism for describing the evolution of biological systems by means of term rewriting rules. We enrich this calculus with a type discipline to guarantee the soundness of reduction rules with respect to some biological properties deriving from the requirement of certain elements, and the repellency of others. As an example, we model a toy system where the repellency of a certain element is captured by our type system and forbids another element to exit a compartment.

  18. Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

    Science.gov (United States)

    Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah

    2014-07-01

    We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean-Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices.

  19. Tunneling dynamics in open ultracold bosonic systems. Numerically exact dynamics - Analytical models - Control schemes

    International Nuclear Information System (INIS)

    Lode, Axel U.J.

    2013-01-01

    This thesis explores the quantum many-body tunneling dynamics of open ultracold bosonic systems with the recently developed multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB to provide solutions to the full time-dependent many-body problem are assessed in a benchmark using the analytically solvable harmonic interaction Hamiltonian and a generalization of it with time-dependent both one- and two-body potentials. In a comparison with numerically exact MCTDHB results, it is shown that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A model assembling the many-body physics of the process from basic simultaneously happening single-particle processes is derived and verified with a numerically exact MCTDHB description. The generality of the model is demonstrated even for strong interactions and large particle numbers. The ejection of the bosons from the source occurs with characteristic velocities. These velocities are defined by the chemical potentials of systems with different particle numbers which are converted to kinetic energy. The tunneling process is accompanied by fragmentation: the ejected bosons lose their coherence with the source and among each other. It is shown that the various aspects of the tunneling dynamics' can be controlled well with the interaction and the potential threshold.

  20. Tunneling dynamics in open ultracold bosonic systems. Numerically exact dynamics - Analytical models - Control schemes

    Energy Technology Data Exchange (ETDEWEB)

    Lode, Axel U.J.

    2013-06-03

    This thesis explores the quantum many-body tunneling dynamics of open ultracold bosonic systems with the recently developed multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB to provide solutions to the full time-dependent many-body problem are assessed in a benchmark using the analytically solvable harmonic interaction Hamiltonian and a generalization of it with time-dependent both one- and two-body potentials. In a comparison with numerically exact MCTDHB results, it is shown that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A model assembling the many-body physics of the process from basic simultaneously happening single-particle processes is derived and verified with a numerically exact MCTDHB description. The generality of the model is demonstrated even for strong interactions and large particle numbers. The ejection of the bosons from the source occurs with characteristic velocities. These velocities are defined by the chemical potentials of systems with different particle numbers which are converted to kinetic energy. The tunneling process is accompanied by fragmentation: the ejected bosons lose their coherence with the source and among each other. It is shown that the various aspects of the tunneling dynamics' can be controlled well with the interaction and the potential threshold.