Numerical simulation of baseflow modification due to effects of ...
African Journals Online (AJOL)
Numerical simulation of baseflow modification due to effects of sediment yield. ... Physically-based mathematical modelling affords the opportunity to look at this kind of interaction, which should be simulated by deterministic responses of both water and fluvial processes. In addition to simulating the streamflow and ...
Direct Numerical Simulation of Transition Due to Traveling Crossflow Vortices
Li, Fei; Choudhari, Meelan M.; Duan, Lian
2016-01-01
Previous simulations of laminar breakdown mechanisms associated with stationary crossflow instability over a realistic swept-wing configuration are extended to investigate the alternate scenario of transition due to secondary instability of traveling crossflow modes. Earlier analyses based on secondary instability theory and parabolized stability equations have shown that this alternate scenario is viable when the initial amplitude of the most amplified mode of the traveling crossflow instability is greater than approximately 0.03 times the initial amplitude of the most amplified stationary mode. The linear growth predictions based on the secondary instability theory and parabolized stability equations agree well with the direct numerical simulation. Nonlinear effects are initially stabilizing but subsequently lead to a rapid growth followed by the onset of transition when the amplitude of the secondary disturbance exceeds a threshold value. Similar to the breakdown of stationary vortices, the transition zone is rather short and the boundary layer becomes completely turbulent across a distance of less than 15 times the boundary layer thickness at the completion of transition.
International Nuclear Information System (INIS)
Ito, Kei; Kunugi, Tomoaki; Ohshima, Hiroyuki
2008-01-01
An onset condition of gas entrainment (GE) due to free surface vortex has been studied to establish a design of sodium-cooled fast reactor with a higher coolant velocity than conventional designs. Numerous investigations have been conducted experimentally and theoretically; however, the universal onset condition of the GE has not been determined yet due to the nonlinear characteristics of the GE. Recently, we have been studying numerical simulation methods as a promising method to evaluate GE, instead of the reliable but costly real-scale tests. In this paper, the applicability of the numerical simulation methods to the evaluation of the GE is discussed. For the purpose, a quasi-steady vortex in a cylindrical tank and a wake vortex (unsteady vortex) in a rectangular channel were numerically simulated using the volume-of-fluid type two-phase flow calculation method. The simulated velocity distributions and free surface shapes of the quasi-steady vortex showed good (not perfect, however) agreements with experimental results when a fine mesh subdivision and a high-order discretization scheme were employed. The unsteady behavior of the wake vortex was also simulated with high accuracy. Although the onset condition of the GE was slightly underestimated in the simulation results, the applicability of the numerical simulation methods to the GE evaluation was confirmed. (author)
Directory of Open Access Journals (Sweden)
Řidký Václav
2014-03-01
Full Text Available The work is devoted to 3D and 2D parallel numerical computation of pressure and velocity fields around an elastically supported airfoil self-oscillating due to interaction with the airflow. Numerical solution is computed in the OpenFOAM package, an open-source software package based on finite volume method. Movement of airfoil is described by translation and rotation, identified from experimental data. A new boundary condition for the 2DOF motion of the airfoil was implemented. The results of numerical simulations (velocity are compared with data measured in a wind tunnel, where a physical model of NACA0015 airfoil was mounted and tuned to exhibit the flutter instability. The experimental results were obtained previously in the Institute of Thermomechanics by interferographic measurements in a subsonic wind tunnel in Nový Knín.
Numerical simulation of laser shock in the presence of the initial state due to welding
International Nuclear Information System (INIS)
Julan, Emricka
2014-01-01
Surface treatments as laser shock peening offer the possibility to reduce tensile stresses or to generate compressive stresses in order to prevent crack initiation or reduce crack growth rate in particular in the areas where tension weld residual stresses are present. Laser shock peening may be applied on different metallic components to prevent stress corrosion cracking of Inconel 600 and high cycle thermal fatigue of austenitic stainless steels. The main aim of the PhD thesis is to develop the numerical simulation of laser peening. In the first section, axisymmetrical and 3D numerical models for one or several pulses have been developed in Code Aster and Europlexus softwares. These models were validated by experimental tests carried out in PIMM-ENSAM laboratory. Parameters identification of Johnson-Cook constitutive law was carried out for Inconel 600 at high strain rates. Moreover a new test was proposed which allowed proving the isotropic behavior of Inconel 600 at high strain rates. A modification of the Johnson-Cook constitutive law was also proposed, to take into account in a new way the sensitivity of the law to high strain rates. The second section of the thesis concerns a study on the effect of an initial state of welding on residual stresses after application of laser peening. We could conclude that this initial state has no strong influence on final residual stresses. Finally, a qualitative study on the effect of strain hardening induced by laser peening on fatigue life of stainless steels was undertaken, which shows the advantage of laser peening on shot peening due to smaller strain hardening created by laser peening. (author)
SATDSK: a numerical simulation of the magnetic field due to saturated iron in cyclotron poletips
International Nuclear Information System (INIS)
McNeilly, G.S.
1979-10-01
SATDSK is a computer program, written in FORTRAN, which calculates the median plane magnetic field due to fully saturated iron poletips. Optionally, SATDSK calculates the magnetic field due to disks of magnetic charge, which can simulate the effect of holes in the iron poletip, or circular trim rods embedded in the poletip. SATDSK is intended for poletip geometries that are both symmetric about the median plane, and have azimuthal sector symmetry. Thus, the program is primarily designed to simulate the magnetic field due to iron poletips in superconducting cyclotrons
Numerical simulation of dipolar magnetic field inflation due to equatorial ring-current
International Nuclear Information System (INIS)
Kajimura, Yoshihiro; Funaki, Ikkoh; Shinohara, Iku; Usui, Hideyuki; Matsumoto, Masaharu; Yamakawa, Hiroshi
2014-01-01
Magneto Plasma Sail (MPS) is one of the next generation space propulsion systems which generates a propulsive force using the interaction between the solar wind plasma and an artificial inflated magnetosphere generated by a superconductive coil. In the MPS system, the magnetosphere as a sail must be inflated by the plasma injection from the spacecraft in order to obtain the thrust gain. In the present study, the magnetic inflation concept is numerically tested by so-called ion one-component plasma model. As a simulation result, the magnetic moment of the system is drastically increased up to 45 times that of the coil current at plasma-β = 20 and r Li /L (radius of gyro motion / characteristics length of the magnetic field) = 0.01, and this is the first successful magnetosphere inflation obtained by numerical simulation. Corresponding maximum thrust gain is also estimated to be about 45. (author)
International Nuclear Information System (INIS)
Fujii, Naoki; Ikeno, Masaaki; Sakakiyama, Tsutomu; Matsuyama, Masafumi; Takao, Makoto; Mukohara, Takeshi
2009-01-01
Numerical model of topography change is important to examine collapse of the harbor facilities by sand transport due to tsunami. Problems for evaluation of sand transport due to tsunami with topography change model are in precision of the numerical model and topography change data. Therefore, we installed the harbor in large-scaled wave tank and carried out experiment about tsunami flow and topography change to get those detailed data. For results provided by experimental test, we applied the topography change model of Ikeno et al. (2009a) and evaluated it about the reproduction characteristics. As a result, it was confirmed that reproduction of an experiment improved by using new pickup rate formula proposed by Ikeno et al. (2009a). (author)
International Nuclear Information System (INIS)
Landman, I.S.; Pestchanyi, S.E.; Bazylev, B.N.
2005-01-01
The divertor armour materials for ITER are going to be tungsten (as brushe or plates) and CFC. Disruptive loads with the heat deposition Q up to 30 MJ/m 2 on the time scale τ of 3 ms or operation with ELMs at repetitive loads of Q ∼ 3 MJ/m 2 and τ ∼ 0.3 ms cause enhanced armour erosion and produce contamination of SOL. Recent numerical investigations of erosion mechanisms with the anisotropic thermomechanics code PEGASUS-3D and the surface melt motion code MEMOS-1.5D as well as hot hydrogen plasma dynamics, heat loads at the armour surface and backward propagation of material plasma in SOL with the radiation-magnetohydrodynamics code FOREV-2D are survived. For CFC targets, the local overheating model is explained and numerically demonstrated. For the tungsten targets the numerical analysis of melt motion erosion of W-brushe and bulk tungsten targets on the base of MEMOS-1.5D calculations is developed and accompanied by numerical results. For validation of the codes at the regimes relevant to ITER disruptions and ELMs, the simulation results are compared with available experiments carried out at plasma guns, electron beam test facilities and the tokamak JET. (author)
Numerical simulation of the transport phenomena due to sudden heating in porous media
Energy Technology Data Exchange (ETDEWEB)
Lei, S.Y.; Zheng, G.Y.; Wang, B.X.; Yang, R.G.; Xia, C.M.
1997-07-01
Such process as wet porous media suddenly heated by hot fluids frequently occurs in nature and in industrial applications. The three-variable simulation model was developed to predict violent transport phenomena due to sudden heating in porous media. Two sets of independent variables were applied to different regions in porous media in the simulation. For the wet zone, temperature, wet saturation and air pressure were used as the independent variables. For the dry zone, the independent variables were temperature, vapor pressure and air pressure. The model simulated two complicated transport processes in wet unsaturated porous media which is suddenly heated by melting metal or boiling water. The effect of the gas pressure is also investigated on the overall transport phenomena.
Silitonga, S.; Maljaars, J.; Soetens, F.; Snijder, H.H.
2014-01-01
In this work, a numerical method is pursued based on a cohesive zone model (CZM). The method is aimed at simulating fatigue crack growth as well as crack growth retardation due to an overload. In this cohesive zone model, the degradation of the material strength is represented by a variation of the
Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations.
Wetzel, Maria; Kempka, Thomas; Kühn, Michael
2018-04-01
The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.
Experiments and Numerical Simulations of Dike Erosion due to a Wave Impact
Directory of Open Access Journals (Sweden)
Stefania Evangelista
2015-10-01
Full Text Available Dike erosion is a crucial issue in coastal and fluvial flood risk management. These defense structures appear vulnerable to extreme hydrological events, whose potential occurrence risk seems to be recently increased due to climate change. Their design and reinforcement is, however, a complex task, and although numerical models are very powerful nowadays, real processes cannot be accurately predicted; therefore, physical models constitute a useful tool to investigate different features under controlled conditions. This paper presents some laboratory experimental results of erosion of a sand dike produced by the impact of a dam break wave. Experiments have been conducted in the Water Engineering Laboratory at the University of Cassino and Southern Lazio, Italy, in a rectangular channel: here, the sudden opening of a gate forming the reservoir generates the wave impacting the dike, made in turn of two different, almost uniform sands. The physical evidence proves that the erosion process is strongly unsteady and significantly different from a gradual overtopping and highlights the importance of apparent cohesion for the fine sand dike. The experimental results have also been compared against the ones obtained through the numerical integration of a two-phase model, which shows the reasonable predictive capability of the temporal free surface and dike profile evolution.
Hidayat, Mas Irfan P.; Fellicia, Dian Mughni; Rafandi, Ferdiansyah Iqbal
2018-04-01
Microwave assisted heating has been extensively used in materials processing particularly in extraction of TiO2 from Ilmenite (FeTiO3) minerals. Nevertheless, this method could generate non-uniform temperature distribution during the heating process. The observation of this phenomena in cylindrical ilmenite has been conducted by numerical simulation using finite element method according to the Poynthing's theorem. Four different cylinders with variation on its height were simulated in ANSYS 17 with input microwave power of 5.5 Kw. The results indicated that height of heated object could vigorously influence the uniformity of temperature inside the body.
International Nuclear Information System (INIS)
Han Rui; Zhang A-Man; Li Shuai
2014-01-01
The motion of gas bubbles beneath a free surface will lead to a spike of fluid on the free surface. The distance of the bubbles to the free surface is the key factor to different phenomena. When the inception distance varies in some range, crown phenomenon would happen after the impact of weak buoyancy bubbles, so this kind of spike is defined as crown spike in the present paper. Based on potential flow theory, a three-dimensional numerical model is established to simulate the motion of the free-surface spike generated by one bubble or a horizontal line of two in-phase bubbles. After the downward jet formed near the end of the collapse phase, the simulation of the free surface is performed to study the crown spike without regard to the toroidal bubble's effect. Calculations about the interaction between one bubble and free surface agree well with the experimental results conducted with a high-speed camera, and relative error is within 15%. Crown spike in both single- and two-bubble cases are simulated numerically. Different features and laws of the motion of crown spike, depending on the bubble-boundary distances and the inter-bubble distances, have been investigated
International Nuclear Information System (INIS)
Vidstrand, Patrik; Svensson, Urban; Follin, Sven
2006-10-01
The main objective of this study is to support the safety assessment of the investigated candidate sites concerning hydrogeological and hydrogeochemical issues related to permafrost. However, a more specific objective of the study is to improve the assessment of processes in relation to permafrost scenarios. The model is based on a mathematical model that includes Darcy velocities, mass conservation, matrix diffusion, and salinity distribution. Gravitational effects are thus fully accounted for. A regional groundwater flow model (POM v1.1, Simpevarp) was used as basis for the simulations. The main results of the model include salinity distributions in time. The general conclusion is that density-driven mixing processes are contained within more permeable deformation zones and that these processes are fast as compared with preliminary permafrost growth rates. The results of the simulation suggest that a repository volume in the rock mass in-between the deterministic deformation zones, approximately 150 m below the permafrost will not experience a high salinity situation due to the salt rejection process
Numerical simulation in astrophysics
International Nuclear Information System (INIS)
Miyama, Shoken
1985-01-01
There have been many numerical simulations of hydrodynamical problems in astrophysics, e.g. processes of star formation, supernova explosion and formation of neutron stars, and general relativistic collapse of star to form black hole. The codes are made to be suitable for computing such problems. In astrophysical hydrodynamical problems, there are the characteristics: problems of self-gravity or external gravity acting, objects of scales very large or very short, objects changing by short period or long time scale, problems of magnetic force and/or centrifugal force acting. In this paper, we present one of methods of numerical simulations which may satisfy these requirements, so-called smoothed particle methods. We then introduce the methods briefly. Then, we show one of the applications of the methods to astrophysical problem (fragmentation and collapse of rotating isothermal cloud). (Mori, K.)
Numerical simulation of plasmas
International Nuclear Information System (INIS)
Dnestrovskii, Y.N.; Kostomarov, D.P.
1986-01-01
This book contains a modern consistent and systematic presentation of numerical computer simulation of plasmas in controlled thermonuclear fusion. The authors focus on the Soviet research in mathematical modelling of Tokamak plasmas, and present kinetic hydrodynamic and transport models with special emphasis on the more recent hybrid models. Compared with the first edition (in Russian) this book has been greatly revised and updated. (orig./WL)
2015-01-01
The Dutch Safety Board (DSB) investigates the crash of Malaysia Airlines flight MH17 which occured on Thursday July 17, 2014 in the Donetsk region (Ukraine). The DSB wants to provide a clear picture of the cause of the crash. A possible cause is fatal damage to the aircraft due to detonation of the
Comments on numerical simulations
International Nuclear Information System (INIS)
Sato, T.
1984-01-01
The author comments on a couple of things about numerical simulation. One is just about the philosophical discussion that is, spontaneous or driven. The other thing is the numerical or technical one. Frankly, the author didn't want to touch on the technical matter because this should be a common sense one for those who are working at numerical simulation. But since many people take numerical simulation results at their face value, he would like to remind you of the reality hidden behind them. First, he would point out that the meaning of ''driven'' in driven reconnection is different from that defined by Schindler or Akasofu. The author's definition is closer to Axford's definition. In the spontaneous case, for some unpredicted reason an excess energy of the system is suddenly released at a certain point. However, one does not answer how such an unstable state far beyond a stable limit is realized in the magnetotail. In the driven case, there is a definite energy buildup phase starting from a stable state; namely, energy in the black box increases from a stable level subject to an external source. When the state has reached a certain position, the energy is released suddenly. The difference between driven and spontaneous is whether the cause (plasma flow) to trigger reconnection is specified or reconnection is triggered unpredictably. Another difference is that in driven reconnection the reconnection rate is dependent on the speed of the external plasma flow, but in spontaneous reconnection the rate is dependent on the internal condition such as the resistivity
International Nuclear Information System (INIS)
Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Liu, Shengguang; Wang, Dezhen
2013-01-01
Hydrogen isotopes (HI) inventory is a key issue for fusion devices like ITER. It is especially urgent to understand how HI are retained in tungsten since it currently is the most important candidate material for the plasma-facing wall. Bubble growth is an important experimental complication that yet prevents a full understanding of HI retention processes in tungsten walls and most critically the divertor elements. In this work, we develop a model based on rate equations, which includes the bubble growth in tungsten being exposed to a HI plasma. In the model, HI molecules can be produced through recombination processes on the inner surface of a bubble, and HI molecules can also dissociate themselves to solute atoms, and the latter diffuse into the bulk wall because of very high pressures inside the bubble. The present model is applied to simulate how HI are retained in plasma-irradiated tungsten in the form of molecules to explain the wall temperature, trap concentration, incident HI flux and fluence dependencies of bubble growth
Confidence in Numerical Simulations
Energy Technology Data Exchange (ETDEWEB)
Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-23
This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.
Confidence in Numerical Simulations
International Nuclear Information System (INIS)
Hemez, Francois M.
2015-01-01
This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to ''forecast,'' that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists ''think.'' This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. ''Confidence'' derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.
Numerical simulation of welding
DEFF Research Database (Denmark)
Hansen, Jan Langkjær; Thorborg, Jesper
Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...
Numerical aerodynamic simulation (NAS)
International Nuclear Information System (INIS)
Peterson, V.L.; Ballhaus, W.F. Jr.; Bailey, F.R.
1984-01-01
The Numerical Aerodynamic Simulation (NAS) Program is designed to provide a leading-edge computational capability to the aerospace community. It was recognized early in the program that, in addition to more advanced computers, the entire computational process ranging from problem formulation to publication of results needed to be improved to realize the full impact of computational aerodynamics. Therefore, the NAS Program has been structured to focus on the development of a complete system that can be upgraded periodically with minimum impact on the user and on the inventory of applications software. The implementation phase of the program is now under way. It is based upon nearly 8 yr of study and should culminate in an initial operational capability before 1986. The objective of this paper is fivefold: 1) to discuss the factors motivating the NAS program, 2) to provide a history of the activity, 3) to describe each of the elements of the processing-system network, 4) to outline the proposed allocation of time to users of the facility, and 5) to describe some of the candidate problems being considered for the first benchmark codes
Numerical methods in simulation of resistance welding
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi
2015-01-01
Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...... thecontact area and the distribution of contact pressure. The numerical simulation of resistancewelding is illustrated by a spot welding example that includes subsequent tensile shear testing...
Numerical simulations of thrombosis
Directory of Open Access Journals (Sweden)
Naveen Kumar G Ramunigari
2013-01-01
Full Text Available Background: Mathematical approaches for biological events have gained significant importance in development of biomedical research. Deep vein thrombosis (DVT is caused by blood clot in veins deeply rooted in the body, resulting in loss of blood, pain, and numbness of the body part associated with that vein. This situation can get complicated and can be fatal, when the blood clot travels to other parts of the body which may result in pulmonary embolism (PE. PE causes approximately 300,000 deaths annually in the United States alone. Materials and Methods: We are trying to propose a computational approach for understanding venous thrombosis using the theory of fluid mechanics. In our study, we are trying to establish a computational model that mimics the venous blood flow containing unidirectional venous valves and will be depicting the blood flow in the veins. We analyzed the flow patterns in veins, which are included with lump like substances. This lump like substances can be clots, tissue debris, collagen or even cholesterol. Our study will facilitate better understanding of the biophysical process in case of thrombosis. Results: The predicted model analyzes the consequences that occur due to the clot formations in veins. Knowledge of Navier-Stokes equations in fluid dynamics along with the computational model of a complex biological system would help in diagnosis of the problem at much faster rate of time. Valves of the deep veins are damaged as a result of DVT, with no valves to prevent deep system reflux, the hydrostatic venous pressure in the lower extremity increases dramatically. Conclusion: Our model is used to determine the effects of an interrupted blood flow as a result of thrombin formation, which might result in disturbed systemic circulation. Our results indicated a positive inverse correlation exists between clots and the flow velocity. This would support medical practitioners to recommend faster curing measures.
International Nuclear Information System (INIS)
Matsuyama, Masafumi; Aoyagi, Yasuhira; Inoue, Daiei; Choi, Weon-Hack; Kang, Keum-Seok
2008-01-01
In Korea, there has been a concern on tsumami risks for the Nuclear Power Plants since the 1983 Nihonkai-Chubu earthquake tsunami. The maximum run-up height reached 4 m to north of the Ulchin nuclear power plant site. The east coast of Korea was also attacked by a few meters high tsunami generated by the 1993 Hokkaido Nansei-Oki earthquake. Both source areas of them were in the areas western off Hokkaido to the eastern margin of the Japan Sea, which remains another tsunami potential. Therefore it is necessary to study tsunami risks for coast of Korea by means of geological investigation and numerical simulation. Historical records of earthquake and tsunami in the Japan Sea were re-compiled to evaluate tsunami potential. A database of marine active faults in the Japan Sea was compiled to decide a regional potential of tsunami. Many developed reverse faults are found in the areas western off Hokkaido to the eastern margin of the Japan Sea. The authors have found no historical earthquake in the East China Sea which caused tunami observed at coast of Korea. Therefore five fault models were determined on the basis of the analysis results of historical records and recent research results of fault parameter and tunami. Tsunami heights were estimated by numerical simulation of nonlinear dispersion wave theory. The results of the simulations indicate that the tsunami heights in these cases are less than 0.25 m along the coast of Korea, and the tsunami risk by these assumed faults does not lead to severe impact. It is concluded that tsunami occurred in the areas western off Hokkaido to the eastern margin of the Japan Sea leads the most significant impact to Korea consequently. (author)
Numerical simulation of flood barriers
Srb, Pavel; Petrů, Michal; Kulhavý, Petr
This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.
International Nuclear Information System (INIS)
El-Maghlany, Wael M.; Saqr, Khalid M.; Teamah, Mohamed A.
2014-01-01
Highlights: • Entropy generation in laminar natural convection in square cavity numerically studied. • The cavity subjected to an isotropic heat field with different intensities. • Study ranges 10 3 ⩽ Ra ⩽ 10 5 , 0 ⩽ ϕ ⩽ 10 and Pr = 0.7. • Entropy generation drastically affected by the superposition of an isotropic heat field. • CFD based empirical were derived for entropy generation as a function of Ra and φ. - Abstract: Entropy generation associated with laminar natural convection in an infinite square cavity, subjected to an isotropic heat field with different intensities; was numerically investigated for different values of Rayleigh number. The numerical work was carried out using, an in-house CFD code written in FORTRAN, which discretizes non-dimensional forms of the governing equations using the finite volume method and solves the resulting system of equations using Gauss-Seidal method utilizing a TDMA algorithm. Proper code validation was undertaken in order to establish the entropy generation calculations. It was found that the increase in the isotropic heat field intensity resulted in a corresponding exponential increase of the entropy augmentation number, and promoted high values of Bejan number within the flow. The entropy generation due to heat transfer was approximately one order of magnitude higher than the entropy generation due to fluid friction. The spatial uniformity of the Bejan number was more sensitive to the change in Rayleigh number than to the heat field intensity. The thermodynamic penalty of the isotropic heat field is shown by means of global integrals of the entropy source terms over the entire flow domain
Numerical simulation of laser resonators
International Nuclear Information System (INIS)
Yoo, J. G.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.
2004-01-01
We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.
Numerical simulation in plasma physics
International Nuclear Information System (INIS)
Samarskii, A.A.
1980-01-01
Plasma physics is not only a field for development of physical theories and mathematical models but also an object of application of the computational experiment comprising analytical and numerical methods adapted for computers. The author considers only MHD plasma physics problems. Examples treated are dissipative structures in plasma; MHD model of solar dynamo; supernova explosion simulation; and plasma compression by a liner. (Auth.)
Directory of Open Access Journals (Sweden)
Morávka Š.
2008-12-01
Full Text Available Nuclear energy boom is starting nowadays. But also current nuclear power plants (NPP are duty to certify their security for regular renewal of their operating licenses. NPP security can be significantly affected by defects of large amount of ageing reinforced concrete structures. Advanced Impact-Echo method seams to be very hopeful to cooperate at performing in-service inspections such structures. Just these in-service inspections are included in the first priority group of specific technical issues according to the recommendations of OECD-Nuclear Energy Agency, Commission on Safety of Nuclear Installation in the field of ageing management.This paper continues of extensive project dealing with Impact-Echo method application. It will present method description and main results of numerical modeling of detection and localization of crack caused by corrosive product expansion. Steel reinforcing rods are subjected to corrosion due to diffusion of corrosive agents from structure surface. Corrosive products have up to 7-times larger volume than pure steel. Raised strain can cad lead up to concrete failure and crack development. We investigate whether it is possible to detect these growing cracks by Impact-Echo method in time.Experimental verification of our numerical predictions is prepared on Civil Faculty in Brno.
Numerical simulation of Higgs models
International Nuclear Information System (INIS)
Jaster, A.
1995-10-01
The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)
Combining Narrative and Numerical Simulation
DEFF Research Database (Denmark)
Hansen, Mette Sanne; Ladeby, Klaes Rohde; Rasmussen, Lauge Baungaard
2011-01-01
for decision makers to systematically test several different outputs of possible solutions in order to prepare for future consequences. The CSA can be a way to evaluate risks and address possible unforeseen problems in a more methodical way than either guessing or forecasting. This paper contributes...... to the decision making in operations and production management by providing new insights into modelling and simulation based on the combined narrative and numerical simulation approach as a tool for strategy making. The research question asks, “How can the CSA be applied in a practical context to support strategy...... making?” The paper uses a case study where interviews and observations were carried out in a Danish corporation. The CSA is a new way to address decision making and has both practical value and further expands the use of strategic simulation as a management tool....
Relativistic positioning systems: Numerical simulations
Puchades Colmenero, Neus
The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space
Numerical simulation of fire vortex
Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.
2018-05-01
The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.
Plasma modelling and numerical simulation
International Nuclear Information System (INIS)
Van Dijk, J; Kroesen, G M W; Bogaerts, A
2009-01-01
Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)
Numerical methods used in simulation
International Nuclear Information System (INIS)
Caseau, Paul; Perrin, Michel; Planchard, Jacques
1978-01-01
The fundamental numerical problem posed by simulation problems is the stability of the resolution diagram. The system of the most used equations is defined, since there is a family of models of increasing complexity with 3, 4 or 5 equations although only models with 3 and 4 equations have been used extensively. After defining what is meant by explicit or implicit, the best established stability results is given for one-dimension problems and then for two-dimension problems. It is shown that two types of discretisation may be defined: four and eight point diagrams (in one or two dimensions) and six and ten point diagrams (in one or two dimensions). To end, some results are given on problems that are not usually treated very much, i.e. non-asymptotic stability and the stability of diagrams based on finite elements [fr
Contributions to reinforced concrete structures numerical simulations
International Nuclear Information System (INIS)
Badel, P.B.
2001-07-01
In order to be able to carry out simulations of reinforced concrete structures, it is necessary to know two aspects: the behaviour laws have to reflect the complex behaviour of concrete and a numerical environment has to be developed in order to avoid to the user difficulties due to the softening nature of the behaviour. This work deals with these two subjects. After an accurate estimation of two behaviour models (micro-plan and mesoscopic models), two damage models (the first one using a scalar variable, the other one a tensorial damage of the 2 order) are proposed. These two models belong to the framework of generalized standard materials, which renders their numerical integration easy and efficient. A method of load control is developed in order to make easier the convergence of the calculations. At last, simulations of industrial structures illustrate the efficiency of the method. (O.M.)
Uchida, Satoshi; Yoshida, Taketo; Tochikubo, Fumiyoshi
2017-10-01
Plasma medicine is one of the most attractive applications using atmospheric pressure nonequilibrium plasma. With respect to direct contact of the discharge plasma with a biological membrane, reactive oxygen species play an important role in induction of medical effects. However, complicated interactions between the plasma radicals and membrane have not been understood well. In the present work, we simulated elemental processes at the first stage of physicochemical interactions between oxygen atom and phosphatidylcholine using the quantum mechanical molecular dynamics code in a general software AMBER. The change in the above processes was classified according to the incident energy of oxygen atom. At an energy of 1 eV, the abstraction of a hydrogen atom and recombination to phosphatidylcholine were simultaneously occurred in chemical attachment of incident oxygen atom. The exothermal energy of the reaction was about 80% of estimated one based on the bond energies of ethane. An oxygen atom over 10 eV separated phosphatidylcholine partially. The behaviour became increasingly similar to physical sputtering. The reaction probability of oxygen atom was remarkably high in comparison with that of hydrogen peroxide. These results suggest that we can uniformly estimate various physicochemical dynamics of reactive oxygen species against membrane lipids.
NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN
Directory of Open Access Journals (Sweden)
Petr Chmátal
2016-04-01
Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.
Numerical Simulation of a Seaway with Breaking
Dommermuth, Douglas; O'Shea, Thomas; Brucker, Kyle; Wyatt, Donald
2012-11-01
The focus of this presentation is to describe the recent efforts to simulate a fully non-linear seaway with breaking by using a high-order spectral (HOS) solution of the free-surface boundary value problem to drive a three-dimensional Volume of Fluid (VOF) solution. Historically, the two main types of simulations to simulate free-surface flows are the boundary integral equations method (BIEM) and high-order spectral (HOS) methods. BIEM calculations fail at the point at which the surface impacts upon itself, if not sooner, and HOS methods can only simulate a single valued free-surface. Both also employ a single-phase approximation in which the effects of the air on the water are neglected. Due to these limitations they are unable to simulate breaking waves and air entrainment. The Volume of Fluid (VOF) method on the other hand is suitable for modeling breaking waves and air entrainment. However it is computationally intractable to generate a realistic non-linear sea-state. Here, we use the HOS solution to quickly drive, or nudge, the VOF solution into a non-linear state. The computational strategies, mathematical formulation, and numerical implementation will be discussed. The results of the VOF simulation of a seaway with breaking will also be presented, and compared to the single phase, single valued HOS results.
Numerical model simulation of atmospheric coolant plumes
International Nuclear Information System (INIS)
Gaillard, P.
1980-01-01
The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr
Numerical simulation of a sour gas flare
Energy Technology Data Exchange (ETDEWEB)
Chambers, A. [Alberta Research Council, Devon, AB (Canada)
2008-07-01
Due to the limited amount of information in the literature on sour gas flares and the cost of conducting wind tunnel and field experiments on sour flares, this presentation presented a modelling project that predicted the effect of operating conditions on flare performance and emissions. The objectives of the project were to adapt an existing numerical model suitable for flare simulation, incorporate sulfur chemistry, and run simulations for a range of conditions typical of sour flares in Alberta. The study involved the use of modelling expertise at the University of Utah, and employed large eddy simulation (LES) methods to model open flames. The existing model included the prediction of turbulent flow field; hydrocarbon reaction chemistry; soot formation; and radiation heat transfer. The presentation addressed the unique features of the model and discussed whether LES could predict the flow field. Other topics that were presented included the results from a University of Utah comparison; challenges of the LES model; an example of a run time issue; predicting the impact of operating conditions; and the results of simulations. Last, several next steps were identified and preliminary results were provided. Future work will focus on reducing computation time and increasing information reporting. figs.
Efficient Numerical Simulation of Aerothermoelastic Hypersonic Vehicles
Klock, Ryan J.
Hypersonic vehicles operate in a high-energy flight environment characterized by high dynamic pressures, high thermal loads, and non-equilibrium flow dynamics. This environment induces strong fluid, thermal, and structural dynamics interactions that are unique to this flight regime. If these vehicles are to be effectively designed and controlled, then a robust and intuitive understanding of each of these disciplines must be developed not only in isolation, but also when coupled. Limitations on scaling and the availability of adequate test facilities mean that physical investigation is infeasible. Ever growing computational power offers the ability to perform elaborate numerical simulations, but also has its own limitations. The state of the art in numerical simulation is either to create ever more high-fidelity physics models that do not couple well and require too much processing power to consider more than a few seconds of flight, or to use low-fidelity analytical models that can be tightly coupled and processed quickly, but do not represent realistic systems due to their simplifying assumptions. Reduced-order models offer a middle ground by distilling the dominant trends of high-fidelity training solutions into a form that can be quickly processed and more tightly coupled. This thesis presents a variably coupled, variable-fidelity, aerothermoelastic framework for the simulation and analysis of high-speed vehicle systems using analytical, reduced-order, and surrogate modeling techniques. Full launch-to-landing flights of complete vehicles are considered and used to define flight envelopes with aeroelastic, aerothermal, and thermoelastic limits, tune in-the-loop flight controllers, and inform future design considerations. A partitioned approach to vehicle simulation is considered in which regions dominated by particular combinations of processes are made separate from the overall solution and simulated by a specialized set of models to improve overall processing
Numerical simulation of muzzle blast
Tyler-Street, M.
2014-01-01
Structural design methods for naval ships include environmental, operational and military load cases. One of the operational loads acting on a typical naval vessel is the muzzle blast from a gun. Simulating the muzzle blast load acting on a ship structure with CFD and ALE methods leads to large
NUMERICAL SIMULATION AND OPTIMIZATION OF ...
African Journals Online (AJOL)
30 juin 2011 ... This article has as an aim the study and the simulation of the photovoltaic cells containing CdTe materials, contributing to the development of renewable energies, and able to feed from the houses, the shelters as well as ... and the output energy of conversion is 18.26%.Optimization is made according to the.
Coincidental match of numerical simulation and physics
Pierre, B.; Gudmundsson, J. S.
2010-08-01
Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.
Numerical simulations of convectively excited gravity waves
International Nuclear Information System (INIS)
Glatzmaier, G.A.
1983-01-01
Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region
Numerical simulation of edge plasma in tokamak
International Nuclear Information System (INIS)
Chen Yiping; Qiu Lijian
1996-02-01
The transport process and transport property of plasma in edge layer of Tokamak are simulated by solving numerically two-dimensional and multi-fluid plasma transport equations using suitable simulation code. The simulation results can show plasma parameter distribution characteristics in the area of edge layer, especially the characteristics near the first wall and divertor target plate. The simulation results play an important role in the design of divertor and first wall of Tokamak. (2 figs)
Visualization of numerically simulated aerodynamic flow fields
International Nuclear Information System (INIS)
Hian, Q.L.; Damodaran, M.
1991-01-01
The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs
Numerical simulations of disordered superconductors
International Nuclear Information System (INIS)
Bedell, K.S.; Gubernatis, J.E.; Scalettar, R.T.; Zimanyi, G.T.
1997-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors carried out Monte Carlo studies of the critical behavior of superfluid 4 He in aerogel. They found the superfluid density exponent increases in the presence of fractal disorder with a value roughly consistent with experimental results. They also addressed the localization of flux lines caused by splayed columnar pins. Using a Sine-Gordon-type of renormalization group study they obtained an analytic form for the critical temperature. They also determined the critical temperature from I-V characteristics obtained from a molecular dynamics simulation. The combined studies enabled one to construct the phase diagram as a function of interaction strength, temperature, and disorder. They also employed the recently developed mapping between boson world-lines and the flux motion to use quantum Monte Carlo simulations to analyze localization in the presence of disorder. From measurements of the transverse flux line wandering, they determined the critical ratio of columnar to point disorder strength needed to localize the bosons
Numerical simulation of HPT processing
International Nuclear Information System (INIS)
Verleysen, P; Van den Abeele, F; Degrieck, J
2014-01-01
The principle of achieving high strength and superior properties in metal alloys through the application of severe plastic deformation has been exploited in the metal processing industry for many decades. In this contribution finite element simulations are presented of the HPT process. As opposed to most studies in literature, in which rigid sample holders are considered, the real elasto-plastic behavior of the holders is modeled. The simulations show that during the compression stage, plastic deformation occurs in the holders: initially, at the outside boundary of the sample cavity and, at a later stage, underneath the centre of the sample. The latter region of plastic deformation is rapidly growing and has a non-negligible effect on the response of the sample. Major conclusion is that the sample holders, and more specific, their deformability is key for the conditions in the specimen. Indeed, it severely affects important parameters for both the microstructural changes in the sample material, such as the amplitude and distribution of the hydrostatic stress, and its final shape
Numerical simulation of hypersonic flight experiment vehicle
Yamamoto, Yukimitsu; Yoshioka, Minako; 山本 行光; 吉岡 美菜子
1994-01-01
Hypersonic aerodynamic characteristics of Hypersonic FLight EXperiment (HYFLEX vehicle were investigated by numerical simulations using Navier-Stokes CFD (Computational Fluid Dynamics) code of NAL. Numerical results were compared with experimental data obtained at Hypersonic Wind Tunnel at NAL. In order to investigate real flight aerodynamic characteristics. numerical calculations corresponding to the flight conditions suffering from maximum aero thermodynamic heating were also made and the d...
Numerical simulation of mechatronic sensors and actuators
Kaltenbacher, Manfred
2007-01-01
Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.
The Beam Break-Up Numerical Simulator
International Nuclear Information System (INIS)
Travish, G.A.
1989-11-01
Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs
Numerical simulation of installation of skirt foundations
Energy Technology Data Exchange (ETDEWEB)
Vangelsten, Bjoern Vidar
1997-12-31
Skirt foundation has been increasingly used for permanent offshore oil installations and anchors for drilling ships. Suction is commonly used in skirt foundation installing. If a large amount of suction is applied, the soil around the foundation may fail and the foundation become useless. This thesis studies failure due to high seepage gradients, aiming to provide a basis for reducing the risk of such failures. Skirt penetration model testing has shown that to solve the problem one must understand what is going on at the skirt tip during suction installation. A numerical model based on micro mechanics was developed as continuum hypothesis was seen to be unsuitable to describe the processes in the critical phases of the failure. The numerical model combines two-dimensional elliptical particles with the finite difference method for flow to model water flow in a granular material. The key idea is to formulate the permeability as a function of the porosity of the grain assembly and so obtain an interaction between the finite difference method on flow and the particle movement. A computer program, DYNELL, was developed and used to simulate: (1) weight penetration of a skirt wall, (2) combined suction and weight penetration of a skirt wall, and (3) critical gradient tests around a skirt wall to study failure mechanisms. The model calculations agree well with laboratory experiments. 16 refs., 124 figs., 21 tabs.
Direct Numerical Simulation of Driven Cavity Flows
Verstappen, R.; Wissink, J.G.; Veldman, A.E.P.
Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been
Numerical Simulation of Cyclic Thermodynamic Processes
DEFF Research Database (Denmark)
Andersen, Stig Kildegård
2006-01-01
This thesis is on numerical simulation of cyclic thermodynamic processes. A modelling approach and a method for finding periodic steady state solutions are described. Examples of applications are given in the form of four research papers. Stirling machines and pulse tube coolers are introduced...... and a brief overview of the current state of the art in methods for simulating such machines is presented. It was found that different simulation approaches, which model the machines with different levels of detail, currently coexist. Methods using many simplifications can be easy to use and can provide...... models flexible and easy to modify, and to make simulations fast. A high level of accuracy was achieved for integrations of a model created using the modelling approach; the accuracy depended on the settings for the numerical solvers in a very predictable way. Selection of fast numerical algorithms...
Collisionless microinstabilities in stellarators. II. Numerical simulations
International Nuclear Information System (INIS)
Proll, J. H. E.; Xanthopoulos, P.; Helander, P.
2013-01-01
Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations
Practical integrated simulation systems for coupled numerical simulations in parallel
Energy Technology Data Exchange (ETDEWEB)
Osamu, Hazama; Zhihong, Guo [Japan Atomic Energy Research Inst., Centre for Promotion of Computational Science and Engineering, Tokyo (Japan)
2003-07-01
In order for the numerical simulations to reflect 'real-world' phenomena and occurrences, incorporation of multidisciplinary and multi-physics simulations considering various physical models and factors are becoming essential. However, there still exist many obstacles which inhibit such numerical simulations. For example, it is still difficult in many instances to develop satisfactory software packages which allow for such coupled simulations and such simulations will require more computational resources. A precise multi-physics simulation today will require parallel processing which again makes it a complicated process. Under the international cooperative efforts between CCSE/JAERI and Fraunhofer SCAI, a German institute, a library called the MpCCI, or Mesh-based Parallel Code Coupling Interface, has been implemented together with a library called STAMPI to couple two existing codes to develop an 'integrated numerical simulation system' intended for meta-computing environments. (authors)
Numerical simulation of sand jet in water
Energy Technology Data Exchange (ETDEWEB)
Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering
2008-07-01
A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.
Numerical simulation of "an American haboob"
Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.
2014-01-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land–atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe...
Numerical simulation of radial compressor stage
Syka, T.; Luňáček, O.
2013-04-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Luňáček O.; Syka T.
2013-01-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Directory of Open Access Journals (Sweden)
Luňáček O.
2013-04-01
Full Text Available Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical Simulation of Steady Supercavitating Flows
Ali Jafarian; Ahmad-Reza Pishevar
2016-01-01
In this research, the Supercavitation phenomenon in compressible liquid flows is simulated. The one-fluid method based on a new exact two-phase Riemann solver is used for modeling. The cavitation is considered as an isothermal process and a consistent equation of state with the physical behavior of the water is used. High speed flow of water over a cylinder and a projectile are simulated and the results are compared with the previous numerical and experimental results. The cavitation bubble p...
Numerical Simulation Of Silicon-Ribbon Growth
Woda, Ben K.; Kuo, Chin-Po; Utku, Senol; Ray, Sujit Kumar
1987-01-01
Mathematical model includes nonlinear effects. In development simulates growth of silicon ribbon from melt. Takes account of entire temperature and stress history of ribbon. Numerical simulations performed with new model helps in search for temperature distribution, pulling speed, and other conditions favoring growth of wide, flat, relatively defect-free silicon ribbons for solar photovoltaic cells at economically attractive, high production rates. Also applicable to materials other than silicon.
Spectral Methods in Numerical Plasma Simulation
DEFF Research Database (Denmark)
Coutsias, E.A.; Hansen, F.R.; Huld, T.
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...
Simple Numerical Simulation of Strain Measurement
Tai, H.
2002-01-01
By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.
Numerical simulation of large deformation polycrystalline plasticity
International Nuclear Information System (INIS)
Inal, K.; Neale, K.W.; Wu, P.D.; MacEwen, S.R.
2000-01-01
A finite element model based on crystal plasticity has been developed to simulate the stress-strain response of sheet metal specimens in uniaxial tension. Each material point in the sheet is considered to be a polycrystalline aggregate of FCC grains. The Taylor theory of crystal plasticity is assumed. The numerical analysis incorporates parallel computing features enabling simulations of realistic models with large number of grains. Simulations have been carried out for the AA3004-H19 aluminium alloy and the results are compared with experimental data. (author)
Mitigation of numerical noise for beam loss simulations
Kesting, Frederik
2017-01-01
Numerical noise emerges in self-consistent simulations of charged particles, and its mitigation is investigated since the first numerical studies in plasma physics. In accelerator physics, recent studies find an artificial diffusion of the particle beam due to numerical noise in particle-in-cell tracking, which is of particular importance for high intensity machines with a long storage time, as the SIS100 at FAIR or in context of the LIU upgrade at CERN. In beam loss simulations for these projects artificial effects must be distinguished from physical beam loss. Therefore, it is important to relate artificial diffusion to artificial beam loss, and to choose simulation parameters such that physical beam loss is well resolved. As a practical tool, we therefore suggest a scaling law to find optimal simulation parameters for a given maximum percentage of acceptable artificial beam loss.
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
Experiments and Numerical Simulations of Electrodynamic Tether
Iki, Kentaro; Kawamoto, Satomi; Takahashi, Ayaka; Ishimoto, Tomori; Yanagida, Atsushi; Toda, Susumu
As an effective means of suppressing space debris growth, the Aerospace Research and Development Directorate of the Japan Aerospace Exploration Agency (JAXA) has been investigating an active space debris removal system that employs highly efficient electrodynamic tether (EDT) technology for orbital transfer. This study investigates tether deployment dynamics by means of on-ground experiments and numerical simulations of an electrodynamic tether system. Some key parameters used in the numerical simulations, such as the elastic modulus and damping ratio of the tether, the spring constant of the coiling of the tether, and deployment friction, must be estimated, and various experiments are conducted to determine these values. As a result, the following values were obtained: The elastic modulus of the tether was 40 GPa, and the damping ratio of the tether was 0.02. The spring constant and the damping ratio of the tether coiling were 10-4 N/m and 0.025 respectively. The deployment friction was 0.038ν + 0.005 N. In numerical simulations using a multiple mass tether model, tethers with lengths of several kilometers are deployed and the attitude dynamics of satellites attached to the end of the tether and tether libration are calculated. As a result, the simulations confirmed successful deployment of the tether with a length of 500 m using the electrodynamic tether system.
Development of Pelton turbine using numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Patel, K; Patel, B; Yadav, M [Hydraulic Engineer, ALSTOM Hydro R and D India Ltd., GIDC Maneja, Vadodara - 390 013, Gujarat (India); Foggia, T, E-mail: patel@power.alstom.co [Hydraulic Engineer, Alstom Hydro France, Etablissement de Grenoble, 82, avenue Leon Blum BP 75, 38041 Grenoble Cedex (France)
2010-08-15
This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.
Development of Pelton turbine using numerical simulation
Patel, K.; Patel, B.; Yadav, M.; Foggia, T.
2010-08-01
This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.
Development of Pelton turbine using numerical simulation
International Nuclear Information System (INIS)
Patel, K; Patel, B; Yadav, M; Foggia, T
2010-01-01
This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.
Numerical Simulation of a Tornado Generating Supercell
Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.
2012-01-01
The development of tornadoes from a tornado generating supercell is investigated with a large eddy simulation weather model. Numerical simulations are initialized with a sounding representing the environment of a tornado producing supercell that affected North Carolina and Virginia during the Spring of 2011. The structure of the simulated storm was very similar to that of a classic supercell, and compared favorably to the storm that affected the vicinity of Raleigh, North Carolina. The presence of mid-level moisture was found to be important in determining whether a supercell would generate tornadoes. The simulations generated multiple tornadoes, including cyclonic-anticyclonic pairs. The structure and the evolution of these tornadoes are examined during their lifecycle.
Reactor numerical simulation and hydraulic test research
International Nuclear Information System (INIS)
Yang, L. S.
2009-01-01
In recent years, the computer hardware was improved on the numerical simulation on flow field in the reactor. In our laboratory, we usually use the Pro/e or UG commercial software. After completed topology geometry, ICEM-CFD is used to get mesh for computation. Exact geometrical similarity is maintained between the main flow paths of the model and the prototype, with the exception of the core simulation design of the fuel assemblies. The drive line system is composed of drive mechanism, guide bush assembly, fuel assembly and control rod assembly, and fitted with the rod level indicator and drive mechanism power device
Numerical simulation of electrostatic waves in plasmas
International Nuclear Information System (INIS)
Erz, U.
1981-08-01
In this paper the propagation of electrostatic waves in plasmas and the non-linear interactions, which occur in the case of large wave amplitudes, are studied using a new numerical method for plasma simulation. This mathematical description is based on the Vlasov-model. Changes in the distribution-function are taken into account and thus plasma kinetic effects can be treated. (orig./HT) [de
Numerical simulations on ion acoustic double layers
International Nuclear Information System (INIS)
Sato, T.; Okuda, H.
1980-07-01
A comprehensive numerical study of ion acoustic double layers has been performed for both periodic as well as for nonperiodic systems by means of one-dimensional particle simulations. For a nonperiodic system, an external battery and a resistance are used to model the magnetospheric convection potential and the ionospheric Pedersen resistance. It is found that the number of double layers and the associated potential buildup across the system increases with the system length
Numerical Simulations of Hyperfine Transitions of Antihydrogen
Kolbinger, B.; Diermaier, M.; Lehner, S.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M.C.; Widmann, E.
2015-02-04
One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.
Numerical simulations of hyperfine transitions of antihydrogen
Energy Technology Data Exchange (ETDEWEB)
Kolbinger, B., E-mail: bernadette.kolbinger@oeaw.ac.at; Capon, A.; Diermaier, M.; Lehner, S. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Widmann, E. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria)
2015-08-15
One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration’s goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.
Numerical simulation of gasket behaviour during severe accidents (ATHERMIP project)
International Nuclear Information System (INIS)
Castro Lopez, Fernando; Orden Martinez, Alfredo
1998-01-01
This paper summarises the work carried out to numerically simulate the thermo-mechanical behaviour of sealing gasket in large containment penetrations during a severe accident. The gasket material is an elastomeric material and the thermo-mechanical characterization was based on experimentation. The difficulty of numerical simulation lies in the high non-linearity of the analysis, due on one hand, to the high strain levels reached, and on the other, to stiffness changes introduced by contact/takeoff indicators. Also, the stiffness parameters of the gasket material are not constant, but are subject to changes, both regarding the strain level and the environmental conditions (temperature, radiation). The results obtained allow presenting a calculation model capable of simulating and explaining the behaviour of the sealing gasket during a severe accident. Also, the failure hypothesis numerically obtained was environmentally validated. (author)
Mathematical models and numerical simulation in electromagnetism
Bermúdez, Alfredo; Salgado, Pilar
2014-01-01
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
Local impact effects on concrete target due to missile: An empirical and numerical approach
International Nuclear Information System (INIS)
Ranjan, Rajiv; Banerjee, Sauvik; Singh, R.K.; Banerji, Pradipta
2014-01-01
Highlights: • Local impact effect of hard missile on reinforced concrete targets has been studied. • Review of empirical formulation for predicting local response carried out. • Numerical simulation of experimental test of Kojima (1991) carried out. • Divergence of FE results with those obtained using emperical formulations. • Close match of numerical simulation results with experimental data. - Abstract: Concrete containment walls and internal concrete barrier walls of a Nuclear Power Plant safety related structures are often required to be designed for externally and internally generated missiles. Potential missiles include external extreme wind generated missiles, aircraft crash and internal accident generated missiles such as impact due to turbine blade failure and steel pipe missiles resulting from pipe break. The objective of the present paper is to compare local missile impact effects on reinforced concrete target using available empirical formulations with those obtained using LS-DYNA numerical simulation. The use of numerical simulations for capturing the transient structural response has become increasingly used for structural design against impact loads. They overcome the limits of applicability of the empirical formulae and also provide information on stress and deformation fields, which may be used to improve the resistance of the concrete. Finite element (FE) analyses of an experimental impact problem reported by Kojima (1991) are carried out that are able to capture the missile impact effects; in terms of local and global damage. The continuous surface cap model has been used for modelling concrete behaviour. A range of missile velocity has been considered to simulate local missile impact phenomenon and modes of failure and to capture the concrete response from elastic to plastic fracture. A comparison is then made between the empirical formulations, numerical simulation results, and available experimental results of slab impact tests
Numerical Simulation of the Kinetic Critical Nucleus
Sanada, Masaaki; Nishioka, Kazumi; Okada, Masahumi; Maksimov, Igor, L.
1997-01-01
Our main interest is to see whether the number density indicates a peak at the kinetically stable critical nucleus due to its kinetical stability. We have numerically calculated the time evolution of the number densities of clusters in the case of water vapor nucleation. We employ the condition in which the difference between the size of the thermodynamic crtitical nucleus and that of the kinetic one is appreciable. The results show that the peak does not appear in the number densities of clu...
On the elimination of numerical Cerenkov radiation in PIC simulations
International Nuclear Information System (INIS)
Greenwood, Andrew D.; Cartwright, Keith L.; Luginsland, John W.; Baca, Ernest A.
2004-01-01
Particle-in-cell (PIC) simulations are a useful tool in modeling plasma in physical devices. The Yee finite difference time domain (FDTD) method is commonly used in PIC simulations to model the electromagnetic fields. However, in the Yee FDTD method, poorly resolved waves at frequencies near the cut off frequency of the grid travel slower than the physical speed of light. These slowly traveling, poorly resolved waves are not a problem in many simulations because the physics of interest are at much lower frequencies. However, when high energy particles are present, the particles may travel faster than the numerical speed of their own radiation, leading to non-physical, numerical Cerenkov radiation. Due to non-linear interaction between the particles and the fields, the numerical Cerenkov radiation couples into the frequency band of physical interest and corrupts the PIC simulation. There are two methods of mitigating the effects of the numerical Cerenkov radiation. The computational stencil used to approximate the curl operator can be altered to improve the high frequency physics, or a filtering scheme can be introduced to attenuate the waves that cause the numerical Cerenkov radiation. Altering the computational stencil is more physically accurate but is difficult to implement while maintaining charge conservation in the code. Thus, filtering is more commonly used. Two previously published filters by Godfrey and Friedman are analyzed and compared to ideally desired filter properties
Numerical simulation of real-world flows
Energy Technology Data Exchange (ETDEWEB)
Hayase, Toshiyuki, E-mail: hayase@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan)
2015-10-15
Obtaining real flow information is important in various fields, but is a difficult issue because measurement data are usually limited in time and space, and computational results usually do not represent the exact state of real flows. Problems inherent in the realization of numerical simulation of real-world flows include the difficulty in representing exact initial and boundary conditions and the difficulty in representing unstable flow characteristics. This article reviews studies dealing with these problems. First, an overview of basic flow measurement methodologies and measurement data interpolation/approximation techniques is presented. Then, studies on methods of integrating numerical simulation and measurement, namely, four-dimensional variational data assimilation (4D-Var), Kalman filters (KFs), state observers, etc are discussed. The first problem is properly solved by these integration methodologies. The second problem can be partially solved with 4D-Var in which only initial and boundary conditions are control parameters. If an appropriate control parameter capable of modifying the dynamical structure of the model is included in the formulation of 4D-Var, unstable modes are properly suppressed and the second problem is solved. The state observer and KFs also solve the second problem by modifying mathematical models to stabilize the unstable modes of the original dynamical system by applying feedback signals. These integration methodologies are now applied in simulation of real-world flows in a wide variety of research fields. Examples are presented for basic fluid dynamics and applications in meteorology, aerospace, medicine, etc. (topical review)
Lagrangian numerical methods for ocean biogeochemical simulations
Paparella, Francesco; Popolizio, Marina
2018-05-01
We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.
Numerical simulations for impact damage detection in composites using vibrothermography
International Nuclear Information System (INIS)
Pieczonka, L J; Uhl, T; Szwedo, M; Staszewski, W J; Aymerich, F
2010-01-01
Composite materials are widely used in many engineering applications due to their high strength-to-weight ratios. However, it is well known that composites are susceptible to impact damage. Detection of impact damage is an important issue in maintenance of composite structures. Various non-destructive image-based techniques have been developed for damage detection in composite materials. These include vibrothermography that detects surface temperature changes due to heating associated with frictional energy dissipation by damage. In the present paper numerical simulations are used to investigate heat generation in a composite plate with impact damage in order to support damage detection analysis with vibrothermography. Explicit finite elements are used to model ultrasonic wave propagation in the damaged plate. Simulated delamination and cracks induce frictional heating in the plate. Coupled thermo-mechanical simulations are performed in high frequencies using commercial LS-Dyna finite element code. Very good qualitative agreement between measurements and simulations has been obtained. The area of increased temperature corresponds very well with the damaged area in both experiments and simulations. Numerical model has to be further refined in order to quantitatively match the experiments. The main issues of concern are frictional and thermal properties of composites. The final goal of these research efforts is to predict damage detection sensitivity of vibrothermography in real engineering applications based on numerical models.
Spectral methods in numerical plasma simulation
International Nuclear Information System (INIS)
Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)
Numerical simulation of the cavitation's hydrodynamic excitement
International Nuclear Information System (INIS)
Hassis, H.; Dueymes, E.; Lauro, J.F.
1993-01-01
First, we study the motion, the velocity, the phases plane and the acoustic sources associated to a spherical bubble in a compressible or incompressible medium. The bubble can be excited by periodic or random excitements. We study the parameters which influence their behaviour: periodicity or not of motion, implosion and explosion or oscillation of bubble. We take into account this behaviour in a model of cavitation: it is a numerical simulation using population of bubbles which are with positions (in the cavitation volume) and sizes are random. These bubbles are excited by a random excitement: a model of turbulent flow or implosion and explosion of bubble. (author)
Numerical Simulations Of Flagellated Micro-Swimmers
Rorai, Cecilia; Markesteijn, Anton; Zaitstev, Mihail; Karabasov, Sergey
2017-11-01
We study flagellated microswimmers locomotion by representing the entire swimmer body. We discuss and contrast the accuracy and computational cost of different numerical approaches including the Resistive Force Theory, the Regularized Stokeslet Method and the Finite Element Method. We focus on how the accuracy of the methods in reproducing the swimming trajectories, velocities and flow field, compares to the sensitivity of these quantities to certain physical parameters, such as the body shape and the location of the center of mass. We discuss the opportunity and physical relevance of retaining inertia in our models. Finally, we present some preliminary results toward collective motion simulations. Marie Skodowska-Curie Individual Fellowship.
The numerical simulation of accelerator components
International Nuclear Information System (INIS)
Herrmannsfeldt, W.B.; Hanerfeld, H.
1987-05-01
The techniques of the numerical simulation of plasmas can be readily applied to problems in accelerator physics. Because the problems usually involve a single component ''plasma,'' and times that are at most, a few plasma oscillation periods, it is frequently possible to make very good simulations with relatively modest computation resources. We will discuss the methods and illustrate them with several examples. One of the more powerful techniques of understanding the motion of charged particles is to view computer-generated motion pictures. We will show several little movie strips to illustrate the discussions. The examples will be drawn from the application areas of Heavy Ion Fusion, electron-positron linear colliders and injectors for free-electron lasers. 13 refs., 10 figs., 2 tabs
Numerical simulation of human biped locomotion
International Nuclear Information System (INIS)
Ishiguro, Misako; Fujisaki, Masahide
1988-04-01
This report describes the numerical simulation of the motion of human-like robot which is one of the research theme of human acts simulation program (HASP) begun at the Computing Center of JAERI in 1987. The purpose of the theme is to model the human motion using robotics kinematic/kinetic equations and to get the joint angles as the solution. As the first trial, we treat the biped locomotion (walking) which is the most fundamental human motion. We implemented a computer program on FACOM M-780 computer, where the program is originated from the book of M. Vukobratovic in Yugoslavia, and made a graphic program to draw a walking shot sequence. Mainly described here are the mathematical model of the biped locomotion, implementation method of the computer program, input data for basic walking pattern, computed results and its validation, and graphic representation of human walking image. Literature survey on robotics equation and biped locomotion is also included. (author)
Direct numerical simulation of annular flows
Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.
2017-11-01
Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
Numerical Simulation of Duplex Steel Multipass Welding
Directory of Open Access Journals (Sweden)
Giętka T.
2016-12-01
Full Text Available Analyses based on FEM calculations have significantly changed the possibilities of determining welding strains and stresses at early stages of product design and welding technology development. Such an approach to design enables obtaining significant savings in production preparation and post-weld deformation corrections and is also important for utility properties of welded joints obtained. As a result, it is possible to make changes to a simulated process before introducing them into real production as well as to test various variants of a given solution. Numerical simulations require the combination of problems of thermal, mechanical and metallurgical analysis. The study presented involved the SYSWELD software-based analysis of GMA welded multipass butt joints made of duplex steel sheets. The analysis of the distribution of stresses and displacements were carried out for typical welding procedure as during real welding tests.
Visualization techniques in plasma numerical simulations
International Nuclear Information System (INIS)
Kulhanek, P.; Smetana, M.
2004-01-01
Numerical simulations of plasma processes usually yield a huge amount of raw numerical data. Information about electric and magnetic fields and particle positions and velocities can be typically obtained. There are two major ways of elaborating these data. First of them is called plasma diagnostics. We can calculate average values, variances, correlations of variables, etc. These results may be directly comparable with experiments and serve as the typical quantitative output of plasma simulations. The second possibility is the plasma visualization. The results are qualitative only, but serve as vivid display of phenomena in the plasma followed-up. An experience with visualizing electric and magnetic fields via Line Integral Convolution method is described in the first part of the paper. The LIC method serves for visualization of vector fields in two dimensional section of the three dimensional plasma. The field values can be known only in grid points of three-dimensional grid. The second part of the paper is devoted to the visualization techniques of the charged particle motion. The colour tint can be used for particle temperature representation. The motion can be visualized by a trace fading away with the distance from the particle. In this manner the impressive animations of the particle motion can be achieved. (author)
Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yun [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China); Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Liu, Yinhe, E-mail: yinheliu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China)
2017-11-20
Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C{sub hydrogen} < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C{sub hydrogen} > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.
Numerical simulation of particle settling and cohesion in liquid
Energy Technology Data Exchange (ETDEWEB)
Johno, Y; Nakashima, K; Shigematsu, T; Ono, B [SASEBO National College of Technology, 1-1 Okishin, Sasebo, Nagasaki, 857-1193 (Japan); Satomi, M, E-mail: yjohno@post.cc.sasebo.ac.j [Sony Semiconductor Kyushu Corporation, Kikuchigun, Kumamoto (Japan)
2009-02-01
In this study, the motions of particles and particle clusters in liquid were numerically simulated. The particles of two sizes (Dp=40mum and 20mum) settle while repeating cohesion and dispersion, and finally the sediment of particles are formed at the bottom of a hexahedron container which is filled up with pure water. The flow field was solved with the Navier-Stokes equations and the particle motions were solved with the Lagrangian-type motion equations, where the interaction between fluid and particles due to drag forces were taken into account. The collision among particles was calculated using Distinct Element Method (DEM), and the effects of cohesive forces by van der Waals force acting on particle contact points were taken into account. Numerical simulations were performed under conditions in still flow and in shear flow. It was found that the simulation results enable us to know the state of the particle settling and the particle condensation.
Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation
International Nuclear Information System (INIS)
Zhang, Yun; Liu, Yinhe
2017-01-01
Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C hydrogen < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C hydrogen > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.
Direct numerical simulations of turbulent lean premixed combustion
International Nuclear Information System (INIS)
Sankaran, Ramanan; Hawkes, Evatt R; Chen, Jacqueline H; Lu Tianfeng; Law, Chung K
2006-01-01
In recent years, due to the advent of high-performance computers and advanced numerical algorithms, direct numerical simulation (DNS) of combustion has emerged as a valuable computational research tool, in concert with experimentation. The role of DNS in delivering new Scientific insight into turbulent combustion is illustrated using results from a recent 3D turbulent premixed flame simulation. To understand the influence of turbulence on the flame structure, a 3D fully-resolved DNS of a spatially-developing lean methane-air turbulent Bunsen flame was performed in the thin reaction zones regime. A reduced chemical model for methane-air chemistry consisting of 13 resolved species, 4 quasi-steady state species and 73 elementary reactions was developed specifically for the current simulation. The data is analyzed to study possible influences of turbulence on the flame thickness. The results show that the average flame thickness increases, in qualitative agreement with several experimental results
Direct numerical simulation of turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Numerical simulation of premixed turbulent methane combustion
International Nuclear Information System (INIS)
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.
2001-01-01
In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame
Numerical simulation of heterogeneous phase transformations
International Nuclear Information System (INIS)
Combeau, H.; Lacaze, J.
1993-01-01
A numerical model is presented for the simulation of diffusion controlled phase transformations in multicomponent alloys. A closed system is considered, with simple geometric shape, either planar, cylindrical or spherical. The temperature inside this microscopic volume is homogeneous, but can vary according to any specified monoteneous law. Particular care has been given to the description of the solute profiles where the concentration gradients are the steepest, i.e. near the interface between the parent and the resultant phases. Solute redistribution at the interface is described by means of an original method which ensures that the overall solute balance is satisfied. A non linear system is obtained which includes the diffusion equations in both phases and the boundary conditions. The solution of this system makes use of a special algorithm which has been devised for a quick convergence. An example is presented which deals with microsegregation build-up during solidification of a multi-component nickel base alloy. (orig.)
Numerical simulations of coupled problems in engineering
2014-01-01
This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.
Numerical simulation of distorted crystal Darwin width
International Nuclear Information System (INIS)
Wang Li; Xu Zhongmin; Wang Naxiu
2012-01-01
A new numerical simulation method according to distorted crystal optical theory was used to predict the direct-cooling crystal monochromator optical properties(crystal Darwin width) in this study. The finite element analysis software was used to calculate the deformed displacements of DCM crystal and to get the local reciprocal lattice vector of distorted crystal. The broadening of direct-cooling crystal Darwin width in meridional direction was estimated at 4.12 μrad. The result agrees well with the experimental data of 5 μrad, while it was 3.89 μrad by traditional calculation method of root mean square (RMS) of the slope error in the center line of footprint. The new method provides important theoretical support for designing and processing of monochromator crystal for synchrotron radiation beamline. (authors)
Numerical simulation of magnetic heat pumps
International Nuclear Information System (INIS)
Smaili, A.; Masson, C.
2002-01-01
This article presents a numerical method for performance predictions of magnetic heat pump (MHP) devices. Such devices consist primarily of a magnetic regenerator (solid refrigerant media) and circulating fluid. Unlike conventional gas-cycles, MHP devices function according to thermomagnetic cycles which do not require neither compressor nor expander. In this paper, the flow field throughout the regenerator is described by continuity and unsteady incompressible Navier-Stokes equations. The heat transfer between fluid and solid is introduced by considering the corresponding energy equations. The proposed mathematical model has been solved using a control volume finite element method. The fully implicit scheme is used for time discretization. Simulation results including heating capacity and coefficient of performance are presented for a given MHP cycle. Mainly, the effects of cycle frequency, mass flow rate and the magnetic regenerator mass are investigated. (author)
Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling
Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad
2015-01-01
The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA
Coupled numerical simulation of fire in tunnel
Pesavento, F.; Pachera, M.; Schrefler, B. A.; Gawin, D.; Witek, A.
2018-01-01
In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a "one-way" coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the "system tunnel", composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a "one way" strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is
Numerical simulations of capillary barrier field tests
International Nuclear Information System (INIS)
Morris, C.E.; Stormont, J.C.
1997-01-01
Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior
Numerical simulation for nuclear pumped laser
Energy Technology Data Exchange (ETDEWEB)
Sakasai, Kaoru [Japan Atomic Energy Research Inst., Tokyo (Japan)
1998-07-01
To apply nuclear pumped laser of {sup 3}He-Ne-Ar gas to detect neutron, the optimum gas mixture was investigated by numerical simulation. When {sup 3}He-Ne-Ar mixture gas are irradiated by neutron, proton and triton with high velocity are produced by {sup 3}He(np)T and two charge particles ionized {sup 3}He, Ne and Ar which reacted each other and attained to 3p`(1/2){sub 0}-3S`(1/2). The calculation method is constructed by defining the rate equations of each ion and exited atom and the electron energy balance equation and by time integrating the simultaneous differential equations of the above two equations and the law of conservation of charge. Penning ionization and energy transport by elastic collision of neutral atom were considered in the transport process of electron energy direct ionization by secondary charge particle. Calculation time was 1 msec. The optimum component was shown 3 atm He, 24 Torr He and 8 Torr Ar by simulation. Laser oscilation was generated under the conditions 3.3 x 10{sup 14} (N/cm{sup 2}/5) thermal neutron flux at 50 cm laser cell length and 99% coefficient of reflection of mirror. After laser oscilation, laser output was proportional to neutron flux. These results showed nuclear pumped laser of {sup 3}He-Ne-Ar was able to detect optically neutron. (S.Y)
Numerical simulation of the Polywell device
International Nuclear Information System (INIS)
Simmons, K.H.; Santarius, J.F.
1995-01-01
Recent ideas concerning inertial-electrostatic confinement (IEC) of fusion plasmas coupled with recent experimental results have motivated looking at the problem of confinement of these plasmas in both the gridded (pure electrostatic) and magnetically assisted (via confinement of high beta plasmas in a magnetic cusp) configuration. Questions exist as to the nature of the potential well structure and the confinement properties of high beta plasmas in magnetic cusp configurations. This work focuses on the magnetically assisted concept known as the Polywell trademark. Results are reported on the numerical simulation of IEC plasmas aimed at answering some of these questions. In particular the authors focus on two aspects of the Polywell, namely the structure of the magnetic cusp field in the Polywell configuration and the nature of the confinement of a high beta plasma in a magnetic cusp field. The existence of line cusps in the Polywell is still in dispute. A computer code for modeling the magnetic field structure and mod-B surface has been written and results are presented for the Polywell. Another source of controversy is the nature of the confinement of a high beta plasma in a magnetic cusp, and in particular in the polywell. Results from 2-D Particle In Cell (PIC) simulations aimed at answering some of these questions are presented
Direct numerical simulation of human phonation
Bodony, Daniel; Saurabh, Shakti
2017-11-01
The generation and propagation of the human voice in three-dimensions is studied using direct numerical simulation. A full body domain is employed for the purpose of directly computing the sound in the region past the speaker's mouth. The air in the vocal tract is modeled as a compressible and viscous fluid interacting with the elastic vocal folds. The vocal fold tissue material properties are multi-layered, with varying stiffness, and a linear elastic transversely isotropic model is utilized and implemented in a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A kinematic constraint based on a specified minimum gap between the vocal folds is applied to prevent collision during glottal closure. Both near VF flow dynamics and far-field acoustics have been studied. A comparison is drawn to current two-dimensional simulations as well as to data from the literature. Near field vocal fold dynamics and glottal flow results are studied and in good agreement with previous three-dimensional phonation studies. Far-field acoustic characteristics, when compared to their two-dimensional counterpart, are shown to be sensitive to the dimensionality. Supported by the National Science Foundation (CAREER Award Number 1150439).
Numerical Simulations of Hypersonic Boundary Layer Transition
Bartkowicz, Matthew David
Numerical schemes for supersonic flows tend to use large amounts of artificial viscosity for stability. This tends to damp out the small scale structures in the flow. Recently some low-dissipation methods have been proposed which selectively eliminate the artificial viscosity in regions which do not require it. This work builds upon the low-dissipation method of Subbareddy and Candler which uses the flux vector splitting method of Steger and Warming but identifies the dissipation portion to eliminate it. Computing accurate fluxes typically relies on large grid stencils or coupled linear systems that become computationally expensive to solve. Unstructured grids allow for CFD solutions to be obtained on complex geometries, unfortunately, it then becomes difficult to create a large stencil or the coupled linear system. Accurate solutions require grids that quickly become too large to be feasible. In this thesis a method is proposed to obtain more accurate solutions using relatively local data, making it suitable for unstructured grids composed of hexahedral elements. Fluxes are reconstructed using local gradients to extend the range of data used. The method is then validated on several test problems. Simulations of boundary layer transition are then performed. An elliptic cone at Mach 8 is simulated based on an experiment at the Princeton Gasdynamics Laboratory. A simulated acoustic noise boundary condition is imposed to model the noisy conditions of the wind tunnel and the transitioning boundary layer observed. A computation of an isolated roughness element is done based on an experiment in Purdue's Mach 6 quiet wind tunnel. The mechanism for transition is identified as an instability in the upstream separation region and a comparison is made to experimental data. In the CFD a fully turbulent boundary layer is observed downstream.
Numerical simulations of the mantle lithosphere delamination
Morency, C.; Doin, M.-P.
2004-03-01
Sudden uplift, extension, and increased igneous activity are often explained by rapid mechanical thinning of the lithospheric mantle. Two main thinning mechanisms have been proposed, convective removal of a thickened lithospheric root and delamination of the mantle lithosphere along the Moho. In the latter case, the whole mantle lithosphere peels away from the crust by the propagation of a localized shear zone and sinks into the mantle. To study this mechanism, we perform two-dimensional (2-D) numerical simulations of convection using a viscoplastic rheology with an effective viscosity depending strongly on temperature, depth, composition (crust/mantle), and stress. The simulations develop in four steps. (1) We first obtain "classical" sublithospheric convection for a long time period (˜300 Myr), yielding a slightly heterogeneous lithospheric temperature structure. (2) At some time, in some simulations, a strong thinning of the mantle occurs progressively in a small area (˜100 km wide). This process puts the asthenosphere in direct contact with the lower crust. (3) Large pieces of mantle lithosphere then quickly sink into the mantle by the horizontal propagation of a detachment level away from the "asthenospheric conduit" or by progressive erosion on the flanks of the delaminated area. (4) Delamination pauses or stops when the lithospheric mantle part detaches or when small-scale convection on the flanks of the delaminated area is counterbalanced by heat diffusion. We determine the parameters (crustal thicknesses, activation energies, and friction coefficients) leading to delamination initiation (step 2). We find that delamination initiates where the Moho temperature is the highest, as soon as the crust and mantle viscosities are sufficiently low. Delamination should occur on Earth when the Moho temperature exceeds ˜800°C. This condition can be reached by thermal relaxation in a thickened crust in orogenic setting or by corner flow lithospheric erosion in the
Numerical simulation of a semi-indirect evaporative cooler
Energy Technology Data Exchange (ETDEWEB)
Martin, R. Herrero [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain)
2009-11-15
This paper presents the experimental study and numerical simulation of a semi-indirect evaporative cooler (SIEC), which acts as an energy recovery device in air conditioning systems. The numerical simulation was conducted by applying the CFD software FLUENT implementing a UDF to model evaporation/condensation. The numerical model was validated by comparing the simulation results with experimental data. Experimental data and numerical results agree for the lower relative humidity series but not for higher relative humidity values. (author)
Numerical simulation of "an American haboob"
Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.
2014-04-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran Desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM (Non-hydrostatic Mesoscale Model on E grid, Janjic et al., 2001; Dust REgional Atmospheric Model, Nickovic et al., 2001; Pérez et al., 2006) with 4 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The scope of this paper is validation of the dust model performance, and not use of the model as a tool to investigate mechanisms related to the storm. Results demonstrate the potential technical capacity and availability of the relevant data to build an operational system for dust storm forecasting as a part of a warning system. Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~25 km), the model PM10 surface dust concentration reached ~2500 μg m-3, but
Numerical simulation of water quality in Yangtze Estuary
Directory of Open Access Journals (Sweden)
Xi Li
2009-12-01
Full Text Available In order to monitor water quality in the Yangtze Estuary, water samples were collected and field observation of current and velocity stratification was carried out using a shipboard acoustic Doppler current profiler (ADCP. Results of two representative variables, the temporal and spatial variation of new point source sewage discharge as manifested by chemical oxygen demand (COD and the initial water quality distribution as manifested by dissolved oxygen (DO, were obtained by application of the Environmental Fluid Dynamics Code (EFDC with solutions for hydrodynamics during tides. The numerical results were compared with field data, and the field data provided verification of numerical application: this numerical model is an effective tool for water quality simulation. For point source discharge, COD concentration was simulated with an initial value in the river of zero. The simulated increments and distribution of COD in the water show acceptable agreement with field data. The concentration of DO is much higher in the North Branch than in the South Branch due to consumption of oxygen in the South Branch resulting from discharge of sewage from Shanghai. The DO concentration is greater in the surface layer than in the bottom layer. The DO concentration is low in areas with a depth of less than 20 m, and high in areas between the 20-m and 30-m isobaths. It is concluded that the numerical model is valuable in simulation of water quality in the case of specific point source pollutant discharge. The EFDC model is also of satisfactory accuracy in water quality simulation of the Yangtze Estuary.
Direct numerical simulations of nucleate boiling flows of binary mixtures
International Nuclear Information System (INIS)
Didier Jamet; Celia Fouillet
2005-01-01
phenomena. Namely, it is numerically observed that, for binary mixtures involving small amounts of a quasi non-condensable gas, the large decrease of the heat transfer coefficient observed is mostly due to the concentration distribution close to the triple line. Therefore, for direct numerical simulations of nucleate boiling of binary mixtures to provide quantitative results, it is important to account for the variations of the interface temperature with the local concentration of the mixture components in the close vicinity of the triple line. This knowledge requires a better modeling of the triple line motion of binary mixtures during liquid-vapor phase-change, which is still a very difficult modeling task. (author)
Transonic aeroelastic numerical simulation in aeronautical engineering
International Nuclear Information System (INIS)
Yang, G.
2005-01-01
An LU-SGS (lower-upper symmetric Gauss-Seidel) subiteration scheme is constructed for time-marching of the fluid equations. The HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and Transfinite Interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted. (author)
Proton decay: Numerical simulations confront grand unification
International Nuclear Information System (INIS)
Brower, R.C.; Maturana, G.; Giles, R.C.; Moriarty, K.J.M.; Samuel, S.
1985-01-01
The Grand Unified Theories of the electromagnetic, weak and strong interactions constitute a far reaching attempt to synthesize our knowledge of theoretical particle physics into a consistent and compelling whole. Unfortunately, many quantitative predictions of such unified theories are sensitive to the analytically intractible effects of the strong subnuclear theory (Quantum Chromodynamics or QCD). The consequence is that even ambitious experimental programs exploring weak and super-weak interaction effects often fail to give definitive theoretical tests. This paper describes large-scale calculations on a supercomputer which can help to overcome this gap between theoretical predictions and experimental results. Our focus here is on proton decay, though the methods described are useful for many weak processes. The basic algorithms for the numerical simulation of QCD are well known. We will discuss the advantages and challenges of applying these methods to weak transitions. The algorithms require a very large data base with regular data flow and are natural candidates for vectorization. Also, 32-bit floating point arithmetic is adequate. Thus they are most naturally approached using a supercomputer alone or in combination with a dedicated special purpose processor. (orig.)
The analytical evolution of NLS solitons due to the numerical discretization error
Hoseini, S. M.; Marchant, T. R.
2011-12-01
Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank-Nicolson scheme and a scheme, due to Taha [1], based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t^{-{1\\over 2}}, which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank-Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found.
The analytical evolution of NLS solitons due to the numerical discretization error
International Nuclear Information System (INIS)
Hoseini, S M; Marchant, T R
2011-01-01
Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank–Nicolson scheme and a scheme, due to Taha, based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t -1/2 , which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank–Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found. (paper)
MHD turbulent dynamo in astrophysics: Theory and numerical simulation
Chou, Hongsong
2001-10-01
This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).
A Numerical Simulation for a Deterministic Compartmental ...
African Journals Online (AJOL)
In this work, an earlier deterministic mathematical model of HIV/AIDS is revisited and numerical solutions obtained using Eulers numerical method. Using hypothetical values for the parameters, a program was written in VISUAL BASIC programming language to generate series for the system of difference equations from the ...
Numerical simulation of pulse-tube refrigerators
Lyulina, I.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.
2004-01-01
A new numerical model has been introduced to study steady oscillatory heat and mass transfer in the tube section of a pulse-tube refrigerator. Conservation equations describing compressible gas flow in the tube are solved numerically, using high resolution schemes. The equation of conservation of
Numerical simulation of anisotropic polymeric foams
Directory of Open Access Journals (Sweden)
Volnei Tita
Full Text Available This paper shows in detail the modelling of anisotropic polymeric foam under compression and tension loadings, including discussions on isotropic material models and the entire procedure to calibrate the parameters involved. First, specimens of poly(vinyl chloride (PVC foam were investigated through experimental analyses in order to understand the mechanical behavior of this anisotropic material. Then, isotropic material models available in the commercial software AbaqusTM were investigated in order to verify their ability to model anisotropic foams and how the parameters involved can influence the results. Due to anisotropy, it is possible to obtain different values for the same parameter in the calibration process. The obtained set of parameters are used to calibrate the model according to the application of the structure. The models investigated showed minor and major limitations to simulate the mechanical behavior of anisotropic PVC foams under compression, tension and multi-axial loadings. Results show that the calibration process and the choice of the material model applied to the polymeric foam can provide good quantitative results and save project time. Results also indicate what kind and order of error one will get if certain choices are made throughout the modelling process. Finally, even though the developed calibration procedure is applied to specific PVC foam, it still outlines a very broad drill to analyze other anisotropic cellular materials.
Large-scale numerical simulations of plasmas
International Nuclear Information System (INIS)
Hamaguchi, Satoshi
2004-01-01
The recent trend of large scales simulations of fusion plasma and processing plasmas is briefly summarized. Many advanced simulation techniques have been developed for fusion plasmas and some of these techniques are now applied to analyses of processing plasmas. (author)
Analysis of control rod behavior based on numerical simulation
International Nuclear Information System (INIS)
Ha, D. G.; Park, J. K.; Park, N. G.; Suh, J. M.; Jeon, K. L.
2010-01-01
The main function of a control rod is to control core reactivity change during operation associated with changes in power, coolant temperature, and dissolved boron concentration by the insertion and withdrawal of control rods from the fuel assemblies. In a scram, the control rod assemblies are released from the CRDMs (Control Rod Drive Mechanisms) and, due to gravity, drop rapidly into the fuel assemblies. The control rod insertion time during a scram must be within the time limits established by the overall core safety analysis. To assure the control rod operational functions, the guide thimbles shall not obstruct the insertion and withdrawal of the control rods or cause any damage to the fuel assembly. When fuel assembly bow occurs, it can affect both the operating performance and the core safety. In this study, the drag forces of the control rod are estimated by a numerical simulation to evaluate the guide tube bow effect on control rod withdrawal. The contact condition effects are also considered. A full scale 3D model is developed for the evaluation, and ANSYS - commercial numerical analysis code - is used for this numerical simulation. (authors)
Numerical simulation of microstructure of the GeSi alloy
Energy Technology Data Exchange (ETDEWEB)
Rasin, I.
2006-09-08
The goal of this work is to investigate pattern formation processes on the solid-liquid interface during the crystal growth of GeSi. GeSi crystals with cellular structure have great potential for applications in -ray and neutron optics. The interface patterns induce small quasi-periodic distortions of the microstructure called mosaicity. Existence and properties of this mosaicity are important for the application of the crystals. The properties depend on many factors; this dependence, is currently not known even not qualitatively. A better understanding of the physics near the crystal surface is therefore required, in order to optimise the growth process. There are three main physical processes in this system: phase-transition, diffusion and melt flow. Every process is described by its own set of equations. Finite difference methods and lattice kinetic methods are taken for solving these governing equations. We have developed a modification of the kinetic methods for the advectiondiffusion and extended this method for simulations of non-linear reaction diffusion equations. The phase-field method was chosen as a tool for describing the phase-transition. There are numerous works applied for different metallic alloys. An attempt to apply the method directly to simulation GeSi crystal growth showed that this method is unstable. This instability has not been observed in previous works due to the much smaller scale of simulations. We introduced a modified phase-field scheme, which enables to simulate pattern formation with the scale observed in experiment. A flow in the melt was taken in to account in the numerical model. The developed numerical model allows us to investigate pattern formation in GeSi crystals. Modelling shows that the flow near the crystal surface has impact on the patterns. The obtained patterns reproduce qualitatively and in some cases quantitatively the experimental results. (orig.)
Coherent Structures in Numerically Simulated Plasma Turbulence
DEFF Research Database (Denmark)
Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.
1989-01-01
Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...
Numerical simulation of single bubble boiling behavior
Directory of Open Access Journals (Sweden)
Junjie Liu
2017-06-01
Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.
A numerical simulation of VIV on a flexible circular cylinder
International Nuclear Information System (INIS)
Xie Fangfang; Deng Jian; Zheng Yao; Xiao Qing
2012-01-01
In this paper, numerical simulations of a flexible circular cylinder subjected to a vortex-induced vibration (VIV) are conducted. The Reynolds number for simulations is fixed at 1000. The finite volume method is applied for modeling fluid flow with the moving meshes feature. The dynamic response of a flexible cylinder fixed at both ends is modeled by the Euler–Bernoulli beam theory. The comparison between two-dimensional (2D) simulations and 3D simulations for the flexible cylinder shows that the maximum response amplitude of the cross-flow oscillation is about 0.57D for 2D rigid cylinders (modeled by a spring–damper–mass model) and 1.03D for flexible cylinders, respectively. The results from 3D simulations are closer to previous experimental results. Furthermore, the results obtained with various frequency ratios show that different wake patterns exist according to the frequency ratio, such as 2S mode, 2P mode and some more complicated modes. The wake pattern is different at various sections along the cylinder length, due to the fact that the two ends of the beam are fixed. The vibration of the flexible cylinder can also greatly alter the three dimensionality in the wake, which is our research in future work, especially in the transition region for Reynolds number ranging from 170 to 300. (paper)
Modular numerical tool for gas turbine simulation
Sampedro Casis, Rodrigo
2015-01-01
In this work a free tool for the simulation of turboprops was implemented, capable of simulating the various components of a jet engine, separately or in conjunction, with different degrees of thermodynamic modelling or complexity, in order to simulate an entire jet engine. The main characteristics of this software includes its compatibility, open code and GNU license, non-existing in today's market. Furthermore, the tool was designed with a greater flexibility and a more adapted work environ...
Numerical simulation of turbulent combustion: Scientific challenges
Ren, ZhuYin; Lu, Zhen; Hou, LingYun; Lu, LiuYan
2014-08-01
Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes, improving engine performance, and reducing pollutant emissions. Critical issues as turbulence modeling, turbulence-chemistry interaction, and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for high-fidelity combustion simulation. This paper reviews the current status of the state-of-the-art large eddy simulation (LES)/prob-ability density function (PDF)/detailed chemistry approach that can address the three challenging modelling issues. PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described. Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified. Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.
Numerical Simulation of Non-Thermal Food Preservation
Rauh, C.; Krauss, J.; Ertunc, Ö.; Delgado, a.
2010-09-01
Food preservation is an important process step in food technology regarding product safety and product quality. Novel preservation techniques are currently developed, that aim at improved sensory and nutritional value but comparable safety than in conventional thermal preservation techniques. These novel non-thermal food preservation techniques are based for example on high pressures up to one GPa or pulsed electric fields. in literature studies the high potential of high pressures (HP) and of pulsed electric fields (PEF) is shown due to their high retention of valuable food components as vitamins and flavour and selective inactivation of spoiling enzymes and microorganisms. for the design of preservation processes based on the non-thermal techniques it is crucial to predict the effect of high pressure and pulsed electric fields on the food components and on the spoiling enzymes and microorganisms locally and time-dependent in the treated product. Homogenous process conditions (especially of temperature fields in HP and PEF processing and of electric fields in PEF) are aimed at to avoid the need of over-processing and the connected quality loss and to minimize safety risks due to under-processing. the present contribution presents numerical simulations of thermofluiddynamical phenomena inside of high pressure autoclaves and pulsed electric field treatment chambers. in PEF processing additionally the electric fields are considered. Implementing kinetics of occurring (bio-) chemical reactions in the numerical simulations of the temperature, flow and electric fields enables the evaluation of the process homogeneity and efficiency connected to different process parameters of the preservation techniques. Suggestions to achieve safe and high quality products are concluded out of the numerical results.
Detailed numerical simulations of laser cooling processes
Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.
2001-01-01
We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.
NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...
African Journals Online (AJOL)
2014-06-30
Jun 30, 2014 ... objective of this study is to control the simulation of unsteady flows around structures. ... Aerospace, our results were in good agreement with experimental .... Two-Equation Eddy-Viscosity Turbulence Models for Engineering.
Numerical simulation of ion-surface interactions
International Nuclear Information System (INIS)
Hou, M.
1994-01-01
This paper, based on examples from the author's contribution, aims to illustrate the role of ballistic simulations of the interaction between an ion beam and a surface in the characterization of surface properties. Several aspects of the ion-surface interaction have been modelled to various levels of sophistication by computer simulation. Particular emphasis is given to the ion scattering in the impact mode, in the multiple scattering regime and at grazing incidence, as well as to the Auger emission resulting from electronic excitation. Some examples are then given in order to illustrate the use of the combination between simulation and experiment to study the ion-surface interaction and surface properties. Ion-induced Auger emission, the determination of potentials and of overlay structures are discusse. The possibility to tackle dynamical surface properties by menas of a combination between molecular dynamics, ballistic simulations and ion scattering measurements in then briefly discussed. (orig.)
A numerical simulation of a contrail
Energy Technology Data Exchange (ETDEWEB)
Levkov, L.; Boin, M.; Meinert, D. [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht (Germany)
1997-12-31
The formation of a contrail from an aircraft flying near the tropopause is simulated using a three-dimensional mesoscale atmospheric model including a very complex scheme of parameterized cloud microphysical processes. The model predicted ice concentrations are in very good agreement with data measured during the International Cirrus Experiment (ICE), 1989. Sensitivity simulations were run to determine humidity forcing on the life time of contrails. (author) 4 refs.
A numerical simulation of a contrail
Energy Technology Data Exchange (ETDEWEB)
Levkov, L; Boin, M; Meinert, D [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht (Germany)
1998-12-31
The formation of a contrail from an aircraft flying near the tropopause is simulated using a three-dimensional mesoscale atmospheric model including a very complex scheme of parameterized cloud microphysical processes. The model predicted ice concentrations are in very good agreement with data measured during the International Cirrus Experiment (ICE), 1989. Sensitivity simulations were run to determine humidity forcing on the life time of contrails. (author) 4 refs.
Numerical simulation of hemorrhage in human injury
Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff
2015-11-01
Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.
Numerical characteristics of quantum computer simulation
Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.
2016-12-01
The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.
Numerical Simulation for Mechanism of Airway Narrowing in Asthma
Bando, Kiyoshi; Yamashita, Daisuke; Ohba, Kenkichi
A calculation model is proposed to examine the generation mechanism of the numerous lobes on the inner-wall of the airway in asthmatic patients and to clarify luminal occlusion of the airway inducing breathing difficulties. The basement membrane in the airway wall is modeled as a two-dimensional thin-walled shell having inertia force due to the mass, and the smooth muscle contraction effect is replaced by uniform transmural pressure applied to the basement membrane. A dynamic explicit finite element method is used as a numerical simulation method. To examine the validity of the present model, simulation of an asthma attack is performed. The number of lobes generated in the basement membrane increases when transmural pressure is applied in a shorter time period. When the remodeling of the basement membrane occurs characterized by thickening and hardening, it is demonstrated that the number of lobes decreases and the narrowing of the airway lumen becomes severe. Comparison of the results calculated by the present model with those measured for animal experiments of asthma will be possible.
Numerical Simulation of Oil Jet Lubrication for High Speed Gears
Directory of Open Access Journals (Sweden)
Tommaso Fondelli
2015-01-01
Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.
Review of numerical simulation of capillary tube using refrigerant mixtures
Energy Technology Data Exchange (ETDEWEB)
Garcia-Valladares, O. [Centro de Investigacion en Energia de la UNAM, Morelos (Mexico)
2004-05-01
A detailed one-dimensional steady and transient state numerical simulation of the thermal and fluid-dynamic behaviour of capillary tube expansion devices considering metastable region and working with pure and mixed refrigerants has been developed and presented in previous works [Appl. Therm. Eng. 22 (2002) 173; Appl. Therm. Eng. 22 (2002) 379]. The discretized governing equations are coupled using an implicit step-by-step method. Due to the changes observed in the thermo-physical properties of mixtures using REFPROP v7.0 [Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Gaithersburg, MD 20899, USA, 2002] compared to REFPROP v5.0 [NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database, Standard Reference Data Program, Gaithersburg, MD 20899, USA (February 1996)]; an extensive comparison of the numerical simulation developed with experimental data presented in the technical literature will be shown in order to demonstrate the accuracy of this detailed model. Finally, refrigerant-specific rating charts to predict in an easy way R-407C flow rates through adiabatic capillary tube are shown and used. (author)
Review of numerical simulation of capillary tube using refrigerant mixtures
International Nuclear Information System (INIS)
Garcia-Valladares, O.
2004-01-01
A detailed one-dimensional steady and transient state numerical simulation of the thermal and fluid-dynamic behaviour of capillary tube expansion devices considering metastable region and working with pure and mixed refrigerants has been developed and presented in previous works [Appl. Therm. Eng. 22 (2002) 173; Appl. Therm. Eng. 22 (2002) 379]. The discretized governing equations are coupled using an implicit step-by-step method. Due to the changes observed in the thermo-physical properties of mixtures using REFPROP v7.0 [Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Gaithersbug, MD 20899, USA, 2002] compared to REFPROP v5.0 [NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database, Standard Reference Data Program, Gaithersbug, MD 20899, USA (February 1996)]; an extensive comparison of the numerical simulation developed with experimental data presented in the technical literature will be shown in order to demonstrate the accuracy of this detailed model. Finally, refrigerant-specific rating charts to predict in an easy way R-407C flow rates through adiabatic capillary tube are shown and used
Numerical simulations of progressive hardening by using ABAQUS FEA software
Directory of Open Access Journals (Sweden)
Domański Tomasz
2018-01-01
Full Text Available The paper concerns numerical simulations of progressive hardening include phase transformations in solid state of steel. Abaqus FEA software is used for numerical analysis of temperature field and phase transformations. Numerical subroutines, written in fortran programming language are used in computer simulations where models of the distribution of movable heat source, kinetics of phase transformations in solid state as well as thermal and structural strain are implemented. Model for evaluation of fractions of phases and their kinetics is based on continuous heating diagram and continuous cooling diagram. The numerical analysis of thermal fields, phase fractions and strain associated progressive hardening of elements made of steel were done.
Numerical simulations of nanostructured gold films
DEFF Research Database (Denmark)
Repän, Taavi; Frydendahl, Christian; Novikov, Sergey M.
2017-01-01
We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which...
Numerical methods for the prediction of thermal fatigue due to turbulent mixing
International Nuclear Information System (INIS)
Hannink, M.H.C.; Blom, F.J.
2011-01-01
Research highlights: → Thermal fatigue due to turbulent mixing is caused by moving temperature spots on the pipe wall. → Passing temperature spots cause temperature fluctuations of sinusoidal nature. → Input parameters for a sinusoidal model can be obtained by linking it with a coupled CFD-FEM model. → Overconservatism of the sinusoidal method can be reduced, having more knowledge on thermal loads. - Abstract: Turbulent mixing of hot and cold flows is one of the possible causes of thermal fatigue in piping systems. Especially in primary pipework of nuclear power plants this is an important, safety related issue. Since the frequencies of the involved temperature fluctuations are generally too high to be detected well by common plant instrumentation, accurate numerical simulations are indispensable for a proper fatigue assessment. In this paper, a link is made between two such numerical methods: a coupled CFD-FEM model and a sinusoidal model. By linking these methods, more insight is obtained in the physical phenomenon causing thermal fatigue due to turbulent mixing. Furthermore, useful knowledge is acquired on the determination of thermal loading parameters, essential for reducing overconservatism, as currently present in simplified fatigue assessment methods.
Numerical simulation of cross field amplifiers
International Nuclear Information System (INIS)
Eppley, K.
1990-01-01
Cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. One feature distinguishing cross field amplifiers is that the operating current is produced by secondary emission from a cold cathode. This removes the need for a heater and enables the device to act as a switch tube, drawing no power until the rf drive is applied. However, this method of generating the current does complicate the simulation. We are developing a simulation model of cross field amplifiers using the PIC code CONDOR. We simulate an interaction region, one traveling wavelength long, with periodic boundary conditions. An electric field with the appropriate phase velocity is imposed on the upper boundary of the problem. Evaluation of the integral of E·J gives the power interchanged between the wave and the beam. Given the impedance of the structure, we then calculate the change in the traveling wave field. Thus we simulate the growth of the wave through the device. The main advance of our model over previous CFA simulations is the realistic tracking of absorption and secondary emission. The code uses experimental curves to calculate secondary production as a function of absorbed energy, with a theoretical expression for the angular dependence. We have used this code to model the 100 MW X-band CFA under construction at SLAC, as designed by Joseph Feinstein and Terry Lee. We are examining several questions of practical interest, such as the power and spectrum of absorbed electrons, the minimum traveling wave field needed to initiate spoke formation, and the variation of output power with dc voltage, anode-cathode gap, and magnetic field. 5 refs., 8 figs
Numerical simulation of avascular tumor growth
Energy Technology Data Exchange (ETDEWEB)
Slezak, D Fernandez; Suarez, C; Soba, A; Risk, M; Marshall, G [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EGA) Buenos Aires (Argentina)
2007-11-15
A mathematical and numerical model for the description of different aspects of microtumor development is presented. The model is based in the solution of a system of partial differential equations describing an avascular tumor growth. A detailed second-order numeric algorithm for solving this system is described. Parameters are swiped to cover a range of feasible physiological values. While previous published works used a single set of parameters values, here we present a wide range of feasible solutions for tumor growth, covering a more realistic scenario. The model is validated by experimental data obtained with a multicellular spheroid model, a specific type of in vitro biological model which is at present considered to be optimum for the study of complex aspects of avascular microtumor physiology. Moreover, a dynamical analysis and local behaviour of the system is presented, showing chaotic situations for particular sets of parameter values at some fixed points. Further biological experiments related to those specific points may give potentially interesting results.
Numerical Simulation of 3-D Wave Crests
Institute of Scientific and Technical Information of China (English)
YU Dingyong; ZHANG Hanyuan
2003-01-01
A clear definition of 3-D wave crest and a description of the procedures to detect the boundary of wave crest are presented in the paper. By using random wave theory and directional wave spectrum, a MATLAB-platformed program is designed to simulate random wave crests for various directional spectral conditions in deep water. Statistics of wave crests with different directional spreading parameters and different directional functions are obtained and discussed.
Numerical simulation of boron injection in a BWR
Energy Technology Data Exchange (ETDEWEB)
Tinoco, Hernan, E-mail: htb@forsmark.vattenfall.s [Forsmarks Kraftgrupp AB, SE-742 03 Osthammar (Sweden); Buchwald, Przemyslaw [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Frid, Wiktor, E-mail: wiktor@reactor.sci.kth.s [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)
2010-02-15
The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of
Numerical simulation of boron injection in a BWR
International Nuclear Information System (INIS)
Tinoco, Hernan; Buchwald, Przemyslaw; Frid, Wiktor
2010-01-01
The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of several
Numerical simulation of the RF ion source RIG-10
International Nuclear Information System (INIS)
Arzt, T.
1988-01-01
A two-dimensional model for the numerical simulation of the inductively coupled radio-frequency (RF) ion source RIG-10 is presented. Due to the ambipolar characteristics of a discharge operating with hydrogen gas, the model consists of an equation for the space charge imbalance, Poisson's equation for the self-consistent presheath potential and the ion momentum transport equation. For a relatively broad range of operation and design parameters, the model allows the reproduction and prediction of the RF discharge behaviour in a systematic way and, hence, computes the 2D distribution of the ion current density within the source. By implementing relevant discharge physics, the model can provide an appropriate tool for ion source design with respect to an application in the field of neutral beam injection. (author)
Numerical Simulation of Cylindrical Solitary Waves in Periodic Media
Quezada de Luna, Manuel; Ketcheson, David I.
2013-01-01
We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.
Numerical Simulation of Cylindrical Solitary Waves in Periodic Media
Quezada de Luna, Manuel
2013-07-14
We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.
Holistic simulation of geotechnical installation processes numerical and physical modelling
2015-01-01
The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installat...
Numerical simulation of distributed parameter processes
Colosi, Tiberiu; Unguresan, Mihaela-Ligia; Muresan, Vlad
2013-01-01
The present monograph defines, interprets and uses the matrix of partial derivatives of the state vector with applications for the study of some common categories of engineering. The book covers broad categories of processes that are formed by systems of partial derivative equations (PDEs), including systems of ordinary differential equations (ODEs). The work includes numerous applications specific to Systems Theory based on Mpdx, such as parallel, serial as well as feed-back connections for the processes defined by PDEs. For similar, more complex processes based on Mpdx with PDEs and ODEs as components, we have developed control schemes with PID effects for the propagation phenomena, in continuous media (spaces) or discontinuous ones (chemistry, power system, thermo-energetic) or in electro-mechanics (railway – traction) and so on. The monograph has a purely engineering focus and is intended for a target audience working in extremely diverse fields of application (propagation phenomena, diffusion, hydrodyn...
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
Partial Differential Equations Modeling and Numerical Simulation
Glowinski, Roland
2008-01-01
This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...
Numerical simulation of linear fiction welding (LFW) processes
Fratini, L.; La Spisa, D.
2011-05-01
Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining "unweldable" materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries. LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.
Numerical simulation of linear fiction welding (LFW) processes
International Nuclear Information System (INIS)
Fratini, L.; La Spisa, D.
2011-01-01
Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining ''unweldable'' materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries.LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.
Numerical simulation model of multijunction solar cell
Babar, M.; Al-Ammar, E.A.; Malik, N.H.
2012-01-01
Multi-junction solar cells play an important and significant role in the Concentrated Photovoltaic (CPV) Systems. Recent developments in Concentrated Photovoltaic concerning high power production and cost effective- ness along with better efficiency are due to the advancements in multi-junction
Numerical simulation of baseflow modification due to effects of ...
African Journals Online (AJOL)
drinie
2001-04-02
Apr 2, 2001 ... is disturbed, the rivers tend to adjust to new pseudo-equilibrium conditions by ..... open channel and ground water hydrological processes. It .... Where the hydraulic conductivity of zero is assumed for the riverbed .... New York.
Numerical Simulation of Density Current Evolution in a Diverging Channel
Directory of Open Access Journals (Sweden)
Mitra Javan
2012-01-01
Full Text Available When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. This study seeks to explore the ability of 2D width-averaged unsteady Reynolds-averaged Navier-Stokes (RANS simulation approach for resolving density currents in an inclined diverging channel. 2D width-averaged unsteady RANS equations closed by a buoyancy-modified − turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high-resolution semi-Lagrangian technique for the convective terms. A series of 2D width-averaged unsteady simulations is carried out for density currents. Comparisons with the experimental measurements and the other numerical simulations show that the predictions of velocity and density field are with reasonable accuracy.
High accuracy mantle convection simulation through modern numerical methods
Kronbichler, Martin; Heister, Timo; Bangerth, Wolfgang
2012-01-01
Numerical simulation of the processes in the Earth's mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth's core. However, doing so presents many practical difficulties related
Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames
Im, Hong G.; Arias, Paul G.; Chaudhuri, Swetaprovo; Uranakara, Harshavardhana A.
2016-01-01
Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms
NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.
Energy Technology Data Exchange (ETDEWEB)
LUCCIO, A.; D' IMPERIO, N.; MALITSKY, N.
2005-09-12
Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.
Numerical simulation and physical aspects of supersonic vortex breakdown
Liu, C. H.; Kandil, O. A.; Kandil, H. A.
1993-01-01
Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.
Numerical simulation of exploding pusher targets
Atzeni, S.; Rosenberg, M. J.; Gatu Johnson, M.; Petrasso, R. D.
2017-10-01
Exploding pusher targets, i.e. gas-filled large aspect-ratio glass or plastic shells, driven by a strong laser-generated shock, are widely used as pulsed sources of neutrons and fast charged particles. Recent experiments on exploding pushers provided evidence for the transition from a purely fluid behavior to a kinetic one. Indeed, fluid models largely overpredict yield and temperature as the Knudsen number Kn (ratio of ion mean-free path to compressed gas radius) is comparable or larger than one. At Kn = 0.3 - 1, fluid codes reasonably estimate integral quantities as yield and neutron-averaged temperatures, but do not reproduce burn radii, burn profiles and DD/DHe3 yield ratio. This motivated a detailed simulation study of intermediate-Kn exploding pushers. We will show how simulation results depend on models for laser-interaction, electron conductivity (flux-limited local vs nonlocal), viscosity (physical vs artificial), and ion mixing. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), and Eurofusion Project AWP17-ENR-IFE-CEA-01.
Direct Numerical Simulations of turbulent flow in a driven cavity
Verstappen, R.; Wissink, J.G.; Cazemier, W.; Veldman, A.E.P.
Direct numerical simulations (DNS) of 2 and 3D turbulent flows in a lid-driven cavity have been performed. DNS are numerical solutions of the unsteady (here: incompressible) Navier-Stokes equations that compute the evolution of all dynamically significant scales of motion. In view of the large
Numerical simulation of a precessing vortex breakdown
International Nuclear Information System (INIS)
Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.
2006-01-01
The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow
Numerical simulation of superconducting accelerator magnets
Kurz, Stefan
2002-01-01
Modeling and simulation are key elements in assuring the fast and successful design of superconducting magnets. After a general introduction the paper focuses on electromagnetic field computations, which are an indipensable tool in the design process. A technique which is especially well suited for the accurate computation of magnetic fields in superconducting magnets is presented. This method couples Boundary Elements (BEM) which discretize the surface of the iron yoke and Finite Elements (FEM) for the modeling of the non linear interior of the yoke. The formulation is based on a total magnetic scalar potential throughout the whole problem domain. The results for a short dipole model are presented and compared to previous results, which have been obtained from a similar BEM-FEM coupled vector potential formulation. 10 Refs. --- 25 --- AN
Numerical simulation of aeolian sand ripples
International Nuclear Information System (INIS)
Kang Liqiang; Guo Liejin
2004-01-01
With a new horizontal saltation displacement vector, a model is implemented to simulate the initiation and evolution of aeolian sand ripples. In the model, saltation distance considers the effects of surface height and slope. A linear stability analysis is also carried out for formation of sand ripples. The results show that, the model can be able to successfully reproduce sand ripples which can increase in scale by merging of small ripples. The linear stability analysis indicates that sand ripples appear when the relaxation rate parameter is below a threshold value and wind strength parameter is larger than a critical value. The results also verified that the formation of sand ripples is a self-organization process
A numerical relativity scheme for cosmological simulations
Daverio, David; Dirian, Yves; Mitsou, Ermis
2017-12-01
Cosmological simulations involving the fully covariant gravitational dynamics may prove relevant in understanding relativistic/non-linear features and, therefore, in taking better advantage of the upcoming large scale structure survey data. We propose a new 3 + 1 integration scheme for general relativity in the case where the matter sector contains a minimally-coupled perfect fluid field. The original feature is that we completely eliminate the fluid components through the constraint equations, thus remaining with a set of unconstrained evolution equations for the rest of the fields. This procedure does not constrain the lapse function and shift vector, so it holds in arbitrary gauge and also works for arbitrary equation of state. An important advantage of this scheme is that it allows one to define and pass an adaptation of the robustness test to the cosmological context, at least in the case of pressureless perfect fluid matter, which is the relevant one for late-time cosmology.
Batman-cracks. Observations and numerical simulations
Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.
1991-05-01
To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.
Parallel Numerical Simulations of Water Reservoirs
Torres, Pedro; Mangiavacchi, Norberto
2010-11-01
The study of the water flow and scalar transport in water reservoirs is important for the determination of the water quality during the initial stages of the reservoir filling and during the life of the reservoir. For this scope, a parallel 2D finite element code for solving the incompressible Navier-Stokes equations coupled with scalar transport was implemented using the message-passing programming model, in order to perform simulations of hidropower water reservoirs in a computer cluster environment. The spatial discretization is based on the MINI element that satisfies the Babuska-Brezzi (BB) condition, which provides sufficient conditions for a stable mixed formulation. All the distributed data structures needed in the different stages of the code, such as preprocessing, solving and post processing, were implemented using the PETSc library. The resulting linear systems for the velocity and the pressure fields were solved using the projection method, implemented by an approximate block LU factorization. In order to increase the parallel performance in the solution of the linear systems, we employ the static condensation method for solving the intermediate velocity at vertex and centroid nodes separately. We compare performance results of the static condensation method with the approach of solving the complete system. In our tests the static condensation method shows better performance for large problems, at the cost of an increased memory usage. Performance results for other intensive parts of the code in a computer cluster are also presented.
NUMERICAL SIMULATION OF ICE ACCRETION ON AIRFOIL
Directory of Open Access Journals (Sweden)
Nicusor ALEXANDRESCU
2009-09-01
Full Text Available This work consists in the simulation of the ice accretion in the leading edge of aerodynamic profiles and our proposed model encompasses: geometry generation, calculation of the potential flow around the body, boundary layer thickness computation, water droplet trajectory computation, heat and mass balances and the consequent modification of the geometry by the ice growth. The flow calculation is realized with panel methods, using only segments defined over the body contour. The viscous effects are considered using the Karman-Pohlhausen method for the laminar boundary layer. The local heat transfer coefficient is obtained by applying the Smith-Spalding method for the thermal boundary layer. The ice accretion limits and the collection efficiency are determined by computing water droplet trajectories impinging the surface. The heat transfer process is analyzed with an energy and a mass balance in each segment defining the body. Finally, the geometry is modified by the addition of the computed ice thickness to the respective panel. The process by repeating all the steps. The model validation is done using a selection of problems with experimental solution, CIRA (the CESAR project. Hereinafter, results are obtained for different aerodynamic profiles, angles of attack and meteorological parameters
Tests of numerical simulation algorithms for the Kubo oscillator
International Nuclear Information System (INIS)
Fox, R.F.; Roy, R.; Yu, A.W.
1987-01-01
Numerical simulation algorithms for multiplicative noise (white or colored) are tested for accuracy against closed-form expressions for the Kubo oscillator. Direct white noise simulations lead to spurious decay of the modulus of the oscillator amplitude. A straightforward colored noise algorithm greatly reduces this decay and also provides highly accurate results in the white noise limit
Numerical simulation of collision-free plasma using Vlasov hybrid simulation
International Nuclear Information System (INIS)
Nunn, D.
1990-01-01
A novel scheme for the numerical simulation of wave particle interactions in space plasmas has been developed. The method, termed VHS or Vlasov Hybrid Simulation, is applicable to hot collision free plasmas in which the unperturbed distribution functions is smooth and free of delta function singularities. The particle population is described as a continuous Vlasov fluid in phase space-granularity and collisional effects being ignored. In traditional PIC/CIC codes the charge/current due to each simulation particle is assigned to a fixed spatial grid. In the VHS method the simulation particles sample the Vlasov fluid and provide information about the value of distribution function (F(r,v) at random points in phase space. Values of F are interpolated from the simulation particles onto a fixed grid in velocity/position or phase space. With distribution function defined on a phase space grid the plasma charge/current field is quickly calculated. The simulation particles serve only to provide information, and thus the particle population may be dynamic. Particles no longer resonant with the wavefield may be discarded from the simulation, and new particles may be inserted into the Vlasov fluid where required
Three-Dimensional Numerical Simulation to Mud Turbine for LWD
Yao, Xiaojiang; Dong, Jingxin; Shang, Jie; Zhang, Guanqi
Hydraulic performance analysis was discussed for a type of turbine on generator used for LWD. The simulation models were built by CFD analysis software FINE/Turbo, and full three-dimensional numerical simulation was carried out for impeller group. The hydraulic parameter such as power, speed and pressure drop, were calculated in two kinds of medium water and mud. Experiment was built in water environment. The error of numerical simulation was less than 6%, verified by experiment. Based on this rationalization proposals would be given to choice appropriate impellers, and the rationalization of methods would be explored.
Reservoir Models for Gas Hydrate Numerical Simulation
Boswell, R.
2016-12-01
Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple
Numerical Simulation of Dispersion from Urban Greenhouse Gas Sources
Nottrott, Anders; Tan, Sze; He, Yonggang; Winkler, Renato
2017-04-01
Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model scalar emissions from various components of the natural gas distribution system, to study the impact of urban meteorology on mobile greenhouse gas measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of plumes, due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments. The Boussinesq approximation was applied to investigate the effects of canopy layer temperature gradients and convection on sensor footprints.
Direct Numerical Simulation of Low Capillary Number Pore Scale Flows
Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.
2017-12-01
The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM
Numerical simulation of random stresses on an annular turbulent flow
International Nuclear Information System (INIS)
Marti-Moreno, Marta
2000-01-01
The flow along a circular cylinder may induce structural vibrations. For the predictive analysis of such vibrations, the turbulent forcing spectrum needs to be characterized. The aim of this work is to study the turbulent fluid forces acting on a single tube in axial flow. More precisely we have performed numerical simulations of an annular flow. These simulations were carried out on a cylindrical staggered mesh by a finite difference method. We consider turbulent flow with Reynolds number up to 10 6 . The Large Eddy Simulation Method has been used. A survey of existent experiments showed that hydraulic diameter acts as an important parameter. We first showed the accuracy of the numerical code by reproducing the experiments of Mulcahy. The agreement between pressure spectra from computations and from experiments is good. Then, we applied this code to simulate new numerical experiments varying the hydraulic diameter and the flow velocity. (author) [fr
Numerical 3D modelling of oil dispersion in the sea due to different accident scenarios
Guandalini, Roberto; Agate, Giordano; Moia, Fabio
2017-04-01
The purpose of the study has been the development of a methodology, based on a numerical 3D approach, for the analysis of oil dispersion in the sea, in order to simulate with a high level of accuracy the dynamic behavior of the oil plume and its displacement in the environment. As a matter of fact, the numerical simulation is the only approach currently able to analyse in detail possible accident scenarios, even with an high degree of complexity, of different type and intensity, allowing to follow their evolution both in time and space, and to evaluate the effectiveness of suggested prevention or recovery actions. The software for these calculations is therefore an essential tool in order to simulate the impact effects in the short, medium and long period, able to account for the complexity of the sea system involved in the dispersion process and its dependency on the meteorological, marine and morphological local conditions. This software, generally based on fluid dynamic 3D simulators and modellers, is therefore extremely specialized and requires expertise for an appropriate usage, but at the same time it allows detailed scenario analyses and design verifications. It takes into account different parameters as the sea current field and its turbulence, the wind acting on the sea surface, the salinity and temperature gradients, the local coastal morphology, the seabed bathymetry and the tide. The applied methodology is based on the Integrated Fluid Dynamic Simulation System HyperSuite developed by RSE. This simulation system includes the consideration of all the parameters previously listed, in the frame of a 3D Eulerian finite element fluid dynamic model, which accuracy is guaranteed by a very detailed spatial mesh and by an automatically optimized time step management. In order to assess the methodology features, an area of more than 2500 km2 and depth of 200 m located in the middle Adriatic Sea has been modelled. The information required for the simulation in
Numerical simulation of progressive BWR fuel inlet orifices
International Nuclear Information System (INIS)
Sara Lundgren; Hernan Tinoco; Aleksander Pohl; Wiktor Frid
2005-01-01
Full text of publication follows: A 'progressive' orifice is characterized by an edge-shaped hole that gives a Reynolds number dependent resistance coefficient. For Reynolds numbers smaller than a critical one, the resistance coefficient has a high constant value that drops to a much lower value for Reynolds numbers greater than this critical value. A similar effect is widely known for external flows around bodies of different shapes, i. e. spheres, cylinders, etc., and the sudden drop in drag coefficient is due to the shift from laminar to turbulent boundary-layer flow. Experimentally, progressive orifices have been investigated under high-pressure and high-temperature conditions by Akiba et al. (2001) for a reduced set of geometrical parameters. Using the sparse experimental data, a core stability study was carried out by Forsmaks Kraftgrupp AB that showed an improvement in core stability but without the expected reduction in pump power at normal operation. The reason for this partial success was the impossibility of optimizing the fuel inlet pressure drop owing to the limited amount of available data. Due to the high costs associated with the experimental generation of high-pressure, high-temperature data, it was considered that, if possible, the lacking data could be generated numerically at much lower cost. Therefore, the present work deals with the possibility of numerically simulate the flow through progressive orifices, and with the conditions under which to reproduce and generate resistance coefficient data by means of a commercial CFD-code. The results obtained with a two-dimensional, axisymmetric approximation show that Reynolds Averaged Navier-Stokes (RANS) turbulence models are able to qualitatively capture the physics of the phenomenon but with an earlier transition to turbulent boundary-layer flow and with an underestimation of the resistance coefficient by approximately 20 %. This underestimation of the resistance coefficient is related to the two
Numerical simulation of progressive BWR fuel inlet orifices
Energy Technology Data Exchange (ETDEWEB)
Sara Lundgren; Hernan Tinoco [Forsmarks Kraftgrupp AB, 742 03 Oesthammar (Sweden); Aleksander Pohl; Wiktor Frid [The Royal Institute of Technology, Dept. Energy Technology, SE-100 44 Stockholm (Sweden)
2005-07-01
Full text of publication follows: A 'progressive' orifice is characterized by an edge-shaped hole that gives a Reynolds number dependent resistance coefficient. For Reynolds numbers smaller than a critical one, the resistance coefficient has a high constant value that drops to a much lower value for Reynolds numbers greater than this critical value. A similar effect is widely known for external flows around bodies of different shapes, i. e. spheres, cylinders, etc., and the sudden drop in drag coefficient is due to the shift from laminar to turbulent boundary-layer flow. Experimentally, progressive orifices have been investigated under high-pressure and high-temperature conditions by Akiba et al. (2001) for a reduced set of geometrical parameters. Using the sparse experimental data, a core stability study was carried out by Forsmaks Kraftgrupp AB that showed an improvement in core stability but without the expected reduction in pump power at normal operation. The reason for this partial success was the impossibility of optimizing the fuel inlet pressure drop owing to the limited amount of available data. Due to the high costs associated with the experimental generation of high-pressure, high-temperature data, it was considered that, if possible, the lacking data could be generated numerically at much lower cost. Therefore, the present work deals with the possibility of numerically simulate the flow through progressive orifices, and with the conditions under which to reproduce and generate resistance coefficient data by means of a commercial CFD-code. The results obtained with a two-dimensional, axisymmetric approximation show that Reynolds Averaged Navier-Stokes (RANS) turbulence models are able to qualitatively capture the physics of the phenomenon but with an earlier transition to turbulent boundary-layer flow and with an underestimation of the resistance coefficient by approximately 20 %. This underestimation of the resistance coefficient is related to
Numerical modeling of persian gulf salinity variations due to tidal effects
International Nuclear Information System (INIS)
Sabbagh Yazdi, S.R.
2004-01-01
Numerical modeling of salinity changes in marine environment of Persian Gulf is investigated in this paper. Computer simulation of the problem is performed by the solution of a convection-diffusion equation for salinity concentration coupled with the hydrodynamic equations. The hydrodynamic equations consist of shallow water equations of continuity and motion in horizontal plane. The effects of rain and evaporations are considered in the continuity equation and the effects of bed slope and friction, as well as Coriolis effects are considered in two equations of motion. The cell vertex finite volume method is applied for solving the governing equations on triangular unstructured meshes. Using unstructured meshes provides great flexibility for modeling the flow problems in arbitrary and complex geo metrics, such as Persia Gulf domain. The results of evaporation and Coriolis effects, as well as imposing river and tidal boundary conditions to the hydrodynamic model of Persian Gulf (considering variable topology rough bed) are compared with predictions of Admiralty Tide Table, Which are obtained from the harmonic analysis. The performance of the developed computer model is demonstrated by simulation of salinity changes due to inflow effects and diffusion effects as well as computed currents
Direct Numerical Simulations of Particle-Laden Turbulent Channel Flow
Jebakumar, Anand Samuel; Premnath, Kannan; Abraham, John
2017-11-01
In a recent experimental study, Lau and Nathan (2014) reported that the distribution of particles in a turbulent pipe flow is strongly influenced by the Stokes number (St). At St lower than 1, particles migrate toward the wall and at St greater than 10 they tend to migrate toward the axis. It was suggested that this preferential migration of particles is due to two forces, the Saffman lift force and the turbophoretic force. Saffman lift force represents a force acting on the particle as a result of a velocity gradient across the particle when it leads or lags the fluid flow. Turbophoretic force is induced by turbulence which tends to move the particle in the direction of decreasing turbulent kinetic energy. In this study, the Lattice Boltzmann Method (LBM) is employed to simulate a particle-laden turbulent channel flow through Direct Numerical Simulations (DNS). We find that the preferential migration is a function of particle size in addition to the St. We explain the effect of the particle size and St on the Saffman lift force and turbophoresis and present how this affects particle concentration at different conditions.
Optimizing switching frequency of the soliton transistor by numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Izadyar, S., E-mail: S_izadyar@yahoo.co [Department of Electronics, Khaje Nasir Toosi University of Technology, Shariati Ave., Tehran (Iran, Islamic Republic of); Niazzadeh, M.; Raissi, F. [Department of Electronics, Khaje Nasir Toosi University of Technology, Shariati Ave., Tehran (Iran, Islamic Republic of)
2009-10-15
In this paper, by numerical simulations we have examined different ways to increase the soliton transistor's switching frequency. Speed of the solitons in a soliton transistor depends on various parameters such as the loss of the junction, the applied bias current, and the transmission line characteristics. Three different ways have been examined; (i) decreasing the size of the transistor without losing transistor effect. (ii) Decreasing the amount of loss of the junction to increase the soliton speed. (iii) Optimizing the bias current to obtain maximum possible speed. We have obtained the shortest possible length to have at least one working soliton inside the transistor. The dimension of the soliton can be decreased by changing the inductance of the transmission line, causing a further decrease in the size of the transistor, however, a trade off between the size and the inductance is needed to obtain the optimum switching speed. Decreasing the amount of loss can be accomplished by increasing the characteristic tunneling resistance of the device, however, a trade off is again needed to make soliton and antisoliton annihilation possible. By increasing the bias current, the forces acting the solitons increases and so does their speed. Due to nonuniform application of bias current a self induced magnetic field is created which can result in creation of unwanted solitons. Optimum bias current application can result in larger bias currents and larger soliton speed. Simulations have provided us with such an arrangement of bias current paths.
Optimizing switching frequency of the soliton transistor by numerical simulation
International Nuclear Information System (INIS)
Izadyar, S.; Niazzadeh, M.; Raissi, F.
2009-01-01
In this paper, by numerical simulations we have examined different ways to increase the soliton transistor's switching frequency. Speed of the solitons in a soliton transistor depends on various parameters such as the loss of the junction, the applied bias current, and the transmission line characteristics. Three different ways have been examined; (i) decreasing the size of the transistor without losing transistor effect. (ii) Decreasing the amount of loss of the junction to increase the soliton speed. (iii) Optimizing the bias current to obtain maximum possible speed. We have obtained the shortest possible length to have at least one working soliton inside the transistor. The dimension of the soliton can be decreased by changing the inductance of the transmission line, causing a further decrease in the size of the transistor, however, a trade off between the size and the inductance is needed to obtain the optimum switching speed. Decreasing the amount of loss can be accomplished by increasing the characteristic tunneling resistance of the device, however, a trade off is again needed to make soliton and antisoliton annihilation possible. By increasing the bias current, the forces acting the solitons increases and so does their speed. Due to nonuniform application of bias current a self induced magnetic field is created which can result in creation of unwanted solitons. Optimum bias current application can result in larger bias currents and larger soliton speed. Simulations have provided us with such an arrangement of bias current paths.
Numerical simulation of nonequilibrium effects in an argon plasma jet
International Nuclear Information System (INIS)
Chang, C.H.; Ramshaw, J.D.
1994-01-01
Departures from thermal (translational), ionization, and excitation equilibrium in an axisymmetric argon plasma jet have been studied by two-dimensional numerical simulations. Electrons, ions, and excited and ground states of neutral atoms are represented as separate chemical species in the mixture. Transitions between excited states, as well as ionization/recombination reactions due to both collisional and radiative processes, are treated as separate chemical reactions. Resonance radiation transport is represented using Holstein escape factors to simulate both the optically thin and optically thick limits. The optically thin calculation showed significant underpopulation of excited species in the upstream part of the jet core, whereas in the optically thick calculation this region remains close to local thermodynamic equilibrium, consistent with previous experimental observations. Resonance radiation absorption is therefore an important effect. The optically thick calculation results also show overpopulations (relative to equilibrium) of excited species and electron densities in the fringes and downstream part of the jet core. In these regions, however, the electrons and ions are essentially in partial local thermodynamic equilibrium with the excited state at the electron temperature, even though the ionized and excited states are no longer in equilibrium with the ground state. Departures from partial local thermodynamic equilibrium are observed in the outer fringes and far downstream part of the jet. These results are interpreted in terms of the local relative time scales for the various physical and chemical processes occurring in the plasma
Practical considerations in developing numerical simulators for thermal recovery
Energy Technology Data Exchange (ETDEWEB)
Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)
1996-08-15
Numerical simulation of steam injection and in-situ combustion-based oil recovery processes is of great importance in project design. Development of such numerical simulators is an on-going process, with improvements made as the process description becomes more complete, and also as better methods are devised to resolve certain numerical difficulties. This paper addresses some of the latter, and based on the author`s experience gives useful guidelines for developing more efficient numerical simulators of steam injection and in-situ combustion. The paper takes up a series of questions related to simulating thermal processes. Included are: the elimination of constraint equations at the matrix level, phase change, steam injection rate, alternative treatments of heat loss, relative permeabilities and importance of hysteresis effects, improved solutions to the grid orientation problem and other simulation problems such as potential inversion, grid block size, time-step size control and induced fractures. The points discussed in the paper should be of use to both simulator developers and users alike, and will lead to a better understanding of simulation results
Morse, Justin D; Franck, Jennifer A; Wilcox, Bethany J; Crisco, Joseph J; Franck, Christian
2014-12-01
A method of investigating head acceleration and intracranial dynamics from stick impacts in girls' and women's lacrosse was developed using headform impact experiments and a finite element head model. Assessing the likelihood of head injury due to stick-head impacts is of interest in girls' and women's lacrosse due to the current lack of head protection during play. Experimental and simulation data were compared to characterize the head acceleration caused by stick-head impacts. Validation against cadaver head impact experiments ensures that the finite element model, with its relatively simple material properties, can provide means to develop a better understanding of the intracranial dynamics during lacrosse stick impacts. Our numerical results showed the peak acceleration at the center of gravity increased linearly with impact force, and was generally in agreement with the experimental data. von Mises stresses and peak principal strains, two common literature injury indicators, were examined within the finite element model, and peak values were below the previously reported thresholds for mild traumatic brain injury. By reconstructing typical in-game, unprotected stick-head impacts, this investigation lays the foundation for a quantitative methodology of injury prediction in girls' and womens' lacrosse.
Simulation of carbon sputtering due to molecular hydrogen impact
International Nuclear Information System (INIS)
Laszlo, J.
1993-01-01
Simulated results are compared to experimental data on the sputtering yield of carbon due to atomic and to molecular hydrogen impact. The experimental sputtering yields of carbon (graphite) due to low energy hydrogen bombardment have been found to be higher than the simulated ones. Efforts are made to obtain high enough simulated yields by considering the formation of dimer, H 2 and D 2 molecules in the primary beam. The molecular beam model applies full neutralization and full dissociation at the surface. The simulation of sputtering yields of target materials up to Z 2 ≤ 30 is also included for the low primary energy regime for deuterium projectiles. It is found that, although the sputtering yields really tend to increase, the effect of molecule formation in the beam in itself cannot be made responsible for the deviation between measured and simulated sputtering yields. (orig.)
Numerical simulations of a large scale oxy-coal burner
Energy Technology Data Exchange (ETDEWEB)
Chae, Taeyoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Park, Sanghyun; Ryu, Changkook [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Yang, Won [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group
2013-07-01
Oxy-coal combustion is one of promising carbon dioxide capture and storage (CCS) technologies that uses oxygen and recirculated CO{sub 2} as an oxidizer instead of air. Due to difference in physical properties between CO{sub 2} and N{sub 2}, the oxy-coal combustion requires development of burner and boiler based on fundamental understanding of the flame shape, temperature, radiation and heat flux. For design of a new oxy-coal combustion system, computational fluid dynamics (CFD) is an essential tool to evaluate detailed combustion characteristics and supplement experimental results. In this study, CFD analysis was performed to understand the combustion characteristics inside a tangential vane swirl type 30 MW coal burner for air-mode and oxy-mode operations. In oxy-mode operations, various compositions of primary and secondary oxidizers were assessed which depended on the recirculation ratio of flue gas. For the simulations, devolatilization of coal and char burnout by O{sub 2}, CO{sub 2} and H{sub 2}O were predicted with a Lagrangian particle tracking method considering size distribution of pulverized coal and turbulent dispersion. The radiative heat transfer was solved by employing the discrete ordinate method with the weighted sum of gray gases model (WSGGM) optimized for oxy-coal combustion. In the simulation results for oxy-model operation, the reduced swirl strength of secondary oxidizer increased the flame length due to lower specific volume of CO{sub 2} than N{sub 2}. The flame length was also sensitive to the flow rate of primary oxidizer. The oxidizer without N{sub 2} that reduces thermal NO{sub x} formation makes the NO{sub x} lower in oxy-mode than air-mode. The predicted results showed similar trends with measured temperature profiles for various oxidizer compositions. Further numerical investigations are required to improve the burner design combined with more detailed experimental results.
Comparison of GPU-Based Numerous Particles Simulation and Experiment
International Nuclear Information System (INIS)
Park, Sang Wook; Jun, Chul Woong; Sohn, Jeong Hyun; Lee, Jae Wook
2014-01-01
The dynamic behavior of numerous grains interacting with each other can be easily observed. In this study, this dynamic behavior was analyzed based on the contact between numerous grains. The discrete element method was used for analyzing the dynamic behavior of each particle and the neighboring-cell algorithm was employed for detecting their contact. The Hertzian and tangential sliding friction contact models were used for calculating the contact force acting between the particles. A GPU-based parallel program was developed for conducting the computer simulation and calculating the numerous contacts. The dam break experiment was performed to verify the simulation results. The reliability of the program was verified by comparing the results of the simulation with those of the experiment
Numerical Simulation of Anisotropic Preheating Ablative Rayleigh–Taylor Instability
International Nuclear Information System (INIS)
Li-Feng, Wang; Wen-Hua, Ye; Ying-Jun, Li
2010-01-01
The linear growth rate of the anisotropic preheating ablative Rayleigh–Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T) = κ SH [1 + f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse [Phys. Rev. Lett. 98 (2007) 245001]. (physics of gases, plasmas, and electric discharges)
Numerical simulation of anisotropic preheating ablative Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Wang Lifeng; Ye Wenhua; Li Yingjun
2010-01-01
The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T)=κ SH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse. (authors)
Vortex locking in direct numerical simulations of quantum turbulence.
Morris, Karla; Koplik, Joel; Rouson, Damian W I
2008-07-04
Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.
Numerical simulation on quantum turbulence created by an oscillating object
Energy Technology Data Exchange (ETDEWEB)
Fujiyama, S; Tsubota, M [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka (Japan)], E-mail: fujiyama@sci.osaka-cu.ac.jp
2009-02-01
We have conducted a numerical simulation of vortex dynamics in superfluid {sup 4}He in the presence of an oscillating sphere. The experiment on a vibrating wire that measured the transition from laminar to turbulent flow is modelled in our simulations. The simulation exhibits the details of vortex growth by the oscillating sphere. Our result also shows that a more realistic modelling may change the destiny of the vortex rings detached from the sphere. We have evaluated the force driven by the sphere in the simulation and have confirmed the onset of the quantum turbulence.
Recent developments in numerical simulation techniques of thermal recovery processes
Energy Technology Data Exchange (ETDEWEB)
Tamim, M. [Bangladesh University of Engineering and Technology, Bangladesh (Bangladesh); Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain 17555 (United Arab Emirates); Farouq Ali, S.M. [University of Alberta, Alberta (Canada)
2000-05-01
Numerical simulation of thermal processes (steam flooding, steam stimulation, SAGD, in-situ combustion, electrical heating, etc.) is an integral part of a thermal project design. The general tendency in the last 10 years has been to use commercial simulators. During the last decade, only a few new models have been reported in the literature. More work has been done to modify and refine solutions to existing problems to improve the efficiency of simulators. The paper discusses some of the recent developments in simulation techniques of thermal processes such as grid refinement, grid orientation, effect of temperature on relative permeability, mathematical models, and solution methods. The various aspects of simulation discussed here promote better understanding of the problems encountered in the simulation of thermal processes and will be of value to both simulator users and developers.
Direct numerical simulation of noninvasive channel healing in electrical field
Wang, Yi
2017-11-25
Noninvasive channel healing is a new idea to repair the broken pipe wall, using external electric fields to drive iron particles to the destination. The repair can be done in the normal operation of the pipe flow without any shutdown of the pipeline so that this method can be a potentially efficient and safe technology of pipe healing. However, the real application needs full knowledge of healing details. Numerical simulation is an effective method. Thus, in this research, we first established a numerical model for noninvasive channel healing technology to represent fluid–particle interaction. The iron particles can be attached to a cracking area by external electrostatic forces or can also be detached by mechanical forces from the fluid. When enough particles are permanently attached on the cracking area, the pipe wall can be healed. The numerical criterion of the permanent attachment is discussed. A fully three-dimensional finite difference framework of direct numerical simulation is established and applied to different cases to simulate the full process of channel healing. The impact of Reynolds number and particle concentration on the healing process is discussed. This numerical investigation provides valuable reference and tools for further simulation of real pipe healing in engineering.
Numerical Simulation of Antennae by Discrete Exterior Calculus
International Nuclear Information System (INIS)
Xie Zheng; Ye Zheng; Ma Yujie
2009-01-01
Numerical simulation of antennae is a topic in computational electromagnetism, which is concerned with the numerical study of Maxwell equations. By discrete exterior calculus and the lattice gauge theory with coefficient R, we obtain the Bianchi identity on prism lattice. By defining an inner product of discrete differential forms, we derive the source equation and continuity equation. Those equations compose the discrete Maxwell equations in vacuum case on discrete manifold, which are implemented on Java development platform to simulate the Gaussian pulse radiation on antennaes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
On the numerical simulation of tracer flows in porous media
International Nuclear Information System (INIS)
Aquino, J.; Pereira, F.; Amaral Souto, H.P.; Francisco, A.S.
2007-01-01
We discuss in detail a new Lagrangian, locally conservative procedure which has been proposed for the numerical solution of linear transport problems in porous media. The new scheme is computationally efficient, virtually free of numerical diffusion, and can be applied to investigate numerically the time evolution of radionuclide contaminant plumes. Results of two-dimensional simulations of tracer flows will be presented to show the influence on the computed solutions of distinct interpolation functions for evaluating the velocity field at any position of the physical domain, as required by the Lagrangian scheme. (author)
Numerical simulation of explosive magnetic cumulative generator EMG-720
Energy Technology Data Exchange (ETDEWEB)
Deryugin, Yu N; Zelenskij, D K; Kazakova, I F; Kargin, V I; Mironychev, P V; Pikar, A S; Popkov, N F; Ryaslov, E A; Ryzhatskova, E G [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)
1997-12-31
The paper discusses the methods and results of numerical simulations used in the development of a helical-coaxial explosive magnetic cumulative generator (EMG) with the stator up to 720 mm in diameter. In the process of designing, separate units were numerically modeled, as was the generator operation with a constant inductive-ohmic load. The 2-D processes of the armature acceleration by the explosion products were modeled as well as those of the formation of the sliding high-current contact between the armature and stator`s insulated turns. The problem of the armature integrity in the region of the detonation waves collision was numerically analyzed. 8 figs., 2 refs.
NUMERICAL SIMULATION OF SHOCK WAVE REFRACTION ON INCLINED CONTACT DISCONTINUITY
Directory of Open Access Journals (Sweden)
P. V. Bulat
2016-05-01
Full Text Available We consider numerical simulation of shock wave refraction on plane contact discontinuity, separating two gases with different density. Discretization of Euler equations is based on finite volume method and WENO finite difference schemes, implemented on unstructured meshes. Integration over time is performed with the use of the third-order Runge–Kutta stepping procedure. The procedure of identification and classification of gas dynamic discontinuities based on conditions of dynamic consistency and image processing methods is applied to visualize and interpret the results of numerical calculations. The flow structure and its quantitative characteristics are defined. The results of numerical and experimental visualization (shadowgraphs, schlieren images, and interferograms are compared.
Processing biobased polymers using plasticizers: Numerical simulations versus experiments
Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa
2016-03-01
In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.
Numerical simulations and mathematical models of flows in complex geometries
DEFF Research Database (Denmark)
Hernandez Garcia, Anier
The research work of the present thesis was mainly aimed at exploiting one of the strengths of the Lattice Boltzmann methods, namely, the ability to handle complicated geometries to accurately simulate flows in complex geometries. In this thesis, we perform a very detailed theoretical analysis...... and through the Chapman-Enskog multi-scale expansion technique the dependence of the kinetic viscosity on each scheme is investigated. Seeking for optimal numerical schemes to eciently simulate a wide range of complex flows a variant of the finite element, off-lattice Boltzmann method [5], which uses...... the characteristic based integration is also implemented. Using the latter scheme, numerical simulations are conducted in flows of different complexities: flow in a (real) porous network and turbulent flows in ducts with wall irregularities. From the simulations of flows in porous media driven by pressure gradients...
Numerical simulation of airfoil trailing edge serration noise
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong
In the present work, numerical simulations are carried out for a low noise airfoil with and without serrated Trailing Edge. The Ffowcs Williams-Hawkings acoustic analogy is implemented into the in-house incompressible flow solver EllipSys3D. The instantaneous hydrodynamic pressure and velocity...... field are obtained using Large Eddy Simulation. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FW-H approach. The extended length of the serration is about 16.7% of the airfoil chord and the geometric angle of the serration...... is 28 degrees. The chord based Reynolds number is around 1.5x106. Simulations are compared with existing wind tunnel experiments at various angles of attack. Even though the airfoil under investigation is already optimized for low noise emission, numerical simulations and wind tunnel experiments show...
Direct numerical simulation of turbulent, chemically reacting flows
Doom, Jeffrey Joseph
This dissertation: (i) develops a novel numerical method for DNS/LES of compressible, turbulent reacting flows, (ii) performs several validation simulations, (iii) studies auto-ignition of a hydrogen vortex ring in air and (iv) studies a hydrogen/air turbulent diffusion flame. The numerical method is spatially non-dissipative, implicit and applicable over a range of Mach numbers. The compressible Navier-Stokes equations are rescaled so that the zero Mach number equations are discretely recovered in the limit of zero Mach number. The dependent variables are co--located in space, and thermodynamic variables are staggered from velocity in time. The algorithm discretely conserves kinetic energy in the incompressible, inviscid, non--reacting limit. The chemical source terms are implicit in time to allow for stiff chemical mechanisms. The algorithm is readily applicable to complex chemical mechanisms. Good results are obtained for validation simulations. The algorithm is used to study auto-ignition in laminar vortex rings. A nine species, nineteen reaction mechanism for H2/air combustion proposed by Mueller et al. [37] is used. Diluted H 2 at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratio, oxidizer temperature, Lewis number and stroke ratio (ratio of piston stroke length to diameter). Results show that auto--ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, zeta MR (Mastorakos et al. [32]). Subsequent evolution of the flame is not predicted by zetaMR; a most reactive temperature TMR is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke
Numerical simulation of turbulent forced convection in liquid metals
International Nuclear Information System (INIS)
Vodret, S; Di Maio, D Vitale; Caruso, G
2014-01-01
In the frame of the future generation of nuclear reactors, liquid metals are foreseen to be used as a primary coolant. Liquid metals are characterized by a very low Prandtl number due to their very high heat diffusivity. As such, they do not meet the so-called Reynolds analogy which assumes a complete similarity between the momentum and the thermal boundary layers via the use of the turbulent Prandtl number. Particularly, in the case of industrial fluid-dynamic calculations where a resolved computation near walls could be extremely time consuming and could need very large computational resources, the use of the classical wall function approach could lead to an inaccurate description of the temperature profile close to the wall. The first aim of the present study is to investigate the ability of a well- established commercial code (ANSYS FLUENT v.14) to deal with this issue, validating a suitable expression for the turbulent Prandtl number. Moreover, a thermal wall-function developed at Universite Catholique de Louvain has been implemented in FLUENT and validated, overcoming the limits of the solver to define it directly. Both the resolved and unresolved approaches have been carried out for a channel flow case and assessed against available direct numerical and large eddy simulations. A comparison between the numerically evaluated Nusselt number and the main correlations available in the literature has been also carried out. Finally, an application of the proposed methodology to a typical sub-channel case has been performed, comparing the results with literature correlations for tube banks
Numerical simulations of comets - predictions for Comet Giacobini-Zinner
International Nuclear Information System (INIS)
Fedder, J.A.; Lyon, J.G.; Giuliani, J.L. Jr.
1986-01-01
Simulations of Comet Giacobini-Zinner's interaction with solar wind are described and results are presented. The simulations are carried out via the numerical solution of the ideal MHD equations as an initial value problem in a uniform solar wind. The calculations are performed on a Cartesian mesh centered at the comet. Results reveal that the first significant modifications of the solar wind along the ISEE/ICE trajectory will occur 100,000 km from the solar wind comet axis. 6 references
3D numerical simulation of transient processes in hydraulic turbines
International Nuclear Information System (INIS)
Cherny, S; Chirkov, D; Lapin, V; Eshkunova, I; Bannikov, D; Avdushenko, A; Skorospelov, V
2010-01-01
An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.
3D numerical simulation of transient processes in hydraulic turbines
Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.
2010-08-01
An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.
Direct numerical simulation of droplet-laden isotropic turbulence
Dodd, Michael S.
Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow
Direct Numerical Simulation of Fingering Instabilities in Coating Flows
Eres, Murat H.; Schwartz, Leonard W.
1998-11-01
We consider stability and finger formation in free surface flows. Gravity driven downhill drainage and temperature gradient driven climbing flows are two examples of such problems. The former situation occurs when a mound of viscous liquid on a vertical wall is allowed to flow. Constant surface shear stress due to temperature gradients (Marangoni stress) can initiate the latter problem. The evolution equations are derived using the lubrication approximation. We also include the effects of finite-contact angles in the evolution equations using a disjoining pressure model. Evolution equations for both problems are solved using an efficient alternating-direction-implicit method. For both problems a one-dimensional base state is established, that is steady in a moving reference frame. This base state is unstable to transverse perturbations. The transverse wavenumbers for the most rapidly growing modes are found through direct numerical solution of the nonlinear evolution equations, and are compared with published experimental results. For a range of finite equilibrium contact angles, the fingers can grow without limit leading to semi-finite steady fingers in a moving coordinate system. A computer generated movie of the nonlinear simulation results, for several sets of input parameters, will be shown.
Numerical Simulation of Tower Rotor Interaction for Downwind Wind Turbine
Directory of Open Access Journals (Sweden)
Isam Janajreh
2010-01-01
Full Text Available Downwind wind turbines have lower upwind rotor misalignment, and thus lower turning moment and self-steered advantage over the upwind configuration. In this paper, numerical simulation to the downwind turbine is conducted to investigate the interaction between the tower and the blade during the intrinsic passage of the rotor in the wake of the tower. The moving rotor has been accounted for via ALE formulation of the incompressible, unsteady, turbulent Navier-Stokes equations. The localized CP, CL, and CD are computed and compared to undisturbed flow evaluated by Panel method. The time history of the CP, aerodynamic forces (CL and CD, as well as moments were evaluated for three cross-sectional tower; asymmetrical airfoil (NACA0012 having four times the rotor's chord length, and two circular cross-sections having four and two chords lengths of the rotor's chord. 5%, 17%, and 57% reductions of the aerodynamic lift forces during the blade passage in the wake of the symmetrical airfoil tower, small circular cross-section tower and large circular cross-section tower were observed, respectively. The pronounced reduction, however, is confined to a short time/distance of three rotor chords. A net forward impulsive force is also observed on the tower due to the high speed rotor motion.
Direct Numerical Simulation and Visualization of Subcooled Pool Boiling
Directory of Open Access Journals (Sweden)
Tomoaki Kunugi
2014-01-01
Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.
Numerical simulation and experimental validation of coiled adiabatic capillary tubes
Energy Technology Data Exchange (ETDEWEB)
Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico (UNAM), Apdo. Postal 34, 62580 Temixco, Morelos (Mexico)
2007-04-15
The objective of this study is to extend and validate the model developed and presented in previous works [O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part I: mathematical formulation and numerical model, Applied Thermal Engineering 22 (2) (2002) 173-182; O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part II: experimental validation and parametric studies, Applied Thermal Engineering 22 (4) (2002) 379-391] to coiled adiabatic capillary tube expansion devices working with pure and mixed refrigerants. The discretized governing equations are coupled using an implicit step by step method. A special treatment has been implemented in order to consider transitions (subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region). All the flow variables (enthalpies, temperatures, pressures, vapor qualities, velocities, heat fluxes, etc.) together with the thermophysical properties are evaluated at each point of the grid in which the domain is discretized. The numerical model allows analysis of aspects such as geometry, type of fluid (pure substances and mixtures), critical or non-critical flow conditions, metastable regions, and transient aspects. Comparison of the numerical simulation with a wide range of experimental data presented in the technical literature will be shown in the present article in order to validate the model developed. (author)
Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?
Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim
2014-11-01
Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).
Seasonal cycle of Martian climate : Experimental data and numerical simulation
Rodin, A. V.; Willson, R. J.
2006-01-01
The most adequate theoretical method of investigating the present-day Martian climate is numerical simulation based on a model of general circulation of the atmosphere. First and foremost, such models encounter the greatest difficulties in description of aerosols and clouds, which in turn
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The report presents globally the works done by the author in the thermohydraulic applied to nuclear reactors flows. It presents the studies done to the numerical simulation of the two phase flows in the steam generators and a finite element method to compute these flows. (author)
Decoupled numerical simulation of a solid fuel fired retort boiler
International Nuclear Information System (INIS)
Ryfa, Arkadiusz; Buczynski, Rafal; Chabinski, Michal; Szlek, Andrzej; Bialecki, Ryszard A.
2014-01-01
The paper deals with numerical simulation of the retort boiler fired with solid fuel. Such constructions are very popular for heating systems and their development is mostly based on the designer experience. The simulations have been done in ANSYS/Fluent package and involved two numerical models. The former deals with a fixed-bed combustion of the solid fuel and free-board gas combustion. Solid fuel combustion is based on the coal kinetic parameters. This model encompasses chemical reactions, radiative heat transfer and turbulence. Coal properties have been defined with user defined functions. The latter model describes flow of water inside a water jacked that surrounds the combustion chamber and flue gas ducts. The novelty of the proposed approach is separating of the combustion simulation from the water flow. Such approach allows for reducing the number of degrees of freedom and thus lowering the necessary numerical effort. Decoupling combustion from water flow requires defining interface boundary condition. As this boundary condition is unknown it is adjusted iteratively. The results of the numerical simulation have been successfully validated against measurement data. - Highlights: • New decoupled modelling of small scale boiler is proposed. • Fixed-bed combustion model based on kinetic parameters is introduced. • Decoupling reduced the complexity of the model and computational time. • Simple and computationally inexpensive coupling algorithm is proposed. • Model is successfully validated against measurements
A review of numerical simulation of hydrothermal systems.
Mercer, J.W.; Faust, C.R.
1979-01-01
Many advances in simulating single and two-phase fluid flow and heat transport in porous media have recently been made in conjunction with geothermal energy research. These numerical models reproduce system thermal and pressure behaviour and can be used for other heat-transport problems, such as high-level radioactive waste disposal and heat-storage projects. -Authors
Application of HPCN to direct numerical simulation of turbulent flow
Verstappen, RWCP; Veldman, AEP; van Waveren, GM; Hertzberger, B; Sloot, P
1997-01-01
This poster shows how HPCN can be used as a path-finding tool for turbulence research. The parallelization of direct numerical simulation of turbulent flow using the data-parallel model and Fortran 95 constructs is treated, both on a shared memory and a distributed memory computer.
Numerical simulation of thermal fracture in functionally graded
Indian Academy of Sciences (India)
Numerical simulation of thermal fracture in functionally graded materials using element-free ... Initially, the temperature distribution over the domain is obtained by solving the heat transfer problem. ... Department of Mechanical Engineering, National Institute of Technology, Hamirpur 177005, India ... Contact | Site index.
Numerical simulations of the metallicity distribution in dwarf spheroidal galaxies
Ripamonti, E.; Tolstoy, E.; Helmi, A.; Battaglia, G.; Abel, T.
2006-01-01
Abstract: Recent observations show that the number of stars with very low metallicities in the dwarf spheroidal satellites of the Milky Way is low, despite the low average metallicities of stars in these systems. We undertake numerical simulations of star formation and metal enrichment of dwarf
Numerical convergence improvements for porflow unsaturated flow simulations
Energy Technology Data Exchange (ETDEWEB)
Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-08-14
Section 3.6 of SRNL (2016) discusses various PORFLOW code improvements to increase modeling efficiency, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision. This memorandum documents interaction with Analytic & Computational Research, Inc. (http://www.acricfd.com/default.htm) to improve numerical convergence efficiency using PORFLOW version 6.42 for unsaturated flow simulations.
Direct numerical simulation of particulate flow with heat transfer
Tavassoli Estahbanati, H; Kriebitzsch, S.H.L.; Hoef, van der M.A.; Peters, E.A.J.F.; Kuipers, J.A.M.
2013-01-01
The Immersed Boundary (IB) method proposed by Uhlmann for Direct Numerical Simulation (DNS) of fluid flow through dense fluid-particle systems is extended to systems with interphase heat transport. A fixed Eulerian grid is employed to solve the momentum and energy equations by traditional
Experimental and numerical simulation of carbon manganese steel ...
African Journals Online (AJOL)
Experimental and numerical simulation of carbon manganese steel for cyclic plastic behaviour. J Shit, S Dhar, S Acharyya. Abstract. The paper deals with finite element modeling of saturated low cycle fatigue and the cyclic hardening phenomena of the materials Sa333 grade 6 carbon steel and SS316 stainless steel.
Numerical simulation of the drying of inkjet-printed droplets
Siregar, D.P.; Kuerten, J.G.M.; Geld, van der C.W.M.
2013-01-01
In this paper we study the behavior of an inkjet-printed droplet of a solute dissolved in a solvent on a solid horizontal surface by numerical simulation. An extended model for drying of a droplet and the final distribution of the solute on an impermeable substrate is proposed. The model extends the
Direct Numerical Simulation Sediment Transport in Horizontal Channel
International Nuclear Information System (INIS)
Uhlmann, M.
2006-01-01
We numerically simulate turbulent flow in a horizontal plane channel over a bed of mobile particles. All scales of fluid motion are resolved without modeling and the phase interface is accurately represented. Our results indicate a possible scenario for the onset of erosion through collective motion induced by buffer-layer streaks. (Author) 27 refs
Numerical simulations of time-resolved quantum electronics
International Nuclear Information System (INIS)
Gaury, Benoit; Weston, Joseph; Santin, Matthieu; Houzet, Manuel; Groth, Christoph; Waintal, Xavier
2014-01-01
Numerical simulation has become a major tool in quantum electronics both for fundamental and applied purposes. While for a long time those simulations focused on stationary properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and beyond has triggered a new interest for handling time-dependent perturbations. As the experimental frequencies get higher, it becomes possible to conceive experiments which are both time-resolved and fast enough to probe the internal quantum dynamics of the system. This paper discusses the technical aspects–mathematical and numerical–associated with the numerical simulations of such a setup in the time domain (i.e. beyond the single-frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time-resolved observables in a general multiterminal system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates, voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equivalent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrödinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time-resolved observables (current, density, etc.) and the (inelastic) scattering matrix are simply expressed in terms of this wave function. We use our approach to develop a numerical technique for simulating time-resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation
Mathematical modeling and numerical simulation of Czochralski Crystal Growth
Energy Technology Data Exchange (ETDEWEB)
Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)
1996-12-31
A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)
Behavioral modeling of SRIM tables for numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Martinie, S., E-mail: sebastien.martinie@cea.fr; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L., E-mail: jean-luc.autran@univ-amu.fr
2014-03-01
Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits.
Mathematical modeling and numerical simulation of Czochralski Crystal Growth
Energy Technology Data Exchange (ETDEWEB)
Jaervinen, J; Nieminen, R [Center for Scientific Computing, Espoo (Finland)
1997-12-31
A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)
On the characteristics of a numerical fluid dynamics simulator
International Nuclear Information System (INIS)
Winkler, K.H.A.; Norman, M.L.; Norton, J.L.
1986-01-01
John von Neumann envisioned scientists and mathematicians analyzing and controlling their numerical experiments on nonlinear dynamic systems interactively. The authors describe their concept of a real-time Numerical Fluid Dynamics Simulator NFDS. The authors envision the NFDS to be composed of simulation processors, data storage devices, and image processing devices of extremely high power and capacity, interconnected by very high throughput communication channels. They present individual component performance requirements for both real-time and playback operating modes of the NFDS, using problems of current interest in fluid dynamics as examples. Scaling relations are derived showing the dependence of system requirements on the dimensionality and complexity of the numerical model. The authors conclude by extending their analysis to the system requirements posed in modeling the more involved physics of radiation hydrodynamics
Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations
International Nuclear Information System (INIS)
Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F
2010-01-01
This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.
Behavioral modeling of SRIM tables for numerical simulation
International Nuclear Information System (INIS)
Martinie, S.; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L.
2014-01-01
Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits
Numerical simulation of a possible counterexample to cosmic censorship
International Nuclear Information System (INIS)
Garfinkle, David
2004-01-01
A numerical simulation is presented here of the evolution of initial data of the kind that was conjectured by Hertog, Horowitz, and Maeda to be a violation of cosmic censorship. Those initial data are essentially a thick domain wall connecting two regions of anti-de Sitter space. The initial data have a free parameter that is the initial size of the wall. The simulation shows no violation of cosmic censorship, but rather the formation of a small black hole. The simulation described here is for a moderate wall size and leaves open the possibility that cosmic censorship might be violated for larger walls
3D numerical simulations of multiphase continental rifting
Naliboff, J.; Glerum, A.; Brune, S.
2017-12-01
Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and
Electric field distribution and simulation of avalanche formation due ...
Indian Academy of Sciences (India)
Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed ...
Understanding casing flow in Pelton turbines by numerical simulation
Rentschler, M.; Neuhauser, M.; Marongiu, J. C.; Parkinson, E.
2016-11-01
For rehabilitation projects of Pelton turbines, the flow in the casing may have an important influence on the overall performance of the machine. Water sheets returning on the jets or on the runner significantly reduce efficiency, and run-away speed depends on the flow in the casing. CFD simulations can provide a detailed insight into this type of flow, but these simulations are computationally intensive. As in general the volume of water in a Pelton turbine is small compared to the complete volume of the turbine housing, a single phase simulation greatly reduces the complexity of the simulation. In the present work a numerical tool based on the SPH-ALE meshless method is used to simulate the casing flow in a Pelton turbine. Using improved order schemes reduces the numerical viscosity. This is necessary to resolve the flow in the jet and on the casing wall, where the velocity differs by two orders of magnitude. The results are compared to flow visualizations and measurement in a hydraulic laboratory. Several rehabilitation projects proved the added value of understanding the flow in the Pelton casing. The flow simulation helps designing casing insert, not only to see their influence on the flow, but also to calculate the stress in the inserts. In some projects, the casing simulation leads to the understanding of unexpected behavior of the flow. One such example is presented where the backsplash of a deflector hit the runner, creating a reversed rotation of the runner.
Numerical simulation of manual operation at MID stand control room
International Nuclear Information System (INIS)
Doca, C.; Dobre, A.; Predescu, D.; Mielcioiu, A.
2003-01-01
Since 2000 at INR Pitesti a package of software products devoted to numerical simulation of manual operations at fueling machine control room was developed. So far, specified, designed, worked out and implemented was the PUPITRU code. The following issues were solved: graphical aspects of specific computer - human operator interface; functional and graphical simulation of the whole associated equipment of the control desk components; implementation of the main notation as used in the automated schemes of the control desk in view of the fast identification of the switches, lamps, instrumentation, etc.; implementation within PUPITRU code of the entire data base used in the frame of MID tests; implementation of a number of about 1000 numerical simulation equations describing specific operational MID testing situations
Numerical simulation of small scale soft impact tests
International Nuclear Information System (INIS)
Varpasuo, Pentti
2008-01-01
This paper describes the small scale soft missile impact tests. The purpose of the test program is to provide data for the calibration of the numerical simulation models for impact simulation. In the experiments, both dry and fluid filled missiles are used. The tests with fluid filled missiles investigate the release speed and the droplet size of the fluid release. This data is important in quantifying the fire hazard of flammable liquid after the release. The spray release velocity and droplet size are also input data for analytical and numerical simulation of the liquid spread in the impact. The behaviour of the impact target is the second investigative goal of the test program. The response of reinforced and pre-stressed concrete walls is studied with the aid of displacement and strain monitoring. (authors)
Configuration Management File Manager Developed for Numerical Propulsion System Simulation
Follen, Gregory J.
1997-01-01
One of the objectives of the High Performance Computing and Communication Project's (HPCCP) Numerical Propulsion System Simulation (NPSS) is to provide a common and consistent way to manage applications, data, and engine simulations. The NPSS Configuration Management (CM) File Manager integrated with the Common Desktop Environment (CDE) window management system provides a common look and feel for the configuration management of data, applications, and engine simulations for U.S. engine companies. In addition, CM File Manager provides tools to manage a simulation. Features include managing input files, output files, textual notes, and any other material normally associated with simulation. The CM File Manager includes a generic configuration management Application Program Interface (API) that can be adapted for the configuration management repositories of any U.S. engine company.
Numerical Simulation of Natural Convection in Heterogeneous Porous media for CO2 Geological Storage
Ranganathan, P.; Farajzadeh, R.; Bruining, J.; Zitha, P.L.J.
2012-01-01
We report a modeling and numerical simulation study of density-driven natural convection during geological CO2 storage in heterogeneous formations. We consider an aquifer or depleted oilfield overlain by gaseous CO2, where the water density increases due to CO2 dissolution. The heterogeneity of the
Numerical Simulations of Granular Physics in the Solar System
Ballouz, Ronald
2017-08-01
Granular physics is a sub-discipline of physics that attempts to combine principles that have been developed for both solid-state physics and engineering (such as soil mechanics) with fluid dynamics in order to formulate a coherent theory for the description of granular materials, which are found in both terrestrial (e.g., earthquakes, landslides, and pharmaceuticals) and extra-terrestrial settings (e.g., asteroids surfaces, asteroid interiors, and planetary ring systems). In the case of our solar system, the growth of this sub-discipline has been key in helping to interpret the formation, structure, and evolution of both asteroids and planetary rings. It is difficult to develop a deterministic theory for granular materials due to the fact that granular systems are composed of a large number of elements that interact through a non-linear combination of various forces (mechanical, gravitational, and electrostatic, for example) leading to a high degree of stochasticity. Hence, we study these environments using an N-body code, pkdgrav, that is able to simulate the gravitational, collisional, and cohesive interactions of grains. Using pkdgrav, I have studied the size segregation on asteroid surfaces due to seismic shaking (the Brazil-nut effect), the interaction of the OSIRIS-REx asteroid sample-return mission sampling head, TAGSAM, with the surface of the asteroid Bennu, the collisional disruptions of rubble-pile asteroids, and the formation of structure in Saturn's rings. In all of these scenarios, I have found that the evolution of a granular system depends sensitively on the intrinsic properties of the individual grains (size, shape, sand surface roughness). For example, through our simulations, we have been able to determine relationships between regolith properties and the amount of surface penetration a spacecraft achieves upon landing. Furthermore, we have demonstrated that this relationship also depends on the strength of the local gravity. By comparing our
Numerical simulation investigation on centrifugal compressor performance of turbocharger
International Nuclear Information System (INIS)
Li, Jie; Yin, Yuting; Li, Shuqi; Zhang, Jizhong
2013-01-01
In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.
Numerical simulation investigation on centrifugal compressor performance of turbocharger
Energy Technology Data Exchange (ETDEWEB)
Li, Jie [China Iron and Steel Research Institute Group, Beijing (China); Yin, Yuting [China North Engine Research Institute, Datong (China); Li, Shuqi; Zhang, Jizhong [Science and Technology Diesel Engine Turbocharging Laboratory, Datong (China)
2013-06-15
In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.
Numerical simulation in material science: principles and applications
International Nuclear Information System (INIS)
Ruste, Jacky
2006-06-01
The objective is here to describe the main simulation techniques currently used in material science. After a presentation of the concepts of modelling and simulation, of their objectives and uses, of the issue of simulation scale, and of means of numeric simulation, the author addresses simulations performed at a nano-scopic scale: 'ab-initio' methods, molecular dynamics, examples of applications of ab-initio methods to energy issues or to the study of surface properties of nano-materials. The next chapter addresses various Monte Carlo methods (Metropolis, atomic kinetics, objects kinetics, transport with the simulation of particle trajectories, generation of random numbers). The next parts address simulations performed at a mesoscopic scale (simulation and microstructure, phase field methods, dynamics of discrete dislocations, homogeneous chemical kinetics) and at a macroscopic scale (medium discretization with the notion of mesh, simulation of structure mechanics and of fluid behaviour). The issues of code coupling and scale coupling are then discussed. The last part proposes an overview of virtual metallurgy and modelling of industrial processes (welding, vacuum arc re-fusion, rolling, forming)
Numerical simulation of heat transfer in metal foams
Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.
2018-02-01
This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.
Numerical simulation of gas metal arc welding parametrical study
International Nuclear Information System (INIS)
Szanto, M.; Gilad, I.; Shai, I.; Quinn, T.P.
2002-01-01
The Gas Metal Arc Welding (GMAW) is a widely used welding process in the industry. The process variables are usually determined through extensive experiments. Numerical simulation, reduce the cost and extends the understanding of the process. In the present work, a versatile model for numerical simulation of GMAW is presented. The model provides the basis for fundamental understanding of the process. The model solves the magneto-hydrodynamic equations for the flow and temperature fields of the molten electrode and the plasma simultaneously, to form a fully coupled model. A commercial CFD code was extended to include the effects of radiation, Lorentz forces, Joule heating and thermoelectric effects. The geometry of the numerical model assembled to fit an experimental apparatus. To demonstrate the method, an aluminum electrode was modeled in a pure argon arc. Material properties and welding parameters are the input variables in the numerical model. In a typical process, the temperature distribution of the plasma is over 15000 K, resulting high non-linearity of the material properties. Moreover, there is high uncertainty in the available property data, at that range of temperatures. Therefore, correction factors were derived for the material properties to adjust between the numerical and the experimental results. Using the compensated properties, parametric study was performed. The effects of the welding parameters on the process, such the working voltage, electrode feed rate and shielding gas flow, were derived. The principal result of the present work is the ability to predict, by numerical simulation, the mode, size and frequency of the metal transferred from the electrode, which is the main material and energy source for the welding pool in GMAW
Numerical simulation support to the ESA/THOR mission
Valentini, F.; Servidio, S.; Perri, S.; Perrone, D.; De Marco, R.; Marcucci, M. F.; Daniele, B.; Bruno, R.; Camporeale, E.
2016-12-01
THOR is a spacecraft concept currently undergoing study phase as acandidate for the next ESA medium size mission M4. THOR has been designedto solve the longstanding physical problems of particle heating andenergization in turbulent plasmas. It will provide high resolutionmeasurements of electromagnetic fields and particle distribution functionswith unprecedented resolution, with the aim of exploring the so-calledkinetic scales. We present the numerical simulation framework which is supporting the THOR mission during the study phase. The THOR teamincludes many scientists developing and running different simulation codes(Eulerian-Vlasov, Particle-In-Cell, Gyrokinetics, Two-fluid, MHD, etc.),addressing the physics of plasma turbulence, shocks, magnetic reconnectionand so on.These numerical codes are being used during the study phase, mainly withthe aim of addressing the following points:(i) to simulate the response of real particle instruments on board THOR, byemploying an electrostatic analyser simulator which mimics the response ofthe CSW, IMS and TEA instruments to the particle velocity distributions ofprotons, alpha particle and electrons, as obtained from kinetic numericalsimulations of plasma turbulence.(ii) to compare multi-spacecraft with single-spacecraft configurations inmeasuring current density, by making use of both numerical models ofsynthetic turbulence and real data from MMS spacecraft.(iii) to investigate the validity of the Taylor hypothesis indifferent configurations of plasma turbulence
Graphics interfaces and numerical simulations: Mexican Virtual Solar Observatory
Hernández, L.; González, A.; Salas, G.; Santillán, A.
2007-08-01
Preliminary results associated to the computational development and creation of the Mexican Virtual Solar Observatory (MVSO) are presented. Basically, the MVSO prototype consists of two parts: the first, related to observations that have been made during the past ten years at the Solar Observation Station (EOS) and at the Carl Sagan Observatory (OCS) of the Universidad de Sonora in Mexico. The second part is associated to the creation and manipulation of a database produced by numerical simulations related to solar phenomena, we are using the MHD ZEUS-3D code. The development of this prototype was made using mysql, apache, java and VSO 1.2. based GNU and `open source philosophy'. A graphic user interface (GUI) was created in order to make web-based, remote numerical simulations. For this purpose, Mono was used, because it is provides the necessary software to develop and run .NET client and server applications on Linux. Although this project is still under development, we hope to have access, by means of this portal, to other virtual solar observatories and to be able to count on a database created through numerical simulations or, given the case, perform simulations associated to solar phenomena.
Numerical simulation of the RISOe1-airfoil dynamic stall
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1997-12-31
In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)
Modeling and numerical simulations of the influenced Sznajd model
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
Expert System Architecture for Rocket Engine Numerical Simulators: A Vision
Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.
1998-01-01
Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.
Numerical simulation and optimization of nickel-hydrogen batteries
Yu, Li-Jun; Qin, Ming-Jun; Zhu, Peng; Yang, Li
2008-05-01
A three-dimensional, transient numerical model of an individual pressure vessel (IPV) nickel-hydrogen battery has been developed based on energy conservation law, mechanisms of heat and mass transfer, and electrochemical reactions in the battery. The model, containing all components of a battery including the battery shell, was utilized to simulate the transient temperature of the battery, using computational fluid dynamics (CFD) technology. The comparison of the model prediction and experimental data shows a good agreement, which means that the present model can be used for the engineering design and parameter optimization of nickel-hydrogen batteries in aerospace power systems. Two kinds of optimization schemes were provided and evaluated by the simulated temperature field. Based on the model, the temperature simulation during five successive periods in a designed space battery was conducted and the simulation results meet the requirement of safe operation.
Numerical Simulation on Natural Convection Cooling of a FM Target
Energy Technology Data Exchange (ETDEWEB)
Park, Jong Pil; Park, Su Ki [KAERI, Daejeon (Korea, Republic of)
2016-05-15
The irradiated FM(Fission-Molly) target is unloaded from the irradiation hole during normal operation, and then cooled down in the reactor pool for a certain period of time. Therefore, it is necessary to identify the minimum decay time needed to cool down FM target sufficiently by natural convection. In the present work, numerical simulations are performed to predict cooling capability of a FM target cooled by natural convection using commercial computational fluid dynamics (CFD) code, CFX. The present study is carried out using CFD code to investigate cooling capability of a FM target cooled by natural convection. The steady state simulation as well as transient simulation is performed in the present work. Based on the transient simulation (T1), the minimum decay time that the maximum fuel temperature does not reach the design limit temperature (TONB-3 .deg. C) is around 15.60 seconds.
GPU based numerical simulation of core shooting process
Directory of Open Access Journals (Sweden)
Yi-zhong Zhang
2017-11-01
Full Text Available Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores. Although numerical simulation can hopefully optimize the core shooting process, research on numerical simulation of the core shooting process is very limited. Based on a two-fluid model (TFM and a kinetic-friction constitutive correlation, a program for 3D numerical simulation of the core shooting process has been developed and achieved good agreements with in-situ experiments. To match the needs of engineering applications, a graphics processing unit (GPU has also been used to improve the calculation efficiency. The parallel algorithm based on the Compute Unified Device Architecture (CUDA platform can significantly decrease computing time by multi-threaded GPU. In this work, the program accelerated by CUDA parallelization method was developed and the accuracy of the calculations was ensured by comparing with in-situ experimental results photographed by a high-speed camera. The design and optimization of the parallel algorithm were discussed. The simulation result of a sand core test-piece indicated the improvement of the calculation efficiency by GPU. The developed program has also been validated by in-situ experiments with a transparent core-box, a high-speed camera, and a pressure measuring system. The computing time of the parallel program was reduced by nearly 95% while the simulation result was still quite consistent with experimental data. The GPU parallelization method can successfully solve the problem of low computational efficiency of the 3D sand shooting simulation program, and thus the developed GPU program is appropriate for engineering applications.
Numerical simulation of binary black hole and neutron star mergers
Energy Technology Data Exchange (ETDEWEB)
Kastaun, W.; Rezzolla, L. [Albert Einstein Institut, Potsdam-Golm (Germany)
2016-11-01
planning stage. It is natural to ask what could be learned from the expected observations. Particularly intriguing is the possible detection of sources at cosmological distances. The fact that observed frequencies will be reduced due to the expansion of the universe could be used to determine the distance, but only if the original frequency is known. As it turns out, numerical modeling of the source might provide this information. Independent distance measures are very valuable for cosmology, improving estimates of the past expansion rate of the universe and predictions of its future fate. Another goal of our project is to shed some light on the mystery of so called short gamma-ray bursts, intense and sudden bursts of gamma radiation that puzzled astronomers since decades. Previous simulations indicated that they are caused by neutron-star mergers. The exact emission mechanism is however unknown, and many features were completely unexplained, for example the X-ray afterglows which often accompany the main burst.
Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations
Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.
2010-12-01
We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian
Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao
2015-01-01
Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.
Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao
2015-01-01
Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3MJ and a 6.3MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers. PMID:26230392
Direct numerical simulations of gas-liquid multiphase flows
Tryggvason, Grétar; Zaleski, Stéphane
2011-01-01
Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and
Numerical simulation of flow behavior in tight lattice rod bundle
International Nuclear Information System (INIS)
Yu Yiqi; Yang Yanhua; Gu Hanyang; Cheng Xu; Song Xiaoming; Wang Xiaojun
2009-01-01
The Numerical investigation is performed on the air turbulent flow in triangular rod bundle array. Based on the experimental data, the eddy viscosity turbulent model and the Reynold stress turbulent model are evaluated to simulate the flow behavior in the tight lattice. The results show that SSG Reynolds Stress Model has shown superior predictive performance than other Reynolds-stress models, which indicates that the simulation of the anisotropy of the turbulence is significant in the tight lattice. The result with different Reynolds number and geometry shows that the magnitude of the secondary flow is almost independent of the Reynolds number, but it increases with the decrease of the P/D. (authors)
Numerical simulation of tornado-borne missile impact
International Nuclear Information System (INIS)
Tu, D.K.; Murray, R.C.
1977-01-01
The feasibility of using a finite element procedure to examine the impact phenomenon of a tornado-borne missile impinging on a reinforced concrete barrier was assessed. The major emphasis of this study was to simulate the impact of a nondeformable missile. Several series of simulations were run, using an 8-in.-dia steel slug as the impacting missile. The numerical results were then compared with experimental field tests and empirical formulas. The work is in support of tornado design practices for fuel reprocessing and fuel fabrication plants
Numerical Simulation of Cast Distortion in Gas Turbine Engine Components
International Nuclear Information System (INIS)
Inozemtsev, A A; Dubrovskaya, A S; Dongauser, K A; Trufanov, N A
2015-01-01
In this paper the process of multiple airfoilvanes manufacturing through investment casting is considered. The mathematical model of the full contact problem is built to determine stress strain state in a cast during the process of solidification. Studies are carried out in viscoelastoplastic statement. Numerical simulation of the explored process is implemented with ProCASTsoftware package. The results of simulation are compared with the real production process. By means of computer analysis the optimization of technical process parameters is done in order to eliminate the defect of cast walls thickness variation. (paper)
Numerical simulation of internal reconnection event in spherical tokamak
International Nuclear Information System (INIS)
Hayashi, Takaya; Mizuguchi, Naoki; Sato, Tetsuya
1999-07-01
Three-dimensional magnetohydrodynamic simulations are executed in a full toroidal geometry to clarify the physical mechanisms of the Internal Reconnection Event (IRE), which is observed in the spherical tokamak experiments. The simulation results reproduce several main properties of IRE. Comparison between the numerical results and experimental observation indicates fairly good agreements regarding nonlinear behavior, such as appearance of localized helical distortion, appearance of characteristic conical shape in the pressure profile during thermal quench, and subsequent appearance of the m=2/n=1 type helical distortion of the torus. (author)
Numerical simulation of void growth under dynamic loading
International Nuclear Information System (INIS)
Iqbal, A.
1996-01-01
Following a brief general review of developments in material behavior under high strain rates, a cylindrical cell surrounding a spherical void in OFHC copper is numerically simulated by Zerri-Armstrong model. This simulation results show that the plastic deformation tends to be concentrated in the vicinity of voids either in the axial or transverse direction depending upon the stress state. This event is associated with the accelerated void through accompanying coalescence causing ductile fracture. A3-node triangular mesh generation code used as input for finite element code is developed by a 'Central Generation' technique. (author)
Numerical simulation of low Mach number reacting flows
International Nuclear Information System (INIS)
Bell, J B; Aspden, A J; Day, M S; Lijewski, M J
2007-01-01
Using examples from active research areas in combustion and astrophysics, we demonstrate a computationally efficient numerical approach for simulating multiscale low Mach number reacting flows. The method enables simulations that incorporate an unprecedented range of temporal and spatial scales, while at the same time, allows an extremely high degree of reaction fidelity. Sample applications demonstrate the efficiency of the approach with respect to a traditional time-explicit integration method, and the utility of the methodology for studying the interaction of turbulence with terrestrial and astrophysical flame structures
Numerical simulation of the accident of Three Mile Island
International Nuclear Information System (INIS)
Perrin, M.H.; Kastelanski, P.
1981-01-01
The chief object of the present study was to assess the ability of our numerical code for the dynamic behavior of power plants, SICLE, to handle the simulation of small accidents in PWRs. In the first part of the paper the authors introduce the main principles, equations and numerical methods of the code. In the second part those of the elements of Three Mile Island Power Plant which were simulated, the different phases of the accident and the results obtained with the code are described. These results are compared to the values recorded in the plant and generally a good agreement is found (for instance the primary pressure). As a conclusion SICLE is the minimum code for representing accidents such as Three Mile Island; its main advantage lies in its ability to take into account all the elements of the plant which are important in the study
Numerical simulation of draft tube flow of a bulb turbine
Energy Technology Data Exchange (ETDEWEB)
Coelho, J.G. [Federal University of Triangulo Mineiro, Institute of Technological and Exact Sciences, Avenida Doutor Randolfo Borges Junior, 1250 – Uberaba – MG (Brazil); Brasil, A.C.P. Jr. [University of Brasilia, Department of Mechanical Engineering, Campus Darcy Ribeiro, Brasilia – DF (Brazil)
2013-07-01
In this work a numerical study of draft tube of a bulb hydraulic turbine is presented, where a new geometry is proposed. This new proposal of draft tube has the unaffected ratio area, a great reduction in his length and approximately the same efficiency of the draft tube conventionally used. The numerical simulations were obtained in commercial software of calculation of flow (CFX-14), using the turbulence model SST, that allows a description of the field fluid dynamic near to the wall. The simulation strategy has an intention of identifying the stall of the boundary layer precisely limits near to the wall and recirculations in the central part, once those are the great causes of the decrease of efficiency of a draft tube. Finally, it is obtained qualitative and quantitative results about the flow in draft tubes.
Numerical simulation of the circulation of the atmosphere of Titan
Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.
1992-01-01
A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.
Three-dimensional numerical simulation during laser processing of CFRP
Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro
2017-09-01
We performed three-dimensional numerical simulation about laser processing of carbon-fiber-reinforced plastic (CFRP) using OpenFOAM as libraries of finite volume method (FVM). Although a little theoretical or numerical studies about heat affected zone (HAZ) formation were performed, there is no research discussing how HAZ is generated considering time development about removal of each material. It is important to understand difference of removal speed of carbon fiber and resin in order to improve quality of cut surface of CFRP. We demonstrated how the carbon fiber and resin are removed by heat of ablation plume by our simulation. We found that carbon fiber is removed faster than resin at first stage because of the difference of thermal conductivity, and after that, the resin is removed faster because of its low combustion temperature. This result suggests the existence of optimal contacting time of the laser ablation and kerf of the target.
3D numerical simulation and analysis of railgun gouging mechanism
Directory of Open Access Journals (Sweden)
Jin-guo Wu
2016-04-01
Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.
Numerical Relativity Simulations for Black Hole Merger Astrophysics
Baker, John G.
2010-01-01
Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.
Experimentation and numerical simulation of steel fibre reinforced concrete pipes
International Nuclear Information System (INIS)
Fuente, A. de la; Domingues de Figueiredo, A.; Aguado, A.; Molins, C.; Chama Neto, P. J.
2011-01-01
The results concerning on an experimental and a numerical study related to SFRCP are presented. Eighteen pipes with an internal diameter of 600 mm and fibre dosages of 10, 20 and 40 kg/m3 were manufactured and tested. Some technological aspects were concluded. Likewise, a numerical parameterized model was implemented. With this model, the simulation of the resistant behaviour of SFRCP can be performed. In this sense, the results experimentally obtained were contrasted with those suggested by means MAP reaching very satisfactory correlations. Taking it into account, it could be said that the numerical model is a useful tool for the optimal design of the SFRCP fibre dosages, avoiding the need of the systematic employment of the test as an indirect design method. Consequently, the use of this model would reduce the overall cost of the pipes and would give fibres a boost as a solution for this structural typology. (Author) 27 refs.
Numerical Simulation of Polynomial-Speed Convergence Phenomenon
Li, Yao; Xu, Hui
2017-11-01
We provide a hybrid method that captures the polynomial speed of convergence and polynomial speed of mixing for Markov processes. The hybrid method that we introduce is based on the coupling technique and renewal theory. We propose to replace some estimates in classical results about the ergodicity of Markov processes by numerical simulations when the corresponding analytical proof is difficult. After that, all remaining conclusions can be derived from rigorous analysis. Then we apply our results to seek numerical justification for the ergodicity of two 1D microscopic heat conduction models. The mixing rate of these two models are expected to be polynomial but very difficult to prove. In both examples, our numerical results match the expected polynomial mixing rate well.
Numerical simulation of droplet evaporation between two circular plates
International Nuclear Information System (INIS)
Bam, Hang Jin; Son, Gi Hun
2015-01-01
Numerical simulation is performed for droplet evaporation between two circular plates. The flow and thermal characteristics of the droplet evaporation are numerically investigated by solving the conservation equations of mass, momentum, energy and mass fraction in the liquid and gas phases. The liquid-gas interface is tracked by a sharp-interface level-set method which is modified to include the effects of evaporation at the liquid-gas interface and contact angle hysteresis at the liquid-gas-solid contact line. An analytical model to predict the droplet evaporation is also developed by simplifying the mass and vapor fraction equations in the gas phase. The numerical results demonstrate that the 1-D analytical prediction is not applicable to the high rate evaporation process. The effects of plate gap and receding contact angle on the droplet evaporation are also quantified.
Determination of adsorption parameters in numerical simulation for polymer flooding
Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu
2018-02-01
A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.
Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger
Xiao-Hui Sun; Hongbin Yan; Mehrdad Massoudi; Zhi-Hua Chen; Wei-Tao Wu
2018-01-01
It has been shown that using nanofluids as heat carrier fluids enhances the conductive and convective heat transfer of geothermal heat exchangers. In this paper, we study the stability of nanofluids in a geothermal exchanger by numerically simulating nanoparticle sedimentation during a shut-down process. The nanofluid suspension is modeled as a non-linear complex fluid; the nanoparticle migration is modeled by a particle flux model, which includes the effects of Brownian motion, gravity, turb...
Numerical simulations of the decay of primordial magnetic turbulence
International Nuclear Information System (INIS)
Kahniashvili, Tina; Brandenburg, Axel; Tevzadze, Alexander G.; Ratra, Bharat
2010-01-01
We perform direct numerical simulations of forced and freely decaying 3D magnetohydrodynamic turbulence in order to model magnetic field evolution during cosmological phase transitions in the early Universe. Our approach assumes the existence of a magnetic field generated either by a process during inflation or shortly thereafter, or by bubble collisions during a phase transition. We show that the final configuration of the magnetic field depends on the initial conditions, while the velocity field is nearly independent of initial conditions.
Numerical simulation methods for wave propagation through optical waveguides
International Nuclear Information System (INIS)
Sharma, A.
1993-01-01
The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs
Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass
Xuguang Chen; Yuan Wang; Yu Mei; Xin Zhang
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration p...
Numerical simulation of vertical infiltration for leaching fluid in situ
International Nuclear Information System (INIS)
Li Jinxuan; Shi Weijun; Zhang Weimin
1998-01-01
Based on the analysis of movement law of leaching fluid in breaking and leaching experiment in situ, the movement of leaching fluid can be divided into two main stages in the leaching process in situ: Vertical Infiltration in unsaturation zone and horizontal runoff in saturation zone. The corresponding mathematics models are sep up, and the process of vertical infiltration of leaching fluid is numerically simulated
EXTENDED SCALING LAWS IN NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Mason, Joanne; Cattaneo, Fausto; Perez, Jean Carlos; Boldyrev, Stanislav
2011-01-01
Magnetized turbulence is ubiquitous in astrophysical systems, where it notoriously spans a broad range of spatial scales. Phenomenological theories of MHD turbulence describe the self-similar dynamics of turbulent fluctuations in the inertial range of scales. Numerical simulations serve to guide and test these theories. However, the computational power that is currently available restricts the simulations to Reynolds numbers that are significantly smaller than those in astrophysical settings. In order to increase computational efficiency and, therefore, probe a larger range of scales, one often takes into account the fundamental anisotropy of field-guided MHD turbulence, with gradients being much slower in the field-parallel direction. The simulations are then optimized by employing the reduced MHD equations and relaxing the field-parallel numerical resolution. In this work we explore a different possibility. We propose that there exist certain quantities that are remarkably stable with respect to the Reynolds number. As an illustration, we study the alignment angle between the magnetic and velocity fluctuations in MHD turbulence, measured as the ratio of two specially constructed structure functions. We find that the scaling of this ratio can be extended surprisingly well into the regime of relatively low Reynolds number. However, the extended scaling easily becomes spoiled when the dissipation range in the simulations is underresolved. Thus, taking the numerical optimization methods too far can lead to spurious numerical effects and erroneous representation of the physics of MHD turbulence, which in turn can affect our ability to identify correctly the physical mechanisms that are operating in astrophysical systems.
Numerical Simulations of Settlement of Jet Grouting Columns
Directory of Open Access Journals (Sweden)
Juzwa Anna
2016-03-01
Full Text Available The paper presents the comparison of results of numerical analyses of interaction between group of jet grouting columns and subsoil. The analyses were conducted for single column and groups of three, seven and nine columns. The simulations are based on experimental research in real scale which were carried out by authors. The final goal for the research is an estimation of an influence of interaction between columns working in a group.
Numerical simulation methods of fires in nuclear power plants
International Nuclear Information System (INIS)
Keski-Rahkonen, O.; Bjoerkman, J.; Heikkilae, L.
1992-01-01
Fire is a significant hazard to the safety of nuclear power plants (NPP). Fire may be serious accident as such, but even small fire at a critical point in a NPP may cause an accident much more serious than fire itself. According to risk assessments a fire may be an initial cause or a contributing factor in a large part of reactor accidents. At the Fire Technology and the the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) fire safety research for NPPs has been carried out in a large extent since 1985. During years 1988-92 a project Advanced Numerical Modelling in Nuclear Power Plants (PALOME) was carried out. In the project the level of numerical modelling for fire research in Finland was improved by acquiring, preparing for use and developing numerical fire simulation programs. Large scale test data of the German experimental program (PHDR Sicherheitsprogramm in Kernforschungscentral Karlsruhe) has been as reference. The large scale tests were simulated by numerical codes and results were compared to calculations carried out by others. Scientific interaction with outstanding foreign laboratories and scientists has been an important part of the project. This report describes the work of PALOME-project carried out at the Fire Technology Laboratory only. A report on the work at the Nuclear Engineering Laboratory will be published separatively. (au)
Transient productivity index for numerical well test simulations
Energy Technology Data Exchange (ETDEWEB)
Blanc, G.; Ding, D.Y.; Ene, A. [Institut Francais du Petrole, Pau (France)] [and others
1997-08-01
The most difficult aspect of numerical simulation of well tests is the treatment of the Bottom Hole Flowing (BHF) Pressure. In full field simulations, this pressure is derived from the Well-block Pressure (WBP) using a numerical productivity index which accounts for the grid size and permeability, and for the well completion. This productivity index is calculated assuming a pseudo-steady state flow regime in the vicinity of the well and is therefore constant during the well production period. Such a pseudo-steady state assumption is no longer valid for the early time of a well test simulation as long as the pressure perturbation has not reached several grid-blocks around the well. This paper offers two different solutions to this problem: (1) The first one is based on the derivation of a Numerical Transient Productivity Index (NTPI) to be applied to Cartesian grids; (2) The second one is based on the use of a Corrected Transmissibility and Accumulation Term (CTAT) in the flow equation. The representation of the pressure behavior given by both solutions is far more accurate than the conventional one as shown by several validation examples which are presented in the following pages.
Automated numerical simulation of cracked plates, pipes and elbows
International Nuclear Information System (INIS)
Reddy, Babu; Sreehari Kumar, B.; Bhate, S.R.; Kushwaha, H.S.
2008-01-01
In the nuclear industry, piping components are one of the key elements participating in its operation. Integrity of structural tubes and pipes plays a major role in nuclear power plants. The ideal procedure to ensure this aspect would be to conduct experimental studies on pilot/test specimens. However, it may not always be feasible to carry out the experimental investigation, as it requires pre-requisite infrastructure which may not be economically viable. This makes it imperative to conduct numerical simulations of the same particularly in the study of presence of cracks in the critical components. While performing the effect of cracks, the quality of the finite element mesh nearer to the crack tip plays a critical role while estimating J-integral value. The designer is often familiar with design methodology only and he obviously requires a convenient and reliable numerical tool to model and perform the analysis. In this context, an effort has been made in NISA, the general purpose finite element software, to automate the generation of FE meshes for a set of pre-defined components with different crack configurations. To simplify the procedure of FE mesh generation, analysis, and post processing, a graphical user interface (GUI) has been developed accordingly. This paper discusses the automated numerical simulation of plates and pipes with different crack configurations. This simulation software is also designed to help parametric study of cracked pipes. (author)
Numerical simulation of filamentation in laser-plasma interactions
International Nuclear Information System (INIS)
Nicholas, D.J.; Sajjadi, S.G.
1986-01-01
Numerical studies of beam filamentation in laser-produced plasma are presented. This involves the numerical solution of the parabolic wave equation, known as the Schroedinger equation, coupled with the thermal transport equations for both ions and electrons, in two dimensions. The solution of the resulting equation with non-linear refractive index due to thermal and pondermotive forces, shows self-focusing and a variety of strong aberration effects. Intensity amplification at the final focus is found to be between one and two orders of magnitude greater than the initial beam intensity, governed in general by diffraction and aberration effects within the beam. (author)
Numerical simulation of filamentation in laser-plasma interactions
Energy Technology Data Exchange (ETDEWEB)
Nicholas, D.J.; Sajjadi, S.G.
1986-05-14
Numerical studies of beam filamentation in laser-produced plasma are presented. This involves the numerical solution of the parabolic wave equation, known as the Schroedinger equation, coupled with the thermal transport equations for both ions and electrons, in two dimensions. The solution of the resulting equation with non-linear refractive index due to thermal and pondermotive forces, shows self-focusing and a variety of strong aberration effects. Intensity amplification at the final focus is found to be between one and two orders of magnitude greater than the initial beam intensity, governed in general by diffraction and aberration effects within the beam.
Efficient numerical simulation of heat storage in subsurface georeservoirs
Boockmeyer, A.; Bauer, S.
2015-12-01
The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and
Numerical simulator of the CANDU fueling machine driving desk
International Nuclear Information System (INIS)
Doca, Cezar
2008-01-01
As a national and European premiere, in the 2003 - 2005 period, at the Institute for Nuclear Research Pitesti two CANDU fueling machine heads, no.4 and no.5, for the Nuclear Power Plant Cernavoda - Unit 2 were successfully tested. To perform the tests of these machines, a special CANDU fueling machine testing rig was built and was (and is) available for this goal. The design of the CANDU fueling machine test rig from the Institute for Nuclear Research Pitesti is a replica of the similar equipment operating in CANDU 6 type nuclear power plants. High technical level of the CANDU fueling machine tests required the using of an efficient data acquisition and processing Computer Control System. The challenging goal was to build a computer system (hardware and software) designed and engineered to control the test and calibration process of these fuel handling machines. The design takes care both of the functionality required to correctly control the CANDU fueling machine and of the additional functionality required to assist the testing process. Both the fueling machine testing rig and staff had successfully assessed by the AECL representatives during two missions. At same the time, at the Institute for Nuclear Research Pitesti was/is developed a numerical simulator for the CANDU fueling machine operators training. The paper presents the numerical simulator - a special PC program (software) which simulates the graphics and the functions and the operations at the main desk of the computer control system. The simulator permits 'to drive' a CANDU fueling machine in two manners: manual or automatic. The numerical simulator is dedicated to the training of operators who operate the CANDU fueling machine in a nuclear power plant with CANDU reactor. (author)
Numerical Simulation of Liquid Sloshing Problem under Resonant Excitation
Directory of Open Access Journals (Sweden)
Fu-kun Gui
2014-04-01
Full Text Available Numerical simulations were conducted to investigate the fluid resonance in partially filled rectangular tank based on the OpenFOAM package of viscous fluid model. The numerical model was validated by the available theoretical, numerical, and experimental data. The study was mainly focused on the large amplitude sloshing motion and the corresponding impact force around the resonant condition. It was found that, for the 2D situation, the double pressure peaks happened near to the side walls around the still water level. And they were corresponding to the local free surface rising up and set-down, respectively. The impulsive loads on the tank corner with extreme magnitudes were observed as the free surface impacted the ceiling. The 3D numerical results showed that the free surface amplitudes along the side walls varied diversely, depending on the direction and frequency of the external excitation. The characteristics of the pressure around the still water level and tank ceiling were also presented. According to the computational results, it was found that the 2D numerical model can predict the impact loads near the still water level as accurately as 3D model. However, the impulsive pressure near the tank ceiling corner was remarkably underestimated.
Numerical simulation of flow-induced vibrations in tube bundles
International Nuclear Information System (INIS)
Elisabeth Longatte; Zaky Bendjeddou; Mhamed Souli
2005-01-01
Full text of publication follows: In many industrial components mechanical structures like rod cluster control assembly, fuel assembly and heat exchanger tube bundles are submitted to complex flows causing possible vibrations and damage. Fluid forces are usually split into two parts: structure motion independent forces and fluid-elastic forces coupled with tube motion and responsible for possible dynamic instability development leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics (C.F.D.), numerical fluid force identification is now practicable in the presence of industrial configurations. The present paper is devoted to numerical simulation of flow-induced vibrations of tube bundles submitted to single-phase cross flows by using C.F.D. codes. Direct Numerical Simulation (D.N.S.), Arbitrary Lagrange Euler formulation (A.L.E.) and code coupling process are involved to predict fluid forces responsible for tube bundle vibrations in the presence of fluid structure and fluid-elastic coupling effects. In the presence of strong multi-physics coupling, simulation of flow-induced vibrations requires a fluid structure code coupling process. The methodology consists in solving in the same time thermohydraulics and mechanics problems by using an A.L.E. formulation for the fluid computation. The purpose is to take into account coupling between flow and structure motions in order to be able to capture coupling effects. From a numerical point of view, there are three steps in the computation: the fluid problem is solved on the computational domain; fluid forces acting on the moving tube are estimated; finally they are introduced in the structure solver providing the tube displacement that is used to actualize the fluid computational domain. Specific
Direct Numerical Simulations of Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Livescu, D; Wei, T; Petersen, M R
2011-01-01
The development of the Rayleigh-Taylor mixing layer is studied using data from an extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This includes a suite of simulations with grid size of 1024 2 × 4608 and Atwood number ranging from 0.04 to 0.9, in order to examine small departures from the Boussinesq approximation as well as large Atwood number effects, and a high resolution simulation of grid size 4096 2 × 4032 and Atwood number of 0.75. After the layer width had developed substantially, additional branched simulations have been run under reversed and zero gravity conditions. While the bulk of the results will be published elsewhere, here we present preliminary results on: 1) the long-standing open question regarding the discrepancy between the numerically and experimentally measured mixing layer growth rates and 2) mixing characteristics.
Numerical simulation of plasma vertical position stabilization in ITER
International Nuclear Information System (INIS)
Astapkovich, A.M.; Sadakov, S.N.
1992-01-01
The paper deals with numerical simulation of plasma vertical position stabilization in ITER. The calculations are performed using EDDY C-2 code by the method of direct numerical simulation of transient electromagnetic processes taking into account the evolution of plasma position, cross-section shape and full plasma current. When simulating free vertical plasma drift in ITER with twin passive stabilization loops, it was shown that account of the effects of cross-section deformation and plasma current alternations results in almost two fold degradation of passive stabilization parameters as compared to the calculations for 'rigid displacement' model. In terms of methodology, the account of the effects of cross section deformation and plasma current alternations requires clarification of the definitions for reverse increment of vertical instability and for stability margin coefficient. The simulation of plasma pinch return to equilibrium position after the closure of control coils allows to assess the required parameters of active control system and demonstrate the effect of screen current reverse in twin loops. The obtained results were used to develop the ITER conceptual design and affected the choice of the concept of twin passive loops and new positron of control coils as the basis approaches. 11 refs.; 12 figs.; 1 tab
Numerical simulations of rubber bearing tests and shaking table tests
International Nuclear Information System (INIS)
Hirata, K.; Matsuda, A.; Yabana, S.
2002-01-01
Test data concerning rubber bearing tests and shaking table tests of base-isolated model conducted by CRIEPI are provided to the participants of Coordinated Research Program (CRP) on 'Intercomparison of Analysis Methods for predicting the behaviour of Seismically Isolated Nuclear Structure', which is organized by International Atomic Energy Agency (IAEA), for the comparison study of numerical simulation of base-isolated structure. In this paper outlines of the test data provided and the numerical simulations of bearing tests and shaking table tests are described. Using computer code ABAQUS, numerical simulations of rubber bearing tests are conducted for NRBs, LRBs (data provided by CRIEPI) and for HDRs (data provided by ENEA/ENEL and KAERI). Several strain energy functions are specified according to the rubber material test corresponding to each rubber bearing. As for lead plug material in LRB, mechanical characteristics are reevaluated and are made use of. Simulation results for these rubber bearings show satisfactory agreement with the test results. Shaking table test conducted by CRIEPI is of a base isolated rigid mass supported by LRB. Acceleration time histories, displacement time histories of the isolators as well as cyclic loading test data of the LRB used for the shaking table test are provided to the participants of the CRP. Simulations of shaking table tests are conducted for this rigid mass, and also for the steel frame model which is conducted by ENEL/ENEA. In the simulation of the rigid mass model test, where LRBs are used, isolators are modeled either by bilinear model or polylinear model. In both cases of modeling of isolators, simulation results show good agreement with the test results. In the case of the steel frame model, where HDRs are used as isolators, bilinear model and polylinear model are also used for modeling isolators. The response of the model is simulated comparatively well in the low frequency range of the floor response, however, in
van den Bosch, Frank C.; Ogiya, Go
2018-04-01
To gain understanding of the complicated, non-linear, and numerical processes associated with the tidal evolution of dark matter subhaloes in numerical simulation, we perform a large suite of idealized simulations that follow individual N-body subhaloes in a fixed, analytical host halo potential. By varying both physical and numerical parameters, we investigate under what conditions the subhaloes undergo disruption. We confirm the conclusions from our more analytical assessment in van den Bosch et al. that most disruption is numerical in origin; as long as a subhalo is resolved with sufficient mass and force resolution, a bound remnant survives. This implies that state-of-the-art cosmological simulations still suffer from significant overmerging. We demonstrate that this is mainly due to inadequate force softening, which causes excessive mass loss and artificial tidal disruption. In addition, we show that subhaloes in N-body simulations are susceptible to a runaway instability triggered by the amplification of discreteness noise in the presence of a tidal field. These two processes conspire to put serious limitations on the reliability of dark matter substructure in state-of-the-art cosmological simulations. We present two criteria that can be used to assess whether individual subhaloes in cosmological simulations are reliable or not, and advocate that subhaloes that satisfy either of these two criteria be discarded from further analysis. We discuss the potential implications of this work for several areas in astrophysics.
Applications of granular-dynamics numerical simulations to asteroid surfaces
Richardson, D. C.; Michel, P.; Schwartz, S. R.; Yu, Y.; Ballouz, R.-L.; Matsumura, S.
2014-07-01
Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a totally different gravitational environment than on the Earth. Upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). (1) We carried out impacts into granular materials using different projectile shapes under Earth's gravity [5] and compared the results to laboratory experiments [6] in support of JAXA's Hayabusa 2 asteroid sample-return mission. We tested different projectile shapes and confirmed that the 90-degree cone was the most efficient at excavating mass when impacting 5-mm-diameter glass beads. Results are sensitive to the normal coefficient of restitution and the coefficient of static friction. Preliminary experiments in micro-gravity for similar impact conditions show both the amount of ejected mass and the timescale of the impact process increase, as expected. (2) It has been found (e.g., [7,8]) that ''fresh'' (unreddened) Q-class asteroids have a high probability of recent planetary encounters (˜1 Myr; also see [9]), suggesting that surface refreshening may have occurred due to tidal effects. As an application of the potential effect of tidal interactions, we carried out simulations of Apophis' predicted 2029 encounter with the Earth to see whether regolith motion might occur, using a range of plausible material parameters
Numerical Simulation of Floating Bodies in Extreme Free Surface Waves
Hu, Zheng Zheng; Causon, Derek; Mingham, Clive; Qiang, Ling
2010-05-01
A task of the EPSRC funded research project 'Extreme Wave loading on Offshore Wave Energy Devices: a Hierarchical Team Approach' is to investigate the survivability of two wave energy converter (WEC) devices Pelamis and the Manchester Bobber using different CFD approaches. Both devices float on the water surface, generating the electricity from the motion of the waves. In this paper, we describe developments of the AMAZON-SC 3D numerical wave tank (NWT) to study extreme wave loading of a fixed or floating (in Heave motion) structure. The extreme wave formulation as an inlet condition is due to Dalzell (1999) and Ning et. al. (2009) in which a first or second-order Stokes focused wave can be prescribed. The AMAZON-SC 3D code (see e.g. Hu et al. (2009)) uses a cell centred finite volume method of the Godunov-type for the space discretization of the Euler and Navier Stokes equations. The computational domain includes both air and water regions with the air/water boundary captured as a discontinuity in the density field thereby admitting the break up and recombination of the free surface. Temporal discretisation uses the artificial compressibility method and a dual time stepping strategy to maintain a divergence free velocity field. Cartesian cut cells are used to provide a fully boundary-fitted gridding capability on an regular background Cartesian grid. Solid objects are cut out of the background mesh leaving a set of irregularly shaped cells fitted to the boundary. The advantages of the cut cell approach have been outlined previously by Causon et al. (2000, 2001) including its flexibility for dealing with complex geometries whether stationary or in relative motion. The field grid does not need to be recomputed globally or even locally for moving body cases; all that is necessary is to update the local cut cell data at the body contour for as long as the motion continues. The handing of numerical wave paddles and device motion in a NWT is therefore straightforward
Hygrothermal Numerical Simulation Tools Applied to Building Physics
Delgado, João M P Q; Ramos, Nuno M M; Freitas, Vasco Peixoto
2013-01-01
This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measuremen...
Numerical simulation of plasma processes driven by transverse ion heating
Singh, Nagendra; Chan, C. B.
1993-01-01
The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.
Numerical Simulation of Flow Behavior within a Venturi Scrubber
M. M. Toledo-Melchor; C. del C. Gutiérrez-Torres; J. A. Jiménez-Bernal; J. G. Barbosa-Saldaña; S. A. Martínez-Delgadillo; H. R. Mollinedo-Ponce de León; A. Yoguéz-Seoane; A. Alonzo-García
2014-01-01
The present work details the three-dimensional numerical simulation of single-phase and two-phase flow (air-water) in a venturi scrubber with an inlet and throat diameters of 250 and 122.5 mm, respectively. The dimensions and operating parameters correspond to industrial applications. The mass flow rate conditions were 0.483 kg/s, 0.736 kg/s, 0.861 kg/s, and 0.987 kg/s for the gas only simulation; the mass flow rate for the liquid was 0.013 kg/s and 0.038 kg/s. The gas flow was simulated in f...
Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube
Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok
2015-01-01
This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.
Real-Time Numerical Simulation of the Carnot Cycle
International Nuclear Information System (INIS)
Hurkala, J.; Gall, M.; Kutner, R.; Maciejczyk, M.
2005-01-01
We developed a highly interactive, multi-windows Java applet which made it possible to simulate and visualize within any platform and internet the Carnot cycle (or engine) in a real-time computer experiment. We extended our previous model and algorithm to simulate not only the heat flow but also the macroscopic movement of the piston. since in reality it is impossible to construct a reversible Carnot engine, the question arises whether it is possible to simulate it at least in a numerical experiment? The positive answer to this question which we found is related to our model and algorithm which make it possible to omit the many-body problem arising when many gas particles simultaneously interact with the mobile piston. As usually the considerations of phenomenomenological thermodynamics began with a study of the basic properties of heat engines hence our approach, beside intrinsic physical significance, is also important from the educational, technological and even environmental points of view. (author)
Direct numerical simulation of bubbles with parallelized adaptive mesh refinement
International Nuclear Information System (INIS)
Talpaert, A.
2015-01-01
The study of two-phase Thermal-Hydraulics is a major topic for Nuclear Engineering for both security and efficiency of nuclear facilities. In addition to experiments, numerical modeling helps to knowing precisely where bubbles appear and how they behave, in the core as well as in the steam generators. This work presents the finest scale of representation of two-phase flows, Direct Numerical Simulation of bubbles. We use the 'Di-phasic Low Mach Number' equation model. It is particularly adapted to low-Mach number flows, that is to say flows which velocity is much slower than the speed of sound; this is very typical of nuclear thermal-hydraulics conditions. Because we study bubbles, we capture the front between vapor and liquid phases thanks to a downward flux limiting numerical scheme. The specific discrete analysis technique this work introduces is well-balanced parallel Adaptive Mesh Refinement (AMR). With AMR, we refined the coarse grid on a batch of patches in order to locally increase precision in areas which matter more, and capture fine changes in the front location and its topology. We show that patch-based AMR is very adapted for parallel computing. We use a variety of physical examples: forced advection, heat transfer, phase changes represented by a Stefan model, as well as the combination of all those models. We will present the results of those numerical simulations, as well as the speed up compared to equivalent non-AMR simulation and to serial computation of the same problems. This document is made up of an abstract and the slides of the presentation. (author)
Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry
Yue, L.; Hsu, T. J.
2017-12-01
Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.
SIMULATION OF ANALYTICAL TRANSIENT WAVE DUE TO DOWNWARD BOTTOM THRUST
Directory of Open Access Journals (Sweden)
Sugih Sudharma Tjandra
2015-11-01
Full Text Available Generation process is an important part of understanding waves, especially tsunami. Large earthquake under the sea is one major cause of tsunamis. The sea surface deforms as a response from the sea bottom motion caused by the earthquake. Analytical description of surface wave generated by bottom motion can be obtained from the linearized dispersive model. For a bottom motion in the form of a downward motion, the result is expressed in terms of improper integral. Here, we focus on analyzing the convergence of this integral, and then the improper integral is approximated into a finite integral so that the integral can be evaluated numerically. Further, we simulate free surface elevation for three different type of bottom motions, classified as impulsive, intermediate, and slow movements. We demonstrate that the wave propagating to the right, with a depression as the leading wave, followed with subsequent wave crests. This phenomena is often observed in most tsunami events.
Numerical simulation of a mistral wind event occuring
Guenard, V.; Caccia, J. L.; Tedeschi, G.
2003-04-01
The experimental network of the ESCOMPTE field experiment (june-july 2001) is turned into account to investigate the Mistral wind affecting the Marseille area (South of France). Mistral wind is a northerly flow blowing across the Rhône valley and toward the Mediterranean sea resulting from the dynamical low pressure generated in the wake of the Alps ridge. It brings cold, dry air masses and clear sky conditions over the south-eastern part of France. Up to now, few scientific studies have been carried out on the Mistral wind especially the evolution of its 3-D structure so that its mesoscale numerical simulation is still relevant. Non-hydrostatic RAMS model is performed to better investigate this mesoscale phenomena. Simulations at a 12 km horizontal resolution are compared to boundary layer wind profilers and ground measurements. Preliminary results suit quite well with the Mistral statistical studies carried out by the operational service of Météo-France and observed wind profiles are correctly reproduced by the numerical model RAMS which appears to be an efficient tool for its understanding of Mistral. Owing to the absence of diabatic effect in Mistral events which complicates numerical simulations, the present work is the first step for the validation of RAMS model in that area. Further works will consist on the study of the interaction of Mistral wind with land-sea breeze. Also, RAMS simulations will be combined with aerosol production and ocean circulation models to supply chemists and oceanographers with some answers for their studies.
Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation
Doru, Zdrenghea
2017-10-01
The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater
Numerical simulation of ultrasonic wave propagation in elastically anisotropic media
International Nuclear Information System (INIS)
Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz
2013-01-01
The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)
Two-fluid Numerical Simulations of Solar Spicules
Energy Technology Data Exchange (ETDEWEB)
Kuźma, Błażej; Murawski, Kris; Kayshap, Pradeep; Wójcik, Darek [Group of Astrophysics, University of Maria Curie-Skłodowska, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, Abhishek Kumar; Dwivedi, Bhola N., E-mail: blazejkuzma1@gmail.com [Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005 (India)
2017-11-10
We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D Cartesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20–25 km s{sup −1}. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3–4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.
A simplified model for TIG-dressing numerical simulation
Ferro, P.; Berto, F.; James, M. N.
2017-04-01
Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.
NUMERICAL SIMULATION OF TOXIC CHEMICAL DISPERSION AFTER ACCIDENT AT RAILWAY
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2016-04-01
Full Text Available Purpose. This research focuses on the development of an applied numerical model to calculate the dynamics of atmospheric pollution in the emission of dangerous chemical substances in the event of transportation by railway. Methodology. For the numerical simulation of transport process of the dangerous chemical substance in the atmosphere the equation of convection-diffusion pollutant transport is used. This equation takes into account the effect of wind, atmospheric diffusion, the power of emission source, as well as the movement of the source of emission (depressurized tank on the process of pollutant dispersion. When carrying out computing experiment one also takes into account the profile of the speed of the wind flow. For the numerical integration of pollutant transport in the atmosphere implicit finite-difference splitting scheme is used. The numerical calculation is divided into four steps of splitting and at each step of splitting the unknown value of the concentration of hazardous substance is determined by the explicit running account scheme. On the basis of the numerical model it was created the code using the algorithmic language FORTRAN. One conducted the computational experiments to assess the level of air pollution near the railway station «Illarionovo» in the event of a possible accident during transportation of ammonia. Findings. The proposed model allows you to quickly calculate the air pollution after the emission of chemically hazardous substance, taking into account the motion of the emission source. The model makes it possible to determine the size of the land surface pollution zones and the amount of pollutants deposited on a specific area. Using the developed numerical model it was estimated the environmental damage near the railway station «Illarionovo». Originality. One can use the numerical model to calculate the size and intensity of the chemical contamination zones after accidents on transport. Practical value
Numerical simulation of fluid flow in microporous media
International Nuclear Information System (INIS)
Xu Ruina; Jiang Peixue
2008-01-01
The flow characteristics of water and air in microporous media with average diameters of 200 μm, 125 μm, 90 μm, 40 μm, 20 μm, and 10 μm were studied numerically. The calculated friction factors for water and air in the non-slip-flow regime in the microporous media agree well with the known correlation suitable for normal size porous media. The numerically predicted friction factors for air in the slip-flow regime in the microporous media with 90 μm, 40 μm, 20 μm, and 10 μm diameter particles were less than the correlation for normal size porous media but close to experimental data and a modified correlation that accounts for rarefaction. Comparisons of the numerical results with the experimental data and the modified correlations show that rarefaction effects occur in air flows in the microporous media with particle diameters less than 90 μm and that the numerical calculations with velocity slip on the boundary can properly simulate the fluid flow in microporous media
High accuracy mantle convection simulation through modern numerical methods
Kronbichler, Martin
2012-08-21
Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.
rpe v5: an emulator for reduced floating-point precision in large numerical simulations
Dawson, Andrew; Düben, Peter D.
2017-06-01
This paper describes the rpe (reduced-precision emulator) library which has the capability to emulate the use of arbitrary reduced floating-point precision within large numerical models written in Fortran. The rpe software allows model developers to test how reduced floating-point precision affects the result of their simulations without having to make extensive code changes or port the model onto specialized hardware. The software can be used to identify parts of a program that are problematic for numerical precision and to guide changes to the program to allow a stronger reduction in precision.The development of rpe was motivated by the strong demand for more computing power. If numerical precision can be reduced for an application under consideration while still achieving results of acceptable quality, computational cost can be reduced, since a reduction in numerical precision may allow an increase in performance or a reduction in power consumption. For simulations with weather and climate models, savings due to a reduction in precision could be reinvested to allow model simulations at higher spatial resolution or complexity, or to increase the number of ensemble members to improve predictions. rpe was developed with a particular focus on the community of weather and climate modelling, but the software could be used with numerical simulations from other domains.
Study and simulation of a parallel numerical processing machine
International Nuclear Information System (INIS)
Bel Hadj, Slaheddine
1981-12-01
This study has been carried out in the perspective of the implementation on a minicomputer of the NEPTUNIX package (software for the resolution of very large algebra-differential equation systems). Aiming at increasing the system performance, a previous research work has shown the necessity of reducing the execution time of certain numerical computation tasks, which are of frequent use. It has also demonstrated the feasibility of handling these tasks with efficient algorithms of parallel type. The present work deals with the study and simulation of a parallel architecture processor adapted to the fast execution of these algorithms. A minicomputer fitted with a connection to such a parallel processor, has a greatly extended computing power. Then the architecture of a parallel numerical processor, based on the use of VLSI microprocessors and co-processors, is described. Its design aims at the best cost / performance ratio. The last part deals with the simulation processor with the 'CHAMBOR' program. Results show an increasing factor of 30 in speed, in comparison with the execution on a MITRA 15 minicomputer. Moreover the conflicts importance, mainly at the level of access to a shared resource is evaluated. Although this implementation has been designed having in mind a dedicated application, other uses could be envisaged, particularly for the simulation of nuclear reactors: operator guiding system, the behavioural study under accidental circumstances, etc. (author) [fr
Numerical Simulation of Flood Levels for Tropical Rivers
International Nuclear Information System (INIS)
Mohammed, Thamer Ahmed; Said, Salim; Bardaie, Mohd Zohadie; Basri, Shah Nor
2011-01-01
Flood forecasting is important for flood damage reduction. As a result of advances in the numerical methods and computer technologies, many mathematical models have been developed and used for hydraulic simulation of the flood. These simulations usually include the prediction of the flood width and depth along a watercourse. Results obtained from the application of hydraulic models will help engineers to take precautionary measures to minimize flood damage. Hydraulic models were used to simulate the flood can be classified into dynamic hydraulic models and static hydraulic models. The HEC-2 static hydraulic model was used to predict water surface profiles for Linggi river and Langat river in Malaysia. The model is based on the numerical solution of the one dimensional energy equation of the steady gradually varied flow using the iteration technique. Calibration and verification of the HEC-2 model were conducted using the recorded data for both rivers. After calibration, the model was applied to predict the water surface profiles for Q10, Q30, and Q100 along the watercourse of the Linggi river. The water surface profile for Q200 for Langat river was predicted. The predicted water surface profiles were found in agreement with the recorded water surface profiles. The value of the maximum computed absolute error in the predicted water surface profile was found to be 500 mm while the minimum absolute error was 20 mm only.
Numerical simulation on coolant flow and heat transfer in core
International Nuclear Information System (INIS)
Yao Zhaohui; Wang Xuefang; Shen Mengyu
1997-01-01
To simulate the coolant flow and the heat transfer characteristics of a core, a computer code, THAPMA (Thermal Hydraulic Analysis Porous Medium Analysis) has been developed. In THAPMA code, conservation equations are based on a porous-medium formulation, which uses four parameters, i.e, volume porosity, directional surface porosity, distributed resistance, and distributed heat source (sink), to model the effects of fuel rods and other internal solid structures on flow and heat transfer. Because the scheme and the solution are very important in accuracy and speed of calculation, a new difference scheme (WSUC) has been used in the energy equation, and a modified PISO solution method have been employed to simulate the steady/transient states. The code has been proved reliable and can effectively solve the transient state problem by several numerical tests. According to the design of Qinshan NPP-II, the flow and heat transfer phenomena in reactor core have been numerically simulated. The distributions of the velocity and the temperature can provide a theoretical basis for core design and safety analysis
Direct numerical simulation of bluff-body-stabilized premixed flames
Arias, Paul G.
2014-01-10
To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.
NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST
Directory of Open Access Journals (Sweden)
Andrea Formato
2007-03-01
Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.
Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation
Malecha, Ziemowit; Chini, Gregory; Julien, Keith
2012-11-01
Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.
Numerical simulations of seepage flow in rough single rock fractures
Directory of Open Access Journals (Sweden)
Qingang Zhang
2015-09-01
Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.
Numerical simulation of superheated vapor bubble rising in stagnant liquid
Samkhaniani, N.; Ansari, M. R.
2017-09-01
In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.
Numerical simulation of heat exchangers elliptical tubes and corrugated fins
International Nuclear Information System (INIS)
Borrajo Pérez, Rubén; González Bayón, Juan José; Menéndez Pérez, Alberto
2015-01-01
The intensified heat exchangers fins are widely used in the automotive and domestic industry. The low heat transfer coefficients on the air side are the main reason why these fins of heat exchangers need to be intensified. In this paper, the numerical simulation of a wavy fin type is made with elliptical tubes. The dimensions of the fin is in the range of those used in air conditioning equipment. The friction factor and the mass transfer coefficient as a function of the Reynolds number for this type of fin, always within the laminar regime is determined. The numerical model against experimental results published in the literature is validated. In addition the mechanisms that produce intensified heat transfer fin in such occur. (full text)
Schwenke, Michael; Georgii, Joachim; Preusser, Tobias
2017-07-01
Focused ultrasound (FUS) is rapidly gaining clinical acceptance for several target tissues in the human body. Yet, treating liver targets is not clinically applied due to a high complexity of the procedure (noninvasiveness, target motion, complex anatomy, blood cooling effects, shielding by ribs, and limited image-based monitoring). To reduce the complexity, numerical FUS simulations can be utilized for both treatment planning and execution. These use-cases demand highly accurate and computationally efficient simulations. We propose a numerical method for the simulation of abdominal FUS treatments during respiratory motion of the organs and target. Especially, a novel approach is proposed to simulate the heating during motion by solving Pennes' bioheat equation in a computational reference space, i.e., the equation is mathematically transformed to the reference. The approach allows for motion discontinuities, e.g., the sliding of the liver along the abdominal wall. Implementing the solver completely on the graphics processing unit and combining it with an atlas-based ultrasound simulation approach yields a simulation performance faster than real time (less than 50-s computing time for 100 s of treatment time) on a modern off-the-shelf laptop. The simulation method is incorporated into a treatment planning demonstration application that allows to simulate real patient cases including respiratory motion. The high performance of the presented simulation method opens the door to clinical applications. The methods bear the potential to enable the application of FUS for moving organs.
Liu, Hejuan; Giroux, Bernard; Harris, Lyal B.; Mansour, John
2017-04-01
Although eastern Canada is considered as having a low potential for high-temperature geothermal resources, the possibility for additional localized radioactive heat sources in Mesoproterozoic Grenvillian basement to parts of the Palaeozoic St. Lawrence Lowlands in Quebec, Canada, suggests that this potential should be reassessed. However, such a task remains hard to achieve due to scarcity of heat flow data and ambiguity about the nature of the basement. To get an appraisal, the impact of radiogenic heat production for different Grenville Province crystalline basement units on temperature distribution at depth was simulated using the Underworld Geothermal numerical modelling code. The region south of Trois-Rivières was selected as representative for the St. Lawrence Lowlands. An existing 3D geological model based on well log data, seismic profiles and surface geology was used to build a catalogue of plausible thermal models. Statistical analyses of radiogenic element (U, Th, K) concentrations from neighbouring outcropping Grenville domains indicate that the radiogenic heat production of rocks in the modelled region is in the range of 0.34-3.24 μW/m3, with variations in the range of 0.94-5.83 μW/m3 for the Portneuf-Mauricie (PM) Domain, 0.02-4.13 μW/m3 for the Shawinigan Domain (Morin Terrane), and 0.34-1.96 μW/m3 for the Parc des Laurentides (PDL) Domain. Various scenarios considering basement characteristics similar to the PM domain, Morin Terrane and PDL Domain were modelled. The results show that the temperature difference between the scenarios can be as much as 12 °C at a depth of 5 km. The results also show that the temperature distribution is strongly affected by both the concentration of radiogenic elements and the thermal conductivity of the basement rocks. The thermal conductivity in the basement affects the trend of temperature change between two different geological units, and the spatial extent of thermal anomalies. The validity of the results was
Comparison of scale analysis and numerical simulation for saturated zone convective mixing processes
International Nuclear Information System (INIS)
Oldenburg, C.M.
1998-01-01
Scale analysis can be used to predict a variety of quantities arising from natural systems where processes are described by partial differential equations. For example, scale analysis can be applied to estimate the effectiveness of convective missing on the dilution of contaminants in groundwater. Scale analysis involves substituting simple quotients for partial derivatives and identifying and equating the dominant terms in an order-of-magnitude sense. For free convection due to sidewall heating of saturated porous media, scale analysis shows that vertical convective velocity in the thermal boundary layer region is proportional to the Rayleigh number, horizontal convective velocity is proportional to the square root of the Rayleigh number, and thermal boundary layer thickness is proportional to the inverse square root of the Rayleigh number. These scale analysis estimates are corroborated by numerical simulations of an idealized system. A scale analysis estimate of mixing time for a tracer mixing by hydrodynamic dispersion in a convection cell also agrees well with numerical simulation for two different Rayleigh numbers. Scale analysis for the heating-from-below scenario produces estimates of maximum velocity one-half as large as the sidewall case. At small values of the Rayleigh number, this estimate is confirmed by numerical simulation. For larger Rayleigh numbers, simulation results suggest maximum velocities are similar to the sidewall heating scenario. In general, agreement between scale analysis estimates and numerical simulation results serves to validate the method of scale analysis. Application is to radioactive repositories
Numerical and experimental approaches to simulate soil clogging in porous media
Kanarska, Yuliya; LLNL Team
2012-11-01
Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. To get more precise understanding of the soil transport in granular filters we investigated sensitivity of particle clogging mechanisms to various aspects such as particle size ration, the amplitude of hydraulic gradient, particle concentration and contact properties. By averaging the results derived from the grain-scale simulations, we investigated how those factors affect the semi-empirical multiphase model parameters in the large-scale simulation tool. The Department of Homeland Security Science and Technology Directorate provided funding for this research.
Numerical simulation of a liquid propellant rocket motor
Salvador, Nicolas M. C.; Morales, Marcelo M.; Migueis, Carlos E. S. S.; Bastos-Netto, Demétrio
2001-03-01
This work presents a numerical simulation of the flow field in a liquid propellant rocket engine chamber and exit nozzle using techniques to allow the results to be taken as starting points for designing those propulsive systems. This was done using a Finite Volume method simulating the different flow regimes which usually take place in those systems. As the flow field has regions ranging from the low subsonic to the supersonic regimes, the numerical code used, initially developed for compressible flows only, was modified to work proficiently in the whole velocity range. It is well known that codes have been developed in CFD, for either compressible or incompressible flows, the joint treatment of both together being complex even today, given the small number of references available in this area. Here an existing code for compressible flow was used and primitive variables, the pressure, the Cartesian components of the velocity and the temperature instead of the conserved variables were introduced in the Euler and Navier-Stokes equations. This was done to permit the treatment at any Mach number. Unstructured meshes with adaptive refinements were employed here. The convective terms were treated with upwind first and second order methods. The numerical stability was kept with artificial dissipation and in the spatial coverage one used a five stage Runge-Kutta scheme for the Fluid Mechanics and the VODE (Value of Ordinary Differential Equations) scheme along with the Chemkin II in the chemical reacting solution. During the development of this code simulating the flow in a rocket engine, comparison tests were made with several different types of internal and external flows, at different velocities, seeking to establish the confidence level of the techniques being used. These comparisons were done with existing theoretical results and with other codes already validated and well accepted by the CFD community.
Numerical analysis of ALADIN optics contamination due to outgassing of solar array materials
International Nuclear Information System (INIS)
Markelov, G; Endemann, M; Wernham, D
2008-01-01
ALADIN is the very first space-based lidar that will provide global wind profile and a special attention has been paid to contamination of ALADIN optics. The paper presents a numerical approach, which is based on the direct simulation Monte Carlo method. The method allows one to accurately compute collisions between various species, in the case under consideration, free-stream flow and outgassing from solar array materials. The collisions create a contamination flux onto the optics despite there is no line-of-sight from the solar arrays to the optics. Comparison of obtained results with a simple analytical model prediction shows that the analytical model underpredicts mass fluxes
Numerical analysis of ALADIN optics contamination due to outgassing of solar array materials
Energy Technology Data Exchange (ETDEWEB)
Markelov, G [Advanced Operations and Engineering Services (AOES) Group BV, Postbus 342, 2300 AH Leiden (Netherlands); Endemann, M [ESA-ESTEC/EOP-PAS, Postbus 299, 2200 AG Noordwijk (Netherlands); Wernham, D [ESA-ESTEC/EOP-PAQ, Postbus 299, 2200 AG Noordwijk (Netherlands)], E-mail: Gennady.Markelov@aoes.com
2008-03-01
ALADIN is the very first space-based lidar that will provide global wind profile and a special attention has been paid to contamination of ALADIN optics. The paper presents a numerical approach, which is based on the direct simulation Monte Carlo method. The method allows one to accurately compute collisions between various species, in the case under consideration, free-stream flow and outgassing from solar array materials. The collisions create a contamination flux onto the optics despite there is no line-of-sight from the solar arrays to the optics. Comparison of obtained results with a simple analytical model prediction shows that the analytical model underpredicts mass fluxes.
2D numerical simulation of the resistive reconnection layer
International Nuclear Information System (INIS)
Uzdensky, D. A.; Kulsrud, R. M.
2000-01-01
In this paper the authors present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. They use realistic boundary conditions derived consistently from the outside magnetic field, and they also take into account the effect of the backpressure from flow into the separatrix region. They find that within a few Alfven times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like
Numerical simulation of Rayleigh-Taylor turbulent mixing layers
International Nuclear Information System (INIS)
Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.
2009-01-01
Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)
Numerical simulation of the unsteady progress in centrifuge
International Nuclear Information System (INIS)
Wei Chunlin; Zeng Shi
2006-01-01
Unsteady flow equations for the centrifuge are solved on a staggered grid by a finite volume method. The transient process that the axial flow in the centrifuge is established under a steady thermal driving. It can be concluded that the influence which causes the perturbing fluid is different at the beginning and the end of the processing. The flow is caused by the imbalance of temperature which turns to be caused by the imbalance of pressure. The results show that the numerical simulation is effective at the unsteady fluid in a centrifuge. (authors)
Modelisation and numerical simulation for bulk crystal growth processes
International Nuclear Information System (INIS)
Duffar, F.; Dusserre, P.; Barat, C.; Nabot, J.P.
1993-01-01
The aim of this work is to study the relevance of numerical simulation for improving the process control in the field of crystal growth. This investigation focused on the growth of semiconductor and halide crystals by the Bridgman solidification technique, the principle of which is to cool a seeded feed material contained in a crucible, either by pulling the crucible or by decreasing the temperature in the furnace. Calculations are performed with the finite element method, and for comparison, experiments are carried out on Bridgman pulling machines operating either in a laboratory or in industrial plants. Calculations and experimental data have shown a good agreement and a satisfactory reliability
Numerical simulation of laser filamentation in underdense plasma
International Nuclear Information System (INIS)
Yu Lichun; Chen Zhihua; Tu Qinfen
2000-01-01
Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation
Numerical simulation design of nuclear safety related expansion muffler
International Nuclear Information System (INIS)
Huang Bingchen; Shen Wei; Yang Tieming; Luo Jianping; Jing Feng
2014-01-01
According to the working conditions and technical requirements for pipe discharge muffler in passive nuclear power plant, the numerical simulation was used in analyzing sound transmission loss and fluid pressure loss of multi-section expansion muffler by finite element analysis (FEA) software ANSYS. The effect of different muffler structural parameters on sound transmission loss, passing frequency and pressure loss was also analyzed. Based on the analysis results, a reasonable combination of the muffler structural parameters was determined, and a pipe discharge muffler with good performance was obtained. (authors)
Achieving better cooling of turbine blades using numerical simulation methods
Inozemtsev, A. A.; Tikhonov, A. S.; Sendyurev, C. I.; Samokhvalov, N. Yu.
2013-02-01
A new design of the first-stage nozzle vane for the turbine of a prospective gas-turbine engine is considered. The blade's thermal state is numerically simulated in conjugate statement using the ANSYS CFX 13.0 software package. Critical locations in the blade design are determined from the distribution of heat fluxes, and measures aimed at achieving more efficient cooling are analyzed. Essentially lower (by 50-100°C) maximal temperature of metal has been achieved owing to the results of the performed work.
Numerical simulation of compact intracloud discharge and generated electromagnetic pulse
Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.
2015-06-01
Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.
Numerical Simulation of Plasma Antenna with FDTD Method
International Nuclear Information System (INIS)
Chao, Liang; Yue-Min, Xu; Zhi-Jiang, Wang
2008-01-01
We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconBgurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design
Numerical simulation of plasma antenna with FDTD method
International Nuclear Information System (INIS)
Liang Chao; Xu Yuemin; Wang Zhijiang
2008-01-01
We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconfigurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design. (authors)
Numerical simulation for HT-6M tokamak electrical transient behaviours
International Nuclear Information System (INIS)
Yu Yuanqi; Liu Baohua; Pan Yuan
1991-02-01
The following main points are concerned: (1) State equations used for dynamic analysis of all electrical parameters of the tokamak are derived. (2) In order to increase plasma volt-seconds and to get plasma current with longer sustainment phase, a power supply scheme for HT-6M and its numerical simulation are studied. (3) The distribution of energy flow in coupling loops of the tokamak is discussed, and the energy transfer ratio from the OH loop and vertical field loop to the plasma is also analyzed
Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows
Moitra, Stuti; Gatski, Thomas B.
1997-01-01
A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.
Numerical simulation of realistic high-temperature superconductors
International Nuclear Information System (INIS)
1997-01-01
One of the main obstacles in the development of practical high-temperature superconducting (HTS) materials is dissipation, caused by the motion of magnetic flux quanta called vortices. Numerical simulations provide a promising new approach for studying these vortices. By exploiting the extraordinary memory and speed of massively parallel computers, researchers can obtain the extremely fine temporal and spatial resolution needed to model complex vortex behavior. The results may help identify new mechanisms to increase the current-capability capabilities and to predict the performance characteristics of HTS materials intended for industrial applications
Numerical simulation of bosonic-superconducting-string interactions
International Nuclear Information System (INIS)
Laguna, P.; Matzner, R.A.
1990-01-01
Numerical simulations show that bosonic superconducting U(1) gauge cosmic strings interact by reconnecting and chopping off in a fashion similar to nonconducting strings. Cancellation of the electromagnetic current occurs when, in one of the strings, the direction of the U(1) gauge magnetic field is opposite to the electromagnetic current flow. Electric charge accumulates on the segments of the reconnected strings where the current is discontinuous or vanishes. A virtual photon appears after the collision and intercommutation, and a bubble of electromagnetic radiation emerges as the currents in the reconnected strings equalize. These phenomena suggest new possible mechanisms for void production in the large-scale distribution of galaxies
Numerical simulation of CO2 geological storage in saline aquifers – case study of Utsira formation
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zheming; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)
2013-07-01
CO2 geological storage (CGS) is one of the most promising technologies to address the issue of excessive anthropogenic CO2 emissions in the atmosphere due to fossil fuel combustion for electricity generation. In order to fully exploit the storage potential, numerical simulations can help in determining injection strategies before the deployment of full scale sequestration in saline aquifers. This paper presents the numerical simulations of CO2 geological storage in Utsira saline formation where the sequestration is currently underway. The effects of various hydrogeological and numerical factors on the CO2 distribution in the topmost hydrogeological layer of Utsira are discussed. The existence of multiple pathways for upward mobility of CO2 into the topmost layer of Utsira as well as the performance of the top seal are also investigated.
Numerical simulation of the knotted nylon netting panel
Directory of Open Access Journals (Sweden)
Li Yuwei
2016-01-01
Full Text Available A piece of netting, consists of the 8 8 meshes, fixed on a square frame, was simulated and the tensions and their distribution, the positions of knots and netting shape were calculated by means of MATLAB in computer. The dynamic mathematic model was developed based on lumped mass method, the netting was treated as spring-mass system, the Runge-Kutta fifth-order and sixth-order method was used to solve the differential equations for every step, then the displacement and tension of each mass point were obtained. For verify this model, the tests have been carried out in a flume tank. The results of the numerical simulation fully agreed with the experiments.
Reliability of numerical wind tunnels for VAWT simulation
International Nuclear Information System (INIS)
Castelli, M. Raciti; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.
2016-01-01
Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities). (paper)
Reliability of numerical wind tunnels for VAWT simulation
Raciti Castelli, M.; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.
2016-09-01
Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities).
Numerical simulation of long-term radiation effects for MOSFETs
International Nuclear Information System (INIS)
Wei Yuan; Xie Honggang; Gong Ding; Zhu Jinhui; Niu Shengli; Huang Liuxing
2013-01-01
A coupled algorithm is introduced to simulate the long-term radiation effects of MOSFETs, which combines particle transport with semiconductor governing equations. The former is dealt with Monte-Carlo method, and the latter is solved by finite-volume method. The trapped charge in SiO 2 and the free charge in Si are both described by the drift-diffusion model, and the deposited energy by incident particles can be coupled with the continuous equations of charge, acting as a source item. The discrete form of governing equations is obtained using the finite-volume method, and the numerical solutions of these equations are the long-term radiation response result of MOSFETs. The threshold voltage shift and off-state leakage current of an irradiated MOSFET are simulated with the coupled algorithm respectively, showing a good accordance with results by other calculations. (authors)
CASTING IMPROVEMENT BASED ON METAHEURISTIC OPTIMIZATION AND NUMERICAL SIMULATION
Directory of Open Access Journals (Sweden)
Radomir Radiša
2017-12-01
Full Text Available This paper presents the use of metaheuristic optimization techniques to support the improvement of casting process. Genetic algorithm (GA, Ant Colony Optimization (ACO, Simulated annealing (SA and Particle Swarm Optimization (PSO have been considered as optimization tools to define the geometry of the casting part’s feeder. The proposed methodology has been demonstrated in the design of the feeder for casting Pelton turbine bucket. The results of the optimization are dimensional characteristics of the feeder, and the best result from all the implemented optimization processes has been adopted. Numerical simulation has been used to verify the validity of the presented design methodology and the feeding system optimization in the casting system of the Pelton turbine bucket.
Convective Self-Aggregation in Numerical Simulations: A Review
Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline
Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is ``self-aggregation,'' in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.
DualSPHysics: A numerical tool to simulate real breakwaters
Zhang, Feng; Crespo, Alejandro; Altomare, Corrado; Domínguez, José; Marzeddu, Andrea; Shang, Shao-ping; Gómez-Gesteira, Moncho
2018-02-01
The open-source code DualSPHysics is used in this work to compute the wave run-up in an existing dike in the Chinese coast using realistic dimensions, bathymetry and wave conditions. The GPU computing power of the DualSPHysics allows simulating real-engineering problems that involve complex geometries with a high resolution in a reasonable computational time. The code is first validated by comparing the numerical free-surface elevation, the wave orbital velocities and the time series of the run-up with physical data in a wave flume. Those experiments include a smooth dike and an armored dike with two layers of cubic blocks. After validation, the code is applied to a real case to obtain the wave run-up under different incident wave conditions. In order to simulate the real open sea, the spurious reflections from the wavemaker are removed by using an active wave absorption technique.
Numerical simulation of a DC double anode arc plasma torch
International Nuclear Information System (INIS)
Chen Lunjiang; Tang Deli; Zhu Hailong
2012-01-01
A 2D axisymmetric numerical simulation of DC double anode plasma torch was done by the computational fluid dynamics (CFD) software FLUENT to improve the efficiency of the waste treatment, which is on the basis of the magnetic fluid dynamics (MHD) theory and uses the method of magnetic vector potential, and the simulation method is based on SIMPLE algorithm. The temperature and speed distributions of the plasma, and so on were obtained. The results show that the temperature of plasma decreases with increasing the axial distance, and increases with increasing the amplitude of the arc current. The velocity first increases and then decreases with the axial distance increase, and increase with the arc current increase. The temperature and the speed at the export of the plasma torch both decrease when the radial distance increases. Those results are in agreement with the experimental results. (authors)
Numerical simulation of low pressure die-casting aluminum wheel
Directory of Open Access Journals (Sweden)
Mi Guofa
2009-02-01
Full Text Available The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC of an aluminum wheel. By analyzing the mold-fi lling and solidifi cation stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.
Numerical Simulation of Flow Behavior within a Venturi Scrubber
Directory of Open Access Journals (Sweden)
M. M. Toledo-Melchor
2014-01-01
Full Text Available The present work details the three-dimensional numerical simulation of single-phase and two-phase flow (air-water in a venturi scrubber with an inlet and throat diameters of 250 and 122.5 mm, respectively. The dimensions and operating parameters correspond to industrial applications. The mass flow rate conditions were 0.483 kg/s, 0.736 kg/s, 0.861 kg/s, and 0.987 kg/s for the gas only simulation; the mass flow rate for the liquid was 0.013 kg/s and 0.038 kg/s. The gas flow was simulated in five geometries with different converging and diverging angles while the two-phase flow was only simulated for one geometry. The results obtained were validated with experimental data obtained by other researchers. The results show that the pressure drop depends significantly on the gas flow rate and that water flow rate does not have significant effects neither on the pressure drop nor on the fluid maximum velocity within the scrubber.
Real-time numerical simulation of the Carnot cycle
International Nuclear Information System (INIS)
Hurkala, J; Gall, M; Kutner, R; Maciejczyk, M
2005-01-01
We developed a highly interactive, multi-windows Java applet which made it possible to simulate and visualize within any platform and internet the Carnot cycle (or engine) in a real-time computer experiment. We extended our previous model and algorithm (Galant et al 2003 Heat Transfer, Newton's Law of Cooling and the Law of Entropy Increase Simulated by the Real-Time Computer Experiments in Java (Lecture Notes in Computer Science vol 2657) pp 45-53, Gall and Kutner 2005 Molecular mechanisms of heat transfer: Debye relaxation versus power-law Physica A 352 347-78) to simulate not only the heat flow but also the macroscopic movement of the piston. Since in reality it is impossible to construct a reversible Carnot engine, the question arises whether it is possible to simulate it at least in a numerical experiment? The positive answer to this question which we found is related to our model and algorithm which make it possible to omit the many-body problem arising when many gas particles simultaneously interact with the mobile piston. As usual, the considerations of phenomenological thermodynamics began with a study of the basic properties of heat engines, hence our approach, besides intrinsic physical significance, is also important from the educational, technological and even environmental points of view
Numerical simulation and experimental validation of aircraft ground deicing model
Directory of Open Access Journals (Sweden)
Bin Chen
2016-05-01
Full Text Available Aircraft ground deicing plays an important role of guaranteeing the aircraft safety. In practice, most airports generally use as many deicing fluids as possible to remove the ice, which causes the waste of the deicing fluids and the pollution of the environment. Therefore, the model of aircraft ground deicing should be built to establish the foundation for the subsequent research, such as the optimization of the deicing fluid consumption. In this article, the heat balance of the deicing process is depicted, and the dynamic model of the deicing process is provided based on the analysis of the deicing mechanism. In the dynamic model, the surface temperature of the deicing fluids and the ice thickness are regarded as the state parameters, while the fluid flow rate, the initial temperature, and the injection time of the deicing fluids are treated as control parameters. Ignoring the heat exchange between the deicing fluids and the environment, the simplified model is obtained. The rationality of the simplified model is verified by the numerical simulation and the impacts of the flow rate, the initial temperature and the injection time on the deicing process are investigated. To verify the model, the semi-physical experiment system is established, consisting of the low-constant temperature test chamber, the ice simulation system, the deicing fluid heating and spraying system, the simulated wing, the test sensors, and the computer measure and control system. The actual test data verify the validity of the dynamic model and the accuracy of the simulation analysis.
Direct numerical simulation of water droplet coalescence in the oil
International Nuclear Information System (INIS)
Mohammadi, Mehdi; Shahhosseini, Shahrokh; Bayat, Mahmoud
2012-01-01
Highlights: ► VOF computational technique has been used to simulate coalescence of two water droplets in oil. ► The model was validated with the experimental data for binary droplet coalescence. ► Based on the CFD simulation results a correlation has been proposed to predict the coalescence time. - Abstract: Coalescence of two water droplets in the oil was simulated using Computational Fluid Dynamics (CFD) techniques. The finite volume numerical method was applied to solve the Navier–Stokes equations in conjunction with the Volume of Fluid (VOF) approach for interface tracking. The effects of some parameters consisting of the collision velocity, off-center collision parameter, oil viscosity and water–oil interfacial tension on the coalescence time were investigated. The simulation results were validated against the experimental data available in the literature. The results revealed that quicker coalescence could be achieved if the head-on collisions occur or the droplets approach each other with a high velocity. In addition, low oil viscosities or large water–oil interfacial tensions cause less coalescence time. Moreover, a correlation was developed to predict coalescence efficiency as a function of the mentioned parameters.
The proper generalized decomposition for advanced numerical simulations a primer
Chinesta, Francisco; Leygue, Adrien
2014-01-01
Many problems in scientific computing are intractable with classical numerical techniques. These fail, for example, in the solution of high-dimensional models due to the exponential increase of the number of degrees of freedom. Recently, the authors of this book and their collaborators have developed a novel technique, called Proper Generalized Decomposition (PGD) that has proven to be a significant step forward. The PGD builds by means of a successive enrichment strategy a numerical approximation of the unknown fields in a separated form. Although first introduced and successfully demonstrated in the context of high-dimensional problems, the PGD allows for a completely new approach for addressing more standard problems in science and engineering. Indeed, many challenging problems can be efficiently cast into a multi-dimensional framework, thus opening entirely new solution strategies in the PGD framework. For instance, the material parameters and boundary conditions appearing in a particular mathematical mod...
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyoungjin; Kwak, Ho Sang [School of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Song, Tae-Ho, E-mail: kimkj@kumoh.ac.kr, E-mail: hskwak@kumoh.ac.kr, E-mail: thsong@kaist.ac.kr [Department of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon 305-701 (Korea, Republic of)
2011-08-15
This paper describes a numerical model for simulating electroosmotic flows (EOFs) under non-Boltzmann equilibrium in a micro- and nanochannel. The transport of ionic species is represented by employing the Nernst-Planck equation. Modeling issues related to numerical difficulties are discussed, which include the handling of boundary conditions based on surface charge density, the associated treatment of electric potential and the evasion of nonlinearity due to the electric body force. The EOF in the entrance region of a straight channel is examined. The numerical results show that the present model is useful for the prediction of the EOFs requiring a fine resolution of the electric double layer under either the Boltzmann equilibrium or non-equilibrium. Based on the numerical results, the correlation between the surface charge density and the zeta potential is investigated.
Numerical simulation of a DFB - fiber laser sensor (part 1
Directory of Open Access Journals (Sweden)
Dan SAVASTRU
2010-06-01
Full Text Available This paper presents the preliminary results obtained in developing a numerical simulationanalysis of fiber optic bending sensitivity aiming to improve the design of fiber lasers. The developednumerical simulation method relies on an analysis of both the fundamental mode propagation alongan optical fiber and of how bending of this fiber influence the optical radiation losses. The cases ofsimple, undoped and of doped with Er3+ ions optical fibers are considered. The presented results arebased on numerical simulation of eigen-modes of a laser intensity distribution by the use of finiteelement method (FEM developed in the frame of COMSOL software package. The numericalsimulations are performed by considering the cases of both normal, non-deformed optic fiber and ofsymmetrically deformed optic fiber resembling micro-bending of it. Both types of fiber optic bendinglosses are analyzed, namely: the transition loss, associated with the abrupt or rapid change incurvature at the beginning and the end of a bend, and pure bend loss is associated with the loss fromthe bend of constant curvature in between.
Modelling and numerical simulation of liquid-vapor phase transitions
International Nuclear Information System (INIS)
Caro, F.
2004-11-01
This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)
Numerical Simulation of the Coagulation Dynamics of Blood
Directory of Open Access Journals (Sweden)
T. Bodnár
2008-01-01
Full Text Available The process of platelet activation and blood coagulation is quite complex and not yet completely understood. Recently, a phenomenological meaningful model of blood coagulation and clot formation in flowing blood that extends existing models to integrate biochemical, physiological and rheological factors, has been developed. The aim of this paper is to present results from a computational study of a simplified version of this coupled fluid-biochemistry model. A generalized Newtonian model with shear-thinning viscosity has been adopted to describe the flow of blood. To simulate the biochemical changes and transport of various enzymes, proteins and platelets involved in the coagulation process, a set of coupled advection–diffusion–reaction equations is used. Three-dimensional numerical simulations are carried out for the whole model in a straight vessel with circular cross-section, using a finite volume semi-discretization in space, on structured grids, and a multistage scheme for time integration. Clot formation and growth are investigated in the vicinity of an injured region of the vessel wall. These are preliminary results aimed at showing the validation of the model and of the numerical code.
Numerical simulation system for environmental studies: SPEEDI-MP
International Nuclear Information System (INIS)
Nagai, Haruyasu; Chino, Masamichi; Terada, Hiroaki; Harayama, Takaya; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok; Furuno, Akiko
2006-09-01
A numerical simulation system SPEEDI-MP has been developed to apply for various environmental studies. SPEEDI-MP consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical database for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. System utility GUIs are based on the Web technology, allowing users to manipulate all the functions on the system using their own PCs via the internet. In this system, the source estimation function in the atmospheric transport model can be executed on the grid computer system. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)
Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger
Directory of Open Access Journals (Sweden)
Xiao-Hui Sun
2018-04-01
Full Text Available It has been shown that using nanofluids as heat carrier fluids enhances the conductive and convective heat transfer of geothermal heat exchangers. In this paper, we study the stability of nanofluids in a geothermal exchanger by numerically simulating nanoparticle sedimentation during a shut-down process. The nanofluid suspension is modeled as a non-linear complex fluid; the nanoparticle migration is modeled by a particle flux model, which includes the effects of Brownian motion, gravity, turbulent eddy diffusivity, etc. The numerical results indicate that when the fluid is static, the nanoparticle accumulation appears to be near the bottom borehole after many hours of sedimentation. The accumulated particles can be removed by the fluid flow at a relatively high velocity. These observations indicate good suspension stability of the nanofluids, ensuring the operational reliability of the heat exchanger. The numerical results also indicate that a pulsed flow and optimized geometry of the bottom borehole can potentially improve the suspension stability of the nanofluids further.
Numerical simulation of nonlinear dynamical systems driven by commutative noise
International Nuclear Information System (INIS)
Carbonell, F.; Biscay, R.J.; Jimenez, J.C.; Cruz, H. de la
2007-01-01
The local linearization (LL) approach has become an effective technique for the numerical integration of ordinary, random and stochastic differential equations. One of the reasons for this success is that the LL method achieves a convenient trade-off between numerical stability and computational cost. Besides, the LL method reproduces well the dynamics of nonlinear equations for which other classical methods fail. However, in the stochastic case, most of the reported works has been focused in Stochastic Differential Equations (SDE) driven by additive noise. This limits the applicability of the LL method since there is a number of interesting dynamics observed in equations with multiplicative noise. On the other hand, recent results show that commutative noise SDEs can be transformed into a random differential equation (RDE) by means of a random diffeomorfism (conjugacy). This paper takes advantages of such conjugacy property and the LL approach for defining a LL scheme for SDEs driven by commutative noise. The performance of the proposed method is illustrated by means of numerical simulations
Numerical Simulation of Wind Turbine Blade-Tower Interaction
Institute of Scientific and Technical Information of China (English)
Qiang Wang; Hu Zhou; Decheng Wan
2012-01-01
Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented.The governing equations were the unsteady Reynolds-averaged Navier-Stokes (PANS) which were solved by the pimpleDyMFoam solver,and the AMI method was employed to handle mesh movements.The National Renewable Energy Laboratory (NREL) phase Ⅵ wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds (5,10,15,and 25 m/s) at a fixed blade pitch and constant rotational speed.Detailed numerical results of vortex structure,time histories of thrust,and pressure distribution on the blade and tower were presented.The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine,while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower.Also,strong interaction of blade tip vortices with separation from the tower was observed.
Numerical simulation of double-pipe condensers and evaporators
Energy Technology Data Exchange (ETDEWEB)
Garcia-Valladares, O. [Universidad Nacional Autonoma de Mexico, Morelos (Mexico). Centro de Investigacion en Energia; Perez-Segarra, C.D.; Rigola, J. [Universitat Politecnica de Catalunya, Terrassa (Spain). Centre Tecnologic de Transferencia de Calor, Lab. de Termotecnia i Energetica
2004-09-01
A detailed one-dimensional steady and transient numerical simulation of the thermal and fluid-dynamic behaviour of double-pipe heat exchangers (evaporators and condensers) has been carried out. The governing equations (continuity, momentum and energy) inside the internal tube and the annulus, together with the energy equation in the internal tube wall, external tube wall and insulation, are solved iteratively in a segregated manner. The discretized governing equations in the zones with fluid flow are efficiently coupled using an implicit step by step method. This formulation requires the use of empirical correlations for the evaluation of convective heat transfer, shear stress and void fraction. An implicit central difference numerical scheme and a line-by-line solver was used in the internal and external tube walls and insulation. A special treatment has been implemented in order to consider transitions (single-phase/two-phase, dry-out,...). All the flow variables (enthalpies, temperatures, pressures, mass fractions, velocities, heat fluxes,...) together with the thermophysical properties are evaluated at each point of the grid in which the domain is discretized. Different numerical aspects and comparisons with analytical and experimental results are presented in order to verify and validate the model. (author)
Numerical simulation of triple concentric-tube heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Garcia-Valladares, O. [Centro de Investigacion en Energia (CIE), Universidad Nacional Autonoma de Mexico (UNAM), Privada Xochicalco S/N, Temixco, 62580, Morelos (Mexico)
2004-10-01
A detailed one-dimensional steady and transient numerical simulation of the thermal and fluid-dynamic behaviour of triple concentric-tube heat exchangers has been developed. The governing equations (continuity, momentum and energy) inside the inner tube and the annulus (inner and outer), together with the energy equations in the inner, intermediate and outermost tube wall and insulation, are solved iteratively in a segregated manner. The discretized governing equations in the zones with fluid flow are coupled using an implicit step by step method. This formulation requires the use of empirical information for the evaluation of convective heat transfer, shear stress and void fraction. An implicit central difference numerical scheme and a line-by-line solver was used in the inner and intermediate tube walls and the outermost tube wall with insulation. All the flow variables (enthalpies, temperatures, pressures, mass fractions, velocities, heat fluxes, etc.) together with the thermophysical properties are evaluated at each point of the grid in which the domain is discretized. Different numerical aspects and comparisons with results obtained from the technical literature are presented in order to verify and validate the model. (authors)
Numerical simulation of impact tests on reinforced concrete beams
International Nuclear Information System (INIS)
Jiang, Hua; Wang, Xiaowo; He, Shuanhai
2012-01-01
Highlights: ► Predictions using advanced concrete model compare well with the impact test results. ► Several important behavior of concrete is discussed. ► Two mesh ways incorporating rebar into concrete mesh is also discussed. ► Gives a example of using EPDC model and references to develop new constitutive models. -- Abstract: This paper focuses on numerical simulation of impact tests of reinforced concrete (RC) beams by the LS-DYNA finite element (FE) code. In the FE model, the elasto-plastic damage cap (EPDC) model, which is based on continuum damage mechanics in combination with plasticity theory, is used for concrete, and the reinforcement is assumed to be elasto-plastic. The numerical results compares well with the experimental values reported in the literature, in terms of impact force history, mid-span deflection history and crack patterns of RC beams. By comparing the numerical and experimental results, several important behavior of concrete material is investigated, which includes: damage variable to describe the strain softening section of stress–strain curve; the cap surface to describe the plastic volume change; the shape of the meridian and deviatoric plane to describe the yield surface as well as two methods of incorporating rebar into concrete mesh. This study gives a good example of using EPDC model and can be utilized for the development new constitutive models for concrete in future.
Taylor bubbles at high viscosity ratios: experiments and numerical simulations
Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar
2015-11-01
The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
International Nuclear Information System (INIS)
Xie Ruoze; Zhong Weizhou; Wan Qiang; Huang Xicheng; Zhang Fangju
2015-01-01
The drop impact process of multilayer-combinational container was simulated experimentally using a gas gun, and the normal impact and oblique impact of scaled models were tested. The experiments of scaled models were simulated numerically, and the stress distribution and plastic deformation in the tested structures during collision process were obtained. The results were compared with the experiment data. It was shown that the impact work mainly converted into plastic work due to the plastic deformation of the cushion wood and the plastic hinge in the buckled steel shell. The plastic deformation mainly happened at the collided end of the scaled models, and there was no plastic deformation found far from the collided end. The compressive stress-strain curve of the wood in texture direction can be used to simulate numerically the drop impact process of multilayer-combinational container. (authors)
Numerical simulation of DPF filter for selected regimes with deposited soot particles
Lávička, David; Kovařík, Petr
2012-04-01
For the purpose of accumulation of particulate matter from Diesel engine exhaust gas, particle filters are used (referred to as DPF or FAP filters in the automotive industry). However, the cost of these filters is quite high. As the emission limits become stricter, the requirements for PM collection are rising accordingly. Particulate matters are very dangerous for human health and these are not invisible for human eye. They can often cause various diseases of the respiratory tract, even what can cause lung cancer. Performed numerical simulations were used to analyze particle filter behavior under various operating modes. The simulations were especially focused on selected critical states of particle filter, when engine is switched to emergency regime. The aim was to prevent and avoid critical situations due the filter behavior understanding. The numerical simulations were based on experimental analysis of used diesel particle filters.
Energy Technology Data Exchange (ETDEWEB)
Bocanegra, E.; Martinez, D. E. [Instituto de Geologia de Costas y del Cuaternario, UNMDP (Argentina); Pool, M.; Carrera, J. [Instituto de Diagnostico Ambiental y Estudios del Agua, CSIC (Spain)
2013-07-15
Over-exploitation in the coastal aquifer in Mar del Plata, Argentina, led to a seawater intrusion process affecting groundwater by salinization. The aim of this paper is to show the contribution of isotopic techniques to generate the numerical flow and transport model of the Mar del Plata aquifer. On the basis of the hydrogeological conceptual model, a numerical model was constructed. It consists of a multilayer aquifer in the urban area with 2 layers separated by an aquitard and a monolayer aquifer in the rest of the basin. The isotopic difference recorded in groundwaters allow the identification of the origin of the recharge and the confirmation of the presence of the hydrogeological environments incorporated in the numerical model. Flow simulation reflects the evolution of piezometric heads. Chloride transport simulation represents the salinization process due to seawater intrusion and the subsequent backward movement of the interface due to the abandonment of salinized wells. The results of numerical simulation confirm the conceptual model and reproduce the impact of the adopted management strategies. (author)
A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics
Energy Technology Data Exchange (ETDEWEB)
Franceschini, Andrea; Ferronato, Massimiliano, E-mail: massimiliano.ferronato@unipd.it; Janna, Carlo; Teatini, Pietro
2016-06-01
The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion according to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions. - Highlights: • A numerical model is developed for the simulation of fault and fracture mechanics. • The model is implemented in the framework of the Finite Element method and with the aid of Lagrange multipliers. • The proposed formulation introduces a new contribution due to the frictional work on the portion of activated fault. • The resulting algorithm is highly non-linear as the portion of activated fault is itself unknown. • The numerical solution is validated against analytical results and proves to be stable also in realistic applications.
A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics
International Nuclear Information System (INIS)
Franceschini, Andrea; Ferronato, Massimiliano; Janna, Carlo; Teatini, Pietro
2016-01-01
The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion according to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions. - Highlights: • A numerical model is developed for the simulation of fault and fracture mechanics. • The model is implemented in the framework of the Finite Element method and with the aid of Lagrange multipliers. • The proposed formulation introduces a new contribution due to the frictional work on the portion of activated fault. • The resulting algorithm is highly non-linear as the portion of activated fault is itself unknown. • The numerical solution is validated against analytical results and proves to be stable also in realistic applications.
Numerical Simulation of the Motion of Aerosol Particles in Open Cell Foam Materials
Solovev, S. A.; Soloveva, O. V.; Popkova, O. S.
2018-03-01
The motion of aerosol particles in open cell foam material is studied. The porous medium is investigated for a three-dimensional case with detailed simulation of cellular structures within an ordered geometry. Numerical calculations of the motion of particles and their deposition due to inertial and gravitational mechanisms are performed. Deposition efficiency curves for a broad range of particle sizes are constructed. The effect deposition mechanisms have on the efficiency of the porous material as a filter is analyzed.
High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow
Savel'ev, A. D.
2018-02-01
On the basis of high-order schemes, the viscous gas flow over the NACA2212 airfoil is numerically simulated at a free-stream Mach number of 0.3 and Reynolds numbers ranging from 103 to 107. Flow regimes sequentially varying due to variations in the free-stream viscosity are considered. Vortex structures developing on the airfoil surface are investigated, and a physical interpretation of this phenomenon is given.
Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls
International Nuclear Information System (INIS)
Kuznetsov, E A; Poniaev, S A
2015-01-01
Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux. (paper)
Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls
Kuznetsov, E. A.; Poniaev, S. A.
2015-12-01
Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.
Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes
International Nuclear Information System (INIS)
Scheibe, T D; Tartakovsky, A M; Tartakovsky, D M; Redden, G D; Meakin, P
2007-01-01
Many subsurface flow and transport problems of importance today involve coupled non-linear flow, transport, and reaction in media exhibiting complex heterogeneity. In particular, problems involving biological mediation of reactions fall into this class of problems. Recent experimental research has revealed important details about the physical, chemical, and biological mechanisms involved in these processes at a variety of scales ranging from molecular to laboratory scales. However, it has not been practical or possible to translate detailed knowledge at small scales into reliable predictions of field-scale phenomena important for environmental management applications. A large assortment of numerical simulation tools have been developed, each with its own characteristic scale. Important examples include 1. molecular simulations (e.g., molecular dynamics); 2. simulation of microbial processes at the cell level (e.g., cellular automata or particle individual-based models); 3. pore-scale simulations (e.g., lattice-Boltzmann, pore network models, and discrete particle methods such as smoothed particle hydrodynamics); and 4. macroscopic continuum-scale simulations (e.g., traditional partial differential equations solved by finite difference or finite element methods). While many problems can be effectively addressed by one of these models at a single scale, some problems may require explicit integration of models across multiple scales. We are developing a hybrid multi-scale subsurface reactive transport modeling framework that integrates models with diverse representations of physics, chemistry and biology at different scales (sub-pore, pore and continuum). The modeling framework is being designed to take advantage of advanced computational technologies including parallel code components using the Common Component Architecture, parallel solvers, gridding, data and workflow management, and visualization. This paper describes the specific methods/codes being used at each
Carbon Dioxide Dispersion in the Combustion Integrated Rack Simulated Numerically
Wu, Ming-Shin; Ruff, Gary A.
2004-01-01
When discharged into an International Space Station (ISS) payload rack, a carbon dioxide (CO2) portable fire extinguisher (PFE) must extinguish a fire by decreasing the oxygen in the rack by 50 percent within 60 sec. The length of time needed for this oxygen reduction throughout the rack and the length of time that the CO2 concentration remains high enough to prevent the fire from reigniting is important when determining the effectiveness of the response and postfire procedures. Furthermore, in the absence of gravity, the local flow velocity can make the difference between a fire that spreads rapidly and one that self-extinguishes after ignition. A numerical simulation of the discharge of CO2 from PFE into the Combustion Integrated Rack (CIR) in microgravity was performed to obtain the local velocity and CO2 concentration. The complicated flow field around the PFE nozzle exits was modeled by sources of equivalent mass and momentum flux at a location downstream of the nozzle. The time for the concentration of CO2 to reach a level that would extinguish a fire anywhere in the rack was determined using the Fire Dynamics Simulator (FDS), a computational fluid dynamics code developed by the National Institute of Standards and Technology specifically to evaluate the development of a fire and smoke transport. The simulation shows that CO2, as well as any smoke and combustion gases produced by a fire, would be discharged into the ISS cabin through the resource utility panel at the bottom of the rack. These simulations will be validated by comparing the results with velocity and CO2 concentration measurements obtained during the fire suppression system verification tests conducted on the CIR in March 2003. Once these numerical simulations are validated, portions of the ISS labs and living areas will be modeled to determine the local flow conditions before, during, and after a fire event. These simulations can yield specific information about how long it takes for smoke and
Numerical simulations of the IPPE target geometry flows
International Nuclear Information System (INIS)
Prakash, Akshay; Kakarantzas, Sotiris; Bernardi, Davide; Micciche, Gioacchino; Massaut, Vincent; Knaepen, Bernard
2013-01-01
Highlights: ► We performed numerical simulation of flow over IPPE geometry using turbulence models in FLUENT. ► Stable free surface profile well within the required design limits was predicted by the models. ► Velocity profiles across the liquid jet and jet thickness different for different models. ► There were some 3D effects noticeable for the velocity profiles but the predicted jet thickness similar to 2D models. ► TKE predicted by different models close to each other and compare will with published data. -- Abstract: A high speed water and liquid lithium (Li) flow is computed over the IPPE geometry to evaluate the performance of different turbulence models in 2D and 3D simulations. Results reported are the thickness of the liquid jet, irregularities in the surface, transient phenomena at the wall which can affect fluid surface and effect of the variation in bulk velocity on these quantities. All models show good near wall resolution of the boundary layer and expected profiles for the free surface flow. Predicted turbulent kinetic energy compare well with published data. Fluctuations of the flow surface at the control location (center of the curved section) and elsewhere are well within 1 mm for all models. However it was observed that the predictions are strongly dependent on the model used. Overall, the predictions of RANS models are close to each other whereas predictions of laminar simulations are close to those obtained with LES models
Numerical Simulation of a Solar Domestic Hot Water System
International Nuclear Information System (INIS)
Mongibello, L; Graditi, G; Bianco, N; Di Somma, M; Naso, V
2014-01-01
An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed
Color Gradients Within Globular Clusters: Restricted Numerical Simulation
Directory of Open Access Journals (Sweden)
Young-Jong Sohn
1997-06-01
Full Text Available The results of a restricted numerical simulation for the color gradients within globular clusters have been presented. The standard luminosity function of M3 and Salpeter's initial mass functions were used to generate model clusters as a fundamental population. Color gradients with the sample clusters for both King and power law cusp models of surface brightness distributions are discussed in the case of using the standard luminosity function. The dependence of color gradients on several parameters for the simulations with Salpeter's initial mass functions, such as slope of initial mass functions, cluster ages, metallicities, concentration parameters of King model, and slopes of power law, are also discussed. No significant radial color gradients are shown to the sample clusters which are regenerated by a random number generation technique with various parameters in both of King and power law cusp models of surface brightness distributions. Dynamical mass segregation and stellar evolution of horizontal branch stars and blue stragglers should be included for the general case of model simulations to show the observed radial color gradients within globular clusters.
Numerical simulation of metallic wire arc additive manufacturing (WAAM)
Graf, M.; Pradjadhiana, K. P.; Hälsig, A.; Manurung, Y. H. P.; Awiszus, B.
2018-05-01
Additive-manufacturing technologies have been gaining tremendously in popularity for some years in the production of single-part series with complex, close-to-final-contour geometries and the processing of special or hybrid materials. In principle, the processes can be subdivided into wire-based and powder-based processes in accordance with the Association of German Engineers (VDI) Guideline 3405. A further subdivision is made with respect to the smelting technology. In all of the processes, the base material is applied in layers at the points where it is needed in accordance with the final contour. The process that was investigated was wire-based, multi-pass welding by means of gas-metal arc welding. This was accomplished in the present study by determining the material parameters (thermo-mechanical and thermo-physical characteristics) of the welding filler G3Si1 (material number: 1.5125) that were necessary for the numerical simulation and implementing them in a commercial FE program (MSC Marc Mentat). The focus of this paper was on simulation and validation with respect to geometry and microstructural development in the welding passes. The resulting minimal deviation between reality and simulation was a result of the measurement inertia of the thermocouples. In general, however, the FE model can be used to make a very good predetermination of the cooling behaviour, which affects the microstructural development and thus the mechanical properties of the joining zone, as well as the geometric design of the component (distortion, etc.).
Numerical Simulation of a Solar Domestic Hot Water System
Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.
2014-11-01
An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.
Intensification of transesterification via sonication numerical simulation and sensitivity study
International Nuclear Information System (INIS)
Janajreh, Isam; ElSamad, Tala; Noorul Hussain, Mohammed
2017-01-01
Highlights: • 3D numerical simulation of transesterification is accomplished. • A non-isothermal, reactive Navier–stokes was carried out. • Conventional and sonicated process was compared as far as reaction kinetics and yield. • Higher kinetic rates are achieved at lower molar ratios in sonicated process. • It validates feasibility of numerical simulation for transesterification assessment. - Abstract: Transesterification is known as slow reaction that can take over several hours to complete. The process involves two immiscible reactants to produce the biodiesel and the byproduct glycerol. Biodiesel commercialization has always been hindered by the long process times of the transesterification reaction. Catalyzing the process and increasing the agitation rate is the mode of intensifying the process additional to the increase of the molar ratio, temperature, circulation that all penalize the overall process metrics. Finding shorter path by reducing the reaction into a few minutes and ensures high quality biodiesel, in economically viable way is coming along with sonication. This drastic reduction moves the technology from the slow batch process into the high throughput continuous process. In a practical sense this means a huge optimization for the biodiesel production process which opens pathways for faster, voluminous and cheaper production. The mechanism of sonication assisted reaction is explained by the creation of microbubbles which increases the interfacial surface reaction areas and the presence of high localized temperature and turbulence as these microbubbles implode. As a result the reaction kinetics of sonicated transesterification as inferred by several authors is much faster. The aim of this work is to implement the inferred rates in a high fidelity numerical reactive flow simulation model while considering the reactor geometry. It is based on Navier–Stokes equations coupled with energy equation for non-isothermal flow and the transport
Energy Technology Data Exchange (ETDEWEB)
Badel, P.B
2001-07-15
In order to be able to carry out simulations of reinforced concrete structures, it is necessary to know two aspects: the behaviour laws have to reflect the complex behaviour of concrete and a numerical environment has to be developed in order to avoid to the user difficulties due to the softening nature of the behaviour. This work deals with these two subjects. After an accurate estimation of two behaviour models (micro-plan and mesoscopic models), two damage models (the first one using a scalar variable, the other one a tensorial damage of the 2 order) are proposed. These two models belong to the framework of generalized standard materials, which renders their numerical integration easy and efficient. A method of load control is developed in order to make easier the convergence of the calculations. At last, simulations of industrial structures illustrate the efficiency of the method. (O.M.)
Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model
Ong, L.; Melosh, H. J.
2012-12-01
Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient
Advances in Integrated Vehicle Thermal Management and Numerical Simulation
Directory of Open Access Journals (Sweden)
Yan Wang
2017-10-01
Full Text Available With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV, its integrated thermal management (ITM mainly contains internal combustion engine (ICE cooling, turbo-charged cooling, exhaust gas recirculation (EGR cooling, lubrication cooling and air conditioning (AC or heat pump (HP. As for electric vehicles (EVs, the ITM mainly includes battery cooling/preheating, electric machines (EM cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM. Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D.
Single Stage To Orbit Minimum Requirements Through Numerical Simulation
Teixeira, E.
It is widely known that producing a single stage to orbit spacecraft is no easy task. It is also understood that it will be the first steady step towards spacecraft that operate in much the same way as today's airliners. This, in turn is believed to decrease the economical cost of reaching space through more efficient use of a single vehicle and higher launch rates. Space is then open to the common man, either through tourism or as a transportation medium. This paper is yet another study on the physical requirements of a SSTO spacecraft. It will begin with simple assumptions and gradually build up accuracy until reaching the use of a numerical simulation tool, so as to provide the necessary insight into it. The curvature of the Earth, its gravitational field, the exhaust pressure loss and atmospheric drag are a few of the considerations that the simulation takes into account. No attention was give to the actual details of the spacecraft such as propulsion type(s), winged or lifting body (aerodynamics), active or passive cooling (thermodynamics), stability and control. All these subsystems are considered to be included into the construction mass. The drag model is a simple textbook approximation and the propulsion force is given by a hypothetical propellant and engine so as to produce the assumed range of specific impulse. Even the construction mass is supposed to be futuristic so as to reach the lowest specified values. Not only vertical take-off will be simulated but also horizontal launching from altitude (from a towing aircraft, for example). The result of the paper shows the relationship between the construction mass and the specific impulse of a given spacecraft if it is to reach low earth orbit. This paper thus aims at bringing some light to the controversial discussion of how to make these vehicles a reality. The simulation program (Matlab) is available to students.
A calculation method for RF couplers design based on numerical simulation by microwave studio
International Nuclear Information System (INIS)
Wang Rong; Pei Yuanji; Jin Kai
2006-01-01
A numerical simulation method for coupler design is proposed. It is based on the matching procedure for the 2π/3 structure given by Dr. R.L. Kyhl. Microwave Studio EigenMode Solver is used for such numerical simulation. the simulation for a coupler has been finished with this method and the simulation data are compared with experimental measurements. The results show that this numerical simulation method is feasible for coupler design. (authors)
Numerical Study of Focusing Effects of Microwaves inside Wood Due to Timber Ring Structure
Directory of Open Access Journals (Sweden)
Rocio Sanchez-Montero
2018-02-01
Full Text Available The aim of this study is the detailed calculation of microwave propagation inside raw timber in cylindrical configurations. Two different approaches have been used. The first one uses an exact formulation and analytical approximations in order to explore the electromagnetic field distribution inside dry wood. The introduction of conductivity in the exact model makes it so complex that the equations are unsuitable for analytical manipulation. In order to further explore the effect of moisture in cylindrical wood structures, a full scale numerical simulation using commercial software has been performed. The results show that for microwave frequencies in the 3 GHz range and for typical wood parameters, a cylindrical log behaves as a kind of Fresnel lens. This work has important applications in microwave treatment and sensing of wood.
Lardeau, Sylvain; Ferrari, Simone; Rossi, Lionel
2008-12-01
Three-dimensional (3D) direct numerical simulations of a flow driven by multiscale electromagnetic forcing are performed in order to reproduce with maximum accuracy the quasi-two-dimensional (2D) flow generated by the same multiscale forcing in the laboratory. The method presented is based on a 3D description of the flow and the electromagnetic forcing. Very good agreements between our simulations and the experiments are found both on velocity and acceleration field, this last comparison being, to our knowledge, done for the first time. Such agreement requires that both experiments and simulations are carefully performed and, more importantly, that the underlying simplification to model the experiments and the multiscale electromagnetic forcing do not introduce significant errors. The results presented in this paper differ significantly from previous 2D direct numerical simulation in which a classical linear Rayleigh friction modeling term was used to mimic the effect of the wall-normal friction. Indeed, purely 2D simulations are found to underestimate the Reynolds number and, due to the dominance of nonhomogeneous bottom friction, lead to the wrong physical mechanism. For the range of conditions presented in this paper, the Reynolds number, defined by the ratio between acceleration and viscous terms, remains the order of unity, and the Hartmann number, defined by the ratio between electromagnetic force terms and viscous terms, is about 2. The main conclusion is that 3D simulations are required to model the (3D) electromagnetic forces and the wall-normal shear. Indeed, even if the flow is quasi-2D in terms of energy, a full 3D approach is required to simulate these shallow layer flows driven by multiscale electromagnetic forcing. In the range of forcing intensity investigated in this paper, these multiscale flows remain quasi-2D, with negligible energy in the wall-normal velocity component. It is also shown that the driving terms are the electromagnetic forcing and
Numerical Simulation of A Right-moving Storm Over France
Chancibault, K.; Ducrocq, V.; Lafore, J.-Ph.
A three-dimensional non-hydrostatic mesoscale model is used to simulate the right- moving storm produced through storm splitting, on 30 may 1999, over northern France. The initial state is provided by the French 3D-var ARPEGE analysis and the simuation is performed with two interactive nested domains. The aim of this study is to improve our understanding of such storm dynamics. A vor- ticity analysis has been carried out, with emphasis on stretching and tilting terms of the vertical vorticity equation, thanks to the backward trajectories. The baroclinic produc- tion and stretching terms of the horizontal vorticity equation have also been studied to understand the interaction between the horizontal vorticity and a mesoscale thermal line. Finally, the spatial and temporal variation of the Storm Relative Environmental Helicity has been examined. Most of the results compare well with previous results on right-moving storms ob- tained from theoritical or numerical studies from idealized homogeneous base state.
Numerical simulation for design of biped locomotion robots
International Nuclear Information System (INIS)
Kume, Etsuo; Takanishi, Atsuo
1993-01-01
A mechanical design study of anthropomorphic walking robots for patrol and inspection in nuclear facilities is being performed at Computing and Information Systems Center (CISC) of JAERI. We mainly focus on developing a software system to find a stable walking pattern, given robot models described by links, joints and so on. One of the features of our software is that some of the body elements, such as actuators and sensors, can be modeled as material particles as well as rigid bodies. The other is that our software has the cabability of obtaining unknown part of robot motions under given part of robot motions, satisfying a stable constraint. In this paper, we present the numerical models and the simulated results. (orig.)
Numerical simulation of transient moisture transfer into an electronic enclosure
International Nuclear Information System (INIS)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.
2016-01-01
Electronic systems are sometimes exposed to harsh environmental conditions of temperature and humidity. Moisture transfer into electronic enclosures and condensation can cause several problems such as corrosion and alteration in thermal stresses. It is therefore essential to study the local climate inside the enclosures to be able to protect the electronic systems. In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce the CPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which the real 3D geometry is approximated by a 2D axial symmetry one. The results for 2D and 3D models were compared in order to calibrate the 2D representation. Furthermore, simulation results were compared with experimental data and good agreement was found.
Direct numerical simulation of turbulent channel flow with deformed bubbles
International Nuclear Information System (INIS)
Yamamoto, Yoshinobu; Kunugi, Tomoaki
2010-01-01
In this study, the direct numerical simulation of a fully-developed turbulent channel flow with deformed bubbles were conducted by means of the refined MARS method, turbulent Reynolds number 150, and Bubble Reynolds number 120. As the results, large-scale wake motions were observed round the bubbles. At the bubble located region, mean velocity was degreased and turbulent intensities and Reynolds shear stress were increased by the effects of the large-scale wake motions round bubbles. On the other hands, near wall region, bubbles might effect on the flow laminarlize and drag reduction. Two types of drag coefficient of bubble were estimated from the accelerated velocity of bubble and correlation equation as a function of Particle Reynolds number. Empirical correlation equation might be overestimated the drag effects in this Particle Reynolds number range. (author)
Numerical simulation of a battlefield Nd:YAG laser
Henriksson, Markus; Sjoqvist, Lars; Uhrwing, Thomas
2005-11-01
A numeric model has been developed to identify the critical components and parameters in improving the output beam quality of a flashlamp pumped Q-switched Nd:YAG laser with a folded Porro-prism resonator and polarization output coupling. The heating of the laser material and accompanying thermo-optical effects are calculated using the finite element partial differential equations package FEMLAB allowing arbitrary geometries and time distributions. The laser gain and the cavity are modeled with the physical optics simulation code GLAD including effects such as gain profile, thermal lensing and stress-induced birefringence, the Pockels cell rise-time and component aberrations. The model is intended to optimize the pumping process of an OPO providing radiation to be used for ranging, imaging or optical countermeasures.
Numerical simulation of effect of laser nonuniformity in interior interface
International Nuclear Information System (INIS)
Yu Xiaojin; Wu Junfeng; Ye Wenhua
2007-01-01
Using the LARED-S code and referring to the NIF direct-drive DT ignition target, the effect of laser nonuniformity on the interior interface in direct-drive spherical implosion with high convergence ratio was numerically studied. The two-dimensional results show that the implosion with high convergence ratio is sensitive to the nonuniformity of driving laser, and the growth of hydrodynamic instability on interior interface destroys the symmetric-drive and reduces the volume of central hot spot observably. Taking the limit that perturbation amplitude is equal to 1/3 radius of central hot spot, the simulation also gives that the requirements for the laser uniformity for different mode number(less than 12) on simple physical model are between 2.5% -0.25%, and the modes between 8-10 have the most rigorous requirement which is about 0.25%. (authors)
Numerical simulation of transient moisture transfer into an electronic enclosure
Energy Technology Data Exchange (ETDEWEB)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)
2016-06-08
Electronic systems are sometimes exposed to harsh environmental conditions of temperature and humidity. Moisture transfer into electronic enclosures and condensation can cause several problems such as corrosion and alteration in thermal stresses. It is therefore essential to study the local climate inside the enclosures to be able to protect the electronic systems. In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce the CPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which the real 3D geometry is approximated by a 2D axial symmetry one. The results for 2D and 3D models were compared in order to calibrate the 2D representation. Furthermore, simulation results were compared with experimental data and good agreement was found.
Numerical simulation of hydrodynamic performance of ship under oblique conditions
Directory of Open Access Journals (Sweden)
CHEN Zhiming
2018-02-01
Full Text Available [Objectives] This paper is intended to study the viscous flow field around a ship under oblique conditions and provide a research basis for ship maneuverability. [Methods] Using commercial software STRA-CCM+, the SST k-ω turbulence model is selected to predict the hydrodynamic performance of the KVLCC2 model at different drift angles, and predict the hull flow field. The pressure distribution of the ship model at different drift angles is observed and the vortex shedding of the ship's hull and constraint streamlines on the hull's surface are also observed. [Results] The results show that numerical simulation can satisfy the demands of engineering application in the prediction of the lateral force, yaw moment and hull surface pressure distribution of a ship. [Conclusions] The research results of this paper can provide valuable references for the study of the flow separation phenomenon under oblique conditions.
Direct Numerical Simulations for Combustion Science: Past, Present, and Future
Im, Hong G.
2017-01-01
Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. This chapter attempts to provide a brief historical review of the progress in DNS of turbulent combustion during the past decades. Major scientific accomplishments and contributions towards fundamental understanding of turbulent combustion will be summarized and future challenges and research needs will be proposed.
Numerical simulation of dimples in airfoil using MATLAB
Booma Devi, P.; Shah, Dilip A.
2017-05-01
The Aircraft wing is a point of important research which poses greater challenge in terms of aerodynamic efficiency. The flow separation control method is addressed in classical aerodynamics methods. This study focuses on influence of dimples on controlling the flow and also increasing the aerodynamic efficiency. The periodic process of placing the cavities on the wing starting from root to tip controls the flow separation. The linear variation of characteristic curve provides the information about the flow separation and control of flow on upper surface of the airfoil.These different shapes are utilized viz., Square, Rectangle and Triangle. The numerical simulation is carried out in using MATLAB package. Preliminary analysis on the flow separation is carried out focuses on laminar flow separation, which has the influence on the overall lift generation and drag generation.
Parallelization of a numerical simulation code for isotropic turbulence
International Nuclear Information System (INIS)
Sato, Shigeru; Yokokawa, Mitsuo; Watanabe, Tadashi; Kaburaki, Hideo.
1996-03-01
A parallel pseudospectral code which solves the three-dimensional Navier-Stokes equation by direct numerical simulation is developed and execution time, parallelization efficiency, load balance and scalability are evaluated. A vector parallel supercomputer, Fujitsu VPP500 with up to 16 processors is used for this calculation for Fourier modes up to 256x256x256 using 16 processors. Good scalability for number of processors is achieved when number of Fourier mode is fixed. For small Fourier modes, calculation time of the program is proportional to NlogN which is ideal complexity of calculation for 3D-FFT on vector parallel processors. It is found that the calculation performance decreases as the increase of the Fourier modes. (author)
An example of numerical simulation in causal set dynamics
International Nuclear Information System (INIS)
Krugly, Alexey L; Tserkovnikov, Ivan A
2013-01-01
The model of a discrete pregeometry on a microscopic scale is an x-graph. This is a directed acyclic graph. An outdegree and an indegree of each vertex are not more than 2. The sets of vertices and edges of x-graph are particular cases of causal sets. The sequential growth of a graph is an addition of new vertices one by one. A simple stochastic algorithm of sequential growth of x-graph are considered. It is based on a random walk at the x-graph. The particles in this model must be self-organized repetitive structures. We introduce the method of search of such repetitive structures. It is based on a discrete Fourier transformation. An example of numerical simulation is introduced.
Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.
Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R
2017-11-01
The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.
Numerical Simulations for a Typical Train Fire in China
Directory of Open Access Journals (Sweden)
W. K. Chow
2011-01-01
Full Text Available Railway is the key transport means in China including the Mainland, Taiwan, and Hong Kong. Consequent to so many big arson and accidental fires in the public transport systems including trains and buses, fire safety in passenger trains is a concern. Numerical simulations with Computational Fluid Dynamics on identified fire scenarios with typical train compartments in China will be reported in this paper. The heat release rate of the first ignited item was taken as the input parameter. The mass lost rate of fuel vapor of other combustibles was estimated to predict the resultant heat release rates by the combustion models in the software. Results on air flow, velocity vectors, temperature distribution, smoke layer height, and smoke spread patterns inside the train compartment were analyzed. The results are useful for working out appropriate fire safety measures for train vehicles and determining the design fire for subway stations and railway tunnels.
Numerical simulation of abutment pressure redistribution during face advance
Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.
2017-12-01
The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.
Modelization and numerical simulation of atmospheric aerosols dynamics
International Nuclear Information System (INIS)
Debry, Edouard
2004-01-01
Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr
Developing a numerical simulation for fading in feldspar
International Nuclear Information System (INIS)
Larsen, A.; Greilich, S.; Jain, M.; Murray, A.S.
2009-01-01
Most models describing anomalous fading in feldspars are based on analytical solutions. As an alternative approach we present an entirely numerical model based on statistical sampling that simulates stepwise the charge creation/trapping and recombination in a given phosphor. We assume the number density of electrons and holes at any time to be equal, although the model is not bound to that assumption. The model is flexible enough to be used on any combination of geological and laboratory timescales and for any defined configuration of defects. Using this approach we observed reorganization of nearest-neighbor distances with time. The best agreement with experimental data is achieved if we assume the crystal to consist of small subvolumes (nanocrystals) only within which charge carriers are allowed to recombine.
Direct numerical simulation of homogeneous stratified rotating turbulence
Energy Technology Data Exchange (ETDEWEB)
Iida, O.; Tsujimura, S.; Nagano, Y. [Nagoya Institute of Technology, Department of Mech. Eng., Nagoya (Japan)
2005-12-01
The effects of the Prandtl number on stratified rotating turbulence have been studied in homogeneous turbulence by using direct numerical simulations and a rapid distortion theory. Fluctuations under strong stable-density stratification can be theoretically divided into the WAVE and the potential vorticity (PV) modes. In low-Prandtl-number fluids, the WAVE mode deteriorates, while the PV mode remains. Imposing rotation on a low-Prandtl-number fluid makes turbulence two-dimensional as well as geostrophic; it is found from the instantaneous turbulent structure that the vortices merge to form a few vertically-elongated vortex columns. During the period toward two-dimensionalization, the vertical vortices become asymmetric in the sense of rotation. (orig.)
Direct Numerical Simulations for Combustion Science: Past, Present, and Future
Im, Hong G.
2017-12-12
Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. This chapter attempts to provide a brief historical review of the progress in DNS of turbulent combustion during the past decades. Major scientific accomplishments and contributions towards fundamental understanding of turbulent combustion will be summarized and future challenges and research needs will be proposed.
Numerical simulation of high Reynolds number bubble motion
Energy Technology Data Exchange (ETDEWEB)
McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)
1995-12-31
This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.
Numerical simulation of flow fields and particle trajectories
DEFF Research Database (Denmark)
Mayer, Stefan
2000-01-01
. The time-dependent flow is approximated with a continuous sequence of steady state creeping flow fields, where metachronously beating ciliary bands are modelled by linear combinations of singularity solutions to the Stokes equations. Generally, the computed flow fields can be divided into an unsteady......A model describing the ciliary driven flow and motion of suspended particles in downstream suspension feeders is developed. The quasi-steady Stokes equations for creeping flow are solved numerically in an unbounded fluid domain around cylindrical bodies using a boundary integral formulation...... in the simulated unsteady ciliary driven flow. A fraction of particles appear to follow trajectories, that resemble experimentally observed particle capture events in the downstream feeding system of the polycheate Sabella penicillus, indicating that particles can be captured by ciliary systems without mechanical...
Numerical simulation of electron beam welding with beam oscillations
Trushnikov, D. N.; Permyakov, G. L.
2017-02-01
This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.
Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method
Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping
2018-03-01
In this paper, we present a first direct numerical simulation (DNS) of a turbulent pipe flow using the mesoscopic lattice Boltzmann method (LBM) on both a D3Q19 lattice grid and a D3Q27 lattice grid. DNS of turbulent pipe flows using LBM has never been reported previously, perhaps due to inaccuracy and numerical stability associated with the previous implementations of LBM in the presence of a curved solid surface. In fact, it was even speculated that the D3Q19 lattice might be inappropriate as a DNS tool for turbulent pipe flows. In this paper, we show, through careful implementation, accurate turbulent statistics can be obtained using both D3Q19 and D3Q27 lattice grids. In the simulation with D3Q19 lattice, a few problems related to the numerical stability of the simulation are exposed. Discussions and solutions for those problems are provided. The simulation with D3Q27 lattice, on the other hand, is found to be more stable than its D3Q19 counterpart. The resulting turbulent flow statistics at a friction Reynolds number of Reτ = 180 are compared systematically with both published experimental and other DNS results based on solving the Navier-Stokes equations. The comparisons cover the mean-flow profile, the r.m.s. velocity and vorticity profiles, the mean and r.m.s. pressure profiles, the velocity skewness and flatness, and spatial correlations and energy spectra of velocity and vorticity. Overall, we conclude that both D3Q19 and D3Q27 simulations yield accurate turbulent flow statistics. The use of the D3Q27 lattice is shown to suppress the weak secondary flow pattern in the mean flow due to numerical artifacts.
Analysis of the coherent and turbulent stresses of a numerically simulated rough wall pipe
Chan, L.; MacDonald, M.; Chung, D.; Hutchins, N.; Ooi, A.
2017-04-01
A turbulent rough wall flow in a pipe is simulated using direct numerical simulation (DNS) where the roughness elements consist of explicitly gridded three-dimensional sinusoids. Two groups of simulations were conducted where the roughness semi-amplitude h+ and the roughness wavelength λ+ are systematically varied. The triple decomposition is applied to the velocity to separate the coherent and turbulent components. The coherent or dispersive component arises due to the roughness and depends on the topological features of the surface. The turbulent stress on the other hand, scales with the friction Reynolds number. For the case with the largest roughness wavelength, large secondary flows are observed which are similar to that of duct flows. The occurrence of these large secondary flows is due to the spanwise heterogeneity of the roughness which has a spacing approximately equal to the boundary layer thickness δ.
Chrystal and Proudman resonances simulated with three numerical models
Bubalo, Maja; Janeković, Ivica; Orlić, Mirko
2018-05-01
The aim of this work was to study Chrystal and Proudman resonances in a simple closed basin and to explore and compare how well the two resonant mechanisms are reproduced with different, nowadays widely used, numerical ocean models. The test case was based on air pressure disturbances of two commonly used shapes (a sinusoidal and a boxcar), having various wave lengths, and propagating at different speeds. Our test domain was a closed rectangular basin, 300 km long with a uniform depth of 50 m, with the theoretical analytical solution available for benchmark. In total, 2250 simulations were performed for each of the three different numerical models: ADCIRC, SCHISM and ROMS. During each of the simulations, we recorded water level anomalies and computed the integral of the energy density spectrum for a number of points distributed along the basin. We have successfully documented the transition from Proudman to Chrystal resonance that occurs for a sinusoidal air pressure disturbance having a wavelength between one and two basin lengths. An inter-model comparison of the results shows that different models represent the two resonant phenomena in a slightly different way. For Chrystal resonance, all the models showed similar behavior; however, ADCIRC model providing slightly higher values of the mean resonant period than the other two models. In the case of Proudman resonance, the most consistent results, closest to the analytical solution, were obtained using ROMS model, which reproduced the mean resonant speed equal to 22.00 m/s— i.e., close to the theoretical value of 22.15 m/s. ADCIRC and SCHISM models showed small deviations from that value, with the mean speed being slightly lower—21.97 m/s (ADCIRC) and 21.93 m/s (SCHISM). The findings may seem small but could play an important role when resonance is a crucial process producing enhancing effects by two orders of magnitude (i.e., meteotsunamis).
Numerical simulation of travelling wave induced electrothermal fluid flow
International Nuclear Information System (INIS)
Perch-Nielsen, Ivan R; Green, Nicolas G; Wolff, Anders
2004-01-01
Many microdevices for manipulating particles and cells use electric fields to produce a motive force on the particles. The movement of particles in non-uniform electric fields is called dielectrophoresis, and the usual method of applying this effect is to pass the particle suspension over a microelectrode structure. If the suspension has a noticeable conductivity, one important side effect is that the electric field drives a substantial conduction current through the fluid, causing localized Joule-heating. The resulting thermal gradient produces local conductivity and permittivity changes in the fluid. Dielectrophoretic forces acting upon these pockets of fluid will then produce motion of both the fluid and the particles. This paper presents a numerical solution of the electrical force and the resulting electrothermal driven fluid flow on a travelling wave structure. This common electrode geometry consists of interdigitated electrodes laid down in a long array, with the phase of the applied potential shifted by 90 0 on each subsequent electrode. The resulting travelling electric field was simulated and the thermal field and electrical body force on the fluid calculated, for devices constructed from two typical materials: silicon and glass. The electrothermal fluid flow in the electrolyte over the electrode array was then numerically simulated. The model predicts that the thermal field depends on the conductivity and applied voltage, but more importantly on the geometry of the system and the material used in the construction of the device. The velocity of the fluid flow depends critically on the same parameters, with slight differences in the thermal field for glass and silicon leading to diametrically opposite flow direction with respect to the travelling field for the two materials. In addition, the imposition of slight external temperature gradients is shown to have a large effect on the fluid flow in the device, under certain conditions leading to a reversal of
Numerical Simulation of In Situ Combustion of Oil Shale
Directory of Open Access Journals (Sweden)
Huan Zheng
2017-01-01
Full Text Available This paper analyzes the process of in situ combustion of oil shale, taking into account the transport and chemical reaction of various components in porous reservoirs. The physical model is presented, including the mass and energy conservation equations and Darcy’s law. The oxidation reactions of oil shale combustion are expressed by adding source terms in the conservation equations. The reaction rate of oxidation satisfies the Arrhenius law. A numerical method is established for calculating in situ combustion, which is simulated numerically, and the results are compared with the available experiment. The profiles of temperature and volume fraction of a few components are presented. The temperature contours show the temperature variation in the combustion tube. It is found that as combustion reaction occurs in the tube, the concentration of oxygen decreases rapidly, while the concentration of carbon dioxide and carbon monoxide increases contrarily. Besides, the combustion front velocity is consistent with the experimental value. Effects of gas injection rate, permeability of the reservoir, initial oil content, and injected oxygen content on the ISC process were investigated in this study. Varying gas injection rate and oxygen content is important in the field test of ISC.
Numerical Simulation of rivulet build up via lubrication equations
Suzzi, N.; Croce, G.
2017-11-01
A number of engineering problems involve the evolution of a thin layer of liquid over a non-wettable substrate. For example, CO2 chemical absorption is carried out in packed columns, where post-combustion CO2 flows up while liquid solvent falls down through a collection of corrugated sheets. Further application include, among others, in-flight icing simulations, moisture condensation on de-humidifier fins, fogging build up and removal. Here, we present a development of an in-house code solving numerically the 2D lubrication equation for a film flowing down an inclined plate. The disjoining pressure approach is followed, in order to model both the contact line discontinuity and the surface wettability. With respect to the original implementation, the full modeling of capillary pressure terms according to Young- Laplace relation allows to investigate contact angles close to π/2. The code is thus validated with literature numerical results, obtained by a fully 3D approach (VOF), showing satisfying agreement despite a strong reduction in terms of computational cost. Steady and unsteady wetting dynamics of a developing rivulet are investigated (and validated) under different load conditions and for different values of the contact angles.
Numerical simulations of downward convective overshooting in giants
Tian, Chun-Lin; Deng, Li-Cai; Chan, Kwing-Lam
2009-09-01
An attempt at understanding downward overshooting in the convective envelopes of post-main-sequence stars has been made on the basis of three-dimensional large-eddy simulations, using artificially modified OPAL opacity and taking into account radiation and ionization in the equation of state. Two types of star, an intermediate-mass star and a massive star, were considered. To avoid a long thermal relaxation time of the intermediate-mass star, we increased the stellar energy flux artificially while trying to maintain a structure close to the one given by a 1D stellar model. A parametric study of the flux factor was performed. For the massive star, no such process was necessary. Numerical results were analysed when the system reached the statistical steady state. It was shown that the penetration distance in pressure scaleheights is of the order of unity. The scaling relations between penetration distance, input flux and vertical velocity fluctuations studied by Singh et al. were checked. The anisotropy of the turbulent convection and the diffusion models of the third-order moments representing the non-local transport were also investigated. These models are dramatically affected by the velocity fields and no universal constant parameters seem to exist. The limitations of the numerical results were also discussed.
Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames
Im, Hong G.
2016-07-15
Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.
Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass
Directory of Open Access Journals (Sweden)
Xuguang Chen
2014-01-01
Full Text Available Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.
Numerical simulation on zonal disintegration in deep surrounding rock mass.
Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.
Numerical simulation for quenching meshes with TONUS platform
International Nuclear Information System (INIS)
Bin, Chen; Hongxing, Yu
2009-01-01
For mitigation of hydrogen risks during severe accidents to protect the integrity of containment, PAR and ignitors are used in current advanced nuclear power plants. But multiple combustions induced by ignitors and consequent DDT phenomena are not practically eliminated. An innovative design call 'quenching meshes' is considered to confine hydrogen flame within one compartment by metallic meshes, so that hazardous flame propagation can be prevented. The numerical simulation results based on discretization of the full Navier-Stokes equations with global one-step reaction represented by Arrhenius laminar combustion model have shown the possibility of flame quenching 'numerically'. This is achieved via multiplication of the combustion rate expression by a Heaviside function having an ignition temperature as a parameter. Qualitative behavior of the computed flow shows that the flame velocity diminishes while passing through a quenching mesh, while qualitative analysis based on the energy balance reveals the mechanism of flame quenching. All the above analysis has been performed for a stoichiometric mixture and normal initial pressure and temperature for initial conditions. For further research we would like to suggest the investigation of the influence of the mixture composition, initial pressure and/or temperature on the quenching criteria
Numerical simulation of a cross flow Marine Hydrokinetic turbine.
Hall, Taylor; Aliseda, Alberto
2011-11-01
In the search for alternative sources of energy, the kinetic energy of water currents in oceans, rivers and estuaries is being explored as predictable and environmentally benign. We are investigating the flow past a cross flow turbine in which a helical blade under hydrodynamic forces turns around a shaft perpendicular to the free stream. This type of turbine, while very different from the classical horizontal axis turbine commonly used in the wind energy field, presents advantages for stacking in very narrow constricted channels where the water currents are consistently high and therefore turbine installation may be economically feasible. We use a model of a helical four-bladed turbine in cross flow to investigate the efficiency of the energy capture and the dynamics of the turbulent wake. Scale model experiments in a flume are used to validate the numerical results on a stationary configuration as an initial step towards creating an accurate numerical model of the turbine. The simulation of the rotating turbine provides a full perspective on the effect of angular position on flow detachment and vortex shedding from the blade, as well as on the fluctuations of the shaft torque produced (a problematic feature of this type of turbine). The results are analyzed in terms of hydrodynamic optimization of the blade and its structural loading. Supported by DOE through the Northwest National Marine Renewable Energy Center.
Direct numerical simulation of axisymmetric laminar low-density jets
Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro
2017-11-01
The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.
Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers
Sauret, Emilie; Saha, Suvash C.; Gu, Yuantong
2013-01-01
Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Numerical simulation of optical feedback on a quantum dot lasers
Energy Technology Data Exchange (ETDEWEB)
Al-Khursan, Amin H., E-mail: ameen_2all@yahoo.com [Thi-Qar University, Nassiriya Nanotechnology Research Laboratory (NNRL), Science College (Iraq); Ghalib, Basim Abdullattif [Babylon University, Laser Physics Department, Science College for Women (Iraq); Al-Obaidi, Sabri J. [Al-Mustansiriyah University, Physics Department, Science College (Iraq)
2012-02-15
We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models, is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not using simple rate equation models to express quantum dots working at excited state transition.
Finite-difference numerical simulations of underground explosion cavity decoupling
Aldridge, D. F.; Preston, L. A.; Jensen, R. P.
2012-12-01
Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion
Evaluation of spacer grid spring characteristics by means of physical tests and numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Schettino, Carlos Frederico Mattos, E-mail: carlosschettino@inb.gov.br [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil)
2017-11-01
Among all fuel assemblies' components, the spacer grids play an important structural role during the energy generation process, mainly due for its primary functional requirement, that is, to provide fuel rod support. The present work aims to evaluate the spring characteristics of a specific spacer grid design used in a PWR fuel assembly type 16 x 16. These spring characteristics comprises the load versus deflection capability and its spring rate, which are very important, and also mandatory, to be correctly established in order to preclude spacer grid spring and fuel rod cladding fretting during operation, as well as prevent an excessive fuel rod buckling. This study includes physical tests and numerical simulation. The tests were performed on an adapted load cell mechanical device, using as a specimen a single strap of the spacer grid. Three numerical models were prepared using the Finite Element Method, with the support of the commercial code ANSYS. One model was built to validate the simulation according to the performed physical test, the others were built inserting a gradient of temperature (Beginning Of Life hot condition) and to evaluate the spacer grid spring characteristics in End Of Life condition. The obtained results from physical test and numerical model have shown a good agreement between them, therefore validating the simulation. The obtained results from numerical models make available information regarding the spacer grid design purpose, such as the behavior of the fuel rod cladding support during operation. Therewith, these evaluations could be useful to improve the spacer grid design. (author)
Evaluation of spacer grid spring characteristics by means of physical tests and numerical simulation
International Nuclear Information System (INIS)
Schettino, Carlos Frederico Mattos
2017-01-01
Among all fuel assemblies' components, the spacer grids play an important structural role during the energy generation process, mainly due for its primary functional requirement, that is, to provide fuel rod support. The present work aims to evaluate the spring characteristics of a specific spacer grid design used in a PWR fuel assembly type 16 x 16. These spring characteristics comprises the load versus deflection capability and its spring rate, which are very important, and also mandatory, to be correctly established in order to preclude spacer grid spring and fuel rod cladding fretting during operation, as well as prevent an excessive fuel rod buckling. This study includes physical tests and numerical simulation. The tests were performed on an adapted load cell mechanical device, using as a specimen a single strap of the spacer grid. Three numerical models were prepared using the Finite Element Method, with the support of the commercial code ANSYS. One model was built to validate the simulation according to the performed physical test, the others were built inserting a gradient of temperature (Beginning Of Life hot condition) and to evaluate the spacer grid spring characteristics in End Of Life condition. The obtained results from physical test and numerical model have shown a good agreement between them, therefore validating the simulation. The obtained results from numerical models make available information regarding the spacer grid design purpose, such as the behavior of the fuel rod cladding support during operation. Therewith, these evaluations could be useful to improve the spacer grid design. (author)
Directory of Open Access Journals (Sweden)
N. Bachschmid
2004-01-01
Full Text Available In this article, the deflections of a circular cross-section beam presenting a transverse crack of different depths, due to different loads (bending, torsion, shear, and axial loads, are analyzed with the aid of a rather refined 3-D model, which takes into account the nonlinear contact forces in the cracked area. The bending and shear loads are applied in several different angular positions, in order to simulate a rotating load on a fixed beam, or, by changing the reference system, a fixed load on a rotating beam. Torsion and axial loads are instead fixed with respect to the beam.
Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation
International Nuclear Information System (INIS)
DeWitt, H.E.
1977-01-01
Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions
Parametric Optimization Through Numerical Simulation of VCR Diesel Engine
Ganji, Prabhakara Rao; Mahmood, Al-Qarttani Abdulrahman Shakir; Kandula, Aasrith; Raju, Vysyaraju Rajesh Khana; Rao, Surapaneni Srinivasa
2017-08-01
In the present study, the Variable Compression Ratio (VCR) engine was analyzed numerically using CONVERGE™ Computational Fluid Dynamics code in order to optimize the design/operating parameters such as Compression Ratio (CR), Start of Injection (SOI) and Exhaust Gas Recirculation (EGR). VCR engine was run for 100 % load to test its performance and it was validated for standard configuration. Simulations were performed by varying the design/operating parameters such as CR (18-14), SOI (17°-26° bTDC) and EGR (0-15 %) at constant fuel injection pressure of 230 bar and speed of 1500 rpm. The effect of each of these parameters on pressure, oxides of nitrogen (NOx) and soot are presented. Finally, regression equations were developed for pressure, NOx and soot by using the simulation results. The regression equations were solved for multi objective criteria in order to reduce the NOx and soot while maintaining the baseline performance. The optimized configuration was tested for validation and found satisfactory.
Direct Numerical Simulation of heat transfer in a turbulent flume
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2001-01-01
Direct Numerical Simulation (DNS) can be used for the description of turbulent heat transfer in the fluid at low Reynolds numbers. DNS means precise solving of Navier-Stoke's equations without any extra turbulent models. DNS should be able to describe all relevant length scales and time scales in observed turbulent flow. The largest length scale is actually dimension of system and the smallest length and time scale is equal to Kolmogorov scale. In the present work simulations of fully developed turbulent velocity and temperature fields were performed in a turbulent flume (open channel) with pseudo-spectral approach at Reynolds number 2670 (friction Reynolds number 171) and constant Prandtl number 5.4, considering the fluid temperature as a passive scalar. Two ideal thermal boundary conditions were taken into account on the heated wall. The first one was an ideal isothermal boundary condition and the second one an ideal isoflux boundary condition. We observed different parameters like mean temperature and velocity, fluctuations of temperature and velocity, and auto-correlation functions.(author)
Numerical simulation of NQR/NMR: Applications in quantum computing.
Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C
2011-04-01
A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.
Direct numerical simulation of fractal-generated turbulence
International Nuclear Information System (INIS)
Suzuki, H; Hasegawa, Y; Ushijima, T; Nagata, K; Sakai, Y; Hayase, T
2013-01-01
We simulate fractal-generated turbulence (Hurst and Vassilicos 2007 Phys. Fluids 19 035103)) by means of a direct numerical simulation and address its fundamental characteristics. We examine whether the fractal-generated turbulence in the upstream region has a nature similar to that of a wake. We propose an equation for predicting peak values of the velocity fluctuation intensity and devise a method for formulating the functional form of the quantity of interest by focusing on the time scale of decaying turbulence, and we examine those forms for the turbulent kinetic energy and rms of pressure fluctuation through this method. By using the method, both of these functional forms are found to be power-law functions in the downstream region, even though these profiles follow exponential functions around these peaks. In addition, decay exponents of these quantities are estimated. The integral length scales of velocity fluctuations for transverse as well as streamwise directions are essentially constant in the downstream direction. Decaying turbulence having both these characteristics conflicts with decaying turbulence described by the theory predicting exponential decay. We discuss a factor causing the difference by focusing on the functional form of the transfer function of homogeneous, isotropic turbulence. (paper)
Direct numerical simulations of evaporating droplets in turbulence
Palmore, John; Desjardins, Olivier
2015-11-01
This work demonstrates direct numerical simulations of evaporating two phase flows, with applications to studying combustion in aircraft engines. Inside the engine, liquid fuel is injected into the combustion chamber where it atomizes into droplets and evaporates. Combustion occurs as the fuel vapor mixes with the surrounding flow of turbulent gas. Understanding combustion, therefore, requires studying evaporation in a turbulent flow and the resulting vapor distribution. We study the problem using a finite volume framework to solve the Navier-Stokes and scalar transport equations under a low-Mach assumption [Desjardins et al., J. Comp. Phys., 2008]. The liquid-gas interface is tracked using a conservative level-set method [Desjardins et al., J. Comp. Phys., 2008] which allows for a sharp reconstruction of the discontinuity across the interface. Special care is taken in the discretization of cells near the liquid-gas interface to ensure the stability and accuracy of the solution. Results are discussed for non-reacting simulations of liquid droplets evaporating into a turbulent field of inert gas.
Numerical relativity simulations of precessing binary neutron star mergers
Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang
2018-03-01
We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.
Direct numerical simulation of stratified gas-liquid flow
International Nuclear Information System (INIS)
Lombardi, P.; De Angelis, V.; Banerjee, S.
1996-01-01
Interactions through an interface between two turbulent flows play an important role in many environmental and industrial problems, e.g. in determining the coupling fluxes of heat mass and momentum, between the ocean and atmosphere, and in the design of gas-liquid contractors for the chemical industry, as well as in determining interactions between phases in nuclear transients that are accompanied by system voiding e.g. LOCAs. Here, the Direct Numerical Simulation (DNS) of the interaction of two turbulent fluids through a flat interface has been simulated. The flow and the temperature fields are computed using a pseudospectral method. This study shows that shear stress at the interface correlates well with the heat flux. Extensive analysis of the near interface turbulence structure has been performed using quadrant analysis. From this it is clear that gas-side sweeps dominate over the high shear stress regions. This suggests that simple parameterizations based on sweep frequency may be adequate for predictions of scalar transport rates
Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets
Asaithambi, Rajapandiyan
Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the
Direct Numerical Simulation of an Airfoil with Sand Grain Roughness on the Leading Edge
Ribeiro, Andre F. P.; Casalino, Damiano; Fares, Ehab; Choudhari, Meelan
2016-01-01
As part of a computational study of acoustic radiation due to the passage of turbulent boundary layer eddies over the trailing edge of an airfoil, the Lattice-Boltzmann method is used to perform direct numerical simulations of compressible, low Mach number flow past an NACA 0012 airfoil at zero degrees angle of attack. The chord Reynolds number of approximately 0.657 million models one of the test conditions from a previous experiment by Brooks, Pope, and Marcolini at NASA Langley Research Center. A unique feature of these simulations involves direct modeling of the sand grain roughness on the leading edge, which was used in the abovementioned experiment to trip the boundary layer to fully turbulent flow. This report documents the findings of preliminary, proof-of-concept simulations based on a narrow spanwise domain and a limited time interval. The inclusion of fully-resolved leading edge roughness in this simulation leads to significantly earlier transition than that in the absence of any roughness. The simulation data is used in conjunction with both the Ffowcs Williams-Hawkings acoustic analogy and a semi-analytical model by Roger and Moreau to predict the farfield noise. The encouraging agreement between the computed noise spectrum and that measured in the experiment indicates the potential payoff from a full-fledged numerical investigation based on the current approach. Analysis of the computed data is used to identify the required improvements to the preliminary simulations described herein.
Numerical simulation of a hydrocarbon fuelled valveless pulsejet
Directory of Open Access Journals (Sweden)
Joseph Kalyan Raj Isac
2014-06-01
In the current work, a numerical analysis encompassing feasibility and validation of a valveless pulsejet engine was attempted using CD-adapco׳s STAR-CCM+ CFD package. Due to lack of comprehensive established mathematical laws to govern the working of a pulsejet, most experimental work being performed is done by trial and error. This necessitates in-depth computational studies in order to shed more light on the understanding of valveless pulsejets. The results have been encouraging and in agreement with observed experimental conclusions such as, i changes in dimensions affect the working of a pulsejet, ii presence of a flare enhances the working of a pulsejet, and the close agreement in the frequency of operation. Through continuous study, an optimum initial condition was achieved which enabled the pulsejet to begin operation even before 0.05 s, thereby greatly reducing computational costs if a higher time-scale were to be used.
A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics
Franceschini, Andrea; Ferronato, Massimiliano; Janna, Carlo; Teatini, Pietro
2016-06-01
The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion according to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions.
Numerical simulation of bubble deformation in magnetic fluids by finite volume method
International Nuclear Information System (INIS)
Yamasaki, Haruhiko; Yamaguchi, Hiroshi
2017-01-01
Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field. - Highlights: • A magnetic field analysis is developed to simulate the bubble dynamics in magnetic fluid with two-phase interface. • The elongation of bubble increased with increasing magnetic flux intensities due to strong magnetic normal force. • Proposed technique explains the bubble dynamics, taking into account of the continuity of the magnetic flux density.
On the effect of numerical errors in large eddy simulations of turbulent flows
International Nuclear Information System (INIS)
Kravchenko, A.G.; Moin, P.
1997-01-01
Aliased and dealiased numerical simulations of a turbulent channel flow are performed using spectral and finite difference methods. Analytical and numerical studies show that aliasing errors are more destructive for spectral and high-order finite-difference calculations than for low-order finite-difference simulations. Numerical errors have different effects for different forms of the nonlinear terms in the Navier-Stokes equations. For divergence and convective forms, spectral methods are energy-conserving only if dealiasing is performed. For skew-symmetric and rotational forms, both spectral and finite-difference methods are energy-conserving even in the presence of aliasing errors. It is shown that discrepancies between the results of dealiased spectral and standard nondialiased finite-difference methods are due to both aliasing and truncation errors with the latter being the leading source of differences. The relative importance of aliasing and truncation errors as compared to subgrid scale model terms in large eddy simulations is analyzed and discussed. For low-order finite-difference simulations, truncation errors can exceed the magnitude of the subgrid scale term. 25 refs., 17 figs., 1 tab
Numerical simulation of fluid flow and heat transfer in enhanced copper tube
International Nuclear Information System (INIS)
Rahman, M M; Zhen, T; Kadir, A K
2013-01-01
Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.
Numerical simulation of fluid flow and heat transfer in enhanced copper tube
Rahman, M. M.; Zhen, T.; Kadir, A. K.
2013-06-01
Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.
Numerical simulation of turbulent buoyant flows in horizontal channels
International Nuclear Information System (INIS)
Seiter, C.
1995-09-01
A numerical method is presented, to calculate the three-dimensional, time-dependent large scale structure of turbulent buoyant flows. The subject of the study is the Rayleigh-Benard-convection with air (Pr=0.71, Ra=2.5 10 6 , 10 7 ) and sodium (Pr=0.006, Ra=8.4 10 4 , 2.5 10 5 , 10 6 , 10 7 ) and a fluid layer with water and an internal heat source (Pr=7.0, Ra I =1.5 10 10 ) at moderate and high Rayleigh-numbers. The goal of the work is both, the analysis of structures of instantaneous as well as the statistical analysis of spatially and/or time averaged data, to give a contribution to the investigation of the characteristics of turbulent natural convection mainly in fluids with small Prandtl-numbers. The large eddy simulation of natural convection requires the development of appropriate momentum and heat subgrid scale models and the formulation of new boundary conditions. The used energy-length-models in the computer code TURBIT are extended methodically by modification of the characteristic length scales of the sub scale turbulence. The reduction or the increase of the sub scale turbulence correlations, caused by the influence of solid boundaries or the stratification, is considered. In the same way the new boundary conditions for the diffusive terms of the conservation equations are seen to be necessary, when the thermal or in the case of liquid metals the more critical hydrodynamic boundary layer is resolved insufficiently or not at all. The extended and new methods, models and boundary conditions, which enabled the realization of the planned simulations, are presented. (orig.)
Direct numerical simulation of free and forced square jets
International Nuclear Information System (INIS)
Gohil, Trushar B.; Saha, Arun K.; Muralidhar, K.
2015-01-01
Highlights: • Free square jet at Re = 500–2000 is studied using DNS. • Forced square jet at Re = 1000 subjected to varicose perturbation is also investigated at various forcing frequencies. • Vortex interactions within the jet and jet spreading are affected both for free and forced jets. • Perturbation at higher frequency shows axis-switching. - Abstract: Direct numerical simulation (DNS) of incompressible, spatially developing square jets in the Reynolds number range of 500–2000 is reported. The three-dimensional unsteady Navier–Stokes equations are solved using high order spatial and temporal discretization. The objective of the present work is to understand the evolution of free and forced square jets by examining the formation of large-scale structures. Coherent structures and related interactions of free jets suggest control strategies that can be used to achieve enhanced spreading and mixing of the jet with the surrounding fluid. The critical Reynolds number for the onset on unsteadiness in an unperturbed free square jet is found to be 875–900 while it reduces to the range 500–525 in the presence of small-scale perturbations. Disturbances applied at the flow inlet cause saturation of KH-instability and early transition to turbulence. Forced jet calculations have been carried out using varicose perturbation with amplitude of 15%, while frequency is independently varied. Simulations show that the initial development of the square jet is influenced by the four corners leading to the appearance hairpin structures along with the formation of vortex rings. Farther downstream, adjacent vortices strongly interact leading to their rapid breakup. Excitation frequencies in the range 0.4–0.6 cause axis-switching of the jet cross-section. Results show that square jets achieve greater spreading but are less controllable in comparison to the circular ones
Numerical Simulation of Explosive Forming Using Detonating Fuse
Directory of Open Access Journals (Sweden)
H Iyama
2017-09-01
Full Text Available The explosive forming is a characteristic method. An underwater shock wave is generated by underwater explosion of an explosive. A metal plate is affected high strain rate by the shock loading and is formed along a metal die. Although this method has the advantage of mirroring the shape of the die, a free forming was used in this paper. An expensive metal die is not necessary for this free forming. It is possible that a metal plate is formed with simple supporting parts. However, the forming shape is depend on the shock pressure distribution act on the metal plate. This pressure distribution is able to change by the shape of explosive, a mass of explosive and a shape of pressure vessel. On the other hand, we need the pressure vessel for food processing by the underwater shock wave. Therefore, we propose making the pressure vessel by this explosive forming. One design suggestion of pressure vessel made of stainless steel was considered. However, we cannot decide suitable conditions, the mass of the explosive and the distance between the explosive and the metal plate to make the pressure vessel. In order to decide these conditions, we have tried the numerical simulation on this explosive forming. The basic simulation method was ALE (Arbitrary Laglangian Eulerian method including with Mie-Grümeisen EOS (equation of state, JWL EOS, Johnson-Cook constitutive equation for a material model. In this paper, the underwater pressure contours to clear the propagations of the underwater shock wave, forming processes and deformation velocity of the metal plate is shown and it will be discussed about those results.
Numerical simulations of the stratified oceanic bottom boundary layer
Taylor, John R.
Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory
International Nuclear Information System (INIS)
Gobbin, M.; Marrelli, L.; Martin, P.; Fahrbach, H.U.; Garcia-Munoz, M.; Guenter, S.; White, R.B.
2009-01-01
A test particle approach, implemented with the Hamiltonian code ORBIT, is used to simulate measurements of fast ion losses induced by magnetic islands in the ASDEX Upgrade tokamak. In particular, the numerical simulations reproduce the toroidal localization of losses and the lost ions pitch angle and energy distribution experimentally measured with the fast ion losses detector (FILD) in the presence of a neoclassical tearing mode (NTM). The simulated NTM induced losses occurring on time scales longer than 100 μs are composed of mainly trapped or barely passing particles, consistently with the slow decay of the experimental signal from one FILD channel after the beam switch-off. The numerical simulations have been performed by taking into account the D-shaped plasma geometry, the collision mechanisms, the losses due to ripple effects and the rotation of the mode. The radial profile of the magnetic perturbation is adjusted in order to match ECE measurements. While statistical properties of FILD measurements are rather well reproduced, the simulated total amount of losses is found to be significantly affected by edge details of the magnetic perturbation as it determines the loss mechanism.
Numerical simulation of ventilation air movement in partitioned offices
Energy Technology Data Exchange (ETDEWEB)
Plett, E.G.; Soultogiannis, A.A.; Jouini, D.B. (Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario (Canada))
1993-01-01
Good air quality can only be assured throughout an office complex if each workspace receives an adequate supply of ventilation air. The likelihood of achieving this situation would be increased if the building engineer had a means of easily predicting the air movement in each office configuration. A simple computer-based solution to this need is proposed. To this end, the development and validation testing of a numerical solution technique to simulate the ventilation air movement in a room or office is described. The predictions of the two-dimensional, isothermal, inviscid formulation are seen to be in good agreement with experimentally measured airflows in configurations of interest. The computer code is then used to illustrate the airflow in offices served by a single row of supply air diffusers, when partitions are used to divide the space into smaller workspaces. It is observed that the partitions distort the airflow patterns to the extent that it would be difficult to provide desirable ventilation airflows to all the workspaces formed by the partitions. (au) (26 refs.)
Direct Numerical Simulation of Flow Over Passive Geometric Disturbances
Vizard, Alexander
It is well understood that delaying flow separation on a bluff body allows significant drag reduction, which is attractive in many applications. With this in mind, many separation control mechanisms, both active and passive, have been developed and tested to optimize the effects of this phenomenon. Although this idea is generally accepted, the physical occurrences in the near-wall region during transition that lead to separation delay are not well understood. The current study evaluates the impact of both spherical dimples, and sandgrain style roughness on downstream flow by performing direct numerical simulations over such geometries on a zero pressure gradient flat plate. It is shown that although dimples and random roughness of similar characteristic length scales exhibit similar boundary layer characteristics, dimples are more successful in developing high momentum in the vicinity of the wall. Additionally it is shown that increasing the relative size of the rough elements does not increase the near-wall momentum, and is undesirable in controlling separation. Finally, it is shown that the impact of roughness elements on the flow is more immediate, and that, for the case of one row of dimples and an equivalent area of roughness, the roughness patch is more successful in transitioning the near-wall region to a non-laminar state. It can be concluded from variation in the span of the flowfield for a single row of dimples that the size and orientation of the disturbance region is significant to the results.
Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash
Directory of Open Access Journals (Sweden)
Anik Keller
2013-09-01
Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.
[New approaches in pharmacology: numerical modelling and simulation].
Boissel, Jean-Pierre; Cucherat, Michel; Nony, Patrice; Dronne, Marie-Aimée; Kassaï, Behrouz; Chabaud, Sylvie
2005-01-01
The complexity of pathophysiological mechanisms is beyond the capabilities of traditional approaches. Many of the decision-making problems in public health, such as initiating mass screening, are complex. Progress in genomics and proteomics, and the resulting extraordinary increase in knowledge with regard to interactions between gene expression, the environment and behaviour, the customisation of risk factors and the need to combine therapies that individually have minimal though well documented efficacy, has led doctors to raise new questions: how to optimise choice and the application of therapeutic strategies at the individual rather than the group level, while taking into account all the available evidence? This is essentially a problem of complexity with dimensions similar to the previous ones: multiple parameters with nonlinear relationships between them, varying time scales that cannot be ignored etc. Numerical modelling and simulation (in silico investigations) have the potential to meet these challenges. Such approaches are considered in drug innovation and development. They require a multidisciplinary approach, and this will involve modification of the way research in pharmacology is conducted.
Developments in numerical simulation of IFE target and chamber physics
International Nuclear Information System (INIS)
Velarde, G.; Minguez, E.; Alonso, E.; Gil, J.M.; Malerba, L.; Marian, J.; Martel, P.; Martinez-Val, J.M.; Munoz, R.; Ogando, F.; Perlado, J.M.; Piera, M.; Reyes, S.; Rubiano, J.G.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.
2000-01-01
The work presented outlines the global frame given at the Institute of Nuclear Fusion (DENIM) for having an integral perspective of the different research areas with the development of Inertial Fusion for energy generation. The coupling of a new radiation transport (RT) solver with an existing multi-material fluid dynamics code using Adaptive Mesh Refinement (ARM) is presented in Section 2, including improvements and additional information about the solver precision. In Section 3, new developments in the atomic physics codes under target conditions, to determine populations, opacity data and emissivities have been performed. Exotic and innovative ideas about Inertial Fusion Energy (IFE), as catalytic fuels and Z-pinches have been explored, and they are explained in Section 4. Numerical simulations demonstrate important reductions in the tritium inventory. Section 5 is devoted to safety and environment of the IFE. Uncertainties analysis in activation calculations have been included in the ACAB activation code, and also calculations on pulse activation in IFE reactors and on the activation of target debris in NIF are presented. A comparison of the accidental releases of tritium from some IFE reactors computed using MACCS2 code is explained. Finally, Section 6 contains the research on the basic mechanisms of neutron damage in SiC (low-activation material) and FeCu alloy using the DENIM/LLNL molecular dynamics code MDCASK. (authors)
Direct numerical simulation of incompressible multiphase flow with phase change
Lee, Moon Soo; Riaz, Amir; Aute, Vikrant
2017-09-01
Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.
Numerical simulation of carbon dioxide effects in geothermal reservoirs
Energy Technology Data Exchange (ETDEWEB)
Moya, S.L.; Iglesias, E.R. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1995-03-01
We developed and coded a new equation of state (EOS) for water-carbon dioxide mixtures and coupled it to the TOUGH numerical simulator. This EOS is valid up to 350{degrees}C and 500 bar. Unlike previous thermodynamical models, it rigorously considers the non-ideal behavior of both components in the gaseous mixture and formally includes the effect of the compressibility of the liquid phase. We refer to the coupling of this EOS with TOUGH as TOUGH-DIOX. To complement this enhancement of TOUGH, we added indexed output files for easy selection and interpretation of results. We validated TOUGH-DIOX against published results. Furthermore we used TOUGH-DIOX to explore and compare mass and energy inflow performance relationships of geothermal wells with/without carbon dioxide (CO{sub 2}). Our results include the effects of a broad range of fluid and formation properties, initial conditions and history of reservoir production. This work contributes with generalized dimensionless inflow performance relationships appropriate for geothermal use.
Optimization and Numerical Simulation of Outlet of Twin Screw Extruder
Directory of Open Access Journals (Sweden)
Zhang Yuan
2018-01-01
Full Text Available In view of the unreasonable design of non-intermeshing counter-rotating twin screw extruder die, the problem of productivity reduction was discussed. Firstly, the mathematical model of extruder productivity was established. The extruder die model was improved. Secondly, the force analysis of twin screw extruder physical model was carried out. Meanwhile, A combination of mechanical analysis and numerical simulation was adopted. The velocity field, pressure field and viscosity field were calculated by Mini-Element interpolation method, linear interpolation method and Picard iterative convergence method respectively. The influence of die model on the quantity of each field before and after improvement was analyzed. The results show that the improved model had increased the rheological parameters of the flow field, the leakage and reverse flow decreased. Through post-processing calculation, the productivity of the third dies extruder was 10% higher than before. The research results provide a theoretical basis for the design and optimization of die model of non intermeshing counter-rotating twin screw extruder.
Direct numerical simulation of vector-controlled free jets
International Nuclear Information System (INIS)
Tsujimoto, K; Ao, K; Shakouchi, T; Ando, T
2011-01-01
We conduct DNS (direct numerical simulation) of vector controlled free jets. The inflow velocity of jet is periodically oscillated perpendicular to the jet axis. In order to realize the high accurate computation, a discretization in space is performed with hybrid scheme in which Fourier spectral and 6th order compact scheme are adopted. From visualized instantaneous vortex structures, it is found that the flow pattern considerably changes according to the oscillating frequency, i.e., according to the increasing the frequency, wave, bifurcating and flapping modes appear in turn. In order to quantify mixing efficiency under the vector control, as the mixing measure, statistical entropy is investigated. Compared to the uncontrolled jet, the mixing efficiency is improved in order of wavy, flapping and bifurcating modes. Thus the vector control can be expected for the improvement of mixing efficiency. Further to make clear the reason for the mixing enhancement, Snapshot POD and DMD method are applied. The primary flow structures under the vector control are demonstrated.
DIPOLE COLLAPSE AND DYNAMO WAVES IN GLOBAL DIRECT NUMERICAL SIMULATIONS
Energy Technology Data Exchange (ETDEWEB)
Schrinner, Martin; Dormy, Emmanuel [MAG (ENS/IPGP), LRA, Ecole Normale Superieure, 24 Rue Lhomond, 75252 Paris Cedex 05 (France); Petitdemange, Ludovic, E-mail: martin@schrinner.eu [Previously at Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg, Germany. (Germany)
2012-06-20
Magnetic fields of low-mass stars and planets are thought to originate from self-excited dynamo action in their convective interiors. Observations reveal a variety of field topologies ranging from large-scale, axial dipoles to more structured magnetic fields. In this article, we investigate more than 70 three-dimensional, self-consistent dynamo models in the Boussinesq approximation obtained by direct numerical simulations. The control parameters, the aspect ratio, and the mechanical boundary conditions have been varied to build up this sample of models. Both strongly dipolar and multipolar models have been obtained. We show that these dynamo regimes in general can be distinguished by the ratio of a typical convective length scale to the Rossby radius. Models with a predominantly dipolar magnetic field were obtained, if the convective length scale is at least an order of magnitude larger than the Rossby radius. Moreover, we highlight the role of the strong shear associated with the geostrophic zonal flow for models with stress-free boundary conditions. In this case the above transition disappears and is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. We interpret our results in terms of dynamo eigenmodes using the so-called test-field method. We can thus show that models in the dipolar regime are characterized by an isolated 'single mode'. Competing overtones become significant as the boundary to multipolar dynamos is approached. We discuss how these findings relate to previous models and to observations.
Numerical simulation of transitions between back discharge regimes
International Nuclear Information System (INIS)
Jansky, Jaroslav; Lemont, Florent; Bessieres, Delphine; Paillol, Jean
2014-01-01
This paper presents numerical simulations of transitions between back discharge regimes. Back discharge refers to any discharge initiated at or near a dielectric layer covering a passive electrode. In this work, a pinhole in a dielectric layer on a plane anode serves as a model for back discharge activity. We have studied transitions between back discharge regimes by varying the surface charge density on the dielectric layer and the electric field in front of the pinhole. From the variation of these two independent parameters, the back discharge regimes have been depicted as a mode diagram inspired by the experimental study of Masuda and Mizuno. The resulting diagram includes the different discharge regimes that are commonly observed in experiments. The propagation of a positive ionizing wave inside the pinhole toward its edge, and the resulting formation of a plasma zone at its exit constitute the onset stage of back discharge. From this stage, the transitions to volume discharge or surface discharge can occur. The volume discharge regime consists of the propagation of a discharge in space toward the cathode which can be superimposed with the propagation of a discharge above the dielectric layer surface. The diagram reveals the conditions for transitions between back discharge regimes. (authors)
Numerical simulation of responses for cased-hole density logging
International Nuclear Information System (INIS)
Wu, Wensheng; Fu, Yaping; Niu, Wei
2013-01-01
Stabilizing or stimulating oil production in old oil fields requires density logging in cased holes where open-hole logging data are either missing or of bad quality. However, measured values from cased-hole density logging are more severely influenced by factors such as fluid, casing, cement sheath and the outer diameter of the open-hole well compared with those from open-hole logging. To correctly apply the cased-hole formation density logging data, one must eliminate these influences on the measured values and study the characteristics of how the cased-hole density logging instrument responds to these factors. In this paper, a Monte Carlo numerical simulation technique was used to calculate the responses of the far detector of a cased-hole density logging instrument to in-hole fluid, casing wall thickness, cement sheath density and the formation and thus to obtain influence rules and response coefficients. The obtained response of the detector is a function of in-hole liquid, casing wall thickness, the casing's outer diameter, cement sheath density, open-hole well diameter and formation density. The ratio of the counting rate of the detector in the calibration well to that in the measurement well was used to get a fairly simple detector response equation and the coefficients in the equation are easy to acquire. These provide a new way of calculating cased-hole density through forward modelling methods. (paper)
Numerical simulations of turbulent jet ignition and combustion
Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad
2013-11-01
The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.
Numerical simulation of ion confinement in the Phaedrus plugs
International Nuclear Information System (INIS)
Horne, S.F.
1984-01-01
Neutral beams of up to 60 amps were injected into the plugs of the tandem mirror Phaedrus. Substantial heating of the target RF-sustained plasma has been observed, but fueling has been negligible. In order to understand the lack of significant fueling, a model of the trapping and loss processes occurring in the Phaedrus plug was developed, and is presented in this thesis. The model includes neutral beam effects, RF trapping, Coulomb losses, and charge exchange on background gas, in a framework which includes finite gyro-orbit effects. A numerical simulation based on the model is compared to data from 2XIIB and TMX, and shows good agreement. The model is then applied to the Phaedrus plugs, and compared to RF-sustained and neutral-beam data obtained during machine operation in hydrogen and deuterium. The modeling of the Phaedrus plugs indicates that during beam injection, a two-step process occurs that results in the rapid loss of ions. Charge exchange of trapped plasma on the energetic neutral beam causes rapid radial diffusion of the plasma, which then charge exchanges on the background gas, or is lost to the limiter. Because this is a finite gyro-orbit effect, increasing the plug magnetic field should improve the net beam fueling by reducing this diffusion. Results from the model indicate that increasing the plug midplane field from 2600 to 4000 gauss will improve the beam fueling significantly
Numerical simulation of natural convection in annuli with internal fins
International Nuclear Information System (INIS)
Ha, Man Yeong; Kim, Joo Goo
2004-01-01
The solution for the natural convection in internally finned horizontal annuli is obtained by using a numerical simulation of time-dependent and two-dimensional governing equations. The fins existing in annuli influence the flow pattern, temperature distribution and heat transfer rate. The variations of the fin configuration suppress or accelerate the free convective effects compared to those of the smooth tubes. The effects of fin configuration, number of fins and ratio of annulus gap width to the inner cylinder radius on the fluid flow and heat transfer in annuli are demonstrated by the distribution of the velocity vector, isotherms and streamlines. The governing equations are solved efficiently by using a parallel implementation. The technique is adopted for reduction of the computation cost. The parallelization is performed with the domain decomposition technique and message passing between sub-domains on the basis of the MPI library. The results from parallel computation reveal in consistency with those of the sequential program. Moreover, the speed-up ratio shows linearity with the number of processor
Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs
Negara, Ardiansyah
2015-11-09
Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients
Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs
Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu; Elgassier, Mokhtar; Wu, Yu-Shu
2015-01-01
Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients
Numerical simulation of pulverized coal combustion to reduce pollutants
International Nuclear Information System (INIS)
Mohammad Bagher Ayani; Behnam Rahmanian
2010-01-01
Full text: In this research, the numerical simulation of pollutant reduction and in a pulverized coal combustion at 2D combustion chamber have been studied. Finite volume method using structured grid arrangement was utilized for modeling the pulverized coal combustion. The pressure base algorithm and implicit solver has been employed to simulate non-premix combustion model. The air was diluted by some participative gaseous such as whose percentages varied from 0 % to 20 %. Participative gases and air were preheated by a high-temperature gas generator, and the preheated oxidizer temperature could achieve. The combustion simulation with the generalized finite rate chemistry model, referred to as the Magnussen model and the reacting flow with the mixture fraction PDF/ equilibrium chemistry model, referred to as the PDF model are studied. Quick scheme was adopted for the discretization of all convective terms of the advective transport equations. So, as a result of addition participative gases into oxidizer the rate of formation of pollutants as well as NO x suppressed. The addition only a few percent of halogen components can make some systems nonflammable. The effects of addition halogen components and non-reaction gaseous such as Helium and Argon are fuel dilution and its acts as catalysts in reducing the H atom concentration necessary for the chain branching reaction sequence. Moreover, they act like surface and they make the increment of surface ratio versus volume. Because of this, the number of radical conflicts and hence destruction them will be increase. Furthermore, the rate of formation of pollutants will be decreased if the halogen components and non-reaction gaseous injection will be increased. However, as a result of this research, in the case of injection in pulverized coal combustion the flame temperature is lower than Steam, Argon and Helium. So, the emission levels of carbon dioxide is significantly lower than other participative gases, but in this
Energy Technology Data Exchange (ETDEWEB)
Park, Jongpil; Jeong, Ji Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In spite of various efforts to understand hydraulic phenomena in a rod bundle containing deformed rods due to swelling and/or ballooning of clad, the studies for flow blockage due to spacer grid deformation have been limited. In the present work, 3D CFD analysis for flow blockage was performed to evaluate coolant flow within ACE7 fuel assemblies (FAs) containing a FA affected by a spacer grid deformation. The real geometry except for inner grids was used in the simulation and the region including inner grid was replaced by porous media. In the present work, the numerical simulation was performed to predict coolant flow within ACE7 FAs affected by a Mid grid deformation. The 3D CFD result shows that approximately 60 subchannel hydraulic diameter is required to fully recover coolant flow under normal operating condition.
Adaptive and dynamic meshing methods for numerical simulations
Acikgoz, Nazmiye
For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures. For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad
Numerical Simulation of Internal Waves in the Andaman Sea
Mohanty, Sachiko; Devendra Rao, Ambarukhana
2017-04-01
The interactions of barotropic tides with irregular bottom topography generate internal waves with high amplitude known as large-amplitude internal waves (LAIW) in the Andaman Sea. These waves are an important phenomena in the ocean due to their influence on the density structure and energy transfer into the region. These waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing, biogeochemical processes, etc. over the shelf-slope region. In the present study, energetics analysis of M2 internal tides over the Andaman Sea is carried out in detail by using a three-dimensional MIT general circulation ocean model (MITgcm). In-situ observations of temperature, conductivity and currents with high temporal resolution are used to validate the model simulations. From the spectral energy estimate of density, it is found that the peak estimate is associated with the semi-diurnal frequency at all the depths in both observations and model simulations. The baroclinic velocity characteristics, suggests that a multi-mode features of baroclinic tides are present at the buoy location. To understand the generation and propagation of internal tides over this region, energy flux and barotropic-to-baroclinic M2 tidal energy conversion rates are examined. The model simulation suggests that the internal tide is generated at multiple sites and propagate off of their respective generation sources. Most of the energy propagation in the Andaman Sea follows the 1000m isobath. The maximum horizontal kinetic energy follows the energy flux pattern over the domain and the available potential energy is found to be maximum in the north of the Andaman Sea.
Numerical simulation of radiation fog in complex terrain
Zhang, X.; Musson-Genon, L.; Carissimo, B.; Dupont, E.
2009-09-01
The interest for micro-scale modeling of the atmosphere is growing for environmental applications related, for example, to energy production, transport and urban development. The turbulence in the stable layers where pollutant dispersion is low and can lead to strong pollution events. This could be further complicated by the presence of clouds or fog and is specifically difficult in urban or industrial area due to the presence of buildings. In this context, radiation fog formation and dissipation over complex terrain were therefore investigated with a state-of-the-art model. This study is divided into two phases. The first phase is a pilot stage, which consist of employing a database from the ParisFog campaign which took place in the south of Paris during winter 2006-07 to assess the ability of the cloud model to reproduce the detailed structure of radiation fog. The second phase use the validated model for the study of influence of complex terrain on fog evolution. Special attention is given to the detailed and complete simulations and validation technique used is to compare the simulated results using the 3D cloud model of computational fluid dynamical software Code_Saturne with one of the best collected in situ data during the ParisFog campaign. Several dynamical, microphysical parameterizations and simulation conditions have been described. The resulting 3D cloud model runs at a horizontal resolution of 30 m and a vertical resolution comparable to the 1D model. First results look very promising and are able to reproduce the spatial distribution of fog. The analysis of the behavior of the different parameterized physical processes suggests that the subtle balance between the various processes is achieved.
A numerical model to simulate foams during devolatilization of polymers
Khan, Irfan; Dixit, Ravindra
2014-11-01
Customers often demand that the polymers sold in the market have low levels of volatile organic compounds (VOC). Some of the processes for making polymers involve the removal of volatiles to the levels of parts per million (devolatilization). During this step the volatiles are phase separated out of the polymer through a combination of heating and applying lower pressure, creating foam with the pure polymer in liquid phase and the volatiles in the gas phase. The efficiency of the devolatilization process depends on predicting the onset of solvent phase change in the polymer and volatiles mixture accurately based on the processing conditions. However due to the complex relationship between the polymer properties and the processing conditions this is not trivial. In this work, a bubble scale model is coupled with a bulk scale transport model to simulate the processing conditions of polymer devolatilization. The bubble scale model simulates the nucleation and bubble growth based on the classical nucleation theory and the popular ``influence volume approach.'' As such it provides the information of bubble size distribution and number density inside the polymer at any given time and position. This information is used to predict the bulk properties of the polymer and its behavior under the applied processing conditions. Initial results of this modeling approach will be presented.
Numerical simulations of rough contacts between viscoelastic materials
Spinu, S.; Cerlinca, D.
2017-08-01
The durability of the mechanical contact is often plagued by surface-related phenomena like rolling contact fatigue, wear or crack propagation, which are linked to the important gradients of stress arising in the contacting bodies due to interaction at the asperity level. The semi-analytical computational approach adopted in this paper is based on a previously reported algorithm capable of simulating the contact between bodies with arbitrary limiting surfaces and viscoelastic behaviour, which is enhanced and adapted for the contact of real surfaces with microtopography. As steep slopes at the asperity level inevitably lead to localized plastic deformation at the tip of the asperities that are first brought into contact, the viscoelastic behaviour is amended by limiting the maximum value of the pressure on the contact area to that of the material hardness, according to the Tabor equation. In this manner, plasticity is considered in a simplified manner that assures the knowledge of the contact area and of the pressure distribution without estimation of the residual state. The main advantage of this approach is the preservation of the algorithmic complexity, allowing the simulation of very fine meshes capable of capturing particular features of the investigated contacting surface. The newly advanced model is expected to predict the contact specifics of rough surfaces as resulting from various manufacturing processes, thus assisting the design of durable machine elements using elastomers or rubbers.
Numerical simulation of 3-D turbulent flow through entire stage in a multistage centrifugal pump
International Nuclear Information System (INIS)
Huang, S.; Islam, M.F.; Liu, P.
2005-01-01
A three-dimensional turbulent flow through a multistage centrifugal pump is numerically simulated using a commercial CFD software package. The simulation and analysis include flow fields in rotating impeller and stationary diffuser and is completed in a multiple reference frame. The standard k-ε turbulence model is applied. The analysis of the simulation reveals that the reverse flows exist in the zone near the impeller exit and diffuser entrance, resulting in flow field asymmetric and unsteady. There is a considerable interference on velocity field at impeller exit due to the interaction between impeller blades and diffuser vanes. The hydraulic performance is connected and evaluated with the 3-D computational flow field. The current computation is verified by comparing predicted and measured head. (author)
Directory of Open Access Journals (Sweden)
Gong Haijun
2013-03-01
Full Text Available A unified numerical model for simulating solidification transport phenomena (STP of steel slab in electromagnetic continuous casting (EMCC process was developed. In order to solve the multi-physics fields coupled problem conveniently, the complicated bidirectional coupled process between EM and STP was simplified as a unidirectional one, and a FEM/FVM-combined numerical simulation technique was adopted. The traveling magnetic fields (TMFs applied to the EMCC process were calculated using the ANSYS11.0 software, and then the EM-data output by ANSYS were converted to FVM-format using a data-format conversion program developed previously. Thereafter, the governing equations were solved using a pressure-based Direct-SIMPLE algorithm. The simulation results of the STP in CC-process show that, due to the influences of Lorentz force and Joule heat, the two strong circulating flows and the temperature field can be obviously damped and changed once TMF with one pair of poles (1-POPs or 2-POPs is applied, which would accordingly improve the quality of casting. It was found in the present research that the integrated actions of 2-POPs TMF are superior to 1-POPs. All the computations indicate that the present numerical model of EM-STP as well as the FEM/FVM-combined technique is successful.
A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events
DEFF Research Database (Denmark)
Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei
2017-01-01
numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS...
Schwarz, Massimiliano; Cohen, Denis
2016-04-01
Rainfall is one of the major triggering factor of shallow landslide around the world. The increase of soil moisture in the soil influences the stability of a slope through the increase of soil bulk density, the reduction of soil apparent cohesion (due to suction stress), and the increase in pore water pressure.The spatio-temporal transformations of such properties of soil are know to be heterogeneous and under constant change. For instance, there may be a condition where, in cracked clay-soil, water, during a rain event, produces a rapid increase of pore water pressure along preferential flow-paths (crack or roots), while soil moisture and suction within the soil matrix change minimally. An another site in a sandy soil, the situation might be very different where the increase of soil moisture and pore water pressure, and the decrease of soil suction take place more or less simultaneously across the entire soil profile. In both of these cases topography plays a major role in determining the accumulation of water along the slope through different subsurface flows intensities and directions. In many documented cases in the Alps, shallow landslides may also be triggered by the punctual exfiltration of water from bedrock or weathered geological strata. The hydro-geological characteristics of the catchment control this mechanism. These different situations aim to give an idea of the large spectrum of hydrological triggering conditions of shallow landslides. The heterogeneities of these hydrological conditions represent a difficult issue in modeling shallow landslide triggering mechanisms. In the simplest models, hydrology is assumed to influence changes in pore water pressure only, mostly using one dimensional vertical infiltration models. More advanced models consider changes in apparent cohesion due to changes in soil moisture or include more complex hydrological models to simulate water flow and distribution during a rainfall event. However, most models at the