Analysis of control rod behavior based on numerical simulation
International Nuclear Information System (INIS)
Ha, D. G.; Park, J. K.; Park, N. G.; Suh, J. M.; Jeon, K. L.
2010-01-01
The main function of a control rod is to control core reactivity change during operation associated with changes in power, coolant temperature, and dissolved boron concentration by the insertion and withdrawal of control rods from the fuel assemblies. In a scram, the control rod assemblies are released from the CRDMs (Control Rod Drive Mechanisms) and, due to gravity, drop rapidly into the fuel assemblies. The control rod insertion time during a scram must be within the time limits established by the overall core safety analysis. To assure the control rod operational functions, the guide thimbles shall not obstruct the insertion and withdrawal of the control rods or cause any damage to the fuel assembly. When fuel assembly bow occurs, it can affect both the operating performance and the core safety. In this study, the drag forces of the control rod are estimated by a numerical simulation to evaluate the guide tube bow effect on control rod withdrawal. The contact condition effects are also considered. A full scale 3D model is developed for the evaluation, and ANSYS - commercial numerical analysis code - is used for this numerical simulation. (authors)
Scott, L Ridgway
2011-01-01
Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...
3D numerical simulation and analysis of railgun gouging mechanism
Directory of Open Access Journals (Sweden)
Jin-guo Wu
2016-04-01
Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.
Numerical simulation for the design analysis of kinematic Stirling engines
International Nuclear Information System (INIS)
Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.
2015-01-01
Highlights: • A thermodynamic analysis for kinematic Stirling engines was presented. • The analysis integrated thermal, mechanical and thermodynamic interactions. • The analyses considered geometrical and operational parameters. • The results allowed to map the performance of the engine. • The analysis allow the design assessment of Stirling engines. - Abstract: The Stirling engine is a closed-cycle regenerative system that presents good theoretical properties. These include a high thermodynamic efficiency, low emissions levels thanks to a controlled external heat source, and multi-fuel capability among others. However, the performance of actual prototypes largely differs from the mentioned theoretical potential. Actual engine prototypes present low electrical power outputs and high energy losses. These are mainly attributed to the complex interaction between the different components of the engine, and the challenging heat transfer and fluid dynamics requirements. Furthermore, the integration of the engine into decentralized energy systems such as the Combined Heat and Power systems (CHP) entails additional complications. These has increased the need for engineering tools that could assess design improvements, considering a broader range of parameters that would influence the engine performance when integrated within overall systems. Following this trend, the current work aimed to implement an analysis that could integrate the thermodynamics, and the thermal and mechanical interactions that influence the performance of kinematic Stirling engines. In particular for their use in Combined Heat and Power systems. The mentioned analysis was applied for the study of an engine prototype that presented very low experimental performance. The numerical methodology was selected for the identification of possible causes that limited the performance. This analysis is based on a second order Stirling engine model that was previously developed and validated. The
Deterministic sensitivity analysis for the numerical simulation of contaminants transport
International Nuclear Information System (INIS)
Marchand, E.
2007-12-01
The questions of safety and uncertainty are central to feasibility studies for an underground nuclear waste storage site, in particular the evaluation of uncertainties about safety indicators which are due to uncertainties concerning properties of the subsoil or of the contaminants. The global approach through probabilistic Monte Carlo methods gives good results, but it requires a large number of simulations. The deterministic method investigated here is complementary. Based on the Singular Value Decomposition of the derivative of the model, it gives only local information, but it is much less demanding in computing time. The flow model follows Darcy's law and the transport of radionuclides around the storage site follows a linear convection-diffusion equation. Manual and automatic differentiation are compared for these models using direct and adjoint modes. A comparative study of both probabilistic and deterministic approaches for the sensitivity analysis of fluxes of contaminants through outlet channels with respect to variations of input parameters is carried out with realistic data provided by ANDRA. Generic tools for sensitivity analysis and code coupling are developed in the Caml language. The user of these generic platforms has only to provide the specific part of the application in any language of his choice. We also present a study about two-phase air/water partially saturated flows in hydrogeology concerning the limitations of the Richards approximation and of the global pressure formulation used in petroleum engineering. (author)
Khabaza, I M
1960-01-01
Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput
Numerical Simulation and Performance Analysis of Twin Screw Air Compressors
Directory of Open Access Journals (Sweden)
W. S. Lee
2001-01-01
Full Text Available A theoretical model is proposed in this paper in order to study the performance of oil-less and oil-injected twin screw air compressors. Based on this model, a computer simulation program is developed and the effects of different design parameters including rotor profile, geometric clearance, oil-injected angle, oil temperature, oil flow rate, built-in volume ratio and other operation conditions on the performance of twin screw air compressors are investigated. The simulation program gives us output variables such as specific power, compression ratio, compression efficiency, volumetric efficiency, and discharge temperature. Some of the above results are then compared with experimentally measured data and good agreement is found between the simulation results and the measured data.
Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation.
Wang, Lan; Zhang, Jie; Zhang, Wen; Yang, Hui-Lin; Luo, Zong-Ping
2017-01-01
We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20-3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science.
Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation
Zhang, Jie; Zhang, Wen; Yang, Hui-Lin
2017-01-01
We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20–3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science. PMID:28116309
Energy Technology Data Exchange (ETDEWEB)
Han, Bing; Jing, Hongyuan; Liu, Jianping; Wu, Zhangzhong [PetroChina Pipeline RandD Center, Langfang, Hebei (China); Hao, Jianbin [School of Petroleum Engineering, Southwest Petroleum University, Chengdu, Sichuan (China)
2010-07-01
Landslides have a serious impact on the integrity of oil and gas pipelines in the tough terrain of Western China. This paper introduces a solving method of axial stress, which uses numerical simulation and regression analysis for the pipelines subjected to landslides. Numerical simulation is performed to analyze the change regularity of pipe stresses for the five vulnerability assessment indexes, which are: the distance between pipeline and landslide tail; the thickness of landslide; the inclination angle of landslide; the pipeline length passing through landslide; and the buried depth of pipeline. A pipeline passing through a certain landslide in southwest China was selected as an example to verify the feasibility and effectiveness of this method. This method has practical applicability, but it would need large numbers of examples to better verify its reliability and should be modified accordingly. Also, it only considers the case where the direction of the pipeline is perpendicular to the primary slip direction of the landslide.
Rao, G Shanker
2006-01-01
About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...
Comparison of scale analysis and numerical simulation for saturated zone convective mixing processes
International Nuclear Information System (INIS)
Oldenburg, C.M.
1998-01-01
Scale analysis can be used to predict a variety of quantities arising from natural systems where processes are described by partial differential equations. For example, scale analysis can be applied to estimate the effectiveness of convective missing on the dilution of contaminants in groundwater. Scale analysis involves substituting simple quotients for partial derivatives and identifying and equating the dominant terms in an order-of-magnitude sense. For free convection due to sidewall heating of saturated porous media, scale analysis shows that vertical convective velocity in the thermal boundary layer region is proportional to the Rayleigh number, horizontal convective velocity is proportional to the square root of the Rayleigh number, and thermal boundary layer thickness is proportional to the inverse square root of the Rayleigh number. These scale analysis estimates are corroborated by numerical simulations of an idealized system. A scale analysis estimate of mixing time for a tracer mixing by hydrodynamic dispersion in a convection cell also agrees well with numerical simulation for two different Rayleigh numbers. Scale analysis for the heating-from-below scenario produces estimates of maximum velocity one-half as large as the sidewall case. At small values of the Rayleigh number, this estimate is confirmed by numerical simulation. For larger Rayleigh numbers, simulation results suggest maximum velocities are similar to the sidewall heating scenario. In general, agreement between scale analysis estimates and numerical simulation results serves to validate the method of scale analysis. Application is to radioactive repositories
NCG behavior in SAGD : a numerical simulation analysis
Energy Technology Data Exchange (ETDEWEB)
Heron, C.; Sullivan, L.; Atkinson, I. [Athabasca Oil Sands Trust, Calgary, AB (Canada); Thimm, H. [Thimm Petroleum Technologies, Calgary, AB (Canada)
2008-10-15
Non-condensable gases (NCG) are now being tested for use in steam assisted gravity drainage (SAGD) processes. However, it is difficult to model NCG behaviour due to the presence of carbon dioxide (CO{sub 2}) and hydrogen sulphide (H2{sub S}) produced gas impurities. This paper suggested that gas production in SAGD is best understood in terms of the dissolution of gases in produced liquids. This paper reviewed the results of various methane injection SAGD pilot projects. A thermodynamic theory was then developed to model and optimize a method of modelling the effects of NCG in a steam zone. The model used a new set of equilibrium values to describe methane exchange between the oil-gas, water-gas, and oil-water phases. The effects of high temperature on equations of state were also considered. Distribution coefficients for the solution gas were represented by 3 equilibria obtained using a solubility power law. Data were then converted to mole fractions in order to obtain a K-value. The simulations were used to predict the impact of methane injection on SAGD performance. The study showed that the injected NCG controlled steam zone rise rates and provided an insulated buffer between the SAGD steam chamber and upper pressure zones. The NCGs provided an insulating barrier that lessened the negative impact of the overlying zones. It was concluded that NCG co-injection processes can be used to control steam chamber growth, particularly in thief zones or areas with poor cap rock coverage. 15 refs., 2 tabs., 7 figs.
International Nuclear Information System (INIS)
Okano, Yasushi; Ohira, Hiroaki
1998-08-01
In the early stage of sodium leak event of liquid metal fast breeder reactor, LMFBR, liquid sodium flows out from a piping, and ignition and combustion of liquid sodium droplet might occur under certain environmental condition. Compressible forced air flow, diffusion of chemical species, liquid sodium droplet behavior, chemical reactions and thermodynamic properties should be evaluated with considering physical dependence and numerical connection among them for analyzing combustion of sodium liquid droplet. A direct numerical simulation code was developed for numerical analysis of sodium liquid droplet in forced convection air flow. The numerical code named COMET, 'Sodium Droplet COmbustion Analysis METhodology using Direct Numerical Simulation in 3-Dimensional Coordinate'. The extended MAC method was used to calculate compressible forced air flow. Counter diffusion among chemical species is also calculated. Transport models of mass and energy between droplet and surrounding atmospheric air were developed. Equation-solving methods were used for computing multiphase equilibrium between sodium and air. Thermodynamic properties of chemical species were evaluated using dynamic theory of gases. Combustion of single sphere liquid sodium droplet in forced convection, constant velocity, uniform air flow was numerically simulated using COMET. Change of droplet diameter with time was closely agree with d 2 -law of droplet combustion theory. Spatial distributions of combustion rate and heat generation and formation, decomposition and movement of chemical species were analyzed. Quantitative calculations of heat generation and chemical species formation in spray combustion are enabled for various kinds of environmental condition by simulating liquid sodium droplet combustion using COMET. (author)
Brezinski, C
2012-01-01
Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<
Stress Analysis of Non-Ferrous Metals Welds by Numerical Simulation
Directory of Open Access Journals (Sweden)
Kravarikova Helena
2017-01-01
Full Text Available Thermal energy welded material unevenly heated and thus supports the creation of tension. During the fusing process welding transient tensions generated in the welded material. Generation of the transient tensions depends on the thermal expansion and fixed permanently welded parts. Tensions are the result of the interaction of material particles. For welded parts and constructions it is necessary to know the size and direction of application of tensions. The emerging tensions can cause local change or a total deformation of welded materials. Deformations and residual stresses impair the performance of a welded construction, reduces the stability of the parts. To reduce or eliminate of action or a screening direction stresses and strains it is necessary to know the mechanism of their emergence. It is now possible to examine the emergence of tensions numerical experiments on any model using numerical simulation using FEM. Results of numerical experiment is the analysis of stress and deformation course. In the plane the tension it divided into normal σ and τ tangential folders. Decomposition stress on components simplifies the stress analysis. The results obtained from numerical analysis are correct to predict the stress distribution and size. The paper presents the results of numerical experiments stress analysis solutions fillet welds using FEM numerical simulation of welding of non-ferrous metals.
Jacques, Ian
1987-01-01
This book is primarily intended for undergraduates in mathematics, the physical sciences and engineering. It introduces students to most of the techniques forming the core component of courses in numerical analysis. The text is divided into eight chapters which are largely self-contained. However, with a subject as intricately woven as mathematics, there is inevitably some interdependence between them. The level of difficulty varies and, although emphasis is firmly placed on the methods themselves rather than their analysis, we have not hesitated to include theoretical material when we consider it to be sufficiently interesting. However, it should be possible to omit those parts that do seem daunting while still being able to follow the worked examples and to tackle the exercises accompanying each section. Familiarity with the basic results of analysis and linear algebra is assumed since these are normally taught in first courses on mathematical methods. For reference purposes a list of theorems used in the t...
Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames
Energy Technology Data Exchange (ETDEWEB)
Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222, Terrassa, Barcelona (Spain); de Goey, L.P.H. [Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2008-04-15
The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)
Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis
Qian, Shizhi
2012-01-01
Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect
Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding
Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling
2018-03-01
In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.
Continuous limit of a crowd motion and herding model: Analysis and numerical simulations
Pietschmann, Jan-Frederik
2011-11-01
In this paper we study the continuum limit of a cellular automaton model used for simulating human crowds with herding behaviour. We derive a system of non-linear partial differential equations resembling the Keller-Segel model for chemotaxis, however with a non-monotone interaction. The latter has interesting consequences on the behaviour of the model\\'s solutions, which we highlight in its analysis. In particular we study the possibility of stationary states, the formation of clusters and explore their connection to congestion. We also introduce an efficient numerical simulation approach based on an appropriate hybrid discontinuous Galerkin method, which in particular allows flexible treatment of complicated geometries. Extensive numerical studies also provide a better understanding of the strengths and shortcomings of the herding model, in particular we examine trapping effects of crowds behind nonconvex obstacles. © American Institute of Mathematical Sciences.
Continuous limit of a crowd motion and herding model: Analysis and numerical simulations
Pietschmann, Jan-Frederik; Markowich, Peter Alexander; Burger, Martin
2011-01-01
In this paper we study the continuum limit of a cellular automaton model used for simulating human crowds with herding behaviour. We derive a system of non-linear partial differential equations resembling the Keller-Segel model for chemotaxis, however with a non-monotone interaction. The latter has interesting consequences on the behaviour of the model's solutions, which we highlight in its analysis. In particular we study the possibility of stationary states, the formation of clusters and explore their connection to congestion. We also introduce an efficient numerical simulation approach based on an appropriate hybrid discontinuous Galerkin method, which in particular allows flexible treatment of complicated geometries. Extensive numerical studies also provide a better understanding of the strengths and shortcomings of the herding model, in particular we examine trapping effects of crowds behind nonconvex obstacles. © American Institute of Mathematical Sciences.
Numerical simulation in astrophysics
International Nuclear Information System (INIS)
Miyama, Shoken
1985-01-01
There have been many numerical simulations of hydrodynamical problems in astrophysics, e.g. processes of star formation, supernova explosion and formation of neutron stars, and general relativistic collapse of star to form black hole. The codes are made to be suitable for computing such problems. In astrophysical hydrodynamical problems, there are the characteristics: problems of self-gravity or external gravity acting, objects of scales very large or very short, objects changing by short period or long time scale, problems of magnetic force and/or centrifugal force acting. In this paper, we present one of methods of numerical simulations which may satisfy these requirements, so-called smoothed particle methods. We then introduce the methods briefly. Then, we show one of the applications of the methods to astrophysical problem (fragmentation and collapse of rotating isothermal cloud). (Mori, K.)
Numerical simulation of plasmas
International Nuclear Information System (INIS)
Dnestrovskii, Y.N.; Kostomarov, D.P.
1986-01-01
This book contains a modern consistent and systematic presentation of numerical computer simulation of plasmas in controlled thermonuclear fusion. The authors focus on the Soviet research in mathematical modelling of Tokamak plasmas, and present kinetic hydrodynamic and transport models with special emphasis on the more recent hybrid models. Compared with the first edition (in Russian) this book has been greatly revised and updated. (orig./WL)
Comments on numerical simulations
International Nuclear Information System (INIS)
Sato, T.
1984-01-01
The author comments on a couple of things about numerical simulation. One is just about the philosophical discussion that is, spontaneous or driven. The other thing is the numerical or technical one. Frankly, the author didn't want to touch on the technical matter because this should be a common sense one for those who are working at numerical simulation. But since many people take numerical simulation results at their face value, he would like to remind you of the reality hidden behind them. First, he would point out that the meaning of ''driven'' in driven reconnection is different from that defined by Schindler or Akasofu. The author's definition is closer to Axford's definition. In the spontaneous case, for some unpredicted reason an excess energy of the system is suddenly released at a certain point. However, one does not answer how such an unstable state far beyond a stable limit is realized in the magnetotail. In the driven case, there is a definite energy buildup phase starting from a stable state; namely, energy in the black box increases from a stable level subject to an external source. When the state has reached a certain position, the energy is released suddenly. The difference between driven and spontaneous is whether the cause (plasma flow) to trigger reconnection is specified or reconnection is triggered unpredictably. Another difference is that in driven reconnection the reconnection rate is dependent on the speed of the external plasma flow, but in spontaneous reconnection the rate is dependent on the internal condition such as the resistivity
Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis
International Nuclear Information System (INIS)
Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.
2013-01-01
Highlights: ► Quasi direct numerical simulations (q-DNSs) of a pebble bed configuration have been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS of temperature and respective turbulent heat fluxes are extensively reported in this paper. -- Abstract: Good prediction of the flow and heat transfer phenomena in the pebble bed core of a high temperature reactor (HTR) is a challenge for available turbulence models, which still require to be validated. While experimental data are generally desirable in this validation process, due to the complex geometric configuration and measurement difficulties, a very limited amount of data is currently available. On the other hand, direct numerical simulation (DNS) is considered an accurate simulation technique, which may serve as an alternative for validating turbulence models. In the framework of the present study, quasi-direct numerical simulation (q-DNS) of a single face cubic centered pebble bed is performed, which will serve as a reference for the validation of different turbulence modeling approaches in order to perform calculations for a randomly arranged pebble bed. These simulations were performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Results related to flow field (mean, RMS and covariance of velocity) have been presented in Part-I, whereas, in the present article, we focus our attention to the analysis of the temperature field. A wide range of qualitative and quantitative data for the thermal field (mean, RMS and turbulent heat flux) has been generated
Confidence in Numerical Simulations
Energy Technology Data Exchange (ETDEWEB)
Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-23
This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.
Confidence in Numerical Simulations
International Nuclear Information System (INIS)
Hemez, Francois M.
2015-01-01
This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to ''forecast,'' that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists ''think.'' This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. ''Confidence'' derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.
Miloichikova, I. A.; Bespalov, V. I.; Krasnykh, A. A.; Stuchebrov, S. G.; Cherepennikov, Yu. M.; Dusaev, R. R.
2018-04-01
Simulation by the Monte Carlo method is widely used to calculate the character of ionizing radiation interaction with substance. A wide variety of programs based on the given method allows users to choose the most suitable package for solving computational problems. In turn, it is important to know exactly restrictions of numerical systems to avoid gross errors. Results of estimation of the feasibility of application of the program PCLab (Computer Laboratory, version 9.9) for numerical simulation of the electron energy distribution absorbed in beryllium, aluminum, gold, and water for industrial, research, and clinical beams are presented. The data obtained using programs ITS and Geant4 being the most popular software packages for solving the given problems and the program PCLab are presented in the graphic form. A comparison and an analysis of the results obtained demonstrate the feasibility of application of the program PCLab for simulation of the absorbed energy distribution and dose of electrons in various materials for energies in the range 1-20 MeV.
Numerical simulation and analysis for low-frequency rock physics measurements
Dong, Chunhui; Tang, Genyang; Wang, Shangxu; He, Yanxiao
2017-10-01
In recent years, several experimental methods have been introduced to measure the elastic parameters of rocks in the relatively low-frequency range, such as differential acoustic resonance spectroscopy (DARS) and stress-strain measurement. It is necessary to verify the validity and feasibility of the applied measurement method and to quantify the sources and levels of measurement error. Relying solely on the laboratory measurements, however, we cannot evaluate the complete wavefield variation in the apparatus. Numerical simulations of elastic wave propagation, on the other hand, are used to model the wavefield distribution and physical processes in the measurement systems, and to verify the measurement theory and analyze the measurement results. In this paper we provide a numerical simulation method to investigate the acoustic waveform response of the DARS system and the quasi-static responses of the stress-strain system, both of which use axisymmetric apparatus. We applied this method to parameterize the properties of the rock samples, the sample locations and the sensor (hydrophone and strain gauges) locations and simulate the measurement results, i.e. resonance frequencies and axial and radial strains on the sample surface, from the modeled wavefield following the physical experiments. Rock physical parameters were estimated by inversion or direct processing of these data, and showed a perfect match with the true values, thus verifying the validity of the experimental measurements. Error analysis was also conducted for the DARS system with 18 numerical samples, and the sources and levels of error are discussed. In particular, we propose an inversion method for estimating both density and compressibility of these samples. The modeled results also showed fairly good agreement with the real experiment results, justifying the effectiveness and feasibility of our modeling method.
A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
Ling, Hong; Luo, Ercang; Dai, Wei
2006-12-22
Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.
2D Numerical Simulation and Sensitive Analysis of H-Darrieus Wind Turbine
Directory of Open Access Journals (Sweden)
Seyed Mohammad E. Saryazdi
2018-02-01
Full Text Available Recently, a lot of attention has been devoted to the use of Darrieus wind turbines in urban areas. The aerodynamics of a Darrieus turbine are very complex due to dynamic stall and changing forces on the turbine triggered by changing horizontal angles. In this study, the aerodynamics of H-rotor vertical axis wind turbine (VAWT has been studied using computational fluid dynamics via two different turbulence models. Shear stress transport (SST k-ω turbulence model was used to simulate a 2D unsteady model of the H-Darrieus turbine. In order to complete this simulation, sensitivity analysis of the effective turbine parameters such as solidity factor, airfoil shape, wind velocity and shaft diameter were done. To simulate the flow through the turbine, a 2D simplified computational domain has been generated. Then fine mesh for each case consisting of different turbulence models and dimensions has been generated. Each mesh in this simulation dependent on effective parameters consisted of domain size, mesh quality, time step and total revolution. The sliding mesh method was applied to evaluate the unsteady interaction between the stationary and rotating components. Previous works just simulated turbine, while in our study sensitivity analysis of effective parameters was done. The simulation results closely match the experimental data, providing an efficient and reliable foundation to study wind turbine aerodynamics. This also demonstrates computing the best value of the effective parameter. The sensitivity analysis revealed best value of the effective parameter that could be used in the process of designing turbine. This work provides the first step in developing an accurate 3D aerodynamic modeling of Darrieus wind turbines. Article History: Received :August 19th 2017; Received: December 15th 2017; Accepted: Januari 14th 2018; Available online How to Cite This Article: Saryazdi, S. M. E. and Boroushaki, M. (2018 2D Numerical Simulation and Sensitive
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
Direct numerical simulation and statistical analysis of turbulent convection in lead-bismuth
Energy Technology Data Exchange (ETDEWEB)
Otic, I.; Grotzbach, G. [Forschungszentrum Karlsruhe GmbH, Institut fuer Kern-und Energietechnik (Germany)
2003-07-01
Improved turbulent heat flux models are required to develop and analyze the reactor concept of an lead-bismuth cooled Accelerator-Driven-System. Because of specific properties of many liquid metals we have still no sensors for accurate measurements of the high frequency velocity fluctuations. So, the development of the turbulent heat transfer models which are required in our CFD (computational fluid dynamics) tools needs also data from direct numerical simulations of turbulent flows. We use new simulation results for the model problem of Rayleigh-Benard convection to show some peculiarities of the turbulent natural convection in lead-bismuth (Pr = 0.025). Simulations for this flow at sufficiently large turbulence levels became only recently feasible because this flow requires the resolution of very small velocity scales with the need for recording long-wave structures for the slow changes in the convective temperature field. The results are analyzed regarding the principle convection and heat transfer features. They are also used to perform statistical analysis to show that the currently available modeling is indeed not adequate for these fluids. Basing on the knowledge of the details of the statistical features of turbulence in this convection type and using the two-point correlation technique, a proposal for an improved statistical turbulence model is developed which is expected to account better for the peculiarities of the heat transfer in the turbulent convection in low Prandtl number fluids. (authors)
Wacks, Daniel H.
2016-12-02
The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.
Non-linear belt transient analysis. A hybrid model for numerical belt conveyor simulation
Energy Technology Data Exchange (ETDEWEB)
Harrison, A. [Scientific Solutions, Inc., Aurora, CO (United States)
2008-07-01
Frictional and rolling losses along a running conveyor are discussed due to their important influence on wave propagation during starting and stopping. Hybrid friction models allow belt rubber losses and material flexing to be included in the initial tension calculations prior to any dynamic analysis. Once running tensions are defined, a numerical integration method using non-linear stiffness gradients is used to generate transient forces during starting and stopping. A modified Euler integration technique is used to simulate the entire starting and stopping cycle in less than 0.1 seconds. The procedure enables a faster scrutiny of unforeseen conveyor design issues such as low belt tension zones and high forces at drives. (orig.)
Wacks, Daniel H.; Chakraborty, Nilanjan; Klein, Markus; Arias, Paul G.; Im, Hong G.
2016-01-01
The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.
International Nuclear Information System (INIS)
Rahimian, Mohammad.
1981-06-01
The aim of this work is to analyze, by numerical simulation the characteristics of the stresses and deformations at the bottom of cracks when plasticity is taken into account. This analysis is performed as from theoretical results laid down in the literature and makes it possible to understand the different solutions obtained from Hencky's deformation law or from the incremental theory. The role of plastic deformation is discussed in depth in the study of fatigue cracks. The problems linked to the fixed crack are studied in the first two chapters. The problems linked to the propagation of cracks are discussed in the following chapters. The fourth chapter is an application of the preceding results and knowledge to fatigue [fr
Numerical aerodynamic simulation (NAS)
International Nuclear Information System (INIS)
Peterson, V.L.; Ballhaus, W.F. Jr.; Bailey, F.R.
1984-01-01
The Numerical Aerodynamic Simulation (NAS) Program is designed to provide a leading-edge computational capability to the aerospace community. It was recognized early in the program that, in addition to more advanced computers, the entire computational process ranging from problem formulation to publication of results needed to be improved to realize the full impact of computational aerodynamics. Therefore, the NAS Program has been structured to focus on the development of a complete system that can be upgraded periodically with minimum impact on the user and on the inventory of applications software. The implementation phase of the program is now under way. It is based upon nearly 8 yr of study and should culminate in an initial operational capability before 1986. The objective of this paper is fivefold: 1) to discuss the factors motivating the NAS program, 2) to provide a history of the activity, 3) to describe each of the elements of the processing-system network, 4) to outline the proposed allocation of time to users of the facility, and 5) to describe some of the candidate problems being considered for the first benchmark codes
Numerical simulations and linear stability analysis of a boundary layer developed on wavy surfaces
Siconolfi, Lorenzo; Camarri, Simone; Fransson, Jens H. M.
2015-11-01
The development of passive methods leading to a laminar to turbulent transition delay in a boundary layer (BL) is a topic of great interest both for applications and academic research. In literature it has been shown that a proper and stable spanwise velocity modulation can reduce the growth rate of Tollmien-Schlichting (TS) waves and delay transition. In this study, we investigate numerically the possibility of obtaining a stabilizing effect of the TS waves through the use of a spanwise sinusoidal modulation of a flat plate. This type of control has been already successfully investigated experimentally. An extensive set of direct numerical simulations is carried out to study the evolution of a BL flow developed on wavy surfaces with different geometric characteristics, and the results will be presented here. Moreover, since this configuration is characterized by a slowly-varying flow field in streamwise direction, a local stability analysis is applied to define the neutral stability curves for the BL flow controlled by this type of wall modifications. These results give the possibility of investigating this control strategy and understanding the effect of the free parameters on the stabilization mechanism.
International Nuclear Information System (INIS)
Traore, Ph; Daaboul, M; Louste, Ch
2010-01-01
In this paper a comparative study between numerical and experimental results from particle image velocimetry (PIV) measurements is presented in the case of two-dimensional electrohydrodynamic plumes that arise when a sharp metallic blade, submerged in non-conducting liquids, supports a high electric potential. Experiments and numerical simulations have been conducted in order to compare both the approaches. Very good agreement has been found through velocity profiles and velocity fields which proves the relevance of our numerical model. For high potentials the jet flow issued forth from the blade becomes unsteady and starts to flap on the vertical wall. Some snapshots of the temporal evolution of the isocontours of charge density which is not accessible from experiment are presented thanks to the numerical simulation.
Directory of Open Access Journals (Sweden)
Ben Magolan
2017-09-01
Full Text Available Direct Numerical Simulation (DNS serves as an irreplaceable tool to probe the complexities of multiphase flow and identify turbulent mechanisms that elude conventional experimental measurement techniques. The insights unlocked via its careful analysis can be used to guide the formulation and development of turbulence models used in multiphase computational fluid dynamics simulations of nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by Bolotnov (Reτ = 400 and Lu–Tryggvason (Reτ = 150, examining single-point statistics of mean and turbulent liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and time. Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent stresses and energy budgets. A reduction in temporal and spatial correlations for the streamwise turbulent stress (uu is also observed at wall-normal distances of y+ = 15, y/δ = 0.5, and y/δ = 1.0. These observations motivate the need for adaptation of length and time scales for bubble-induced turbulence models and serve as guidelines for future analyses of DNS bubbly flow data.
Development of numerical simulation technology for high resolution thermal hydraulic analysis
International Nuclear Information System (INIS)
Yoon, Han Young; Kim, K. D.; Kim, B. J.; Kim, J. T.; Park, I. K.; Bae, S. W.; Song, C. H.; Lee, S. W.; Lee, S. J.; Lee, J. R.; Chung, S. K.; Chung, B. D.; Cho, H. K.; Choi, S. K.; Ha, K. S.; Hwang, M. K.; Yun, B. J.; Jeong, J. J.; Sul, A. S.; Lee, H. D.; Kim, J. W.
2012-04-01
A realistic simulation of two phase flows is essential for the advanced design and safe operation of a nuclear reactor system. The need for a multi dimensional analysis of thermal hydraulics in nuclear reactor components is further increasing with advanced design features, such as a direct vessel injection system, a gravity driven safety injection system, and a passive secondary cooling system. These features require more detailed analysis with enhanced accuracy. In this regard, KAERI has developed a three dimensional thermal hydraulics code, CUPID, for the analysis of transient, multi dimensional, two phase flows in nuclear reactor components. The code was designed for use as a component scale code, and/or a three dimensional component, which can be coupled with a system code. This report presents an overview of the CUPID code development and preliminary assessment, mainly focusing on the numerical solution method and its verification and validation. It was shown that the CUPID code was successfully verified. The results of the validation calculations show that the CUPID code is very promising, but a systematic approach for the validation and improvement of the physical models is still needed
Numerical simulation and analysis of confined turbulent buoyant jet with variable source
El-Amin, Mohamed
2016-01-23
In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ɛ turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average deviation of the simulated temperature by realizable k-ɛ turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear variation that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experiments for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number.
Numerical simulation and analysis of confined turbulent buoyant jet with variable source
El-Amin, Mohamed; Al-Ghamdi, Abdulmajeed; Salama, Amgad; Sun, Shuyu
2016-01-01
In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ɛ turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average deviation of the simulated temperature by realizable k-ɛ turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear variation that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experiments for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number.
Analysis of the coherent and turbulent stresses of a numerically simulated rough wall pipe
Chan, L.; MacDonald, M.; Chung, D.; Hutchins, N.; Ooi, A.
2017-04-01
A turbulent rough wall flow in a pipe is simulated using direct numerical simulation (DNS) where the roughness elements consist of explicitly gridded three-dimensional sinusoids. Two groups of simulations were conducted where the roughness semi-amplitude h+ and the roughness wavelength λ+ are systematically varied. The triple decomposition is applied to the velocity to separate the coherent and turbulent components. The coherent or dispersive component arises due to the roughness and depends on the topological features of the surface. The turbulent stress on the other hand, scales with the friction Reynolds number. For the case with the largest roughness wavelength, large secondary flows are observed which are similar to that of duct flows. The occurrence of these large secondary flows is due to the spanwise heterogeneity of the roughness which has a spacing approximately equal to the boundary layer thickness δ.
Analysis by numerical simulations of non-linear phenomenons in vertical pump rotor dynamic
International Nuclear Information System (INIS)
Bediou, J.; Pasqualini, G.
1992-01-01
Controlling dynamical behavior of main coolant pumps shaftlines is an interesting subject for the user and the constructor. The first is mainly concerned by the interpretation of on field observed behavior, monitoring, reliability and preventive maintenance of his machines. The second must in addition manage with sometimes contradictory requirements related to mechanical design and performances optimization (shaft diameter reduction, clearance,...). The use of numerical modeling is now a classical technique for simple analysis (rough prediction of critical speeds for instance) but is still limited, in particular for vertical shaftline especially when equipped with hydrodynamic bearings, due to the complexity of encountered phenomenons in that type of machine. The vertical position of the shaftline seems to be the origin of non linear dynamical behavior, the analysis of which, as presented in the following discussion, requires specific modelization of fluid film, particularly for hydrodynamic bearings. The low static load generally no longer allows use of stiffness and damping coefficients classically calculated by linearizing fluid film equations near a stable static equilibrium position. For the analysis of such machines, specific numerical models have been developed at Electricite de France in a package for general rotordynamics analysis. Numerical models are briefly described. Then an example is precisely presented and discussed to illustrate some considered phenomenons and their consequences on machine behavior. In this example, the authors interpret the observed behavior by using numerical models, and demonstrate the advantage of such analysis for better understanding of vertical pumps rotordynamic
Numerical simulation of welding
DEFF Research Database (Denmark)
Hansen, Jan Langkjær; Thorborg, Jesper
Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...
A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis
Directory of Open Access Journals (Sweden)
Linda J.S. Allen
2017-05-01
Full Text Available Some mathematical methods for formulation and numerical simulation of stochastic epidemic models are presented. Specifically, models are formulated for continuous-time Markov chains and stochastic differential equations. Some well-known examples are used for illustration such as an SIR epidemic model and a host-vector malaria model. Analytical methods for approximating the probability of a disease outbreak are also discussed. Keywords: Branching process, Continuous-time Markov chain, Minor outbreak, Stochastic differential equation, 2000 MSC: 60H10, 60J28, 92D30
Energy Technology Data Exchange (ETDEWEB)
Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)
2015-12-31
A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.
Duan, Lian; Choudhari, Meelan M.
2014-01-01
Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.
Fourier analysis of Solar atmospheric numerical simulations accelerated with GPUs (CUDA).
Marur, A.
2015-12-01
Solar dynamics from the convection zone creates a variety of waves that may propagate through the solar atmosphere. These waves are important in facilitating the energy transfer between the sun's surface and the corona as well as propagating energy throughout the solar system. How and where these waves are dissipated remains an open question. Advanced 3D numerical simulations have furthered our understanding of the processes involved. Fourier transforms to understand the nature of the waves by finding the frequency and wavelength of these waves through the simulated atmosphere, as well as the nature of their propagation and where they get dissipated. In order to analyze the different waves produced by the aforementioned simulations and models, Fast Fourier Transform algorithms will be applied. Since the processing of the multitude of different layers of the simulations (of the order of several 100^3 grid points) would be time intensive and inefficient on a CPU, CUDA, a computing architecture that harnesses the power of the GPU, will be used to accelerate the calculations.
Energy Technology Data Exchange (ETDEWEB)
Kowal, G [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, 05508-900, Sao Paulo (Brazil); Falceta-Goncalves, D A; Lazarian, A, E-mail: kowal@astro.iag.usp.br [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)
2011-05-15
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of
International Nuclear Information System (INIS)
Kowal, G; Falceta-Goncalves, D A; Lazarian, A
2011-01-01
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of
Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation
International Nuclear Information System (INIS)
L-Cancelos, R.; Varas, F.; Viéitez, I.; Martín, E.
2016-01-01
Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved. (paper)
Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation
L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.
2016-03-01
Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.
International Nuclear Information System (INIS)
Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.
2013-01-01
Highlights: ► Quasi direct numerical simulations (q-DNS) of a pebble bed configuration has been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS and covariance of velocity field are extensively reported in this paper. -- Abstract: High temperature reactors (HTR) are being considered for deployment around the world because of their excellent safety features. The fuel is embedded in a graphite moderator and can sustain very high temperatures. However, the appearance of hot spots in the pebble bed cores of HTR's may affect the integrity of the pebbles. A good prediction of the flow and heat transport in such a pebble bed core is a challenge for available turbulence models and such models need to be validated. In the present article, quasi direct numerical simulations (q-DNS) of a pebble bed configuration are reported, which may serve as a reference for the validation of different turbulence modeling approaches. Such approaches can be used in order to perform calculations for a randomly arranged pebble bed. Simulations are performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Detailed flow analyses have shown complex physics flow behavior and make this case challenging for turbulence model validation. Hence, a wide range of qualitative and quantitative data for velocity and temperature field have been extracted for this benchmark. In the present article (part I), results related to the flow field (mean, RMS and covariance of velocity) are documented and discussed in detail. Moreover, the discussion regarding the temperature field will be published in a separate article
Numerical simulation of flood barriers
Srb, Pavel; Petrů, Michal; Kulhavý, Petr
This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.
Directory of Open Access Journals (Sweden)
Xuan Wu
2013-01-01
Full Text Available Direct numerical simulation has been performed to study a polymer drag-reducing channel flow by using a discrete-element model. And then, wavelet analyses are employed to investigate the multiresolution characteristics of velocity components based on DNS data. Wavelet decomposition is applied to decompose velocity fluctuation time series into ten different frequency components including approximate component and detailed components, which show more regular intermittency and burst events in drag-reducing flow. The energy contribution, intermittent factor, and intermittent energy are calculated to investigate characteristics of different frequency components. The results indicate that energy contributions of different frequency components are redistributed by polymer additives. The energy contribution of streamwise approximate component in drag-reducing flow is up to 82%, much more than 25% in the Newtonian flow. Feature of turbulent multiscale structures is shown intuitively by continuous wavelet transform, verifying that turbulent structures become much more regular in drag-reducing flow.
Numerical Simulation and Analysis of Gas-Liquid Flow in a T-Junction Microchannel
Directory of Open Access Journals (Sweden)
Hongtruong Pham
2012-01-01
Full Text Available Gas-liquid flow in microchannels is widely used in biomedicine, nanotech, sewage treatment, and so forth. Particularly, owing to the high qualities of the microbubbles and spheres produced in microchannels, it has a great potential to be used in ultrasound imaging and controlled drug release areas; therefore, gas-liquid flow in microchannels has been the focus in recent years. In this paper, numerical simulation of gas-liquid flows in a T-junction microchannel was carried out with computational fluid dynamics (CFD software FLUENT and the Volume-of-Fluid (VOF model. The distribution of velocity, pressure, and phase of fluid in the microchannel was obtained, the pressure distribution along the channel walls was analyzed in order to give a better understanding on the formation of microbubbles in the T-junction microchannel.
Numerical simulation of laser resonators
International Nuclear Information System (INIS)
Yoo, J. G.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.
2004-01-01
We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.
International Nuclear Information System (INIS)
Cheng, Y.P.; Lee, T.S.; Low, H.T.
2008-01-01
In this paper, the conjugate heat transfer in electronic cooling is numerically simulated with the newly proposed algorithm CLEARER on collocated grid. Because the solid heat source and substrate are isolated from the boundary, special attention is given to deal with the velocity and temperature in the solid region in the full field computation. The influence of openings on the substrate, heat source height and their distribution along the substrate on the maximum temperature and overall Nusselt number is investigated. The numerical results show that the openings on the substrate can enhance the heat transfer as well as increasing the heat source height, meanwhile, by arranging the heat sources coarsely in the front part and densely in the rear part of the substrate, the thermal performance can also be increased. Then the results are analyzed from the viewpoint of field synergy principle, and it is shown that the heat transfer improvement can all be attributed to the better synergy between the velocity field and temperature field, which may offer some guidance in the design of electronic devices
Numerical simulation and analysis of cavitation flows in a double suction centrifugal pump
International Nuclear Information System (INIS)
Meng, G; Tan, L; Cao, S L; Jian, W; Liu, W W; Jiang, D J
2015-01-01
Cavitation is an unsteady phenomenon, which is nearly inevitable in pumps. It would degrade the pump performance, generate vibrations and noises, and even erode pump flow passage components. The double suction centrifugal pump at design flow rate and large flow rate is numerically simulated using the k-ω turbulence model and the mass transport cavitation model. As a result, the calculated variation of pump head with pump inlet pressure agreed well with the experimental data. The results demonstrate that the numerical model and method can accurately predict the cavitation flows in a double suction centrifugal pump. The cavitation characteristics are analysed in great details. In addition, based on the calculation results, the reason that the plunge of pump head curve is revealed. It is found that the steep fall of pump head happens when the cavity reaches the blade to blade throat and the micro-vortex group appears at the back of the blade suction side. At the same time, this practice can provide guidance for the optimal design of double suction pumps
Numerical analysis for simulation of condensing vapor bubble using CFD-ACE+
International Nuclear Information System (INIS)
Goyal, P.; Dutta, Anu; Singh, R.K.
2014-01-01
The motion of bubbles is very complex. They may be subject to break-up or coalescence and may appear to move with a spiraling, zigzagging or rocking behavior. Recently, many studies have been carried out to numerically simulate the rising bubble in various conditions by using VOF approach. However, all the above studies were limited to adiabatic bubble where heat and mass transfer between the phases were not considered. In the present work, an attempt was made to capture the behaviour of condensing bubble flowing in a channel, by using commercial CFD code CFD-ACE+ through VOF model. A User-Defined Function was developed to simulate interfacial heat and mass transfer during condensation. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. For validation of CFD-ACE UDF of bubble condensation, a comparison was made with the literature quoted experimental data and it agreed well. Through this work an emphasis was put on VOF module along with the development of an UDF for bubble condensation in CFD-ACE+ code. This theoretical study is motivated by the future CFD application and the intent to investigate the capabilities of the CFD-ACE+ package. (author)
A Numerical Simulation of Elastoplastic Contact Analysis of Compressor by Overspeeding
Directory of Open Access Journals (Sweden)
Aihua Liao
2014-04-01
Full Text Available This study analyzes the stress distribution of 3D elastoplastic contact problems by using the FE parametric quadratic programming (PQP method derived from a 3D FE model based on parametric variational principle (PVP. We numerically analyze a 24-blade compressor by combining centrifugal loading with interference-fit one. To accelerate computation, calculation is simplified by structural modeling via multisubstructuring, aiming to deal with FE-simulated computer aided design (CAD conveniently. We then analyze the relationships between the maximum residual stresses of the compressor posterior to prestressing and overspeed rpms, and we also study the distribution and magnitude of the contact stresses of the compressor in working conditions after overspeed prestressing. Moreover, we thoroughly discuss the distribution and magnitude of the contact stresses of shaft-shaft sleeve-impeller in working conditions. Relative displacement can be prevented and contact stress can be kept uniform due to the nonuniform initial amount of interference in overspeed prestressing. This paper summarizes the FEM simulation results and provides reference data for improving the design and processing of compressor impellers, indicating that overspeed is indispensable in manufacture.
Directory of Open Access Journals (Sweden)
A. Malizia
2014-01-01
Full Text Available The large volume vacuum systems are used in many industrial operations and research laboratories. Accidents in these systems should have a relevant economical and safety impact. A loss of vacuum accident (LOVA due to a failure of the main vacuum vessel can result in a fast pressurization of the vessel and consequent mobilization dispersion of hazardous internal material through the braches. It is clear that the influence of flow fields, consequence of accidents like LOVA, on dust resuspension is a key safety issue. In order to develop this analysis an experimental facility is been developed: STARDUST. This last facility has been used to improve the knowledge about LOVA to replicate a condition more similar to appropriate operative condition like to kamaks. By the experimental data the boundary conditions have been extrapolated to give the proper input for the 2D thermofluid-dynamics numerical simulations, developed by the commercial CFD numerical code. The benchmark of numerical simulation results with the experimental ones has been used to validate and tune the 2D thermofluid-dynamics numerical model that has been developed by the authors to replicate the LOVA conditions inside STARDUST. In present work, the facility, materials, numerical model, and relevant results will be presented.
Numerical simulation in plasma physics
International Nuclear Information System (INIS)
Samarskii, A.A.
1980-01-01
Plasma physics is not only a field for development of physical theories and mathematical models but also an object of application of the computational experiment comprising analytical and numerical methods adapted for computers. The author considers only MHD plasma physics problems. Examples treated are dissipative structures in plasma; MHD model of solar dynamo; supernova explosion simulation; and plasma compression by a liner. (Auth.)
Numerical simulation of Higgs models
International Nuclear Information System (INIS)
Jaster, A.
1995-10-01
The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)
International Nuclear Information System (INIS)
Owolabi, Kolade M.
2016-01-01
The aim of this paper is to examine pattern formation in the sub— and super-diffusive scenarios and compare it with that of classical or standard diffusive processes in two-component fractional reaction-diffusion systems that modeled a predator-prey dynamics. The focus of the work concentrates on the use of two separate mathematical techniques, we formulate a Fourier spectral discretization method as an efficient alternative technique to solve fractional reaction-diffusion problems in higher-dimensional space, and later advance the resulting systems of ODEs in time with the adaptive exponential time-differencing solver. Obviously, the fractional Fourier approach is able to achieve spectral convergence up to machine precision regardless of the fractional order α, owing to the fact that our approach is able to give full diagonal representation of the fractional operator. The complexity of the dynamics in this system is theoretically discussed and graphically displayed with some examples and numerical simulations in one, two and three dimensions.
Directory of Open Access Journals (Sweden)
Saraswathi Ananthavel
2016-06-01
Full Text Available Power system researches are mainly focused in enhancing the available power capacities of the existing transmission lines. But still, no prominent solutions have been made due to several factors that affect the transmission lines which include the length, aging of the cables and losses on generation, transmission and distribution etc. This paper exploited the integration of static synchronous compensator (STATCOM and superconducting magnetic energy storage (SMES which is then connected to existing power transmission line for enhancing the available power transfer capacity (ATC. STATCOM is power electronic voltage source converter (VSC which is connected to the transmission system for shunt reactive power and harmonics compensation. SMES is a renowned clean energy storage technology. Feasibility of the proposed power system can control the real as well as reactive power flow independently between the transmission lines and STATCOM-(SMES units. Complete proposed power system is implemented in numerical simulation software (Matlab/Simulink and its performance is validated based on obtained investigation results.
Energy Technology Data Exchange (ETDEWEB)
Mao, Jinlong; Zuo, Zhengxing; Li, Wen; Feng, Huihua [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China)
2011-04-15
A free-piston linear alternator (FPLA) is being developed by the Beijing Institute of Technology to improve the thermal efficiency relative to conventional crank-driven engines. A two-stroke scavenging process recharges the engine and is crucial to realizing the continuous operation of a free-piston engine. In order to study the FPLA scavenging process, the scavenging system was configured using computational fluid dynamics. As the piston dynamics of the FPLA are different to conventional crank-driven two-stroke engines, a time-based numerical simulation program was built using Matlab to define the piston's motion profiles. A wide range of design and operating options were investigated including effective stroke length, valve overlapping distance, operating frequency and charging pressure to find out their effects on the scavenging performance. The results indicate that a combination of high effective stroke length to bore ratio and long valve overlapping distance with a low supercharging pressure has the potential to achieve high scavenging and trapping efficiencies with low short-circuiting losses. (author)
Directory of Open Access Journals (Sweden)
Xingtuan Yang
2015-05-01
Full Text Available A direct numerical simulation study of the characteristics of macroscopic and microscopic rotating motions in swirling jets confined in a rectangular flow domain is carried out. The different structures of vortex cores for different swirl levels are illustrated. It is found that the vortex cores of low swirl flows are of regular cylindrical-helix patterns, whereas those of the high swirl flows are characterized by the formation of the bubble-type vortex breakdown followed by the radiant processing vortex cores. The results of mean velocity fields show the general procedures of vortex origination. Moreover, the effects of macroscopic and microscopic rotating motions with respect to the mean and fluctuation fields of the swirling flows are evaluated. The microscopic rotating effects, especially the effects with respect to the turbulent fluctuation motion, are increasingly intermittent with the increase in the swirl levels. In contrast, the maximum value of the probability density functions with respect to the macroscopic rotating effects of the fluctuation motion occurs at moderate swirl levels since the macroscopic rotating effects are attenuated by the formation of the bubble vortex breakdown with a region of stagnant fluids at supercritical swirl levels.
Henderson, Michael
1997-08-01
The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.
Combining Narrative and Numerical Simulation
DEFF Research Database (Denmark)
Hansen, Mette Sanne; Ladeby, Klaes Rohde; Rasmussen, Lauge Baungaard
2011-01-01
for decision makers to systematically test several different outputs of possible solutions in order to prepare for future consequences. The CSA can be a way to evaluate risks and address possible unforeseen problems in a more methodical way than either guessing or forecasting. This paper contributes...... to the decision making in operations and production management by providing new insights into modelling and simulation based on the combined narrative and numerical simulation approach as a tool for strategy making. The research question asks, “How can the CSA be applied in a practical context to support strategy...... making?” The paper uses a case study where interviews and observations were carried out in a Danish corporation. The CSA is a new way to address decision making and has both practical value and further expands the use of strategic simulation as a management tool....
Introductory numerical analysis
Pettofrezzo, Anthony J
2006-01-01
Written for undergraduates who require a familiarity with the principles behind numerical analysis, this classical treatment encompasses finite differences, least squares theory, and harmonic analysis. Over 70 examples and 280 exercises. 1967 edition.
International Nuclear Information System (INIS)
2007-01-01
The present report introduces main results of investigations on precise tsunami evaluation methods, which were carried out from the viewpoint of safety evaluation for nuclear power facilities and deliberated by the Tsunami Evaluation Subcommittee. A framework for the probabilistic tsunami hazard analysis (PTHA) based on logic tree is proposed and calculation on the Pacific side of northeastern Japan is performed as a case study. Tsunami motions with dispersion and wave breaking were investigated both experimentally and numerically. The numerical simulation method is verified for its practicability by applying to a historical tsunami. Tsunami force is also investigated and formulae of tsunami pressure acting on breakwaters and on building due to inundating tsunami are proposed. (author)
Numerical simulation of fire vortex
Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.
2018-05-01
The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.
Theoretical analysis and numerical simulation of Parrondo's paradox game in space
International Nuclear Information System (INIS)
Xie Nenggang; Chen Yun; Ye Ye; Xu Gang; Wang Lingang; Wang Chao
2011-01-01
Highlights: → A multi-agent spatial Parrondo game model is designed. → Double actions between individual and its neighbors are discussed. → The weak and strong paradox conditions are established by theoretical analysis. → Research results demonstrate some new biological points. → Competition is an adaptive behavior on the population level too. - Abstract: A multi-agent spatial Parrondo game model is designed according to the cooperative Parrondo's paradox proposed by Toral. The model is composed of game A and game B. Game A is a zero-sum game between individuals, reflecting competitive interaction between an individual and its neighbors. The winning or losing probability of one individual in game B depends on its neighbors' winning or losing states, reflecting the dependence that individuals has on microhabitat and the overall constraints that the microhabitat has on individuals. By using the analytical approach based on discrete-time Markov chain, we analyze game A, game B and the random combination of game A+B, and obtain corresponding stationary distribution probability and mathematical expectations. We have established conditions of the weak and strong forms of the Parrondo effect, and compared the computer simulation results with the analytical results so as to verify their validity. The analytical results reflect that competition results in the ratchet effect of game B, which generates Parrondo's Paradox that the combination of the losing games can produce a winning result.
Theoretical analysis and numerical simulation of Parrondo's paradox game in space
Energy Technology Data Exchange (ETDEWEB)
Xie Nenggang, E-mail: xienenggang@yahoo.com.cn [School of Mechanical Engineering, Anhui University of Technology, Maanshan, Anhui Province 243002 (China); Chen Yun; Ye Ye; Xu Gang; Wang Lingang; Wang Chao [School of Mechanical Engineering, Anhui University of Technology, Maanshan, Anhui Province 243002 (China)
2011-06-15
Highlights: > A multi-agent spatial Parrondo game model is designed. > Double actions between individual and its neighbors are discussed. > The weak and strong paradox conditions are established by theoretical analysis. > Research results demonstrate some new biological points. > Competition is an adaptive behavior on the population level too. - Abstract: A multi-agent spatial Parrondo game model is designed according to the cooperative Parrondo's paradox proposed by Toral. The model is composed of game A and game B. Game A is a zero-sum game between individuals, reflecting competitive interaction between an individual and its neighbors. The winning or losing probability of one individual in game B depends on its neighbors' winning or losing states, reflecting the dependence that individuals has on microhabitat and the overall constraints that the microhabitat has on individuals. By using the analytical approach based on discrete-time Markov chain, we analyze game A, game B and the random combination of game A+B, and obtain corresponding stationary distribution probability and mathematical expectations. We have established conditions of the weak and strong forms of the Parrondo effect, and compared the computer simulation results with the analytical results so as to verify their validity. The analytical results reflect that competition results in the ratchet effect of game B, which generates Parrondo's Paradox that the combination of the losing games can produce a winning result.
Directory of Open Access Journals (Sweden)
Michał Lipian
2016-01-01
Full Text Available Different numerical computation methods used to develop a methodology for fast, efficient, reliable design and comparison of Diffuser-Augmented Wind Turbine (DAWT geometries are presented. The demand for such methods is evident, following the multitude of geometrical parameters that influence the flow character through ducted turbines. The results of the Actuator Disk Model (ADM simulations will be confronted with a simulation method of higher order of accuracy, i.e. the 3D Fully-resolved Rotor Model (FRM in the rotor design point. Both will be checked for consistency with the experimental results measured in the wind tunnel at the Institute of Turbo-machinery (IMP, Lodz University of Technology (TUL. An attempt to find an efficient method (with a compromise between accuracy and design time for the flow analysis pertinent to the DAWT is a novel approach presented in this paper.
Plasma modelling and numerical simulation
International Nuclear Information System (INIS)
Van Dijk, J; Kroesen, G M W; Bogaerts, A
2009-01-01
Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)
Zhang, Kaiyin; Zhang, Yulong; Li, Ji; Wang, Qiuling
2016-05-23
The photo-thermal effect has been hypothesised to be one of the most possible biophysical mechanisms for laser-cochlea stimulation. However, there is a lack of studies to date for direct assessing laser heating in humans due to the large body of evidence required to demonstrate safety and efficacy. Instead, the majority focus on animals like the guinea pig, from which a number of valuable results have been gained. However, in light of the increasing need to improve laser safety, it has became necessary to find out whether studies on animals can shed light on safe laser parameters in the human cochlea. Hence, we conducted this contrastive analysis of laser heating between the human and guinea pig cochlea with the aim of assisting further investigations in this field. In this work, a 3D symmetrical model was adopted to simplify the spiraled cochlea. With attention focused on the effect of heat conduction, the time-dependent heat equation was solved using finite element method with the COMSOL Script. In the simulations, cochleae with different sizes and various boundary thermal conditions were utilized. Laser heating in both cochleae has a similar trend. In the first stage, or at the beginning of the laser heating, both cochleae increased their temperatures rapidly. In the second stage in which the laser heating reached a quasi-steady stage, the peak temperatures began to rise slowly as more laser pulses were applied. However, three differences of the laser heating were observed. The first is regarding the temperature rise. The results show that laser heating in guinea pig is higher than that in human under the same laser parameters. The second difference is the fluctuation of temperature rise at the center of the modiolus. There is a larger fluctuation of temperature rise in the guinea pig cochlea, compared with that in the human cochlea. The third one is the time for reaching a steady thermal state. The results show that the guinea pig cochlea takes longer time to
Li, Junye; Hu, Jinglei; Wang, Binyu; Sheng, Liang; Zhang, Xinming
2018-03-01
In order to investigate the effect of abrasive flow polishing surface variable diameter pipe parts, with high precision dispensing needles as the research object, the numerical simulation of the process of polishing high precision dispensing needle was carried out. Analysis of different volume fraction conditions, the distribution of the dynamic pressure and the turbulence viscosity of the abrasive flow field in the high precision dispensing needle, through comparative analysis, the effectiveness of the abrasive grain polishing high precision dispensing needle was studied, controlling the volume fraction of silicon carbide can change the viscosity characteristics of the abrasive flow during the polishing process, so that the polishing quality of the abrasive grains can be controlled.
Abdollahzadehsangroudi, Mohammadmahdi
2014-01-01
The aim of this thesis is to investigate and develop different numerical methodologies for modeling the Dielectric Barrier discharge (DBD) plasma actuators for flow control purposes. Two different modeling approaches were considered; one based on Plasma-fluid model and the other based on a phenomenological model. A three component Plasma fluid model based on the transport equations of charged particles was implemented in this thesis in OpenFOAM, using several techniques to redu...
Numerical simulation of large deformation polycrystalline plasticity
International Nuclear Information System (INIS)
Inal, K.; Neale, K.W.; Wu, P.D.; MacEwen, S.R.
2000-01-01
A finite element model based on crystal plasticity has been developed to simulate the stress-strain response of sheet metal specimens in uniaxial tension. Each material point in the sheet is considered to be a polycrystalline aggregate of FCC grains. The Taylor theory of crystal plasticity is assumed. The numerical analysis incorporates parallel computing features enabling simulations of realistic models with large number of grains. Simulations have been carried out for the AA3004-H19 aluminium alloy and the results are compared with experimental data. (author)
Numerical simulations and conformal analysis of growing and branching negative discharge streamers
Montijn, C.; Meulenbroek, B.; Ebert, U.; Hundsdorfer, W.
2005-01-01
The dynamics of an anode-directed streamer can be described by advection-diffusion equations for the charged particles, including a local field-dependent impact ionization term, and coupled to the Poisson equation for the electric field. We present the results of new simulations that use a local
Energy Technology Data Exchange (ETDEWEB)
Quang, Pham; Nghiep, Do Minh [Hanoi University of Science and Technology, Hanoi (Viet Nam)
2016-03-15
The plastic deformation behavior of pure Ti during equal channel angular pressing (ECAP) is simulated using the three-dimension finite volume method and is experimentally investigated. The calculated effective strain and effective stress distributions and histories are analyzed to understand the local and global deformation characteristics. The predicted plastic deformation behavior of the Ti workpiece during the ECAP process was compared with the theoretical total strain for every pass at RAM speed v of 10 mm/s and at constant temperature of 400 ℃. The simulated strain and stress distributions are homogenous in the central region of the ECAP processed Ti. The experimental ECAP performed with four, eight, and twelve passes at 400 ℃ results in refined grain sizes of approximately 5-10 µm, 0.4⁓0.5 µm and 0.1⁓0.2 µm, respectively.
Numerical Simulation of Unsteady Compressible Flow in Convergent Channel: Pressure Spectral Analysis
Czech Academy of Sciences Publication Activity Database
Pořízková, P.; Kozel, Karel; Horáček, Jaromír
2012-01-01
Roč. 2012, č. 545120 (2012), s. 1-9 ISSN 1110-757X R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : finite volume method * simulation of flow in vibrating glottis * biomechanics of voice Subject RIV: BI - Acoustics Impact factor: 0.834, year: 2012 http://www.hindawi.com/journals/jam/2012/545120/
Numerical methods used in simulation
International Nuclear Information System (INIS)
Caseau, Paul; Perrin, Michel; Planchard, Jacques
1978-01-01
The fundamental numerical problem posed by simulation problems is the stability of the resolution diagram. The system of the most used equations is defined, since there is a family of models of increasing complexity with 3, 4 or 5 equations although only models with 3 and 4 equations have been used extensively. After defining what is meant by explicit or implicit, the best established stability results is given for one-dimension problems and then for two-dimension problems. It is shown that two types of discretisation may be defined: four and eight point diagrams (in one or two dimensions) and six and ten point diagrams (in one or two dimensions). To end, some results are given on problems that are not usually treated very much, i.e. non-asymptotic stability and the stability of diagrams based on finite elements [fr
Hu, Ping; Liu, Li-zhong; Zhu, Yi-guo
2013-01-01
Over the last 15 years, the application of innovative steel concepts in the automotive industry has increased steadily. Numerical simulation technology of hot forming of high-strength steel allows engineers to modify the formability of hot forming steel metals and to optimize die design schemes. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming focuses on hot and cold forming theories, numerical methods, relative simulation and experiment techniques for high-strength steel forming and die design in the automobile industry. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming introduces the general theories of cold forming, then expands upon advanced hot forming theories and simulation methods, including: • the forming process, • constitutive equations, • hot boundary constraint treatment, and • hot forming equipment and experiments. Various calculation methods of cold and hot forming, based on the authors’ experience in commercial CAE software f...
Numerical analysis of bifurcations
International Nuclear Information System (INIS)
Guckenheimer, J.
1996-01-01
This paper is a brief survey of numerical methods for computing bifurcations of generic families of dynamical systems. Emphasis is placed upon algorithms that reflect the structure of the underlying mathematical theory while retaining numerical efficiency. Significant improvements in the computational analysis of dynamical systems are to be expected from more reliance of geometric insight coming from dynamical systems theory. copyright 1996 American Institute of Physics
International Nuclear Information System (INIS)
Song Yuntao
2004-01-01
It can provide an ultrahigh vacuum location for the plasma operation. In order to improve its vacuum degree and attain a high quality operation environment for plasma, it is very important to proceed 250 degree C baking out to clear the wall before the plasma operation. The paper firstly gives two kinds of structures for the baking of the vacuum vessel, in which one is the baking by electricity and another is baking by the nitrogen gas. Secondly based on the numerical simulation and analysis, some results have been attained such as the baking power, temperature field distribution and thermal stress for the vacuum vessel, which can provide some valuable theory basis for the engineering design and optimization of the baking system of the HT-7U vacuum vessel or other similar super-conducting tokamak devices
International Nuclear Information System (INIS)
Chun, Moon-Hyun; Jeong, Eun-Soo
1983-01-01
A new computer code entitled KREWET has been developed in an effort to improve the accuracy and applicability of the existing reflood heat transfer simulation computer code. Sample calculations for temperature histories and heat transfer coefficient are made using KREWET code and the results are compared with the predictions of REFLUX, QUEN1D, and the PWR-FLECHT data for various conditions. These show favourable agreement in terms of clad temperature versus time. For high flooding rates (5-15cm/sec) and high pressure (∼413 Kpa), reflood predictions are reasonably well predicted by KREWET code as well as with other codes. For low flooding rates (less than ∼4cm/sec) and low pressure (∼138Kpa), predictions show considerable error in evaluating the rewet position versus time. This observation is common to all the codes examined in the present work
International Nuclear Information System (INIS)
Chun, M.-H.; Jeong, E.-S.
1983-01-01
A new computer code entitled KREWET has been developed in an effort to improve the accuracy and applicability of the existing reflood heat transfer simulation computer code. Sample calculations for temperature histories and heat transfer coefficient are made using KREWET code and the results are compared with the predictions of REFLUX, QUENID, and the PWR-FLECHT data for various conditions. These show favorable agreement in terms of clad temperature versus time. For high flooding rates (5-15cm/sec) and high pressure (approx. =413 Kpa), reflood predictions are reasonably well predicted by KREWET code as well as with other codes. For low flooding rates (less than approx. =4cm/sec) and low pressure (approx. =138 Kpa), predictions show considerable error in evaluating the rewet position versus time. This observation is common to all the codes examined in the present work
Numerical simulation and analysis of ball valve three-dimensional flow based on CFD
International Nuclear Information System (INIS)
Zhang, S C; Zhang, Y L; Fang, Z M
2012-01-01
The new rotor oil-gas mixture pump that added ball valves in its export is a kind of innovative products, which can better adapt to the oil and gas mixed condition. In order to explore the rule of flow field in the export ball valve of new rotor oil-gas mixture pump, established the 3 d model of ball valve flow field was established. Using the FLUENT software, combining the standard k-ε turbulent model with multiphase flow technology and adopting the SIMPLE algorithm to simulate the 3 d gas-liquid two phase flow field in export ball valve of new rotor oil-gas mixture pump. In the different conditions that the volume of gas rate was 25%, 50%, 75%, through analyzing the velocity field, stress field and the distribution of the liquid and gas with the ball valve open height respectively at 3mm, 5mm, 7mm. Discussed how open height and different volume of gas rate to influence the field in export ball valve in the process of gas-liquid mixing was discussed. The simulation results showed that the greater the open height, the smaller the difference pressure of ball valve; the gap velocity decreasing with the open height increasing. The gas is mainly distributed in the vicinity of the valve ball in the process of gas-liquid mixing. The gas liquid ratio has a little effect on the gap velocity in the same open height. The results showed the flow field forms in the ball valve directly, to a certain degree, it had released the rules of gas-liquid flow in the valve and provided the theoretical guidance for design and optimization of the new rotor oil-gas mixture pump export ball valve.
International Nuclear Information System (INIS)
Bestion, D.
2010-01-01
A multi-scale analysis of water-cooled reactor thermal hydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermal hydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given
Numerical Simulation Analysis of Seismic of Frame Structure on Hill Terrain
Directory of Open Access Journals (Sweden)
Weng Weisu
2017-01-01
Full Text Available In recent year, Wenchuan,Ya’an,Yushu and other areas in china occur a series of high earthquake, however areas of earthquake is similar as mountainous terrain, building structure of seismic increasingly aroused our concern, and the research that hill topography affected building structure seismic in shallow mountain. The research content mainly includes: through modelling was built by the ANSYS software, the cooperative effects of a ten layer of frame structure- hill system were calculation. First, simple comparative dynamic characteristics analysis of soil - structure interaction and the rigid foundation assumption conditions; Second, put Hill-Soil-Structure Interaction(referred to as HSSI and Soil - Structure - Interaction(referred to as SSI further analysis of the dynamic response, including: including structural modal analysis (vibration mode, cycle, the time history analysis (such as displacement, internal force and acceleration and so on. Through Hill-Soil-Structure Interaction research, taking each factor in consideration, giving structure seismic key technology measures about shallow mountain to provide reference for such structure theory research.
Analysis of Buoyancy Module Auxiliary Installation Technology Based on Numerical Simulation
Xu, Songsen; Jiao, Chunshuo; Ning, Meng; Dong, Sheng
2018-04-01
To reduce the requirement for lifting capacity and decrease the hoist cable force during the descending and laying process of a subsea production system (SPS), a buoyancy module auxiliary installation technology was proposed by loading buoyancy modules on the SPS to reduce the lifting weight. Two models are established, namely, the SPS lowering-down model and the buoyancy module floating-up model. The main study results are the following: 1) When the buoyancy module enters the water under wave condition, the amplitude of tension fluctuation is twice that when SPS enters water; 2) Under current condition, the displacement of SPS becomes three times larger because of the existence of the buoyancy module; 3) After being released, the velocity of the buoyancy module increases to a large speed rapidly and then reaches a balancing speed gradually. The buoyancy module floats up at a balancing speed and rushes out from the water at a pop-up distance; 4) In deep water, the floating-up velocity of the buoyancy module is related to its mass density and shape, and it is not related to water depth; 5) A drag parachute can reduce floating-up velocity and pop-up distance effectively. Good agreement was found between the simulation and experiment results.
International Nuclear Information System (INIS)
Ardehali, M.M.; Saboori, M.; Teshnelab, M.
2004-01-01
Energy efficiency enhancement is achieved by utilizing control algorithms that reduce overshoots and undershoots as well as unnecessary fluctuations in the amount of energy input to energy consuming systems during transient operation periods. It is hypothesized that application of control methodologies with characteristics that change with time and according to the system dynamics, identified as dynamic energy efficiency measures (DEEM), achieves the desired enhancement. The objective of this study is to simulate and analyze the effects of fuzzy logic based tuning of proportional integral derivative (F-PID) and proportional sum derivative (F-PSD) controllers for a heating and cooling energy system while accounting for the dynamics of the major system components. The procedure to achieve the objective includes utilization of fuzzy logic rules to determine the PID and PSD controllers gain coefficients so that the control laws for regulating the heat exchangers heating or cooling energy inputs are determined in each time step of the operation period. The performances of the F-PID and F-PSD controllers are measured by means of two cost functions that are based on quadratic forms of the energy input and deviation from a set point temperature. It is found that application of the F-PID control algorithm, as a DEEM, results in lower costs for energy input and deviation from a set point temperature by 24% and 17% as compared to a PID and 13% and 8% as compared to a PSD, respectively. It is also shown that the F-PSD performance is better than that of the F-PID controller
Energy Technology Data Exchange (ETDEWEB)
Xie, Wei, E-mail: cslggncl@163.com [Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Hunan Province, Changsha University of Science and Technology, Changsha 410114 (China); Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science & Technology, Changsha 410114 (China); College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Zhu, Xukun; Kuang, Jiacai [Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Hunan Province, Changsha University of Science and Technology, Changsha 410114 (China); Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science & Technology, Changsha 410114 (China); Yi, Shihe; Cheng, Haifeng [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Guo, Zhanhu; He, Qingliang [Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States)
2017-06-15
Highlights: • Theoretical formula and calculation results of effective permeability and effective permittivity of the Fe-C coaxial fiber are obtained based on the Maxwell equation. • The coaxial fiber has stronger anisotropy and better electromagnetic dissipation performance than the hollow carbon fiber and solid iron fiber with the same volume content. • Greater conductivity, larger aspect ratio, thin iron shell play important roles to improve the electromagnetic matching ability and microwave attenuation for the Fe-C coaxial fibers. - Abstract: Based on the Maxwell equation, the electromagnetic model in the coaxial fiber was described. The interaction with electromagnetic wave was analysed and the theoretical formula of axial permeability (μ{sub ∥}), axial permittivity (ε{sub ∥}), radial permeability (μ{sub ⊥}) and radial permittivity (ε{sub ⊥}) of Fe-C coaxial fiber were derived, and the demagnetization factor (N) of fibrous material was revised. Calculation results indicate that the composite fiber has stronger anisotropy and better EM dissipation performance than the hollow carbon fiber and solid iron fiber with the same volume content. These properties can be enhanced through increasing aspect ratio and carbon content. The μ{sub ‖} is 5.18-4.46i, μ{sub ⊥} is 2.58-0.50i, ε{sub ∥} is 7.63-6.97i, and ε{sub ⊥} is 1.98-0.15i when the electromagnetic wave frequency is 5 GHz with the outer diameter of 0.866 μm, inner diameter of 0.500 μm, and length of 20 μm. The maximum of the imaginary part of μ{sub ∥} and ε{sub ∥} are much larger than that of μ{sub ⊥} and ε{sub ⊥} when the structural parameters change, and the maximum of μ{sub ∥} and ε{sub ∥} can reach 6.429 and 23.59. Simulation results show that greater conductivity, larger aspect ratio, thin iron shell play important roles to improve the electromagnetic matching ability and microwave attenuation for the Fe-C coaxial fibers.
St. Fleur, Sadrac; Bertrand, Etienne; Courboulex, Francoise; Mercier de Lépinay, Bernard; Deschamps, Anne; Hough, Susan E.; Cultrera, Giovanna; Boisson, Dominique; Prepetit, Claude
2016-01-01
To provide better insight into seismic ground motion in the Port‐au‐Prince metropolitan area, we investigate site effects at 12 seismological stations by analyzing 78 earthquakes with magnitude smaller than 5 that occurred between 2010 and 2013. Horizontal‐to‐vertical spectral ratio on earthquake recordings and a standard spectral ratio were applied to the seismic data. We also propose a simplified lithostratigraphic map and use available geotechnical and geophysical data to construct representative soil columns in the vicinity of each station that allow us to compute numerical transfer functions using 1D simulations. At most of the studied sites, spectral ratios are characterized by weak‐motion amplification at frequencies above 5 Hz, in good agreement with the numerical transfer functions. A mismatch between the observed amplifications and simulated response at lower frequencies shows that the considered soil columns could be missing a deeper velocity contrast. Furthermore, strong amplification between 2 and 10 Hz linked to local topographic features is found at one station located in the south of the city, and substantial amplification below 5 Hz is detected near the coastline, which we attribute to deep and soft sediments as well as the presence of surface waves. We conclude that for most investigated sites in Port‐au‐Prince, seismic amplifications due to site effects are highly variable but seem not to be important at high frequencies. At some specific locations, however, they could strongly enhance the low‐frequency content of the seismic ground shaking. Although our analysis does not consider nonlinear effects, we thus conclude that, apart from sites close to the coast, sediment‐induced amplification probably had only a minor impact on the level of strong ground motion, and was not the main reason for the high level of damage in Port‐au‐Prince.
International Nuclear Information System (INIS)
Saleh, K.
2012-01-01
This thesis deals with the Baer-Nunziato two-phase flow model. The main objective of this work is to propose some techniques to cope with phase vanishing regimes which produce important instabilities in the model and its numerical simulations. Through analysis and simulation methods using Suliciu relaxation approximations, we prove that in these regimes, the solutions can be stabilised by introducing some extra dissipation of the total mixture entropy. In a first approach, called the Eulerian approach, the exact resolution of the relaxation Riemann problem provides an accurate entropy-satisfying numerical scheme, which turns out to be much more efficient in terms of CPU-cost than the classical and very simple Rusanov's scheme. Moreover, the scheme is proved to handle the vanishing phase regimes with great stability. The scheme, first developed in 1D, is then extended in 3D and implemented in an industrial code developed by EDF. The second approach, called the acoustic splitting approach, considers a separation of fast acoustic waves from slow material waves. The objective is to avoid the resonance due to the interaction between these two types of waves, and to allow an implicit treatment of the acoustics, while material waves are explicitly discretized. The resulting scheme is very simple and allows to deal simply with phase vanishing. The originality of this work is to use new dissipative closure laws for the interfacial velocity and pressure, in order to control the solutions of the Riemann problem associated with the acoustic step, in the phase vanishing regimes. (author)
Isaacson, Eugene
1994-01-01
This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.
Directory of Open Access Journals (Sweden)
Baocheng Shi
2014-06-01
Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.
International Nuclear Information System (INIS)
Nguyen, Thi-Phuong-Kieu
2016-01-01
We investigated some finite volume methods for the numerical simulation of a flow involving two incompressible phases or general two compressible phases in mechanical disequilibrium. The main difficulties of the regime where there is either a phase appearance or a phase disappearance is the singularity of the velocity. We show that using the entropy fix will much improve these problems. Finally, we perform some important numerical tests to verify the numerical methods, such as a phase separation by gravity or a boiling channel. (author) [fr
International Nuclear Information System (INIS)
Nguyen, Thi Phuong Kieu
2016-01-01
We investigated some finite volume methods for the numerical simulation of a flow involving two incompressible phases or general two compressible phases in mechanical disequilibrium. The main difficulties of the regime where there is either a phase appearance or a phase disappearance is the singularity of the velocity. We show that using the entropy fix will much improve these problems. Finally, we perform some important numerical tests to verify the numerical methods, such as a phase separation by gravity or a boiling channel. (author)
International Nuclear Information System (INIS)
McKee, S.; Elliott, C.M.
1986-01-01
The applications of mathematics to industrial problems involves the formulation of problems which are amenable to mathematical investigation, mathematical modelling, the solution of the mathematical problem and the inter-pretation of the results. There are 12 chapters describing industrial problems where mathematics and numerical analysis can be applied. These range from the numerical assessment of the flatness of engineering surfaces and plates, the design of chain links, control problems in tidal power generation and low thrust satellite trajectory optimization to mathematical models in welding. One chapter, on the ageing of stainless steels, is indexed separately. (UK)
Anastassiou, George A
2015-01-01
This is the first numerical analysis text to use Sage for the implementation of algorithms and can be used in a one-semester course for undergraduates in mathematics, math education, computer science/information technology, engineering, and physical sciences. The primary aim of this text is to simplify understanding of the theories and ideas from a numerical analysis/numerical methods course via a modern programming language like Sage. Aside from the presentation of fundamental theoretical notions of numerical analysis throughout the text, each chapter concludes with several exercises that are oriented to real-world application. Answers may be verified using Sage. The presented code, written in core components of Sage, are backward compatible, i.e., easily applicable to other software systems such as Mathematica®. Sage is open source software and uses Python-like syntax. Previous Python programming experience is not a requirement for the reader, though familiarity with any programming language is a p...
Numerical Simulation of Duplex Steel Multipass Welding
Directory of Open Access Journals (Sweden)
Giętka T.
2016-12-01
Full Text Available Analyses based on FEM calculations have significantly changed the possibilities of determining welding strains and stresses at early stages of product design and welding technology development. Such an approach to design enables obtaining significant savings in production preparation and post-weld deformation corrections and is also important for utility properties of welded joints obtained. As a result, it is possible to make changes to a simulated process before introducing them into real production as well as to test various variants of a given solution. Numerical simulations require the combination of problems of thermal, mechanical and metallurgical analysis. The study presented involved the SYSWELD software-based analysis of GMA welded multipass butt joints made of duplex steel sheets. The analysis of the distribution of stresses and displacements were carried out for typical welding procedure as during real welding tests.
Numerical analysis II essentials
REA, The Editors of; Staff of Research Education Association
1989-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Numerical Analysis II covers simultaneous linear systems and matrix methods, differential equations, Fourier transformations, partial differential equations, and Monte Carlo methods.
Relativistic positioning systems: Numerical simulations
Puchades Colmenero, Neus
The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space
Zhang, Wei
2016-03-31
We perform two-dimensional unsteady Navier-Stokes simulation and global linear stability analysis of flow past a heated circular cylinder to investigate the effect of aided buoyancy on the stabilization of the flow. The Reynolds number of the incoming flow is fixed at 100, and the Richardson number characterizing the buoyancy is varied from 0.00 (buoyancy-free case) to 0.10 at which the flow is still unsteady. We investigate the effect of aided buoyancy in stabilizing the wake flow, identify the temporal and spatial characteristics of the growth of the perturbation, and quantify the contributions from various terms comprising the perturbed kinetic energy budget. Numerical results reveal that the increasing Ri decreases the fluctuation magnitude of the characteristic quantities monotonically, and the momentum deficit in the wake flow decays rapidly so that the flow velocity recovers to that of the free-stream; the strain on the wake flow is reduced in the region where the perturbation is the most greatly amplified. Global stability analysis shows that the temporal growth rate of the perturbation decreases monotonically with Ri, reflecting the stabilization of the flow due to aided buoyancy. The perturbation grows most significantly in the free shear layer separated from the cylinder. As Ri increases, the location of maximum perturbation growth moves closer to the cylinder and the perturbation decays more rapidly in the far wake. The introduction of the aided buoyancy alters the base flow, and destabilizes the near wake shear layer mainly through the strain-induced transfer term and the pressure term of the perturbed kinetic energy, whereas the flow is stabilized in the far wake as the strain is alleviated. © 2016 Elsevier Ltd. All rights reserved.
Zhang, Wei; Samtaney, Ravi
2016-01-01
We perform two-dimensional unsteady Navier-Stokes simulation and global linear stability analysis of flow past a heated circular cylinder to investigate the effect of aided buoyancy on the stabilization of the flow. The Reynolds number of the incoming flow is fixed at 100, and the Richardson number characterizing the buoyancy is varied from 0.00 (buoyancy-free case) to 0.10 at which the flow is still unsteady. We investigate the effect of aided buoyancy in stabilizing the wake flow, identify the temporal and spatial characteristics of the growth of the perturbation, and quantify the contributions from various terms comprising the perturbed kinetic energy budget. Numerical results reveal that the increasing Ri decreases the fluctuation magnitude of the characteristic quantities monotonically, and the momentum deficit in the wake flow decays rapidly so that the flow velocity recovers to that of the free-stream; the strain on the wake flow is reduced in the region where the perturbation is the most greatly amplified. Global stability analysis shows that the temporal growth rate of the perturbation decreases monotonically with Ri, reflecting the stabilization of the flow due to aided buoyancy. The perturbation grows most significantly in the free shear layer separated from the cylinder. As Ri increases, the location of maximum perturbation growth moves closer to the cylinder and the perturbation decays more rapidly in the far wake. The introduction of the aided buoyancy alters the base flow, and destabilizes the near wake shear layer mainly through the strain-induced transfer term and the pressure term of the perturbed kinetic energy, whereas the flow is stabilized in the far wake as the strain is alleviated. © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Daniel Pérez-Grande
2016-11-01
Full Text Available This manuscript explores numerical errors in highly anisotropic diffusion problems. First, the paper addresses the use of regular structured meshes in numerical solutions versus meshes aligned with the preferential directions of the problem. Numerical diffusion in structured meshes is quantified by solving the classical anisotropic diffusion problem; the analysis is exemplified with the application to a numerical model of conducting fluids under magnetic confinement, where rates of transport in directions parallel and perpendicular to a magnetic field are quite different. Numerical diffusion errors in this problem promote the use of magnetic field aligned meshes (MFAM. The generation of this type of meshes presents some challenges; several meshing strategies are implemented and analyzed in order to provide insight into achieving acceptable mesh regularity. Second, Gradient Reconstruction methods for magnetically aligned meshes are addressed and numerical errors are compared for the structured and magnetically aligned meshes. It is concluded that using the latter provides a more correct and straightforward approach to solving problems where anisotropicity is present, especially, if the anisotropicity level is high or difficult to quantify. The conclusions of the study may be extrapolated to the study of anisotropic flows different from conducting fluids.
Numerical simulation of muzzle blast
Tyler-Street, M.
2014-01-01
Structural design methods for naval ships include environmental, operational and military load cases. One of the operational loads acting on a typical naval vessel is the muzzle blast from a gun. Simulating the muzzle blast load acting on a ship structure with CFD and ALE methods leads to large
NUMERICAL SIMULATION AND OPTIMIZATION OF ...
African Journals Online (AJOL)
30 juin 2011 ... This article has as an aim the study and the simulation of the photovoltaic cells containing CdTe materials, contributing to the development of renewable energies, and able to feed from the houses, the shelters as well as ... and the output energy of conversion is 18.26%.Optimization is made according to the.
Numerical methods in simulation of resistance welding
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi
2015-01-01
Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...... thecontact area and the distribution of contact pressure. The numerical simulation of resistancewelding is illustrated by a spot welding example that includes subsequent tensile shear testing...
Coincidental match of numerical simulation and physics
Pierre, B.; Gudmundsson, J. S.
2010-08-01
Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.
International Nuclear Information System (INIS)
Petelet, Matthieu; Asserin, Olivier; Iooss, Bertrand; Petelet, Matthieu; Loredo, Alexandre
2006-01-01
In this work, the method of sensitivity analysis allowing to identify the inlet data the most influential on the variability of the responses (residual stresses and distortions). Classically, the sensitivity analysis is carried out locally what limits its validity domain to a given material. A global sensitivity analysis method is proposed; it allows to cover a material domain as wide as those of the steels series. A probabilistic modeling giving the variability of the material parameters in the steels series is proposed. The original aspect of this work consists in the use of the sampling method by latin hypercubes (LHS) of the material parameters which forms the inlet data (dependent of temperature) of the numerical simulations. Thus, a statistical approach has been applied to the welding numerical simulation: LHS sampling of the material properties, global sensitivity analysis what has allowed the reduction of the material parameterization. (O.M.)
Numerical simulation of edge plasma in tokamak
International Nuclear Information System (INIS)
Chen Yiping; Qiu Lijian
1996-02-01
The transport process and transport property of plasma in edge layer of Tokamak are simulated by solving numerically two-dimensional and multi-fluid plasma transport equations using suitable simulation code. The simulation results can show plasma parameter distribution characteristics in the area of edge layer, especially the characteristics near the first wall and divertor target plate. The simulation results play an important role in the design of divertor and first wall of Tokamak. (2 figs)
Efficient Numerical Simulation of Aerothermoelastic Hypersonic Vehicles
Klock, Ryan J.
Hypersonic vehicles operate in a high-energy flight environment characterized by high dynamic pressures, high thermal loads, and non-equilibrium flow dynamics. This environment induces strong fluid, thermal, and structural dynamics interactions that are unique to this flight regime. If these vehicles are to be effectively designed and controlled, then a robust and intuitive understanding of each of these disciplines must be developed not only in isolation, but also when coupled. Limitations on scaling and the availability of adequate test facilities mean that physical investigation is infeasible. Ever growing computational power offers the ability to perform elaborate numerical simulations, but also has its own limitations. The state of the art in numerical simulation is either to create ever more high-fidelity physics models that do not couple well and require too much processing power to consider more than a few seconds of flight, or to use low-fidelity analytical models that can be tightly coupled and processed quickly, but do not represent realistic systems due to their simplifying assumptions. Reduced-order models offer a middle ground by distilling the dominant trends of high-fidelity training solutions into a form that can be quickly processed and more tightly coupled. This thesis presents a variably coupled, variable-fidelity, aerothermoelastic framework for the simulation and analysis of high-speed vehicle systems using analytical, reduced-order, and surrogate modeling techniques. Full launch-to-landing flights of complete vehicles are considered and used to define flight envelopes with aeroelastic, aerothermal, and thermoelastic limits, tune in-the-loop flight controllers, and inform future design considerations. A partitioned approach to vehicle simulation is considered in which regions dominated by particular combinations of processes are made separate from the overall solution and simulated by a specialized set of models to improve overall processing
Numerical simulations of progressive hardening by using ABAQUS FEA software
Directory of Open Access Journals (Sweden)
Domański Tomasz
2018-01-01
Full Text Available The paper concerns numerical simulations of progressive hardening include phase transformations in solid state of steel. Abaqus FEA software is used for numerical analysis of temperature field and phase transformations. Numerical subroutines, written in fortran programming language are used in computer simulations where models of the distribution of movable heat source, kinetics of phase transformations in solid state as well as thermal and structural strain are implemented. Model for evaluation of fractions of phases and their kinetics is based on continuous heating diagram and continuous cooling diagram. The numerical analysis of thermal fields, phase fractions and strain associated progressive hardening of elements made of steel were done.
Visualization of numerically simulated aerodynamic flow fields
International Nuclear Information System (INIS)
Hian, Q.L.; Damodaran, M.
1991-01-01
The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs
Numerical simulations of disordered superconductors
International Nuclear Information System (INIS)
Bedell, K.S.; Gubernatis, J.E.; Scalettar, R.T.; Zimanyi, G.T.
1997-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors carried out Monte Carlo studies of the critical behavior of superfluid 4 He in aerogel. They found the superfluid density exponent increases in the presence of fractal disorder with a value roughly consistent with experimental results. They also addressed the localization of flux lines caused by splayed columnar pins. Using a Sine-Gordon-type of renormalization group study they obtained an analytic form for the critical temperature. They also determined the critical temperature from I-V characteristics obtained from a molecular dynamics simulation. The combined studies enabled one to construct the phase diagram as a function of interaction strength, temperature, and disorder. They also employed the recently developed mapping between boson world-lines and the flux motion to use quantum Monte Carlo simulations to analyze localization in the presence of disorder. From measurements of the transverse flux line wandering, they determined the critical ratio of columnar to point disorder strength needed to localize the bosons
Numerical simulation of HPT processing
International Nuclear Information System (INIS)
Verleysen, P; Van den Abeele, F; Degrieck, J
2014-01-01
The principle of achieving high strength and superior properties in metal alloys through the application of severe plastic deformation has been exploited in the metal processing industry for many decades. In this contribution finite element simulations are presented of the HPT process. As opposed to most studies in literature, in which rigid sample holders are considered, the real elasto-plastic behavior of the holders is modeled. The simulations show that during the compression stage, plastic deformation occurs in the holders: initially, at the outside boundary of the sample cavity and, at a later stage, underneath the centre of the sample. The latter region of plastic deformation is rapidly growing and has a non-negligible effect on the response of the sample. Major conclusion is that the sample holders, and more specific, their deformability is key for the conditions in the specimen. Indeed, it severely affects important parameters for both the microstructural changes in the sample material, such as the amplitude and distribution of the hydrostatic stress, and its final shape
Numerical simulation of hypersonic flight experiment vehicle
Yamamoto, Yukimitsu; Yoshioka, Minako; 山本 行光; 吉岡 美菜子
1994-01-01
Hypersonic aerodynamic characteristics of Hypersonic FLight EXperiment (HYFLEX vehicle were investigated by numerical simulations using Navier-Stokes CFD (Computational Fluid Dynamics) code of NAL. Numerical results were compared with experimental data obtained at Hypersonic Wind Tunnel at NAL. In order to investigate real flight aerodynamic characteristics. numerical calculations corresponding to the flight conditions suffering from maximum aero thermodynamic heating were also made and the d...
da Fonseca, Eduardo Bertoni; Santos, Tiago Felipe Abreu; Button, Sergio Tonini; Ramirez, Antonio Jose
2016-09-01
Physical simulation of friction stir welding (FSW) by means of hot torsion tests was performed on UNS S32205 duplex stainless steel. A thermomechanical simulator Gleeble 3800® with a custom-built liquid nitrogen cooling system was employed to reproduce the thermal cycle measured during FSW and carry out the torsion tests. Microstructures were compared by means of light optical microscopy and electron backscatter diffraction. True strain and strain rate were calculated by numerical simulation of the torsion tests. Thermomechanically affected zone (TMAZ) was reproduced at peak temperature of 1303 K (1030 °C), rotational speeds of 52.4 rad s-1 (500 rpm) and 74.5 rad s-1 (750 rpm), and 0.5 to 0.75 revolutions, which represent strain rate between 10 and 16 s-1 and true strain between 0.5 and 0.8. Strong grain refinement, similar to the one observed in the stir zone (SZ), was attained at peak temperature of 1403 K (1130 °C), rotational speed of 74.5 rad s-1 (750 rpm), and 1.2 revolution, which represent strain rate of 19 s-1 and true strain of 1.3. Continuous dynamic recrystallization in ferrite and dynamic recrystallization in austenite were observed in the TMAZ simulation. At higher temperature, dynamic recovery of austenite was also observed.
Numerical simulation of mechatronic sensors and actuators
Kaltenbacher, Manfred
2007-01-01
Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.
International Nuclear Information System (INIS)
Príbytný, P; Donoval, D; Chvála, A; Marek, J; Molnár, M
2014-01-01
Numerical modelling and simulation provide an efficient tool for analysis and optimization of device structure design. In this paper we present the analysis and the geometry optimization of the power module with high power pin diode structure supported by the advanced 2-D/3-D mixed-mode electro-thermal device simulation. The structure under investigation is P + NN + power diode device designed for high reverse voltages and very high forward currents, with a maximum forward surge current up to 2.7 kA.
Direct Numerical Simulation of Driven Cavity Flows
Verstappen, R.; Wissink, J.G.; Veldman, A.E.P.
Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been
Numerical simulations of coupled problems in engineering
2014-01-01
This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.
Numerical simulation of distorted crystal Darwin width
International Nuclear Information System (INIS)
Wang Li; Xu Zhongmin; Wang Naxiu
2012-01-01
A new numerical simulation method according to distorted crystal optical theory was used to predict the direct-cooling crystal monochromator optical properties(crystal Darwin width) in this study. The finite element analysis software was used to calculate the deformed displacements of DCM crystal and to get the local reciprocal lattice vector of distorted crystal. The broadening of direct-cooling crystal Darwin width in meridional direction was estimated at 4.12 μrad. The result agrees well with the experimental data of 5 μrad, while it was 3.89 μrad by traditional calculation method of root mean square (RMS) of the slope error in the center line of footprint. The new method provides important theoretical support for designing and processing of monochromator crystal for synchrotron radiation beamline. (authors)
Numerical Simulation of Cyclic Thermodynamic Processes
DEFF Research Database (Denmark)
Andersen, Stig Kildegård
2006-01-01
This thesis is on numerical simulation of cyclic thermodynamic processes. A modelling approach and a method for finding periodic steady state solutions are described. Examples of applications are given in the form of four research papers. Stirling machines and pulse tube coolers are introduced...... and a brief overview of the current state of the art in methods for simulating such machines is presented. It was found that different simulation approaches, which model the machines with different levels of detail, currently coexist. Methods using many simplifications can be easy to use and can provide...... models flexible and easy to modify, and to make simulations fast. A high level of accuracy was achieved for integrations of a model created using the modelling approach; the accuracy depended on the settings for the numerical solvers in a very predictable way. Selection of fast numerical algorithms...
Siemon, R. E.; Atchison, W. L.; Awe, T.; Bauer, B. S.; Buyko, A. M.; Chernyshev, V. K.; Cowan, T. E.; Degnan, J. H.; Faehl, R. J.; Fuelling, S.; Garanin, S. F.; Goodrich, T.; Ivanovsky, A. V.; Lindemuth, I. R.; Makhin, V.; Mokhov, V. N.; Reinovsky, R. E.; Ryutov, D. D.; Scudder, D. W.; Taylor, T.; Yakubov, V. B.
2005-09-01
In the 'metal liner' approach to magnetized target fusion (MTF), a preheated magnetized plasma target is compressed to thermonuclear temperature and high density by externally driving the implosion of a flux conserving metal enclosure, or liner, which contains the plasma target. As in inertial confinement fusion, the principal fusion fuel heating mechanism is pdV work by the imploding enclosure, called a pusher in ICF. One possible MTF target, the hard-core diffuse z pinch, has been studied in MAGO experiments at VNIIEF and is one possible target being considered for experiments on the Atlas pulsed power facility. Numerical MHD simulations show two intriguing and helpful features of the diffuse z pinch with respect to compressional heating. First, in two-dimensional simulations the m = 0 interchange modes, arising from an unstable pressure profile, result in turbulent motions and self-organization into a stable pressure profile. The turbulence also gives rise to convective thermal transport, but the level of turbulence saturates at a finite level, and simulations show substantial heating during liner compression despite the turbulence. The second helpful feature is that pressure profile evolution during compression tends towards improved stability rather than instability when analysed according to the Kadomtsev criteria. A liner experiment is planned for Atlas to study compression of magnetic flux without plasma, as a first step. The Atlas geometry is compatible with a diffuse z pinch, and simulations of possible future experiments show that kiloelectronvolt temperatures and useful neutron production for diagnostic purposes should be possible if a suitable plasma injector is added to the Atlas facility.
Introduction to numerical analysis
Hildebrand, F B
1987-01-01
Well-known, respected introduction, updated to integrate concepts and procedures associated with computers. Computation, approximation, interpolation, numerical differentiation and integration, smoothing of data, other topics in lucid presentation. Includes 150 additional problems in this edition. Bibliography.
DEFF Research Database (Denmark)
Rahbar, Nader; Asadi, Amin; Fotouhi-Bafghi, Ehsan
2018-01-01
In this study, two types of solar stills, triangular and tubular one, have been experimentally tested under a real weather condition. Following the same procedure, the experiments were carried out over seven typical winter days and the effects of solar radiation and ambient temperature on water...... are the main reasons to have a better water production in the tubular still. Furthermore, the cost of water production by the triangular solar still was found to be lower due to its lower manufacturing cost compare to that of tubular one. Based on the experimental results, two new correlations have been...... productivity and total efficiency of the stills has been experimentally investigated. Furthuremore, to understand the detail structures of the air flow inside the enclosures, the fluid flow has been numerically simulated using computational fluid dynamics. Having the details of the fluid flow, the values...
Energy Technology Data Exchange (ETDEWEB)
Kurt, Hueseyin; Ozkaymak, Mehmet [Zonguldak Karaelmas University, Technical Education Faculty, 78200 Karabuk (Turkey); Binark, A. Korhan [Marmara University, Technical Education Faculty, 34722 Kuyubasi-Istanbul (Turkey)
2006-04-01
The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na{sub 2}CO{sub 3}) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond. (author)
International Nuclear Information System (INIS)
Kurt, Hueseyin; Ozkaymak, Mehmet; Binark, A. Korhan
2006-01-01
The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na 2 CO 3 ) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond
International Nuclear Information System (INIS)
Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.
1993-01-01
A system of computer codes for engineering simulation and in-depth analysis of nuclear and thermal fluid design of nuclear thermal rockets is developed. The computational system includes a neutronic solver package, a thermal fluid solver package and a propellant and materials property package. The Rocket Engine Transient Simulation (ROCETS) system code is incorporated with computational modules specific to nuclear powered engines. ROCETS features a component based performance architecture that interfaces component modules into the user designed configuration, interprets user commands, creates an executable FORTRAN computer program, and executes the program to provide output to the user. Basic design features of the Pratt ampersand Whitney XNR2000 nuclear rocket concept and its operational performance are analyzed and simulated
RAMAN, Venkadesh; DRISSI-HABTI, Monssef; GUILLAUMAT, Laurent; KHADHOUR, Aghihad
2016-01-01
Offshore wind energy is one of the main sources of renewable energy that can benefit from new generation materials that exhibit good oxidation resistance and mechanical reliability. Composite materials are the best consideration for harsh environment and deep sea wind turbine manufacturing. In this study, a numerical simulation was implemented to predict the stress distribution over a wind turbineblade and to determine areas with high stress concentration. Finite Element Analysis (FEA) was us...
Energy Technology Data Exchange (ETDEWEB)
Chen, Jacqueline H.; Hawkes, Evatt R.; Sankaran, Ramanan [Reacting Flow Research Department, Combustion Research Facility, Sandia National Laboratories, P.O. Box 969 MS 9051, Livermore, CA 94551-0969 (United States); Mason, Scott D. [Lockheed Martin Corporation, Sunnyvale, CA 94089 (United States); Im, Hong G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)
2006-04-15
The influence of thermal stratification on autoignition at constant volume and high pressure is studied by direct numerical simulation (DNS) with detailed hydrogen/air chemistry with a view to providing better understanding and modeling of combustion processes in homogeneous charge compression-ignition engines. Numerical diagnostics are developed to analyze the mode of combustion and the dependence of overall ignition progress on initial mixture conditions. The roles of dissipation of heat and mass are divided conceptually into transport within ignition fronts and passive scalar dissipation, which modifies the statistics of the preignition temperature field. Transport within ignition fronts is analyzed by monitoring the propagation speed of ignition fronts using the displacement speed of a scalar that tracks the location of maximum heat release rate. The prevalence of deflagrative versus spontaneous ignition front propagation is found to depend on the local temperature gradient, and may be identified by the ratio of the instantaneous front speed to the laminar deflagration speed. The significance of passive scalar mixing is examined using a mixing timescale based on enthalpy fluctuations. Finally, the predictions of the multizone modeling strategy are compared with the DNS, and the results are explained using the diagnostics developed. (author)
Practical integrated simulation systems for coupled numerical simulations in parallel
Energy Technology Data Exchange (ETDEWEB)
Osamu, Hazama; Zhihong, Guo [Japan Atomic Energy Research Inst., Centre for Promotion of Computational Science and Engineering, Tokyo (Japan)
2003-07-01
In order for the numerical simulations to reflect 'real-world' phenomena and occurrences, incorporation of multidisciplinary and multi-physics simulations considering various physical models and factors are becoming essential. However, there still exist many obstacles which inhibit such numerical simulations. For example, it is still difficult in many instances to develop satisfactory software packages which allow for such coupled simulations and such simulations will require more computational resources. A precise multi-physics simulation today will require parallel processing which again makes it a complicated process. Under the international cooperative efforts between CCSE/JAERI and Fraunhofer SCAI, a German institute, a library called the MpCCI, or Mesh-based Parallel Code Coupling Interface, has been implemented together with a library called STAMPI to couple two existing codes to develop an 'integrated numerical simulation system' intended for meta-computing environments. (authors)
Numerical simulation of sand jet in water
Energy Technology Data Exchange (ETDEWEB)
Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering
2008-07-01
A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.
Numerical simulation of "an American haboob"
Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.
2014-01-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land–atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe...
Directory of Open Access Journals (Sweden)
Yuki Minamiguchi
2018-02-01
Full Text Available This study evaluated the performance of the Weather Research and Forecasting (WRF model version 3.7 for simulating a series of rainfall events in August 2014 over Japan and investigated the impact of uncertainty in sea surface temperature (SST on simulated rainfall in the record-high precipitation period. WRF simulations for the heavy rainfall were conducted for six different cases. The heavy rainfall events caused by typhoons and rain fronts were similarly accurately reproduced by three cases: the TQW_5km case with grid nudging for air temperature, humidity, and wind and with a horizontal resolution of 5 km; W_5km with wind nudging and 5-km resolution; and W_2.5km with wind nudging and 2.5-km resolution. Because the nudging for air temperature and humidity in TQW_5km suppresses the influence of SST change, and because W_2.5km requires larger computational load, W_5km was selected as the baseline case for a sensitivity analysis of SST. In the sensitivity analysis, SST around Japan was homogeneously changed by 1 K from the original SST data. The analysis showed that the SST increase led to a larger amount of precipitation in the study period in Japan, with the mean increase rate of precipitation being 13 ± 8% K−1. In addition, 99 percentile precipitation (100 mm d−1 in the baseline case increased by 13% K−1 of SST warming. These results also indicate that an uncertainty of approximately 13% in the simulated heavy rainfall corresponds to an uncertainty of 1 K in SST data around Japan in the study period.
International Nuclear Information System (INIS)
Sollogoub, Pierre
2001-01-01
Numerical analyses are needed in different steps of the overall design process. Complex models or non-linear reactor core behaviour are important for qualification and/or comparison of results obtained. Adequate models and test should be defined. Fuel assembly, fuel row, and the complete core should be tested for seismic effects causing LOCA and flow-induced vibrations (FIV)
Three-Dimensional Numerical Simulation to Mud Turbine for LWD
Yao, Xiaojiang; Dong, Jingxin; Shang, Jie; Zhang, Guanqi
Hydraulic performance analysis was discussed for a type of turbine on generator used for LWD. The simulation models were built by CFD analysis software FINE/Turbo, and full three-dimensional numerical simulation was carried out for impeller group. The hydraulic parameter such as power, speed and pressure drop, were calculated in two kinds of medium water and mud. Experiment was built in water environment. The error of numerical simulation was less than 6%, verified by experiment. Based on this rationalization proposals would be given to choice appropriate impellers, and the rationalization of methods would be explored.
Handbook of numerical analysis
Ciarlet, Philippe G
Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas an
Numerical simulation of radial compressor stage
Syka, T.; Luňáček, O.
2013-04-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Luňáček O.; Syka T.
2013-01-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Directory of Open Access Journals (Sweden)
Luňáček O.
2013-04-01
Full Text Available Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical Simulation of Steady Supercavitating Flows
Ali Jafarian; Ahmad-Reza Pishevar
2016-01-01
In this research, the Supercavitation phenomenon in compressible liquid flows is simulated. The one-fluid method based on a new exact two-phase Riemann solver is used for modeling. The cavitation is considered as an isothermal process and a consistent equation of state with the physical behavior of the water is used. High speed flow of water over a cylinder and a projectile are simulated and the results are compared with the previous numerical and experimental results. The cavitation bubble p...
Numerical Simulation Of Silicon-Ribbon Growth
Woda, Ben K.; Kuo, Chin-Po; Utku, Senol; Ray, Sujit Kumar
1987-01-01
Mathematical model includes nonlinear effects. In development simulates growth of silicon ribbon from melt. Takes account of entire temperature and stress history of ribbon. Numerical simulations performed with new model helps in search for temperature distribution, pulling speed, and other conditions favoring growth of wide, flat, relatively defect-free silicon ribbons for solar photovoltaic cells at economically attractive, high production rates. Also applicable to materials other than silicon.
Coupled numerical simulation of fire in tunnel
Pesavento, F.; Pachera, M.; Schrefler, B. A.; Gawin, D.; Witek, A.
2018-01-01
In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a "one-way" coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the "system tunnel", composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a "one way" strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is
Spectral Methods in Numerical Plasma Simulation
DEFF Research Database (Denmark)
Coutsias, E.A.; Hansen, F.R.; Huld, T.
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...
Simple Numerical Simulation of Strain Measurement
Tai, H.
2002-01-01
By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.
Coherent Structures in Numerically Simulated Plasma Turbulence
DEFF Research Database (Denmark)
Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.
1989-01-01
Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
International Nuclear Information System (INIS)
Roy, Fabrice
2004-01-01
We study the formation of self-gravitating systems and their properties by means of N-body simulations of gravitational collapse. First, we summarize the major analytical results concerning the collisionless Boltzmann equation and the Poisson's equation which describe the dynamics of collisionless gravitational systems. We present a study of some analytical solutions of this coupled system of equations. We then present the software used to perform the simulations. Some of this has been parallelized and implemented with the aid of MPI. For this reason we give a brief overview of it. Finally, we present the results of the numerical simulations. Analysis of these results allows us to explain some features of self-gravitating systems and the initial conditions needed to trigger the Antonov instability and the radial orbit instability. (author) [fr
DEFF Research Database (Denmark)
Damkilde, Lars
2007-01-01
Limit State analysis has a long history and many prominent researchers have contributed. The theoretical foundation is based on the upper- and lower-bound theorems which give a very comprehensive and elegant formulation on complicated physical problems. In the pre-computer age Limit State analysis...... also enabled engineers to solve practical problems within reinforced concrete, steel structures and geotechnics....
Shi, Chaoyang; Kojima, Masahiro; Tercero, Carlos; Najdovski, Zoran; Ikeda, Seiichi; Fukuda, Toshio; Arai, Fumihito; Negoro, Makoto
2014-12-01
There are several complications associated with Stent-assisted Coil Embolization (SACE) in cerebral aneurysm treatments, due to damaging operations by surgeons and undesirable mechanical properties of stents. Therefore, it is necessary to develop an in vitro simulator that provides both training and research for evaluating the mechanical properties of stents. A new in vitro simulator for three-dimensional digital subtraction angiography was constructed, followed by aneurysm models fabricated with new materials. Next, this platform was used to provide training and to conduct photoelastic stress analysis to evaluate the SACE technique. The average interaction stress increasingly varied for the two different stents. Improvements for the Maximum-Likelihood Expectation-Maximization method were developed to reconstruct cross-sections with both thickness and stress information. The technique presented can improve a surgeon's skills and quantify the performance of stents to improve mechanical design and classification. This method can contribute to three-dimensional stress and volume variation evaluation and assess a surgeon's skills. Copyright © 2013 John Wiley & Sons, Ltd.
Directory of Open Access Journals (Sweden)
Zahid Suleman
2011-07-01
Full Text Available This research paper describes design and analysis of power extracting unit of an onshore OWC (Oscillating Water Column based wave energy power plant of capacity about 100 kilowatts. The OWC is modeled as solid piston of a reciprocating pump. The power extracting unit is designed analytically by using the theory of reciprocating pumps and principles of fluid mechanics. Pro-E and ANSYS workbench softwares are used to verify the analytical design. The analytical results of the flow velocity in the turbine duct are compared with the simulation results. The results are found to be in good agreement with each other. The results achieved by this research would finally assist in the overall design of the power plant which is the ultimate goal of this research work.
Jia, Tao; Gao, Di
2018-04-03
Molecular dynamics simulation is employed to investigate the microscopic heat current inside an argon-copper nanofluid. Wavelet analysis of the microscopic heat current inside the nanofluid system is conducted. The signal of the microscopic heat current is decomposed into two parts: one is the approximation part; the other is the detail part. The approximation part is associated with the low-frequency part of the signal, and the detail part is associated with the high-frequency part of the signal. Both the probability distributions of the high-frequency and the low-frequency parts of the signals demonstrate Gaussian-like characteristics. The curves fit to data of the probability distribution of the microscopic heat current are established, and the parameters including the mean value and the standard deviation in the mathematical formulas of the curves show dramatic changes for the cases before and after adding copper nanoparticles into the argon base fluid.
Experiments and Numerical Simulations of Electrodynamic Tether
Iki, Kentaro; Kawamoto, Satomi; Takahashi, Ayaka; Ishimoto, Tomori; Yanagida, Atsushi; Toda, Susumu
As an effective means of suppressing space debris growth, the Aerospace Research and Development Directorate of the Japan Aerospace Exploration Agency (JAXA) has been investigating an active space debris removal system that employs highly efficient electrodynamic tether (EDT) technology for orbital transfer. This study investigates tether deployment dynamics by means of on-ground experiments and numerical simulations of an electrodynamic tether system. Some key parameters used in the numerical simulations, such as the elastic modulus and damping ratio of the tether, the spring constant of the coiling of the tether, and deployment friction, must be estimated, and various experiments are conducted to determine these values. As a result, the following values were obtained: The elastic modulus of the tether was 40 GPa, and the damping ratio of the tether was 0.02. The spring constant and the damping ratio of the tether coiling were 10-4 N/m and 0.025 respectively. The deployment friction was 0.038ν + 0.005 N. In numerical simulations using a multiple mass tether model, tethers with lengths of several kilometers are deployed and the attitude dynamics of satellites attached to the end of the tether and tether libration are calculated. As a result, the simulations confirmed successful deployment of the tether with a length of 500 m using the electrodynamic tether system.
Theoretical numerical analysis a functional analysis framework
Atkinson, Kendall
2005-01-01
This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solu
Czech Academy of Sciences Publication Activity Database
DeSimone, A.; Kružík, Martin
2013-01-01
Roč. 8, č. 2 (2013), s. 481-499 ISSN 1556-1801 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : hysteresis * shape memory Subject RIV: BA - General Mathematics Impact factor: 0.952, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/kruzik-domain patterns and hysteresis in phase-transforming solids analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation.pdf
Numerical Simulation of a Tornado Generating Supercell
Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.
2012-01-01
The development of tornadoes from a tornado generating supercell is investigated with a large eddy simulation weather model. Numerical simulations are initialized with a sounding representing the environment of a tornado producing supercell that affected North Carolina and Virginia during the Spring of 2011. The structure of the simulated storm was very similar to that of a classic supercell, and compared favorably to the storm that affected the vicinity of Raleigh, North Carolina. The presence of mid-level moisture was found to be important in determining whether a supercell would generate tornadoes. The simulations generated multiple tornadoes, including cyclonic-anticyclonic pairs. The structure and the evolution of these tornadoes are examined during their lifecycle.
Reactor numerical simulation and hydraulic test research
International Nuclear Information System (INIS)
Yang, L. S.
2009-01-01
In recent years, the computer hardware was improved on the numerical simulation on flow field in the reactor. In our laboratory, we usually use the Pro/e or UG commercial software. After completed topology geometry, ICEM-CFD is used to get mesh for computation. Exact geometrical similarity is maintained between the main flow paths of the model and the prototype, with the exception of the core simulation design of the fuel assemblies. The drive line system is composed of drive mechanism, guide bush assembly, fuel assembly and control rod assembly, and fitted with the rod level indicator and drive mechanism power device
Contributions to reinforced concrete structures numerical simulations
International Nuclear Information System (INIS)
Badel, P.B.
2001-07-01
In order to be able to carry out simulations of reinforced concrete structures, it is necessary to know two aspects: the behaviour laws have to reflect the complex behaviour of concrete and a numerical environment has to be developed in order to avoid to the user difficulties due to the softening nature of the behaviour. This work deals with these two subjects. After an accurate estimation of two behaviour models (micro-plan and mesoscopic models), two damage models (the first one using a scalar variable, the other one a tensorial damage of the 2 order) are proposed. These two models belong to the framework of generalized standard materials, which renders their numerical integration easy and efficient. A method of load control is developed in order to make easier the convergence of the calculations. At last, simulations of industrial structures illustrate the efficiency of the method. (O.M.)
Numerical simulation of electrostatic waves in plasmas
International Nuclear Information System (INIS)
Erz, U.
1981-08-01
In this paper the propagation of electrostatic waves in plasmas and the non-linear interactions, which occur in the case of large wave amplitudes, are studied using a new numerical method for plasma simulation. This mathematical description is based on the Vlasov-model. Changes in the distribution-function are taken into account and thus plasma kinetic effects can be treated. (orig./HT) [de
Numerical simulations on ion acoustic double layers
International Nuclear Information System (INIS)
Sato, T.; Okuda, H.
1980-07-01
A comprehensive numerical study of ion acoustic double layers has been performed for both periodic as well as for nonperiodic systems by means of one-dimensional particle simulations. For a nonperiodic system, an external battery and a resistance are used to model the magnetospheric convection potential and the ionospheric Pedersen resistance. It is found that the number of double layers and the associated potential buildup across the system increases with the system length
Numerical Simulations of Hyperfine Transitions of Antihydrogen
Kolbinger, B.; Diermaier, M.; Lehner, S.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M.C.; Widmann, E.
2015-02-04
One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.
Numerical simulations of hyperfine transitions of antihydrogen
Energy Technology Data Exchange (ETDEWEB)
Kolbinger, B., E-mail: bernadette.kolbinger@oeaw.ac.at; Capon, A.; Diermaier, M.; Lehner, S. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Widmann, E. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria)
2015-08-15
One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration’s goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.
International Nuclear Information System (INIS)
Chijimatsu, Masakazu; Koyama, Tomofumi; Shimizu, Hiroyuki; Nakama, Shigeo; Fujita, Tomoo
2013-01-01
DECOVALEX-2011 is an international cooperation project for enhancing the numerical models of radioactive waste repositories. In DECOVALEX-2011 project, the failure mechanism during excavation and heating processes observed in the Aespoe pillar stability experiment, which was carried out at the Aespoe Hard Rock Laboratory by the Swedish Nuclear Fuel and Waste Management Company, were simulated using Finite Element Method. When the calibrated parameters were used, simulation results agree qualitatively well with the experimental results. Therefore, it can be said that the spalling phenomenon is expressible even by the application with the continuum model by the use of the suitable parameters. (author)
Numerical simulation of random stresses on an annular turbulent flow
International Nuclear Information System (INIS)
Marti-Moreno, Marta
2000-01-01
The flow along a circular cylinder may induce structural vibrations. For the predictive analysis of such vibrations, the turbulent forcing spectrum needs to be characterized. The aim of this work is to study the turbulent fluid forces acting on a single tube in axial flow. More precisely we have performed numerical simulations of an annular flow. These simulations were carried out on a cylindrical staggered mesh by a finite difference method. We consider turbulent flow with Reynolds number up to 10 6 . The Large Eddy Simulation Method has been used. A survey of existent experiments showed that hydraulic diameter acts as an important parameter. We first showed the accuracy of the numerical code by reproducing the experiments of Mulcahy. The agreement between pressure spectra from computations and from experiments is good. Then, we applied this code to simulate new numerical experiments varying the hydraulic diameter and the flow velocity. (author) [fr
NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN
Directory of Open Access Journals (Sweden)
Petr Chmátal
2016-04-01
Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.
Mathematical models and numerical simulation in electromagnetism
Bermúdez, Alfredo; Salgado, Pilar
2014-01-01
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
International Nuclear Information System (INIS)
Kim Un-Chol; Jiang Xiao-Qing
2012-01-01
A physical model for simulating plasmonic solar cells (SCs) using the SILVACO TCAD simulator is established and the effects of some factors on the efficiency enhancement of the amorphous silicon thin film SCs are simulated. Through this simulation, it is demonstrated that our method can successfully simulate the optical and electrical properties of plasmonic solar cells without the overestimation of the characteristics and without the neglect of parameter change in the device operation process. It is shown that not only the size and kind of metal nanoparticles but also other factors, such as the surrounding medium, the distance from the bottom of particles to the device surface, and the light incident angle, play important roles in the optical and electrical properties of plasmonic SCs. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
International Nuclear Information System (INIS)
Uchibori, Akihiro; Ohshima, Hiroyuki; Watanabe, Akira
2010-01-01
SERAPHIM is a computer program for the simulation of the compressible multiphase flow involving the sodium-water chemical reaction under a tube failure accident in a steam generator of sodium cooled fast reactors. In this study, the numerical analysis of the highly underexpanded air jets into the air or into the water was performed as a part of validation of the SERAPHIM program. The multi-fluid model, the second-order TVD scheme and the HSMAC method considering a compressibility were used in this analysis. Combining these numerical methods makes it possible to calculate the multiphase flow including supersonic gaseous jets. In the case of the air jet into the air, the calculated pressure, the shape of the jet and the location of a Mach disk agreed with the existing experimental results. The effect of the difference scheme and the mesh resolution on the prediction accuracy was clarified through these analyses. The behavior of the air jet into the water was also reproduced successfully by the proposed numerical method. (author)
Numerical Simulation of a Seaway with Breaking
Dommermuth, Douglas; O'Shea, Thomas; Brucker, Kyle; Wyatt, Donald
2012-11-01
The focus of this presentation is to describe the recent efforts to simulate a fully non-linear seaway with breaking by using a high-order spectral (HOS) solution of the free-surface boundary value problem to drive a three-dimensional Volume of Fluid (VOF) solution. Historically, the two main types of simulations to simulate free-surface flows are the boundary integral equations method (BIEM) and high-order spectral (HOS) methods. BIEM calculations fail at the point at which the surface impacts upon itself, if not sooner, and HOS methods can only simulate a single valued free-surface. Both also employ a single-phase approximation in which the effects of the air on the water are neglected. Due to these limitations they are unable to simulate breaking waves and air entrainment. The Volume of Fluid (VOF) method on the other hand is suitable for modeling breaking waves and air entrainment. However it is computationally intractable to generate a realistic non-linear sea-state. Here, we use the HOS solution to quickly drive, or nudge, the VOF solution into a non-linear state. The computational strategies, mathematical formulation, and numerical implementation will be discussed. The results of the VOF simulation of a seaway with breaking will also be presented, and compared to the single phase, single valued HOS results.
Energy Technology Data Exchange (ETDEWEB)
Petelet, M
2007-10-15
Current approach of most welding modellers is to content themselves with available material data, and to chose a mechanical model that seems to be appropriate. Among inputs, those controlling the material properties are one of the key problems of welding simulation: material data are never characterized over a sufficiently wide temperature range {exclamation_point} This way to proceed neglect the influence of the uncertainty of input data on the result given by the computer code. In this case, how to assess the credibility of prediction? This thesis represents a step in the direction of implementing an innovative approach in welding simulation in order to bring answers to this question, with an illustration on some concretes welding cases. The global sensitivity analysis is chosen to determine which material properties are the most sensitive in a numerical welding simulation and in which range of temperature. Using this methodology require some developments to sample and explore the input space covering welding of different steel materials. Finally, input data have been divided in two groups according to their influence on the output of the model (residual stress or distortion). In this work, complete methodology of the global sensitivity analysis has been successfully applied to welding simulation and lead to reduce the input space to the only important variables. Sensitivity analysis has provided answers to what can be considered as one of the probable frequently asked questions regarding welding simulation: for a given material which properties must be measured with a good accuracy and which ones can be simply extrapolated or taken from a similar material? (author)
Li, Sichen; Liao, Zhixian; Luo, Xiaoshu; Wei, Duqu; Jiang, Pinqun; Jiang, Qinghong
2018-02-01
The value of the output capacitance (C) should be carefully considered when designing a photovoltaic (PV) inverter since it can cause distortion in the working state of the circuit, and the circuit produces nonlinear dynamic behavior. According to Kirchhoff’s laws and the characteristics of an ideal operational amplifier for a strict piecewise linear state equation, a circuit simulation model is constructed to study the system parameters (time, C) for the current passing through an inductor with an inductance of L and the voltage across the capacitor with a capacitance of C. The developed simulation model uses Runge-Kutta methods to solve the state equations. This study focuses on predicting the fault of the circuit from the two aspects of the harmonic distortion and simulation results. Moreover, the presented model is also used to research the working state of the system in the case of a load capacitance catastrophe. The nonlinear dynamic behaviors in the inverter are simulated and verified.
Numerical simulation of real-world flows
Energy Technology Data Exchange (ETDEWEB)
Hayase, Toshiyuki, E-mail: hayase@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan)
2015-10-15
Obtaining real flow information is important in various fields, but is a difficult issue because measurement data are usually limited in time and space, and computational results usually do not represent the exact state of real flows. Problems inherent in the realization of numerical simulation of real-world flows include the difficulty in representing exact initial and boundary conditions and the difficulty in representing unstable flow characteristics. This article reviews studies dealing with these problems. First, an overview of basic flow measurement methodologies and measurement data interpolation/approximation techniques is presented. Then, studies on methods of integrating numerical simulation and measurement, namely, four-dimensional variational data assimilation (4D-Var), Kalman filters (KFs), state observers, etc are discussed. The first problem is properly solved by these integration methodologies. The second problem can be partially solved with 4D-Var in which only initial and boundary conditions are control parameters. If an appropriate control parameter capable of modifying the dynamical structure of the model is included in the formulation of 4D-Var, unstable modes are properly suppressed and the second problem is solved. The state observer and KFs also solve the second problem by modifying mathematical models to stabilize the unstable modes of the original dynamical system by applying feedback signals. These integration methodologies are now applied in simulation of real-world flows in a wide variety of research fields. Examples are presented for basic fluid dynamics and applications in meteorology, aerospace, medicine, etc. (topical review)
Numerical model simulation of atmospheric coolant plumes
International Nuclear Information System (INIS)
Gaillard, P.
1980-01-01
The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr
Jang, Cheng-Shin; Chen, Ching-Fang; Liang, Ching-Ping; Chen, Jui-Sheng
2016-02-01
Overexploitation of groundwater is a common problem in the Pingtung Plain area of Taiwan, resulting in substantial drawdown of groundwater levels as well as the occurrence of severe seawater intrusion and land subsidence. Measures need to be taken to preserve these valuable groundwater resources. This study seeks to spatially determine the most suitable locations for the use of surface water on this plain instead of extracting groundwater for drinking, irrigation, and aquaculture purposes based on information obtained by combining groundwater quality analysis and a numerical flow simulation assuming the planning of manmade lakes and reservoirs to the increase of water supply. The multivariate indicator kriging method is first used to estimate occurrence probabilities, and to rank townships as suitable or unsuitable for groundwater utilization according to water quality standards for drinking, irrigation, and aquaculture. A numerical model of groundwater flow (MODFLOW) is adopted to quantify the recovery of groundwater levels in townships after model calibration when groundwater for drinking and agricultural demands has been replaced by surface water. Finally, townships with poor groundwater quality and significant increases in groundwater levels in the Pingtung Plain are prioritized for the groundwater conservation planning based on the combined assessment of groundwater quality and quantity. The results of this study indicate that the integration of groundwater quality analysis and the numerical flow simulation is capable of establishing sound strategies for joint groundwater and surface water use. Six southeastern townships are found to be suitable locations for replacing groundwater with surface water from manmade lakes or reservoirs to meet drinking, irrigation, and aquaculture demands.
Lagrangian numerical methods for ocean biogeochemical simulations
Paparella, Francesco; Popolizio, Marina
2018-05-01
We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.
Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang
2018-03-01
In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.
Numerical simulation of gasket behaviour during severe accidents (ATHERMIP project)
International Nuclear Information System (INIS)
Castro Lopez, Fernando; Orden Martinez, Alfredo
1998-01-01
This paper summarises the work carried out to numerically simulate the thermo-mechanical behaviour of sealing gasket in large containment penetrations during a severe accident. The gasket material is an elastomeric material and the thermo-mechanical characterization was based on experimentation. The difficulty of numerical simulation lies in the high non-linearity of the analysis, due on one hand, to the high strain levels reached, and on the other, to stiffness changes introduced by contact/takeoff indicators. Also, the stiffness parameters of the gasket material are not constant, but are subject to changes, both regarding the strain level and the environmental conditions (temperature, radiation). The results obtained allow presenting a calculation model capable of simulating and explaining the behaviour of the sealing gasket during a severe accident. Also, the failure hypothesis numerically obtained was environmentally validated. (author)
Numerical Simulation of Anisotropic Preheating Ablative Rayleigh–Taylor Instability
International Nuclear Information System (INIS)
Li-Feng, Wang; Wen-Hua, Ye; Ying-Jun, Li
2010-01-01
The linear growth rate of the anisotropic preheating ablative Rayleigh–Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T) = κ SH [1 + f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse [Phys. Rev. Lett. 98 (2007) 245001]. (physics of gases, plasmas, and electric discharges)
Numerical simulation of anisotropic preheating ablative Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Wang Lifeng; Ye Wenhua; Li Yingjun
2010-01-01
The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T)=κ SH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse. (authors)
Spectral methods in numerical plasma simulation
International Nuclear Information System (INIS)
Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)
Numerical simulation of the cavitation's hydrodynamic excitement
International Nuclear Information System (INIS)
Hassis, H.; Dueymes, E.; Lauro, J.F.
1993-01-01
First, we study the motion, the velocity, the phases plane and the acoustic sources associated to a spherical bubble in a compressible or incompressible medium. The bubble can be excited by periodic or random excitements. We study the parameters which influence their behaviour: periodicity or not of motion, implosion and explosion or oscillation of bubble. We take into account this behaviour in a model of cavitation: it is a numerical simulation using population of bubbles which are with positions (in the cavitation volume) and sizes are random. These bubbles are excited by a random excitement: a model of turbulent flow or implosion and explosion of bubble. (author)
Numerical Simulations Of Flagellated Micro-Swimmers
Rorai, Cecilia; Markesteijn, Anton; Zaitstev, Mihail; Karabasov, Sergey
2017-11-01
We study flagellated microswimmers locomotion by representing the entire swimmer body. We discuss and contrast the accuracy and computational cost of different numerical approaches including the Resistive Force Theory, the Regularized Stokeslet Method and the Finite Element Method. We focus on how the accuracy of the methods in reproducing the swimming trajectories, velocities and flow field, compares to the sensitivity of these quantities to certain physical parameters, such as the body shape and the location of the center of mass. We discuss the opportunity and physical relevance of retaining inertia in our models. Finally, we present some preliminary results toward collective motion simulations. Marie Skodowska-Curie Individual Fellowship.
The numerical simulation of accelerator components
International Nuclear Information System (INIS)
Herrmannsfeldt, W.B.; Hanerfeld, H.
1987-05-01
The techniques of the numerical simulation of plasmas can be readily applied to problems in accelerator physics. Because the problems usually involve a single component ''plasma,'' and times that are at most, a few plasma oscillation periods, it is frequently possible to make very good simulations with relatively modest computation resources. We will discuss the methods and illustrate them with several examples. One of the more powerful techniques of understanding the motion of charged particles is to view computer-generated motion pictures. We will show several little movie strips to illustrate the discussions. The examples will be drawn from the application areas of Heavy Ion Fusion, electron-positron linear colliders and injectors for free-electron lasers. 13 refs., 10 figs., 2 tabs
Numerical simulation of human biped locomotion
International Nuclear Information System (INIS)
Ishiguro, Misako; Fujisaki, Masahide
1988-04-01
This report describes the numerical simulation of the motion of human-like robot which is one of the research theme of human acts simulation program (HASP) begun at the Computing Center of JAERI in 1987. The purpose of the theme is to model the human motion using robotics kinematic/kinetic equations and to get the joint angles as the solution. As the first trial, we treat the biped locomotion (walking) which is the most fundamental human motion. We implemented a computer program on FACOM M-780 computer, where the program is originated from the book of M. Vukobratovic in Yugoslavia, and made a graphic program to draw a walking shot sequence. Mainly described here are the mathematical model of the biped locomotion, implementation method of the computer program, input data for basic walking pattern, computed results and its validation, and graphic representation of human walking image. Literature survey on robotics equation and biped locomotion is also included. (author)
Direct numerical simulation of annular flows
Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.
2017-11-01
Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
International Nuclear Information System (INIS)
Yoo, Joo Young; Song, Sung Jin; Jung, Hee Jun; Kong, Young Bae
2006-01-01
Signals captured from a Combo calibration standard tube play a crucial role in the evaluation of motorized rotating pancake coil (MRPC) probe signals from steam generator (SG) tubes in nuclear power plants (NPPs). Therefore, the Combo tube signals should be consistent and accurate. However, MRPC probe signals are very easily affected by various factors around the tubes so that they can be distorted in their amplitudes and phase angles which are the values specifically used in the evaluation. To overcome this problem, in this study, we explored possibility of simulation to be used as a practical calibration tool far the evaluation of real field signals. For this purpose, we investigated the characteristics of a MRPC probe and a Combo tube. And then using commercial software (VIC-3D) we simulated a set of calibration signals and compared to the experimental signals. From this comparison, we verified the accuracy of the simulated signals. Finally, we evaluated two defects using the simulated Combo tube signals, and the results were compared with those obtained using the actual field calibration signals
Numerical simulation of a sour gas flare
Energy Technology Data Exchange (ETDEWEB)
Chambers, A. [Alberta Research Council, Devon, AB (Canada)
2008-07-01
Due to the limited amount of information in the literature on sour gas flares and the cost of conducting wind tunnel and field experiments on sour flares, this presentation presented a modelling project that predicted the effect of operating conditions on flare performance and emissions. The objectives of the project were to adapt an existing numerical model suitable for flare simulation, incorporate sulfur chemistry, and run simulations for a range of conditions typical of sour flares in Alberta. The study involved the use of modelling expertise at the University of Utah, and employed large eddy simulation (LES) methods to model open flames. The existing model included the prediction of turbulent flow field; hydrocarbon reaction chemistry; soot formation; and radiation heat transfer. The presentation addressed the unique features of the model and discussed whether LES could predict the flow field. Other topics that were presented included the results from a University of Utah comparison; challenges of the LES model; an example of a run time issue; predicting the impact of operating conditions; and the results of simulations. Last, several next steps were identified and preliminary results were provided. Future work will focus on reducing computation time and increasing information reporting. figs.
Visualization techniques in plasma numerical simulations
International Nuclear Information System (INIS)
Kulhanek, P.; Smetana, M.
2004-01-01
Numerical simulations of plasma processes usually yield a huge amount of raw numerical data. Information about electric and magnetic fields and particle positions and velocities can be typically obtained. There are two major ways of elaborating these data. First of them is called plasma diagnostics. We can calculate average values, variances, correlations of variables, etc. These results may be directly comparable with experiments and serve as the typical quantitative output of plasma simulations. The second possibility is the plasma visualization. The results are qualitative only, but serve as vivid display of phenomena in the plasma followed-up. An experience with visualizing electric and magnetic fields via Line Integral Convolution method is described in the first part of the paper. The LIC method serves for visualization of vector fields in two dimensional section of the three dimensional plasma. The field values can be known only in grid points of three-dimensional grid. The second part of the paper is devoted to the visualization techniques of the charged particle motion. The colour tint can be used for particle temperature representation. The motion can be visualized by a trace fading away with the distance from the particle. In this manner the impressive animations of the particle motion can be achieved. (author)
Numerical simulations and mathematical models of flows in complex geometries
DEFF Research Database (Denmark)
Hernandez Garcia, Anier
The research work of the present thesis was mainly aimed at exploiting one of the strengths of the Lattice Boltzmann methods, namely, the ability to handle complicated geometries to accurately simulate flows in complex geometries. In this thesis, we perform a very detailed theoretical analysis...... and through the Chapman-Enskog multi-scale expansion technique the dependence of the kinetic viscosity on each scheme is investigated. Seeking for optimal numerical schemes to eciently simulate a wide range of complex flows a variant of the finite element, off-lattice Boltzmann method [5], which uses...... the characteristic based integration is also implemented. Using the latter scheme, numerical simulations are conducted in flows of different complexities: flow in a (real) porous network and turbulent flows in ducts with wall irregularities. From the simulations of flows in porous media driven by pressure gradients...
Energy Technology Data Exchange (ETDEWEB)
Marchand, E
2007-12-15
The questions of safety and uncertainty are central to feasibility studies for an underground nuclear waste storage site, in particular the evaluation of uncertainties about safety indicators which are due to uncertainties concerning properties of the subsoil or of the contaminants. The global approach through probabilistic Monte Carlo methods gives good results, but it requires a large number of simulations. The deterministic method investigated here is complementary. Based on the Singular Value Decomposition of the derivative of the model, it gives only local information, but it is much less demanding in computing time. The flow model follows Darcy's law and the transport of radionuclides around the storage site follows a linear convection-diffusion equation. Manual and automatic differentiation are compared for these models using direct and adjoint modes. A comparative study of both probabilistic and deterministic approaches for the sensitivity analysis of fluxes of contaminants through outlet channels with respect to variations of input parameters is carried out with realistic data provided by ANDRA. Generic tools for sensitivity analysis and code coupling are developed in the Caml language. The user of these generic platforms has only to provide the specific part of the application in any language of his choice. We also present a study about two-phase air/water partially saturated flows in hydrogeology concerning the limitations of the Richards approximation and of the global pressure formulation used in petroleum engineering. (author)
Manobianco, John; Uccellini, Louis W.; Brill, Keith F.; Kuo, Ying-Hwa
1992-01-01
A mesoscale numerical model is combined with a dynamic data assimilation via Newtonian relaxation, or 'nudging', to provide initial conditions for subsequent simulations of the QE II cyclone. Both the nudging technique and the inclusion of supplementary data are shown to have a large positive impact on the simulation of the QE II cyclone during the initial phase of rapid cyclone development. Within the initial development period (from 1200 to 1800 UTC 9 September 1978), the dynamic assimilation of operational and bogus data yields a coherent two-layer divergence pattern that is not well defined in the model run using only the operational data and static initialization. Diagnostic analysis based on the simulations show that the initial development of the QE II storm between 0000 UTC 9 September and 0000 UTC 10 September was embedded within an indirect circulation of an intense 300-hPa jet streak, was related to baroclinic processes extending throughout a deep portion of the troposphere, and was associated with a classic two-layer mass-divergence profile expected for an extratropical cyclone.
Direct numerical simulation of turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Chin, Jeffrey C.; Csank, Jeffrey T.
2016-01-01
The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.
Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.
2017-12-01
To clarify the evolution of damage for typical carbon woven fabric/epoxy laminates exposed to lightning strike, artificial lightning testing on carbon woven fabric/epoxy laminates were conducted, damage was assessed using visual inspection and damage peeling approaches. Relationships between damage size and action integral were also elucidated. Results showed that damage appearance of carbon woven fabric/epoxy laminate presents circular distribution, and center of the circle located at the lightning attachment point approximately, there exist no damage projected area dislocations for different layers, visual damage territory represents maximum damage scope; visible damage can be categorized into five modes: resin ablation, fiber fracture and sublimation, delamination, ablation scallops and block-shaped ply-lift; delamination damage due to resin pyrolysis and internal pressure exist obvious distinguish; project area of total damage is linear with action integral for the same type specimens, that of resin ablation damage is linear with action integral, but no correlation with specimen type, for all specimens, damage depth is linear with logarithm of action integral. The coupled thermal-electrical model constructed is capable to simulate the ablation damage for carbon woven fabric/epoxy laminates exposed to simulated lightning current through experimental verification.
Directory of Open Access Journals (Sweden)
Elder M. Mendoza Orbegoso
2017-06-01
Full Text Available Mango is one of the most popular and best paid tropical fruits in worldwide markets, its exportation is regulated within a phytosanitary quality control for killing the “fruit fly”. Thus, mangoes must be subject to hot-water treatment process that involves their immersion in hot water over a period of time. In this work, field measurements, analytical and simulation studies are developed on available hot-water treatment equipment called “Original” that only complies with United States phytosanitary protocols. These approaches are made to characterize the fluid-dynamic and thermal behaviours that occur during the mangoes’ hot-water treatment process. Then, analytical model and Computational fluid dynamics simulations are developed for designing new hot-water treatment equipment called “Hybrid” that simultaneously meets with both United States and Japan phytosanitary certifications. Comparisons of analytical results with data field measurements demonstrate that “Hybrid” equipment offers a better fluid-dynamic and thermal performance than “Original” ones.
Numerical simulation of premixed turbulent methane combustion
International Nuclear Information System (INIS)
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.
2001-01-01
In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame
Directory of Open Access Journals (Sweden)
Tetsuya Ishida
2018-03-01
Full Text Available In November 2011, the Japanese government resolved to build “Revival Roads” in the Tohoku region to accelerate the recovery from the Great East Japan Earthquake of March 2011. Because the Tohoku region experiences such cold and snowy weather in winter, complex degradation from a combination of frost damage, chloride attack from de-icing agents, alkali–silica reaction, cracking and fatigue is anticipated. Thus, to enhance the durability performance of road structures, particularly reinforced concrete (RC bridge decks, multiple countermeasures are proposed: a low water-to-cement ratio in the mix, mineral admixtures such as ground granulated blast furnace slag and/or fly ash to mitigate the risks of chloride attack and alkali–silica reaction, anticorrosion rebar and 6% entrained air for frost damage. It should be noted here that such high durability specifications may conversely increase the risk of early age cracking caused by temperature and shrinkage due to the large amounts of cement and the use of mineral admixtures. Against this background, this paper presents a numerical simulation of early age deformation and cracking of RC bridge decks with full 3D multiscale and multi-chemo-physical integrated analysis. First, a multiscale constitutive model of solidifying cementitious materials is briefly introduced based on systematic knowledge coupling microscopic thermodynamic phenomena and microscopic structural mechanics. With the aim to assess the early age thermal and shrinkage-induced cracks on real bridge deck, the study began with extensive model validations by applying the multiscale and multi-physical integrated analysis system to small specimens and mock-up RC bridge deck specimens. Then, through the application of the current computational system, factors that affect the generation and propagation of early age thermal and shrinkage-induced cracks are identified via experimental validation and full-scale numerical simulation on real
Matlab programming for numerical analysis
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. Programming MATLAB for Numerical Analysis introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. You will first become
Numerical analysis of electromagnetic fields
Zhou Pei Bai
1993-01-01
Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...
On the characteristics of a numerical fluid dynamics simulator
International Nuclear Information System (INIS)
Winkler, K.H.A.; Norman, M.L.; Norton, J.L.
1986-01-01
John von Neumann envisioned scientists and mathematicians analyzing and controlling their numerical experiments on nonlinear dynamic systems interactively. The authors describe their concept of a real-time Numerical Fluid Dynamics Simulator NFDS. The authors envision the NFDS to be composed of simulation processors, data storage devices, and image processing devices of extremely high power and capacity, interconnected by very high throughput communication channels. They present individual component performance requirements for both real-time and playback operating modes of the NFDS, using problems of current interest in fluid dynamics as examples. Scaling relations are derived showing the dependence of system requirements on the dimensionality and complexity of the numerical model. The authors conclude by extending their analysis to the system requirements posed in modeling the more involved physics of radiation hydrodynamics
Numerical simulation of heterogeneous phase transformations
International Nuclear Information System (INIS)
Combeau, H.; Lacaze, J.
1993-01-01
A numerical model is presented for the simulation of diffusion controlled phase transformations in multicomponent alloys. A closed system is considered, with simple geometric shape, either planar, cylindrical or spherical. The temperature inside this microscopic volume is homogeneous, but can vary according to any specified monoteneous law. Particular care has been given to the description of the solute profiles where the concentration gradients are the steepest, i.e. near the interface between the parent and the resultant phases. Solute redistribution at the interface is described by means of an original method which ensures that the overall solute balance is satisfied. A non linear system is obtained which includes the diffusion equations in both phases and the boundary conditions. The solution of this system makes use of a special algorithm which has been devised for a quick convergence. An example is presented which deals with microsegregation build-up during solidification of a multi-component nickel base alloy. (orig.)
Numerical simulation of magnetic heat pumps
International Nuclear Information System (INIS)
Smaili, A.; Masson, C.
2002-01-01
This article presents a numerical method for performance predictions of magnetic heat pump (MHP) devices. Such devices consist primarily of a magnetic regenerator (solid refrigerant media) and circulating fluid. Unlike conventional gas-cycles, MHP devices function according to thermomagnetic cycles which do not require neither compressor nor expander. In this paper, the flow field throughout the regenerator is described by continuity and unsteady incompressible Navier-Stokes equations. The heat transfer between fluid and solid is introduced by considering the corresponding energy equations. The proposed mathematical model has been solved using a control volume finite element method. The fully implicit scheme is used for time discretization. Simulation results including heating capacity and coefficient of performance are presented for a given MHP cycle. Mainly, the effects of cycle frequency, mass flow rate and the magnetic regenerator mass are investigated. (author)
Numerical simulations of convectively excited gravity waves
International Nuclear Information System (INIS)
Glatzmaier, G.A.
1983-01-01
Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region
The Beam Break-Up Numerical Simulator
International Nuclear Information System (INIS)
Travish, G.A.
1989-11-01
Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs
Numerical simulation of installation of skirt foundations
Energy Technology Data Exchange (ETDEWEB)
Vangelsten, Bjoern Vidar
1997-12-31
Skirt foundation has been increasingly used for permanent offshore oil installations and anchors for drilling ships. Suction is commonly used in skirt foundation installing. If a large amount of suction is applied, the soil around the foundation may fail and the foundation become useless. This thesis studies failure due to high seepage gradients, aiming to provide a basis for reducing the risk of such failures. Skirt penetration model testing has shown that to solve the problem one must understand what is going on at the skirt tip during suction installation. A numerical model based on micro mechanics was developed as continuum hypothesis was seen to be unsuitable to describe the processes in the critical phases of the failure. The numerical model combines two-dimensional elliptical particles with the finite difference method for flow to model water flow in a granular material. The key idea is to formulate the permeability as a function of the porosity of the grain assembly and so obtain an interaction between the finite difference method on flow and the particle movement. A computer program, DYNELL, was developed and used to simulate: (1) weight penetration of a skirt wall, (2) combined suction and weight penetration of a skirt wall, and (3) critical gradient tests around a skirt wall to study failure mechanisms. The model calculations agree well with laboratory experiments. 16 refs., 124 figs., 21 tabs.
Numerical characteristics of quantum computer simulation
Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.
2016-12-01
The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.
Numerical simulation and experimental validation of coiled adiabatic capillary tubes
Energy Technology Data Exchange (ETDEWEB)
Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico (UNAM), Apdo. Postal 34, 62580 Temixco, Morelos (Mexico)
2007-04-15
The objective of this study is to extend and validate the model developed and presented in previous works [O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part I: mathematical formulation and numerical model, Applied Thermal Engineering 22 (2) (2002) 173-182; O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part II: experimental validation and parametric studies, Applied Thermal Engineering 22 (4) (2002) 379-391] to coiled adiabatic capillary tube expansion devices working with pure and mixed refrigerants. The discretized governing equations are coupled using an implicit step by step method. A special treatment has been implemented in order to consider transitions (subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region). All the flow variables (enthalpies, temperatures, pressures, vapor qualities, velocities, heat fluxes, etc.) together with the thermophysical properties are evaluated at each point of the grid in which the domain is discretized. The numerical model allows analysis of aspects such as geometry, type of fluid (pure substances and mixtures), critical or non-critical flow conditions, metastable regions, and transient aspects. Comparison of the numerical simulation with a wide range of experimental data presented in the technical literature will be shown in the present article in order to validate the model developed. (author)
Numerical simulations of capillary barrier field tests
International Nuclear Information System (INIS)
Morris, C.E.; Stormont, J.C.
1997-01-01
Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior
Numerical simulation for nuclear pumped laser
Energy Technology Data Exchange (ETDEWEB)
Sakasai, Kaoru [Japan Atomic Energy Research Inst., Tokyo (Japan)
1998-07-01
To apply nuclear pumped laser of {sup 3}He-Ne-Ar gas to detect neutron, the optimum gas mixture was investigated by numerical simulation. When {sup 3}He-Ne-Ar mixture gas are irradiated by neutron, proton and triton with high velocity are produced by {sup 3}He(np)T and two charge particles ionized {sup 3}He, Ne and Ar which reacted each other and attained to 3p`(1/2){sub 0}-3S`(1/2). The calculation method is constructed by defining the rate equations of each ion and exited atom and the electron energy balance equation and by time integrating the simultaneous differential equations of the above two equations and the law of conservation of charge. Penning ionization and energy transport by elastic collision of neutral atom were considered in the transport process of electron energy direct ionization by secondary charge particle. Calculation time was 1 msec. The optimum component was shown 3 atm He, 24 Torr He and 8 Torr Ar by simulation. Laser oscilation was generated under the conditions 3.3 x 10{sup 14} (N/cm{sup 2}/5) thermal neutron flux at 50 cm laser cell length and 99% coefficient of reflection of mirror. After laser oscilation, laser output was proportional to neutron flux. These results showed nuclear pumped laser of {sup 3}He-Ne-Ar was able to detect optically neutron. (S.Y)
Collisionless microinstabilities in stellarators. II. Numerical simulations
International Nuclear Information System (INIS)
Proll, J. H. E.; Xanthopoulos, P.; Helander, P.
2013-01-01
Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations
Numerical simulation of the Polywell device
International Nuclear Information System (INIS)
Simmons, K.H.; Santarius, J.F.
1995-01-01
Recent ideas concerning inertial-electrostatic confinement (IEC) of fusion plasmas coupled with recent experimental results have motivated looking at the problem of confinement of these plasmas in both the gridded (pure electrostatic) and magnetically assisted (via confinement of high beta plasmas in a magnetic cusp) configuration. Questions exist as to the nature of the potential well structure and the confinement properties of high beta plasmas in magnetic cusp configurations. This work focuses on the magnetically assisted concept known as the Polywell trademark. Results are reported on the numerical simulation of IEC plasmas aimed at answering some of these questions. In particular the authors focus on two aspects of the Polywell, namely the structure of the magnetic cusp field in the Polywell configuration and the nature of the confinement of a high beta plasma in a magnetic cusp field. The existence of line cusps in the Polywell is still in dispute. A computer code for modeling the magnetic field structure and mod-B surface has been written and results are presented for the Polywell. Another source of controversy is the nature of the confinement of a high beta plasma in a magnetic cusp, and in particular in the polywell. Results from 2-D Particle In Cell (PIC) simulations aimed at answering some of these questions are presented
Direct numerical simulation of human phonation
Bodony, Daniel; Saurabh, Shakti
2017-11-01
The generation and propagation of the human voice in three-dimensions is studied using direct numerical simulation. A full body domain is employed for the purpose of directly computing the sound in the region past the speaker's mouth. The air in the vocal tract is modeled as a compressible and viscous fluid interacting with the elastic vocal folds. The vocal fold tissue material properties are multi-layered, with varying stiffness, and a linear elastic transversely isotropic model is utilized and implemented in a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A kinematic constraint based on a specified minimum gap between the vocal folds is applied to prevent collision during glottal closure. Both near VF flow dynamics and far-field acoustics have been studied. A comparison is drawn to current two-dimensional simulations as well as to data from the literature. Near field vocal fold dynamics and glottal flow results are studied and in good agreement with previous three-dimensional phonation studies. Far-field acoustic characteristics, when compared to their two-dimensional counterpart, are shown to be sensitive to the dimensionality. Supported by the National Science Foundation (CAREER Award Number 1150439).
International Nuclear Information System (INIS)
Matsuyama, Masafumi
2009-01-01
Characteristics of formulae for bed-load transport and pick-up rate in suspended transport are investigated in order to clarify the impact on seabed topography changes by tsunami flow. The impact by bed-load transport was depended on Froude number and water surface slope. Bed-load transport causes deposition under Fr 6/7 at face front of tsunami wave. Pick-up rate has more predominant influences for seabed topography changes than that of one brought by bed-load transport. 2-D Numerical simulations with formulae by Ikeno et.al were carried out to simulate topography changes around harbor by tsunami flow in the flume. The result indicated that the numerical model is more applicable than a numerical model with previous formulae for estimation of deposit and erosion by topography changes. It is for this reason that the formula of pick-up rate is adaptable for wide-range diameter of sand, from 0.08mm to 0.2mm. Upper limit of suspended sediment concentration is needed to set due to avoid overlarge concentration in the numerical model. Comparison between numerical results in a real scale with 1% and 5% upper limits clearly shows topography changes have a deep relevance with the upper limit value. The upper limit value is one of dominant factors for evaluating seabed topography changes by the 2-D Numerical simulations with the formulae by Ikeno et.al in a real scale. (author)
Numerical Simulations of Hypersonic Boundary Layer Transition
Bartkowicz, Matthew David
Numerical schemes for supersonic flows tend to use large amounts of artificial viscosity for stability. This tends to damp out the small scale structures in the flow. Recently some low-dissipation methods have been proposed which selectively eliminate the artificial viscosity in regions which do not require it. This work builds upon the low-dissipation method of Subbareddy and Candler which uses the flux vector splitting method of Steger and Warming but identifies the dissipation portion to eliminate it. Computing accurate fluxes typically relies on large grid stencils or coupled linear systems that become computationally expensive to solve. Unstructured grids allow for CFD solutions to be obtained on complex geometries, unfortunately, it then becomes difficult to create a large stencil or the coupled linear system. Accurate solutions require grids that quickly become too large to be feasible. In this thesis a method is proposed to obtain more accurate solutions using relatively local data, making it suitable for unstructured grids composed of hexahedral elements. Fluxes are reconstructed using local gradients to extend the range of data used. The method is then validated on several test problems. Simulations of boundary layer transition are then performed. An elliptic cone at Mach 8 is simulated based on an experiment at the Princeton Gasdynamics Laboratory. A simulated acoustic noise boundary condition is imposed to model the noisy conditions of the wind tunnel and the transitioning boundary layer observed. A computation of an isolated roughness element is done based on an experiment in Purdue's Mach 6 quiet wind tunnel. The mechanism for transition is identified as an instability in the upstream separation region and a comparison is made to experimental data. In the CFD a fully turbulent boundary layer is observed downstream.
Numerical simulations of the mantle lithosphere delamination
Morency, C.; Doin, M.-P.
2004-03-01
Sudden uplift, extension, and increased igneous activity are often explained by rapid mechanical thinning of the lithospheric mantle. Two main thinning mechanisms have been proposed, convective removal of a thickened lithospheric root and delamination of the mantle lithosphere along the Moho. In the latter case, the whole mantle lithosphere peels away from the crust by the propagation of a localized shear zone and sinks into the mantle. To study this mechanism, we perform two-dimensional (2-D) numerical simulations of convection using a viscoplastic rheology with an effective viscosity depending strongly on temperature, depth, composition (crust/mantle), and stress. The simulations develop in four steps. (1) We first obtain "classical" sublithospheric convection for a long time period (˜300 Myr), yielding a slightly heterogeneous lithospheric temperature structure. (2) At some time, in some simulations, a strong thinning of the mantle occurs progressively in a small area (˜100 km wide). This process puts the asthenosphere in direct contact with the lower crust. (3) Large pieces of mantle lithosphere then quickly sink into the mantle by the horizontal propagation of a detachment level away from the "asthenospheric conduit" or by progressive erosion on the flanks of the delaminated area. (4) Delamination pauses or stops when the lithospheric mantle part detaches or when small-scale convection on the flanks of the delaminated area is counterbalanced by heat diffusion. We determine the parameters (crustal thicknesses, activation energies, and friction coefficients) leading to delamination initiation (step 2). We find that delamination initiates where the Moho temperature is the highest, as soon as the crust and mantle viscosities are sufficiently low. Delamination should occur on Earth when the Moho temperature exceeds ˜800°C. This condition can be reached by thermal relaxation in a thickened crust in orogenic setting or by corner flow lithospheric erosion in the
Numerical simulation of a semi-indirect evaporative cooler
Energy Technology Data Exchange (ETDEWEB)
Martin, R. Herrero [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain)
2009-11-15
This paper presents the experimental study and numerical simulation of a semi-indirect evaporative cooler (SIEC), which acts as an energy recovery device in air conditioning systems. The numerical simulation was conducted by applying the CFD software FLUENT implementing a UDF to model evaporation/condensation. The numerical model was validated by comparing the simulation results with experimental data. Experimental data and numerical results agree for the lower relative humidity series but not for higher relative humidity values. (author)
Numerical simulations for impact damage detection in composites using vibrothermography
International Nuclear Information System (INIS)
Pieczonka, L J; Uhl, T; Szwedo, M; Staszewski, W J; Aymerich, F
2010-01-01
Composite materials are widely used in many engineering applications due to their high strength-to-weight ratios. However, it is well known that composites are susceptible to impact damage. Detection of impact damage is an important issue in maintenance of composite structures. Various non-destructive image-based techniques have been developed for damage detection in composite materials. These include vibrothermography that detects surface temperature changes due to heating associated with frictional energy dissipation by damage. In the present paper numerical simulations are used to investigate heat generation in a composite plate with impact damage in order to support damage detection analysis with vibrothermography. Explicit finite elements are used to model ultrasonic wave propagation in the damaged plate. Simulated delamination and cracks induce frictional heating in the plate. Coupled thermo-mechanical simulations are performed in high frequencies using commercial LS-Dyna finite element code. Very good qualitative agreement between measurements and simulations has been obtained. The area of increased temperature corresponds very well with the damaged area in both experiments and simulations. Numerical model has to be further refined in order to quantitatively match the experiments. The main issues of concern are frictional and thermal properties of composites. The final goal of these research efforts is to predict damage detection sensitivity of vibrothermography in real engineering applications based on numerical models.
Numerical simulation of vertical infiltration for leaching fluid in situ
International Nuclear Information System (INIS)
Li Jinxuan; Shi Weijun; Zhang Weimin
1998-01-01
Based on the analysis of movement law of leaching fluid in breaking and leaching experiment in situ, the movement of leaching fluid can be divided into two main stages in the leaching process in situ: Vertical Infiltration in unsaturation zone and horizontal runoff in saturation zone. The corresponding mathematics models are sep up, and the process of vertical infiltration of leaching fluid is numerically simulated
Numerical simulation of cross field amplifiers
International Nuclear Information System (INIS)
Eppley, K.
1990-01-01
Cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. One feature distinguishing cross field amplifiers is that the operating current is produced by secondary emission from a cold cathode. This removes the need for a heater and enables the device to act as a switch tube, drawing no power until the rf drive is applied. However, this method of generating the current does complicate the simulation. We are developing a simulation model of cross field amplifiers using the PIC code CONDOR. We simulate an interaction region, one traveling wavelength long, with periodic boundary conditions. An electric field with the appropriate phase velocity is imposed on the upper boundary of the problem. Evaluation of the integral of E·J gives the power interchanged between the wave and the beam. Given the impedance of the structure, we then calculate the change in the traveling wave field. Thus we simulate the growth of the wave through the device. The main advance of our model over previous CFA simulations is the realistic tracking of absorption and secondary emission. The code uses experimental curves to calculate secondary production as a function of absorbed energy, with a theoretical expression for the angular dependence. We have used this code to model the 100 MW X-band CFA under construction at SLAC, as designed by Joseph Feinstein and Terry Lee. We are examining several questions of practical interest, such as the power and spectrum of absorbed electrons, the minimum traveling wave field needed to initiate spoke formation, and the variation of output power with dc voltage, anode-cathode gap, and magnetic field. 5 refs., 8 figs
Numerical simulation of "an American haboob"
Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.
2014-04-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran Desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM (Non-hydrostatic Mesoscale Model on E grid, Janjic et al., 2001; Dust REgional Atmospheric Model, Nickovic et al., 2001; Pérez et al., 2006) with 4 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The scope of this paper is validation of the dust model performance, and not use of the model as a tool to investigate mechanisms related to the storm. Results demonstrate the potential technical capacity and availability of the relevant data to build an operational system for dust storm forecasting as a part of a warning system. Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~25 km), the model PM10 surface dust concentration reached ~2500 μg m-3, but
Energy Technology Data Exchange (ETDEWEB)
Bruneaux, G.
1996-05-20
Premixed turbulent flame-wall interaction is studied using theoretical and numerical analysis. Laminar interactions are first investigated through a literature review. This gives a characterization of the different configurations of interaction and justifies the use of simplified kinetic schemes to study the interaction. Calculations are then performed using Direct Numerical Simulation with a one-step chemistry model, and are compared with good agreements to asymptotic analysis. Flame-wall distances and wall heat fluxes obtained are compared successfully with those of the literature. Heat losses decrease the consumption rate, leading to extinction at the maximum of wall heat flux. It is followed by a flame retreat, when the fuel diffuses into the reaction zone, resulting in low unburnt hydrocarbon levels. Then, turbulent regime is investigated, using two types of Direct Numerical Simulations: 2D variable density and 3D constant density. Similar results are obtained: the local turbulent flame behavior is identical to a laminar interaction, and tongues of fresh gases are expelled from the wall region, near zones of quenching. In the 2D simulations, minimal flame-wall distances and maximum wall heat fluxes are similar to laminar values. However, the structure of the turbulence in the 3D calculations induces smaller flame-wall distances and higher wall heat fluxes. Finally, a flame-wall interaction model is built and validated. It uses the flamelet approach, where the flame is described in terms of consumption speed and flame surface density. This model is simplified to produce a law of the wall, which is then included in a averaged CFD code (Kiva2-MB). It is validated in an engine calculation. (author) 36 refs.
Numerical simulation of avascular tumor growth
Energy Technology Data Exchange (ETDEWEB)
Slezak, D Fernandez; Suarez, C; Soba, A; Risk, M; Marshall, G [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EGA) Buenos Aires (Argentina)
2007-11-15
A mathematical and numerical model for the description of different aspects of microtumor development is presented. The model is based in the solution of a system of partial differential equations describing an avascular tumor growth. A detailed second-order numeric algorithm for solving this system is described. Parameters are swiped to cover a range of feasible physiological values. While previous published works used a single set of parameters values, here we present a wide range of feasible solutions for tumor growth, covering a more realistic scenario. The model is validated by experimental data obtained with a multicellular spheroid model, a specific type of in vitro biological model which is at present considered to be optimum for the study of complex aspects of avascular microtumor physiology. Moreover, a dynamical analysis and local behaviour of the system is presented, showing chaotic situations for particular sets of parameter values at some fixed points. Further biological experiments related to those specific points may give potentially interesting results.
Numerical Simulation of Cast Distortion in Gas Turbine Engine Components
International Nuclear Information System (INIS)
Inozemtsev, A A; Dubrovskaya, A S; Dongauser, K A; Trufanov, N A
2015-01-01
In this paper the process of multiple airfoilvanes manufacturing through investment casting is considered. The mathematical model of the full contact problem is built to determine stress strain state in a cast during the process of solidification. Studies are carried out in viscoelastoplastic statement. Numerical simulation of the explored process is implemented with ProCASTsoftware package. The results of simulation are compared with the real production process. By means of computer analysis the optimization of technical process parameters is done in order to eliminate the defect of cast walls thickness variation. (paper)
Transonic aeroelastic numerical simulation in aeronautical engineering
International Nuclear Information System (INIS)
Yang, G.
2005-01-01
An LU-SGS (lower-upper symmetric Gauss-Seidel) subiteration scheme is constructed for time-marching of the fluid equations. The HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and Transfinite Interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted. (author)
Proton decay: Numerical simulations confront grand unification
International Nuclear Information System (INIS)
Brower, R.C.; Maturana, G.; Giles, R.C.; Moriarty, K.J.M.; Samuel, S.
1985-01-01
The Grand Unified Theories of the electromagnetic, weak and strong interactions constitute a far reaching attempt to synthesize our knowledge of theoretical particle physics into a consistent and compelling whole. Unfortunately, many quantitative predictions of such unified theories are sensitive to the analytically intractible effects of the strong subnuclear theory (Quantum Chromodynamics or QCD). The consequence is that even ambitious experimental programs exploring weak and super-weak interaction effects often fail to give definitive theoretical tests. This paper describes large-scale calculations on a supercomputer which can help to overcome this gap between theoretical predictions and experimental results. Our focus here is on proton decay, though the methods described are useful for many weak processes. The basic algorithms for the numerical simulation of QCD are well known. We will discuss the advantages and challenges of applying these methods to weak transitions. The algorithms require a very large data base with regular data flow and are natural candidates for vectorization. Also, 32-bit floating point arithmetic is adequate. Thus they are most naturally approached using a supercomputer alone or in combination with a dedicated special purpose processor. (orig.)
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
Numerical simulation of aeolian sand ripples
International Nuclear Information System (INIS)
Kang Liqiang; Guo Liejin
2004-01-01
With a new horizontal saltation displacement vector, a model is implemented to simulate the initiation and evolution of aeolian sand ripples. In the model, saltation distance considers the effects of surface height and slope. A linear stability analysis is also carried out for formation of sand ripples. The results show that, the model can be able to successfully reproduce sand ripples which can increase in scale by merging of small ripples. The linear stability analysis indicates that sand ripples appear when the relaxation rate parameter is below a threshold value and wind strength parameter is larger than a critical value. The results also verified that the formation of sand ripples is a self-organization process
Odelouca Dam Construction: Numerical Analysis
Brito, A.; Maranha, J. R.; Caldeira, L.
2012-01-01
Odelouca dam is an embankment dam, with 76 m height, recently constructed in the south of Portugal. It is zoned with a core consisting of colluvial and residual schist soil and with soil-rockfill mixtures making up the shells (weathered schist with a significant fraction of coarse sized particles). This paper presents a numerical analysis of Odelouca Dam`s construction. The material con-stants of the soil model used are determined from a comprehensive testing programme carried out in the C...
Hygrothermal Numerical Simulation Tools Applied to Building Physics
Delgado, João M P Q; Ramos, Nuno M M; Freitas, Vasco Peixoto
2013-01-01
This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measuremen...
Automated numerical simulation of cracked plates, pipes and elbows
International Nuclear Information System (INIS)
Reddy, Babu; Sreehari Kumar, B.; Bhate, S.R.; Kushwaha, H.S.
2008-01-01
In the nuclear industry, piping components are one of the key elements participating in its operation. Integrity of structural tubes and pipes plays a major role in nuclear power plants. The ideal procedure to ensure this aspect would be to conduct experimental studies on pilot/test specimens. However, it may not always be feasible to carry out the experimental investigation, as it requires pre-requisite infrastructure which may not be economically viable. This makes it imperative to conduct numerical simulations of the same particularly in the study of presence of cracks in the critical components. While performing the effect of cracks, the quality of the finite element mesh nearer to the crack tip plays a critical role while estimating J-integral value. The designer is often familiar with design methodology only and he obviously requires a convenient and reliable numerical tool to model and perform the analysis. In this context, an effort has been made in NISA, the general purpose finite element software, to automate the generation of FE meshes for a set of pre-defined components with different crack configurations. To simplify the procedure of FE mesh generation, analysis, and post processing, a graphical user interface (GUI) has been developed accordingly. This paper discusses the automated numerical simulation of plates and pipes with different crack configurations. This simulation software is also designed to help parametric study of cracked pipes. (author)
Numerical Simulation of Polynomial-Speed Convergence Phenomenon
Li, Yao; Xu, Hui
2017-11-01
We provide a hybrid method that captures the polynomial speed of convergence and polynomial speed of mixing for Markov processes. The hybrid method that we introduce is based on the coupling technique and renewal theory. We propose to replace some estimates in classical results about the ergodicity of Markov processes by numerical simulations when the corresponding analytical proof is difficult. After that, all remaining conclusions can be derived from rigorous analysis. Then we apply our results to seek numerical justification for the ergodicity of two 1D microscopic heat conduction models. The mixing rate of these two models are expected to be polynomial but very difficult to prove. In both examples, our numerical results match the expected polynomial mixing rate well.
Stochastic modeling analysis and simulation
Nelson, Barry L
1995-01-01
A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se
Expert System Architecture for Rocket Engine Numerical Simulators: A Vision
Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.
1998-01-01
Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.
Numerical analysis of the Anderson localization
International Nuclear Information System (INIS)
Markos, P.
2006-01-01
The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper (Author)
Numerical simulation design of nuclear safety related expansion muffler
International Nuclear Information System (INIS)
Huang Bingchen; Shen Wei; Yang Tieming; Luo Jianping; Jing Feng
2014-01-01
According to the working conditions and technical requirements for pipe discharge muffler in passive nuclear power plant, the numerical simulation was used in analyzing sound transmission loss and fluid pressure loss of multi-section expansion muffler by finite element analysis (FEA) software ANSYS. The effect of different muffler structural parameters on sound transmission loss, passing frequency and pressure loss was also analyzed. Based on the analysis results, a reasonable combination of the muffler structural parameters was determined, and a pipe discharge muffler with good performance was obtained. (authors)
A Numerical Simulation for a Deterministic Compartmental ...
African Journals Online (AJOL)
In this work, an earlier deterministic mathematical model of HIV/AIDS is revisited and numerical solutions obtained using Eulers numerical method. Using hypothetical values for the parameters, a program was written in VISUAL BASIC programming language to generate series for the system of difference equations from the ...
Numerical simulation of pulse-tube refrigerators
Lyulina, I.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.
2004-01-01
A new numerical model has been introduced to study steady oscillatory heat and mass transfer in the tube section of a pulse-tube refrigerator. Conservation equations describing compressible gas flow in the tube are solved numerically, using high resolution schemes. The equation of conservation of
Large-scale numerical simulations of plasmas
International Nuclear Information System (INIS)
Hamaguchi, Satoshi
2004-01-01
The recent trend of large scales simulations of fusion plasma and processing plasmas is briefly summarized. Many advanced simulation techniques have been developed for fusion plasmas and some of these techniques are now applied to analyses of processing plasmas. (author)
Numerical simulation on coolant flow and heat transfer in core
International Nuclear Information System (INIS)
Yao Zhaohui; Wang Xuefang; Shen Mengyu
1997-01-01
To simulate the coolant flow and the heat transfer characteristics of a core, a computer code, THAPMA (Thermal Hydraulic Analysis Porous Medium Analysis) has been developed. In THAPMA code, conservation equations are based on a porous-medium formulation, which uses four parameters, i.e, volume porosity, directional surface porosity, distributed resistance, and distributed heat source (sink), to model the effects of fuel rods and other internal solid structures on flow and heat transfer. Because the scheme and the solution are very important in accuracy and speed of calculation, a new difference scheme (WSUC) has been used in the energy equation, and a modified PISO solution method have been employed to simulate the steady/transient states. The code has been proved reliable and can effectively solve the transient state problem by several numerical tests. According to the design of Qinshan NPP-II, the flow and heat transfer phenomena in reactor core have been numerically simulated. The distributions of the velocity and the temperature can provide a theoretical basis for core design and safety analysis
Development of Pelton turbine using numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Patel, K; Patel, B; Yadav, M [Hydraulic Engineer, ALSTOM Hydro R and D India Ltd., GIDC Maneja, Vadodara - 390 013, Gujarat (India); Foggia, T, E-mail: patel@power.alstom.co [Hydraulic Engineer, Alstom Hydro France, Etablissement de Grenoble, 82, avenue Leon Blum BP 75, 38041 Grenoble Cedex (France)
2010-08-15
This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.
Development of Pelton turbine using numerical simulation
Patel, K.; Patel, B.; Yadav, M.; Foggia, T.
2010-08-01
This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.
Development of Pelton turbine using numerical simulation
International Nuclear Information System (INIS)
Patel, K; Patel, B; Yadav, M; Foggia, T
2010-01-01
This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.
Numerical simulation of single bubble boiling behavior
Directory of Open Access Journals (Sweden)
Junjie Liu
2017-06-01
Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.
Modular numerical tool for gas turbine simulation
Sampedro Casis, Rodrigo
2015-01-01
In this work a free tool for the simulation of turboprops was implemented, capable of simulating the various components of a jet engine, separately or in conjunction, with different degrees of thermodynamic modelling or complexity, in order to simulate an entire jet engine. The main characteristics of this software includes its compatibility, open code and GNU license, non-existing in today's market. Furthermore, the tool was designed with a greater flexibility and a more adapted work environ...
Zhao, J.; Wang, S.
2017-12-01
Gravity wave drag (GWD) is among the drivers of meridional overturning in the middle atmosphere, also known as the Brewer-Dobson Circulation, and of the quasi-biennial oscillation (QBO). The small spatial scales and complications due to wave breaking require their effects to be parameterised. GWD parameterizations are usually divided into two parts, orographic and non-orographic. The basic dynamical and physical processes of the middle atmosphere and the mechanism of the interactions between the troposphere and the middle atmosphere were studied in the frame of a general circulation model. The model for the troposphere was expanded to a global model considering middle atmosphere with the capability of describing the basic processes in the middle atmosphere and the troposphere-middle atmosphere interactions. Currently, it is too costly to include full non-hydrostatic and rotational wave dynamics in an operational parameterization. The hydrostatic non-rotational wave dynamics which allow an efficient implementation that is suitably fast for operation. The simplified parameterization of non-orographic GWD follows from the WM96 scheme in which a framework is developed using conservative propagation of gravity waves, critical level filtering, and non-linear dissipation. In order to simulate and analysis the influence of non-orographic GWD on the stratospheric wind and temperature fields, experiments using Stratospheric Sudden Warming (SSW) event case occurred in January 2013 were carried out, and results of objective weather forecast verifications of the two months period were compared in detail. The verification of monthly mean of forecast anomaly correlation (ACC) and root mean square (RMS) errors shows consistently positive impact of non-orographic GWD on skill score of forecasting for the three to eight days, both in the stratosphere and troposphere, and visible positive impact on prediction of the stratospheric wind and temperature fields. Numerical simulation
Direct numerical simulation of bubbles with parallelized adaptive mesh refinement
International Nuclear Information System (INIS)
Talpaert, A.
2015-01-01
The study of two-phase Thermal-Hydraulics is a major topic for Nuclear Engineering for both security and efficiency of nuclear facilities. In addition to experiments, numerical modeling helps to knowing precisely where bubbles appear and how they behave, in the core as well as in the steam generators. This work presents the finest scale of representation of two-phase flows, Direct Numerical Simulation of bubbles. We use the 'Di-phasic Low Mach Number' equation model. It is particularly adapted to low-Mach number flows, that is to say flows which velocity is much slower than the speed of sound; this is very typical of nuclear thermal-hydraulics conditions. Because we study bubbles, we capture the front between vapor and liquid phases thanks to a downward flux limiting numerical scheme. The specific discrete analysis technique this work introduces is well-balanced parallel Adaptive Mesh Refinement (AMR). With AMR, we refined the coarse grid on a batch of patches in order to locally increase precision in areas which matter more, and capture fine changes in the front location and its topology. We show that patch-based AMR is very adapted for parallel computing. We use a variety of physical examples: forced advection, heat transfer, phase changes represented by a Stefan model, as well as the combination of all those models. We will present the results of those numerical simulations, as well as the speed up compared to equivalent non-AMR simulation and to serial computation of the same problems. This document is made up of an abstract and the slides of the presentation. (author)
Numerical simulation of turbulent combustion: Scientific challenges
Ren, ZhuYin; Lu, Zhen; Hou, LingYun; Lu, LiuYan
2014-08-01
Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes, improving engine performance, and reducing pollutant emissions. Critical issues as turbulence modeling, turbulence-chemistry interaction, and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for high-fidelity combustion simulation. This paper reviews the current status of the state-of-the-art large eddy simulation (LES)/prob-ability density function (PDF)/detailed chemistry approach that can address the three challenging modelling issues. PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described. Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified. Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.
Numerical simulation for HT-6M tokamak electrical transient behaviours
International Nuclear Information System (INIS)
Yu Yuanqi; Liu Baohua; Pan Yuan
1991-02-01
The following main points are concerned: (1) State equations used for dynamic analysis of all electrical parameters of the tokamak are derived. (2) In order to increase plasma volt-seconds and to get plasma current with longer sustainment phase, a power supply scheme for HT-6M and its numerical simulation are studied. (3) The distribution of energy flow in coupling loops of the tokamak is discussed, and the energy transfer ratio from the OH loop and vertical field loop to the plasma is also analyzed
Numerical simulations of rubber bearing tests and shaking table tests
International Nuclear Information System (INIS)
Hirata, K.; Matsuda, A.; Yabana, S.
2002-01-01
Test data concerning rubber bearing tests and shaking table tests of base-isolated model conducted by CRIEPI are provided to the participants of Coordinated Research Program (CRP) on 'Intercomparison of Analysis Methods for predicting the behaviour of Seismically Isolated Nuclear Structure', which is organized by International Atomic Energy Agency (IAEA), for the comparison study of numerical simulation of base-isolated structure. In this paper outlines of the test data provided and the numerical simulations of bearing tests and shaking table tests are described. Using computer code ABAQUS, numerical simulations of rubber bearing tests are conducted for NRBs, LRBs (data provided by CRIEPI) and for HDRs (data provided by ENEA/ENEL and KAERI). Several strain energy functions are specified according to the rubber material test corresponding to each rubber bearing. As for lead plug material in LRB, mechanical characteristics are reevaluated and are made use of. Simulation results for these rubber bearings show satisfactory agreement with the test results. Shaking table test conducted by CRIEPI is of a base isolated rigid mass supported by LRB. Acceleration time histories, displacement time histories of the isolators as well as cyclic loading test data of the LRB used for the shaking table test are provided to the participants of the CRP. Simulations of shaking table tests are conducted for this rigid mass, and also for the steel frame model which is conducted by ENEL/ENEA. In the simulation of the rigid mass model test, where LRBs are used, isolators are modeled either by bilinear model or polylinear model. In both cases of modeling of isolators, simulation results show good agreement with the test results. In the case of the steel frame model, where HDRs are used as isolators, bilinear model and polylinear model are also used for modeling isolators. The response of the model is simulated comparatively well in the low frequency range of the floor response, however, in
Numerical simulation of ultrasonic wave propagation in elastically anisotropic media
International Nuclear Information System (INIS)
Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz
2013-01-01
The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)
Detailed numerical simulations of laser cooling processes
Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.
2001-01-01
We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.
NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...
African Journals Online (AJOL)
2014-06-30
Jun 30, 2014 ... objective of this study is to control the simulation of unsteady flows around structures. ... Aerospace, our results were in good agreement with experimental .... Two-Equation Eddy-Viscosity Turbulence Models for Engineering.
Numerical simulation of ion-surface interactions
International Nuclear Information System (INIS)
Hou, M.
1994-01-01
This paper, based on examples from the author's contribution, aims to illustrate the role of ballistic simulations of the interaction between an ion beam and a surface in the characterization of surface properties. Several aspects of the ion-surface interaction have been modelled to various levels of sophistication by computer simulation. Particular emphasis is given to the ion scattering in the impact mode, in the multiple scattering regime and at grazing incidence, as well as to the Auger emission resulting from electronic excitation. Some examples are then given in order to illustrate the use of the combination between simulation and experiment to study the ion-surface interaction and surface properties. Ion-induced Auger emission, the determination of potentials and of overlay structures are discusse. The possibility to tackle dynamical surface properties by menas of a combination between molecular dynamics, ballistic simulations and ion scattering measurements in then briefly discussed. (orig.)
A numerical simulation of a contrail
Energy Technology Data Exchange (ETDEWEB)
Levkov, L.; Boin, M.; Meinert, D. [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht (Germany)
1997-12-31
The formation of a contrail from an aircraft flying near the tropopause is simulated using a three-dimensional mesoscale atmospheric model including a very complex scheme of parameterized cloud microphysical processes. The model predicted ice concentrations are in very good agreement with data measured during the International Cirrus Experiment (ICE), 1989. Sensitivity simulations were run to determine humidity forcing on the life time of contrails. (author) 4 refs.
A numerical simulation of a contrail
Energy Technology Data Exchange (ETDEWEB)
Levkov, L; Boin, M; Meinert, D [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht (Germany)
1998-12-31
The formation of a contrail from an aircraft flying near the tropopause is simulated using a three-dimensional mesoscale atmospheric model including a very complex scheme of parameterized cloud microphysical processes. The model predicted ice concentrations are in very good agreement with data measured during the International Cirrus Experiment (ICE), 1989. Sensitivity simulations were run to determine humidity forcing on the life time of contrails. (author) 4 refs.
Energy Technology Data Exchange (ETDEWEB)
Hernandez Vera, I.; Paola, G. de; Jimenez Sanchez, C.
2008-07-01
This document reproduces the final project of Ignacio Hernandez Vera, presented on September 25, 2008, for the obtention of the engineer degree of the Carlos III University of Madrid. A study on the auto ignition process of different hydrogen-air mixtures for different simple geometries is carried out by means of direct numerical simulation. Auto ignition time is compared for different configurations and it is discussed the influence that different parameters have on it, such as temperature or transport phenomena. Afterwards a new reduced chemical mechanism for the simulation of this phenomenon is tested and assessed. Finally the mixing and ignition process is tackled using different mixture fractions and its implications on the construction of combustion models briefly discussed. (Author) 15 refs.
Numerical Simulation of the Kinetic Critical Nucleus
Sanada, Masaaki; Nishioka, Kazumi; Okada, Masahumi; Maksimov, Igor, L.
1997-01-01
Our main interest is to see whether the number density indicates a peak at the kinetically stable critical nucleus due to its kinetical stability. We have numerically calculated the time evolution of the number densities of clusters in the case of water vapor nucleation. We employ the condition in which the difference between the size of the thermodynamic crtitical nucleus and that of the kinetic one is appreciable. The results show that the peak does not appear in the number densities of clu...
Numerical simulation of hemorrhage in human injury
Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff
2015-11-01
Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.
Numerical simulation of low pressure die-casting aluminum wheel
Directory of Open Access Journals (Sweden)
Mi Guofa
2009-02-01
Full Text Available The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC of an aluminum wheel. By analyzing the mold-fi lling and solidifi cation stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.
Numerical simulation and experimental validation of aircraft ground deicing model
Directory of Open Access Journals (Sweden)
Bin Chen
2016-05-01
Full Text Available Aircraft ground deicing plays an important role of guaranteeing the aircraft safety. In practice, most airports generally use as many deicing fluids as possible to remove the ice, which causes the waste of the deicing fluids and the pollution of the environment. Therefore, the model of aircraft ground deicing should be built to establish the foundation for the subsequent research, such as the optimization of the deicing fluid consumption. In this article, the heat balance of the deicing process is depicted, and the dynamic model of the deicing process is provided based on the analysis of the deicing mechanism. In the dynamic model, the surface temperature of the deicing fluids and the ice thickness are regarded as the state parameters, while the fluid flow rate, the initial temperature, and the injection time of the deicing fluids are treated as control parameters. Ignoring the heat exchange between the deicing fluids and the environment, the simplified model is obtained. The rationality of the simplified model is verified by the numerical simulation and the impacts of the flow rate, the initial temperature and the injection time on the deicing process are investigated. To verify the model, the semi-physical experiment system is established, consisting of the low-constant temperature test chamber, the ice simulation system, the deicing fluid heating and spraying system, the simulated wing, the test sensors, and the computer measure and control system. The actual test data verify the validity of the dynamic model and the accuracy of the simulation analysis.
Numerical simulation of baseflow modification due to effects of ...
African Journals Online (AJOL)
Numerical simulation of baseflow modification due to effects of sediment yield. ... Physically-based mathematical modelling affords the opportunity to look at this kind of interaction, which should be simulated by deterministic responses of both water and fluvial processes. In addition to simulating the streamflow and ...
Numerical Analysis of Multiscale Computations
Engquist, Björn; Tsai, Yen-Hsi R
2012-01-01
This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.
Numerical Simulation of Oil Jet Lubrication for High Speed Gears
Directory of Open Access Journals (Sweden)
Tommaso Fondelli
2015-01-01
Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.
Numerical simulations of nanostructured gold films
DEFF Research Database (Denmark)
Repän, Taavi; Frydendahl, Christian; Novikov, Sergey M.
2017-01-01
We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which...
Numerical Simulation of 3-D Wave Crests
Institute of Scientific and Technical Information of China (English)
YU Dingyong; ZHANG Hanyuan
2003-01-01
A clear definition of 3-D wave crest and a description of the procedures to detect the boundary of wave crest are presented in the paper. By using random wave theory and directional wave spectrum, a MATLAB-platformed program is designed to simulate random wave crests for various directional spectral conditions in deep water. Statistics of wave crests with different directional spreading parameters and different directional functions are obtained and discussed.
Numerical simulation of distributed parameter processes
Colosi, Tiberiu; Unguresan, Mihaela-Ligia; Muresan, Vlad
2013-01-01
The present monograph defines, interprets and uses the matrix of partial derivatives of the state vector with applications for the study of some common categories of engineering. The book covers broad categories of processes that are formed by systems of partial derivative equations (PDEs), including systems of ordinary differential equations (ODEs). The work includes numerous applications specific to Systems Theory based on Mpdx, such as parallel, serial as well as feed-back connections for the processes defined by PDEs. For similar, more complex processes based on Mpdx with PDEs and ODEs as components, we have developed control schemes with PID effects for the propagation phenomena, in continuous media (spaces) or discontinuous ones (chemistry, power system, thermo-energetic) or in electro-mechanics (railway – traction) and so on. The monograph has a purely engineering focus and is intended for a target audience working in extremely diverse fields of application (propagation phenomena, diffusion, hydrodyn...
Partial Differential Equations Modeling and Numerical Simulation
Glowinski, Roland
2008-01-01
This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...
High accuracy mantle convection simulation through modern numerical methods
Kronbichler, Martin; Heister, Timo; Bangerth, Wolfgang
2012-01-01
Numerical simulation of the processes in the Earth's mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth's core. However, doing so presents many practical difficulties related
Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames
Im, Hong G.; Arias, Paul G.; Chaudhuri, Swetaprovo; Uranakara, Harshavardhana A.
2016-01-01
Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms
Numerical Simulation of A Right-moving Storm Over France
Chancibault, K.; Ducrocq, V.; Lafore, J.-Ph.
A three-dimensional non-hydrostatic mesoscale model is used to simulate the right- moving storm produced through storm splitting, on 30 may 1999, over northern France. The initial state is provided by the French 3D-var ARPEGE analysis and the simuation is performed with two interactive nested domains. The aim of this study is to improve our understanding of such storm dynamics. A vor- ticity analysis has been carried out, with emphasis on stretching and tilting terms of the vertical vorticity equation, thanks to the backward trajectories. The baroclinic produc- tion and stretching terms of the horizontal vorticity equation have also been studied to understand the interaction between the horizontal vorticity and a mesoscale thermal line. Finally, the spatial and temporal variation of the Storm Relative Environmental Helicity has been examined. Most of the results compare well with previous results on right-moving storms ob- tained from theoritical or numerical studies from idealized homogeneous base state.
NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.
Energy Technology Data Exchange (ETDEWEB)
LUCCIO, A.; D' IMPERIO, N.; MALITSKY, N.
2005-09-12
Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.
Numerical simulation and physical aspects of supersonic vortex breakdown
Liu, C. H.; Kandil, O. A.; Kandil, H. A.
1993-01-01
Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.
Numerical simulation of exploding pusher targets
Atzeni, S.; Rosenberg, M. J.; Gatu Johnson, M.; Petrasso, R. D.
2017-10-01
Exploding pusher targets, i.e. gas-filled large aspect-ratio glass or plastic shells, driven by a strong laser-generated shock, are widely used as pulsed sources of neutrons and fast charged particles. Recent experiments on exploding pushers provided evidence for the transition from a purely fluid behavior to a kinetic one. Indeed, fluid models largely overpredict yield and temperature as the Knudsen number Kn (ratio of ion mean-free path to compressed gas radius) is comparable or larger than one. At Kn = 0.3 - 1, fluid codes reasonably estimate integral quantities as yield and neutron-averaged temperatures, but do not reproduce burn radii, burn profiles and DD/DHe3 yield ratio. This motivated a detailed simulation study of intermediate-Kn exploding pushers. We will show how simulation results depend on models for laser-interaction, electron conductivity (flux-limited local vs nonlocal), viscosity (physical vs artificial), and ion mixing. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), and Eurofusion Project AWP17-ENR-IFE-CEA-01.
Numerical simulation of a DFB - fiber laser sensor (part 1
Directory of Open Access Journals (Sweden)
Dan SAVASTRU
2010-06-01
Full Text Available This paper presents the preliminary results obtained in developing a numerical simulationanalysis of fiber optic bending sensitivity aiming to improve the design of fiber lasers. The developednumerical simulation method relies on an analysis of both the fundamental mode propagation alongan optical fiber and of how bending of this fiber influence the optical radiation losses. The cases ofsimple, undoped and of doped with Er3+ ions optical fibers are considered. The presented results arebased on numerical simulation of eigen-modes of a laser intensity distribution by the use of finiteelement method (FEM developed in the frame of COMSOL software package. The numericalsimulations are performed by considering the cases of both normal, non-deformed optic fiber and ofsymmetrically deformed optic fiber resembling micro-bending of it. Both types of fiber optic bendinglosses are analyzed, namely: the transition loss, associated with the abrupt or rapid change incurvature at the beginning and the end of a bend, and pure bend loss is associated with the loss fromthe bend of constant curvature in between.
Numerical simulation system for environmental studies: SPEEDI-MP
International Nuclear Information System (INIS)
Nagai, Haruyasu; Chino, Masamichi; Terada, Hiroaki; Harayama, Takaya; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok; Furuno, Akiko
2006-09-01
A numerical simulation system SPEEDI-MP has been developed to apply for various environmental studies. SPEEDI-MP consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical database for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. System utility GUIs are based on the Web technology, allowing users to manipulate all the functions on the system using their own PCs via the internet. In this system, the source estimation function in the atmospheric transport model can be executed on the grid computer system. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)
Direct Numerical Simulations of turbulent flow in a driven cavity
Verstappen, R.; Wissink, J.G.; Cazemier, W.; Veldman, A.E.P.
Direct numerical simulations (DNS) of 2 and 3D turbulent flows in a lid-driven cavity have been performed. DNS are numerical solutions of the unsteady (here: incompressible) Navier-Stokes equations that compute the evolution of all dynamically significant scales of motion. In view of the large
Numerical simulation of a precessing vortex breakdown
International Nuclear Information System (INIS)
Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.
2006-01-01
The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow
Kaloop, Mosbeh R.; Yigit, Cemal O.; Hu, Jong W.
2018-03-01
Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10 Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.
Numerical simulation of superconducting accelerator magnets
Kurz, Stefan
2002-01-01
Modeling and simulation are key elements in assuring the fast and successful design of superconducting magnets. After a general introduction the paper focuses on electromagnetic field computations, which are an indipensable tool in the design process. A technique which is especially well suited for the accurate computation of magnetic fields in superconducting magnets is presented. This method couples Boundary Elements (BEM) which discretize the surface of the iron yoke and Finite Elements (FEM) for the modeling of the non linear interior of the yoke. The formulation is based on a total magnetic scalar potential throughout the whole problem domain. The results for a short dipole model are presented and compared to previous results, which have been obtained from a similar BEM-FEM coupled vector potential formulation. 10 Refs. --- 25 --- AN
A numerical relativity scheme for cosmological simulations
Daverio, David; Dirian, Yves; Mitsou, Ermis
2017-12-01
Cosmological simulations involving the fully covariant gravitational dynamics may prove relevant in understanding relativistic/non-linear features and, therefore, in taking better advantage of the upcoming large scale structure survey data. We propose a new 3 + 1 integration scheme for general relativity in the case where the matter sector contains a minimally-coupled perfect fluid field. The original feature is that we completely eliminate the fluid components through the constraint equations, thus remaining with a set of unconstrained evolution equations for the rest of the fields. This procedure does not constrain the lapse function and shift vector, so it holds in arbitrary gauge and also works for arbitrary equation of state. An important advantage of this scheme is that it allows one to define and pass an adaptation of the robustness test to the cosmological context, at least in the case of pressureless perfect fluid matter, which is the relevant one for late-time cosmology.
Directory of Open Access Journals (Sweden)
Jianguang Yue
2018-01-01
Full Text Available In a large spatial structure, normally the important members are of special type and are the safety key for the global structure. In order to study the mechanical behavior details of the local member, it is difficult for the common test method to realize the complex spatial loading state of the local member. Therefore, a local-fine finite element model was proposed and a large-space vertical hybrid structure was numerically simulated. The seismic responses of the global structure and the Y-type S-SRC column were analyzed under El Centro seismic motions with the peak acceleration of 35 gal and 220 gal. The numerical model was verified with the results of the seismic shaking table test of the structure model. The failure mechanism and stiffness damage evolution of the Y-type S-SRC column were analyzed. The calculated results agreed well with the test results. It indicates that the local-fine FEM could reflect the mechanical details of the local members in a large spatial structure.
Batman-cracks. Observations and numerical simulations
Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.
1991-05-01
To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.
An introduction to numerical methods and analysis
Epperson, James F
2013-01-01
Praise for the First Edition "". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises.""-Zentralblatt MATH "". . . carefully structured with many detailed worked examples.""-The Mathematical Gazette The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis. An Introduction to
Numerical simulation of anisotropic polymeric foams
Directory of Open Access Journals (Sweden)
Volnei Tita
Full Text Available This paper shows in detail the modelling of anisotropic polymeric foam under compression and tension loadings, including discussions on isotropic material models and the entire procedure to calibrate the parameters involved. First, specimens of poly(vinyl chloride (PVC foam were investigated through experimental analyses in order to understand the mechanical behavior of this anisotropic material. Then, isotropic material models available in the commercial software AbaqusTM were investigated in order to verify their ability to model anisotropic foams and how the parameters involved can influence the results. Due to anisotropy, it is possible to obtain different values for the same parameter in the calibration process. The obtained set of parameters are used to calibrate the model according to the application of the structure. The models investigated showed minor and major limitations to simulate the mechanical behavior of anisotropic PVC foams under compression, tension and multi-axial loadings. Results show that the calibration process and the choice of the material model applied to the polymeric foam can provide good quantitative results and save project time. Results also indicate what kind and order of error one will get if certain choices are made throughout the modelling process. Finally, even though the developed calibration procedure is applied to specific PVC foam, it still outlines a very broad drill to analyze other anisotropic cellular materials.
Parallel Numerical Simulations of Water Reservoirs
Torres, Pedro; Mangiavacchi, Norberto
2010-11-01
The study of the water flow and scalar transport in water reservoirs is important for the determination of the water quality during the initial stages of the reservoir filling and during the life of the reservoir. For this scope, a parallel 2D finite element code for solving the incompressible Navier-Stokes equations coupled with scalar transport was implemented using the message-passing programming model, in order to perform simulations of hidropower water reservoirs in a computer cluster environment. The spatial discretization is based on the MINI element that satisfies the Babuska-Brezzi (BB) condition, which provides sufficient conditions for a stable mixed formulation. All the distributed data structures needed in the different stages of the code, such as preprocessing, solving and post processing, were implemented using the PETSc library. The resulting linear systems for the velocity and the pressure fields were solved using the projection method, implemented by an approximate block LU factorization. In order to increase the parallel performance in the solution of the linear systems, we employ the static condensation method for solving the intermediate velocity at vertex and centroid nodes separately. We compare performance results of the static condensation method with the approach of solving the complete system. In our tests the static condensation method shows better performance for large problems, at the cost of an increased memory usage. Performance results for other intensive parts of the code in a computer cluster are also presented.
NUMERICAL SIMULATION OF ICE ACCRETION ON AIRFOIL
Directory of Open Access Journals (Sweden)
Nicusor ALEXANDRESCU
2009-09-01
Full Text Available This work consists in the simulation of the ice accretion in the leading edge of aerodynamic profiles and our proposed model encompasses: geometry generation, calculation of the potential flow around the body, boundary layer thickness computation, water droplet trajectory computation, heat and mass balances and the consequent modification of the geometry by the ice growth. The flow calculation is realized with panel methods, using only segments defined over the body contour. The viscous effects are considered using the Karman-Pohlhausen method for the laminar boundary layer. The local heat transfer coefficient is obtained by applying the Smith-Spalding method for the thermal boundary layer. The ice accretion limits and the collection efficiency are determined by computing water droplet trajectories impinging the surface. The heat transfer process is analyzed with an energy and a mass balance in each segment defining the body. Finally, the geometry is modified by the addition of the computed ice thickness to the respective panel. The process by repeating all the steps. The model validation is done using a selection of problems with experimental solution, CIRA (the CESAR project. Hereinafter, results are obtained for different aerodynamic profiles, angles of attack and meteorological parameters
Viswanadhapalli, Yesubabu
2014-06-22
In this study, the impact of four-dimensional data assimilation (FDDA) analysis nudging is examined on the prediction of tropical cyclones (TC) in the Bay of Bengal to determine the optimum period and timescale of nudging. Six TCs (SIDR: November 13–16, 2007; NARGIS: April 29–May 02, 2008; NISHA: November 25–28, 2008; AILA: May 23–26, 2009; LAILA: May 18–21, 2010; JAL: November 04–07, 2010) were simulated with a doubly nested Weather Research and Forecasting (WRF) model with a horizontal resolution of 9 km in the inner domain. In the control run for each cyclone, the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) analysis and forecasts at 0.5_ resolution are used for initial and boundary conditions. In the FDDA experiments available surface, upper air observations obtained from NCEP Atmospheric Data Project (ADP) data sets were used for assimilation after merging with the first guess through objective analysis procedure. Analysis nudging experiments with different nudging periods (6, 12, 18, and 24 h) indicated a period of 18 or 24 h of nudging during the pre-forecast stage provides maximum impact on simulations in terms of minimum track and intensity forecasts. To determine the optimum timescale of nudging, two cyclone cases (NARGIS: April 28–May 02, 2008; NISHA: November 25–28, 2008) were simulated varying the inverse timescales as 1.0e-4 to 5.0e-4 s−1 in steps of 1.0e-4 s−1. A positive impact of assimilation is found on the simulated characteristics with a nudging coefficient of either 3.0e-4 or 4.0e-4 s−1 which corresponds to a timescale of about 1 h for nudging dynamic (u,v) and thermodynamical (t,q) fields.
Tests of numerical simulation algorithms for the Kubo oscillator
International Nuclear Information System (INIS)
Fox, R.F.; Roy, R.; Yu, A.W.
1987-01-01
Numerical simulation algorithms for multiplicative noise (white or colored) are tested for accuracy against closed-form expressions for the Kubo oscillator. Direct white noise simulations lead to spurious decay of the modulus of the oscillator amplitude. A straightforward colored noise algorithm greatly reduces this decay and also provides highly accurate results in the white noise limit
Numerical simulation for quenching meshes with TONUS platform
International Nuclear Information System (INIS)
Bin, Chen; Hongxing, Yu
2009-01-01
For mitigation of hydrogen risks during severe accidents to protect the integrity of containment, PAR and ignitors are used in current advanced nuclear power plants. But multiple combustions induced by ignitors and consequent DDT phenomena are not practically eliminated. An innovative design call 'quenching meshes' is considered to confine hydrogen flame within one compartment by metallic meshes, so that hazardous flame propagation can be prevented. The numerical simulation results based on discretization of the full Navier-Stokes equations with global one-step reaction represented by Arrhenius laminar combustion model have shown the possibility of flame quenching 'numerically'. This is achieved via multiplication of the combustion rate expression by a Heaviside function having an ignition temperature as a parameter. Qualitative behavior of the computed flow shows that the flame velocity diminishes while passing through a quenching mesh, while qualitative analysis based on the energy balance reveals the mechanism of flame quenching. All the above analysis has been performed for a stoichiometric mixture and normal initial pressure and temperature for initial conditions. For further research we would like to suggest the investigation of the influence of the mixture composition, initial pressure and/or temperature on the quenching criteria
Numerical simulation of boron injection in a BWR
Energy Technology Data Exchange (ETDEWEB)
Tinoco, Hernan, E-mail: htb@forsmark.vattenfall.s [Forsmarks Kraftgrupp AB, SE-742 03 Osthammar (Sweden); Buchwald, Przemyslaw [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Frid, Wiktor, E-mail: wiktor@reactor.sci.kth.s [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)
2010-02-15
The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of
Numerical simulation of boron injection in a BWR
International Nuclear Information System (INIS)
Tinoco, Hernan; Buchwald, Przemyslaw; Frid, Wiktor
2010-01-01
The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of several
Numerical simulation of transient moisture transfer into an electronic enclosure
International Nuclear Information System (INIS)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.
2016-01-01
Electronic systems are sometimes exposed to harsh environmental conditions of temperature and humidity. Moisture transfer into electronic enclosures and condensation can cause several problems such as corrosion and alteration in thermal stresses. It is therefore essential to study the local climate inside the enclosures to be able to protect the electronic systems. In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce the CPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which the real 3D geometry is approximated by a 2D axial symmetry one. The results for 2D and 3D models were compared in order to calibrate the 2D representation. Furthermore, simulation results were compared with experimental data and good agreement was found.
Numerical simulation of transient moisture transfer into an electronic enclosure
Energy Technology Data Exchange (ETDEWEB)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)
2016-06-08
Electronic systems are sometimes exposed to harsh environmental conditions of temperature and humidity. Moisture transfer into electronic enclosures and condensation can cause several problems such as corrosion and alteration in thermal stresses. It is therefore essential to study the local climate inside the enclosures to be able to protect the electronic systems. In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce the CPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which the real 3D geometry is approximated by a 2D axial symmetry one. The results for 2D and 3D models were compared in order to calibrate the 2D representation. Furthermore, simulation results were compared with experimental data and good agreement was found.
Numerical simulation of dimples in airfoil using MATLAB
Booma Devi, P.; Shah, Dilip A.
2017-05-01
The Aircraft wing is a point of important research which poses greater challenge in terms of aerodynamic efficiency. The flow separation control method is addressed in classical aerodynamics methods. This study focuses on influence of dimples on controlling the flow and also increasing the aerodynamic efficiency. The periodic process of placing the cavities on the wing starting from root to tip controls the flow separation. The linear variation of characteristic curve provides the information about the flow separation and control of flow on upper surface of the airfoil.These different shapes are utilized viz., Square, Rectangle and Triangle. The numerical simulation is carried out in using MATLAB package. Preliminary analysis on the flow separation is carried out focuses on laminar flow separation, which has the influence on the overall lift generation and drag generation.
Mitigation of numerical noise for beam loss simulations
Kesting, Frederik
2017-01-01
Numerical noise emerges in self-consistent simulations of charged particles, and its mitigation is investigated since the first numerical studies in plasma physics. In accelerator physics, recent studies find an artificial diffusion of the particle beam due to numerical noise in particle-in-cell tracking, which is of particular importance for high intensity machines with a long storage time, as the SIS100 at FAIR or in context of the LIU upgrade at CERN. In beam loss simulations for these projects artificial effects must be distinguished from physical beam loss. Therefore, it is important to relate artificial diffusion to artificial beam loss, and to choose simulation parameters such that physical beam loss is well resolved. As a practical tool, we therefore suggest a scaling law to find optimal simulation parameters for a given maximum percentage of acceptable artificial beam loss.
Practical considerations in developing numerical simulators for thermal recovery
Energy Technology Data Exchange (ETDEWEB)
Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)
1996-08-15
Numerical simulation of steam injection and in-situ combustion-based oil recovery processes is of great importance in project design. Development of such numerical simulators is an on-going process, with improvements made as the process description becomes more complete, and also as better methods are devised to resolve certain numerical difficulties. This paper addresses some of the latter, and based on the author`s experience gives useful guidelines for developing more efficient numerical simulators of steam injection and in-situ combustion. The paper takes up a series of questions related to simulating thermal processes. Included are: the elimination of constraint equations at the matrix level, phase change, steam injection rate, alternative treatments of heat loss, relative permeabilities and importance of hysteresis effects, improved solutions to the grid orientation problem and other simulation problems such as potential inversion, grid block size, time-step size control and induced fractures. The points discussed in the paper should be of use to both simulator developers and users alike, and will lead to a better understanding of simulation results
XVI 'Jacques-Louis Lions' Spanish-French School on Numerical Simulation in Physics and Engineering
Roldán, Teo; Torrens, Juan
2016-01-01
This book presents lecture notes from the XVI ‘Jacques-Louis Lions’ Spanish-French School on Numerical Simulation in Physics and Engineering, held in Pamplona (Navarra, Spain) in September 2014. The subjects covered include: numerical analysis of isogeometric methods, convolution quadrature for wave simulations, mathematical methods in image processing and computer vision, modeling and optimization techniques in food processes, bio-processes and bio-systems, and GPU computing for numerical simulation. The book is highly recommended to graduate students in Engineering or Science who want to focus on numerical simulation, either as a research topic or in the field of industrial applications. It can also benefit senior researchers and technicians working in industry who are interested in the use of state-of-the-art numerical techniques in the fields addressed here. Moreover, the book can be used as a textbook for master courses in Mathematics, Physics, or Engineering.
Direct numerical simulation of stratified gas-liquid flow
International Nuclear Information System (INIS)
Lombardi, P.; De Angelis, V.; Banerjee, S.
1996-01-01
Interactions through an interface between two turbulent flows play an important role in many environmental and industrial problems, e.g. in determining the coupling fluxes of heat mass and momentum, between the ocean and atmosphere, and in the design of gas-liquid contractors for the chemical industry, as well as in determining interactions between phases in nuclear transients that are accompanied by system voiding e.g. LOCAs. Here, the Direct Numerical Simulation (DNS) of the interaction of two turbulent fluids through a flat interface has been simulated. The flow and the temperature fields are computed using a pseudospectral method. This study shows that shear stress at the interface correlates well with the heat flux. Extensive analysis of the near interface turbulence structure has been performed using quadrant analysis. From this it is clear that gas-side sweeps dominate over the high shear stress regions. This suggests that simple parameterizations based on sweep frequency may be adequate for predictions of scalar transport rates
Directory of Open Access Journals (Sweden)
Mottyll Stephan
2014-03-01
Full Text Available This paper reports the outcome of a numerical study of ultrasonic cavitation using a CFD flow algorithm based on a compressible density-based finite volume method with a low-Machnumber consistent flux function and an explicit time integration [15; 18] in combination with an erosion-detecting flow analysis procedure. The model is validated against erosion data of an ultrasonic horn for different gap widths between the horn tip and a counter sample which has been intensively investigated in previous material studies at the Ruhr University Bochum [23] as well as on first optical in-house flow measurement data which is presented in a companion paper [13]. Flow features such as subharmonic cavitation oscillation frequencies as well as constricted vapour cloud structures can also be observed by the vapour regions predicted in our simulation as well as by the detected collapse event field (collapse detector [12]. With a statistical analysis of transient wall loads we can determine the erosion sensitive areas qualitatively. Our simulation method can reproduce the influence of the gap width on vapour structure and on location of cavitation erosion.
International Nuclear Information System (INIS)
Miranda, Carlos A.J.; Libardi, Rosani M.P.; Marcelino, Sergio; Oliveira, Carlos Alberto de; Mattar Neto, Miguel
2013-01-01
This work describes thermal analysis framework including a 3D model and some 2D models to be performed in a 1:2 scale model of a dual-purpose cask to transport and to store spent fuel elements from research reactors to assess the behavior of the cask structure and materials when submitted to heating and drop tests. The analyses should consider all non-linearities involved like the lead phase change and thermal contacts, beside the variation of material properties with the temperature, the air inside it and the heat transfer phenomena (conduction, convection and irradiation) to reproduce the experimental results already obtained in a 1:2 model. A full 3D finite element model takes several hours to run just one analysis. To speed up the analyses to evaluate the significance of some parameters like the emissivity, contact resistance and heat transfer phenomena, among others, two 2D models are planned: one simulating a vertical cut by a diametral plane and another one simulating a horizontal cut by a plane at the cask half height. These 2D models are predicted to run fast enough to allow several analyses in a short period of time and to define options and the best parameters values to match the already obtained experimental results. As this thermal test can not be extrapolated to an 1:1 scale, these parameter values will be used in the final 3D model analysis and also in the full scale model. (author)
Theory and applications of numerical analysis
Phillips, G M
1996-01-01
This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions
International Nuclear Information System (INIS)
Tanaka, Masa-aki; Kamide, Hideki
2001-02-01
This investigation deals with the porous blockage in a wire spacer type fuel subassembly in Fast Breeder Reactors (FBR's). Multi-dimensional analysis method for a porous blockage in a fuel subassembly is developed using the standard k-ε turbulence model with the typical correlations in handbooks. The purpose of this analysis method is to evaluate the position and the magnitude of the maximum temperature, and to investigate the thermo-hydraulic phenomena in the porous blockage. Verification of this analysis method was conducted based on the results of 4-subchannel geometry water test. It was revealed that the evaluation of the porosity distribution and the particle diameter in a porous blockage was important to predict the temperature distribution. This analysis method could simulate the spatial characteristic of velocity and temperature distributions in the blockage and evaluate the pin surface temperature inside the porous blockage. Through the verification of this analysis method, it is shown that this multi-dimensional analysis method is useful to predict the thermo-hydraulic field and the highest temperature in a porous blockage. (author)
Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass
Directory of Open Access Journals (Sweden)
Xuguang Chen
2014-01-01
Full Text Available Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.
Numerical simulation on zonal disintegration in deep surrounding rock mass.
Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.
Direct numerical simulation of axisymmetric laminar low-density jets
Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro
2017-11-01
The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.
Comparison of GPU-Based Numerous Particles Simulation and Experiment
International Nuclear Information System (INIS)
Park, Sang Wook; Jun, Chul Woong; Sohn, Jeong Hyun; Lee, Jae Wook
2014-01-01
The dynamic behavior of numerous grains interacting with each other can be easily observed. In this study, this dynamic behavior was analyzed based on the contact between numerous grains. The discrete element method was used for analyzing the dynamic behavior of each particle and the neighboring-cell algorithm was employed for detecting their contact. The Hertzian and tangential sliding friction contact models were used for calculating the contact force acting between the particles. A GPU-based parallel program was developed for conducting the computer simulation and calculating the numerous contacts. The dam break experiment was performed to verify the simulation results. The reliability of the program was verified by comparing the results of the simulation with those of the experiment
Vortex locking in direct numerical simulations of quantum turbulence.
Morris, Karla; Koplik, Joel; Rouson, Damian W I
2008-07-04
Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.
Numerical simulation on quantum turbulence created by an oscillating object
Energy Technology Data Exchange (ETDEWEB)
Fujiyama, S; Tsubota, M [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka (Japan)], E-mail: fujiyama@sci.osaka-cu.ac.jp
2009-02-01
We have conducted a numerical simulation of vortex dynamics in superfluid {sup 4}He in the presence of an oscillating sphere. The experiment on a vibrating wire that measured the transition from laminar to turbulent flow is modelled in our simulations. The simulation exhibits the details of vortex growth by the oscillating sphere. Our result also shows that a more realistic modelling may change the destiny of the vortex rings detached from the sphere. We have evaluated the force driven by the sphere in the simulation and have confirmed the onset of the quantum turbulence.
Recent developments in numerical simulation techniques of thermal recovery processes
Energy Technology Data Exchange (ETDEWEB)
Tamim, M. [Bangladesh University of Engineering and Technology, Bangladesh (Bangladesh); Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain 17555 (United Arab Emirates); Farouq Ali, S.M. [University of Alberta, Alberta (Canada)
2000-05-01
Numerical simulation of thermal processes (steam flooding, steam stimulation, SAGD, in-situ combustion, electrical heating, etc.) is an integral part of a thermal project design. The general tendency in the last 10 years has been to use commercial simulators. During the last decade, only a few new models have been reported in the literature. More work has been done to modify and refine solutions to existing problems to improve the efficiency of simulators. The paper discusses some of the recent developments in simulation techniques of thermal processes such as grid refinement, grid orientation, effect of temperature on relative permeability, mathematical models, and solution methods. The various aspects of simulation discussed here promote better understanding of the problems encountered in the simulation of thermal processes and will be of value to both simulator users and developers.
Numerical methods in software and analysis
Rice, John R
1992-01-01
Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm
Direct numerical simulation of noninvasive channel healing in electrical field
Wang, Yi
2017-11-25
Noninvasive channel healing is a new idea to repair the broken pipe wall, using external electric fields to drive iron particles to the destination. The repair can be done in the normal operation of the pipe flow without any shutdown of the pipeline so that this method can be a potentially efficient and safe technology of pipe healing. However, the real application needs full knowledge of healing details. Numerical simulation is an effective method. Thus, in this research, we first established a numerical model for noninvasive channel healing technology to represent fluid–particle interaction. The iron particles can be attached to a cracking area by external electrostatic forces or can also be detached by mechanical forces from the fluid. When enough particles are permanently attached on the cracking area, the pipe wall can be healed. The numerical criterion of the permanent attachment is discussed. A fully three-dimensional finite difference framework of direct numerical simulation is established and applied to different cases to simulate the full process of channel healing. The impact of Reynolds number and particle concentration on the healing process is discussed. This numerical investigation provides valuable reference and tools for further simulation of real pipe healing in engineering.
On the elimination of numerical Cerenkov radiation in PIC simulations
International Nuclear Information System (INIS)
Greenwood, Andrew D.; Cartwright, Keith L.; Luginsland, John W.; Baca, Ernest A.
2004-01-01
Particle-in-cell (PIC) simulations are a useful tool in modeling plasma in physical devices. The Yee finite difference time domain (FDTD) method is commonly used in PIC simulations to model the electromagnetic fields. However, in the Yee FDTD method, poorly resolved waves at frequencies near the cut off frequency of the grid travel slower than the physical speed of light. These slowly traveling, poorly resolved waves are not a problem in many simulations because the physics of interest are at much lower frequencies. However, when high energy particles are present, the particles may travel faster than the numerical speed of their own radiation, leading to non-physical, numerical Cerenkov radiation. Due to non-linear interaction between the particles and the fields, the numerical Cerenkov radiation couples into the frequency band of physical interest and corrupts the PIC simulation. There are two methods of mitigating the effects of the numerical Cerenkov radiation. The computational stencil used to approximate the curl operator can be altered to improve the high frequency physics, or a filtering scheme can be introduced to attenuate the waves that cause the numerical Cerenkov radiation. Altering the computational stencil is more physically accurate but is difficult to implement while maintaining charge conservation in the code. Thus, filtering is more commonly used. Two previously published filters by Godfrey and Friedman are analyzed and compared to ideally desired filter properties
Numerical Simulation of Antennae by Discrete Exterior Calculus
International Nuclear Information System (INIS)
Xie Zheng; Ye Zheng; Ma Yujie
2009-01-01
Numerical simulation of antennae is a topic in computational electromagnetism, which is concerned with the numerical study of Maxwell equations. By discrete exterior calculus and the lattice gauge theory with coefficient R, we obtain the Bianchi identity on prism lattice. By defining an inner product of discrete differential forms, we derive the source equation and continuity equation. Those equations compose the discrete Maxwell equations in vacuum case on discrete manifold, which are implemented on Java development platform to simulate the Gaussian pulse radiation on antennaes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Numerical Analysis of Dusty-Gas Flows
Saito, T.
2002-02-01
This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.
On the numerical simulation of tracer flows in porous media
International Nuclear Information System (INIS)
Aquino, J.; Pereira, F.; Amaral Souto, H.P.; Francisco, A.S.
2007-01-01
We discuss in detail a new Lagrangian, locally conservative procedure which has been proposed for the numerical solution of linear transport problems in porous media. The new scheme is computationally efficient, virtually free of numerical diffusion, and can be applied to investigate numerically the time evolution of radionuclide contaminant plumes. Results of two-dimensional simulations of tracer flows will be presented to show the influence on the computed solutions of distinct interpolation functions for evaluating the velocity field at any position of the physical domain, as required by the Lagrangian scheme. (author)
Numerical simulation of explosive magnetic cumulative generator EMG-720
Energy Technology Data Exchange (ETDEWEB)
Deryugin, Yu N; Zelenskij, D K; Kazakova, I F; Kargin, V I; Mironychev, P V; Pikar, A S; Popkov, N F; Ryaslov, E A; Ryzhatskova, E G [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)
1997-12-31
The paper discusses the methods and results of numerical simulations used in the development of a helical-coaxial explosive magnetic cumulative generator (EMG) with the stator up to 720 mm in diameter. In the process of designing, separate units were numerically modeled, as was the generator operation with a constant inductive-ohmic load. The 2-D processes of the armature acceleration by the explosion products were modeled as well as those of the formation of the sliding high-current contact between the armature and stator`s insulated turns. The problem of the armature integrity in the region of the detonation waves collision was numerically analyzed. 8 figs., 2 refs.
NUMERICAL SIMULATION OF SHOCK WAVE REFRACTION ON INCLINED CONTACT DISCONTINUITY
Directory of Open Access Journals (Sweden)
P. V. Bulat
2016-05-01
Full Text Available We consider numerical simulation of shock wave refraction on plane contact discontinuity, separating two gases with different density. Discretization of Euler equations is based on finite volume method and WENO finite difference schemes, implemented on unstructured meshes. Integration over time is performed with the use of the third-order Runge–Kutta stepping procedure. The procedure of identification and classification of gas dynamic discontinuities based on conditions of dynamic consistency and image processing methods is applied to visualize and interpret the results of numerical calculations. The flow structure and its quantitative characteristics are defined. The results of numerical and experimental visualization (shadowgraphs, schlieren images, and interferograms are compared.
International Nuclear Information System (INIS)
Tauveron, N.
2006-02-01
The subject of the present work was to develop models able to simulate axial instabilities occurrence and development in multistage turbomachines. The construction of a 1D unsteady axisymmetric model of internal flow in a turbomachine (at the scale of the row) has followed different steps: generation of steady correlations, adapted to different regimes (off-design conditions, low mass flowrate, negative mass flow rate); building of a model able to describe transient behaviour; use of implicit time schemes adapted to long transients; validation of the model in comparison of experimental investigations, measurements and numerical results from the bibliography. This model is integrated in a numerical tool, which has the capacity to describe the gas dynamics in a complete circuit containing different elements (ducts, valves, plenums). Thus, the complete model can represent the coupling between local and global phenomena, which is a very important mechanism in axial instability occurrence and development. An elementary theory has also been developed, based on a generalisation of Greitzer's model. These models, which were validated on various configurations, have provided complementary elements for the validation of the complete model. They have also allowed a more comprehensive description of physical phenomena at stake in instability occurrence and development by quantifying various effects (inertia, compressibility, performance levels) and underlying the main phenomena (in particular the collapse and recovery kinetics of the plenum), which were the only retained in the final elementary theory. The models were first applied to academic configurations (compression system), and then to an innovative industrial project: a helium cooled fast nuclear reactor with a Brayton cycle. The use of the models have brought comprehensive elements to surge occurrence due to a break event. It has been shown that surge occurrence is highly dependent of break location and that surge
Processing biobased polymers using plasticizers: Numerical simulations versus experiments
Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa
2016-03-01
In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.
Numerical simulation of airfoil trailing edge serration noise
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong
In the present work, numerical simulations are carried out for a low noise airfoil with and without serrated Trailing Edge. The Ffowcs Williams-Hawkings acoustic analogy is implemented into the in-house incompressible flow solver EllipSys3D. The instantaneous hydrodynamic pressure and velocity...... field are obtained using Large Eddy Simulation. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FW-H approach. The extended length of the serration is about 16.7% of the airfoil chord and the geometric angle of the serration...... is 28 degrees. The chord based Reynolds number is around 1.5x106. Simulations are compared with existing wind tunnel experiments at various angles of attack. Even though the airfoil under investigation is already optimized for low noise emission, numerical simulations and wind tunnel experiments show...
Numerical simulations of comets - predictions for Comet Giacobini-Zinner
International Nuclear Information System (INIS)
Fedder, J.A.; Lyon, J.G.; Giuliani, J.L. Jr.
1986-01-01
Simulations of Comet Giacobini-Zinner's interaction with solar wind are described and results are presented. The simulations are carried out via the numerical solution of the ideal MHD equations as an initial value problem in a uniform solar wind. The calculations are performed on a Cartesian mesh centered at the comet. Results reveal that the first significant modifications of the solar wind along the ISEE/ICE trajectory will occur 100,000 km from the solar wind comet axis. 6 references
3D numerical simulation of transient processes in hydraulic turbines
International Nuclear Information System (INIS)
Cherny, S; Chirkov, D; Lapin, V; Eshkunova, I; Bannikov, D; Avdushenko, A; Skorospelov, V
2010-01-01
An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.
3D numerical simulation of transient processes in hydraulic turbines
Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.
2010-08-01
An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.
Average-case analysis of numerical problems
2000-01-01
The average-case analysis of numerical problems is the counterpart of the more traditional worst-case approach. The analysis of average error and cost leads to new insight on numerical problems as well as to new algorithms. The book provides a survey of results that were mainly obtained during the last 10 years and also contains new results. The problems under consideration include approximation/optimal recovery and numerical integration of univariate and multivariate functions as well as zero-finding and global optimization. Background material, e.g. on reproducing kernel Hilbert spaces and random fields, is provided.
The numerical simulation of convection delayed dominated diffusion equation
Directory of Open Access Journals (Sweden)
Mohan Kumar P. Murali
2016-01-01
Full Text Available In this paper, we propose a fitted numerical method for solving convection delayed dominated diffusion equation. A fitting factor is introduced and the model equation is discretized by cubic spline method. The error analysis is analyzed for the consider problem. The numerical examples are solved using the present method and compared the result with the exact solution.
The hardiness of numerical simulation of TIG welding. Application to stainless steel 316L structures
International Nuclear Information System (INIS)
El-Ahmar, Walid; Jullien, Jean-Francois; Gilles, Philippe; Taheri, Said; Boitout, Frederic
2006-01-01
The welding numerical simulation is considered as one of the mechanics problems the most un-linear on account of the great number of the parameters required. The analysis of the hardiness of the welding numerical simulation is a current questioning whose expectation is to specify welding numerical simulation procedures allowing to guarantee the reliability of the numerical result. In this work has been quantified the aspect 'uncertainties-sensitivity' imputable to different parameters which occur in the simulation of stainless steel 316L structures welded by the TIG process: that is to say the mechanical and thermophysical parameters, the types of modeling, the adopted behaviour laws, the modeling of the heat contribution.. (O.M.)
Direct Numerical Simulation and Visualization of Subcooled Pool Boiling
Directory of Open Access Journals (Sweden)
Tomoaki Kunugi
2014-01-01
Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.
Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?
Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim
2014-11-01
Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).
Seasonal cycle of Martian climate : Experimental data and numerical simulation
Rodin, A. V.; Willson, R. J.
2006-01-01
The most adequate theoretical method of investigating the present-day Martian climate is numerical simulation based on a model of general circulation of the atmosphere. First and foremost, such models encounter the greatest difficulties in description of aerosols and clouds, which in turn
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The report presents globally the works done by the author in the thermohydraulic applied to nuclear reactors flows. It presents the studies done to the numerical simulation of the two phase flows in the steam generators and a finite element method to compute these flows. (author)
Decoupled numerical simulation of a solid fuel fired retort boiler
International Nuclear Information System (INIS)
Ryfa, Arkadiusz; Buczynski, Rafal; Chabinski, Michal; Szlek, Andrzej; Bialecki, Ryszard A.
2014-01-01
The paper deals with numerical simulation of the retort boiler fired with solid fuel. Such constructions are very popular for heating systems and their development is mostly based on the designer experience. The simulations have been done in ANSYS/Fluent package and involved two numerical models. The former deals with a fixed-bed combustion of the solid fuel and free-board gas combustion. Solid fuel combustion is based on the coal kinetic parameters. This model encompasses chemical reactions, radiative heat transfer and turbulence. Coal properties have been defined with user defined functions. The latter model describes flow of water inside a water jacked that surrounds the combustion chamber and flue gas ducts. The novelty of the proposed approach is separating of the combustion simulation from the water flow. Such approach allows for reducing the number of degrees of freedom and thus lowering the necessary numerical effort. Decoupling combustion from water flow requires defining interface boundary condition. As this boundary condition is unknown it is adjusted iteratively. The results of the numerical simulation have been successfully validated against measurement data. - Highlights: • New decoupled modelling of small scale boiler is proposed. • Fixed-bed combustion model based on kinetic parameters is introduced. • Decoupling reduced the complexity of the model and computational time. • Simple and computationally inexpensive coupling algorithm is proposed. • Model is successfully validated against measurements
A review of numerical simulation of hydrothermal systems.
Mercer, J.W.; Faust, C.R.
1979-01-01
Many advances in simulating single and two-phase fluid flow and heat transport in porous media have recently been made in conjunction with geothermal energy research. These numerical models reproduce system thermal and pressure behaviour and can be used for other heat-transport problems, such as high-level radioactive waste disposal and heat-storage projects. -Authors
Application of HPCN to direct numerical simulation of turbulent flow
Verstappen, RWCP; Veldman, AEP; van Waveren, GM; Hertzberger, B; Sloot, P
1997-01-01
This poster shows how HPCN can be used as a path-finding tool for turbulence research. The parallelization of direct numerical simulation of turbulent flow using the data-parallel model and Fortran 95 constructs is treated, both on a shared memory and a distributed memory computer.
Numerical simulation of thermal fracture in functionally graded
Indian Academy of Sciences (India)
Numerical simulation of thermal fracture in functionally graded materials using element-free ... Initially, the temperature distribution over the domain is obtained by solving the heat transfer problem. ... Department of Mechanical Engineering, National Institute of Technology, Hamirpur 177005, India ... Contact | Site index.
Numerical simulations of the metallicity distribution in dwarf spheroidal galaxies
Ripamonti, E.; Tolstoy, E.; Helmi, A.; Battaglia, G.; Abel, T.
2006-01-01
Abstract: Recent observations show that the number of stars with very low metallicities in the dwarf spheroidal satellites of the Milky Way is low, despite the low average metallicities of stars in these systems. We undertake numerical simulations of star formation and metal enrichment of dwarf
Numerical convergence improvements for porflow unsaturated flow simulations
Energy Technology Data Exchange (ETDEWEB)
Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-08-14
Section 3.6 of SRNL (2016) discusses various PORFLOW code improvements to increase modeling efficiency, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision. This memorandum documents interaction with Analytic & Computational Research, Inc. (http://www.acricfd.com/default.htm) to improve numerical convergence efficiency using PORFLOW version 6.42 for unsaturated flow simulations.
Direct numerical simulation of particulate flow with heat transfer
Tavassoli Estahbanati, H; Kriebitzsch, S.H.L.; Hoef, van der M.A.; Peters, E.A.J.F.; Kuipers, J.A.M.
2013-01-01
The Immersed Boundary (IB) method proposed by Uhlmann for Direct Numerical Simulation (DNS) of fluid flow through dense fluid-particle systems is extended to systems with interphase heat transport. A fixed Eulerian grid is employed to solve the momentum and energy equations by traditional
Experimental and numerical simulation of carbon manganese steel ...
African Journals Online (AJOL)
Experimental and numerical simulation of carbon manganese steel for cyclic plastic behaviour. J Shit, S Dhar, S Acharyya. Abstract. The paper deals with finite element modeling of saturated low cycle fatigue and the cyclic hardening phenomena of the materials Sa333 grade 6 carbon steel and SS316 stainless steel.
Numerical simulation of the drying of inkjet-printed droplets
Siregar, D.P.; Kuerten, J.G.M.; Geld, van der C.W.M.
2013-01-01
In this paper we study the behavior of an inkjet-printed droplet of a solute dissolved in a solvent on a solid horizontal surface by numerical simulation. An extended model for drying of a droplet and the final distribution of the solute on an impermeable substrate is proposed. The model extends the
Direct Numerical Simulation Sediment Transport in Horizontal Channel
International Nuclear Information System (INIS)
Uhlmann, M.
2006-01-01
We numerically simulate turbulent flow in a horizontal plane channel over a bed of mobile particles. All scales of fluid motion are resolved without modeling and the phase interface is accurately represented. Our results indicate a possible scenario for the onset of erosion through collective motion induced by buffer-layer streaks. (Author) 27 refs
Numerical simulations of time-resolved quantum electronics
International Nuclear Information System (INIS)
Gaury, Benoit; Weston, Joseph; Santin, Matthieu; Houzet, Manuel; Groth, Christoph; Waintal, Xavier
2014-01-01
Numerical simulation has become a major tool in quantum electronics both for fundamental and applied purposes. While for a long time those simulations focused on stationary properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and beyond has triggered a new interest for handling time-dependent perturbations. As the experimental frequencies get higher, it becomes possible to conceive experiments which are both time-resolved and fast enough to probe the internal quantum dynamics of the system. This paper discusses the technical aspects–mathematical and numerical–associated with the numerical simulations of such a setup in the time domain (i.e. beyond the single-frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time-resolved observables in a general multiterminal system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates, voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equivalent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrödinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time-resolved observables (current, density, etc.) and the (inelastic) scattering matrix are simply expressed in terms of this wave function. We use our approach to develop a numerical technique for simulating time-resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation
Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash
Directory of Open Access Journals (Sweden)
Anik Keller
2013-09-01
Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.
Optimization and Numerical Simulation of Outlet of Twin Screw Extruder
Directory of Open Access Journals (Sweden)
Zhang Yuan
2018-01-01
Full Text Available In view of the unreasonable design of non-intermeshing counter-rotating twin screw extruder die, the problem of productivity reduction was discussed. Firstly, the mathematical model of extruder productivity was established. The extruder die model was improved. Secondly, the force analysis of twin screw extruder physical model was carried out. Meanwhile, A combination of mechanical analysis and numerical simulation was adopted. The velocity field, pressure field and viscosity field were calculated by Mini-Element interpolation method, linear interpolation method and Picard iterative convergence method respectively. The influence of die model on the quantity of each field before and after improvement was analyzed. The results show that the improved model had increased the rheological parameters of the flow field, the leakage and reverse flow decreased. Through post-processing calculation, the productivity of the third dies extruder was 10% higher than before. The research results provide a theoretical basis for the design and optimization of die model of non intermeshing counter-rotating twin screw extruder.
Mathematical modeling and numerical simulation of Czochralski Crystal Growth
Energy Technology Data Exchange (ETDEWEB)
Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)
1996-12-31
A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)
Behavioral modeling of SRIM tables for numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Martinie, S., E-mail: sebastien.martinie@cea.fr; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L., E-mail: jean-luc.autran@univ-amu.fr
2014-03-01
Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits.
Mathematical modeling and numerical simulation of Czochralski Crystal Growth
Energy Technology Data Exchange (ETDEWEB)
Jaervinen, J; Nieminen, R [Center for Scientific Computing, Espoo (Finland)
1997-12-31
A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)
Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations
International Nuclear Information System (INIS)
Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F
2010-01-01
This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.
Behavioral modeling of SRIM tables for numerical simulation
International Nuclear Information System (INIS)
Martinie, S.; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L.
2014-01-01
Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits
Numerical simulation of turbulent buoyant flows in horizontal channels
International Nuclear Information System (INIS)
Seiter, C.
1995-09-01
A numerical method is presented, to calculate the three-dimensional, time-dependent large scale structure of turbulent buoyant flows. The subject of the study is the Rayleigh-Benard-convection with air (Pr=0.71, Ra=2.5 10 6 , 10 7 ) and sodium (Pr=0.006, Ra=8.4 10 4 , 2.5 10 5 , 10 6 , 10 7 ) and a fluid layer with water and an internal heat source (Pr=7.0, Ra I =1.5 10 10 ) at moderate and high Rayleigh-numbers. The goal of the work is both, the analysis of structures of instantaneous as well as the statistical analysis of spatially and/or time averaged data, to give a contribution to the investigation of the characteristics of turbulent natural convection mainly in fluids with small Prandtl-numbers. The large eddy simulation of natural convection requires the development of appropriate momentum and heat subgrid scale models and the formulation of new boundary conditions. The used energy-length-models in the computer code TURBIT are extended methodically by modification of the characteristic length scales of the sub scale turbulence. The reduction or the increase of the sub scale turbulence correlations, caused by the influence of solid boundaries or the stratification, is considered. In the same way the new boundary conditions for the diffusive terms of the conservation equations are seen to be necessary, when the thermal or in the case of liquid metals the more critical hydrodynamic boundary layer is resolved insufficiently or not at all. The extended and new methods, models and boundary conditions, which enabled the realization of the planned simulations, are presented. (orig.)
Numerical analysis of a polysilicon-based resistive memory device
Berco, Dan; Chand, Umesh
2018-01-01
This study investigates a conductive bridge resistive memory device based on a Cu top electrode, 10-nm polysilicon resistive switching layer and a TiN bottom electrode, by numerical analysis for $$10^{3}$$103 programming and erase simulation cycles
Numerical simulation of a possible counterexample to cosmic censorship
International Nuclear Information System (INIS)
Garfinkle, David
2004-01-01
A numerical simulation is presented here of the evolution of initial data of the kind that was conjectured by Hertog, Horowitz, and Maeda to be a violation of cosmic censorship. Those initial data are essentially a thick domain wall connecting two regions of anti-de Sitter space. The initial data have a free parameter that is the initial size of the wall. The simulation shows no violation of cosmic censorship, but rather the formation of a small black hole. The simulation described here is for a moderate wall size and leaves open the possibility that cosmic censorship might be violated for larger walls
3D numerical simulations of multiphase continental rifting
Naliboff, J.; Glerum, A.; Brune, S.
2017-12-01
Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and
Numerical simulation of fractional Cable equation of spiny neuronal dendrites
Directory of Open Access Journals (Sweden)
N.H. Sweilam
2014-03-01
Full Text Available In this article, numerical study for the fractional Cable equation which is fundamental equations for modeling neuronal dynamics is introduced by using weighted average of finite difference methods. The stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. A simple and an accurate stability criterion valid for different discretization schemes of the fractional derivative and arbitrary weight factor is introduced and checked numerically. Numerical results, figures, and comparisons have been presented to confirm the theoretical results and efficiency of the proposed method.
Understanding casing flow in Pelton turbines by numerical simulation
Rentschler, M.; Neuhauser, M.; Marongiu, J. C.; Parkinson, E.
2016-11-01
For rehabilitation projects of Pelton turbines, the flow in the casing may have an important influence on the overall performance of the machine. Water sheets returning on the jets or on the runner significantly reduce efficiency, and run-away speed depends on the flow in the casing. CFD simulations can provide a detailed insight into this type of flow, but these simulations are computationally intensive. As in general the volume of water in a Pelton turbine is small compared to the complete volume of the turbine housing, a single phase simulation greatly reduces the complexity of the simulation. In the present work a numerical tool based on the SPH-ALE meshless method is used to simulate the casing flow in a Pelton turbine. Using improved order schemes reduces the numerical viscosity. This is necessary to resolve the flow in the jet and on the casing wall, where the velocity differs by two orders of magnitude. The results are compared to flow visualizations and measurement in a hydraulic laboratory. Several rehabilitation projects proved the added value of understanding the flow in the Pelton casing. The flow simulation helps designing casing insert, not only to see their influence on the flow, but also to calculate the stress in the inserts. In some projects, the casing simulation leads to the understanding of unexpected behavior of the flow. One such example is presented where the backsplash of a deflector hit the runner, creating a reversed rotation of the runner.
Numerical analysis in electromagnetics the TLM method
Saguet, Pierre
2013-01-01
The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been
Numerical simulation of trans-critical carbon dioxide (R744) flow through short tube orifices
Energy Technology Data Exchange (ETDEWEB)
Garcia-Valladares, O. [Centro de Investigacion en Energia de la Universidad Nacional Autonoma de Mexico, Privada Xochicalco S/N, Apdo. Postal 34, 62580 Temixco, Morelos (Mexico)
2006-02-01
A detailed one-dimensional numerical simulation of the fluid-dynamic behaviour of short tube orifices expansion devices working with trans-critical carbon dioxide (CO{sub 2} or R744) has been developed. The discretized governing equations are coupled using an implicit step by step method. A special treatment has been implemented in order to consider transitions (subcooled liquid region and equilibrium two-phase region). The numerical model allows analysis of aspects such as geometry, different working conditions, critical or non-critical flow conditions, etc. Comparison of the numerical simulation with experimental data presented in the technical literature will be shown in the present article. (author)
Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yun [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China); Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Liu, Yinhe, E-mail: yinheliu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China)
2017-11-20
Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C{sub hydrogen} < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C{sub hydrogen} > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.
Numerical simulation of particle settling and cohesion in liquid
Energy Technology Data Exchange (ETDEWEB)
Johno, Y; Nakashima, K; Shigematsu, T; Ono, B [SASEBO National College of Technology, 1-1 Okishin, Sasebo, Nagasaki, 857-1193 (Japan); Satomi, M, E-mail: yjohno@post.cc.sasebo.ac.j [Sony Semiconductor Kyushu Corporation, Kikuchigun, Kumamoto (Japan)
2009-02-01
In this study, the motions of particles and particle clusters in liquid were numerically simulated. The particles of two sizes (Dp=40mum and 20mum) settle while repeating cohesion and dispersion, and finally the sediment of particles are formed at the bottom of a hexahedron container which is filled up with pure water. The flow field was solved with the Navier-Stokes equations and the particle motions were solved with the Lagrangian-type motion equations, where the interaction between fluid and particles due to drag forces were taken into account. The collision among particles was calculated using Distinct Element Method (DEM), and the effects of cohesive forces by van der Waals force acting on particle contact points were taken into account. Numerical simulations were performed under conditions in still flow and in shear flow. It was found that the simulation results enable us to know the state of the particle settling and the particle condensation.
Numerical simulation of manual operation at MID stand control room
International Nuclear Information System (INIS)
Doca, C.; Dobre, A.; Predescu, D.; Mielcioiu, A.
2003-01-01
Since 2000 at INR Pitesti a package of software products devoted to numerical simulation of manual operations at fueling machine control room was developed. So far, specified, designed, worked out and implemented was the PUPITRU code. The following issues were solved: graphical aspects of specific computer - human operator interface; functional and graphical simulation of the whole associated equipment of the control desk components; implementation of the main notation as used in the automated schemes of the control desk in view of the fast identification of the switches, lamps, instrumentation, etc.; implementation within PUPITRU code of the entire data base used in the frame of MID tests; implementation of a number of about 1000 numerical simulation equations describing specific operational MID testing situations
Numerical simulation of small scale soft impact tests
International Nuclear Information System (INIS)
Varpasuo, Pentti
2008-01-01
This paper describes the small scale soft missile impact tests. The purpose of the test program is to provide data for the calibration of the numerical simulation models for impact simulation. In the experiments, both dry and fluid filled missiles are used. The tests with fluid filled missiles investigate the release speed and the droplet size of the fluid release. This data is important in quantifying the fire hazard of flammable liquid after the release. The spray release velocity and droplet size are also input data for analytical and numerical simulation of the liquid spread in the impact. The behaviour of the impact target is the second investigative goal of the test program. The response of reinforced and pre-stressed concrete walls is studied with the aid of displacement and strain monitoring. (authors)
Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation
International Nuclear Information System (INIS)
Zhang, Yun; Liu, Yinhe
2017-01-01
Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C hydrogen < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C hydrogen > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.
Direct numerical simulations of turbulent lean premixed combustion
International Nuclear Information System (INIS)
Sankaran, Ramanan; Hawkes, Evatt R; Chen, Jacqueline H; Lu Tianfeng; Law, Chung K
2006-01-01
In recent years, due to the advent of high-performance computers and advanced numerical algorithms, direct numerical simulation (DNS) of combustion has emerged as a valuable computational research tool, in concert with experimentation. The role of DNS in delivering new Scientific insight into turbulent combustion is illustrated using results from a recent 3D turbulent premixed flame simulation. To understand the influence of turbulence on the flame structure, a 3D fully-resolved DNS of a spatially-developing lean methane-air turbulent Bunsen flame was performed in the thin reaction zones regime. A reduced chemical model for methane-air chemistry consisting of 13 resolved species, 4 quasi-steady state species and 73 elementary reactions was developed specifically for the current simulation. The data is analyzed to study possible influences of turbulence on the flame thickness. The results show that the average flame thickness increases, in qualitative agreement with several experimental results
Configuration Management File Manager Developed for Numerical Propulsion System Simulation
Follen, Gregory J.
1997-01-01
One of the objectives of the High Performance Computing and Communication Project's (HPCCP) Numerical Propulsion System Simulation (NPSS) is to provide a common and consistent way to manage applications, data, and engine simulations. The NPSS Configuration Management (CM) File Manager integrated with the Common Desktop Environment (CDE) window management system provides a common look and feel for the configuration management of data, applications, and engine simulations for U.S. engine companies. In addition, CM File Manager provides tools to manage a simulation. Features include managing input files, output files, textual notes, and any other material normally associated with simulation. The CM File Manager includes a generic configuration management Application Program Interface (API) that can be adapted for the configuration management repositories of any U.S. engine company.
Numerical simulation investigation on centrifugal compressor performance of turbocharger
International Nuclear Information System (INIS)
Li, Jie; Yin, Yuting; Li, Shuqi; Zhang, Jizhong
2013-01-01
In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.
Numerical simulation investigation on centrifugal compressor performance of turbocharger
Energy Technology Data Exchange (ETDEWEB)
Li, Jie [China Iron and Steel Research Institute Group, Beijing (China); Yin, Yuting [China North Engine Research Institute, Datong (China); Li, Shuqi; Zhang, Jizhong [Science and Technology Diesel Engine Turbocharging Laboratory, Datong (China)
2013-06-15
In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.
Numerical simulation in material science: principles and applications
International Nuclear Information System (INIS)
Ruste, Jacky
2006-06-01
The objective is here to describe the main simulation techniques currently used in material science. After a presentation of the concepts of modelling and simulation, of their objectives and uses, of the issue of simulation scale, and of means of numeric simulation, the author addresses simulations performed at a nano-scopic scale: 'ab-initio' methods, molecular dynamics, examples of applications of ab-initio methods to energy issues or to the study of surface properties of nano-materials. The next chapter addresses various Monte Carlo methods (Metropolis, atomic kinetics, objects kinetics, transport with the simulation of particle trajectories, generation of random numbers). The next parts address simulations performed at a mesoscopic scale (simulation and microstructure, phase field methods, dynamics of discrete dislocations, homogeneous chemical kinetics) and at a macroscopic scale (medium discretization with the notion of mesh, simulation of structure mechanics and of fluid behaviour). The issues of code coupling and scale coupling are then discussed. The last part proposes an overview of virtual metallurgy and modelling of industrial processes (welding, vacuum arc re-fusion, rolling, forming)
Numerical simulation of heat transfer in metal foams
Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.
2018-02-01
This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.
Numerical simulation of gas metal arc welding parametrical study
International Nuclear Information System (INIS)
Szanto, M.; Gilad, I.; Shai, I.; Quinn, T.P.
2002-01-01
The Gas Metal Arc Welding (GMAW) is a widely used welding process in the industry. The process variables are usually determined through extensive experiments. Numerical simulation, reduce the cost and extends the understanding of the process. In the present work, a versatile model for numerical simulation of GMAW is presented. The model provides the basis for fundamental understanding of the process. The model solves the magneto-hydrodynamic equations for the flow and temperature fields of the molten electrode and the plasma simultaneously, to form a fully coupled model. A commercial CFD code was extended to include the effects of radiation, Lorentz forces, Joule heating and thermoelectric effects. The geometry of the numerical model assembled to fit an experimental apparatus. To demonstrate the method, an aluminum electrode was modeled in a pure argon arc. Material properties and welding parameters are the input variables in the numerical model. In a typical process, the temperature distribution of the plasma is over 15000 K, resulting high non-linearity of the material properties. Moreover, there is high uncertainty in the available property data, at that range of temperatures. Therefore, correction factors were derived for the material properties to adjust between the numerical and the experimental results. Using the compensated properties, parametric study was performed. The effects of the welding parameters on the process, such the working voltage, electrode feed rate and shielding gas flow, were derived. The principal result of the present work is the ability to predict, by numerical simulation, the mode, size and frequency of the metal transferred from the electrode, which is the main material and energy source for the welding pool in GMAW
Optimal design of a composite space shield based on numerical simulations
International Nuclear Information System (INIS)
Son, Byung Jin; Yoo, Jeong Hoon; Lee, Min Hyung
2015-01-01
In this study, optimal design of a stuffed Whipple shield is proposed by using numerical simulations and new penetration criterion. The target model was selected based on the shield model used in the Columbus module of the international space station. Because experimental results can be obtained only in the low velocity region below 7 km/s, it is required to derive the Ballistic limit curve (BLC) in the high velocity region above 7 km/s by numerical simulation. AUTODYN-2D, the commercial hydro-code package, was used to simulate the nonlinear transient analysis for the hypervelocity impact. The Smoothed particle hydrodynamics (SPH) method was applied to projectile and bumper modeling to represent the debris cloud generated after the impact. Numerical simulation model and selected material properties were validated through a quantitative comparison between numerical and experimental results. A new criterion to determine whether the penetration occurs or not is proposed from kinetic energy analysis by numerical simulation in the velocity region over 7 km/s. The parameter optimization process was performed to improve the protection ability at a specific condition through the Design of experiment (DOE) method and the Response surface methodology (RSM). The performance of the proposed optimal design was numerically verified.
Energy Technology Data Exchange (ETDEWEB)
Carasik, Lane B., E-mail: lcarasik@tamu.edu [Texas A& M University, Department of Nuclear Engineering, 3133 TAMU, College Station, TX 77843-3133 (United States); Sebilleau, Frédéric, E-mail: Frederic.sebilleau11@imperial.ac.uk [Imperial College London, Mechanical Engineering Department, London SW7 SBX (United Kingdom); Walker, Simon P., E-mail: s.p.walker@imperial.ac.uk [Imperial College London, Mechanical Engineering Department, London SW7 SBX (United Kingdom); Hassan, Yassin A., E-mail: y-hassan@tamu.edu [Texas A& M University, Department of Nuclear Engineering, 3133 TAMU, College Station, TX 77843-3133 (United States)
2017-02-15
Highlights: • Simulations of thermal stratification in large enclosures using different turbulence models. • The recent elliptic blending k–ε was implemented in this work. • Direct comparisons of experimental temperature measurements to CFD predictions. • Spurious prediction of jet stabilisation and diffuse stratification by both low-Re k–ε and SST k–ω. - Abstract: An ability to predict the behavior of buoyant jets entering a large body of relatively stationary fluid is important in analysis of a wide variety of nuclear accidents, including for example the use of large tanks of water as heat sinks, or the release of hot gases into the secondary containment. In particular, the degree to which temperature stratification occurs is important, as it can affect markedly the effectiveness of the body of fluid as a heat sink. In this paper, we report the results of measurements on an experimental facility designed to exhibit such behavior, and the results of attempts to predict this experiment using CFD. In particular, we here investigate the effectiveness of three alternative turbulence models for this analysis; low-Re k–e, elliptic-blended k–e and Shear Stress Transport k–ω models. Both the degree of thermal stratification and the stability of the jet that were predicted differed markedly between the three models. Two of the models, the low-Re k–e and the Shear Stress Transport k–ω, tend to predict, wrongly, significant turbulent intensity in regions where fluid velocities are essentially zero. This spurious high turbulent intensity in turn causes (i) a high turbulent viscosity to be applied, wrongly stabilizing the jet, and (ii) increased turbulent diffusion of heat, causing too deep and diffuse a stratification to be predicted.
Numerical simulation code for combustion of sodium liquid droplet and its verification
International Nuclear Information System (INIS)
Okano, Yasushi
1997-11-01
The computer programs for sodium leak and burning phenomena had been developed based on mechanistic approach. Direct numerical simulation code for sodium liquid droplet burning had been developed for numerical analysis of droplet combustion in forced convection air flow. Distributions of heat generation and temperature and reaction rate of chemical productions, such as sodium oxide and hydroxide, are calculated and evaluated with using this numerical code. Extended MAC method coupled with a higher-order upwind scheme had been used for combustion simulation of methane-air mixture. In the numerical simulation code for combustion of sodium liquid droplet, chemical reaction model of sodium was connected with the extended MAC method. Combustion of single sodium liquid droplet was simulated in this report for the verification of developed numerical simulation code. The changes of burning rate and reaction product with droplet diameter and inlet wind velocity were investigated. These calculation results were qualitatively and quantitatively conformed to the experimental and calculation observations in combustion engineering. It was confirmed that the numerical simulation code was available for the calculation of sodium liquid droplet burning. (author)
Numerical simulations of a large scale oxy-coal burner
Energy Technology Data Exchange (ETDEWEB)
Chae, Taeyoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Park, Sanghyun; Ryu, Changkook [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Yang, Won [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group
2013-07-01
Oxy-coal combustion is one of promising carbon dioxide capture and storage (CCS) technologies that uses oxygen and recirculated CO{sub 2} as an oxidizer instead of air. Due to difference in physical properties between CO{sub 2} and N{sub 2}, the oxy-coal combustion requires development of burner and boiler based on fundamental understanding of the flame shape, temperature, radiation and heat flux. For design of a new oxy-coal combustion system, computational fluid dynamics (CFD) is an essential tool to evaluate detailed combustion characteristics and supplement experimental results. In this study, CFD analysis was performed to understand the combustion characteristics inside a tangential vane swirl type 30 MW coal burner for air-mode and oxy-mode operations. In oxy-mode operations, various compositions of primary and secondary oxidizers were assessed which depended on the recirculation ratio of flue gas. For the simulations, devolatilization of coal and char burnout by O{sub 2}, CO{sub 2} and H{sub 2}O were predicted with a Lagrangian particle tracking method considering size distribution of pulverized coal and turbulent dispersion. The radiative heat transfer was solved by employing the discrete ordinate method with the weighted sum of gray gases model (WSGGM) optimized for oxy-coal combustion. In the simulation results for oxy-model operation, the reduced swirl strength of secondary oxidizer increased the flame length due to lower specific volume of CO{sub 2} than N{sub 2}. The flame length was also sensitive to the flow rate of primary oxidizer. The oxidizer without N{sub 2} that reduces thermal NO{sub x} formation makes the NO{sub x} lower in oxy-mode than air-mode. The predicted results showed similar trends with measured temperature profiles for various oxidizer compositions. Further numerical investigations are required to improve the burner design combined with more detailed experimental results.
Developments in numerical simulation of IFE target and chamber physics
International Nuclear Information System (INIS)
Velarde, G.; Minguez, E.; Alonso, E.; Gil, J.M.; Malerba, L.; Marian, J.; Martel, P.; Martinez-Val, J.M.; Munoz, R.; Ogando, F.; Perlado, J.M.; Piera, M.; Reyes, S.; Rubiano, J.G.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.
2000-01-01
The work presented outlines the global frame given at the Institute of Nuclear Fusion (DENIM) for having an integral perspective of the different research areas with the development of Inertial Fusion for energy generation. The coupling of a new radiation transport (RT) solver with an existing multi-material fluid dynamics code using Adaptive Mesh Refinement (ARM) is presented in Section 2, including improvements and additional information about the solver precision. In Section 3, new developments in the atomic physics codes under target conditions, to determine populations, opacity data and emissivities have been performed. Exotic and innovative ideas about Inertial Fusion Energy (IFE), as catalytic fuels and Z-pinches have been explored, and they are explained in Section 4. Numerical simulations demonstrate important reductions in the tritium inventory. Section 5 is devoted to safety and environment of the IFE. Uncertainties analysis in activation calculations have been included in the ACAB activation code, and also calculations on pulse activation in IFE reactors and on the activation of target debris in NIF are presented. A comparison of the accidental releases of tritium from some IFE reactors computed using MACCS2 code is explained. Finally, Section 6 contains the research on the basic mechanisms of neutron damage in SiC (low-activation material) and FeCu alloy using the DENIM/LLNL molecular dynamics code MDCASK. (authors)
Numerical simulation support to the ESA/THOR mission
Valentini, F.; Servidio, S.; Perri, S.; Perrone, D.; De Marco, R.; Marcucci, M. F.; Daniele, B.; Bruno, R.; Camporeale, E.
2016-12-01
THOR is a spacecraft concept currently undergoing study phase as acandidate for the next ESA medium size mission M4. THOR has been designedto solve the longstanding physical problems of particle heating andenergization in turbulent plasmas. It will provide high resolutionmeasurements of electromagnetic fields and particle distribution functionswith unprecedented resolution, with the aim of exploring the so-calledkinetic scales. We present the numerical simulation framework which is supporting the THOR mission during the study phase. The THOR teamincludes many scientists developing and running different simulation codes(Eulerian-Vlasov, Particle-In-Cell, Gyrokinetics, Two-fluid, MHD, etc.),addressing the physics of plasma turbulence, shocks, magnetic reconnectionand so on.These numerical codes are being used during the study phase, mainly withthe aim of addressing the following points:(i) to simulate the response of real particle instruments on board THOR, byemploying an electrostatic analyser simulator which mimics the response ofthe CSW, IMS and TEA instruments to the particle velocity distributions ofprotons, alpha particle and electrons, as obtained from kinetic numericalsimulations of plasma turbulence.(ii) to compare multi-spacecraft with single-spacecraft configurations inmeasuring current density, by making use of both numerical models ofsynthetic turbulence and real data from MMS spacecraft.(iii) to investigate the validity of the Taylor hypothesis indifferent configurations of plasma turbulence
Graphics interfaces and numerical simulations: Mexican Virtual Solar Observatory
Hernández, L.; González, A.; Salas, G.; Santillán, A.
2007-08-01
Preliminary results associated to the computational development and creation of the Mexican Virtual Solar Observatory (MVSO) are presented. Basically, the MVSO prototype consists of two parts: the first, related to observations that have been made during the past ten years at the Solar Observation Station (EOS) and at the Carl Sagan Observatory (OCS) of the Universidad de Sonora in Mexico. The second part is associated to the creation and manipulation of a database produced by numerical simulations related to solar phenomena, we are using the MHD ZEUS-3D code. The development of this prototype was made using mysql, apache, java and VSO 1.2. based GNU and `open source philosophy'. A graphic user interface (GUI) was created in order to make web-based, remote numerical simulations. For this purpose, Mono was used, because it is provides the necessary software to develop and run .NET client and server applications on Linux. Although this project is still under development, we hope to have access, by means of this portal, to other virtual solar observatories and to be able to count on a database created through numerical simulations or, given the case, perform simulations associated to solar phenomena.
Direct numerical simulations of nucleate boiling flows of binary mixtures
International Nuclear Information System (INIS)
Didier Jamet; Celia Fouillet
2005-01-01
Full text of publication follows: Better understand the origin and characteristics of boiling crisis is still a scientific challenge despite many years of valuable studies. One of the reasons why boiling crisis is so difficult to understand is that local and coupled physical phenomena are believed to play a key role in the trigger of instabilities which lead to the dry out of large portions of the heated solid phase. Nucleate boiling of a single bubble is fairly well understood compared to boiling crisis. Therefore, the numerical simulation of a single bubble growth during nucleate boiling is a good candidate to evaluate the capabilities of a numerical method to deal with complex liquid-vapor phenomena with phase-change and eventually to tackle the boiling crisis problem. In this paper, we present results of direct numerical simulations of nucleate boiling. The numerical method used is the second gradient method, which is a diffuse interface method dedicated to liquid vapor flows with phase-change. This study is not intended to provide quantitative results, partly because all the simulations are two-dimensional. However, particular attention is paid to the influence of some parameters on the main features of nucleate boiling, i.e. the radius of departure and the frequency of detachment of bubbles. In particular, we show that, as the contact angle increases, the radius of departure increases whereas the frequency of detachment decreases. Moreover, the influence of the existence of quasi non-condensable gas is studied. Numerical results show an important decrease of the heat exchange coefficient when a small amount of a quasi non-condensable gas is added to the pure liquid-vapor water system. This result is in agreement with experimental observations. Beyond these qualitative results, this numerical study allows to get insight into some important physical phenomena and to confirm that during nucleate boiling, large scale quantities are influenced by small scale
Numerical simulation of the RISOe1-airfoil dynamic stall
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1997-12-31
In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)
Modeling and numerical simulations of the influenced Sznajd model
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
Numerical simulation of water quality in Yangtze Estuary
Directory of Open Access Journals (Sweden)
Xi Li
2009-12-01
Full Text Available In order to monitor water quality in the Yangtze Estuary, water samples were collected and field observation of current and velocity stratification was carried out using a shipboard acoustic Doppler current profiler (ADCP. Results of two representative variables, the temporal and spatial variation of new point source sewage discharge as manifested by chemical oxygen demand (COD and the initial water quality distribution as manifested by dissolved oxygen (DO, were obtained by application of the Environmental Fluid Dynamics Code (EFDC with solutions for hydrodynamics during tides. The numerical results were compared with field data, and the field data provided verification of numerical application: this numerical model is an effective tool for water quality simulation. For point source discharge, COD concentration was simulated with an initial value in the river of zero. The simulated increments and distribution of COD in the water show acceptable agreement with field data. The concentration of DO is much higher in the North Branch than in the South Branch due to consumption of oxygen in the South Branch resulting from discharge of sewage from Shanghai. The DO concentration is greater in the surface layer than in the bottom layer. The DO concentration is low in areas with a depth of less than 20 m, and high in areas between the 20-m and 30-m isobaths. It is concluded that the numerical model is valuable in simulation of water quality in the case of specific point source pollutant discharge. The EFDC model is also of satisfactory accuracy in water quality simulation of the Yangtze Estuary.
On the complexity of numerical analysis
DEFF Research Database (Denmark)
Miltersen, Peter Bro; Allender, Eric; Burgisser, Peter
2009-01-01
an integer N, decide whether N>0. • In the Blum-Shub-Smale model, polynomial time computation over the reals (on discrete inputs) is polynomial-time equivalent to PosSLP, when there are only algebraic constants. We conjecture that using transcendental constants provides no additional power, beyond nonuniform...... reductions to PosSLP, and we present some preliminary results supporting this conjecture. • The Generic Task of Numerical Computation is also polynomial-time equivalent to PosSLP. We prove that PosSLP lies in the counting hierarchy. Combining this with work of Tiwari, we obtain that the Euclidean Traveling......We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The Blum-Shub-Smale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation,” which captures an aspect of doing numerical computation...
Numerical simulation and optimization of nickel-hydrogen batteries
Yu, Li-Jun; Qin, Ming-Jun; Zhu, Peng; Yang, Li
2008-05-01
A three-dimensional, transient numerical model of an individual pressure vessel (IPV) nickel-hydrogen battery has been developed based on energy conservation law, mechanisms of heat and mass transfer, and electrochemical reactions in the battery. The model, containing all components of a battery including the battery shell, was utilized to simulate the transient temperature of the battery, using computational fluid dynamics (CFD) technology. The comparison of the model prediction and experimental data shows a good agreement, which means that the present model can be used for the engineering design and parameter optimization of nickel-hydrogen batteries in aerospace power systems. Two kinds of optimization schemes were provided and evaluated by the simulated temperature field. Based on the model, the temperature simulation during five successive periods in a designed space battery was conducted and the simulation results meet the requirement of safe operation.
Numerical Simulation on Natural Convection Cooling of a FM Target
Energy Technology Data Exchange (ETDEWEB)
Park, Jong Pil; Park, Su Ki [KAERI, Daejeon (Korea, Republic of)
2016-05-15
The irradiated FM(Fission-Molly) target is unloaded from the irradiation hole during normal operation, and then cooled down in the reactor pool for a certain period of time. Therefore, it is necessary to identify the minimum decay time needed to cool down FM target sufficiently by natural convection. In the present work, numerical simulations are performed to predict cooling capability of a FM target cooled by natural convection using commercial computational fluid dynamics (CFD) code, CFX. The present study is carried out using CFD code to investigate cooling capability of a FM target cooled by natural convection. The steady state simulation as well as transient simulation is performed in the present work. Based on the transient simulation (T1), the minimum decay time that the maximum fuel temperature does not reach the design limit temperature (TONB-3 .deg. C) is around 15.60 seconds.
GPU based numerical simulation of core shooting process
Directory of Open Access Journals (Sweden)
Yi-zhong Zhang
2017-11-01
Full Text Available Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores. Although numerical simulation can hopefully optimize the core shooting process, research on numerical simulation of the core shooting process is very limited. Based on a two-fluid model (TFM and a kinetic-friction constitutive correlation, a program for 3D numerical simulation of the core shooting process has been developed and achieved good agreements with in-situ experiments. To match the needs of engineering applications, a graphics processing unit (GPU has also been used to improve the calculation efficiency. The parallel algorithm based on the Compute Unified Device Architecture (CUDA platform can significantly decrease computing time by multi-threaded GPU. In this work, the program accelerated by CUDA parallelization method was developed and the accuracy of the calculations was ensured by comparing with in-situ experimental results photographed by a high-speed camera. The design and optimization of the parallel algorithm were discussed. The simulation result of a sand core test-piece indicated the improvement of the calculation efficiency by GPU. The developed program has also been validated by in-situ experiments with a transparent core-box, a high-speed camera, and a pressure measuring system. The computing time of the parallel program was reduced by nearly 95% while the simulation result was still quite consistent with experimental data. The GPU parallelization method can successfully solve the problem of low computational efficiency of the 3D sand shooting simulation program, and thus the developed GPU program is appropriate for engineering applications.
Numerical Analysis of Partial Differential Equations
Lui, S H
2011-01-01
A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis
Bilskie, Matthew V.; Hagen, S.C.; Alizad, K.A.; Medeiros, S.C.; Passeri, Davina L.; Needham, H.F.; Cox, A.
2016-01-01
This work outlines a dynamic modeling framework to examine the effects of global climate change, and sea level rise (SLR) in particular, on tropical cyclone-driven storm surge inundation. The methodology, applied across the northern Gulf of Mexico, adapts a present day large-domain, high resolution, tide, wind-wave, and hurricane storm surge model to characterize the potential outlook of the coastal landscape under four SLR scenarios for the year 2100. The modifications include shoreline and barrier island morphology, marsh migration, and land use land cover change. Hydrodynamics of 10 historic hurricanes were simulated through each of the five model configurations (present day and four SLR scenarios). Under SLR, the total inundated land area increased by 87% and developed and agricultural lands by 138% and 189%, respectively. Peak surge increased by as much as 1 m above the applied SLR in some areas, and other regions were subject to a reduction in peak surge, with respect to the applied SLR, indicating a nonlinear response. Analysis of time-series water surface elevation suggests the interaction between SLR and storm surge is nonlinear in time; SLR increased the time of inundation and caused an earlier arrival of the peak surge, which cannot be addressed using a static (“bathtub”) modeling framework. This work supports the paradigm shift to using a dynamic modeling framework to examine the effects of global climate change on coastal inundation. The outcomes have broad implications and ultimately support a better holistic understanding of the coastal system and aid restoration and long-term coastal sustainability.
Direct numerical simulations of gas-liquid multiphase flows
Tryggvason, Grétar; Zaleski, Stéphane
2011-01-01
Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and
Numerical simulation of flow behavior in tight lattice rod bundle
International Nuclear Information System (INIS)
Yu Yiqi; Yang Yanhua; Gu Hanyang; Cheng Xu; Song Xiaoming; Wang Xiaojun
2009-01-01
The Numerical investigation is performed on the air turbulent flow in triangular rod bundle array. Based on the experimental data, the eddy viscosity turbulent model and the Reynold stress turbulent model are evaluated to simulate the flow behavior in the tight lattice. The results show that SSG Reynolds Stress Model has shown superior predictive performance than other Reynolds-stress models, which indicates that the simulation of the anisotropy of the turbulence is significant in the tight lattice. The result with different Reynolds number and geometry shows that the magnitude of the secondary flow is almost independent of the Reynolds number, but it increases with the decrease of the P/D. (authors)
Numerical simulation of tornado-borne missile impact
International Nuclear Information System (INIS)
Tu, D.K.; Murray, R.C.
1977-01-01
The feasibility of using a finite element procedure to examine the impact phenomenon of a tornado-borne missile impinging on a reinforced concrete barrier was assessed. The major emphasis of this study was to simulate the impact of a nondeformable missile. Several series of simulations were run, using an 8-in.-dia steel slug as the impacting missile. The numerical results were then compared with experimental field tests and empirical formulas. The work is in support of tornado design practices for fuel reprocessing and fuel fabrication plants
Numerical simulation of internal reconnection event in spherical tokamak
International Nuclear Information System (INIS)
Hayashi, Takaya; Mizuguchi, Naoki; Sato, Tetsuya
1999-07-01
Three-dimensional magnetohydrodynamic simulations are executed in a full toroidal geometry to clarify the physical mechanisms of the Internal Reconnection Event (IRE), which is observed in the spherical tokamak experiments. The simulation results reproduce several main properties of IRE. Comparison between the numerical results and experimental observation indicates fairly good agreements regarding nonlinear behavior, such as appearance of localized helical distortion, appearance of characteristic conical shape in the pressure profile during thermal quench, and subsequent appearance of the m=2/n=1 type helical distortion of the torus. (author)
Numerical simulation of void growth under dynamic loading
International Nuclear Information System (INIS)
Iqbal, A.
1996-01-01
Following a brief general review of developments in material behavior under high strain rates, a cylindrical cell surrounding a spherical void in OFHC copper is numerically simulated by Zerri-Armstrong model. This simulation results show that the plastic deformation tends to be concentrated in the vicinity of voids either in the axial or transverse direction depending upon the stress state. This event is associated with the accelerated void through accompanying coalescence causing ductile fracture. A3-node triangular mesh generation code used as input for finite element code is developed by a 'Central Generation' technique. (author)
Numerical simulation of low Mach number reacting flows
International Nuclear Information System (INIS)
Bell, J B; Aspden, A J; Day, M S; Lijewski, M J
2007-01-01
Using examples from active research areas in combustion and astrophysics, we demonstrate a computationally efficient numerical approach for simulating multiscale low Mach number reacting flows. The method enables simulations that incorporate an unprecedented range of temporal and spatial scales, while at the same time, allows an extremely high degree of reaction fidelity. Sample applications demonstrate the efficiency of the approach with respect to a traditional time-explicit integration method, and the utility of the methodology for studying the interaction of turbulence with terrestrial and astrophysical flame structures
Numerical simulation of the accident of Three Mile Island
International Nuclear Information System (INIS)
Perrin, M.H.; Kastelanski, P.
1981-01-01
The chief object of the present study was to assess the ability of our numerical code for the dynamic behavior of power plants, SICLE, to handle the simulation of small accidents in PWRs. In the first part of the paper the authors introduce the main principles, equations and numerical methods of the code. In the second part those of the elements of Three Mile Island Power Plant which were simulated, the different phases of the accident and the results obtained with the code are described. These results are compared to the values recorded in the plant and generally a good agreement is found (for instance the primary pressure). As a conclusion SICLE is the minimum code for representing accidents such as Three Mile Island; its main advantage lies in its ability to take into account all the elements of the plant which are important in the study
Numerical simulation of draft tube flow of a bulb turbine
Energy Technology Data Exchange (ETDEWEB)
Coelho, J.G. [Federal University of Triangulo Mineiro, Institute of Technological and Exact Sciences, Avenida Doutor Randolfo Borges Junior, 1250 – Uberaba – MG (Brazil); Brasil, A.C.P. Jr. [University of Brasilia, Department of Mechanical Engineering, Campus Darcy Ribeiro, Brasilia – DF (Brazil)
2013-07-01
In this work a numerical study of draft tube of a bulb hydraulic turbine is presented, where a new geometry is proposed. This new proposal of draft tube has the unaffected ratio area, a great reduction in his length and approximately the same efficiency of the draft tube conventionally used. The numerical simulations were obtained in commercial software of calculation of flow (CFX-14), using the turbulence model SST, that allows a description of the field fluid dynamic near to the wall. The simulation strategy has an intention of identifying the stall of the boundary layer precisely limits near to the wall and recirculations in the central part, once those are the great causes of the decrease of efficiency of a draft tube. Finally, it is obtained qualitative and quantitative results about the flow in draft tubes.
Numerical simulation of the circulation of the atmosphere of Titan
Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.
1992-01-01
A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.
Three-dimensional numerical simulation during laser processing of CFRP
Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro
2017-09-01
We performed three-dimensional numerical simulation about laser processing of carbon-fiber-reinforced plastic (CFRP) using OpenFOAM as libraries of finite volume method (FVM). Although a little theoretical or numerical studies about heat affected zone (HAZ) formation were performed, there is no research discussing how HAZ is generated considering time development about removal of each material. It is important to understand difference of removal speed of carbon fiber and resin in order to improve quality of cut surface of CFRP. We demonstrated how the carbon fiber and resin are removed by heat of ablation plume by our simulation. We found that carbon fiber is removed faster than resin at first stage because of the difference of thermal conductivity, and after that, the resin is removed faster because of its low combustion temperature. This result suggests the existence of optimal contacting time of the laser ablation and kerf of the target.
Numerical Relativity Simulations for Black Hole Merger Astrophysics
Baker, John G.
2010-01-01
Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.
Experimentation and numerical simulation of steel fibre reinforced concrete pipes
International Nuclear Information System (INIS)
Fuente, A. de la; Domingues de Figueiredo, A.; Aguado, A.; Molins, C.; Chama Neto, P. J.
2011-01-01
The results concerning on an experimental and a numerical study related to SFRCP are presented. Eighteen pipes with an internal diameter of 600 mm and fibre dosages of 10, 20 and 40 kg/m3 were manufactured and tested. Some technological aspects were concluded. Likewise, a numerical parameterized model was implemented. With this model, the simulation of the resistant behaviour of SFRCP can be performed. In this sense, the results experimentally obtained were contrasted with those suggested by means MAP reaching very satisfactory correlations. Taking it into account, it could be said that the numerical model is a useful tool for the optimal design of the SFRCP fibre dosages, avoiding the need of the systematic employment of the test as an indirect design method. Consequently, the use of this model would reduce the overall cost of the pipes and would give fibres a boost as a solution for this structural typology. (Author) 27 refs.
Numerical simulation of droplet evaporation between two circular plates
International Nuclear Information System (INIS)
Bam, Hang Jin; Son, Gi Hun
2015-01-01
Numerical simulation is performed for droplet evaporation between two circular plates. The flow and thermal characteristics of the droplet evaporation are numerically investigated by solving the conservation equations of mass, momentum, energy and mass fraction in the liquid and gas phases. The liquid-gas interface is tracked by a sharp-interface level-set method which is modified to include the effects of evaporation at the liquid-gas interface and contact angle hysteresis at the liquid-gas-solid contact line. An analytical model to predict the droplet evaporation is also developed by simplifying the mass and vapor fraction equations in the gas phase. The numerical results demonstrate that the 1-D analytical prediction is not applicable to the high rate evaporation process. The effects of plate gap and receding contact angle on the droplet evaporation are also quantified.
Determination of adsorption parameters in numerical simulation for polymer flooding
Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu
2018-02-01
A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.
Numerical simulation for hot forming of head plates and pipe bending
International Nuclear Information System (INIS)
Ohta, Takahiro; Itoh, Shingo; Yamasaki, Masato; Miura, Akira.
1995-01-01
A great deal of time could be saved if physical experiments were replaced by numerical simulations in the development of new forming processes. In this paper, explicit dynamic finite element methods for the hot forming of head plates and pipe bending are investigated. In the case of hemispherical hot forming, the predicted formed shapes and the punch force by thermo elastic plastic analysis are very similar to those found by experiment. Moreover, it is shown that wrinkles occuring in the hot forming process can be predicted. And we can also simulate pipe bending processes by numerical analysis. (author)
MHD turbulent dynamo in astrophysics: Theory and numerical simulation
Chou, Hongsong
2001-10-01
This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).
Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger
Xiao-Hui Sun; Hongbin Yan; Mehrdad Massoudi; Zhi-Hua Chen; Wei-Tao Wu
2018-01-01
It has been shown that using nanofluids as heat carrier fluids enhances the conductive and convective heat transfer of geothermal heat exchangers. In this paper, we study the stability of nanofluids in a geothermal exchanger by numerically simulating nanoparticle sedimentation during a shut-down process. The nanofluid suspension is modeled as a non-linear complex fluid; the nanoparticle migration is modeled by a particle flux model, which includes the effects of Brownian motion, gravity, turb...
Numerical simulations of the decay of primordial magnetic turbulence
International Nuclear Information System (INIS)
Kahniashvili, Tina; Brandenburg, Axel; Tevzadze, Alexander G.; Ratra, Bharat
2010-01-01
We perform direct numerical simulations of forced and freely decaying 3D magnetohydrodynamic turbulence in order to model magnetic field evolution during cosmological phase transitions in the early Universe. Our approach assumes the existence of a magnetic field generated either by a process during inflation or shortly thereafter, or by bubble collisions during a phase transition. We show that the final configuration of the magnetic field depends on the initial conditions, while the velocity field is nearly independent of initial conditions.
Numerical simulation methods for wave propagation through optical waveguides
International Nuclear Information System (INIS)
Sharma, A.
1993-01-01
The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs
Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass
Xuguang Chen; Yuan Wang; Yu Mei; Xin Zhang
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration p...
EXTENDED SCALING LAWS IN NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Mason, Joanne; Cattaneo, Fausto; Perez, Jean Carlos; Boldyrev, Stanislav
2011-01-01
Magnetized turbulence is ubiquitous in astrophysical systems, where it notoriously spans a broad range of spatial scales. Phenomenological theories of MHD turbulence describe the self-similar dynamics of turbulent fluctuations in the inertial range of scales. Numerical simulations serve to guide and test these theories. However, the computational power that is currently available restricts the simulations to Reynolds numbers that are significantly smaller than those in astrophysical settings. In order to increase computational efficiency and, therefore, probe a larger range of scales, one often takes into account the fundamental anisotropy of field-guided MHD turbulence, with gradients being much slower in the field-parallel direction. The simulations are then optimized by employing the reduced MHD equations and relaxing the field-parallel numerical resolution. In this work we explore a different possibility. We propose that there exist certain quantities that are remarkably stable with respect to the Reynolds number. As an illustration, we study the alignment angle between the magnetic and velocity fluctuations in MHD turbulence, measured as the ratio of two specially constructed structure functions. We find that the scaling of this ratio can be extended surprisingly well into the regime of relatively low Reynolds number. However, the extended scaling easily becomes spoiled when the dissipation range in the simulations is underresolved. Thus, taking the numerical optimization methods too far can lead to spurious numerical effects and erroneous representation of the physics of MHD turbulence, which in turn can affect our ability to identify correctly the physical mechanisms that are operating in astrophysical systems.
Numerical Simulations of Settlement of Jet Grouting Columns
Directory of Open Access Journals (Sweden)
Juzwa Anna
2016-03-01
Full Text Available The paper presents the comparison of results of numerical analyses of interaction between group of jet grouting columns and subsoil. The analyses were conducted for single column and groups of three, seven and nine columns. The simulations are based on experimental research in real scale which were carried out by authors. The final goal for the research is an estimation of an influence of interaction between columns working in a group.
Numerical simulation methods of fires in nuclear power plants
International Nuclear Information System (INIS)
Keski-Rahkonen, O.; Bjoerkman, J.; Heikkilae, L.
1992-01-01
Fire is a significant hazard to the safety of nuclear power plants (NPP). Fire may be serious accident as such, but even small fire at a critical point in a NPP may cause an accident much more serious than fire itself. According to risk assessments a fire may be an initial cause or a contributing factor in a large part of reactor accidents. At the Fire Technology and the the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) fire safety research for NPPs has been carried out in a large extent since 1985. During years 1988-92 a project Advanced Numerical Modelling in Nuclear Power Plants (PALOME) was carried out. In the project the level of numerical modelling for fire research in Finland was improved by acquiring, preparing for use and developing numerical fire simulation programs. Large scale test data of the German experimental program (PHDR Sicherheitsprogramm in Kernforschungscentral Karlsruhe) has been as reference. The large scale tests were simulated by numerical codes and results were compared to calculations carried out by others. Scientific interaction with outstanding foreign laboratories and scientists has been an important part of the project. This report describes the work of PALOME-project carried out at the Fire Technology Laboratory only. A report on the work at the Nuclear Engineering Laboratory will be published separatively. (au)
Numerical simulation of water flow through the bottom en piece of a nuclear fuel assembly
International Nuclear Information System (INIS)
Navarro, Moyses A.; Santos, Andre A. Campagnole dos
2007-01-01
The water flow through the bottom nozzle of a nuclear fuel assembly was simulated using a commercial CFD code, CFX 10.0. Previously, simulations with a perforated plate similar to the bottom nozzle plate were performed to define the appropriate mesh refinement and turbulence model (κ-ε or SST). Subsequently, the numerical simulation was performed with the optimized mesh using the turbulence model (κ-ε in a standard bottom nozzle with some geometric simplifications. The numerical results were compared with experimental results to determine the pressure drop through the bottom nozzle in the Reynolds range from ∼10500 to ∼95000. The agreement between the numerical simulations and experimental results may be considered satisfactory. The study indicated that the CFD codes can play an important role in the development of pieces with complex geometries, optimizing the planning of the experiments and aiding in the experimental analysis. (author)
Transient productivity index for numerical well test simulations
Energy Technology Data Exchange (ETDEWEB)
Blanc, G.; Ding, D.Y.; Ene, A. [Institut Francais du Petrole, Pau (France)] [and others
1997-08-01
The most difficult aspect of numerical simulation of well tests is the treatment of the Bottom Hole Flowing (BHF) Pressure. In full field simulations, this pressure is derived from the Well-block Pressure (WBP) using a numerical productivity index which accounts for the grid size and permeability, and for the well completion. This productivity index is calculated assuming a pseudo-steady state flow regime in the vicinity of the well and is therefore constant during the well production period. Such a pseudo-steady state assumption is no longer valid for the early time of a well test simulation as long as the pressure perturbation has not reached several grid-blocks around the well. This paper offers two different solutions to this problem: (1) The first one is based on the derivation of a Numerical Transient Productivity Index (NTPI) to be applied to Cartesian grids; (2) The second one is based on the use of a Corrected Transmissibility and Accumulation Term (CTAT) in the flow equation. The representation of the pressure behavior given by both solutions is far more accurate than the conventional one as shown by several validation examples which are presented in the following pages.
Numerical methods and analysis of multiscale problems
Madureira, Alexandre L
2017-01-01
This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.
Practical design of magnetostatic structure using numerical simulation
Wang, Qiuliang
2013-01-01
Covers the practical numerical method for the analysis and design of magnets Extensively covers the magnet design and computation aspects from theories to practical applications, emphasizing design methods of practical structures such as superconducting, electromagnetic and permanent magnet for use in various scientific instruments, industrial processing, biomedicine and special electrical equipments. The computations cover a wide range of numerical techniques and analytical derivation to efficiently provide solutions to complicated problems that are often encountered in practice, where simple analytical calculations are no longer adequate. Chapters include: Introduction of Magnet Technology, Magnetostatic Equation for the Magnet Structure, Finite Element Analysis for Magnetostatic Field, Integral Method for Magnetostatic Field, Numerical Method of Solenoid Coils Design, Series Analysis of Axially Symmetric Magnetic Field, Magnets with High Magnetic Field and High Homogeneity, Permanent Magnet and its App...
Efficient numerical simulation of heat storage in subsurface georeservoirs
Boockmeyer, A.; Bauer, S.
2015-12-01
The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and
Numerical simulator of the CANDU fueling machine driving desk
International Nuclear Information System (INIS)
Doca, Cezar
2008-01-01
As a national and European premiere, in the 2003 - 2005 period, at the Institute for Nuclear Research Pitesti two CANDU fueling machine heads, no.4 and no.5, for the Nuclear Power Plant Cernavoda - Unit 2 were successfully tested. To perform the tests of these machines, a special CANDU fueling machine testing rig was built and was (and is) available for this goal. The design of the CANDU fueling machine test rig from the Institute for Nuclear Research Pitesti is a replica of the similar equipment operating in CANDU 6 type nuclear power plants. High technical level of the CANDU fueling machine tests required the using of an efficient data acquisition and processing Computer Control System. The challenging goal was to build a computer system (hardware and software) designed and engineered to control the test and calibration process of these fuel handling machines. The design takes care both of the functionality required to correctly control the CANDU fueling machine and of the additional functionality required to assist the testing process. Both the fueling machine testing rig and staff had successfully assessed by the AECL representatives during two missions. At same the time, at the Institute for Nuclear Research Pitesti was/is developed a numerical simulator for the CANDU fueling machine operators training. The paper presents the numerical simulator - a special PC program (software) which simulates the graphics and the functions and the operations at the main desk of the computer control system. The simulator permits 'to drive' a CANDU fueling machine in two manners: manual or automatic. The numerical simulator is dedicated to the training of operators who operate the CANDU fueling machine in a nuclear power plant with CANDU reactor. (author)
Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage
Ji, Youjun; Zhang, Linzhi; Yue, Jiannan
2014-01-01
Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199
Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage
Directory of Open Access Journals (Sweden)
Youjun Ji
2014-01-01
Full Text Available Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today.
Numerical Simulation of Liquid Sloshing Problem under Resonant Excitation
Directory of Open Access Journals (Sweden)
Fu-kun Gui
2014-04-01
Full Text Available Numerical simulations were conducted to investigate the fluid resonance in partially filled rectangular tank based on the OpenFOAM package of viscous fluid model. The numerical model was validated by the available theoretical, numerical, and experimental data. The study was mainly focused on the large amplitude sloshing motion and the corresponding impact force around the resonant condition. It was found that, for the 2D situation, the double pressure peaks happened near to the side walls around the still water level. And they were corresponding to the local free surface rising up and set-down, respectively. The impulsive loads on the tank corner with extreme magnitudes were observed as the free surface impacted the ceiling. The 3D numerical results showed that the free surface amplitudes along the side walls varied diversely, depending on the direction and frequency of the external excitation. The characteristics of the pressure around the still water level and tank ceiling were also presented. According to the computational results, it was found that the 2D numerical model can predict the impact loads near the still water level as accurately as 3D model. However, the impulsive pressure near the tank ceiling corner was remarkably underestimated.
Water Quality Analysis Simulation
The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.
Water Quality Analysis Simulation
U.S. Environmental Protection Agency — The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural...
Numerical Limit Analysis of Precast Concrete Structures
DEFF Research Database (Denmark)
Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao
2016-01-01
; the framework is based on the theory of rigid-plasticity, and the resulting mathematical optimisation problem can be solved efficiently using modern algorithms. This paper gives a brief introduction to convex optimisation and numerical limit analysis. The mathematical formulation of lower bound load...
Numerical analysis of thermoluminescence glow curves
International Nuclear Information System (INIS)
Gomez Ros, J. M.; Delgado, A.
1989-01-01
This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs
Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons
Directory of Open Access Journals (Sweden)
Claudio Bustos
Full Text Available Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an eyeball under glaucoma conditions.
Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons
Bustos, Claudio; Herrera, Claudio García; Celentano, Diego; Chen, Daming; Cruchaga, Marcela
2016-01-01
Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an...
Numerical simulation of flow-induced vibrations in tube bundles
International Nuclear Information System (INIS)
Elisabeth Longatte; Zaky Bendjeddou; Mhamed Souli
2005-01-01
Full text of publication follows: In many industrial components mechanical structures like rod cluster control assembly, fuel assembly and heat exchanger tube bundles are submitted to complex flows causing possible vibrations and damage. Fluid forces are usually split into two parts: structure motion independent forces and fluid-elastic forces coupled with tube motion and responsible for possible dynamic instability development leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics (C.F.D.), numerical fluid force identification is now practicable in the presence of industrial configurations. The present paper is devoted to numerical simulation of flow-induced vibrations of tube bundles submitted to single-phase cross flows by using C.F.D. codes. Direct Numerical Simulation (D.N.S.), Arbitrary Lagrange Euler formulation (A.L.E.) and code coupling process are involved to predict fluid forces responsible for tube bundle vibrations in the presence of fluid structure and fluid-elastic coupling effects. In the presence of strong multi-physics coupling, simulation of flow-induced vibrations requires a fluid structure code coupling process. The methodology consists in solving in the same time thermohydraulics and mechanics problems by using an A.L.E. formulation for the fluid computation. The purpose is to take into account coupling between flow and structure motions in order to be able to capture coupling effects. From a numerical point of view, there are three steps in the computation: the fluid problem is solved on the computational domain; fluid forces acting on the moving tube are estimated; finally they are introduced in the structure solver providing the tube displacement that is used to actualize the fluid computational domain. Specific
Numerical simulations for active tectonic processes: increasing interoperability and performance
Donnellan, A.; Fox, G.; Rundle, J.; McLeod, D.; Tullis, T.; Grant, L.
2002-01-01
The objective of this project is to produce a system to fully model earthquake-related data. This task develops simulation and analysis tools to study the physics of earthquakes using state-of-the-art modeling.
Direct Numerical Simulations of Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Livescu, D; Wei, T; Petersen, M R
2011-01-01
The development of the Rayleigh-Taylor mixing layer is studied using data from an extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This includes a suite of simulations with grid size of 1024 2 × 4608 and Atwood number ranging from 0.04 to 0.9, in order to examine small departures from the Boussinesq approximation as well as large Atwood number effects, and a high resolution simulation of grid size 4096 2 × 4032 and Atwood number of 0.75. After the layer width had developed substantially, additional branched simulations have been run under reversed and zero gravity conditions. While the bulk of the results will be published elsewhere, here we present preliminary results on: 1) the long-standing open question regarding the discrepancy between the numerically and experimentally measured mixing layer growth rates and 2) mixing characteristics.
Numerical simulation of plasma vertical position stabilization in ITER
International Nuclear Information System (INIS)
Astapkovich, A.M.; Sadakov, S.N.
1992-01-01
The paper deals with numerical simulation of plasma vertical position stabilization in ITER. The calculations are performed using EDDY C-2 code by the method of direct numerical simulation of transient electromagnetic processes taking into account the evolution of plasma position, cross-section shape and full plasma current. When simulating free vertical plasma drift in ITER with twin passive stabilization loops, it was shown that account of the effects of cross-section deformation and plasma current alternations results in almost two fold degradation of passive stabilization parameters as compared to the calculations for 'rigid displacement' model. In terms of methodology, the account of the effects of cross section deformation and plasma current alternations requires clarification of the definitions for reverse increment of vertical instability and for stability margin coefficient. The simulation of plasma pinch return to equilibrium position after the closure of control coils allows to assess the required parameters of active control system and demonstrate the effect of screen current reverse in twin loops. The obtained results were used to develop the ITER conceptual design and affected the choice of the concept of twin passive loops and new positron of control coils as the basis approaches. 11 refs.; 12 figs.; 1 tab
Numerical simulation of plasma processes driven by transverse ion heating
Singh, Nagendra; Chan, C. B.
1993-01-01
The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.
Numerical Simulation of Flow Behavior within a Venturi Scrubber
M. M. Toledo-Melchor; C. del C. Gutiérrez-Torres; J. A. Jiménez-Bernal; J. G. Barbosa-Saldaña; S. A. Martínez-Delgadillo; H. R. Mollinedo-Ponce de León; A. Yoguéz-Seoane; A. Alonzo-García
2014-01-01
The present work details the three-dimensional numerical simulation of single-phase and two-phase flow (air-water) in a venturi scrubber with an inlet and throat diameters of 250 and 122.5 mm, respectively. The dimensions and operating parameters correspond to industrial applications. The mass flow rate conditions were 0.483 kg/s, 0.736 kg/s, 0.861 kg/s, and 0.987 kg/s for the gas only simulation; the mass flow rate for the liquid was 0.013 kg/s and 0.038 kg/s. The gas flow was simulated in f...
Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube
Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok
2015-01-01
This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.
Real-Time Numerical Simulation of the Carnot Cycle
International Nuclear Information System (INIS)
Hurkala, J.; Gall, M.; Kutner, R.; Maciejczyk, M.
2005-01-01
We developed a highly interactive, multi-windows Java applet which made it possible to simulate and visualize within any platform and internet the Carnot cycle (or engine) in a real-time computer experiment. We extended our previous model and algorithm to simulate not only the heat flow but also the macroscopic movement of the piston. since in reality it is impossible to construct a reversible Carnot engine, the question arises whether it is possible to simulate it at least in a numerical experiment? The positive answer to this question which we found is related to our model and algorithm which make it possible to omit the many-body problem arising when many gas particles simultaneously interact with the mobile piston. As usually the considerations of phenomenomenological thermodynamics began with a study of the basic properties of heat engines hence our approach, beside intrinsic physical significance, is also important from the educational, technological and even environmental points of view. (author)
Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry
Yue, L.; Hsu, T. J.
2017-12-01
Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.
Adaptive and dynamic meshing methods for numerical simulations
Acikgoz, Nazmiye
For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures. For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad
Numerical simulation of a meteorological regime of Pontic region
Toropov, P.; Silvestrova, K.
2012-04-01
initial data in WRF model are used FNL the analysis, pumped up each six hours. The data is in the open access (http://nomad3.ncep.noaa.gov/pub/) in a grib format. Spatial step FNL of the FNL analysis is 1 degree. In the experiment 1-3 February 2011, was made the assimilation of station data located within the territory or identified during our expeditions. It is shown that the model WRF successfully reproduces the meteorological regime the Black Sea coast. The average error of simulation n without learning station data is as follows: for a temperature of 1.5 s for wind speed - 2 m / sec. The maximum error for the temperature is 5 C, and for wind speed 10 m / sec. To experiment with the assimilation of station data the error is reduced by an average of 20%. The spatial structure of temperature and wind fields close to the actually observed. Thus, it can be argued that the model WRF can be successfully applied to numerical forecast a dangerous phenomenon, such as «Novorossiysk nord-ost». The work is done in Natural Risk Assessment Laboratory under contract G.34.31.0007.
Numerical simulation of microstructure of the GeSi alloy
Energy Technology Data Exchange (ETDEWEB)
Rasin, I.
2006-09-08
The goal of this work is to investigate pattern formation processes on the solid-liquid interface during the crystal growth of GeSi. GeSi crystals with cellular structure have great potential for applications in -ray and neutron optics. The interface patterns induce small quasi-periodic distortions of the microstructure called mosaicity. Existence and properties of this mosaicity are important for the application of the crystals. The properties depend on many factors; this dependence, is currently not known even not qualitatively. A better understanding of the physics near the crystal surface is therefore required, in order to optimise the growth process. There are three main physical processes in this system: phase-transition, diffusion and melt flow. Every process is described by its own set of equations. Finite difference methods and lattice kinetic methods are taken for solving these governing equations. We have developed a modification of the kinetic methods for the advectiondiffusion and extended this method for simulations of non-linear reaction diffusion equations. The phase-field method was chosen as a tool for describing the phase-transition. There are numerous works applied for different metallic alloys. An attempt to apply the method directly to simulation GeSi crystal growth showed that this method is unstable. This instability has not been observed in previous works due to the much smaller scale of simulations. We introduced a modified phase-field scheme, which enables to simulate pattern formation with the scale observed in experiment. A flow in the melt was taken in to account in the numerical model. The developed numerical model allows us to investigate pattern formation in GeSi crystals. Modelling shows that the flow near the crystal surface has impact on the patterns. The obtained patterns reproduce qualitatively and in some cases quantitatively the experimental results. (orig.)
Numerical simulation of a mistral wind event occuring
Guenard, V.; Caccia, J. L.; Tedeschi, G.
2003-04-01
The experimental network of the ESCOMPTE field experiment (june-july 2001) is turned into account to investigate the Mistral wind affecting the Marseille area (South of France). Mistral wind is a northerly flow blowing across the Rhône valley and toward the Mediterranean sea resulting from the dynamical low pressure generated in the wake of the Alps ridge. It brings cold, dry air masses and clear sky conditions over the south-eastern part of France. Up to now, few scientific studies have been carried out on the Mistral wind especially the evolution of its 3-D structure so that its mesoscale numerical simulation is still relevant. Non-hydrostatic RAMS model is performed to better investigate this mesoscale phenomena. Simulations at a 12 km horizontal resolution are compared to boundary layer wind profilers and ground measurements. Preliminary results suit quite well with the Mistral statistical studies carried out by the operational service of Météo-France and observed wind profiles are correctly reproduced by the numerical model RAMS which appears to be an efficient tool for its understanding of Mistral. Owing to the absence of diabatic effect in Mistral events which complicates numerical simulations, the present work is the first step for the validation of RAMS model in that area. Further works will consist on the study of the interaction of Mistral wind with land-sea breeze. Also, RAMS simulations will be combined with aerosol production and ocean circulation models to supply chemists and oceanographers with some answers for their studies.
Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation
Doru, Zdrenghea
2017-10-01
The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater
Two-fluid Numerical Simulations of Solar Spicules
Energy Technology Data Exchange (ETDEWEB)
Kuźma, Błażej; Murawski, Kris; Kayshap, Pradeep; Wójcik, Darek [Group of Astrophysics, University of Maria Curie-Skłodowska, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, Abhishek Kumar; Dwivedi, Bhola N., E-mail: blazejkuzma1@gmail.com [Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005 (India)
2017-11-10
We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D Cartesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20–25 km s{sup −1}. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3–4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.
A simplified model for TIG-dressing numerical simulation
Ferro, P.; Berto, F.; James, M. N.
2017-04-01
Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.
NUMERICAL SIMULATION OF TOXIC CHEMICAL DISPERSION AFTER ACCIDENT AT RAILWAY
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2016-04-01
Full Text Available Purpose. This research focuses on the development of an applied numerical model to calculate the dynamics of atmospheric pollution in the emission of dangerous chemical substances in the event of transportation by railway. Methodology. For the numerical simulation of transport process of the dangerous chemical substance in the atmosphere the equation of convection-diffusion pollutant transport is used. This equation takes into account the effect of wind, atmospheric diffusion, the power of emission source, as well as the movement of the source of emission (depressurized tank on the process of pollutant dispersion. When carrying out computing experiment one also takes into account the profile of the speed of the wind flow. For the numerical integration of pollutant transport in the atmosphere implicit finite-difference splitting scheme is used. The numerical calculation is divided into four steps of splitting and at each step of splitting the unknown value of the concentration of hazardous substance is determined by the explicit running account scheme. On the basis of the numerical model it was created the code using the algorithmic language FORTRAN. One conducted the computational experiments to assess the level of air pollution near the railway station «Illarionovo» in the event of a possible accident during transportation of ammonia. Findings. The proposed model allows you to quickly calculate the air pollution after the emission of chemically hazardous substance, taking into account the motion of the emission source. The model makes it possible to determine the size of the land surface pollution zones and the amount of pollutants deposited on a specific area. Using the developed numerical model it was estimated the environmental damage near the railway station «Illarionovo». Originality. One can use the numerical model to calculate the size and intensity of the chemical contamination zones after accidents on transport. Practical value
Numerical Analysis of Magnetic Sail Spacecraft
International Nuclear Information System (INIS)
Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu
2008-01-01
To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.
Numerical simulation of fluid flow in microporous media
International Nuclear Information System (INIS)
Xu Ruina; Jiang Peixue
2008-01-01
The flow characteristics of water and air in microporous media with average diameters of 200 μm, 125 μm, 90 μm, 40 μm, 20 μm, and 10 μm were studied numerically. The calculated friction factors for water and air in the non-slip-flow regime in the microporous media agree well with the known correlation suitable for normal size porous media. The numerically predicted friction factors for air in the slip-flow regime in the microporous media with 90 μm, 40 μm, 20 μm, and 10 μm diameter particles were less than the correlation for normal size porous media but close to experimental data and a modified correlation that accounts for rarefaction. Comparisons of the numerical results with the experimental data and the modified correlations show that rarefaction effects occur in air flows in the microporous media with particle diameters less than 90 μm and that the numerical calculations with velocity slip on the boundary can properly simulate the fluid flow in microporous media
High accuracy mantle convection simulation through modern numerical methods
Kronbichler, Martin
2012-08-21
Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.
Study and simulation of a parallel numerical processing machine
International Nuclear Information System (INIS)
Bel Hadj, Slaheddine
1981-12-01
This study has been carried out in the perspective of the implementation on a minicomputer of the NEPTUNIX package (software for the resolution of very large algebra-differential equation systems). Aiming at increasing the system performance, a previous research work has shown the necessity of reducing the execution time of certain numerical computation tasks, which are of frequent use. It has also demonstrated the feasibility of handling these tasks with efficient algorithms of parallel type. The present work deals with the study and simulation of a parallel architecture processor adapted to the fast execution of these algorithms. A minicomputer fitted with a connection to such a parallel processor, has a greatly extended computing power. Then the architecture of a parallel numerical processor, based on the use of VLSI microprocessors and co-processors, is described. Its design aims at the best cost / performance ratio. The last part deals with the simulation processor with the 'CHAMBOR' program. Results show an increasing factor of 30 in speed, in comparison with the execution on a MITRA 15 minicomputer. Moreover the conflicts importance, mainly at the level of access to a shared resource is evaluated. Although this implementation has been designed having in mind a dedicated application, other uses could be envisaged, particularly for the simulation of nuclear reactors: operator guiding system, the behavioural study under accidental circumstances, etc. (author) [fr
Numerical Simulation of Flood Levels for Tropical Rivers
International Nuclear Information System (INIS)
Mohammed, Thamer Ahmed; Said, Salim; Bardaie, Mohd Zohadie; Basri, Shah Nor
2011-01-01
Flood forecasting is important for flood damage reduction. As a result of advances in the numerical methods and computer technologies, many mathematical models have been developed and used for hydraulic simulation of the flood. These simulations usually include the prediction of the flood width and depth along a watercourse. Results obtained from the application of hydraulic models will help engineers to take precautionary measures to minimize flood damage. Hydraulic models were used to simulate the flood can be classified into dynamic hydraulic models and static hydraulic models. The HEC-2 static hydraulic model was used to predict water surface profiles for Linggi river and Langat river in Malaysia. The model is based on the numerical solution of the one dimensional energy equation of the steady gradually varied flow using the iteration technique. Calibration and verification of the HEC-2 model were conducted using the recorded data for both rivers. After calibration, the model was applied to predict the water surface profiles for Q10, Q30, and Q100 along the watercourse of the Linggi river. The water surface profile for Q200 for Langat river was predicted. The predicted water surface profiles were found in agreement with the recorded water surface profiles. The value of the maximum computed absolute error in the predicted water surface profile was found to be 500 mm while the minimum absolute error was 20 mm only.
Direct numerical simulation of bluff-body-stabilized premixed flames
Arias, Paul G.
2014-01-10
To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.
NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST
Directory of Open Access Journals (Sweden)
Andrea Formato
2007-03-01
Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.
Ferrofluids: Modeling, numerical analysis, and scientific computation
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a
Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation
Malecha, Ziemowit; Chini, Gregory; Julien, Keith
2012-11-01
Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.
A numerical simulation of VIV on a flexible circular cylinder
International Nuclear Information System (INIS)
Xie Fangfang; Deng Jian; Zheng Yao; Xiao Qing
2012-01-01
In this paper, numerical simulations of a flexible circular cylinder subjected to a vortex-induced vibration (VIV) are conducted. The Reynolds number for simulations is fixed at 1000. The finite volume method is applied for modeling fluid flow with the moving meshes feature. The dynamic response of a flexible cylinder fixed at both ends is modeled by the Euler–Bernoulli beam theory. The comparison between two-dimensional (2D) simulations and 3D simulations for the flexible cylinder shows that the maximum response amplitude of the cross-flow oscillation is about 0.57D for 2D rigid cylinders (modeled by a spring–damper–mass model) and 1.03D for flexible cylinders, respectively. The results from 3D simulations are closer to previous experimental results. Furthermore, the results obtained with various frequency ratios show that different wake patterns exist according to the frequency ratio, such as 2S mode, 2P mode and some more complicated modes. The wake pattern is different at various sections along the cylinder length, due to the fact that the two ends of the beam are fixed. The vibration of the flexible cylinder can also greatly alter the three dimensionality in the wake, which is our research in future work, especially in the transition region for Reynolds number ranging from 170 to 300. (paper)
Numerical simulations of seepage flow in rough single rock fractures
Directory of Open Access Journals (Sweden)
Qingang Zhang
2015-09-01
Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.
Numerical simulation of superheated vapor bubble rising in stagnant liquid
Samkhaniani, N.; Ansari, M. R.
2017-09-01
In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.
Numerical simulation of heat exchangers elliptical tubes and corrugated fins
International Nuclear Information System (INIS)
Borrajo Pérez, Rubén; González Bayón, Juan José; Menéndez Pérez, Alberto
2015-01-01
The intensified heat exchangers fins are widely used in the automotive and domestic industry. The low heat transfer coefficients on the air side are the main reason why these fins of heat exchangers need to be intensified. In this paper, the numerical simulation of a wavy fin type is made with elliptical tubes. The dimensions of the fin is in the range of those used in air conditioning equipment. The friction factor and the mass transfer coefficient as a function of the Reynolds number for this type of fin, always within the laminar regime is determined. The numerical model against experimental results published in the literature is validated. In addition the mechanisms that produce intensified heat transfer fin in such occur. (full text)
International Nuclear Information System (INIS)
Wang Taichun; Fu Hanqing; Du Xiangwan
1999-01-01
Based on the analysis of advantages and disadvantages of the unstable resonator with a phase-unifying output coupler, the improving unstable resonator are designed. The numerical simulation results indicate that the improving unstable resonator overcomes disadvantages of that resonator and its far-field intensity focusing is better than the conventional resonator
Wu, L.; Braun, S. A.
2006-12-01
Over the past two decades, little advance has been made in prediction of tropical cyclone intensity while substantial improvements have been made in forecasting hurricane tracks. One reason is that we don't well understand the physical processes that govern tropical cyclone intensity. Recent studies have suggested that the Saharan Air Layer (SAL) may be yet another piece of the puzzle in advancing our understanding of tropical cyclone intensity change in the Atlantic basin. The SAL is an elevated mixed layer, forming as air moves across the vast Sahara Desert, in particular during boreal summer months. The SAL contains warm, dry air as well as a substantial amount of mineral dust, which can affect radiative heating and modify cloud processes. Using the retrieved temperature and humidity profiles from the AIRS suite on the NASA Aqua satellite, the SAL and its influences on the formation and intensification of Hurricane Isabel (2003) are analyzed and simulated with MM5. When the warmth and dryness of the SAL (the thermodynamic effect) is considered by relaxing the model thermodynamic state to the AIRS profiles, MM5 can well simulate the large-scale flow patterns and the activity of Hurricane Isabel in terms of the timing and location of formation and the subsequent track. Compared with the experiment without nudging the AIRS data, it is suggested that the simulated SAL effect may delay the formation and intensification of Hurricane Isabel. This case study generally confirms the argument by Dunion and Velden (2004) that the SAL can suppress Atlantic tropical cyclone activity by increasing the vertical wind shear, reducing the mean relative humidity, and stabilizing the environment at lower levels.
Numerical simulation of a liquid propellant rocket motor
Salvador, Nicolas M. C.; Morales, Marcelo M.; Migueis, Carlos E. S. S.; Bastos-Netto, Demétrio
2001-03-01
This work presents a numerical simulation of the flow field in a liquid propellant rocket engine chamber and exit nozzle using techniques to allow the results to be taken as starting points for designing those propulsive systems. This was done using a Finite Volume method simulating the different flow regimes which usually take place in those systems. As the flow field has regions ranging from the low subsonic to the supersonic regimes, the numerical code used, initially developed for compressible flows only, was modified to work proficiently in the whole velocity range. It is well known that codes have been developed in CFD, for either compressible or incompressible flows, the joint treatment of both together being complex even today, given the small number of references available in this area. Here an existing code for compressible flow was used and primitive variables, the pressure, the Cartesian components of the velocity and the temperature instead of the conserved variables were introduced in the Euler and Navier-Stokes equations. This was done to permit the treatment at any Mach number. Unstructured meshes with adaptive refinements were employed here. The convective terms were treated with upwind first and second order methods. The numerical stability was kept with artificial dissipation and in the spatial coverage one used a five stage Runge-Kutta scheme for the Fluid Mechanics and the VODE (Value of Ordinary Differential Equations) scheme along with the Chemkin II in the chemical reacting solution. During the development of this code simulating the flow in a rocket engine, comparison tests were made with several different types of internal and external flows, at different velocities, seeking to establish the confidence level of the techniques being used. These comparisons were done with existing theoretical results and with other codes already validated and well accepted by the CFD community.
2D numerical simulation of the resistive reconnection layer
International Nuclear Information System (INIS)
Uzdensky, D. A.; Kulsrud, R. M.
2000-01-01
In this paper the authors present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. They use realistic boundary conditions derived consistently from the outside magnetic field, and they also take into account the effect of the backpressure from flow into the separatrix region. They find that within a few Alfven times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like
Numerical simulation of Rayleigh-Taylor turbulent mixing layers
International Nuclear Information System (INIS)
Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.
2009-01-01
Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)
Numerical simulation of the unsteady progress in centrifuge
International Nuclear Information System (INIS)
Wei Chunlin; Zeng Shi
2006-01-01
Unsteady flow equations for the centrifuge are solved on a staggered grid by a finite volume method. The transient process that the axial flow in the centrifuge is established under a steady thermal driving. It can be concluded that the influence which causes the perturbing fluid is different at the beginning and the end of the processing. The flow is caused by the imbalance of temperature which turns to be caused by the imbalance of pressure. The results show that the numerical simulation is effective at the unsteady fluid in a centrifuge. (authors)
Modelisation and numerical simulation for bulk crystal growth processes
International Nuclear Information System (INIS)
Duffar, F.; Dusserre, P.; Barat, C.; Nabot, J.P.
1993-01-01
The aim of this work is to study the relevance of numerical simulation for improving the process control in the field of crystal growth. This investigation focused on the growth of semiconductor and halide crystals by the Bridgman solidification technique, the principle of which is to cool a seeded feed material contained in a crucible, either by pulling the crucible or by decreasing the temperature in the furnace. Calculations are performed with the finite element method, and for comparison, experiments are carried out on Bridgman pulling machines operating either in a laboratory or in industrial plants. Calculations and experimental data have shown a good agreement and a satisfactory reliability
Numerical simulation of laser filamentation in underdense plasma
International Nuclear Information System (INIS)
Yu Lichun; Chen Zhihua; Tu Qinfen
2000-01-01
Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation
Achieving better cooling of turbine blades using numerical simulation methods
Inozemtsev, A. A.; Tikhonov, A. S.; Sendyurev, C. I.; Samokhvalov, N. Yu.
2013-02-01
A new design of the first-stage nozzle vane for the turbine of a prospective gas-turbine engine is considered. The blade's thermal state is numerically simulated in conjugate statement using the ANSYS CFX 13.0 software package. Critical locations in the blade design are determined from the distribution of heat fluxes, and measures aimed at achieving more efficient cooling are analyzed. Essentially lower (by 50-100°C) maximal temperature of metal has been achieved owing to the results of the performed work.
Numerical simulation of compact intracloud discharge and generated electromagnetic pulse
Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.
2015-06-01
Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.
Numerical Simulation of Plasma Antenna with FDTD Method
International Nuclear Information System (INIS)
Chao, Liang; Yue-Min, Xu; Zhi-Jiang, Wang
2008-01-01
We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconBgurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design
Numerical simulation of plasma antenna with FDTD method
International Nuclear Information System (INIS)
Liang Chao; Xu Yuemin; Wang Zhijiang
2008-01-01
We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconfigurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design. (authors)
Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows
Moitra, Stuti; Gatski, Thomas B.
1997-01-01
A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.
Numerical simulation of realistic high-temperature superconductors
International Nuclear Information System (INIS)
1997-01-01
One of the main obstacles in the development of practical high-temperature superconducting (HTS) materials is dissipation, caused by the motion of magnetic flux quanta called vortices. Numerical simulations provide a promising new approach for studying these vortices. By exploiting the extraordinary memory and speed of massively parallel computers, researchers can obtain the extremely fine temporal and spatial resolution needed to model complex vortex behavior. The results may help identify new mechanisms to increase the current-capability capabilities and to predict the performance characteristics of HTS materials intended for industrial applications
Numerical simulation of bosonic-superconducting-string interactions
International Nuclear Information System (INIS)
Laguna, P.; Matzner, R.A.
1990-01-01
Numerical simulations show that bosonic superconducting U(1) gauge cosmic strings interact by reconnecting and chopping off in a fashion similar to nonconducting strings. Cancellation of the electromagnetic current occurs when, in one of the strings, the direction of the U(1) gauge magnetic field is opposite to the electromagnetic current flow. Electric charge accumulates on the segments of the reconnected strings where the current is discontinuous or vanishes. A virtual photon appears after the collision and intercommutation, and a bubble of electromagnetic radiation emerges as the currents in the reconnected strings equalize. These phenomena suggest new possible mechanisms for void production in the large-scale distribution of galaxies
Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool
Stauber, Laurel J.; Naiman, Cynthia G.
2002-01-01
The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing
van den Bosch, Frank C.; Ogiya, Go
2018-04-01
To gain understanding of the complicated, non-linear, and numerical processes associated with the tidal evolution of dark matter subhaloes in numerical simulation, we perform a large suite of idealized simulations that follow individual N-body subhaloes in a fixed, analytical host halo potential. By varying both physical and numerical parameters, we investigate under what conditions the subhaloes undergo disruption. We confirm the conclusions from our more analytical assessment in van den Bosch et al. that most disruption is numerical in origin; as long as a subhalo is resolved with sufficient mass and force resolution, a bound remnant survives. This implies that state-of-the-art cosmological simulations still suffer from significant overmerging. We demonstrate that this is mainly due to inadequate force softening, which causes excessive mass loss and artificial tidal disruption. In addition, we show that subhaloes in N-body simulations are susceptible to a runaway instability triggered by the amplification of discreteness noise in the presence of a tidal field. These two processes conspire to put serious limitations on the reliability of dark matter substructure in state-of-the-art cosmological simulations. We present two criteria that can be used to assess whether individual subhaloes in cosmological simulations are reliable or not, and advocate that subhaloes that satisfy either of these two criteria be discarded from further analysis. We discuss the potential implications of this work for several areas in astrophysics.
Numerical simulation of the knotted nylon netting panel
Directory of Open Access Journals (Sweden)
Li Yuwei
2016-01-01
Full Text Available A piece of netting, consists of the 8 8 meshes, fixed on a square frame, was simulated and the tensions and their distribution, the positions of knots and netting shape were calculated by means of MATLAB in computer. The dynamic mathematic model was developed based on lumped mass method, the netting was treated as spring-mass system, the Runge-Kutta fifth-order and sixth-order method was used to solve the differential equations for every step, then the displacement and tension of each mass point were obtained. For verify this model, the tests have been carried out in a flume tank. The results of the numerical simulation fully agreed with the experiments.
Reliability of numerical wind tunnels for VAWT simulation
International Nuclear Information System (INIS)
Castelli, M. Raciti; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.
2016-01-01
Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities). (paper)
Reliability of numerical wind tunnels for VAWT simulation
Raciti Castelli, M.; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.
2016-09-01
Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities).
Numerical simulation of long-term radiation effects for MOSFETs
International Nuclear Information System (INIS)
Wei Yuan; Xie Honggang; Gong Ding; Zhu Jinhui; Niu Shengli; Huang Liuxing
2013-01-01
A coupled algorithm is introduced to simulate the long-term radiation effects of MOSFETs, which combines particle transport with semiconductor governing equations. The former is dealt with Monte-Carlo method, and the latter is solved by finite-volume method. The trapped charge in SiO 2 and the free charge in Si are both described by the drift-diffusion model, and the deposited energy by incident particles can be coupled with the continuous equations of charge, acting as a source item. The discrete form of governing equations is obtained using the finite-volume method, and the numerical solutions of these equations are the long-term radiation response result of MOSFETs. The threshold voltage shift and off-state leakage current of an irradiated MOSFET are simulated with the coupled algorithm respectively, showing a good accordance with results by other calculations. (authors)
CASTING IMPROVEMENT BASED ON METAHEURISTIC OPTIMIZATION AND NUMERICAL SIMULATION
Directory of Open Access Journals (Sweden)
Radomir Radiša
2017-12-01
Full Text Available This paper presents the use of metaheuristic optimization techniques to support the improvement of casting process. Genetic algorithm (GA, Ant Colony Optimization (ACO, Simulated annealing (SA and Particle Swarm Optimization (PSO have been considered as optimization tools to define the geometry of the casting part’s feeder. The proposed methodology has been demonstrated in the design of the feeder for casting Pelton turbine bucket. The results of the optimization are dimensional characteristics of the feeder, and the best result from all the implemented optimization processes has been adopted. Numerical simulation has been used to verify the validity of the presented design methodology and the feeding system optimization in the casting system of the Pelton turbine bucket.
Convective Self-Aggregation in Numerical Simulations: A Review
Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline
Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is ``self-aggregation,'' in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.
DualSPHysics: A numerical tool to simulate real breakwaters
Zhang, Feng; Crespo, Alejandro; Altomare, Corrado; Domínguez, José; Marzeddu, Andrea; Shang, Shao-ping; Gómez-Gesteira, Moncho
2018-02-01
The open-source code DualSPHysics is used in this work to compute the wave run-up in an existing dike in the Chinese coast using realistic dimensions, bathymetry and wave conditions. The GPU computing power of the DualSPHysics allows simulating real-engineering problems that involve complex geometries with a high resolution in a reasonable computational time. The code is first validated by comparing the numerical free-surface elevation, the wave orbital velocities and the time series of the run-up with physical data in a wave flume. Those experiments include a smooth dike and an armored dike with two layers of cubic blocks. After validation, the code is applied to a real case to obtain the wave run-up under different incident wave conditions. In order to simulate the real open sea, the spurious reflections from the wavemaker are removed by using an active wave absorption technique.
Numerical simulation of a DC double anode arc plasma torch
International Nuclear Information System (INIS)
Chen Lunjiang; Tang Deli; Zhu Hailong
2012-01-01
A 2D axisymmetric numerical simulation of DC double anode plasma torch was done by the computational fluid dynamics (CFD) software FLUENT to improve the efficiency of the waste treatment, which is on the basis of the magnetic fluid dynamics (MHD) theory and uses the method of magnetic vector potential, and the simulation method is based on SIMPLE algorithm. The temperature and speed distributions of the plasma, and so on were obtained. The results show that the temperature of plasma decreases with increasing the axial distance, and increases with increasing the amplitude of the arc current. The velocity first increases and then decreases with the axial distance increase, and increase with the arc current increase. The temperature and the speed at the export of the plasma torch both decrease when the radial distance increases. Those results are in agreement with the experimental results. (authors)
Numerical Simulation of Flow Behavior within a Venturi Scrubber
Directory of Open Access Journals (Sweden)
M. M. Toledo-Melchor
2014-01-01
Full Text Available The present work details the three-dimensional numerical simulation of single-phase and two-phase flow (air-water in a venturi scrubber with an inlet and throat diameters of 250 and 122.5 mm, respectively. The dimensions and operating parameters correspond to industrial applications. The mass flow rate conditions were 0.483 kg/s, 0.736 kg/s, 0.861 kg/s, and 0.987 kg/s for the gas only simulation; the mass flow rate for the liquid was 0.013 kg/s and 0.038 kg/s. The gas flow was simulated in five geometries with different converging and diverging angles while the two-phase flow was only simulated for one geometry. The results obtained were validated with experimental data obtained by other researchers. The results show that the pressure drop depends significantly on the gas flow rate and that water flow rate does not have significant effects neither on the pressure drop nor on the fluid maximum velocity within the scrubber.
Real-time numerical simulation of the Carnot cycle
International Nuclear Information System (INIS)
Hurkala, J; Gall, M; Kutner, R; Maciejczyk, M
2005-01-01
We developed a highly interactive, multi-windows Java applet which made it possible to simulate and visualize within any platform and internet the Carnot cycle (or engine) in a real-time computer experiment. We extended our previous model and algorithm (Galant et al 2003 Heat Transfer, Newton's Law of Cooling and the Law of Entropy Increase Simulated by the Real-Time Computer Experiments in Java (Lecture Notes in Computer Science vol 2657) pp 45-53, Gall and Kutner 2005 Molecular mechanisms of heat transfer: Debye relaxation versus power-law Physica A 352 347-78) to simulate not only the heat flow but also the macroscopic movement of the piston. Since in reality it is impossible to construct a reversible Carnot engine, the question arises whether it is possible to simulate it at least in a numerical experiment? The positive answer to this question which we found is related to our model and algorithm which make it possible to omit the many-body problem arising when many gas particles simultaneously interact with the mobile piston. As usual, the considerations of phenomenological thermodynamics began with a study of the basic properties of heat engines, hence our approach, besides intrinsic physical significance, is also important from the educational, technological and even environmental points of view
Direct numerical simulation of water droplet coalescence in the oil
International Nuclear Information System (INIS)
Mohammadi, Mehdi; Shahhosseini, Shahrokh; Bayat, Mahmoud
2012-01-01
Highlights: ► VOF computational technique has been used to simulate coalescence of two water droplets in oil. ► The model was validated with the experimental data for binary droplet coalescence. ► Based on the CFD simulation results a correlation has been proposed to predict the coalescence time. - Abstract: Coalescence of two water droplets in the oil was simulated using Computational Fluid Dynamics (CFD) techniques. The finite volume numerical method was applied to solve the Navier–Stokes equations in conjunction with the Volume of Fluid (VOF) approach for interface tracking. The effects of some parameters consisting of the collision velocity, off-center collision parameter, oil viscosity and water–oil interfacial tension on the coalescence time were investigated. The simulation results were validated against the experimental data available in the literature. The results revealed that quicker coalescence could be achieved if the head-on collisions occur or the droplets approach each other with a high velocity. In addition, low oil viscosities or large water–oil interfacial tensions cause less coalescence time. Moreover, a correlation was developed to predict coalescence efficiency as a function of the mentioned parameters.
International Nuclear Information System (INIS)
Vidstrand, Patrik; Naeslund, Jens-Ove; Hartikainen, Juha; Svensson, Urban
2007-11-01
In the earlier modelling for SFR-SAFE it was concluded that the groundwater flow would increase with time along with the shoreline displacement. Even though the numerical results are different the same conclusion is drawn after this study. General conclusions from the present study are that: The upper boundary conditions have a significant impact on the groundwater flow in the geosphere. The characteristic of the surface in regards of being a recharge or discharge area affects the results. In general, a discharge area will experience an increase in groundwater flow under changed conditions. The presence of caging fracture zones affects the results, and, for the tested un-frozen SFR situation, the resulting effect is an increase in groundwater flow. Specific conclusions regarding the relative change of groundwater flow due to different surface conditions are that: The permafrost scenarios, along with the development from sporadic permafrost to continuous permafrost, yield increased groundwater flows in unfrozen parts of the domain. The increase is one order of magnitude or less. In the permafrost, the flow is negligible. The ice sheet scenarios yield situations with significantly increased groundwater flow. The results indicate an increase by two to three orders of magnitude. These increased values, however, apply only for short duration intervals. It is possible that such intervals may be only a couple of years. In the selected climate Base variant, repeating the conditions for the last glacial cycle, permafrost conditions occur after 8,000 years. In the climate variant affected by increased greenhouse warming, permafrost conditions do not occur until after more than 50,000 years. In the chosen climate variants, ice sheets reach the Forsmark area and cause significantly increased groundwater flow, after ∼60,000 years or more
Energy Technology Data Exchange (ETDEWEB)
Vidstrand, Patrik (Bergab, Goeteborg (SE)); Naeslund, Jens-Ove (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartikainen, Juha (Helsinki Univ. of Technology, Helsinki (FI)); Svensson, Urban (CFE AB, Karlskrona (SE))
2007-11-15
In the earlier modelling for SFR-SAFE it was concluded that the groundwater flow would increase with time along with the shoreline displacement. Even though the numerical results are different the same conclusion is drawn after this study. General conclusions from the present study are that: The upper boundary conditions have a significant impact on the groundwater flow in the geosphere. The characteristic of the surface in regards of being a recharge or discharge area affects the results. In general, a discharge area will experience an increase in groundwater flow under changed conditions. The presence of caging fracture zones affects the results, and, for the tested un-frozen SFR situation, the resulting effect is an increase in groundwater flow. Specific conclusions regarding the relative change of groundwater flow due to different surface conditions are that: The permafrost scenarios, along with the development from sporadic permafrost to continuous permafrost, yield increased groundwater flows in unfrozen parts of the domain. The increase is one order of magnitude or less. In the permafrost, the flow is negligible. The ice sheet scenarios yield situations with significantly increased groundwater flow. The results indicate an increase by two to three orders of magnitude. These increased values, however, apply only for short duration intervals. It is possible that such intervals may be only a couple of years. In the selected climate Base variant, repeating the conditions for the last glacial cycle, permafrost conditions occur after 8,000 years. In the climate variant affected by increased greenhouse warming, permafrost conditions do not occur until after more than 50,000 years. In the chosen climate variants, ice sheets reach the Forsmark area and cause significantly increased groundwater flow, after approx60,000 years or more
Viswanadhapalli, Yesubabu; Srinivas, C. V.; Ramakrishna, S. S V S; Hari Prasad, K. B R R
2014-01-01
In this study, the impact of four-dimensional data assimilation (FDDA) analysis nudging is examined on the prediction of tropical cyclones (TC) in the Bay of Bengal to determine the optimum period and timescale of nudging. Six TCs (SIDR: November 13
Numerical Simulation for Mechanism of Airway Narrowing in Asthma
Bando, Kiyoshi; Yamashita, Daisuke; Ohba, Kenkichi
A calculation model is proposed to examine the generation mechanism of the numerous lobes on the inner-wall of the airway in asthmatic patients and to clarify luminal occlusion of the airway inducing breathing difficulties. The basement membrane in the airway wall is modeled as a two-dimensional thin-walled shell having inertia force due to the mass, and the smooth muscle contraction effect is replaced by uniform transmural pressure applied to the basement membrane. A dynamic explicit finite element method is used as a numerical simulation method. To examine the validity of the present model, simulation of an asthma attack is performed. The number of lobes generated in the basement membrane increases when transmural pressure is applied in a shorter time period. When the remodeling of the basement membrane occurs characterized by thickening and hardening, it is demonstrated that the number of lobes decreases and the narrowing of the airway lumen becomes severe. Comparison of the results calculated by the present model with those measured for animal experiments of asthma will be possible.
Modelling and numerical simulation of liquid-vapor phase transitions
International Nuclear Information System (INIS)
Caro, F.
2004-11-01
This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)
Review of numerical simulation of capillary tube using refrigerant mixtures
Energy Technology Data Exchange (ETDEWEB)
Garcia-Valladares, O. [Centro de Investigacion en Energia de la UNAM, Morelos (Mexico)
2004-05-01
A detailed one-dimensional steady and transient state numerical simulation of the thermal and fluid-dynamic behaviour of capillary tube expansion devices considering metastable region and working with pure and mixed refrigerants has been developed and presented in previous works [Appl. Therm. Eng. 22 (2002) 173; Appl. Therm. Eng. 22 (2002) 379]. The discretized governing equations are coupled using an implicit step-by-step method. Due to the changes observed in the thermo-physical properties of mixtures using REFPROP v7.0 [Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Gaithersburg, MD 20899, USA, 2002] compared to REFPROP v5.0 [NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database, Standard Reference Data Program, Gaithersburg, MD 20899, USA (February 1996)]; an extensive comparison of the numerical simulation developed with experimental data presented in the technical literature will be shown in order to demonstrate the accuracy of this detailed model. Finally, refrigerant-specific rating charts to predict in an easy way R-407C flow rates through adiabatic capillary tube are shown and used. (author)
Numerical Simulation of the Coagulation Dynamics of Blood
Directory of Open Access Journals (Sweden)
T. Bodnár
2008-01-01
Full Text Available The process of platelet activation and blood coagulation is quite complex and not yet completely understood. Recently, a phenomenological meaningful model of blood coagulation and clot formation in flowing blood that extends existing models to integrate biochemical, physiological and rheological factors, has been developed. The aim of this paper is to present results from a computational study of a simplified version of this coupled fluid-biochemistry model. A generalized Newtonian model with shear-thinning viscosity has been adopted to describe the flow of blood. To simulate the biochemical changes and transport of various enzymes, proteins and platelets involved in the coagulation process, a set of coupled advection–diffusion–reaction equations is used. Three-dimensional numerical simulations are carried out for the whole model in a straight vessel with circular cross-section, using a finite volume semi-discretization in space, on structured grids, and a multistage scheme for time integration. Clot formation and growth are investigated in the vicinity of an injured region of the vessel wall. These are preliminary results aimed at showing the validation of the model and of the numerical code.