WorldWideScience

Sample records for numerical aperture optical

  1. Optical trapping at low numerical aperture

    NARCIS (Netherlands)

    Stallinga, S.

    2011-01-01

    A theory of optical trapping at low Numerical Aperture (NA) is presented. The theory offers an analytical description of the competition between the stabilizing gradient and destabilizing scattering force. The trade-off can be characterized by a single dimensionless trapping parameter, which

  2. High numerical aperture imaging by using multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio

    2014-01-01

    Controlling light propagation into multimode optical fibers through spatial light modulators provides highly miniaturized endoscopes and optical micromanipulation probes. We increase the numerical aperture up to nearly 1 by micro-optics fabricated on the fiber-end.

  3. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio

    2013-01-01

    The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated. © 2013 Optical Society of America.

  4. Optical synthetic aperture radar

    Science.gov (United States)

    Ilovitsh, Asaf; Zach, Shlomo; Zalevsky, Zeev

    2013-06-01

    A method is proposed for increasing the resolution of an object and overcoming the diffraction limit of an optical system installed on top of a moving imaging system, such as an airborne platform or satellite. The resolution improvement is obtained via a two-step process. First, three low resolution differently defocused images are captured and the optical phase is retrieved using an improved iterative Gershberg-Saxton based algorithm. The phase retrieval allows numerical back propagation of the field to the aperture plane. Second, the imaging system is shifted and the first step is repeated. The obtained optical fields at the aperture plane are combined and a synthetically increased lens aperture is generated along the direction of movement, yielding higher imaging resolution. The method resembles a well-known approach from the microwave regime called the synthetic aperture radar in which the antenna size is synthetically increased along the platform propagation direction. The proposed method is demonstrated via Matlab simulation as well as through laboratory experiment.

  5. Stitching interferometry of high numerical aperture cylindrical optics without using a fringe-nulling routine.

    Science.gov (United States)

    Peng, Junzheng; Wang, Qingquan; Peng, Xiang; Yu, Yingjie

    2015-11-01

    Stitching interferometry is a common method for measuring the figure error of high numerical aperture optics. However, subaperture measurement usually requires a fringe-nulling routine, thus making the stitching procedure complex and time-consuming. The challenge when measuring a surface without a fringe-nulling routine is that the rays no longer perpendicularly hit the surface. This violation of the null-test condition can lead to high fringe density and introduce high-order misalignment aberrations into the measurement result. This paper demonstrates that the high-order misalignment aberrations can be characterized by low-order misalignment aberrations; then, an efficient method is proposed to separate the high-order misalignment aberrations from subaperture data. With the proposed method, the fringe-nulling routine is not required. Instead, the subaperture data is measured under a nonzero fringe pattern. Then, all possible misalignment aberrations are removed with the proposed method. Finally, the full aperture map is acquired by connecting all subaperture data together. Experimental results showing the feasibility of the proposed procedure are presented.

  6. Automated stent defect detection and classification with a high numerical aperture optical system

    Science.gov (United States)

    Bermudez, Carlos; Laguarta, Ferran; Cadevall, Cristina; Matilla, Aitor; Ibañez, Sergi; Artigas, Roger

    2017-06-01

    Stent quality control is a highly critical process. Cardiovascular stents have to be inspected 100% so as no defective stent is implanted in a human body. However, this visual control is currently performed manually and every stent could need tenths of minutes to be inspected. In this paper, a novel optical inspection system is presented. By the combination of a high numerical aperture (NA) optical system, a rotational stage and a line-scan camera, unrolled sections of the outer and inner surfaces of the stent are obtained and image-processed at high speed. Defects appearing in those surfaces and also in the edges are extremely contrasted due to the shadowing effect of the high NA illumination and acquisition approach. Therefore by means of morphological operations and a sensitivity parameter, defects are detected. Based on a trained defect library, a binary classifier sorts each kind of defect through a set of scoring vectors, providing the quality operator with all the required information to finally take a decision. We expect this new approach to make defect detection completely objective and to dramatically reduce the time and cost of stent quality control stage.

  7. Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Šiler, Martin; Trojek, Jan; Chvátal, Lukáš; Karásek, Vítězslav; Paták, Aleš; Pokorná, Zuzana; Mika, Filip; Zemánek, Pavel

    2015-01-01

    Roč. 5, JAN 29 (2015), 08106:1-9 ISSN 2045-2322 R&D Projects: GA ČR GB14-36681G Institutional support: RVO:68081731 Keywords : discrete-dipole approximation * gold nanoparticles * radiation forces * spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 5.228, year: 2015

  8. OPTICAL FIBRE WITH HIGH NUMERICAL APERTURE, METHOD OF ITS PRODUCTION, AND USE THEREOF

    DEFF Research Database (Denmark)

    2003-01-01

    An article comprising an optical fibre, the fibre comprising at least one core surrounded by a first outer cladding region, the first outer cladding region being surrounded by a second outer cladding region, the first outer cladding region in the cross-section comprising a number of first outer...... an optical wavelength of light guided through the fibre when in use; a method of its production, and use thereof...

  9. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    Science.gov (United States)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  10. Large aperture optical switching devices

    International Nuclear Information System (INIS)

    Goldhar, J.; Henesian, M.A.

    1983-01-01

    We have developed a new approach to constructing large aperture optical switches for next generation inertial confinement fusion lasers. A transparent plasma electrode formed in low pressure ionized gas acts as a conductive coating to allow the uniform charging of the optical faces of an electro-optic material. In this manner large electric fields can be applied longitudinally to large aperture, high aspect ratio Pockels cells. We propose a four-electrode geometry to create the necessary high conductivity plasma sheets, and have demonstrated fast (less than 10 nsec) switching in a 5x5 cm aperture KD*P Pockels cell with such a design. Detaid modelling of Pockels cell performance with plasma electrodes has been carried out for 15 and 30 cm aperture designs

  11. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    Science.gov (United States)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-21

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  12. Propagation of various dark hollow beams through an apertured paraxial ABCD optical system

    International Nuclear Information System (INIS)

    Cai Yangjian; Ge Di

    2006-01-01

    Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry through an apertured paraxial ABCD optical system is investigated. Approximate analytical formulas for various DHBs propagating through an apertured paraxial optical system are derived by expanding the hard-aperture function into a finite sum of complex Gaussian functions in terms of a tensor method. Some numerical results are given. Our formulas provide a convenient way for studying the propagation of various DHBs through an apertured paraxial optical system

  13. Apertures

    CERN Document Server

    Hansen, R C

    2014-01-01

    Microwave Scanning Antennas, Volume I: Apertures is a comprehensive account of phased arrays, multiple beam arrays, time domain and synthetic apertures, and adaptive antennas. Advances in continuous apertures and near field theory are discussed. Low noise and monopulse apertures, optical scanners, and large radomes are also covered, along with radio astronomy instruments and associated theory.Comprised of five chapters, this volume begins with an overview of aperture theory as well as aperture distributions and near field theory. The second and third chapters deal with mechanically steered and

  14. A compact, high numerical aperture imaging Fourier transform spectrometer and its application

    Science.gov (United States)

    Alcock, R. D.; Coupland, J. M.

    2006-11-01

    This paper describes a compact imaging Fourier transform spectrometer with high numerical aperture. In comparison with other optical arrangements in which extended interferometer paths are required for the inclusion of dispersion compensation optics, this technique utilizes a rudimentary cubic beam splitter based Michelson interferometer with minimal optical path so that the numerical aperture of the system is maximized. Mathematical modelling is presented showing that the fringe distortions caused by the dispersion in the cubic beam splitter can be entirely removed without any loss of the spectral information. An illustration of the power of the technique is given classifying between different plant foliage performed using a Fisher discriminant function based optimal linear filtering.

  15. Optical Ground Terminals Using Multi Aperture Digital Coherent Combining

    Science.gov (United States)

    2017-10-01

    advantages of a multi-aperture OGT are summarized in [4]. III. EXPERIMENTAL RESULTS A first experimental validation of multi-aperture digital coherent...Optical Ground Terminals Using Multi-Aperture Digital Coherent Combining (Invited Paper) D. J. Geisler, T. M. Yarnall, C. M. Schieler, M. L. Stevens...B. S. Robinson, and S. A. Hamilton Massachusetts Institute of Technology Lincoln Laboratory 244 Wood Street, Lexington, MA, USA 02420 Email

  16. The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system

    International Nuclear Information System (INIS)

    Tang, Bin; Jiang, Chun; Zhu, Haibin; Zhou, Xin; Wang, Shuai

    2014-01-01

    By means of expanding the hard aperture function into a finite sum of complex Gaussian functions and based on the generalized Huygens–Fresnel diffraction integral, a novel approximate analytical expression of hypergeometric (HyG) beams passing through a paraxial ABCD optical system with an annular aperture is derived. The results could be reduced to the case of a circular aperture or a circular black screen. Some numerical simulations are also performed and illustrated for the propagation characteristics and focusing properties of a HyG beam through a paraxial ABCD optical system with an annular aperture. The results obtained from the approximate analytical formula provide more efficiency than the usual way of using diffraction integral formula directly. (paper)

  17. Polarization independent high transmission large numerical aperture laser beam focusing and deflection by dielectric Huygens' metasurfaces

    Science.gov (United States)

    Özdemir, Aytekin; Hayran, Zeki; Takashima, Yuzuru; Kurt, Hamza

    2017-10-01

    In this letter, we propose all-dielectric Huygens' metasurface structures to construct high numerical aperture flat lenses and beam deflecting devices. The designed metasurface consists of two-dimensional array of all-dielectric nanodisk resonators with spatially varying radii, thereby introducing judiciously designed phase shift to the propagating light. Owing to the overlap of Mie-type magnetic and electric resonances, high transmission was achieved with rigorous design analysis. The designed flat lenses have numerical aperture value of 0.85 and transmission values around 80%. It also offers easy fabrication and compatibility with available semiconductor technology. This spectrally and physically scalable, versatile design could implement efficient wavefront manipulation or beam shaping for high power laser beams, as well as various optical microscopy applications without requiring plasmonic structures that are susceptible to ohmic loss of metals and sensitive to the polarization of light.

  18. Integrated Optical Synthetic Aperture Radar Processor.

    Science.gov (United States)

    1987-09-01

    tion Processing for Aerospace Applications. II, Langley, Virginia, (1983). Appendix C I. Abramov , Y. Owechko, A. R. Tanguay, Jr., and T. J. 45...1983). 3. I. Abramov , Y. Owechko, A. R. Tanguay, Jr., and T. J. Bicknell, "Real Time Synthetic Aperture Image Formation Utilizing an Electrooptic...LIGHT MODULATOR I. Abramov , Y. Owechko, and A.R. Tanguay, Jr. Departments of Electrical Engineering and Materials Science, and Image Processing

  19. Extended averaging phase-shift schemes for Fizeau interferometry on high-numerical-aperture spherical surfaces

    Science.gov (United States)

    Burke, Jan

    2010-08-01

    Phase-shifting Fizeau interferometry on spherical surfaces is impaired by phase-shift errors increasing with the numerical aperture, unless a custom optical set-up or wavelength shifting is used. This poses a problem especially for larger numerical apertures, and requires good error tolerance of the phase-shift method used; but it also constitutes a useful testing facility for phase-shift formulae, because a vast range of phase-shift intervals can be tested in a single measurement. In this paper I show how the "characteristic polynomials" method can be used to generate a phase-shifting method for the actual numerical aperture, and analyse residual cyclical phase errors by comparing a phase map from an interferogram with a few fringes to a phase mpa from a nulled fringe. Unrelated to the phase-shift miscalibration, thirdharmonic error fringes are found. These can be dealt with by changing the nominal phase shift from 90°/step to 60°/step and re-tailoring the evaluation formula for third-harmonic rejection. The residual error has the same frequency as the phase-shift signal itself, and can be removed by averaging measurements. Some interesting features of the characteristic polynomials for the averaged formulae emerge, which also shed some light on the mechanism that generates cyclical phase errors.

  20. Quantification of numerical aperture-dependence of the OCT attenuation coefficient (Conference Presentation)

    Science.gov (United States)

    Peinado, Liliana M.; Bloemen, Paul R.; Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-03-01

    Despite the improvements in early cancer diagnosis, adequate diagnostic tools for early staging of bladder cancer tumors are lacking [1]. MEMS-probes based on optical coherence tomography (OCT) provide cross-sectional imaging with a high-spatial resolution at a high-imaging speed, improving visualization of cancerous tissue [2-3]. Additionally, studies show that the measurement of localized attenuation coefficient allows discrimination between healthy and cancerous tissue [4]. We have designed a new miniaturized MEMS-probe based on OCT that will optimize early diagnosis by improving functional visualization of suspicious lesions in bladder. During the optical design phase of the probe, we have studied the effect of the numerical aperture (NA) on the OCT signal attenuation. For this study, we have employed an InnerVision Santec OCT system with several numerical apertures (25mm, 40mm, 60mm, 100mm, 150mm and 200mm using achromatic lenses). The change in attenuation coefficient was studied using 15 dilutions of intralipid ranging between 6*10-5 volume% and 20 volume%. We obtained the attenuation coefficient from the OCT images at several fixed positions of the focuses using established OCT models (e.g. single scattering with known confocal point spread function (PSF) [5] and multiple scattering using the Extended Huygens Fresnel model [6]). As a result, a non-linear increase of the scattering coefficient as a function of intralipid concentration (due to dependent scattering) was obtained for all numerical apertures. For all intralipid samples, the measured attenuation coefficient decreased with a decrease in NA. Our results suggest a non-negligible influence of the NA on the measured attenuation coefficient. [1] Khochikar MV. Rationale for an early detection program for bladder cancer. Indian J Urol 2011 Apr-Jun; 27(2): 218-225. [2] Sun J and Xie H. Review Article MEMS-Based Endoscopic Optical Coherence Tomography. IJO 2011, Article ID 825629, 12 pages. doi:10

  1. Central obscuration effects on optical synthetic aperture imaging

    Science.gov (United States)

    Wang, Xue-wen; Luo, Xiao; Zheng, Li-gong; Zhang, Xue-jun

    2014-02-01

    Due to the central obscuration problem exists in most optical synthetic aperture systems, it is necessary to analyze its effects on their image performance. Based on the incoherent diffraction limited imaging theory, a Golay-3 type synthetic aperture system was used to study the central obscuration effects on the point spread function (PSF) and the modulation transfer function (MTF). It was found that the central obscuration does not affect the width of the central peak of the PSF and the cutoff spatial frequency of the MTF, but attenuate the first sidelobe of the PSF and the midfrequency of the MTF. The imaging simulation of a Golay-3 type synthetic aperture system with central obscuration proved this conclusion. At last, a Wiener Filter restoration algorithm was used to restore the image of this system, the images were obviously better.

  2. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion

    Science.gov (United States)

    Wang, Fengge; Yang, Songlin; Ma, Huifeng; Shen, Ping; Wei, Nan; Wang, Meng; Xia, Yang; Deng, Yun; Ye, Yong-Hong

    2018-01-01

    Microsphere-assisted imaging is an extraordinary simple technology that can obtain optical super-resolution under white-light illumination. Here, we introduce a method to improve the resolution of a microsphere lens by increasing its numerical aperture. In our proposed structure, BaTiO3 glass (BTG) microsphere lenses are semi-immersed in a S1805 layer with a refractive index of 1.65, and then, the semi-immersed microspheres are fully embedded in an elastomer with an index of 1.4. We experimentally demonstrate that this structure, in combination with a conventional optical microscope, can clearly resolve a two-dimensional 200-nm-diameter hexagonally close-packed (hcp) silica microsphere array. On the contrary, the widely used structure where BTG microsphere lenses are fully immersed in a liquid or elastomer cannot even resolve a 250-nm-diameter hcp silica microsphere array. The improvement in resolution through the proposed structure is due to an increase in the effective numerical aperture by semi-immersing BTG microsphere lenses in a high-refractive-index S1805 layer. Our results will inform on the design of microsphere-based high-resolution imaging systems.

  3. Optical aperture synthesis: limitations and interest for the earth observation

    Science.gov (United States)

    Brouard, Laurent; Safa, Frederic; Crombez, Vincent; Laubier, David

    2017-11-01

    For very large telescope diameters, typically above 4 meters, monolithic telescopes can hardly be envisaged for space applications. Optical aperture synthesis can be envisaged in the future for improving the image resolution from high altitude orbits by co-phasing several individual telescopes of smaller size and reconstituting an aperture of large surface. The telescopes can be deployed on a single spacecraft or distributed on several spacecrafts in free flying formation. Several future projects are based on optical aperture synthesis for science or earth observation. This paper specifically discusses the limitations and interest of aperture synthesis technique for Earth observation from high altitude orbits, in particular geostationary orbit. Classical Fizeau and Michelson configurations are recalled, and system design aspects are investigated: synthesis of the Modulation Transfer Function (MTF), integration time and imaging procedure are first discussed then co-phasing strategies and instrument metrology are developed. The discussion is supported by specific designs made at EADS Astrium. As example, a telescope design is presented with a surface of only 6.6 m2 for the primary mirror for an external diameter of 10.6 m allowing a theoretical resolution of 1.2 m from geostationary orbit with a surface lower than 10% of the overall surface. The impact is that the integration time is increasing leading to stringent satellite attitude requirements. Image simulation results are presented. The practical implementation of the concept is evaluated in terms of system impacts in particular spacecraft attitude control, spacecraft operations and imaging capability limitations.

  4. Large-aperture, high-damage-threshold optics for beamlet

    International Nuclear Information System (INIS)

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J.; Kozlowski, M.R.; Maney, R.T.; Montesanti, R.C.; Sheehan, L.M.; Barker, C.E.

    1995-01-01

    Beamlet serves as a test bed for the proposed NIF laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of our previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, we discuss the properties and characteristics of the large-aperture optics used on Beamlet

  5. Large Aperture Multiplexed Diffractive Lidar Optics

    Science.gov (United States)

    Rallison, Richard D.; Schwemmer, Geary K. (Technical Monitor)

    1999-01-01

    We have delivered only 2 or 3 UV Holographic Optical Elements (HOEs) thus far and have fallen short of the intended goal in size and in dual wavelength function. Looking back, it has been fortuitous that we even made anything work in the UV region. It was our good fortune to discover that the material we work with daily was adequate for use at 355 nm, if well rinsed during processing. If we had stuck to our original plan of etching in small pieces of fused silica, we would still be trying to make the first small section in our ion mill, which is not yet operational. The original plan was far too ambitious and would take another 2 years to complete beginning where we left off this time. In order to make a HOE for the IR as well as the UV we will likely have to learn to sensitize some film to the 1064 line and we have obtained sensitizer that is reported to work in that region already. That work would also take an additional year to complete.

  6. Design and analysis of high-numerical-aperture beam shaping systems; Design und Analyse von Strahlformungssystemen hoher numerischer Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Hagen

    2009-11-24

    The generation of light tailored to measure stands today in the center of many innovative applications. A possibility of the flexible manipulation of light is the laser-beam shaping.Aim is thereby to transform the intensity profile of a laser beam to a wanted profile. The main topic of this thesis is the modeling and propagation of laser light in paraxial and non-paraxial beam-shaping systems as well as the optimization of these systems by means of a generalized projection algorithm. This algorithm is applied for the optimization by means of aspherical formula or polynomials point-by-point parametrized beam shaping surfaces. It is shown that during the optimization a regardment of diffraction, interference, and abberations is possible. The latter can not only be regarded, but directly used for the beam shaping. Finally it is shown that the aberrations of spherical catalogue lenses are already sufficient for some beam-shaping applications. The efficiency of the developed optimization algorithms is demonstrated both on paraxial and on non-paraxial beam-shaping examples with a numerical aperture of up to 0.62. Finally in the present thesis concepts for the achromatization and for the wave-length multiplexing are introduced, which are based on the application of diverse surfaces and materials with different dispersion. While the achromatization aims to make the optical function of a beam-shaping system wave-length independent, the wavelength multiplexing tries directly to realize different optical functions for diverse design wavelengths. [German] Die Erzeugung massgeschneiderten Lichts steht heute im Mittelpunkt vieler innovativer Anwendungen. Eine Moeglichkeit der flexiblen Manipulation von Licht ist die Laserstrahlformung. Ziel ist es dabei, das Intensitaetsprofil eines Laserstrahls in ein gewuenschtes Profil umzuformen. Schwerpunkt dieser Arbeit ist die Modellierung und Ausbreitung von Laserlicht in paraxialen und nicht-paraxialen Strahlformungssystemen sowie die

  7. Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method.

    Science.gov (United States)

    Isik, Nimet

    2016-04-01

    Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.

  8. MEGARA Optics: Sub-aperture Stitching Interferometry for Large Surfaces

    Science.gov (United States)

    Aguirre-Aguirre, Daniel; Carrasco, Esperanza; Izazaga-Pérez, Rafael; Páez, Gonzalo; Granados-Agustín, Fermín; Percino-Zacarías, Elizabeth; Gil de Paz, Armando; Gallego, Jesús; Iglesias-Páramo, Jorge; Villalobos-Mendoza, Brenda

    2018-04-01

    In this work, we present a detailed analysis of sub-aperture interferogram stitching software to test circular and elliptical clear apertures with diameters and long axes up to 272 and 180 mm, respectively, from the Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía (MEGARA). MEGARA is a new spectrograph for the Gran Telescopio Canarias (GTC). It offers a resolution between 6000 and 20000 via the use of volume phase holographic gratings. It has an integral field unit and a set of robots for multi-object spectroscopy at the telescope focal plane. The output end of the fibers forms the spectrograph pseudo-slit. The fixed geometry of the collimator and camera configuration requires prisms in addition to the flat windows of the volume phase holographic gratings. There are 73 optical elements of large aperture and high precision manufactured in Mexico at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the Centro de Investigaciones en Óptica (CIO). The principle of stitching interferometry is to divide the surface being tested into overlapping small sections, which allows an easier analysis (Kim & Wyant 1981). This capability is ideal for non-contact tests for unique and large optics as required by astronomical instruments. We show that the results obtained with our sub-aperture stitching algorithm were consistent with other methods that analyze the entire aperture. We used this method to analyze the 24 MEGARA prisms that could not be tested otherwise. The instrument has been successfully commissioned at GTC in all the spectral configurations. The fulfillment of the irregularity specifications was one of the necessary conditions to comply with the spectral requirements.

  9. Aperture Synthesis Methods and Applications to Optical Astronomy

    CERN Document Server

    Saha, Swapan Kumar

    2011-01-01

    Over the years long baseline optical interferometry has slowly gained in importance and today it is a powerful tool. This timely book sets out to highlight the basic principles of long baseline optical interferometry. The book addresses the fundamentals of stellar interferometry with emphasis on aperture synthesis using an array of telescopes particularly at optical/IR wavelengths. It discusses the fundamentals of electromagnetic fields, wave optics, interference, diffraction, and imaging at length. There is a chapter dedicated to radio and intensity interferometry corroborating with basic mathematical steps. The basic principle of optical interferometry and its requirements, its limitations and the technical challenges it poses, are also covered in depth. Assisted by illustrations and footnotes, the book examines the basic tricks of the trade, current trends and methods, and it points to the potential of true interferometry both from the ground and space.

  10. A study on the realization of high resolution solid immersion lens-based near-field imaging optics by use of an annular aperture.

    Science.gov (United States)

    Moon, Hyungbae; Yoon, Yong-Joong; Kim, Wan-Chin; Park, No-Cheol; Park, Kyoung-Su; Park, Young-Pil

    2010-08-02

    We report on the realization of solid immersion lens (SIL)-based near-field (NF) optics with an annular aperture, which is targeted to achieve high optical resolution. A numerical aperture (NA) = 1.84 hemisphere SIL-optics with an annular aperture achieves higher optical resolution than the conventional NA = 2.0 SIL-optics. The designed aperture is fabricated by photo-lithography and dry-etching technique. Experimental verification of the designed optics was performed through beam spot profile measurement under NF imaging conditions. A 15% smaller full-width-at-half-maximum spot diameter is obtained by the aperture. We verified that this method gives an improvement of the resolution in the optical imaging systems requiring higher resolution.

  11. Point-spread functions of a polarizing microscope equipped with high-numerical-aperture lenses.

    Science.gov (United States)

    Oldenbourg, R; Török, P

    2000-12-01

    In an effort to establish the imaging properties of a new type of polarized-light microscope, we recorded images of small, uniaxial, birefringent crystals. We show that the sequence of in-focus and out-of-focus images, the so-called point-spread function, of a submicroscopic crystal can be used to measure the orientation of its optic axis in three-dimensional space. By analogy to conoscopic images out-of-focus images reveal the changes in relative phase shift between the extraordinary and the ordinary rays that propagate at different directions through the crystal. We also present simulated images of a pointlike anisotropic scattering particle and compare these with our experimental findings. The theoretical model is based on a complete vectorial theory for partial coherent imaging by use of polarized light and high-numerical-aperture lenses.

  12. Synthetic Aperture Interferometry: In-Process Measurement of Aspheric Optics

    Science.gov (United States)

    Tomlinson, Richard; Coupland, Jeremy M.; Petzing, Jon

    2003-02-01

    A scanning probe consisting of a source and receive fiber pair is used to measure the phase difference between wave fronts scattered from the front and rear surfaces of an aspheric optic. This system can be thought of as a classical interferometer with an aperture synthesized from the data collected along the path of the probe. If the form of either surface is known, the other can be deduced. In contrast with classical interferometers, the method does not need test or null plates and has the potential to be integrated into the manufacturing process.

  13. Experimental and numerical investigation of the aperture size effect on the efficient solar energy harvesting for solar thermochemical applications

    International Nuclear Information System (INIS)

    Sarwar, J.; Georgakis, G.; Kouloulias, K.; Kakosimos, K.E.

    2015-01-01

    Highlights: • Experimental results on thermal analysis of a solar cavity for variable apertures. • Development of an optical model for energy transfer from light source to the cavity. • Development of a coupled ray tracing and heat transfer model for the cavity. • Validation of both the models with experimental measurements. • Use of the models to study new cases like the efficiency of the variable apertures. - Abstract: In this paper, experimental and numerical work have been undertaken to investigate the steady state temperatures throughout the day of a cylindrical solar receiver when using fixed and variable size apertures. A high flux solar simulator, consisting of a 7 kW xenon short arc lamp, is employed as a light source. The sunlight intensity variations at early morning (06:30), morning (07:15) and noon (12:00) time of a reference day are imitated by changing the input current to the lamp. Experiments have been performed with different aperture diameters across selected irradiance levels to imitate sunlight variations. An optical model is developed to simulate incident flux distribution and the output is compared with the experimental measurements for validation. A finite volume algorithm is developed, based on a coupled Monte Carlo heat transfer model, to calculate the steady state temperatures in the receiver. Experimental and numerical temperatures are compared and an excellent agreement with an average temperature difference of ±0.2%, is observed. The optimum aperture size varies with the change in irradiance intensity and therefore the time of day. Simulations for a 30 kW light source show that the daily steady state temperature differential for fixed apertures of 8–10 cm is 170–190 K. Variable apertures reduce power consumption by half when compared to fixed apertures. Variable apertures maintain steady state temperatures of 1000 K, 1100 K and 1200 K by consuming 26.8 kW day, 33.2 kW day and 26.9 kW day, respectively

  14. Revolutionary Astrophysics using an Incoherent Synthetic Optical Aperture

    Science.gov (United States)

    Rafanelli, Gerard L.; Cosner, Christopher M.; Spencer, Susan B.; Wolfe, Douglas w.; Newman, Arthur M.; Polidan, Ronald S.; Chakrabarti, Supriya

    2018-01-01

    We describe a paradigm shift for astronomical observatories that would replace circular apertures with rotating synthetic apertures. Rotating Synthetic Aperture (RSA) observatories can enable high value science measurements for the lowest mass to orbit, have superior performance relative to all sparse apertures, can provide resolution of 20m to 30m apertures having the collecting area of 8m to 12m telescopes with much less mass, risk, schedule, and cost. RSA is based on current, or near term technology and can be launched on a single, current launch vehicle to L2. Much larger apertures are possible using the NASA Space Launch System.

  15. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.

    Science.gov (United States)

    Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A

    2016-09-05

    Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles.

  16. Fabrication of Cantilevered Tip-on-Aperture Probe for Enhancing Resolution of Scanning Near-Field Optical Microscopy System

    Science.gov (United States)

    Chang, Won-Seok; Jeong, Mun Seok; Kim, Dae-Chul; Kim, Jeongyong

    2007-08-01

    The scanning near-field optical microscopy (SNOM) system achieves a resolution beyond the diffraction limit of the conventional optical microscopy system by subwavelength aperture probe scanning. The problem is that the light throughput decreases very markedly with decreasing aperture diameter. Apertureless scanning near-field optical microscopes obtain a much better resolution by concentrating light field near the tip apex. However, far-field illumination by a focused laser beam generates a large background scattering signal. Both disadvantages are overcome using the tip-on-aperture (TOA) approach presented in previous works. In this study, the fabrication of a cantilevered tip for SNOM and scanning force microscopy (SFM) has been described. The nano-probes are batch-fabricated on a silicon wafer. The Si3N4 has excellent optical transparent characteristics, higher Young’s modulus and yield strength so that it should provide a better probe for SNOM and SFM. For this purpose, a Si3N4 thin film was deposited using low-pressure chemical vapor deposition (LPCVD). To form the aperture and TOA in the probe, we applied focused ion beam (FIB) machining at the end of the sharpened tip. For verification of the efficiency of the micromachined TOA probes, numerical analysis using the finite-difference time domain (FDTD) analysis and experimental measurement using an inverted microscope based the SNOM system were performed.

  17. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography

    OpenAIRE

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A.; Carney, P. Scott

    2016-01-01

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With ...

  18. The implementation of temporal synthetic aperture imaging for ultrafast optical processing

    Science.gov (United States)

    Zhao, Xiaoxiang; Xiao, Shaoqiu; Gong, Cheng; Yi, Tao; Liu, Shenye

    2017-12-01

    A new technique of temporal imaging, called temporal synthetic aperture imaging (TSAI), is proposed to achieve higher time resolution of the imaging system for ultrafast optical processing. The proposed technique combines several of independent small-aperture systems together to get a higher time resolution and better image quality as a large-aperture system. It can solve the problem that an oversized aperture time lens is difficult to achieve in practice. In this paper, after analyzing the filtering effect, a novel implementation method of TSAI is presented. In order to verify the correctness, we demonstrate a decuple magnification of a signal with two 1ps width pulse separated 2ps, using a synthetic aperture by the system simulation.

  19. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.

    Science.gov (United States)

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott

    2016-03-10

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered.

  20. Numerical investigations of the aperture size effect for maintaining a constant temperature in a novel sulfur-ammonia water splitting cycle application

    Directory of Open Access Journals (Sweden)

    Sarwar Jawad

    2017-01-01

    Full Text Available Solar-driven thermochemical water splitting cycle is a promising, energy efficient and environmentally friendly approach to produce hydrogen. In this paper, numerical work has been undertaken using a cylindrical solar receiver to investigate fixed and variable aperture sizes to maintain constant steady-state temperature over a day for thermochemical part of a novel hybrid photo-thermochemical sulfur-ammonia cycle. A previously developed and validated optical model in commercial software, TracePro® is used to simulate the light sources of 10, 15, and 28 kW. The sunlight intensity variations for the designated reference day for this study is selected as July 1, 2011, at 39.74 N, 105.18 W and at an elevation of 1829 m. A developed and validated finite volume based coupled Monte Carlo, Heat Transfer model is used to calculate the steady-state temperatures in the receiver by utilizing the output of the optical model. The simulations are performed at different aperture diameters from 2 to 14 cm to quantify the effect of fixed aperture size on the steady-state temperatures of the receiver. Furthermore, simulations to maintain steady-state temperatures of 673, 823, and 1123 K for different sub-cycles of the selected cycle via variable aperture has been performed and compared with selected fixed apertures. It is found that the variable apertures can maintain desired constant temperatures over the day for each thermochemical sub-cycle. The comparison of overall power consumption and savings for fixed and variable apertures has also been investigated and reported.

  1. Approximate analytical method to evaluate diffraction crosstalk in free-space optical interconnects systems that use circular microlenses with finite uniform apertures

    Science.gov (United States)

    Al-Ababneh, Nedal

    2014-07-01

    We propose an accurate analytical model to calculate the optical crosstalk of a first-order free space optical interconnects system that uses microlenses with circular apertures. The proposed model is derived by evaluating the resulted finite integral in terms of an infinite series of Bessel functions. Compared to the model that uses complex Gaussian functions to expand the aperture function, it is shown that the proposed model is superior in estimating the crosstalk and provides more accurate results. Moreover, it is shown that the proposed model gives results close to that of the numerical model with superior computational efficiency.

  2. Fresnel zone plate with apodized aperture for hard X-ray Gaussian beam optics.

    Science.gov (United States)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio; Itabashi, Seiichi; Oda, Masatoshi

    2017-05-01

    Fresnel zone plates with apodized apertures [apodization FZPs (A-FZPs)] have been developed to realise Gaussian beam optics in the hard X-ray region. The designed zone depth of A-FZPs gradually decreases from the center to peripheral regions. Such a zone structure forms a Gaussian-like smooth-shouldered aperture function which optically behaves as an apodization filter and produces a Gaussian-like focusing spot profile. Optical properties of two types of A-FZP, i.e. a circular type and a one-dimensional type, have been evaluated by using a microbeam knife-edge scan test, and have been carefully compared with those of normal FZP optics. Advantages of using A-FZPs are introduced.

  3. Optical system design with common aperture for mid-infrared and laser composite guidance

    Science.gov (United States)

    Zhang, Xuanzhi; Yang, Zijian; Sun, Ting; Yang, Huamei; Han, Kunye; Hu, Bo

    2017-02-01

    When the field of operation of precision strike missiles is more and more complicated, autonomous seekers will soon encounter serious difficulties, especially with regard to low signature targets and complex scenarios. So the dual-mode sensors combining an imaging sensor with a semi-active laser seeker are conceived to overcome these specific problems. Here the sensors composed a dual field of view mid-infrared thermal imaging camera and a laser range finder have the common optical aperture which produced the minization of seeker construction. The common aperture optical systems for mid-infrared and laser dual-mode guildance have been developed, which could meet the passive middle infrared high-resolution imaging and the active laser high-precision indication and ranging. The optical system had good image quality, and fulfilled the performance requirement of seeker system. The design and expected performance of such a dual-mode optical system will be discussed.

  4. The 3D modeling of high numerical aperture imaging in thin films

    Science.gov (United States)

    Flagello, D. G.; Milster, Tom

    1992-01-01

    A modelling technique is described which is used to explore three dimensional (3D) image irradiance distributions formed by high numerical aperture (NA is greater than 0.5) lenses in homogeneous, linear films. This work uses a 3D modelling approach that is based on a plane-wave decomposition in the exit pupil. Each plane wave component is weighted by factors due to polarization, aberration, and input amplitude and phase terms. This is combined with a modified thin-film matrix technique to derive the total field amplitude at each point in a film by a coherent vector sum over all plane waves. Then the total irradiance is calculated. The model is used to show how asymmetries present in the polarized image change with the influence of a thin film through varying degrees of focus.

  5. Nanolithography using nanoscale ridge apertures

    Science.gov (United States)

    Wang, Liang

    There is a continuous effort to develop techniques for nanoscale feature definition below the diffraction limit. Nanolithography has been a key technique because of its precision and cost effective. A sub-wavelength hole in an opaque screen can be used to provide a small light source with the optical resolution beyond the diffraction limit in the near field. However, a nanometer-sized hole in circular or square shapes is plagued by low transmission and poor contrast. This drawback limits the nanoscale apertures from being employed in nanolithography applications. Ridge apertures in C, H and bowtie shapes, on the other hand, have been numerically and experimentally demonstrated to show the ability of achieving both enhanced light transmission and sub-wavelength optical resolution down to nanometer domain benefiting from the existence of waveguide propagation mode confined in the gap between the ridges. In this report, the detailed field distributions in contact nanolithography are analyzed using finite difference time domain (FDTD) simulations. It was found that the high imaging contrast, which is necessary for successful lithography, is achieved close to the mask exit plane and decays quickly with the increase of the distance from the mask exit plane. Simulations are also performed for comparable regular shaped apertures and different shape bowtie apertures. Design rules are proposed to optimize the bowtie aperture for producing a sub-wavelength, high transmission field with high imaging contrast. High resolution contact nanolithography was carried on a home constructed lithography setup. It has been experimentally demonstrated that nanoscale bowtie and C apertures can be used for contact lithography to achieve nanometer scale resolution due to its intrinsic advantages of achieving enhanced optical transmission and concentrating light far beyond the diffraction limit. It also has shown the advantages of bowtie and C apertures over conventional apertures in both

  6. High resolution earth observation from geostationary orbit by optical aperture synthesys

    Science.gov (United States)

    Mesrine, M.; Thomas, E.; Garin, S.; Blanc, P.; Alis, C.; Cassaing, F.; Laubier, D.

    2017-11-01

    In this paper, we describe Optical Aperture Synthesis (OAS) imaging instrument concepts studied by Alcatel Alenia Space under a CNES R&T contract in term of technical feasibility. First, the methodology to select the aperture configuration is proposed, based on the definition and quantification of image quality criteria adapted to an OAS instrument for direct imaging of extended objects. The following section presents, for each interferometer type (Michelson and Fizeau), the corresponding optical configurations compatible with a large field of view from GEO orbit. These optical concepts take into account the constraints imposed by the foreseen resolution and the implementation of the co-phasing functions. The fourth section is dedicated to the analysis of the co-phasing methodologies, from the configuration deployment to the fine stabilization during observation. Finally, we present a trade-off analysis allowing to select the concept wrt mission specification and constraints related to instrument accommodation under launcher shroud and in-orbit deployment.

  7. Focusing optical waves with a rotationally symmetric sharp-edge aperture

    Science.gov (United States)

    Hu, Yanwen; Fu, Shenhe; Li, Zhen; Yin, Hao; Zhou, Jianying; Chen, Zhenqiang

    2018-04-01

    While there has been various kinds of patterned structures proposed for wave focusing, these patterned structures usually involve complicated lithographic techniques since the element size of the patterned structures should be precisely controlled in microscale or even nanoscale. Here we propose a new and straightforward method for focusing an optical plane wave in free space with a rotationally symmetric sharp-edge aperture. The focusing phenomenon of wave is realized by superposition of a portion of the higher-order symmetric plane waves generated from the sharp edges of the apertures, in contrast to previously focusing techniques which usually depend on a curved phase. We demonstrate both experimentally and theoretically the focusing effect with a series of apertures having different rotational symmetry, and find that the intensity of the hotspots could be controlled by the symmetric strength of the sharp-edge apertures. The presented results would advance the conventional wisdom that light would diffract in all directions and become expanding when it propagates through an aperture. The proposed method is easy to be processed, and might open potential applications in interferometry, image, and superresolution.

  8. Edge detection for optical synthetic aperture based on deep neural network

    Science.gov (United States)

    Tan, Wenjie; Hui, Mei; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin

    2017-09-01

    Synthetic aperture optics systems can meet the demands of the next-generation space telescopes being lighter, larger and foldable. However, the boundaries of segmented aperture systems are much more complex than that of the whole aperture. More edge regions mean more imaging edge pixels, which are often mixed and discretized. In order to achieve high-resolution imaging, it is necessary to identify the gaps between the sub-apertures and the edges of the projected fringes. In this work, we introduced the algorithm of Deep Neural Network into the edge detection of optical synthetic aperture imaging. According to the detection needs, we constructed image sets by experiments and simulations. Based on MatConvNet, a toolbox of MATLAB, we ran the neural network, trained it on training image set and tested its performance on validation set. The training was stopped when the test error on validation set stopped declining. As an input image is given, each intra-neighbor area around the pixel is taken into the network, and scanned pixel by pixel with the trained multi-hidden layers. The network outputs make a judgment on whether the center of the input block is on edge of fringes. We experimented with various pre-processing and post-processing techniques to reveal their influence on edge detection performance. Compared with the traditional algorithms or their improvements, our method makes decision on a much larger intra-neighbor, and is more global and comprehensive. Experiments on more than 2,000 images are also given to prove that our method outperforms classical algorithms in optical images-based edge detection.

  9. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics.

    Science.gov (United States)

    Sowa, Katarzyna M; Last, Arndt; Korecki, Paweł

    2017-03-21

    Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10-100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy.

  10. Large Aperture Scanning Lidar Based on Holographic Optical Elements

    Science.gov (United States)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne

  11. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R

    2003-02-10

    A series of studies by the Air Force, the National Reconnaissance Office and NASA have identified the critical role played by large optics in fulfilling many of the space related missions of these agencies. Whether it is the Next Generation Space Telescope for NASA, high resolution imaging systems for NRO, or beam weaponry for the Air Force, the diameter of the primary optic is central to achieving high resolution (imaging) or a small spot size on target (lethality). While the detailed requirements differ for each application (high resolution imaging over the visible and near-infrared for earth observation, high damage threshold but single-wavelength operation for directed energy), the challenges of a large, lightweight primary optic which is space compatible and operates with high efficiency are the same. The advantage of such large optics to national surveillance applications is that it permits these observations to be carried-out with much greater effectiveness than with smaller optics. For laser weapons, the advantage is that it permits more tightly focused beams which can be leveraged into either greater effective range, reduced laser power, and/or smaller on-target spot-sizes; weapon systems can be made either much more effective or much less expensive. This application requires only single-wavelength capability, but places an emphasis upon robust, rapidly targetable optics. The advantages of large aperture optics to astronomy are that it increases the sensitivity and resolution with which we can view the universe. This can be utilized either for general purpose astronomy, allowing us to examine greater numbers of objects in more detail and at greater range, or it can enable the direct detection and detailed examination of extra-solar planets. This application requires large apertures (for both light-gathering and resolution reasons), with broad-band spectral capability, but does not emphasize either large fields-of-view or pointing agility. Despite

  12. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  13. In-situ monitoring of surface post-processing in large aperture fused silica optics with Optical Coherence Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Guss, G M; Bass, I l; Hackel, R P; Mailhiot, C; Demos, S G

    2008-02-08

    Optical Coherence Tomography is explored as a method to image laser-damage sites located on the surface of large aperture fused silica optics during post-processing via CO{sub 2} laser ablation. The signal analysis for image acquisition was adapted to meet the sensitivity requirements for this application. A long-working distance geometry was employed to allow imaging through the opposite surface of the 5-cm thick optic. The experimental results demonstrate the potential of OCT for remote monitoring of transparent material processing applications.

  14. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  15. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  16. SUPERPOLISHED SI COATED SIC OPTICS FOR RAPID MANUFACTURE OF LARGE APERTURE UV AND EUV TELESCOPES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG/Tinsley proposes an innovative optical manufacturing process that will allow the advancement of state-of-the-art Silicon Carbide (SiC) mirrors for large aperture...

  17. The design of common aperture and multi-band optical system based on day light telescope

    Science.gov (United States)

    Chen, Jiao; Wang, Ling; Zhang, Bo; Teng, Guoqi; Wang, Meng

    2017-02-01

    As the development of electro-optical weapon system, the technique of common path and multi-sensor are used popular, and becoming a trend. According to the requirement of miniaturization and lightweight for electro-optical stabilized sighting system, a day light telescope/television viewing-aim system/ laser ranger has been designed in this thesis, which has common aperture. Thus integration scheme of multi-band and common aperture has been adopted. A day light telescope has been presented, which magnification is 8, field of view is 6°, and distance of exit pupil is more than 20mm. For 1/3" CCD, television viewing-aim system which has 156mm focal length, has been completed. In addition, laser ranging system has been designed, with 10km raging distance. This paper outlines its principle which used day light telescope as optical reference of correcting the optical axis. Besides, by means of shared objective, reserved image with inverting prism and coating beam-splitting film on the inclined plane of the cube prism, the system has been applied to electro-optical weapon system, with high-resolution of imaging and high-precision ranging.

  18. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    International Nuclear Information System (INIS)

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 x 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V x ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V x , the polarization of an incoming, linearly polarized, laser beam is rotated by 90 degree. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 x 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches

  19. Fast inspection of bulk and surface defects of large aperture optics in high power lasers

    Science.gov (United States)

    Zhao, Yuan'an; Hu, Guohang; Liu, Shijie; Yi, Kui; Shao, Jianda

    2015-05-01

    Laser induced damage for nanosecond pulse duration is attributed to the existence of defects. The growth and polishing, as well as coating deposition, may induce versatile kinds of defects, including dig, scratch and inclusion. It is special important to get the information of the defects, such as size and location, which is the basis to know the origin of the defects and figures out effective techniques to eliminate it. It is quite easy to get the information of the defects with micron-level resolution, but it is time-consuming and is not suitable for fast inspection of the large aperture (hundreds of millimeters). In this work, on-the-fly image capture technique was employed to realize fast inspection of large aperture optics. A continuous green laser was employed as illumination source to enhance and enlarge the image of bulk defects. So it could detect the submicron-scale defects. A transmission microscopy with white light illumination was employed to detect the surface defect. Its field of view was about 2.8mm×1.6mm. The sample was raster scanned driving by a stepper motor through the stationary illumination laser and digital camera, and the speed to scan the sample was about 10mm/s. The results of large aperture optics proved the functions of this fast inspection technique.

  20. New modeling of reflection interference contrast microscopy including polarization and numerical aperture effects: application to nanometric distance measurements and object profile reconstruction.

    Science.gov (United States)

    Theodoly, O; Huang, Z-H; Valignat, M-P

    2010-02-02

    We have developed a new and improved optical model of reflection interference contrast microscopy (RICM) to determine with a precision of a few nanometers the absolute thickness h of thin films on a flat surface in immersed conditions. The model takes into account multiple reflections between a planar surface and a multistratified object, finite aperture illumination (INA), and, for the first time, the polarization of light. RICM intensity I is typically oscillating with h. We introduce a new normalization procedure that uses the intensity extrema of the same oscillation order for both experimental and theoretical intensity values and permits us to avoid significant error in the absolute height determination, especially at high INA. We also show how the problem of solution degeneracy can be solved by taking pictures at two different INA values. The model is applied to filled polystyrene beads and giant unilamellar vesicles of radius 10-40 microm sitting on a glass substrate. The RICM profiles I(h) can be fitted for up to two to three oscillation orders, and extrema positions are correct for up to five to seven oscillation orders. The precision of the absolute distance and of the shape of objects near a substrate is about 5 nm in a range from 0 to 500 nm, even under large numerical aperture conditions. The method is especially valuable for dynamic RICM experiments and with living cells where large illumination apertures are required.

  1. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    Science.gov (United States)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.

  2. Simulation of image formation in x-ray coded aperture microscopy with polycapillary optics.

    Science.gov (United States)

    Korecki, P; Roszczynialski, T P; Sowa, K M

    2015-04-06

    In x-ray coded aperture microscopy with polycapillary optics (XCAMPO), the microstructure of focusing polycapillary optics is used as a coded aperture and enables depth-resolved x-ray imaging at a resolution better than the focal spot dimensions. Improvements in the resolution and development of 3D encoding procedures require a simulation model that can predict the outcome of XCAMPO experiments. In this work we introduce a model of image formation in XCAMPO which enables calculation of XCAMPO datasets for arbitrary positions of the object relative to the focal plane as well as to incorporate optics imperfections. In the model, the exit surface of the optics is treated as a micro-structured x-ray source that illuminates a periodic object. This makes it possible to express the intensity of XCAMPO images as a convolution series and to perform simulations by means of fast Fourier transforms. For non-periodic objects, the model can be applied by enforcing artificial periodicity and setting the spatial period larger then the field-of-view. Simulations are verified by comparison with experimental data.

  3. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    Science.gov (United States)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  4. Multiple-aperture optical design for micro-level cameras using 3D-printing method

    Science.gov (United States)

    Peng, Wei-Jei; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Lin, Wen-Lung; Yu, Zong-Ru; Chou, Hsiao-Yu; Chen, Fong-Zhi; Fu, Chien-Chung; Wu, Chong-Syuan; Huang, Chao-Tsung

    2018-02-01

    The design of the ultra miniaturized camera using 3D-printing technology directly printed on to the complementary metal-oxide semiconductor (CMOS) imaging sensor is presented in this paper. The 3D printed micro-optics is manufactured using the femtosecond two-photon direct laser writing, and the figure error which could achieve submicron accuracy is suitable for the optical system. Because the size of the micro-level camera is approximately several hundreds of micrometers, the resolution is reduced much and highly limited by the Nyquist frequency of the pixel pitch. For improving the reduced resolution, one single-lens can be replaced by multiple-aperture lenses with dissimilar field of view (FOV), and then stitching sub-images with different FOV can achieve a high resolution within the central region of the image. The reason is that the angular resolution of the lens with smaller FOV is higher than that with larger FOV, and then the angular resolution of the central area can be several times than that of the outer area after stitching. For the same image circle, the image quality of the central area of the multi-lens system is significantly superior to that of a single-lens. The foveated image using stitching FOV breaks the limitation of the resolution for the ultra miniaturized imaging system, and then it can be applied such as biomedical endoscopy, optical sensing, and machine vision, et al. In this study, the ultra miniaturized camera with multi-aperture optics is designed and simulated for the optimum optical performance.

  5. Recent developments in wafer-level fabrication of micro-optical multi-aperture imaging systems

    Science.gov (United States)

    Leitel, R.; Dannberg, P.; Brückner, A.; Bräuer, A.

    2011-10-01

    Micro-optical systems, that utilize multiple channels for imaging instead of a single one, are frequently discussed for ultra-compact applications such as digital cameras. The strategy of their fabrication differs due to different concepts of image formation. Illustrated by recently implemented systems for multi-aperture imaging, typical steps of wafer-level fabrication are discussed in detail. In turn, the made progress may allow for additional degrees of freedom in optical design. Pressing ahead with very short overall lengths and multiple diaphragm array layers, results in the use of extremely thin glass substrates down to 100 microns in thickness. The desire for a wide field of view for imaging has led to chirped arrays of microlenses and diaphragms. Focusing on imaging quality, aberrations were corrected by introducing toroidal lenslets and elliptical apertures. Such lenslets had been generated by thermal reflow of lithographic patterned photoresist and subsequent molding. Where useful, the system's performance can be further increased by applying aspheric microlenses from reactive ion etching (RIE) transfer or by achromatic doublets from superimposing two moldings with different polymers. Multiple diaphragm arrays prevent channel crosstalk. But using simple metal layers may lead to multiple reflections and an increased appearance of ghost images. A way out are low reflecting black matrix polymers that can be directly patterned by lithography. But in case of environmental stability and high resolution, organic coatings should be replaced by patterned metal coatings that exhibit matched antireflective layers like the prominent black chromium. The mentioned components give an insight into the fabrication process of multi-aperture imaging systems. Finally, the competence in each step decides on the overall image quality.

  6. Numerical simulation of microwave pulse coupling into the rectangular cavity with aperture arrays

    International Nuclear Information System (INIS)

    Li Rui; Yang Yiming; Qian Baoliang

    2008-01-01

    In this paper, the finite-difference time-domain (FDTD) algorithm is employed to simulate microwave pulse coupling into the rectangular cavity with aperture arrays. In the case in which the long-side of the slot in aperture arrays is perpendicular to the incident electrical field, and the electrical distribution of each center of slot in the aperture arrays in the process of microwave pulse coupling into the rectangular cavity with aperture arrays is analyzed in detail. We find that the effect of field enhancement of the slot in the middle of all the slots which distribute in the direction parallel to the incident electrical field is minimum and increases in turn from the middle to both sides symmetrically. We also find that the effect of field enhancement of the slot in the middle of all the slots which distribute in the direction perpendicular to the incident electrical field is maximum and decreases in turn from the middle to both sides symmetrically. In the same time, we investigate the factors that influence the effect of field enhancement of the center of each slot and the coupling electrical distribution in the cavity, including the number of slots and the spacing between slots. (authors)

  7. Nonlinear optical characterization of graphite oxide thin film by open aperture Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Sreeja, V. G.; Reshmi, R.; Devasia, Sebin; Anila, E. I., E-mail: anilaei@gmail.com [Optolectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva-683 102, Kerala (India); Cheruvalathu, Ajina [International School of Photonics, CUSAT, Cochin-22 (India)

    2016-05-23

    In this paper we explore the structural characterization of graphite oxide powder prepared from graphite powder by oxidation via modified Hummers method. The nonlinear optical properties of the spin coated graphite oxide thin film is also explored by open aperture Z-Scan technique. Structural and physiochemical properties of the samples were investigated with the help of Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (Raman).The results of FT-IR and Raman spectroscopy showed that the graphite is oxidized by strong oxidants and the oxygen atoms are introduced into the graphite layers forming C=C, O-H and –C-H groups. The synthesized sample has good crystalline nature with lesser defects. The nonlinear optical property of GO thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532 nm. The Z-scan plot showed that the investigated GO thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated to explore its applications in Q switched mode locking laser systems.

  8. Numerical simulation of the influence of the orifice aperture on the flow around a teeth-shaped obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Cisonni, J [Center for Advanced Medical Engineering and Informatics, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Nozaki, K; Wada, S [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Van Hirtum, A; Grandchamp, X, E-mail: julien.cisonni@gmx.com [GIPSA-lab, UMR CNRS 5216, Grenoble University, 11 rue des Mathematiques, BP 46, F-38402 Grenoble Cedex (France)

    2013-04-15

    The sound generated during the production of the sibilant [s] results from the impact of a turbulent jet on the incisors. Several geometric characteristics of the oral tract can affect the properties of the flow-induced noise so that the characterization of the influence of different geometric parameters on the acoustic sources properties allows determining control factors of the noise production. In this study, a simplified vocal tract/teeth geometric model is used to numerically investigate the flow around a teeth-shaped obstacle placed in a channel and to analyze the influence of the aperture at the teeth on the spectral properties of the fluctuating pressure force exerted on the surface of the obstacle, which is at the origin of the dipole sound source. The results obtained for Re = 4000 suggest that the aperture of the constriction formed by the teeth modifies the characteristics of the turbulent jet downstream of the teeth. Thus, the variations of the flow due to the modification of the constriction aperture lead to variations of the spectral properties of the sound source even if the levels predicted are lower than during the production of real sibilant fricative. (paper)

  9. Numerical simulation of the influence of the orifice aperture on the flow around a teeth-shaped obstacle

    International Nuclear Information System (INIS)

    Cisonni, J; Nozaki, K; Wada, S; Van Hirtum, A; Grandchamp, X

    2013-01-01

    The sound generated during the production of the sibilant [s] results from the impact of a turbulent jet on the incisors. Several geometric characteristics of the oral tract can affect the properties of the flow-induced noise so that the characterization of the influence of different geometric parameters on the acoustic sources properties allows determining control factors of the noise production. In this study, a simplified vocal tract/teeth geometric model is used to numerically investigate the flow around a teeth-shaped obstacle placed in a channel and to analyze the influence of the aperture at the teeth on the spectral properties of the fluctuating pressure force exerted on the surface of the obstacle, which is at the origin of the dipole sound source. The results obtained for Re = 4000 suggest that the aperture of the constriction formed by the teeth modifies the characteristics of the turbulent jet downstream of the teeth. Thus, the variations of the flow due to the modification of the constriction aperture lead to variations of the spectral properties of the sound source even if the levels predicted are lower than during the production of real sibilant fricative. (paper)

  10. CLASSIFIER FUSION OF HIGH-RESOLUTION OPTICAL AND SYNTHETIC APERTURE RADAR (SAR SATELLITE IMAGERY FOR CLASSIFICATION IN URBAN AREA

    Directory of Open Access Journals (Sweden)

    T. Alipour Fard

    2014-10-01

    Full Text Available This study concerned with fusion of synthetic aperture radar and optical satellite imagery. Due to the difference in the underlying sensor technology, data from synthetic aperture radar (SAR and optical sensors refer to different properties of the observed scene and it is believed that when they are fused together, they complement each other to improve the performance of a particular application. In this paper, two category of features are generate and six classifier fusion operators implemented and evaluated. Implementation results show significant improvement in the classification accuracy.

  11. Power Profiles and In Vitro Optical Quality of Scleral Contact Lenses: Effect of the Aperture and Power.

    Science.gov (United States)

    Domínguez-Vicent, Alberto; Esteve-Taboada, Jose Juan; Recchioni, Alberto; Brautaset, Rune

    2017-01-13

    To assess the power profile and in vitro optical quality of scleral contact lenses with different powers as a function of the optical aperture. The mini and semiscleral contact lenses (Procornea) were measured for five powers per design. The NIMO TR-1504 (Lambda-X) was used to assess the power profile and Zernike coefficients of each contact lens. Ten measurements per lens were taken at 3- and 6-mm apertures. Furthermore, the optical quality of each lens was described in Zernike coefficients, modulation transfer function, and point spread function (PSF). A convolution of each lens PSF with an eye-chart image was also computed. The optical power fluctuated less than 0.5 diopters (D) along the optical zone of each lens. However, the optical power obtained for some lenses did not match with its corresponding nominal one, the maximum difference being 0.5 D. In optical quality, small differences were obtained among all lenses within the same design. Although significant differences were obtained among lenses (Pscleral lens. Additionally, the optical quality of both lenses has showed to be independent of the lens power within the same aperture.

  12. A numerical study of water percolation through an unsaturated variable aperture fracture under coupled thermomechanical effects

    International Nuclear Information System (INIS)

    Tsang, C.F.; Noorishad, J.; Hale, F.V.

    1991-12-01

    In calculation of ground water travel times associated with performance assessment of a nuclear waste repository, the role of fractures may turn out to be very important. There are two aspects related to fracture flow that have not been fully resolved. The first is the effect of coupled thermomechanical impact on fracture apertures due to the thermal output of the nuclear waste repository. The second is the effect of the variable aperture nature of the fractures. The present paper is an exploratory study of the impact of these two effects on water percolation through unsaturated fractures. The paper is divided into two main sections. the first section describes a calculation of the thermomechanical behavior of the geologic formation around a waste repository. In this exploratory study we assume two major fractures, one vertical and one horizontal through the repository center. Temperatures and thermally induced stress fields are calculated. The second part of the paper considers the unsaturated case and describes a study of water infiltration from the land surface through the vertical fracture to the repository

  13. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.

  14. Three-dimensional numerical study on motion laws of ions in ion thruster optics

    International Nuclear Information System (INIS)

    Wen Zheng; Zhong Lingwei; Wang Yibai; Ren Junxue; Li Juan

    2011-01-01

    With the particle-in-cell (PIC) method adopted, a three-dimensional numerical model was developed to study the motion behaviors of beam ions and charge exchange (CEX) ions in the ion thruster optics. Based on the geometric and physical parameters designated, the electric potential in calculation domain, the trajectories and velocities phase space distributions of the beam and CEX ions, and the grid currents were obtained with simulation. The CEX ions produced at the downstream of the acceleration grid will be accelerated by electric field and then impinge on the downstream surface of the acceleration grid, which would be the main reason for acceleration grid erosion. On the other hand, the CEX ions produced between the screen grid and the acceleration grid would impinge on the inner wall of the acceleration grid aperture, which enlarges of the acceleration grid aperture gradually. (authors)

  15. Enhanced density of optical data storage using near-field concept: fabrication and test of nanometric aperture array

    International Nuclear Information System (INIS)

    Cha, J.; Park, J. H.; Kim, Myong R.; Jhe, W.

    1999-01-01

    We have tried to enhance the density of the near-field optical memory and to improve the recording/readout speed. The current optical memory has the limitation in both density and speed. This barrier due to the far-field nature can be overcome by the use of near-field. The optical data storage density can be increased by reducing the size of the nanometric aperture where the near-field is obtained. To fabricate the aperture in precise dimension, we applied the orientation-dependent / anisotropic etching property of crystal Si often employed in the field of MEMS. And so we fabricated the 10 x 10 aperture array. This array will be also the indispensable part for speeding up. One will see the possibility of the multi-tracking pickup in the phase changing type memory through this array. This aperture array will be expected to write the bit-mark whose size is about 100 nm. We will show the recent result obtained. (author)

  16. Instrument design of 1.5-m aperture solar optical telescope for the Solar-C Mission

    Science.gov (United States)

    Suematsu, Yoshinori; Katsukawa, Yukio; Shimizu, Toshifumi; Ichimoto, Kiyoshi

    2017-11-01

    A 1.5 m aperture optical telescope is planned for the next Japanese solar mission SOLAR-C as one of major three observing instruments. The optical telescope is designed to provide high-angular-resolution investigation of lower atmosphere from the photosphere to the uppermost chromosphere with enhanced spectroscopic and spectropolarimetric capability covering a wide wavelength region from 280 nm to 1100 nm. The opto-mechanical and -thermal performance of the telescope is crucial to attain high-quality solar observations and we present a study of optical and structural design of the large aperture space solar telescope, together with conceptual design of its accompanying focal plane instruments: wide-band and narrow-band filtergraphs and a spectro-polarimeter for high spatial and temporal observations in the solar photospheric and chromospheric lines useful for sounding physical condition of dynamical phenomena.

  17. Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation

    DEFF Research Database (Denmark)

    Dantanarayana, Harshana G.; Abdel-Moneim, Nabil; Tang, Zhuoqi

    2014-01-01

    We select a chalcogenide core glass, AsSe, and cladding glass, GeAsSe, for their disparate refractive indices yet sufficient thermal-compatibility for fabricating step index fiber (SIF) for mid-infrared supercontinuum generation (MIR-SCG). The refractive index dispersion of both bulk glasses...... is measured over the 0.4 μm–33 μm wavelength-range, probing the electronic and vibrational behavior of these glasses. We verify that a two-term Sellmeier model is unique and sufficient to describe the refractive index dispersion over the wavelength range for which the experimentally determined extinction...... coefficient is insignificant. A SIF composed of the glasses is fabricated and calculated to exhibit an ultra-high numerical aperture >0.97 over the entire wavelength range 0.4-33 μm suggesting that the SIF glass pair is a promising candidate for MIR-SCG. Material dispersion characteristics and the zero...

  18. Nonrigid synthetic aperture radar and optical image coregistration by combining local rigid transformations using a Kohonen network.

    Science.gov (United States)

    Salehpour, Mehdi; Behrad, Alireza

    2017-10-01

    This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.

  19. Aerogel-clad optical fiber

    Science.gov (United States)

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  20. Ion optics of probe-forming systems on the base of magnetic quadrupole lenses with conical aperture

    Science.gov (United States)

    Ponomarova, A. A.; Vorobjov, G. S.; Ponomarev, A. G.

    2015-04-01

    This paper describes the performance of probe-forming systems based on a new type of magnetic quadrupole lens with a conical aperture (MQL CA). The main difference in the MQL CA from the conventional quadrupole lens with a cylindrical aperture is that the poles in it are not parallel to the lens axis and positioned at a certain angle. The basic advantage of such a lens is that the conical angle of the aperture allows the profile of the longitudinal distribution of the main components of the quadrupole field to be changed. It provides for the changing of the focal length value, displacement of the principal plane relative to the centre of the lens and aberration variations depending on the conical angle. A theoretical study of the ion optics of the probe-forming systems consisting of a triplet MQLs CA was carried out. A comparison of the systems with MQLs CA and conventional systems based on the magnetic quadrupole lens (MQL) with a cylindrical aperture shows the possibility of increasing the acceptance of the first due to using the new type of lens.

  1. Solitons in ideal optical fibers: a numerical development

    Directory of Open Access Journals (Sweden)

    Eliandro Rodrigues Cirilo

    2010-03-01

    Full Text Available This work developed a numerical procedure for a system of partial differential equations (PDEs describing the propagation of solitons in ideal optical fibers. The validation of the procedure was implemented from the numerical comparison between the known analytical solutions of the PDEs system and those obtained by using the numerical procedure developed. It was discovered that the procedure, based on the finite difference method and relaxation Gauss-Seidel method, was adequate in describing the propagation of soliton waves in ideals optical fibers.

  2. Path-average rainfall estimation from optical extinction measurements using a large-aperture scintillometer

    NARCIS (Netherlands)

    Uijlenhoet, R.; Cohard, J.M.; Gosset, M.

    2011-01-01

    The potential of a near-infrared large-aperture boundary layer scintillometer as path-average rain gauge is investigated. The instrument was installed over a 2.4-km path in Benin as part of the African Monsoon Multidisciplinary Analysis (AMMA) Enhanced Observation Period during 2006 and 2007.

  3. Optical aperture synthesis : A comparison of techniques for wide-field interferometric imaging

    NARCIS (Netherlands)

    Van der Avoort, C.

    2006-01-01

    The research described in this thesis provides onsets for research in several areas of interest related to aperture synthesis and guidelines concerning the design of synthetic telescopes for imaging. As such, this research contributes to the improvement of instrumentation for observational

  4. Preserving Simplecticity in the Numerical Integration of Linear Beam Optics

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms of a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.

  5. Precision Membrane Optical Shell (PMOS) Technology for RF/Microwave to Lightweight LIDAR Apertures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Membrane Optical Shell Technology (MOST) is an innovative combination of 1) very low areal density (40 to 200g/m2) optically smooth (<20 nm rms), metallic coated...

  6. Precision Membrane Optical Shell (PMOS) Technology for Lightweight LIDAR Apertures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision membrane optical shell (PMOS) technology is an innovative combination of 1) ultra lightweight optically smooth membrane thin films, 2) advanced mold based...

  7. Control software development for magnetorheological finishing of large aperture optical elements

    International Nuclear Information System (INIS)

    Zheng Nan; Li Haibo; Yuan Zhigang; Zhong Bo

    2011-01-01

    Based on the mechanism of magnetorheological finishing, the dwell time function was solved by Jansson-Van Cit-tert algorithm to accomplish the kernel module design. Then the software modularization programming, modular testing and integration testing were conducted. A verification experiment was carried out on a crystal element with full aperture of 500 mm and the element's surface achieved rapid and efficient convergence after the software controlled magnetorheological finishing. It is proved that the software could control the whole polishing process accurately. (authors)

  8. Nocturnal aerosol optical depth measurements with a small-aperture automated photometer using the moon as a light source

    Science.gov (United States)

    Berkoff, T.A.; Sorokin, M.; Stone, T.; Eck, T.F.; Hoff, R.; Welton, E.; Holben, B.

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA's Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities. ?? 2011 American Meteorological Society.

  9. Durable Silver Mirror Coating Via Ion Assisted, Electron Beam Evaporation For Large Aperture Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Highly reflective optical coatings with low scatter properties are needed to image very faint objects such as extra-solar planets. Silver has the highest...

  10. Durable Silver Mirror Coating Via Ion Assisted, Electron Beam Evaporation For Large Aperture Optics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I research, Surface Optics Corporation (SOC) demonstrated a durable silver mirror coating based an ion assisted, thermal evaporation process. The recipe...

  11. Analysis of distributed optical fibre acoustic sensors through numerical modelling.

    Science.gov (United States)

    Masoudi, Ali; Newson, Trevor P

    2017-12-11

    A distributed optical fibre acoustic sensor is numerically modelled. To increase the flexibility of the model, the building blocks of the sensing system are modelled separately and later combined to form the numerical model. This approach is adopted to facilitate the evaluation of each of the individual building blocks and their effects on the output of the sensor. The numerical model is used to assess the effect of parameters such as the linewidth of the laser source, the width of the probe pulse, and the frequency and amplitude of perturbation on the response of the sensing system. It is shown that the precision and accuracy of the sensing system are affected by the frequency and amplitude of perturbation as well as the pulse width and linewidth of the probe pulse.

  12. Multi-Aperture Digital Coherent Combining for Free-Space Optical Communication Receivers

    Science.gov (United States)

    2016-04-21

    723), 456-458 (1996). 1. Introduction Future space platforms, whether they are near-Earth satellites or probes to the moon or other planets...error correction (FEC), and high-performance photo -detection with low implementation loss. Recent results have demonstrated receiver sensitivities...lightwave circuit. Fig. 6. Photo of a single preamplified coherent receiver mounted on a 12” × 12” optical breadboard. Fig. 4(b) shows the parallel

  13. Nonlinear optics and spectroscopy at the nanoscale with a hollow-pyramid aperture SNOM

    International Nuclear Information System (INIS)

    Biagioni, P; Celebrano, M; Polli, D; Labardi, M; Zavelani-Rossi, M; Cerullo, G; Finazzi, M; Duo, L

    2007-01-01

    We report on a novel near-field microscope in which ultrashort laser pulses are coupled into hollow-pyramid cantilever probes. The high throughput, absence of polarization pinning and absence of chirping, which are premium features of such probes, enable obtaining sufficient peak power in the near-field to perform nonlinear optical experiments. We show experimental results on second-harmonic generation from metal nanostructures and two-photon excitation of fluorescent conjugated polymers on the subwavelength scale

  14. Performance Evaluation of Large Aperture 'Polished Panel' Optical Receivers Based on Experimental Data

    Science.gov (United States)

    Vilnrotter, Victor

    2013-01-01

    Recent interest in hybrid RF/Optical communications has led to the development and installation of a "polished-panel" optical receiver evaluation assembly on the 34-meter research antenna at Deep-Space Station 13 (DSS-13) at NASA's Goldstone Communications Complex. The test setup consists of a custom aluminum panel polished to optical smoothness, and a large-sensor CCD camera designed to image the point-spread function (PSF) generated by the polished aluminum panel. Extensive data has been obtained via realtime tracking and imaging of planets and stars at DSS-13. Both "on-source" and "off-source" data were recorded at various elevations, enabling the development of realistic simulations and analytic models to help determine the performance of future deep-space communications systems operating with on-off keying (OOK) or pulse-position-modulated (PPM) signaling formats with photon-counting detection, and compared with the ultimate quantum bound on detection performance for these modulations. Experimentally determined PSFs were scaled to provide realistic signal-distributions across a photon-counting detector array when a pulse is received, and uncoded as well as block-coded performance analyzed and evaluated for a well-known class of block codes.

  15. Large-aperture CCD x-ray detector for protein crystallography using a fiber-optic taper

    Science.gov (United States)

    Strauss, Michael G.; Westbrook, Edwin M.; Naday, Istvan; Coleman, T. A.; Westbrook, Mary L.; Travis, D. J.; Sweet, Robert M.; Pflugrath, J. W.; Stanton, Martin J.

    1991-07-01

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for x-ray diffraction studies in protein crystallography. The detector was tested on a beamline of the National Synchrotron Light Source at Brookhaven National Laboratory with a beam intensity greater than 10(superscript 9) x-ray photons/s. A fiber-optic taper, an image intensifier, and a lens demagnify, intensify, and focus the image onto a CCD having 512 X 512 pixels. A detective quantum efficiency (DQE) of 0.36 was obtained by evaluating the statistical uncertainty in the detector output. The dynamic range of a 4 X 4 pixel resolution element, comparable in size to a diffraction peak, was 10 (superscript 4). The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel on the detector face is 160 micrometers . A complete data set, consisting of forty-five 1 degree(s) rotation frames, was obtained in just 36 s of x-ray exposure to a crystal of chicken egg-white lysozyme. In a separate experiment, a lysozyme data set consisting of 495 0.1 degree(s) frames, was processed by the MADNES data reduction program, yielding symmetry R-factors for the data of 3.2- 3.5%. Diffraction images from crystals of the myosin S1 head (a equals 275 angstroms) were also recorded. The Bragg spots, only 5 pixels apart, were resolved but were not sufficiently separated to process these data. Changes in the detector design which will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for x-ray scattering investigations with synchrotron sources.

  16. Black silicon integrated aperture

    Science.gov (United States)

    Liu, Tianbo; Dickensheets, David L.

    2017-10-01

    This paper describes the incorporation of nanotextured black silicon as an optical absorbing material into silicon-based micro-optoelectromechanical systems devices to reduce stray light and increase optical contrast during imaging. Black silicon is created through a maskless dry etch process and characterized for two different etch conditions, a cold etch performed at 0°C and a cryogenic etch performed at -110°C. We measure specular reflection at visible wavelengths to be black velvet paint used to coat optical baffles and compare favorably with other methods to produce black surfaces from nanotextured silicon or using carbon nanotubes. We illustrate the use of this material by integrating a black silicon aperture around the perimeter of a deformable focus-control mirror. Imaging results show a significant improvement in contrast and image fidelity due to the effective reduction in stray light achieved with the self-aligned black aperture.

  17. Optical design for CETUS: a wide-field 1.5m aperture UV payload being studied for a NASA probe class mission study

    Science.gov (United States)

    Woodruff, Robert; Robert Woodruff, Goddard Space Flight Center, Kendrick Optical Consulting

    2018-01-01

    We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R~ 40,000 echelle modes and R~ 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.

  18. Supercontinuum generation covering the entire 0.4-5 µm transmission window in a tapered ultra-high numerical aperture all-solid fluorotellurite fiber

    Science.gov (United States)

    Jia, Z. X.; Yao, C. F.; Jia, S. J.; Wang, F.; Wang, S. B.; Zhao, Z. P.; Liao, M. S.; Qin, G. S.; Hu, L. L.; Ohishi, Y.; Qin, W. P.

    2018-02-01

    Enormous efforts have been made to realize supercontinuum (SC) generation covering the entire transmission window of fiber materials for their wide applications in many fields. Here we demonstrate ultra-broadband SC generation from 400 to 5140 nm in a tapered ultra-high numerical aperture (NA) all-solid fluorotellurite fiber pumped by a 1560 nm mode-locked fiber laser. The fluorotellurite fibers are fabricated using a rod-in-tube method. The core and cladding materials are TeO2-BaF2-Y2O3- and TeO2-modified fluoroaluminate glasses, respectively, which have large refractive index contrast and similar thermal expansion coefficients and softening temperatures. The NA at 3200 nm of the fluorotellurite fiber is about 1.11. Furthermore, tapered fluorotellurite fibers are prepared using an elongation machine. SC generation covering the entire 0.4-5 µm transmission window is achieved in a tapered fluorotellurite fiber for a pumping peak power of ~10.5 kW through synergetic control of dispersion, nonlinearity, confinement loss and other unexpected effects (e.g. the attachment of dust or water to the surface of the fiber core) of the fiber. Our results show that tapered ultra-high NA all-solid soft glass fibers have a potential for generating SC light covering their entire transmission window.

  19. 3D numerical simulations of negative hydrogen ion extraction using realistic plasma parameters, geometry of the extraction aperture and full 3D magnetic field map

    Science.gov (United States)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.

    2014-02-01

    Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.

  20. Propagation of Single-Mode Fibre Laser Beams through an Optical ABCD System with Circular Aperture at the Fibre Output End

    International Nuclear Information System (INIS)

    Kai-Liang, Duan; Jian-Feng, Li; Wei, Zhao; Yi-Shan, Wang

    2008-01-01

    Based on the expansion expression of the fundamental mode of a single-mode fibre in terms of Laguerre–Gauss modes, the propagation of a beam of a weakly guiding fibre laser through an optical ABCD system with a circular aperture at the fibre end is studied. The results show that there is much difference between the propagation of the laser beam described by the expansion expression and by the Gaussian mode approximation. The depth of focus of the laser beam is longer than that of the Gaussian modes

  1. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    Science.gov (United States)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; hide

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  2. Land cover classification accuracy from electro-optical, X, C, and L-band Synthetic Aperture Radar data fusion

    Science.gov (United States)

    Hammann, Mark Gregory

    The fusion of electro-optical (EO) multi-spectral satellite imagery with Synthetic Aperture Radar (SAR) data was explored with the working hypothesis that the addition of multi-band SAR will increase the land-cover (LC) classification accuracy compared to EO alone. Three satellite sources for SAR imagery were used: X-band from TerraSAR-X, C-band from RADARSAT-2, and L-band from PALSAR. Images from the RapidEye satellites were the source of the EO imagery. Imagery from the GeoEye-1 and WorldView-2 satellites aided the selection of ground truth. Three study areas were chosen: Wad Medani, Sudan; Campinas, Brazil; and Fresno- Kings Counties, USA. EO imagery were radiometrically calibrated, atmospherically compensated, orthorectifed, co-registered, and clipped to a common area of interest (AOI). SAR imagery were radiometrically calibrated, and geometrically corrected for terrain and incidence angle by converting to ground range and Sigma Naught (?0). The original SAR HH data were included in the fused image stack after despeckling with a 3x3 Enhanced Lee filter. The variance and Gray-Level-Co-occurrence Matrix (GLCM) texture measures of contrast, entropy, and correlation were derived from the non-despeckled SAR HH bands. Data fusion was done with layer stacking and all data were resampled to a common spatial resolution. The Support Vector Machine (SVM) decision rule was used for the supervised classifications. Similar LC classes were identified and tested for each study area. For Wad Medani, nine classes were tested: low and medium intensity urban, sparse forest, water, barren ground, and four agriculture classes (fallow, bare agricultural ground, green crops, and orchards). For Campinas, Brazil, five generic classes were tested: urban, agriculture, forest, water, and barren ground. For the Fresno-Kings Counties location 11 classes were studied: three generic classes (urban, water, barren land), and eight specific crops. In all cases the addition of SAR to EO resulted

  3. Integrated electrochromic aperture diaphragm

    Science.gov (United States)

    Deutschmann, T.; Oesterschulze, E.

    2014-05-01

    In the last years, the triumphal march of handheld electronics with integrated cameras has opened amazing fields for small high performing optical systems. For this purpose miniaturized iris apertures are of practical importance because they are essential to control both the dynamic range of the imaging system and the depth of focus. Therefore, we invented a micro optical iris based on an electrochromic (EC) material. This material changes its absorption in response to an applied voltage. A coaxial arrangement of annular rings of the EC material is used to establish an iris aperture without need of any mechanical moving parts. The advantages of this device do not only arise from the space-saving design with a thickness of the device layer of 50μm. But it also benefits from low power consumption. In fact, its transmission state is stable in an open circuit, phrased memory effect. Only changes of the absorption require a voltage of up to 2 V. In contrast to mechanical iris apertures the absorption may be controlled on an analog scale offering the opportunity for apodization. These properties make our device the ideal candidate for battery powered and space-saving systems. We present optical measurements concerning control of the transmitted intensity and depth of focus, and studies dealing with switching times, light scattering, and stability. While the EC polymer used in this study still has limitations concerning color and contrast, the presented device features all functions of an iris aperture. In contrast to conventional devices it offers some special features. Owing to the variable chemistry of the EC material, its spectral response may be adjusted to certain applications like color filtering in different spectral regimes (UV, optical range, infrared). Furthermore, all segments may be switched individually to establish functions like spatial Fourier filtering or lateral tunable intensity filters.

  4. PASSATA - Object oriented numerical simulation software for adaptive optics

    OpenAIRE

    Agapito, G.; Puglisi, A.; Esposito, S.

    2016-01-01

    We present the last version of the PyrAmid Simulator Software for Adaptive opTics Arcetri (PASSATA), an IDL and CUDA based object oriented software developed in the Adaptive Optics group of the Arcetri observatory for Monte-Carlo end-to-end adaptive optics simulations. The original aim of this software was to evaluate the performance of a single conjugate adaptive optics system for ground based telescope with a pyramid wavefront sensor. After some years of development, the current version of ...

  5. Multimode optical fiber

    Science.gov (United States)

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  6. Optical and Thermal Behaviors of Plasmonic Bowtie Aperture and Its NSOM Characterization for Heat-Assisted Magnetic Recording

    Science.gov (United States)

    2016-02-01

    measurement. The bowtie aperture has attracted considerable attention as it supports not only the plasmonic effects but also the lightning -rod effect. It has...that for Re(ε) = −20 and Im(ε) = 0.1, a strong field confinement in the central plane of the FePt layer is shown in Fig. 4(e) with an FWHM size of 37...produced by an NFT requires characterizing both the in- plane and out-of- plane components of the fields. Therefore, we developed a method for detecting

  7. Comparison of Numerical Modelling of Degradation Mechanisms in Single Mode Optical Fibre Using MATLAB and VPIphotonics

    Directory of Open Access Journals (Sweden)

    Jana Sajgalikova

    2015-01-01

    Full Text Available Mathematical models for description of physical phenomena often use the statistical description of the individual phenomena and solve those using suitable methods. If we want to develop numerical model of optical communication system based on transmission through single mode optical fibres, we need to consider whole series of phenomena that affect various parts of the system. In the single-mode optical fibre we often encounter influence of chromatic dispersion and nonlinear Kerr effects. By observing various different degradation mechanisms, every numerical model should have its own limits, which fulfil more detailed specification. It is inevitable to consider them in evaluation. In this paper, we focus on numerical modelling of degradation mechanisms in single-mode optical fibre. Numerical solution of non-linear Schroedinger equation is performed by finite difference method applied in MATLAB environment and split-step Fourier method, which is implemented by VPIphotonics software.

  8. Numerical Modelling of Spontaneous Emission in Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Ulrik Lund; Rottwitt, Karsten

    2013-01-01

    Fiber optical parametric processes offer a wide range of applications including phase sensitive as well as phase insensitive amplification, wavelength conversion and signal regeneration. One of the difficult challenges is any of these applications is to predict their associated noise performance...

  9. Numerical models and experiment of air flow in a simulation box for optical wireless communications

    Directory of Open Access Journals (Sweden)

    Latal Jan

    2016-01-01

    Full Text Available In this article, the authors focused on real measurements of mechanical turbulence generated by ventilators in the simulation box for Optical Wireless Communications. The mechanical turbulences disturb the optical beam that propagates along the central axis of the simulation box. The aim of authors is to show the effect of mechanical turbulence on optical beams at different heights in the simulation box. In the Ansys Fluent, we created numerical models which were then compared with real measurements. Authors compared the real and numerical models according to statistical methods.

  10. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  11. Theoretical and numerical investigations of sub-wavelength diffractive optical structures

    DEFF Research Database (Denmark)

    Dridi, Kim

    2000-01-01

    finite-difference time domain method and exact radiation integrals is implemented for the polarization where the electric field vector is perpendicular to the two dimentional plane of symmetry. The computational model solves the full vectorial time domain Maxwell equations with general sources...... of illumination. Maxwell's equations are solved numerically in complex geometries and radiation integrals are applied in homogeneous regions, thus minimizing the computational time. Analysis of finte length surface relief structures embedded in polymer dielectric waveguides are presented. The importance......The work in this thesis concerns theoretical and numerical investigations of sub-wavelength diffractive optical structures, relying on advanced two-dimensional vectorial numerical models that have applications in Optics and Electromagnetics. Integrated Optics is predicted to play a major role...

  12. Experimental and numerical results of optical preamplification in LDA receiving head

    Czech Academy of Sciences Publication Activity Database

    Többen, H.; Karásek, Miroslav

    2000-01-01

    Roč. 49, č. 1 (2000), s. 10-13 ISSN 0018-9456 R&D Projects: GA ČR GA102/99/0393 Grant - others:EU COST(XE) OC 265.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibre amplifiers * flow measurement * neodymium * noise * numerical analysis * signal detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.584, year: 2000

  13. Aperture averaging in strong oceanic turbulence

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  14. Numerical analysis of ALADIN optics contamination due to outgassing of solar array materials

    Energy Technology Data Exchange (ETDEWEB)

    Markelov, G [Advanced Operations and Engineering Services (AOES) Group BV, Postbus 342, 2300 AH Leiden (Netherlands); Endemann, M [ESA-ESTEC/EOP-PAS, Postbus 299, 2200 AG Noordwijk (Netherlands); Wernham, D [ESA-ESTEC/EOP-PAQ, Postbus 299, 2200 AG Noordwijk (Netherlands)], E-mail: Gennady.Markelov@aoes.com

    2008-03-01

    ALADIN is the very first space-based lidar that will provide global wind profile and a special attention has been paid to contamination of ALADIN optics. The paper presents a numerical approach, which is based on the direct simulation Monte Carlo method. The method allows one to accurately compute collisions between various species, in the case under consideration, free-stream flow and outgassing from solar array materials. The collisions create a contamination flux onto the optics despite there is no line-of-sight from the solar arrays to the optics. Comparison of obtained results with a simple analytical model prediction shows that the analytical model underpredicts mass fluxes.

  15. Numerical analysis of ALADIN optics contamination due to outgassing of solar array materials

    International Nuclear Information System (INIS)

    Markelov, G; Endemann, M; Wernham, D

    2008-01-01

    ALADIN is the very first space-based lidar that will provide global wind profile and a special attention has been paid to contamination of ALADIN optics. The paper presents a numerical approach, which is based on the direct simulation Monte Carlo method. The method allows one to accurately compute collisions between various species, in the case under consideration, free-stream flow and outgassing from solar array materials. The collisions create a contamination flux onto the optics despite there is no line-of-sight from the solar arrays to the optics. Comparison of obtained results with a simple analytical model prediction shows that the analytical model underpredicts mass fluxes

  16. Numerical analysis on optical limiting performance of a series of phthalocyanines for nanosecond pulses

    International Nuclear Information System (INIS)

    Miao Quan; Ding Hongjuan; Wang Chuankui; Sun Yuping; Gel'mukhanov, Faris

    2012-01-01

    The optical limiting properties of a series of peripherally substituted phthalocyanines with different central metals and axial chloride ligand for nanosecond pulses have been studied by solving numerically the two-dimensional paraxial field equation together with the rate equations using the Crank–Nicholson method. It is shown that all of these compounds exhibit good optical limiting behaviour, and phthalocyanines with heavier central metals have better optical limiting performance due to the faster intersystem crossing caused by the enhanced spin–orbit coupling. The major mechanism of optical limiting for long pulses is the sequential (singlet–singlet)×(triplet–triplet) nonlinear absorption. Dynamics of populations is characterized mainly by the effective transfer time of the population from the ground state to the lowest triplet state. The long lifetime of the triplet state is important but not determinant. In addition, the performance of optical limiting strongly depends on the thickness and concentration of the absorber. (paper)

  17. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the geo......Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...

  18. A Numerical Development in the Dynamical Equations of Solitons in Optical Fibers

    Directory of Open Access Journals (Sweden)

    Érica Regina Takano Natti

    2006-02-01

    Full Text Available It was evaluated the numerical resolution of a nonlinear differential equations system that describes the solitons propagation in dielectric optical fibers, through the method of finite elements, which is implemented based on Streamline Upwind Petrov-Galerkin (SUPG and Consistent Approximate Upwind (CAU formulations.

  19. Optical and thermal design of 1.5-m aperture solar UV visible and IR observing telescope for Solar-C mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Horiuchi, T.; Matsumoto, Y.; Takeyama, N.

    2017-11-01

    The next Japanese solar mission, SOLAR-C, which has been envisaged after successful science operation of Hinode (SOLAR-B) mission, is perusing two plans: plan-A and plan-B, and under extensive study from science objectives as well as engineering point of view. The plan-A aims at performing out-of-ecliptic observations for investigating, with helioseismic approach, internal structure and dynamo mechanisms of the Sun. It also explores polar regions where fast solar wind is believed to originate. A baseline orbit for plan-A is a circular orbit of 1 AU distance from the Sun with its inclination at around or greater than 40 degrees. The plan-B aims to study small-scale plasma processes and structures in the solar atmosphere which attract researchers' growing interest, followed by many Hinode discoveries [1], for understanding fully dynamism and magnetic nature of the atmosphere. With plan-B, high-angular-resolution investigation of the entire solar atmosphere (from the photosphere to the corona, including their interface layers, i.e., chromosphere and transition region) is to be performed with enhanced spectroscopic and spectro-polarimetric capability as compared with Hinode, together with enhanced sensitivity towards ultra-violet wavelengths. The orbit of plan-B is either a solar synchronous polar orbit of altitude around 600 km or a geosynchronous orbit to ensure continuous solar observations. After the decision of any one of the two plans, the SOLAR-C will be proposed for launch in mid-2010s. In this paper, we will present a basic design of one of major planned instrumental payload for the plan-B: the Solar Ultra-violet Visible and near IR observing Telescope (hereafter referred to as SUVIT). The basic concept in designing the SUVIT is to utilize as much as possible a heritage of successful telescope of the Solar Optical Telescope (SOT) aboard Hinode [2]. Major differences of SUVIT from SOT are the three times larger aperture of 1.5 m, which enables to collect one

  20. Sub-aperture stitching test of a cylindrical mirror with large aperture

    Science.gov (United States)

    Xue, Shuai; Chen, Shanyong; Shi, Feng; Lu, Jinfeng

    2016-09-01

    Cylindrical mirrors are key optics of high-end equipment of national defense and scientific research such as high energy laser weapons, synchrotron radiation system, etc. However, its surface error test technology develops slowly. As a result, its optical processing quality can not meet the requirements, and the developing of the associated equipment is hindered. Computer Generated-Hologram (CGH) is commonly utilized as null for testing cylindrical optics. However, since the fabrication process of CGH with large aperture is not sophisticated yet, the null test of cylindrical optics with large aperture is limited by the aperture of the CGH. Hence CGH null test combined with sub-aperture stitching method is proposed to break the limit of the aperture of CGH for testing cylindrical optics, and the design of CGH for testing cylindrical surfaces is analyzed. Besides, the misalignment aberration of cylindrical surfaces is different from that of the rotational symmetric surfaces since the special shape of cylindrical surfaces, and the existing stitching algorithm of rotational symmetric surfaces can not meet the requirements of stitching cylindrical surfaces. We therefore analyze the misalignment aberrations of cylindrical surfaces, and study the stitching algorithm for measuring cylindrical optics with large aperture. Finally we test a cylindrical mirror with large aperture to verify the validity of the proposed method.

  1. Numerical simulation of counter-current spontaneous imbibition in water-wet fractured porous media: Influences of water injection velocity, fracture aperture, and grains geometry

    Science.gov (United States)

    Jafari, Iman; Masihi, Mohsen; Nasiri Zarandi, Masoud

    2017-11-01

    Counter-current spontaneous imbibition (SI), in which water and oil flow through the same face in opposite directions, is known as one of the most significant oil recovery mechanisms in naturally fractured reservoirs; however, this mechanism has not received much attention. Understanding the dynamic of water-oil displacement during counter-current SI is very challenging because of simultaneous impacts of multiple factors including geometry complexity and heterogeneity of naturally fractured reservoir materials, e.g., high permeability contrast between the rock matrix and fracture, wettability, and porosity. This study investigates the effects of water injection velocity, fracture aperture, and grain shape during counter-current SI at pore-scale. A robust finite element solver is used to solve the governing equations of multiphase flow, which are the coupled Navier-Stokes and Cahn-Hilliard phase-field equations. The results showed that the case with the highest injection velocity (uinj = 5 mm/s) recovered more than 15% of the matrix oil at the early times and then reached its ultimate recovery factor. However, in the case of the lowest injection velocity, i.e., uinj = 0.05 mm/s, the lowest imbibition rate was observed at the early times, but ultimately 23% of the matrix oil was recovered. The model with uinj = 5 mm/s was able to capture some pore-level mechanisms such as snap-off, oil film thinning, interface coalescence, and water film bridging. The obtained results revealed that changing the fracture aperture has a slight effect on the imbibition rate at the earlier times and ultimate recoveries would be almost equal. To assess the influences of grain shape on the imbibition process, the simulated domain was reconstructed with cubic grains. It was noticed that because of higher permeability and porosity, relatively larger oil drops were formed and resulted in higher oil recovery compared with the model with spherical grains. The developed model can be used as a

  2. Numerical simulation of eigenmodes of ring and race-track optical microresonators

    Science.gov (United States)

    Raskhodchikov, A. V.; Raskhodchikov, D. V.; Scherbak, S. A.; Lipovskii, A. A.

    2017-11-01

    We have performed a numerical study of whispering gallery modes of ring and race-track optical microresonators. Mode excitation was considered and their spectra and electromagnetic field distributions were calculated via numerical solution of the Helmholtz equation. We pay additional attention to features of eigenmodes in race-tracks in contrast with ring resonators. Particularly, we demonstrate that modes in race-tracks are not “classic” WGM in terms of total internal reflection from a single boundary, and an inner boundary is essential for their formation. The dependence of effective refractive index of race-tracks modes on the resonator width is shown.

  3. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem

    DEFF Research Database (Denmark)

    Delbary, Fabrice; Knudsen, Kim

    2014-01-01

    computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...... to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete...... to the simpler approximations. In addition, convergence of the numerical solution towards the exact solution of the boundary integral equation is proved....

  4. Analytical formula for a circular flattened Gaussian beam propagating through a misaligned paraxial ABCD optical system

    International Nuclear Information System (INIS)

    Hu Li; Cai Yangjian

    2006-01-01

    Based on the generalized diffraction integral formula for treating the propagation of a laser beam through a misaligned paraxial ABCD optical system in the cylindrical coordinate system, analytical formula for a circular flattened Gaussian beam propagating through such optical system is derived. Furthermore, an approximate analytical formula is derived for a circular flattened Gaussian beam propagating through an apertured misaligned ABCD optical system by expanding the hard aperture function as a finite sum of complex Gaussian functions. Numerical examples are given

  5. Apodised aperture assembly for high power lasers

    International Nuclear Information System (INIS)

    Bliss, E.S.; Speck, D.R.

    1975-01-01

    An apodized aperture assembly using absorbing liquid or solid to vary transmission over the cross section thereof is used to minimize deleterious diffraction effects in high power lasers. By employing, for example, an absorbing liquid of varying optical density to obtain the transmission profile, a circular aperture of this type can be used to minimize diffraction effects, thereby substantially improving the performance of a high power laser system. (U.S.)

  6. Sub-aperture switching based ptychographic iterative engine (sasPIE) method for quantitative imaging

    Science.gov (United States)

    Sun, Aihui; Kong, Yan; Jiang, Zhilong; Yu, Wei; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-03-01

    Though ptychographic iterative engine (PIE) has been widely adopted in the quantitative micro-imaging with various illuminations as visible light, X-ray and electron beam, the mechanical inaccuracy in the raster scanning of the sample relative to the illumination always degrades the reconstruction quality seriously and makes the resolution reached much lower than that determined by the numerical aperture of the optical system. To overcome this disadvantage, the sub-aperture switching based PIE method is proposed: the mechanical scanning in the common PIE is replaced by the sub-aperture switching, and the reconstruction error related to the positioning inaccuracy is completely avoided. The proposed technique remarkably improves the reconstruction quality, reduces the complexity of the experimental setup and fundamentally accelerates the data acquisition and reconstruction.

  7. Thermal front propagation in variable aperture fracture–matrix ...

    Indian Academy of Sciences (India)

    Keywords. Thermal front; variable aperture; rock-matrix; geothermal reservoir; numerical model, liquid dominated. Abstract. A numerical study on the effect of complex fracture aperture geometry on propagation of thermal front in a coupled single fracture-matrix system has been carried out. Sinusoidal and logarithmic ...

  8. Numerical model for the deformation of nucleated cells by optical stretchers

    KAUST Repository

    Sraj, Ihab

    2015-07-01

    In this paper, we seek to numerically study the deformation of nucleated cells by single diode-laser bar optical stretchers. We employ a recently developed computational model, the dynamic ray-tracing method, to determine the force distribution induced by optical stretchers on a cell encapsulating a nucleus of different optical properties. These optical forces are shape dependent and can deform real non-rigid objects; thus resulting in dynamically changing distributions with cell and nucleus deformation. A Chinese hamster ovary (CHO) cell is a common biological cell that is of interest to the biomedical community because of its use in recombinant protein therapeutics and is an example of a nucleated cell. To this end, we model CHO cells as two concentric three-dimensional elastic capsules immersed in a fluid where the hydrodynamic forces are calculated using the immersed boundary method. We vary the inner capsule size to simulate different nucleus sizes. Our results show that the presence of a nucleus has a major effect on the force distribution on the cell surface and consequently on its net deformation. Scattering and gradient forces are reported for different nucleus sizes and the effect of nucleus size on the cell deformation is discussed quantitatively. © 2015 IOP Publishing Ltd.

  9. Numerical model for the deformation of nucleated cells by optical stretchers

    International Nuclear Information System (INIS)

    Sraj, Ihab; Francois, Joshua; Eggleton, Charles D; Marr, David W M

    2015-01-01

    In this paper, we seek to numerically study the deformation of nucleated cells by single diode-laser bar optical stretchers. We employ a recently developed computational model, the dynamic ray-tracing method, to determine the force distribution induced by optical stretchers on a cell encapsulating a nucleus of different optical properties. These optical forces are shape dependent and can deform real non-rigid objects; thus resulting in dynamically changing distributions with cell and nucleus deformation. A Chinese hamster ovary (CHO) cell is a common biological cell that is of interest to the biomedical community because of its use in recombinant protein therapeutics and is an example of a nucleated cell. To this end, we model CHO cells as two concentric three-dimensional elastic capsules immersed in a fluid where the hydrodynamic forces are calculated using the immersed boundary method. We vary the inner capsule size to simulate different nucleus sizes. Our results show that the presence of a nucleus has a major effect on the force distribution on the cell surface and consequently on its net deformation. Scattering and gradient forces are reported for different nucleus sizes and the effect of nucleus size on the cell deformation is discussed quantitatively. (paper)

  10. Numerical simulation and optimal design of Segmented Planar Imaging Detector for Electro-Optical Reconnaissance

    Science.gov (United States)

    Chu, Qiuhui; Shen, Yijie; Yuan, Meng; Gong, Mali

    2017-12-01

    Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER) is a cutting-edge electro-optical imaging technology to realize miniaturization and complanation of imaging systems. In this paper, the principle of SPIDER has been numerically demonstrated based on the partially coherent light theory, and a novel concept of adjustable baseline pairing SPIDER system has further been proposed. Based on the results of simulation, it is verified that the imaging quality could be effectively improved by adjusting the Nyquist sampling density, optimizing the baseline pairing method and increasing the spectral channel of demultiplexer. Therefore, an adjustable baseline pairing algorithm is established for further enhancing the image quality, and the optimal design procedure in SPIDER for arbitrary targets is also summarized. The SPIDER system with adjustable baseline pairing method can broaden its application and reduce cost under the same imaging quality.

  11. Optical asymmetric cryptography based on elliptical polarized light linear truncation and a numerical reconstruction technique.

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Wang, Zhisong; Zhao, Cheng

    2014-06-20

    We demonstrate a novel optical asymmetric cryptosystem based on the principle of elliptical polarized light linear truncation and a numerical reconstruction technique. The device of an array of linear polarizers is introduced to achieve linear truncation on the spatially resolved elliptical polarization distribution during image encryption. This encoding process can be characterized as confusion-based optical cryptography that involves no Fourier lens and diffusion operation. Based on the Jones matrix formalism, the intensity transmittance for this truncation is deduced to perform elliptical polarized light reconstruction based on two intensity measurements. Use of a quick response code makes the proposed cryptosystem practical, with versatile key sensitivity and fault tolerance. Both simulation and preliminary experimental results that support theoretical analysis are presented. An analysis of the resistance of the proposed method on a known public key attack is also provided.

  12. Numerical methods for the design of gradient-index optical coatings.

    Science.gov (United States)

    Anzengruber, Stephan W; Klann, Esther; Ramlau, Ronny; Tonova, Diana

    2012-12-01

    We formulate the problem of designing gradient-index optical coatings as the task of solving a system of operator equations. We use iterative numerical procedures known from the theory of inverse problems to solve it with respect to the coating refractive index profile and thickness. The mathematical derivations necessary for the application of the procedures are presented, and different numerical methods (Landweber, Newton, and Gauss-Newton methods, Tikhonov minimization with surrogate functionals) are implemented. Procedures for the transformation of the gradient coating designs into quasi-gradient ones (i.e., multilayer stacks of homogeneous layers with different refractive indices) are also developed. The design algorithms work with physically available coating materials that could be produced with the modern coating technologies.

  13. Quantum synthetic aperture radar

    Science.gov (United States)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    Synthetic aperture radar (SAR) uses sensor motion to generate finer spatial resolution of a given target area. In this paper we explore the theoretical potential of quantum synthetic aperture quantum radar (QSAR). We provide theoretical analysis and simulation results which suggest that QSAR can provide improved detection performance over classical SAR in the high-noise low-brightness regime.

  14. Mastering Apple Aperture

    CERN Document Server

    Fitzgerald, Thomas

    2013-01-01

    Written in a conversational style, the author will share his knowledge on advanced Aperture topics with detailed discussions of advanced topics, the theory behind some of those topics and lots of hints and tips for ways to improve your workflow.Photographer's who have a basic understanding of Aperture

  15. Geometrical Aberration Suppression for Large Aperture Sub-THz Lenses

    Science.gov (United States)

    Rachon, M.; Liebert, K.; Siemion, A.; Bomba, J.; Sobczyk, A.; Knap, W.; Coquillat, D.; Suszek, J.; Sypek, M.

    2017-03-01

    Advanced THz setups require high performance optical elements with large numerical apertures and small focal lengths. This is due to the high absorption of humid air and relatively low efficiency of commercially available detectors. Here, we propose a new type of double-sided sub-THz diffractive optical element with suppressed geometrical aberration for narrowband applications (0.3 THz). One side of the element is designed as thin structure in non-paraxial approach which is the exact method, but only for ideally flat elements. The second side will compensate phase distribution differences between ideal thin structure and real volume one. The computer-aided optimization algorithm is performed to design an additional phase distribution of correcting layer assuming volume designing of the first side of the element. The experimental evaluation of the proposed diffractive component created by 3D printing technique shows almost two times larger performance in comparison with uncorrected basic diffractive lens.

  16. Numerical analysis on using compound parabolic couplers for direct transmission of concentrated solar radiation via optical fibre (Conference Presentation)

    Science.gov (United States)

    Rahou, Maryam; Andrews, John; Rosengarten, Gary

    2016-09-01

    A challenge in high-temperature solar thermal applications is transfer of concentrated solar radiation to the load with minimum energy loss. The use of a solar concentrator in conjunction with optical fibres has potential advantages in terms of transmission efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. For transferring higher levels of concentrated flux it is necessary to employ multiple optical fibres or fibre bundles. However, the losses at the incident plane of a bundle due to absorption by the epoxy and cladding between the individual fibres in a bundle are substantial, typically over 60% of the overall transmission loss. The optical transmission of the system can thus be enhanced by employing a coupler between the concentrated solar radiation and the entrance to the bundle that reflects all incident light into the cores of individual fibres rather than allowing it to strike the interstitial spaces between the cores. This paper describes the design for such couplers based on multiple compound parabolic (CP) reflectors each with its exit aperture coinciding with the core of an individual fibre within the bundle. The proposed design employs external reflection from a machined metallic aluminium surface. This CP arrangement has the additional benefit of increasing the concentration ratio of the primary solar concentrator used. Simulation modeling using LightTools is conducted into a parabolic Cassegrain solar concentrator employing these CP couplers prior to a fibre bundle. The dependence of overall transmission and total optical efficiency of the system over lengths of the bundle up to 100 m are investigated quantitatively. In addition, the influence on transmission of the angular distribution of radiation intensity at the aperture of the couplers is studied.

  17. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....

  18. Dynamic Aperture Studies for SPEAR 3

    International Nuclear Information System (INIS)

    Nosochkov, Yuri

    1999-01-01

    The SSRL is investigating an accelerator upgrade project to replace the present 130 nm.rad FODO lattice with an 18 nm.rad double bend achromat lattice: SPEAR 3. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including optimization of linear optics, betatron tune, chromaticity and coupling correction, and effects of machine errors and insertion devices

  19. Numerical study of the properties of optical vortex array laser tweezers.

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-04

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  20. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes

    International Nuclear Information System (INIS)

    Larsen, E.W.; Morel, J.E.; Miller, W.F. Jr.

    1987-01-01

    We present an asymptotic analysis of spatial differencing schemes for the discrete-ordinates equations, for diffusive media with spatial cells that are not optically thin. Our theoretical tool is an asymptotic expansion that has previously been used to describe the transform from analytic transport to analytic diffusion theory for such media. To introduce this expansion and its physical rationale, we first describe it for the analytic discrete-ordinates equations. Then, we apply the expansion to the spatially discretized discrete-ordinates equations, with the spatial mesh scaled in either of two physically relevant ways such that the optical thickness of the spatial cells is not small. If the result of either expansion is a legitimate diffusion description for either the cell-averaged or cell-edge fluxes, then we say that the approximate flux has the appropriate diffusion limit; otherwise, we say it does not. We consider several transport differencing schemes that are applicable in neutron transport and thermal radiation applications. We also include numerical results which demonstrate the validity of our theory and show that differencing schemes that do have a particular diffusion limit are substantially more accurate, in the regime described by the limit, than those that do not. copyright 1987 Academic Press, Inc

  1. Integrated analysis of millisecond laser irradiation of steel by comprehensive optical diagnostics and numerical simulation

    Science.gov (United States)

    Doubenskaia, M.; Smurov, I.; Nagulin, K. Yu.

    2016-04-01

    Complimentary optical diagnostic tools are applied to provide comprehensive analysis of thermal phenomena in millisecond Nd:YAG laser irradiation of steel substrates. The following optical devices are employed: (a) infrared camera FLIR Phoenix RDASTM equipped by InSb sensor with 3 to 5 µm band pass arranged on 320 × 256 pixels array, (b) ultra-rapid camera Phantom V7.1 with SR-CMOS monochrome sensor in the visible spectral range, up to 105 frames per second for 64 × 88 pixels array, (c) original multi-wavelength pyrometer in the near-infrared range (1.370-1.531 µm). The following laser radiation parameters are applied: variation of energy per pulse in the range 15-30 J at a constant pulse duration of 10 ms with and without application of protective gas (Ar). The evolution of true temperature is restored based on the method of multi-colour pyrometry; by this way, melting/solidification dynamics is analysed. Emissivity variation with temperature is studied, and hysteresis type functional dependence is found. Variation of intensity of surface evaporation visualised by the camera Phantom V7.1 is registered and linked with the surface temperature evolution, different surface roughness and influence of protective gas atmosphere. Determination of the vapour plume temperature based on relatively intensities of spectral lines is done. The numerical simulation is carried out applying the thermal model with phase transitions taken into account.

  2. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  3. Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier

    Science.gov (United States)

    Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin

    2013-03-01

    Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.

  4. Analysis of the covariance function and aperture averaged fluctuations of irradiance to calculate Cn2

    Science.gov (United States)

    Cauble, Galen D.; Wayne, David T.

    2017-09-01

    The growth of optical communication has created a need to correctly characterize the atmospheric channel. Atmospheric turbulence along a given channel can drastically affect optical communication signal quality. One means of characterizing atmospheric turbulence is through measurement of the refractive index structure parameter, Cn2. When calculating Cn2 from the scintillation index, σΙ2,the point aperture scintillation index is required. Direct measurement of the point aperture scintillation index is difficult at long ranges due to the light collecting abilities of small apertures. When aperture size is increased past the atmospheric correlation width, aperture averaging decreases the scintillation index below that of the point aperture scintillation index. While the aperture averaging factor can be calculated from theory, it does not often agree with experimental results. Direct measurement of the aperture averaging factor via the pupil plane irradiance covariance function allows conversion from the aperture averaged scintillation index to the point aperture scintillation index. Using a finite aperture, camera, and detector, the aperture averaged scintillation index and aperture averaging factor are measured in parallel and the point aperture scintillation index is calculated. A new instrument built by SSC Pacific was used to collect scintillation data at the Townes Institute Science and Technology Experimentation Facility (TISTEF). This new instrument's data was then compared to BLS900 data. The results show that direct measurement of the aperture averaging factor is achievable using a camera and matches well with groundtruth instrumentation.

  5. Rigorous numerical modeling of scattering-type scanning near-field optical microscopy and spectroscopy

    Science.gov (United States)

    Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun

    2017-11-01

    Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.

  6. Periodic nonlinear Fourier transform for fiber-optic communications, Part I: theory and numerical methods.

    Science.gov (United States)

    Kamalian, Morteza; Prilepsky, Jaroslaw E; Le, Son Thai; Turitsyn, Sergei K

    2016-08-08

    In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.

  7. Numerical study of magneto-optical traps through a hierarchical tree method

    International Nuclear Information System (INIS)

    Oliveira, R.S. de; Raposo, E.P.; Vianna, S.S.

    2004-01-01

    We approach the problem of N atoms in a magneto-optical trap through a hierarchical tree method, using an algorithm originally developed by Barnes and Hut (BH) in the astrophysical context. Such an algorithm numerically takes care of the particle-particle interaction by controlling the approximation level in a way that offers more physical fidelity than the mean-field treatment and considerably less time consumption (τ∼N log 10 N in the hierarchical BH method, in contrast with the τ∼N 2 and τ∼N 3/2 dependences found in direct and mean-field approaches, respectively). Our results reproduce the experimentally reported single-ring orbital mode for N 6 atoms and also find indication of a double-ring structure for N∼10 7 , a situation mimicked by a N=10 6 system with enhanced radiative force, in agreement with experimental observations. We stress that this high-density regime is not accessed by direct integration of the equations of motion, due to the enormous computing times required, and is not suitably described through mean-field approaches, due to the rather unphysical enhancement of the particle-particle interactions and the presence of a spurious numerical grid dependence

  8. Simulation of anisoplanatic imaging through optical turbulence using numerical wave propagation with new validation analysis

    Science.gov (United States)

    Hardie, Russell C.; Power, Jonathan D.; LeMaster, Daniel A.; Droege, Douglas R.; Gladysz, Szymon; Bose-Pillai, Santasri

    2017-07-01

    We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation includes spatially varying warping and blurring. To produce the PSF array, we generate a series of extended phase screens. Simulated point sources are numerically propagated from an array of positions on the object plane, through the phase screens, and ultimately to the focal plane of the simulated camera. Note that the optical path for each PSF will be different, and thus, pass through a different portion of the extended phase screens. These different paths give rise to a spatially varying PSF to produce anisoplanatic effects. We use a method for defining the individual phase screen statistics that we have not seen used in previous anisoplanatic simulations. We also present a validation analysis. In particular, we compare simulated outputs with the theoretical anisoplanatic tilt correlation and a derived differential tilt variance statistic. This is in addition to comparing the long- and short-exposure PSFs and isoplanatic angle. We believe this analysis represents the most thorough validation of an anisoplanatic simulation to date. The current work is also unique that we simulate and validate both constant and varying Cn2(z) profiles. Furthermore, we simulate sequences with both temporally independent and temporally correlated turbulence effects. Temporal correlation is introduced

  9. Irradiance Scintillation Index for a Gaussian Beam Based on the Generalized Modified Atmospheric Spectrum with Aperture Averaged

    Directory of Open Access Journals (Sweden)

    Chao Gao

    2016-01-01

    Full Text Available This paper investigates the aperture-averaged irradiance scintillation index of a Gaussian beam propagating through a horizontal path in weak non-Kolmogorov turbulence. Mathematical expressions are obtained based on the generalized modified atmospheric spectrum, which includes the spectral power law value of non-Kolmogorov turbulence, the finite inner and outer scales of turbulence, and other optical parameters of the Gaussian beam. The numerical results are conducted to analyze the influences of optical parameters on the aperture-averaged irradiance scintillation index for different Gaussian beams. This paper also examines the effects of the irradiance scintillation on the performance of the point-to-point optical wireless communication system with intensity modulation/direct detection scheme.

  10. Wavelength-dependent optical properties of melanosomes in retinal pigmented epithelium and their changes with melanin bleaching: a numerical study.

    Science.gov (United States)

    Song, Weiye; Zhang, Lei; Ness, Steve; Yi, Ji

    2017-09-01

    In this paper, we present the first numerical study on full metrics of wavelength-dependent optical properties of melanosomes in retinal pigmented epithelial (RPE) cells. T-matrix method was used to simulate the spheroidal shapes of mature melanosomes, and the complex refractive index was calculated by a subtractive Kramers-Kronig relation for melanin. The validity of the method was first confirmed by Mie theory, and corroborated by a comparison between visible light and near infrared (NIR) optical coherence tomography (OCT) on human retinal imaging. We also studied the changes of melanosome optical properties due to melanin bleaching by numerically reducing the absorption of melanin. This study implies a unique approach to detect melanin changes specifically in RPE by a spectroscopic contrast of optical coherence tomography.

  11. Functionalized apertures for the detection of chemical and biological materials

    Science.gov (United States)

    Letant, Sonia E.; van Buuren, Anthony W.; Terminello, Louis J.; Thelen, Michael P.; Hope-Weeks, Louisa J.; Hart, Bradley R.

    2010-12-14

    Disclosed are nanometer to micron scale functionalized apertures constructed on a substrate made of glass, carbon, semiconductors or polymeric materials that allow for the real time detection of biological materials or chemical moieties. Many apertures can exist on one substrate allowing for the simultaneous detection of numerous chemical and biological molecules. One embodiment features a macrocyclic ring attached to cross-linkers, wherein the macrocyclic ring has a biological or chemical probe extending through the aperture. Another embodiment achieves functionalization by attaching chemical or biological anchors directly to the walls of the apertures via cross-linkers.

  12. TA17 Design of Wideband Optics I

    Science.gov (United States)

    2014-03-01

    17 8 Preliminary parasitic light analysis ...very low and does not cause important problem in low numerical aperture optical systems. The chalcogenide glasses are compounds formed predominantly...from one or more of the chalcogenide elements, mainly sulphur , selenium and tellurium [1]. The catalog includes chalcogenide glasses produced by

  13. Synthetic Aperture Ladar Imaging and Atmospheric Turbulence

    Science.gov (United States)

    2016-06-09

    coherence factor for every retro-pair Ladar Heater Target 0 200 400 600 800 1000 1200 1400 0 50 100 150 200 250 Time [sec] In te n s it y Heater On...c) 0 200 400 600 800 1000 1200 1400 10 -13 10 -12 10 -11 C n 2 time [sec] 0.5 m 2 m 4 m 6 m 7.5 m DISTRIBUTION A: Distribution approved for...optical synthetic aperture radar,” US6879279 B2, 12- Apr - 2005. [10] Z. W. Barber and J. R. Dahl, “Synthetic aperture ladar imaging demonstrations and

  14. Numerical analysis of fluid resistance exerted on vibrating micro-sphere controlled by optical radiation pressure

    Science.gov (United States)

    Tanaka, Shimpei; Takaya, Yasuhiro; Hayashi, Terutake

    2008-08-01

    With the recent development of microfabrication technology, the measurement technology to evaluate geometric quantities is demanded to assure their accuracy. In order to measure the 3D shape of these microcomponents, a novel nano-CMM system has been developed based on an oscillated probing technique, which uses an optically trapped particle. The particle as a probe is trapped by focused laser light using an objective in the air. The trapped particle is laterally oscillated or circularly at the focal plane of the objective using AOD (acousto-optical deflector). The motion of the trapped particle is induced by a trapping force toward a focal spot and damped by the viscosity of the surrounding atmosphere. The frequency response of the oscillated particle typically agrees with the spring-mass-damper model. On the other hand the response disagrees with the theoretical curve of the model at high frequency range, i.e. 4.6% at 4000 Hz. It is considered the difference is caused from the numerical error for the fluid effect, which is given by the stokes formula 6πηr In this report, we construct a fluid simulation using SMAC method that calculates fluid resistance against an oscillating sphere in noninertial frame of reference. The fluid effect is investigated in order to improve the model of the sphere motion. 2D simulation indicates the same tendency in frequency response of the oscillating sphere with amplitudes of 500 nm in 100-4000 Hz frequency range. 3D simulation could improve the measurement accuracy of nano-CMM system as compared with 2D simulation.

  15. Performance analysis of MRC spatial diversity receiver system for satellite-to-ground downlink optical transmissions

    Science.gov (United States)

    Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Cao, Yubin

    2016-10-01

    The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed turbulence are studied for multiple apertures receiver system. Maximum ratio combining (MRC) technique is considered as a combining scheme to mitigate the atmospheric turbulence under thermal noise limited conditions. Bit-error rate (BER) performances for on-off keying (OOK) modulated direct detection optical communications are analyzed for MRC diversity receptions through an approximation method. To show the net diversity gain of multiple apertures receiver system, BER performances of MRC receiver system are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are also verified by Monte-Carlo (MC) simulations.

  16. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  17. Numerical simulation of the geometrical-optics reduction of CE2 and comparisons to quasilinear dynamics

    Science.gov (United States)

    Parker, Jeffrey B.

    2018-05-01

    Zonal flows have been observed to appear spontaneously from turbulence in a number of physical settings. A complete theory for their behavior is still lacking. Recently, a number of studies have investigated the dynamics of zonal flows using quasilinear (QL) theories and the statistical framework of a second-order cumulant expansion (CE2). A geometrical-optics (GO) reduction of CE2, derived under an assumption of separation of scales between the fluctuations and the zonal flow, is studied here numerically. The reduced model, CE2-GO, has a similar phase-space mathematical structure to the traditional wave-kinetic equation, but that wave-kinetic equation has been shown to fail to preserve enstrophy conservation and to exhibit an ultraviolet catastrophe. CE2-GO, in contrast, preserves nonlinear conservation of both energy and enstrophy. We show here how to retain these conservation properties in a pseudospectral simulation of CE2-GO. We then present nonlinear simulations of CE2-GO and compare with direct simulations of quasilinear (QL) dynamics. We find that CE2-GO retains some similarities to QL. The partitioning of energy that resides in the zonal flow is in good quantitative agreement between CE2-GO and QL. On the other hand, the length scale of the zonal flow does not follow the same qualitative trend in the two models. Overall, these simulations indicate that CE2-GO provides a simpler and more tractable statistical paradigm than CE2, but CE2-GO is missing important physics.

  18. Experimental Evaluation of Springback in Aluminium Alloys Using Optical Measurement and Numerical Analysis

    Science.gov (United States)

    Bhattacharya, R.; Stanton, M.; Dargue, I.; Aylmore, R.; Williams, G.

    2011-05-01

    The aim of this paper is to establish an efficient and effective means of understanding the springback behaviour of a 5xxx-O and a 6xxx-T61 series aluminium alloy. The tooling used for investigating the springback is a small U-channel stamping draw die using two die radii of 8 or 12 mm and a punch radius of 12 mm. The samples were drawn to depths of 50 or 75 mm with a minimum of 5 samples being drawn for each condition. The U-channel samples were then evaluated using an optical scanning technique and the springback values were calculated using a numerical analysis as developed by one of the authors. The comparison of the sidewall springback, sidewall curl and flange springback under different conditions is conducted and the effect of the draw depth and die radius on the final springback is shown. Statistical analyses of both the drawing condition and the scanning technique are conducted to understand the effect of process variation on the results obtained. The 6xxx series shows higher springback values when compared to 5xxx series alloy. An increase in drawing depth suggests higher springback for both the alloys.

  19. Finite elements numerical codes as primary tool to improve beam optics in NIO1

    Science.gov (United States)

    Baltador, C.; Cavenago, M.; Veltri, P.; Serianni, G.

    2017-08-01

    The RF negative ion source NIO1, built at Consorzio RFX in Padua (Italy), is aimed to investigate general issues on ion source physics in view of the full-size ITER injector MITICA as well as DEMO relevant solutions, like energy recovery and alternative neutralization systems, crucial for neutral beam injectors in future fusion experiments. NIO1 has been designed to produce 9 H-beamlets (in a 3x3 pattern) of 15mA each and 60keV, using a three electrodes system downstream the plasma source. At the moment the source is at its early operational stage and only operation at low power and low beam energy is possible. In particular, NIO1 presents a too strong set of SmCo co-extraction electron suppression magnets (CESM) in the extraction grid (EG) that will be replaced by a weaker set of Ferrite magnets. A completely new set of magnets will be also designed and mounted on the new EG that will be installed next year, replacing the present one. In this paper, the finite element code OPERA 3D is used to investigate the effects of the three sets of magnets on beamlet optics. A comparison of numerical results with measurements will be provided where possible.

  20. Numerical investigation into a surface plasmon resonance sensor based on optical fiber microring

    Science.gov (United States)

    Zhao, Chunliu; Wang, Yanru; Wang, Dongning; Ding, Zhewen

    2017-06-01

    A reflective surface plasmon resonance (SPR) sensor based on optical fiber microring is proposed. In such a sensor, plasmons on the outer surface of the metallized channels containing analyte can be excited by a fundamental mode of a thin-core fiber (TCF). The refractive index (RI) sensing can be achieved as the surface plasmons are sensitive to changes in the refrective index of the analyte. Numerical simulation results show that the resonance spectrum shifts toward the shorter wavelength gradually when the analyte refractive index increases from 1.0 to 1.33, whereas it shifts toward the longer wavelength gradually when the analyte refractive index increases from 1.33 to 1.43, and there is a turning point at the refractive index value of 1.33. The highest sensitivity achieved is up to 2.30×103 nm/RIU near the refractive index value of 1.0. Such a compact sensor has potential in gaseous substance monitoring.

  1. Optical Imaging and Microscopy Techniques and Advanced Systems

    CERN Document Server

    Török, Peter

    2007-01-01

    This text on contemporary optical systems is intended for optical researchers and engineers, graduate students and optical microscopists in the biological and biomedical sciences. This second edition contains two completely new chapters. In addition most of the chapters from the first edition have been revised and updated. The book consists of three parts: The first discusses high-aperture optical systems, which form the backbone of optical microscopes. An example is a chapter new in the second edition on the emerging field of high numerical aperture diffractive lenses which seems to have particular promise in improving the correction of lenses. In this part particular attention is paid to optical data storage. The second part is on the use of non-linear optical techniques, including nonlinear optical excitation (total internal reflection fluorescence, second and third harmonic generation and two photon microscopy) and non-linear spectroscopy (CARS). The final part of the book presents miscellaneous technique...

  2. Prediction of Aerosol Optical Depth in West Asia: Machine Learning Methods versus Numerical Models

    Science.gov (United States)

    Omid Nabavi, Seyed; Haimberger, Leopold; Abbasi, Reyhaneh; Samimi, Cyrus

    2017-04-01

    Dust-prone areas of West Asia are releasing increasingly large amounts of dust particles during warm months. Because of the lack of ground-based observations in the region, this phenomenon is mainly monitored through remotely sensed aerosol products. The recent development of mesoscale Numerical Models (NMs) has offered an unprecedented opportunity to predict dust emission, and, subsequently Aerosol Optical Depth (AOD), at finer spatial and temporal resolutions. Nevertheless, the significant uncertainties in input data and simulations of dust activation and transport limit the performance of numerical models in dust prediction. The presented study aims to evaluate if machine-learning algorithms (MLAs), which require much less computational expense, can yield the same or even better performance than NMs. Deep blue (DB) AOD, which is observed by satellites but also predicted by MLAs and NMs, is used for validation. We concentrate our evaluations on the over dry Iraq plains, known as the main origin of recently intensified dust storms in West Asia. Here we examine the performance of four MLAs including Linear regression Model (LM), Support Vector Machine (SVM), Artificial Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS). The Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) and the Dust REgional Atmosphere Model (DREAM) are included as NMs. The MACC aerosol re-analysis of European Centre for Medium-range Weather Forecast (ECMWF) is also included, although it has assimilated satellite-based AOD data. Using the Recursive Feature Elimination (RFE) method, nine environmental features including soil moisture and temperature, NDVI, dust source function, albedo, dust uplift potential, vertical velocity, precipitation and 9-month SPEI drought index are selected for dust (AOD) modeling by MLAs. During the feature selection process, we noticed that NDVI and SPEI are of the highest importance in MLAs predictions. The data set was divided

  3. Numerical Investigations on a Distributed Fiber-Optic Lighting System with an End Reflector

    International Nuclear Information System (INIS)

    Li Shuhua; Gong Huaping; Tu Yumeng; Meng Ying

    2011-01-01

    A novel distributed fiber-optic decorative lighting system with the reflection coating on the extremity of fiber-optic is designed, which used the multi-mold optical fiber made up of large core diameter(Diameter of core and cladding is 105μm and 125μm, respectly). After introducing the distributional optical fiber decorative lighting system briefly, the ralationship between corrosion depth of the optical fiber core and the leakage of fiber-optic has been analyzed with the Rsoft, and then the relationship of the lighting power and the uniformity of lighting power with the leakage rate of optical fiber lamp, the reflective of reflection coating has been discussed.The simulation analysis shows that, when the core diameter is corroded to 80∼85 μm, the leakage rate of optical fiber may achieve 5.0%, which suits the optical fiber decorative lighting. Considering all kinds of factors, when optical fiber lamp's quantity is 20, the coating index of reflection is 95%, optical fiber lamp's leakage of light rate is 5.0%, and the optical fiber lamp's distance is 1 meter, the quite high illuminating power may be achieved, as well as the good lighting uniformity.Finally the experimental study of decorative lighting system is given. And the experimental result is in keeping well with the theory simulation conclusion.

  4. Near Real-Time Use of Optical Remote Sensing and Synthetic Aperture Radar for Response to Central U.S. Flooding in Late April-Early May 2017

    Science.gov (United States)

    Bell, J. R.; Schultz, L. A.; Jones, M.; Molthan, A.; Arko, S. A.; Hogenson, K.; Meyer, F. J.

    2017-12-01

    In late April and early May 2017, heavy rainfall across Missouri led to extensive flooding along the Missouri and Mississippi River basins in the Central United States. Determining the extent of flooding is critical for response organizations to properly deploy personnel and other assets involved in preparedness, mitigation, response, and recovery efforts. The Federal Emergency Management Agency (FEMA) relies on geospatial flood extent data, among other data, to estimate the impacts to population and infrastructure in order to prepare and engage response activities in support of the affected states and communities. To assist FEMA in mapping flood extent in a near real-time, the NASA Earth Science Disasters Program coordinates a multi-NASA center response to provide satellite imagery and products to FEMA during major flood events to supplement their analysis tools and capabilities. Scientists at the NASA Short-term Prediction Research and Transition (SPoRT) Center at Marshall Space Flight Center, who led this particular response, have been working with the Alaska Satellite Facility (ASF) at the University of Alaska Fairbanks to provide synthetic aperture radar (SAR) imagery and derived flood products to FEMA's geospatial response team in support of flooding events. Combined, these efforts helped to provide preliminary flood mapping to FEMA from a broad constellation of remote sensors. The presentation will describe the various products available throughout the response event, post-event collaborations examining these products in comparison to additional modeling and data collection by FEMA, training needs to improve product use, and more efficient methods for data delivery. Lessons learned will highlight opportunities for future work and improvement, and guide other ongoing efforts to develop collaborations that would also support other domestic emergency response activities, such as those led by the National Guard Bureau, which assists individual state Guard units.

  5. Numerical simulation of generation of optical vortices at light beam propagation through a layer of a nematic liquid crystal

    Science.gov (United States)

    Galev, Roman; Kudryavtsev, Alexey; Trashkeev, Sergey

    2017-10-01

    Light beam propagation through an anisotropic liquid crystal medium is numerically simulated. The Maxwell equations are solved by the FDTD method on computational grids with up to 6 . 108 nodes. Propagation of the fundamental mode HE11 of the fiber-optical light guide through a layer of a nematic liquid crystal filling a transverse gap in the optical fiber and containing a disclination. The behavior of the angular moment as a function of the layer thickness and disclination power is studied. System parameters that ensure the most effective generation of twisted light beams are found.

  6. Survey of coded aperture imaging

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1975-01-01

    The basic principle and limitations of coded aperture imaging for x-ray and gamma cameras are discussed. Current trends include (1) use of time varying apertures, (2) use of ''dilute'' apertures with transmission much less than 50%, and (3) attempts to derive transverse tomographic sections, unblurred by other planes, from coded images

  7. Congenital pyriform aperture stenosis

    International Nuclear Information System (INIS)

    Osovsky, Micky; Aizer-Danon, Anat; Horev, Gadi; Sirota, Lea

    2007-01-01

    Nasal airway obstruction is a potentially life-threatening condition in the newborn. Neonates are obligatory nasal breathers. The pyriform aperture is the narrowest, most anterior bony portion of the nasal airway, and a decrease in its cross-sectional area will significantly increase nasal airway resistance. Congenital nasal pyriform aperture stenosis (CNPAS) is a rare, unusual form of nasal obstruction. It should be considered in the differential diagnosis of any neonate or infant with signs and symptoms of upper airway compromise. It is important to differentiate this level of obstruction from the more common posterior choanal stenosis or atresia. CNPAS presents with symptoms of nasal airway obstruction, which are often characterized by episodic apnea and cyclical cyanosis. (orig.)

  8. Aperture center energy showcase

    Energy Technology Data Exchange (ETDEWEB)

    Torres, J. J.

    2012-03-01

    Sandia and Forest City have established a Cooperative Research and Development Agreement (CRADA), and the partnership provides a unique opportunity to take technology research and development from demonstration to application in a sustainable community. A project under that CRADA, Aperture Center Energy Showcase, offers a means to develop exhibits and demonstrations that present feedback to community members, Sandia customers, and visitors. The technologies included in the showcase focus on renewable energy and its efficiency, and resilience. These technologies are generally scalable, and provide secure, efficient solutions to energy production, delivery, and usage. In addition to establishing an Energy Showcase, support offices and conference capabilities that facilitate research, collaboration, and demonstration were created. The Aperture Center project focuses on establishing a location that provides outreach, awareness, and demonstration of research findings, emerging technologies, and project developments to Sandia customers, visitors, and Mesa del Sol community members.

  9. Congenital pyriform aperture stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Osovsky, Micky [Schneider Pediatric Hospital, Department of Neonatology, Petach Tikvah (Israel); Rabin Medical Center, Department of Neonatology, Schneider Children' s Medical Center of Israel, Beilinson Campus, Petah Tikvah (Israel); Aizer-Danon, Anat; Horev, Gadi [Schneider Pediatric Hospital, Department of Pediatric Radiology, Petach Tikvah (Israel); Sirota, Lea [Schneider Pediatric Hospital, Department of Neonatology, Petach Tikvah (Israel)

    2007-01-15

    Nasal airway obstruction is a potentially life-threatening condition in the newborn. Neonates are obligatory nasal breathers. The pyriform aperture is the narrowest, most anterior bony portion of the nasal airway, and a decrease in its cross-sectional area will significantly increase nasal airway resistance. Congenital nasal pyriform aperture stenosis (CNPAS) is a rare, unusual form of nasal obstruction. It should be considered in the differential diagnosis of any neonate or infant with signs and symptoms of upper airway compromise. It is important to differentiate this level of obstruction from the more common posterior choanal stenosis or atresia. CNPAS presents with symptoms of nasal airway obstruction, which are often characterized by episodic apnea and cyclical cyanosis. (orig.)

  10. Broadband light funneling in ultrasubwavelength channels having periodic connected unfilled apertures

    Science.gov (United States)

    Subramania, Ganapathi Subramanian; Brener, Igal; Foteinopoulou, Stavroula

    2017-08-01

    A structure for broadband light funneling comprises a two-dimensional periodic array of connected ultrasubwavelength apertures, each aperture comprising a large sub-aperture that aids in the coupling of the incoming incident light and a small sub-aperture that funnels a significant fraction of the incident light power. The structure possesses all the capabilities of prior extraordinary optical transmission platforms, yet operates nonresonantly on a distinctly different mechanism. The structure demonstrates efficient ultrabroadband funneling of optical power confined in an area as small as .about.(.lamda./500).sup.2, where optical fields are enhanced, thus exhibiting functional possibilities beyond resonant platforms.

  11. Novel large aperture EBCCD

    Science.gov (United States)

    Suzuki, Atsumu; Aoki, Shigeki; Haba, Junji; Sakuda, Makoto; Suyama, Motohiro

    2011-02-01

    A novel large aperture electron bombardment charge coupled device (EBCCD) has been developed. The diameter of its photocathode is 10 cm and it is the first EBCCD with such a large aperture. Its gain shows good linearity as a function of applied voltage up to -12 kV, where the gain is 2400. The spatial resolution was measured using ladder pattern charts. It is better than 2 line pairs/mm, which corresponds to 3.5 times the CCD pixel size. The spatial resolution was also measured with a copper foil pattern on a fluorescent screen irradiated with X-rays (14 and 18 keV) and a 60 keV gamma-ray from an americium source. The result was consistent with the measurement using ladder pattern charts. The output signal as a function of input light intensity shows better linearity than that of image intensifier tubes (IIT) as expected. We could detect cosmic rays passing through a scintillating fiber block and a plastic scintillator as a demonstration for a practical use in particle physics experiments. This kind of large aperture EBCCD can, for example, be used as an image sensor for a detector with a large number of readout channels and is expected to be additionally applied to other physics experiments.

  12. Architectures And Algorithms For Digital Optical Computing Systems With Applications To Numerical Transforms And Partial Differential Equations

    Science.gov (United States)

    Drabik, Timothy J.; Title, Mark A.; Lee, Sing H.

    1986-06-01

    The potential and promise of very high-performance spatial light modulators (SLMs) capable of performing logic operations has motivated the investigation of digital computing systems that possess many desirable attributes of optical systems, namely massive parallelism, global communication at high bandwidths, high reliability, many useful degrees of freedom, robustness in the presence of defects, and simplicity. The parallelism of easily realizable optical single-instruction, multiple-data (SIMD) arrays makes them a natural choice for implementation of highly structured algorithms for the numerical solution of multi-dimensional partial differential equations and the computation of fast numerical transforms. A system comprising several SLMs, an optical read/write memory, and a functional block to perform simple, space-invariant shifts on images has enough flexibility to implement the fastest known methods for partial differential equations (e.g. multi-level methods) as well as a wide variety of numerical transforms (e.g., FFT, Walsh-Hadamard transform, rapid transform), in two or more dimensions, and using either fixed or floating-point arithmetic. Performance is projected at greater than 109 floating-point operations/s using SLMs with resolution 1000 x 1000 operating at 1 MHz frame rates.

  13. Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study

    Science.gov (United States)

    Zhou, Yuan; Tang, Eric; Luo, Jianwen; Yao, Junjie

    2018-01-01

    Temperature mapping during thermotherapy can help precisely control the heating process, both temporally and spatially, to efficiently kill the tumor cells and prevent the healthy tissues from heating damage. Photoacoustic tomography (PAT) has been used for noninvasive temperature mapping with high sensitivity, based on the linear correlation between the tissue's Grüneisen parameter and temperature. However, limited by the tissue's unknown optical properties and thus the optical fluence at depths beyond the optical diffusion limit, the reported PAT thermometry usually takes a ratiometric measurement at different temperatures and thus cannot provide absolute measurements. Moreover, ratiometric measurement over time at different temperatures has to assume that the tissue's optical properties do not change with temperatures, which is usually not valid due to the temperature-induced hemodynamic changes. We propose an optical-diffusion-model-enhanced PAT temperature mapping that can obtain the absolute temperature distribution in deep tissue, without the need of multiple measurements at different temperatures. Based on the initial acoustic pressure reconstructed from multi-illumination photoacoustic signals, both the local optical fluence and the optical parameters including absorption and scattering coefficients are first estimated by the optical-diffusion model, then the temperature distribution is obtained from the reconstructed Grüneisen parameters. We have developed a mathematic model for the multi-illumination PAT of absolute temperatures, and our two-dimensional numerical simulations have shown the feasibility of this new method. The proposed absolute temperature mapping method may set the technical foundation for better temperature control in deep tissue in thermotherapy.

  14. Electromagnetic Formation Flight (EMFF) for Sparse Aperture Arrays

    Science.gov (United States)

    Kwon, Daniel W.; Miller, David W.; Sedwick, Raymond J.

    2004-01-01

    Traditional methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining relative orientation. Additional problems posed by propellant include optical contamination, plume impingement, thermal emission, and vibration excitation. For these missions where control of relative degrees of freedom is important, we consider using a system of electromagnets, in concert with reaction wheels, to replace the consumables. Electromagnetic Formation Flight sparse apertures, powered by solar energy, are designed differently from traditional propulsion systems, which are based on V. This paper investigates the design of sparse apertures both inside and outside the Earth's gravity field.

  15. Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Gerald Forkuor

    2014-07-01

    Full Text Available Crop mapping in West Africa is challenging, due to the unavailability of adequate satellite images (as a result of excessive cloud cover, small agricultural fields and a heterogeneous landscape. To address this challenge, we integrated high spatial resolution multi-temporal optical (RapidEye and dual polarized (VV/VH SAR (TerraSAR-X data to map crops and crop groups in northwestern Benin using the random forest classification algorithm. The overall goal was to ascertain the contribution of the SAR data to crop mapping in the region. A per-pixel classification result was overlaid with vector field boundaries derived from image segmentation, and a crop type was determined for each field based on the modal class within the field. A per-field accuracy assessment was conducted by comparing the final classification result with reference data derived from a field campaign. Results indicate that the integration of RapidEye and TerraSAR-X data improved classification accuracy by 10%–15% over the use of RapidEye only. The VV polarization was found to better discriminate crop types than the VH polarization. The research has shown that if optical and SAR data are available for the whole cropping season, classification accuracies of up to 75% are achievable.

  16. Large aperture nanocomposite deformable mirror technology

    Science.gov (United States)

    Chen, Peter C.; Hale, Richard D.

    2007-12-01

    We report progress in the development of deformable mirrors (DM) using nanocomposite materials. For the extremely large telescopes (ELTs) currently being planned, a new generation of DMs with unprecedented performance is a critical path item. The DMs need to have large apertures (meters), continuous surfaces, and low microroughness. Most importantly, they must have excellent static optical figures and yet be sufficiently thin (1-2 mm) and flexible to function with small, low powered actuators. Carbon fiber reinforced plastics (CFRP) have the potential to fulfill these requirements. However, CFRP mirrors made using direct optical replication have encountered a number of problems. Firstly, it is difficult if not impossible for a CFRP mirror to maintain a good static optical figure if a small number of plies are used, but adding more plies to the laminate tends to make the substrate too thick and stiff. Secondly, direct optical replication requires precision mandrels, the costs of which become prohibitive at multi-meter apertures. We report development of a new approach. By using a combination of a novel support structure, selected fibers, and binding resins infused with nanoparticles, it is possible to make millimeter thick optical mirrors that can both maintain good static optical figures and yet still have the required flexibility for actuation. Development and refinement of a non-contact, deterministic process of fine figuring permits generation of accurate optical surfaces without the need for precision optical mandrels. We present data from tests that have been carried out to demonstrate these new processes. A number of flat DMs have been fabricated, as well as concave and convex DMs in spherical, parabolic, and other forms.

  17. Numerical and experimental study of a high port-density WDM optical packet switch architecture for data centers.

    Science.gov (United States)

    Di Lucente, S; Luo, J; Centelles, R Pueyo; Rohit, A; Zou, S; Williams, K A; Dorren, H J S; Calabretta, N

    2013-01-14

    Data centers have to sustain the rapid growth of data traffic due to the increasing demand of bandwidth-hungry internet services. The current intra-data center fat tree topology causes communication bottlenecks in the server interaction process, power-hungry O-E-O conversions that limit the minimum latency and the power efficiency of these systems. In this paper we numerically and experimentally investigate an optical packet switch architecture with modular structure and highly distributed control that allow configuration times in the order of nanoseconds. Numerical results indicate that the candidate architecture scaled over 4000 ports, provides an overall throughput over 50 Tb/s and a packet loss rate below 10(-6) while assuring sub-microsecond latency. We present experimental results that demonstrate the feasibility of a 16x16 optical packet switch based on parallel 1x4 integrated optical cross-connect modules. Error-free operations can be achieved with 4 dB penalty while the overall energy consumption is of 66 pJ/b. Based on those results, we discuss feasibility to scale the architecture to a much larger port count.

  18. Dynamic Aperture Studies for SPEAR 3

    International Nuclear Information System (INIS)

    Corbett, William

    1998-01-01

    The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm rad FODO lattice with an 18 nm rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity

  19. Dynamic aperture studies for SPEAR 3

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Corbett, J.

    1999-01-01

    The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm·rad FODO lattice with an 18 nm·rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity

  20. Use of Synthetic Aperture Radar in Cold Climate Flood Response

    Science.gov (United States)

    Yarbrough, L. D.

    2009-12-01

    The purpose of this study was to investigate the usefulness of Synthetic Aperture Radar (SAR) satellite images during a cold climate disaster response event. There were 15 European Space Agency (ESA) Advanced Synthetic Aperture Radar ASAR scenes, five Japan Aerospace Exploration Agency (JAXA) Phased Array type L-band Synthetic Aperture Radar (PALSAR) scenes, one RADARSAT2 scene, and numerous optical sensor data. These data were primarily used to indentify floodwater inundation polygons and flow vectors. However, in cold climate flooding, there are complicating factors such as frazil ice, ice jams, and snow-covered, frozen flood waters that are not present during warmer flooding events. The imagery was obtained through the International Charter "Space and Major Disasters.” The Charter aims at providing a unified system of space data acquisition and delivery to those affected by natural or man-made disasters through Authorized Users. Each member agency has committed resources to support the provisions of the Charter, and thus is helping to mitigate the effects of disasters on human life and property. On 25 March 2009, the Charter was activated in response to the flooding along the Red River of the North in the states of North Dakota and Minnesota of the United States. The delivery time of a single SAR scene from a Charter participant was less than 12 hours from the time of acquisition. This expedited service allowed additional time for creating image-based derivations, field checking and delivery to a decision maker or emergency responder. SAR-derived data sets include identification of river ice and saturated ground conditions. This data could be provided to experts in river ice engineering for use in the development of plans to reduce ice jamming, its effect on water levels and additional stresses on river infrastructure. During disaster response applications, SAR data was found to very useful in indentifying open water and the front of ice jams. Using a river

  1. Feature-enhanced synthetic aperture radar imaging

    Science.gov (United States)

    Cetin, Mujdat

    Remotely sensed images have already attained an important role in a wide spectrum of tasks ranging from weather forecasting to battlefield reconnaissance. One of the most promising remote sensing technologies is the imaging radar, known as synthetic aperture radar (SAR). SAR overcomes the nighttime limitations of optical cameras, and the cloud-cover limitations of both optical and infrared imagers. In current systems, techniques such as the polar format algorithm are used to form images from the collected SAR data. These images are then interpreted by human observers. However, the anticipated high data rates and the time critical nature of emerging SAR tasks motivate the use of automated processing or decision-making techniques in information extraction from the reconstructed images. The success of such automated decision-making (e.g. object recognition) depends on how well SAR images exhibit certain features of the underlying scene. Unfortunately, current SAR image formation techniques have no explicit means to highlight features useful for automatic interpretation. Furthermore, these techniques are usually not robust to reduced quality or quantity of data. We have developed a mathematical foundation and associated algorithms for feature-enhanced SAR imaging to address such challenges. Our framework is based on a regularized reconstruction of the scattering field which combines a tomographic model of the SAR observation process with prior information regarding the nature of the features of interest. We demonstrate the inclusion of prior information through a variety of non-quadratic potential functions. Efficient and robust numerical solution of the optimization problems posed in our framework is achieved through novel extensions of half-quadratic regularization methods to the complex-valued SAR problem. We have established a methodology for quantitative evaluation of a SAR image formation technique based on recognition-oriented features. Through qualitative and

  2. Numerical simulation of laser beam interaction with a liquid crystal medium in a miniature fiber-optical system

    Science.gov (United States)

    Galev, Roman; Kudryavtsev, Alexey; Trashkeev, Sergey

    2017-10-01

    Laser beam propagation through an integrated fiber-optical system including a miniature cavity filled with a liquid crystal (LC) is numerically simulated. Two different shapes of the cavity are considered: a transverse cylindrical hole and a gap between the parallel end faces of the optical fiber. In both cases, the director field distribution in the LC volume includes a linear singularity (disclination). The Maxwell equations for an anisotropic continuous medium are solved by the FDTD method. Nonlinear effects of beam interaction with the LC medium are ignored. The simulations provide the data on the intensity distribution and direction of the laser beam that passed through the microscopic LC volume. The portions of laser radiation lost due to scattering into the ambient medium and remaining inside the optical fiber are calculated. Based on the calculations, it may be concluded that a significant fraction of the beam energy in the case with the cavity shaped as a transverse hole is scattered owing to focusing and diffraction induced by surface curvature and the finite transverse size of the hole. Moreover, there are regions with elevated energy density in the optical fiber behind the hole, which may lead to fiber fracture under the ultimate load possible in the pulsed mode. In contrast to the system with a hole, the deflection of beam propagation from a straight line in the fiber-optical system with a gap is fairly small. It is noted that beam-LC interaction can lead to the emergence of new fiber-optical modes in the transmitted beam.

  3. A High-Resolution, Reproducible Technique for Measuring Fracture Aperture in Centimeter-Scale Rock Cores

    Science.gov (United States)

    Ameli, P.; Detwiler, R. L.; Elkhoury, J. E.

    2011-12-01

    Mechanical and chemical processes can alter fracture surfaces and their corresponding aperture. Understanding the relationship between physicochemical processes and the alteration of fracture apertures is fundamental to quantifying the evolution of transport properties in the subsurface. Therefore, relevant experiments that quantify these processes require the ability to measure fracture surfaces and reconstruct fracture aperture fields at high resolutions before and after experiments. Furthermore, to meaningfully compare measured aperture fields before and after experiments, it is critical that the measurements are reproducible to ensure that differences in fracture apertures are due to physical changes and not data acquisition or reconstruction errors. Energy transmission techniques can provide direct, non-destructive measurement of fracture apertures. However, while X-ray CT is capable of μm-scale resolution, at those resolutions, it is limited to millimeter-scale cores. Alternatively, light absorbance techniques are limited to transparent analogs or casts of real rocks. Modern surface-profilometry instruments provide the ability to measure surface topography at high resolution, but it is difficult to reconstruct fracture apertures from the measured surfaces. We present a rigorous approach for using high-resolution measurements of surface topography to reproducibly reconstruct fracture aperture fields. An optical profilometer (NANOVEA ST400) provides surface topography measurements averaged over a spot size of 8 μm with spatial accuracy of ±0.1 μm and elevation accuracy of ±0.9 μm. Numerically mating the measured surfaces requires accurate, reproducible alignment of the two fracture halves in three-dimensional space. To facilitate alignment and provide a means for checking the alignment of scanned surfaces, we fabricated a jig for securing the halves of the core to the profilometer stage. The jig consists of two mated blocks of precision-milled steel that

  4. Quasi-optical converters for high-power gyrotrons: a brief review of physical models, numerical methods and computer codes

    Energy Technology Data Exchange (ETDEWEB)

    Sabchevski, S [Institute of Electronics, Bulgarian Academy of Sciences, BG-1784 Sofia (Bulgaria); Zhelyazkov, I [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria); Benova, E [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria); Atanassov, V [Institute of Electronics, Bulgarian Academy of Sciences, BG-1784 Sofia (Bulgaria); Dankov, P [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria); Thumm, M [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institute for Pulsed Power and Microwave Technology, D-76021 Karlsruhe (Germany); Arnold, A [University of Karlsruhe, Institute of High Frequency Techniques and Electronics, D-76128 Karlsruhe (Germany); Jin, J [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institute for Pulsed Power and Microwave Technology, D-76021 Karlsruhe (Germany); Rzesnicki, T [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institute for Pulsed Power and Microwave Technology, D-76021 Karlsruhe (Germany)

    2006-07-15

    Quasi-optical (QO) mode converters are used to transform electromagnetic waves of complex structure and polarization generated in gyrotron cavities into a linearly polarized, Gaussian-like beam suitable for transmission. The efficiency of this conversion as well as the maintenance of low level of diffraction losses are crucial for the implementation of powerful gyrotrons as radiation sources for electron-cyclotron-resonance heating of fusion plasmas. The use of adequate physical models, efficient numerical schemes and up-to-date computer codes may provide the high accuracy necessary for the design and analysis of these devices. In this review, we briefly sketch the most commonly used QO converters, the mathematical base they have been treated on and the basic features of the numerical schemes used. Further on, we discuss the applicability of several commercially available and free software packages, their advantages and drawbacks, for solving QO related problems.

  5. Quasi-optical converters for high-power gyrotrons: a brief review of physical models, numerical methods and computer codes

    International Nuclear Information System (INIS)

    Sabchevski, S; Zhelyazkov, I; Benova, E; Atanassov, V; Dankov, P; Thumm, M; Arnold, A; Jin, J; Rzesnicki, T

    2006-01-01

    Quasi-optical (QO) mode converters are used to transform electromagnetic waves of complex structure and polarization generated in gyrotron cavities into a linearly polarized, Gaussian-like beam suitable for transmission. The efficiency of this conversion as well as the maintenance of low level of diffraction losses are crucial for the implementation of powerful gyrotrons as radiation sources for electron-cyclotron-resonance heating of fusion plasmas. The use of adequate physical models, efficient numerical schemes and up-to-date computer codes may provide the high accuracy necessary for the design and analysis of these devices. In this review, we briefly sketch the most commonly used QO converters, the mathematical base they have been treated on and the basic features of the numerical schemes used. Further on, we discuss the applicability of several commercially available and free software packages, their advantages and drawbacks, for solving QO related problems

  6. Diagnostic for dynamic aperture

    Energy Technology Data Exchange (ETDEWEB)

    Morton, P.L.; Pellegrin, J.L.; Raubenheimer, T.; Rivkin, L.; Ross, M.; Ruth, R.D.; Spence, W.L.

    1985-04-01

    In large accelerators and low beta colliding beam storage rings, the strong sextupoles, which are required to correct the chromatic effects, produce strong nonlinear forces which act on particles in the beam. In addition in large hadron storage rings the superconducting magnets have significant nonlinear fields. To understand the effects of these nonlinearities on the particle motion there is currently a large theoretical effort using both analytic techniques and computer tracking. This effort is focused on the determination of the 'dynamic aperture' (the stable acceptance) of both present and future accelerators and storage rings. A great deal of progress has been made in understanding nonlinear particle motion, but very little experimental verification of the theoretical results is available. In this paper we describe 'dynamic tracking', a method being studied at the SPEAR storage ring, which can be used to obtain experimental results which are in a convenient form to be compared with the theoretical predictions.

  7. Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk

    Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B......, it is demonstrated through theoretical considerations that the compound effect achieved is close to a theoretical maximum for the amount of compounding attainable and using a -pitch convex array transducer, the first in-vivo images are created. The computational demands for an implementation are massive...... and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging...

  8. Transionospheric synthetic aperture imaging

    CERN Document Server

    Gilman, Mikhail; Tsynkov, Semyon

    2017-01-01

    This landmark monograph presents the most recent mathematical developments in the analysis of ionospheric distortions of SAR images and offers innovative new strategies for their mitigation. As a prerequisite to addressing these topics, the book also discusses the radar ambiguity theory as it applies to synthetic aperture imaging and the propagation of radio waves through the ionospheric plasma, including the anisotropic and turbulent cases. In addition, it covers a host of related subjects, such as the mathematical modeling of extended radar targets (as opposed to point-wise targets) and the scattering of radio waves off those targets, as well as the theoretical analysis of the start-stop approximation, which is used routinely in SAR signal processing but often without proper justification. The mathematics in this volume is clean and rigorous – no assumptions are hidden or ambiguously stated. The resulting work is truly interdisciplinary, providing both a comprehensive and thorough exposition of the field,...

  9. Numerical Analysis of an All-optical Logic XOR gate based on an active MZ interferometer

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Mørk, Jesper; Fjelde, T.

    2002-01-01

    are investigated numerically for a Mach-Zehnder interferometer (MZI) based XOR gate. For bit-rates up to 40 Gb/s, the synchronization tolerance of a MZI XOR gate is determined by the pulse width for RZ format. For the NRZ format, the tolerance decreases as the rise/fall-time approaches the timeslot. The gate...

  10. Numerical examination of acousto-optic Bragg interactions for profiled lightwaves using a transfer function formalism

    Science.gov (United States)

    Chatterjee, Monish R.; Almehmadi, Fares S.

    2013-10-01

    Classically, acousto-optic (AO) interactions comprise scattering of photons by energetic phonons into higher and lower orders. Standard weak interaction theory describes diffraction in the Bragg regime as the propagation of a uniform plane wave of light through a uniform plane wave of sound, resulting in the well-known first- and zeroth-order diffraction. Our preliminary investigation of the nature of wave diffraction and photon scattering from a Bragg cell under intensity feedback with profiled light beams indicates that the diffracted (upshifted photon) light continues to maintain the expected (uniform plane wave) behavior versus the optical phase shift in the cell within a small range of the Q-parameter, and at larger Qs, begins to deviate. Additionally, we observe the asymptotic axial shift of the beam center as predicted by the transfer function formalism.

  11. Numerical analysis of first-order acousto-optic Bragg diffraction of profiled optical beams using open-loop transfer functions

    Science.gov (United States)

    Chatterjee, Monish R.; Almehmadi, Fares S.

    2014-03-01

    In standard acousto-optic Bragg analysis, the incident light and sound beams are assumed to be uniform plane waves (with constant profiles) leading to the results based on standard weak interaction theory. As a follow-up to earlier work dealing with nonuniform incident optical beams, we revisit the problem of Bragg diffraction under nonuniform profiles, and include Gaussian, third-order Hermite-Gaussian, and zeroth-order Bessel profiles in our investigation, along with a few others. The first-order diffracted beam is examined (using a transfer function formalism based on angular spectra) under several parametric limits [such as the Klein-Cook parameter Q, the effective profile width, and the optical phase-shift parameter (α) in the sound cell]. Wherever feasible, the numerical results are compared with analytic theory. The scattered first-order profile output versus the optical phase-shift appears to maintain behavior similar to the known first-order characteristics (sin2 in intensity) encountered for the uniform incident beam case. It is observed, however, that such conformity exists seemingly only at relatively small values of Q (typically about 20 to 50). At higher Qs, on the other hand (where one would otherwise expect behavior closer to standard Bragg theory based on large Qs), it is found that the first-order intensity deviates substantially from the expected sin2- (or related) pattern. This deviation actually becomes more severe at even higher Qs. Additionally, the output profiles at higher Qs are also found to be distorted relative to the incident profiles. These results, though anomalous, are nevertheless generally compatible with earlier studies. Based on the transfer function theory, it is also known that for very large optical phase shifts (i.e., when α goes to infinity), the scattered first-order output for a Gaussian profile undergoes an axial (spatial) shift past the output plane of the sound cell. This predicted result is corroborated in our

  12. Adaptive coded aperture imaging: progress and potential future applications

    Science.gov (United States)

    Gottesman, Stephen R.; Isser, Abraham; Gigioli, George W., Jr.

    2011-09-01

    Interest in Adaptive Coded Aperture Imaging (ACAI) continues to grow as the optical and systems engineering community becomes increasingly aware of ACAI's potential benefits in the design and performance of both imaging and non-imaging systems , such as good angular resolution (IFOV), wide distortion-free field of view (FOV), excellent image quality, and light weight construct. In this presentation we first review the accomplishments made over the past five years, then expand on previously published work to show how replacement of conventional imaging optics with coded apertures can lead to a reduction in system size and weight. We also present a trade space analysis of key design parameters of coded apertures and review potential applications as replacement for traditional imaging optics. Results will be presented, based on last year's work of our investigation into the trade space of IFOV, resolution, effective focal length, and wavelength of incident radiation for coded aperture architectures. Finally we discuss the potential application of coded apertures for replacing objective lenses of night vision goggles (NVGs).

  13. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    Science.gov (United States)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  14. Numerical Study on Infrared Optical Property of Diffuse Coal Particles in Mine Fully Mechanized Working Combined with CFD Method

    Directory of Open Access Journals (Sweden)

    Wen-Zheng Wang

    2015-01-01

    Full Text Available Coal dust seriously threatens the safety and occupational health of coal mines. Numerical simulation research on the infrared radiation characteristics of diffused coal dust is carried out in fully mechanized working faces based on the optical monitoring problem of dust particles in mine atmospheric environments. The CFD method is applied to obtain the law of dust transport and distribution. Combined with Mie scattering model, the infrared radiation change characteristics and spectral selection of diffused coal dust particles are simulated and analyzed along the working face. The comparison results show the following: the attenuation and scattering characteristics of mine dust particles system are first enhanced, and then they weaken as the distance from dust source increases. The infrared attenuation of mine dust at the center of the vertical cross-section is generally greater than that at the roof and floor in the same location. The dispersion of mine dust directly determines the attenuation contribution of respirable dust to total dust. Moreover, the infrared absorption effect of functional groups in coal causes the infrared attenuation effect of coal dust to have obvious optical selectivity along the roadway, the existing optical “window.”

  15. Numerical study of optical-cavity misalignment effects for a far-infrared FEL

    CERN Document Server

    Sobajima, M; Yokoyama, M; Oda, F; Kawai, M; Miura, H

    2002-01-01

    A far-infrared FEL will be newly installed in the IR FEL Research Center at the Science University of Tokyo (FEL-SUT) in 2002. In this study, optical cavity misalignment effects for the far-infrared FEL are researched by using the simulation code that has been developed at Kawasaki Heavy Industries, Ltd. Results show not only cavity losses but also the gain reduction by the tilt and the offset of the mirror and the offset of the electron beam. The required alignment accuracy is also obtained in this study.

  16. Coded aperture tomography revisited

    International Nuclear Information System (INIS)

    Bizais, Y.; Rowe, R.W.; Zubal, I.G.; Bennett, G.W.; Brill, A.B.

    1983-01-01

    Coded aperture (CA) Tomography never achieved wide spread use in Nuclear Medicine, except for the degenerate case of Seven Pinhole tomagraphy (7PHT). However it enjoys several attractive features (high sensitivity and tomographic ability with a statis detector). On the other hand, resolution is usually poor especially along the depth axis and the reconstructed volume is rather limited. Arguments are presented justifying the position that CA tomography can be useful for imaging time-varying 3D structures, if its major drawbacks (poor longitudinal resolution and difficulty in quantification) are overcome. Poor results obtained with 7PHT can be explained by both a very limited angular range sampled and a crude modelling of the image formation process. Therefore improvements can be expected by the use of a dual-detector system, along with a better understanding of its sampling properties and the use of more powerful reconstruction algorithms. Non overlapping multipinhole plates, because they do not involve a decoding procedure, should be considered first for practical applications. Use of real CA should be considered for cases in which non overlapping multipinhole plates do not lead to satisfactory solutions. We have been and currently are carrying out theoretical and experimental works, in order to define the factors which limit CA imaging and to propose satisfactory solutions for Dynamic Emission Tomography

  17. Numerical computations and optical diagnostics of unsteady partially premixed methane/air flames

    Energy Technology Data Exchange (ETDEWEB)

    Nogenmyr, K.J.; Bai, X.S. [Division of Fluid Mechanics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Kiefer, J. [Lehrstuhl fuer Technische Thermodynamik and Erlangen Graduate School in Advanced Optical Technologies, Universitaet Erlangen-Nuernberg, Am Weichselgarten 8, D-91058 Erlangen (Germany); Li, Z.S.; Alden, M. [Division of Combustion Physics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden)

    2010-05-15

    The structures and dynamics of unsteady laminar partially premixed methane/air Bunsen flames are studied by means of numerical simulations, OH and CH PLIF imaging, and high speed chemiluminescence imaging employing a high framing speed intensified charge coupled device camera. The Bunsen burner has a diameter of 22 mm. Rich methane/air mixtures with an equivalence ratio of 1.5 are injected from the burner into atmosphere at different flow speeds ranging from 0.77 to 1.7 m/s, with Reynolds numbers based on the nozzle flow ranging from 1100 to 2500. The numerical simulations are based on a two-scalar flamelet manifold tabulation approach. Detailed chemistry is used to generate the flamelet manifold tabulation which relates the species concentrations, reaction rates, temperature and density to a distance function G and mixture fraction Z. Two distinct reaction zones are identified using CH and OH PLIF imaging and numerical simulations; one inner reaction zone corresponds to premixed flames on the rich side of the mixture and one outer reaction zone corresponds to mixing controlled diffusion flames on the lean side of the mixture. Under normal gravity conditions both the inner premixed flames and the outer diffusion flames are unsteady. The outer diffusion flames oscillate with a flickering frequency of about 15 Hz, which slightly increases with the burner exit velocity. The inner premixed flames are more random with much more small-scale wrinkling structures. Under zero gravity conditions the outer diffusion flames are stable whereas the inner premixed flames are unstable and highly wrinkled. It appears that the outer diffusion flames are governed by the Rayleigh-Taylor instability whereas the inner premixed flames are dictated by Landau-Darrieus instability. The two-scalar flamelet approach is shown to capture the basic structures and dynamics of the investigated unsteady partially premixed flames. (author)

  18. Synthetic aperture ladar concept for infrastructure monitoring

    Science.gov (United States)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Bergeron, Alain

    2014-10-01

    Long range surveillance of infrastructure is a critical need in numerous security applications, both civilian and military. Synthetic aperture radar (SAR) continues to provide high resolution radar images in all weather conditions from remote distances. As well, Interferometric SAR (InSAR) and Differential Interferometric SAR (D-InSAR) have become powerful tools adding high resolution elevation and change detection measurements. State of the art SAR systems based on dual-use satellites are capable of providing ground resolutions of one meter; while their airborne counterparts obtain resolutions of 10 cm. D-InSAR products based on these systems could produce cm-scale vertical resolution image products. Deformation monitoring of railways, roads, buildings, cellular antennas, power structures (i.e., power lines, wind turbines, dams, or nuclear plants) would benefit from improved resolution, both in the ground plane and vertical direction. The ultimate limitation to the achievable resolution of any imaging system is its wavelength. State-of-the art SAR systems are approaching this limit. The natural extension to improve resolution is to thus decrease the wavelength, i.e. design a synthetic aperture system in a different wavelength regime. One such system offering the potential for vastly improved resolution is Synthetic Aperture Ladar (SAL). This system operates at infrared wavelengths, ten thousand times smaller than radar wavelengths. This paper presents a laboratory demonstration of a scaled-down infrastructure deformation monitoring with an Interferometric Synthetic Aperture Ladar (IFSAL) system operating at 1.5 μm. Results show sub-millimeter precision on the deformation applied to the target.

  19. Clean image synthesis and target numerical marching for optical imaging with backscattering light.

    Science.gov (United States)

    Xu, Min; Pu, Yang; Wang, Wubao

    2011-03-14

    Scanning backscattering imaging and independent component analysis (ICA) are used to probe targets hidden in the subsurface of a turbid medium. A new correction procedure is proposed and used to synthesize a "clean" image of a homogeneous host medium numerically from a set of raster-scanned "dirty" backscattering images of the medium with embedded targets. The independent intensity distributions on the surface of the medium corresponding to individual targets are then unmixed using ICA of the difference between the set of dirty images and the clean image. The target positions are localized by a novel analytical method, which marches the target to the surface of the turbid medium until a match with the retrieved independent component is accomplished. The unknown surface property of the turbid medium is automatically accounted for by this method. Employing clean image synthesis and target numerical marching, three-dimensional (3D) localization of objects embedded inside a turbid medium using independent component analysis in a backscattering geometry is demonstrated for the first time, using as an example, imaging a small piece of cancerous prostate tissue embedded in a host consisting of normal prostate tissue.

  20. Orthonormal polynomials describing polarization aberration for M-fold optical systems.

    Science.gov (United States)

    Xu, Xiangru; Huang, Wei; Xu, Mingfei

    2016-03-07

    Polarization aberration (PA) is a serious issue that affects imaging quality for optical systems with high numerical aperture. Numerous studies have focused on the distribution rule of PA on the pupil, but the field remains poorly studied. We previously developed an orthonormal set of polynomials to reveal the pupil and field dependences of PA in rotationally symmetric optical systems. However, factors, such as intrinsic birefringence of cubic crystalline material in deep ultraviolet optics and tolerance, break the rotational symmetry of PA. In this paper, we extend the polynomials from rotationally symmetric to M-fold to describe the PA of M-fold optical systems. Two examples are presented to verify the polynomials.

  1. Bistatic synthetic aperture radar

    Science.gov (United States)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  2. Evaluation of thermal behavior during laser metal deposition using optical pyrometry and numerical simulation

    Science.gov (United States)

    Dubrov, Alexander V.; Zavalov, Yuri N.; Mirzade, Fikret K.; Dubrov, Vladimir D.

    2017-06-01

    3D mathematical model of non-stationary processes of heat and mass transfer was developed for additive manufacturing of materials by direct laser metal deposition. The model takes into account self-consistent dynamics of free surface, temperature fields, and melt flow speeds. Evolution of free surface is modelled using combined Volume of Fluid and Level-Set method. Article presents experimental results of the measurement of temperature distribution in the area of bead formation by direct laser metal deposition, using multi-channel pyrometer, that is based on two-color sensors line. A comparison of experimental data with the results of numerical modeling was carried out. Features of thermal dynamics on the surface of melt pool have been detected, which were caused by thermo-capillary convection.

  3. Large aperture components for solid state laser fusion systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1978-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality, resistance to damage, and overall performance of the several major components--amplifiers, Faraday isolators, spatial filters--in each amplifier train. Component development centers about achieving (1) highest functional material figure of merit, (2) best optical quality, and (3) maximum resistance to optical damage. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore Laboratory. Shiva comprises twenty amplifiers, each of 20 cm output clear aperture. Terawatt beams from these amplifiers are focused through two opposed, nested clusters of f/6 lenses onto such targets. Design requirements upon the larger aperture Nova laser components, up to 35 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  4. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB....... The first part of the scientific contribution investigates an implementation of pulse inversion for THI on the experimental ultrasound system SARUS. The technique is initially implemented for linear array transducers and then expanded for convex array transducers. The technique is evaluated based on spatial...

  5. Compounding in synthetic aperture imaging

    DEFF Research Database (Denmark)

    Hansen, J. M.; Jensen, J. A.

    2012-01-01

    from multiple spherical emissions to synthesize multiple transmit and receive apertures, corresponding to imaging the tissue from multiple directions. The many images are added incoherently, to produce a single compound image. Using a 192-element, 3.5-MHz, λ-pitch transducer, it is demonstrated from...... tissue-phantom measurements that the speckle is reduced and the contrast resolution improved when applying synthetic aperture compound imaging. At a depth of 4 cm, the size of the synthesized apertures is optimized for lesion detection based on the speckle information density. This is a performance...... measure for tissue contrast resolution which quantifies the tradeoff between resolution loss and speckle reduction. The speckle information density is improved by 25% when comparing synthetic aperture compounding to a similar setup for compounding using dynamic receive focusing. The cystic resolution...

  6. Numerical investigations of signal-spectrum shaping based on conformal profile theory in optical parametric chirped pulse amplification

    Science.gov (United States)

    Li, Wenqi; Yu, Lianghong; Peng, Chun; Liang, Xiaoyan

    2017-11-01

    We proposed a theoretical description and numerical model of signal-spectrum shaping based on conformal profile theory and the three-dimensional coupling wave equations for improving the performance of optical parametric chirped pulse amplification (OPCPA). Using our model, we executed quantitative simulations of signal-spectrum shaping and compared the differences of spatiotemporal amplification characteristics between a shaped signal-spectrum and Gaussian signal-spectrum of an OPCPA based on LiB3O5 near 800 nm. By comparison, we found that the conversion efficiency from pump to signal can be dramatically boosted via signal-spectrum shaping. Meanwhile the amplified-spectrum profile, as well as the Fourier-limited pulse, can be improved significantly. We also found that the spatial spot profiles, for injecting a shaped signal or a Gaussian signal in OPCPA, are nearly the same before the saturation regime and at the maximum conversion efficiency or output energy.

  7. Space-resolved characterization of high frequency atmospheric-pressure plasma in nitrogen, applying optical emission spectroscopy and numerical simulation

    International Nuclear Information System (INIS)

    Rajasekaran, Priyadarshini; Ruhrmann, Cornelia; Bibinov, Nikita; Awakowicz, Peter

    2011-01-01

    Averaged plasma parameters such as electron distribution function and electron density are determined by characterization of high frequency (2.4 GHz) nitrogen plasma using both experimental methods, namely optical emission spectroscopy (OES) and microphotography, and numerical simulation. Both direct and step-wise electron-impact excitation of nitrogen emissions are considered. The determination of space-resolved electron distribution function, electron density, rate constant for electron-impact dissociation of nitrogen molecule and the production of nitrogen atoms, applying the same methods, is discussed. Spatial distribution of intensities of neutral nitrogen molecule and nitrogen molecular ion from the microplasma is imaged by a CCD camera. The CCD images are calibrated using the corresponding emissions measured by absolutely calibrated OES, and are then subjected to inverse Abel transformation to determine space-resolved intensities and other parameters. The space-resolved parameters are compared, respectively, with the averaged parameters, and an agreement between them is established. (paper)

  8. Superresolution Imaging of Optical Vortices in a Speckle Pattern

    Science.gov (United States)

    Pascucci, Marco; Tessier, Gilles; Emiliani, Valentina; Guillon, Marc

    2016-03-01

    We characterize, experimentally, the intensity minima of a polarized high numerical aperture optical speckle pattern and the topological charges of the associated optical vortices. The negative of a speckle pattern is imprinted in a uniform fluorescent sample by photobleaching. The remaining fluorescence is imaged with superresolution stimulated emission depletion microscopy, which reveals subdiffraction fluorescence confinement at the center of optical vortices. The intensity statistics of saturated negative speckle patterns are predicted and measured. The charge of optical vortices is determined by controlling the handedness of circular polarization, and the creation or annihilation of a vortex pair along propagation is shown.

  9. Micro-CT image calibration to improve fracture aperture measurement

    Directory of Open Access Journals (Sweden)

    Hamed Lamei Ramandi

    2016-11-01

    Full Text Available A novel technique for the accurate measurement and adjustment of fracture apertures in digital images of fractured media is presented. We utilize X-ray micro-computed tomography to image a highly fractured coal sample and collect high-resolution scanning electron microscope (SEM images from the samples surface to facilitate segmentation of coal fractures. The gray-scale micro-CT values at the mid-point of fractures are obtained and correlated to aperture sizes measured with the higher resolution SEM data. Afterwards, the micro-CT images are upsampled to enable assignment of aperture sizes smaller than the image resolution. We initially segment the coal image, upsample the segmented image, and then re-calibrate the fracture aperture sizes. The final calibrated segmented image contains the fracture network acquired from the micro-CT data with precise aperture sizes assigned based on the high-resolution SEM data. To illustrate the importance of accurate aperture measurement, two coal subsets are tested. The permeabilities before and after applying the calibration method are measured. The results show a significant change in numerical permeabilities after applying the calibration method. This indicates that a large amount of information is potentially omitted when utilizing standard image segmentation tools to segment fractured media.

  10. Experimental and numerical optical characterization of plasmonic copper nanoparticles embedded in ZnO fabricated by ion implantation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Le, Khai Q. [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh City (Viet Nam); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia); Nguyen, Hieu P.T. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102 (United States); Ngo, Quang Minh [Institute of Material Sciences, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Canimoglu, Adil [Nigde University, Faculty of Arts and Sciences, Physics Department, Nigde (Turkey); Can, Nurdogan, E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2016-06-05

    Here we describe the successfully fabrication of metal nanoparticle crystals by implanting copper (Cu) ions into single zinc oxide (ZnO) crystals with ion energy of 400 keV at ion doses of 1 × 10{sup 16} to 1 × 10{sup 17} ions/cm{sup 2}. After implantation and post-annealing treatment, the Cu implanted ZnO produces a broad range of luminescence emissions, ranging from green to yellow. A green luminescence peak at 550 nm could be ascribed to the isolated Cu ions. The changes in luminescence emission bands between the initial implant and annealed suggest that the implants give rise to clustering Cu nanoparticles in the host matrix but that the annealing process dissociates these. Numerical modelling of the Cu nanoparticles was employed to simulate their optical properties including the extinction cross section, electron energy loss spectroscopy and cathodoluminescence. We demonstrate that the clustering of nanoparticles generates Fano resonances corresponding to the generation of multiple resonances, while the isolation of nanoparticles results in intensity amplification. - Highlights: • We present the fabrication of metal nanoparticle crystals by implanting Cu into ZnO. • The luminescence properties were studied at different annealing temperature. • Numerical modelling of the Cu nanoparticles was employed. • We demonstrate that the clustering of nanoparticles generates Fano resonances.

  11. Thermal front propagation in variable aperture fracture–matrix system

    Indian Academy of Sciences (India)

    Keywords. Thermal front; variable aperture; rock–matrix; geothermal reservoir; numerical model, liquid dominated. 1. Introduction. Rapid commercialization in recent years has created a considerable increase in the demand for energy. This has put excessive strain on the conventional power generation units (thermal, hydro.

  12. The study of optimization on process parameters of high-accuracy computerized numerical control polishing

    Science.gov (United States)

    Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu

    2017-09-01

    Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.

  13. Laser-optical and numerical Research of the flow inside the lubricating gap of a journal bearing model

    Directory of Open Access Journals (Sweden)

    Riedel M.

    2013-04-01

    Full Text Available The laser-optical research of the flow inside the lubricating gap of a journal bearing model is one important task in a larger overall project. The long-term objective is the development of an easy-to-work calculation tool which delivers information about the causes and consequences of cavitation processes in hydrodynamically lubricated journal bearings. Hence, it will be possible to find statements for advantageous and disadvantageous geometrical shapes of the bushings. In conclusion such a calculation tool can provide important insights for the construction and design of future journal bearings. Current design programs are based on a two-dimensional approach for the lubricating gap. The first dimension is the breath of the bearing and the second dimension is the circumferential direction of the bearing. The third dimension, the expansion of the gap in radial direction, will be neglected. Instead of an exact resolution of the flow pattern inside the gap, turbulence models are in use. Past studies on numerical and experimental field have shown that inside the lubricating gap clearly organized and predominantly laminar flow structures can be found. Thus, for a detailed analysis of the reasons and effects of cavitation bubbles, a three-dimensional resolution of the lubricating gap is inevitable. In addition to the qualitative evaluation of the flow with visualization experiments it is possible to perform angle-based velocity measurements inside the gap with the help of a triggered Laser-Doppler- Velocimeter (LDV. The results of these measurements are used to validate three-dimensional CFD flow simulations, and to optimize the numerical mesh structure and the boundary conditions. This paper will present the experimental setup of the bearing model, some exemplary results of the visualization experiments and LDV measurements as well as a comparison between experimental and numerical results.

  14. Laser-optical and numerical Research of the flow inside the lubricating gap of a journal bearing model

    Science.gov (United States)

    Nobis, M.; Stücke, P.; Schmidt, M.; Riedel, M.

    2013-04-01

    The laser-optical research of the flow inside the lubricating gap of a journal bearing model is one important task in a larger overall project. The long-term objective is the development of an easy-to-work calculation tool which delivers information about the causes and consequences of cavitation processes in hydrodynamically lubricated journal bearings. Hence, it will be possible to find statements for advantageous and disadvantageous geometrical shapes of the bushings. In conclusion such a calculation tool can provide important insights for the construction and design of future journal bearings. Current design programs are based on a two-dimensional approach for the lubricating gap. The first dimension is the breath of the bearing and the second dimension is the circumferential direction of the bearing. The third dimension, the expansion of the gap in radial direction, will be neglected. Instead of an exact resolution of the flow pattern inside the gap, turbulence models are in use. Past studies on numerical and experimental field have shown that inside the lubricating gap clearly organized and predominantly laminar flow structures can be found. Thus, for a detailed analysis of the reasons and effects of cavitation bubbles, a three-dimensional resolution of the lubricating gap is inevitable. In addition to the qualitative evaluation of the flow with visualization experiments it is possible to perform angle-based velocity measurements inside the gap with the help of a triggered Laser-Doppler- Velocimeter (LDV). The results of these measurements are used to validate three-dimensional CFD flow simulations, and to optimize the numerical mesh structure and the boundary conditions. This paper will present the experimental setup of the bearing model, some exemplary results of the visualization experiments and LDV measurements as well as a comparison between experimental and numerical results.

  15. Optics for SIERRA

    Data.gov (United States)

    National Aeronautics and Space Administration — To demonstrate a massively parallel optical ray trace to enable the design and analysis of extremely large aperture optical systems. This, in turn, enables...

  16. Advancements in Optical Properties of Thermochromic VO 2 Films through Experimental and Numerical Investigations

    Science.gov (United States)

    Miller, Mark J.

    The Department of Energy reports that buildings consume more than 40% of primary energy in the U.S. and that this trend will continue for the foreseeable future. Furthermore, windows constitute a major path for energy losses from buildings and therefore also present a significant opportunity for efficiency improvement and waste reduction. With this in mind, the work in this dissertation is focused on improving the control of solar and thermal radiation through windows. These radiation spectra can be controlled independently because they peak at different wavelengths due to the much higher temperature (5500 °C) of the Sun compared to objects on Earth (25 °C). In this work, a thermochromic material is utilized to control solar irradiance and a low-emissive (low-E) material is used to control thermal radiation. Thermochromic materials possess optical properties that change in response to temperature and low-E coatings are reflective in the mid-infrared (thermal) region. VO 2 is an exciting candidate for thermochromic coatings because its transmittance in the visible region is relatively constant, but its reflectance in the IR increases significantly with temperature. The main technical issues limiting VO2 are luminous transmittance (Tlum) that is too low and a transition temperature (tauc) that is too high. For the low-E coating, (SnO2)x(In 2O3)1-x (ITO glass) was chosen because it has both high luminous transmittance and low emissivity. In this dissertation it is shown that tauc of VO2 can be lowered from 50 to 45 °C by reducing the grain size of the film from 70 to 31 nm. In the area of luminous transmittance, TiO2 is investigated as an anti-reflective coating which can be used to increase Tlum. Later in this work, it is demonstrated that the energy efficiency gained through VO2 can be further improved by combining it with a low-E coating. The multilayer design combines anti-reflection in the visible region, thermochromism the near-IR and low emissivity in the

  17. An Efficient Hybrid MoM/FEM Method for Analyzing the Enclosures With Apertures

    Directory of Open Access Journals (Sweden)

    SİBEL YENİKAYA

    2011-03-01

    Full Text Available In this paper a hybrid formulation is presented which combines edge-based vector finite method (FEM and Method of Moments (MoM in frequency domain to predict electromagnetic field distribution inside an enclosure with aperture. While MoM is used for solving the surface integrals related with the aperture field components via equivalent surface currents, FEM is used for solving electromagnetic fields inside of the enclosure. Numerical results for shielding effectiveness and electrical energy of enclosure with aperture are calculated by the hybrid method and they are presented and validated with the existing literature. Then the method is applied to different enclosures with different aperture sizes.

  18. Synthetic Aperture Ladar (SAL): Fundamental Theory, Design Equations for a Satellite System, and Laboratory Demonstration

    National Research Council Canada - National Science Library

    Lucke, Robert

    2002-01-01

    .... Design equations are presented to allow quick assessment of the hardware parameters required for a notional system, most notably optical aperture sizes and the laser's power, chirp, and pulse rate capabilities...

  19. Fabrication of fine metal structures based on laser drawing method using interference pattern from co-propagating optical vortices

    Science.gov (United States)

    Sakamoto, Moritsugu; Hizatsuki, Takuya; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Goto, Kohei; Ono, Hiroshi

    2018-01-01

    We propose and demonstrate a photolithography method for fine metal structure fabrication based on laser drawing that uses the interference pattern generated by co-propagating optical vortices. A tiny dark core region of the optical vortex allows us to overcome the diffraction limit for Gaussian beams. This means that the proposed method can be used to fabricate finer structures than those produced by the conventional laser drawing method while using a Gaussian beam, even under low numerical aperture conditions. The feasibility of the proposed method was demonstrated experimentally using a system that included an axially symmetrical polarization element that can generate the co-propagating optical vortices using a common path optical system. Our method has potential to fabricate few tens of nanometer scale metal line structures by increasing numerical aperture conditions and should be applicable to the development of nanometer scale electronic and optical devices and structures, such as integrated circuits and metamaterials, without using electron beam lithography.

  20. Analytical estimation of the dynamic apertures of circular accelerators

    International Nuclear Information System (INIS)

    Gao, J.

    2000-02-01

    By considering delta function sextupole, octupole, and deca-pole perturbations and using difference action-angle variable equations, we find some useful analytical formulae for the estimation of the dynamic apertures of circular accelerators due to single sextupole, single octupole, single deca-pole (single 2 m pole in general). Their combined effects are derived based on the Chirikov criterion of the onset of stochastic motions. Comparisons with numerical simulations are made, and the agreement is quite satisfactory. These formulae have been applied to determine the beam-beam limited dynamic aperture in a circular collider. (author)

  1. Numerical Computation of Optical Properties of Internally Mixed Soot in Biomass Burning Constrained by Field and Laboratory Observations

    Science.gov (United States)

    China, S.; Scarnato, B. V.; Gorkowski, K.; Aiken, A. C.; Liu, S.; Dubey, M. K.; Mazzoleni, C.

    2014-12-01

    Carbonaceous aerosol emitted from biomass burning (BB) contributes significantly to atmospheric aerosol loadings regionally and globally. Direct radiative forcing of BB aerosol is highly uncertain due to its complex composition, morphology and mixing state. Soot particles are the strongest light absorbing aerosols in BB smoke. In BB smoke, soot particles are normally internally mixed with other material and the mixing state can affect their optical properties. In this study we investigated morphology and mixing state of soot particles emitted from BB smoke from field and laboratory measurements. Smoke particles were collected 1) during the Las Conchas wildfire in New Mexico (June, 2011) and 2) at the U.S. Forest Service's Fire Science Laboratory in 2012, during the fourth Fire Laboratory at Missoula Experiment (FLAME-4). Single particles were analyzed with electron microscopy, and were categorized and characterized by their morphology, and mixing state. We found that soot particles were mostly heavily coated. Based on the characterization on field and laboratory samples, synthetic soot particles with various morphologies and mixing states were generated and their optical properties were numerically calculated using the discrete dipole approximation. We used organic material as a coating agent and investigated the spectral dependency of scattering and absorption for internally mixed soot particles. We found enhancement in scattering and absorption when most of the soot particle was embedded within the organic coating. The aim of this study is to improve our understanding of the effect of morphology and mixing on light scattering and absorption by soot particles and ultimately their effects on the direct radiative forcing.

  2. Aperture referral in dioptric systems with stigmatic elements

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2012-12-01

    Full Text Available A previous paper develops the general theory of aperture referral in linear optics and shows how several ostensibly distinct concepts, including the blur patch on the retina, the effective corneal patch, the projective field and the field of view, are now unified as particular applications of the general theory.  The theory allows for astigmatism and heterocentricity.  Symplecticity and the generality of the approach, however, make it difficult to gain insight and mean that the material is not accessible to readers unfamiliar with matrices and linear algebra. The purpose of this paper is to examine whatis, perhaps, the most important special case, that in which astigmatism is ignored.  Symplecticity and, hence, the mathematics become greatly simplified. The mathematics reduces largely to elementary vector algebra and, in some places, simple scalar algebra and yet retains the mathematical form of the general approach.  As a result the paper allows insight into and provides a stepping stone to the general theory.  Under referral an aperture under-goes simple scalar magnification and transverse translation.  The paper pays particular attention to referral to transverse planes in the neighbourhood of a focal point where the magnification may be positive, zero or negative.  Circular apertures are treated as special cases of elliptical apertures and the meaning of referred apertures of negative radius is explained briefly. (S Afr Optom 2012 71(1 3-11

  3. Future of synthetic aperture radar

    Science.gov (United States)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  4. Ultrasound fields from triangular apertures

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1996-01-01

    The pulsed field from a triangular aperture mounted in an infinite, rigidbaffle is calculated. The approach of spatial impulse responses,as developed by Tupholme and Stepanishen, is used. By this both the emitted and received pulsed ultrasound field can be found for any transducerexcitation...

  5. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  6. Common aperture multispectral spotter camera: Spectro XR

    Science.gov (United States)

    Petrushevsky, Vladimir; Freiman, Dov; Diamant, Idan; Giladi, Shira; Leibovich, Maor

    2017-10-01

    The Spectro XRTM is an advanced color/NIR/SWIR/MWIR 16'' payload recently developed by Elbit Systems / ELOP. The payload's primary sensor is a spotter camera with common 7'' aperture. The sensor suite includes also MWIR zoom, EO zoom, laser designator or rangefinder, laser pointer / illuminator and laser spot tracker. Rigid structure, vibration damping and 4-axes gimbals enable high level of line-of-sight stabilization. The payload's list of features include multi-target video tracker, precise boresight, strap-on IMU, embedded moving map, geodetic calculations suite, and image fusion. The paper describes main technical characteristics of the spotter camera. Visible-quality, all-metal front catadioptric telescope maintains optical performance in wide range of environmental conditions. High-efficiency coatings separate the incoming light into EO, SWIR and MWIR band channels. Both EO and SWIR bands have dual FOV and 3 spectral filters each. Several variants of focal plane array formats are supported. The common aperture design facilitates superior DRI performance in EO and SWIR, in comparison to the conventionally configured payloads. Special spectral calibration and color correction extend the effective range of color imaging. An advanced CMOS FPA and low F-number of the optics facilitate low light performance. SWIR band provides further atmospheric penetration, as well as see-spot capability at especially long ranges, due to asynchronous pulse detection. MWIR band has good sharpness in the entire field-of-view and (with full HD FPA) delivers amount of detail far exceeding one of VGA-equipped FLIRs. The Spectro XR offers level of performance typically associated with larger and heavier payloads.

  7. Effect Study of Aperture Distribution on the Capillary Pressure-Saturation Relation for the Single Fracture

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2017-01-01

    Full Text Available A systematic numerical method was presented to investigate the effect of aperture distribution on the relation of capillary pressure versus fluid saturation (P-S relation for a single fracture. The fracture was conceptualized as a two-dimensional lattice-grid model and its aperture field was described by a probability distribution. Based on the invasion percolation theory, a program was developed to simulate the quasi-static displacement. The simulation was verified validly by comparisons of the experimental results. The effects of the statistical parameters were further quantified. The results show that the largest local aperture on the fracture boundary determines the AEV. The larger mean decreases the variation coefficient, which causes the more uniform aperture field, smoother air invasion front, and steeper capillary pressure-saturation curve (CPSC. The larger standard deviation increases not only the range but also the contrast degree of the apertures, thus providing a nondeterministic rule in the P-S relation. The larger correlation length causes a more homogeneous aperture field and a dual connectivity of the fracture. The increase of the difference and contrast degree between the small and large apertures results in dual-aperture fields. The dual-aperture field and dual connectivity of the fracture both contribute to the bimodal characteristic of the CPSC.

  8. ELID Grinding of Large Aspheric Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Large aperture aspheric optics are among the most susceptible optical surfaces to the accumulation of periodic surface artifacts during fabrication. Periodic...

  9. Detector of Optical Vortices as the Main Element of the System of Data Transfer: Principles of Operation, Numerical Model, and Influence of Noise and Atmospheric Turbulence

    Directory of Open Access Journals (Sweden)

    Valerii Aksenov

    2012-01-01

    Full Text Available The method is proposed of optical vortex topological charge detection along with a design of a corresponding detector. The developed technique is based on measurements of light field intensity. Mathematical model simulating performance of the detector is described in the paper, and results of numerical experiments are presented which illustrate recognition of a vortex in a turbulent medium and in the presence of amplitude and phase noise in the registered radiation. Influence of shifts of the system optical axis on precision of registration is also considered in the paper.

  10. Aperture measurements with AC dipole

    CERN Document Server

    Fuster Martinez, Nuria; Dilly, Joschua Werner; Nevay, Laurence James; Bruce, Roderik; Tomas Garcia, Rogelio; Redaelli, Stefano; Persson, Tobias Hakan Bjorn; CERN. Geneva. ATS Department

    2018-01-01

    During the MDs performed on the 15th of September and 29th of November 2017, we measured the LHC global aperture at injection with a new AC dipole method as well as using the Transverse Damper (ADT) blow-up method used during the 2017 LHC commissioning for benchmarking. In this note, the MD procedure is presented as well as the analysis of the comparison between the two methods. The possible benefits of the new method are discussed.

  11. Investigation on Transmission Properties of Terahertz Wave Through Semiconductor Aperture

    International Nuclear Information System (INIS)

    He Xiaoyong; Cao Juncheng

    2008-01-01

    The transmission properties of terahertz (THz) wave passing through semiconductor aperture have been investigated. The dispersion relationship for surface plasmon polariton (SPP) at different temperatures has been numerically calculated. The results show that the dispersion relationship increases with the increasing of frequency and the decreasing of temperature, the thickness of slab has to be taken into consideration because of the large skin depth for semiconductor slab. In addition, the propagation constant increases with the increasing of frequency and the decreasing of temperature.

  12. Parameter scans and accuracy estimates of the dynamical aperture of the CERN LHC

    CERN Document Server

    Giovannozzi, Massimo

    2006-01-01

    Techniques to make use of large distributed computing facilities allow for denser parameter scans of the dynamic aperture, i.e., the domain in phase space where bounded single-particle motion prevails. Moreover, one can also increase the number of 'seeds' each of which represents a possible realization of multipolar components around the machine. In this paper the dependence of the dynamic aperture on the step size of the grid of initial conditions and on the number of seeds is studied. Estimates on the accuracy of the dynamic aperture are derived and the definition of an improved protocol for numerical simulations is presented.

  13. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  14. Slit aperture technique for mammography

    International Nuclear Information System (INIS)

    Friedrich, M.

    1984-01-01

    Following a discussion of various principles used in the elimination of scatter, the prototype of a simple slit aperture mammography apparatus is described (modified Mammomat, Siemens). The main advantage of this technique compared with grid mammography is a halving of the radiation dose for identical image quality, using an identical film system. The technical requirements (heavy duty tube, new generator) are, however, considerable. If the film-screen systems currently in use are to remain the common systems for the future, then the development of a multi-lamellar slit diaphragm technique carries much promise for mammography. (orig.) [de

  15. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando

    The main objective of this project was to continue the development of a synthetic aperture vector flow estimator. This type of estimator is capable of overcoming two of the major limitations in conventional ultrasound systems: 1) the inability to scan large region of interest with high temporal......, this thesis showed that novel information can be obtained with vector velocity methods providing quantitative estimates of blood flow and insight into the complexity of the hemodynamics dynamics. This could give the clinician a new tool in assessment and treatment of a broad range of diseases....

  16. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels

    2008-01-01

    of the thesis considers a method for estimating the two-dimensional velocity vector within the image plane. This method, called synthetic aperture vector flow imaging, is first shortly reviewed. The main contribution of this work is partly an analysis of the method with respect to focusing effects, motion...... estimation. The method can be used for increasing the frame rate of color flow maps or alternatively for a new imaging modality entitled quadroplex imaging, featuring a color flow map and two independent spectrograms at a high frame rate. The second is an alternative method for ultrasonic vector velocity...

  17. Electromagnetic pulse coupling through an aperture into a two-parallel-plate region

    Science.gov (United States)

    Rahmat-Samii, Y.

    1978-01-01

    Analysis of electromagnetic-pulse (EMP) penetration via apertures into cavities is an important study in designing hardened systems. In this paper, an integral equation procedure is developed for determining the frequency and consequently the time behavior of the field inside a two-parallel-plate region excited through an aperture by an EMP. Some discussion of the numerical results is also included in the paper for completeness.

  18. High-contrast imaging with an arbitrary aperture: Active compensation of aperture discontinuities

    International Nuclear Information System (INIS)

    Pueyo, Laurent; Norman, Colin

    2013-01-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential deformable mirrors (DMs) to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of DM surfaces that yield high-contrast point-spread functions is not linear, and nonlinear methods are needed to find the true minimum in the optimization topology. We solve the highly nonlinear Monge-Ampere equation that is the fundamental equation describing the physics of phase-induced amplitude modulation. We determine the optimum configuration for our two sequential DM system and show that high-throughput and high-contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to the James Webb Space Telescope, ACAD can attain at least 10 –7 in contrast and an order of magnitude higher for both the future extremely large telescopes and on-axis architectures reminiscent of the Hubble Space Telescope. We show that the converging nonlinear mappings resulting from our DM shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus, ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and struts while not amplifying the diffraction at the aperture edges beyond the Fresnel regime. This outer Fresnel ringing can be mitigated by properly designing the optical system. Consequently, ACAD is a true broadband solution to the problem of high-contrast imaging with segmented and/or on-axis apertures. We finally show that once the nonlinear solution is found, fine tuning with linear methods used in wavefront control can be applied to further contrast by another order of magnitude. Generally speaking, the

  19. Optical Precision Deployment Latch, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Virtually all optical information gathering instruments benefit from greater aperture. For space-based instruments whose geometries are constrained by the launch...

  20. Coded aperture imaging system for nuclear fuel motion detection

    International Nuclear Information System (INIS)

    Stalker, K.T.; Kelly, J.G.

    1980-01-01

    A Coded Aperature Imaging System (CAIS) has been developed at Sandia National Laboratories to image the motion of nuclear fuel rods undergoing tests simulating accident conditions within a liquid metal fast breeder reactor. The tests require that the motion of the test fuel be monitored while it is immersed in a liquid sodium coolant precluding the use of normal optical means of imaging. However, using the fission gamma rays emitted by the fuel itself and coded aperture techniques, images with 1.5 mm radial and 5 mm axial resolution have been attained. Using an electro-optical detection system coupled to a high speed motion picture camera a time resolution of one millisecond can be achieved. This paper will discuss the application of coded aperture imaging to the problem, including the design of the one-dimensional Fresnel zone plate apertures used and the special problems arising from the reactor environment and use of high energy gamma ray photons to form the coded image. Also to be discussed will be the reconstruction techniques employed and the effect of various noise sources on system performance. Finally, some experimental results obtained using the system will be presented

  1. Active Optical Fibers Doped with Ceramic Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jan Mrazek

    2014-01-01

    Full Text Available Erbium-doped active optical fiber was successfully prepared by incorporation of ceramic nanocrystals inside a core of optical fiber. Modified chemical vapor deposition was combined with solution-doping approach to preparing preform. Instead of inorganic salts erbium-doped yttrium-aluminium garnet nanocrystals were used in the solution-doping process. Prepared preform was drawn into single-mode optical fiber with a numerical aperture 0.167. Optical and luminescence properties of the fiber were analyzed. Lasing ability of prepared fiber was proofed in a fiber-ring set-up. Optimal laser properties were achieved for a fiber length of 20~m. The slope efficiency of the fiber-laser was about 15%. Presented method can be simply extended to the deposition of other ceramic nanomaterials.

  2. X-ray lenses with large aperture

    International Nuclear Information System (INIS)

    Simon, Markus

    2010-01-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 μm at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 μm to 31 μm, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling accuracy

  3. Construction of a numerically controlled device for aligning optical and mechanical axis of a microscope lens on a lathe

    Science.gov (United States)

    Juranek, H. J.

    1981-02-01

    In microscope manufacturing lenses are normally cemented in special mounts. The optical axis is aligned to the mechanical axis by a turning operation on a special lathe. Solutions to automate this process are presented.

  4. 5cm aperture dipole studies

    International Nuclear Information System (INIS)

    McInturff, A.D.; Bossert, R.; Carson, J.; Fisk, H.E.; Hanft, R.; Kuchnir, M.; Lundy, R.; Mantech, P.; Strait, J.

    1986-01-01

    The results obtained during the evolution of the design, construction, and testing program of the design ''B'' dipole are presented here. Design ''B'' is one of the original three competing designs for the Superconducting Super Collider ''SSC'' arc dipoles. The final design parameters were as follows: air cored (less than a few percent of the magnetic field derived from any iron present), aluminum collared, two layered winding, 5.5T maximum operating field, and a 5 cm cold aperture. There have been fourteen 64 cm long 5 cm aperture model dipoles cold tested (at 4.3K and less) in this program so far. There was a half length full size (6m) mechanical analog (M-10) built and tested to check the cryostat's mechanical design under ramping and quench conditions. Several deviations from the ''Tevatron'' dipole fabrication technique were incorporated, for example the use of aluminum collars instead of stainless steel. The winding technique variations explored were ''dry welding,'' a technique with the cable covered with Kapton insulation only and ''wet winding'' where the Kapton was covered with a light coat of ''B'' stage epoxy. Test data include quench currents, field quality (Fourier multipole co-efficients), coil magnetization, conductor current performance, and coil loading. Quench current, loss per cycle, and harmonics were measured as a function of the magnitude and rate of change of the magnetic field, and helium bath temperature

  5. Investigation of novel fractal shape of the nano-aperture as a metasurface for bio sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Samaneh [Sama Technical and Vocational Training College, Islamic Azad University, Isfahan Branch, Khorasgan (Iran, Islamic Republic of); Rastan, Iman; Parvin, Amin [Faculty of Eng., Science and Research Branch, Islamic Azad University, Shiraz (Iran, Islamic Republic of); Pirooj, Azadeh [Faculty of Eng., Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zarrabi, Ferdows B., E-mail: ferdows.zarrabi@yahoo.com [Young Researchers and Elite Club, Babol Branch, Islamic Azad University, Babol (Iran, Islamic Republic of)

    2017-01-23

    Recently, nano-aperture is noticed due to its good transmission in the optical regime. Also, the nano-apertures are developed at the metasurface design for circular polarization; for this aim, various shapes of the nano-aperture are suggested. To reach this objective, we have developed a novel Jerusalem cross fractal shape for a mid-infrared application. We have simulated various formations of the nano-fractal Jerusalem cross based on a simple cross to show the effect of nano-aperture shape on electrical field enhancement in the near-field which is important in spectroscopy and optical imaging. In addition, we have used a single layer graphene over the aperture as a coat for making reconfigurable characteristic also creating a membrane for placement of nano-particle over the aperture. Implementation of the graphene is an amendment to the transfer of the nano-apertures. The biological materials with a thickness of 80 nm have been placed over the graphene layer and the Figures of Merits (FOM) have been obtained. Additionally, the prototype of nano-antenna is independent from incident wave polarization. The Finite Difference Time Domain (FDTD) calculations have been implemented in the simulation and modeling the nano-apertures. - Highlights: • Nano-apertures are developed at the metasurface design for circular polarization. • We have developed a novel Jerusalem cross fractal shape for a mid-infrared application. • Effect of nano-aperture shape on near-field enhancement is noticed which is important in spectroscopy and optical imaging. • Single layer graphene over the aperture as a coat for making reconfigurable characteristic.

  6. Miniaturization of a micro-optics array for highly sensitive and parallel detection on an injection moulded lab-on-a-chip

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Sun, Yi; Poulsen, Carl Esben

    2015-01-01

    A miniaturised array of supercritical angle fluorescence (SAF) micro-optics embedded in a microfluidic chamber was fabricated by injection moulding. The fabricated chip could enhance the fluorescence signal around 46 times compared to a conventional microscope. Collection of the fluorescence sign...... from the SAF array is almost independent of the numerical aperture, and the limit of detection was improved 36-fold using a simple and inexpensive optical detection system....

  7. LHC β*-reach MD: aperture measurements at small β*

    CERN Document Server

    Fuster Martinez, Nuria; Redaelli, Stefano; CERN. Geneva. ATS Department

    2017-01-01

    During this MD, performed on the 25th of July 2017, we measured the LHC aperture at top energy for β*=30 cm using the Transverse Damper (ADT) blow-up method. These measurements are part of the standard commissioning of an optics and have been performed in order to provide early on inputs for a possible change of β* later in 2017, as envisaged previously to fully profit from the additional margins introduced by the rematched phase advance between dump kickers and the TCTs (Target Collimator Tertiary). In addition to the aperture measurements, two other commissioning important tests were performed: loss maps for the nominal TCTs settings and an asynchronous dump validation with tighter TCT gaps.

  8. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  9. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  10. The modular design of large-aperture zoom system

    Science.gov (United States)

    Liu, Kai; Jiang, Kai; Yan, Peipei; Shan, Qiu-sha; Duan, Jing; Li, Gang

    2016-10-01

    According to the large aperture, long focal length zoom system design, the structure of the optical system based on the modular concept is proposed. The structure is constituted of an afocal compression telescope and a zoom system. The parts of each other are individually designed. The aberrations of them are independently. Because of this, the alignment of the system and the difficulty of test are greatly reduced. It is easily replaced by changing the zoom system parts, which can achieve other different focal length and ratio. Using afocal compression telescope greatly reduces the radial aperture of the zoom group, simplifies the system structure and reduces the cost. Meanwhile, the variable stop is placed in the vicinity of the primary mirror. It is instead of the zoom system used in floating variable stop. In addition, the problem about large aperture zoom system pupil matching is solved perfectly. In this article, four methods of pupil matching are given and the advantages and disadvantages of them are analyzed. Using this optical structure, a zoom system is designed, which is working in the visible wavelength band with variable focal length between 900mm and 4500mm, 500mm maximum aperture. The axial dimension of the system is less than 650mm. The maximum diameter of zoom system parts is less than 40 mm. Moreover, the distances of the zoom group and compensating group are all less than 60 mm. Besides, the motion curves of each other are given in the article. The Modulation Transfer Function (MTF) values of the system are greater than 0.3 at 48lp/mm across different focal length and field pointing on the axis. The design results show that the imaging quality is excellent, the structure is compact, and the alignment and test are easy. The imaging requirements of zoom system are all satisfied.

  11. Using computer-assisted demonstrations of optical phenomena in an undergraduate optics course

    Science.gov (United States)

    Tarvin, John T.; Cobb, Stephen H.; Beyer, Louis M.

    1995-10-01

    A set of computer programs has been developed for the visual presentation of introductory optical phenomena. These computer simulations were created to serve a dual purpose: as demonstration aids in an NSF-sponsored Optics Demonstration Laboratory, and as teaching aids in undergraduate geometrical and physical optics courses. In the field of diffractive optics, simulations include the calculation of intensity patterns for unobscured and obscured apertures in both rectangular and circular geometries. These patterns can be compared to those measured in the laboratory with a CCD camera. A program for calculating the diffraction pattern for a two-dimensional aperture of arbitrary shape has also been developed. These programs, when coordinated with homework assignments, allow students to compare their theoretical derivations with a correct numerical solution for the same problem. In the field of geometrical optics, a ray-trace program appropriate for gradient-index fibers with cylindrical symmetry has been developed. This program enables the student to study the focusing properties of such fibers, and to predict how such properties depend on the index profile and on the length of the optical fiber. Examples of these programs will be presented, along with a report on the success of these programs as a vehicle for imparting a conceptual understanding of the physical principles involved.

  12. Orthogonal polynomials describing polarization aberration for rotationally symmetric optical systems.

    Science.gov (United States)

    Xu, Xiangru; Huang, Wei; Xu, Mingfei

    2015-10-19

    Optical lithography has approached a regime of high numerical aperture and wide field, where the impact of polarization aberration on imaging quality turns to be serious. Most of the existing studies focused on the distribution rule of polarization aberration on the pupil, and little attention had been paid to the field. In this paper, a new orthonormal set of polynomials is established to describe the polarization aberration of rotationally symmetric optical systems. The polynomials can simultaneously reveal the distribution rules of polarization aberration on the exit pupil and the field. Two examples are given to verify the polynomials.

  13. Experimental and numerical studies of the scattering of light from a two-dimensional randomly rough interface in the presence of total internal reflection: optical Yoneda peaks.

    Science.gov (United States)

    González-Alcalde, Alma K; Banon, Jean-Philippe; Hetland, Øyvind S; Maradudin, Alexei A; Méndez, Eugenio R; Nordam, Tor; Simonsen, Ingve

    2016-11-14

    The scattering of polarized light from a dielectric film sandwiched between two different semi-infinite dielectric media is studied experimentally and theoretically. The illuminated interface is planar, while the back interface is a two-dimensional randomly rough interface. We consider here only the case in which the medium of incidence is optically more dense than the substrate, in which case effects due to the presence of a critical angle for total internal reflection occur. A reduced Rayleigh equation for the scattering amplitudes is solved by a rigorous, purely numerical, nonperturbative approach. The solutions are used to calculate the reflectivity of the structure and the mean differential reflection coefficient. Optical analogues of Yoneda peaks are present in the results obtained. The computational results are compared with experimental data for the in-plane mean differential reflection coefficient, and good agreement between theory and experiment is found.

  14. Synthetic aperture interferometry: error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amiya; Coupland, Jeremy

    2010-07-10

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  15. Synthetic aperture interferometry: error analysis

    International Nuclear Information System (INIS)

    Biswas, Amiya; Coupland, Jeremy

    2010-01-01

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  16. Measurement range of phase retrieval in optical surface and wavefront metrology

    International Nuclear Information System (INIS)

    Brady, Gregory R.; Fienup, James R.

    2009-01-01

    Phase retrieval employs very simple data collection hardware and iterative algorithms to determine the phase of an optical field. We have derived limitations on phase retrieval, as applied to optical surface and wavefront metrology, in terms of the speed of beam (i.e., f-number or numerical aperture) and amount of aberration using arguments based on sampling theory and geometrical optics. These limitations suggest methodologies for expanding these ranges by increasing the complexity of the measurement arrangement, the phase-retrieval algorithm, or both. We have simulated one of these methods where a surface is measured at unusual conjugates

  17. Saturated excitation of Fluorescence to quantify excitation enhancement in aperture antennas

    KAUST Repository

    Aouani, Heykel

    2012-07-23

    Fluorescence spectroscopy is widely used to probe the electromagnetic intensity amplification on optical antennas, yet measuring the excitation intensity amplification is a challenge, as the detected fluorescence signal is an intricate combination of excitation and emission. Here, we describe a novel approach to quantify the electromagnetic amplification in aperture antennas by taking advantage of the intrinsic non linear properties of the fluorescence process. Experimental measurements of the fundamental f and second harmonic 2f amplitudes of the fluorescence signal upon excitation modulation are used to quantify the electromagnetic intensity amplification with plasmonic aperture antennas. © 2012 Optical Society of America.

  18. Experimental and numeric studies of one electro-optical flexible pipe (umbilical); Estudos numericos e experimentais de um umbilical eletro-optico

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, Paula Ferreira; Buelta Martinez, Miguel Angel [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    2005-07-01

    This work had as objective to develop, to implant, to survey and to test an experimental and numerical model of structural, applicable analysis of umbilical structures. An ample study of the behavior of its constituent layers was carried through, in special of its nucleus and material constituents, when operating under different conditions of tensions and deformations. As support for this work, experimental tests for one type of electro-optic umbilical with typical transversal section had been carried through. This was made with the intention to optimize the developed numerical model. With this model of structural analysis, the project of umbilicals could highly improved, in terms of the total weight of the handle, which is one of the great problems for its use in great depths, with the maximum of efficiency and the minimum of losses, foreseeing and hindering operation imperfections that can come to occur due to extreme deformation or electric rupture of the layers, hoses or handles. (author)

  19. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  20. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J

    2009-01-01

    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  1. Analysis and Optimization of Medical Ultrasound Imaging Using the Effective Aperture Approach

    Directory of Open Access Journals (Sweden)

    Vera Behar

    2005-12-01

    Full Text Available An effective aperture approach is used as a tool for analysis and parameter optimization of mostly known ultrasound imaging systems - phased array systems, compounding systems and synthetic aperture imaging systems. Both characteristics of an imaging system , the effective aperture function and the corresponding two-way radiation pattern, provide information about two the most important parameters of images produced by an ultrasound system - lateral resolution and contrast. Therefore, in the design, optimization of the effective aperture function leads to optimal choice of such parameters of an imaging systems that influence on lateral resolution and contrast of images produced by this imaging system. The numerical results show that Hamming apodization gives the best compromise between the contrast of images and the lateral resolution produced by a conventional phased array imaging system. In compound imaging, the number of transducers and its spatial separation should be chosen in result of optimization of the effective aperture function of a system. It is shown that the effective aperture approach can be also used for optimization of a sparse synthetic transmit aperture (STA imaging system. A new two-stage algorithm is proposed for optimization of both the positions of the transmit elements and the weights of the receive elements. The proposed system employs a 64- element array with only four active elements used during transmit.

  2. Adaptive synthetic aperture radar image enhancement

    Science.gov (United States)

    Cheng, Hua; Tian, Jinwen

    2009-10-01

    An adaptive SAR image enhancement method is presented for reducing the speckle noise and increasing the contrast of synthetic aperture radar (SAR) images. First, a fuzzy logic based filter, employing fuzzy edge to weight the contributions of pixel values in filter window, is used to filter the speckles. Second, the original SAR image is decomposed into lowfrequency component and high-frequency component. The fuzzy filtered image is viewed as the low-frequency component, and the contrast limited adaptive histogram equalization algorithm is used to increase its contrast. The highfrequency component is obtained by subtracting the low-frequency component from the original image, and its gain is controlled by fuzzy structural which employed to express the degree of a pixel belonging to structures. After processed one after the other, the two components are added together to form the final enhanced SAR image. Experimental results show the excellent effect of the proposed method by visual observation and numerical measurement. Many fine structures and little speckle noise can be seen from the enhanced SAR images.

  3. Deep Learning for Passive Synthetic Aperture Radar

    Science.gov (United States)

    Yonel, Bariscan; Mason, Eric; Yazici, Birsen

    2018-02-01

    We introduce a deep learning (DL) framework for inverse problems in imaging, and demonstrate the advantages and applicability of this approach in passive synthetic aperture radar (SAR) image reconstruction. We interpret image recon- struction as a machine learning task and utilize deep networks as forward and inverse solvers for imaging. Specifically, we design a recurrent neural network (RNN) architecture as an inverse solver based on the iterations of proximal gradient descent optimization methods. We further adapt the RNN architecture to image reconstruction problems by transforming the network into a recurrent auto-encoder, thereby allowing for unsupervised training. Our DL based inverse solver is particularly suitable for a class of image formation problems in which the forward model is only partially known. The ability to learn forward models and hyper parameters combined with unsupervised training approach establish our recurrent auto-encoder suitable for real world applications. We demonstrate the performance of our method in passive SAR image reconstruction. In this regime a source of opportunity, with unknown location and transmitted waveform, is used to illuminate a scene of interest. We investigate recurrent auto- encoder architecture based on the 1 and 0 constrained least- squares problem. We present a projected stochastic gradient descent based training scheme which incorporates constraints of the unknown model parameters. We demonstrate through extensive numerical simulations that our DL based approach out performs conventional sparse coding methods in terms of computation and reconstructed image quality, specifically, when no information about the transmitter is available.

  4. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  5. Metasurface optics for full-color computational imaging.

    Science.gov (United States)

    Colburn, Shane; Zhan, Alan; Majumdar, Arka

    2018-02-01

    Conventional imaging systems comprise large and expensive optical components that successively mitigate aberrations. Metasurface optics offers a route to miniaturize imaging systems by replacing bulky components with flat and compact implementations. The diffractive nature of these devices, however, induces severe chromatic aberrations, and current multiwavelength and narrowband achromatic metasurfaces cannot support full visible spectrum imaging (400 to 700 nm). We combine principles of both computational imaging and metasurface optics to build a system with a single metalens of numerical aperture ~0.45, which generates in-focus images under white light illumination. Our metalens exhibits a spectrally invariant point spread function that enables computational reconstruction of captured images with a single digital filter. This work connects computational imaging and metasurface optics and demonstrates the capabilities of combining these disciplines by simultaneously reducing aberrations and downsizing imaging systems using simpler optics.

  6. Intracavity optical trapping with Ytterbium doped fiber ring laser

    Science.gov (United States)

    Sayed, Rania; Kalantarifard, Fatemeh; Elahi, Parviz; Ilday, F. Omer; Volpe, Giovanni; Maragò, Onofrio M.

    2013-09-01

    We propose a novel approach for trapping micron-sized particles and living cells based on optical feedback. This approach can be implemented at low numerical aperture (NA=0.5, 20X) and long working distance. In this configuration, an optical tweezers is constructed inside a ring cavity fiber laser and the optical feedback in the ring cavity is controlled by the light scattered from a trapped particle. In particular, once the particle is trapped, the laser operation, optical feedback and intracavity power are affected by the particle motion. We demonstrate that using this configuration is possible to stably hold micron-sized particles and single living cells in the focal spot of the laser beam. The calibration of the optical forces is achieved by tracking the Brownian motion of a trapped particle or cell and analysing its position distribution.

  7. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  8. Method of moments analysis of an aperture in a thick ground plane

    Science.gov (United States)

    Olcen, Ahmet Burak

    The problem of electromagnetic scattering from and transmission through an arbitrarily shaped aperture is considered. The aperture is in a thick infinite perfectly conducting ground plane. The conducting walls of the cavity inside the ground plane are of arbitrary shape. The apertures at both ends of the cavity are also of arbitrary shape. The structure is illuminated by an incident plane electromagnetic wave. The Green's function for this complicated problem is almost impossible to determine. Therefore the surface equivalence principle is used to reduce this complex problem into three simpler ones. Each such problem consists of equivalent surface currents radiating in unbounded media. Therefore the free space Green's function is used for each problem. An equivalent surface magnetic current placed on the top aperture produces the scattered field in the region where the impressed sources are. The total field inside the cavity is produced by two surface equivalent magnetic currents on the apertures and an equivalent surface electric current residing on the walls of the cavity as well as on both apertures. The transmitted field on the opposite side of the impressed sources is computed by an equivalent surface magnetic current residing on the bottom aperture. Enforcing the boundary conditions on the tangential components of electric and magnetic fields on both apertures and on the tangential components of electric field on the cavity walls results in a set of three coupled integral equations for the equivalent surface currents. Whenever possible, image theory is used to simplify the equations. These equations are numerically solved using the method of moments. The surfaces are approximated by planar triangular patches. RWG functions are used for expansion functions. An approximate Galerkin method is used for testing. The method is applicable for the general case where all three regions have different material parameters. Results are computed for the case where all

  9. Numerical Simulation of Radial and Angular Distribution of γ-Ray's Energy Deposition in Scintillation Optical Fibre

    International Nuclear Information System (INIS)

    Tang Shibiao; Yin Zejie; Tang Yu; Huang Huan

    2006-01-01

    Angular and radial distributions of the energy deposition of γ-ray radiation in scintillation optical fibres are simulated and analysed using the Geant4 system. The results show a linear relation between the energy deposition and the radius of the fibres. The deposition is roughly inversely proportional to sinθ with θ the incident angle relative to the fibre axis. The results could provide corrections to the measurements of the scintillation fibres used in monitoring the γ-ray radiation

  10. Convolutional neural networks for synthetic aperture radar classification

    Science.gov (United States)

    Profeta, Andrew; Rodriguez, Andres; Clouse, H. Scott

    2016-05-01

    For electro-optical object recognition, convolutional neural networks (CNNs) are the state-of-the-art. For large datasets, CNNs are able to learn meaningful features used for classification. However, their application to synthetic aperture radar (SAR) has been limited. In this work we experimented with various CNN architectures on the MSTAR SAR dataset. As the input to the CNN we used the magnitude and phase (2 channels) of the SAR imagery. We used the deep learning toolboxes CAFFE and Torch7. Our results show that we can achieve 93% accuracy on the MSTAR dataset using CNNs.

  11. Digital filtering and reconstruction of coded aperture images

    International Nuclear Information System (INIS)

    Tobin, K.W. Jr.

    1987-01-01

    The real-time neutron radiography facility at the University of Virginia has been used for both transmission radiography and computed tomography. Recently, a coded aperture system has been developed to permit the extraction of three dimensional information from a low intensity field of radiation scattered by an extended object. Short wave-length radiations (e.g. neutrons) are not easily image because of the difficulties in achieving diffraction and refraction with a conventional lens imaging system. By using a coded aperture approach, an imaging system has been developed that records and reconstructs an object from an intensity distribution. This system has a signal-to-noise ratio that is proportional to the total open area of the aperture making it ideal for imaging with a limiting intensity radiation field. The main goal of this research was to develope and implement the digital methods and theory necessary for the reconstruction process. Several real-time video systems, attached to an Intellect-100 image processor, a DEC PDP-11 micro-computer, and a Convex-1 parallel processing mainframe were employed. This system, coupled with theoretical extensions and improvements, allowed for retrieval of information previously unobtainable by earlier optical methods. The effect of thermal noise, shot noise, and aperture related artifacts were examined so that new digital filtering techniques could be constructed and implemented. Results of image data filtering prior to and following the reconstruction process are reported. Improvements related to the different signal processing methods are emphasized. The application and advantages of this imaging technique to the field of non-destructive testing are also discussed

  12. Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves.

    Science.gov (United States)

    Barrios, Ricardo; Dios, Federico

    2012-06-04

    Nowadays, the search for a distribution capable of modeling the probability density function (PDF) of irradiance data under all conditions of atmospheric turbulence in the presence of aperture averaging still continues. Here, a family of PDFs alternative to the widely accepted Log-Normal and Gamma-Gamma distributions is proposed to model the PDF of the received optical power in free-space optical communications, namely, the Weibull and the exponentiated Weibull (EW) distribution. Particularly, it is shown how the proposed EW distribution offers an excellent fit to simulation and experimental data under all aperture averaging conditions, under weak and moderate turbulence conditions, as well as for point-like apertures. Another very attractive property of these distributions is the simple closed form expression of their respective PDF and cumulative distribution function.

  13. Walking through Apertures in Individuals with Stroke.

    Directory of Open Access Journals (Sweden)

    Daisuke Muroi

    Full Text Available Walking through a narrow aperture requires unique postural configurations, i.e., body rotation in the yaw dimension. Stroke individuals may have difficulty performing the body rotations due to motor paralysis on one side of their body. The present study was therefore designed to investigate how successfully such individuals walk through apertures and how they perform body rotation behavior.Stroke fallers (n = 10, stroke non-fallers (n = 13, and healthy controls (n = 23 participated. In the main task, participants walked for 4 m and passed through apertures of various widths (0.9-1.3 times the participant's shoulder width. Accidental contact with the frame of an aperture and kinematic characteristics at the moment of aperture crossing were measured. Participants also performed a perceptual judgment task to measure the accuracy of their perceived aperture passability.Stroke fallers made frequent contacts on their paretic side; however, the contacts were not frequent when they penetrated apertures from their paretic side. Stroke fallers and non-fallers rotated their body with multiple steps, rather than a single step, to deal with their motor paralysis. Although the minimum passable width was greater for stroke fallers, the body rotation angle was comparable among groups. This suggests that frequent contact in stroke fallers was due to insufficient body rotation. The fact that there was no significant group difference in the perceived aperture passability suggested that contact occurred mainly due to locomotor factors rather than perceptual factors. Two possible explanations (availability of vision and/or attention were provided as to why accidental contact on the paretic side did not occur frequently when stroke fallers penetrated the apertures from their paretic side.

  14. Fast Parametric Beamformer for Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-01-01

    This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3-D by their origin, direction....... The implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed...

  15. Numerous applications of fiber optic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy for subsurface structural analysis

    Science.gov (United States)

    Afanasyeva, Natalia I.; Welser, Leslie; Bruch, Reinhard F.; Kano, Angelique; Makhine, Volodymyr

    1999-10-01

    A new infrared (IR) interferometric method has been developed in conjunction with low-loss, flexible optical fibers, sensors, and probes. This combination of fiber optical sensors and Fourier Transform (FT) spectrometers can be applied to many fields, including (1) noninvasive medical diagnostics of cancer and other different diseases in vivo, (2) minimally invasive bulk diagnostics of tissue, (3) remote monitoring of tissue, chemical processes, and environment, (4) surface analysis of polymers and other materials, (5) characterization of the quality of food, pharmacological products, cosmetics, paper, and other wood-related products, as well as (6) agricultural, forensic, geological, mining, and archeological field measurements. In particular, our nondestructive, fast, compact, portable, remote and highly sensitive diagnostics tools are very promising for subsurface analysis at the molecular level without sample preparation. For example, this technique is ideal for different types of soft porous foams, rough polymers, and rock surfaces. Such surfaces, as well as living tissue, are very difficult to investigate by traditional FTIR methods. We present here FEW-FTIR spectra of polymers, banana and grapefruit peels, and living tissues detected directly at surfaces. In addition, results on the vibrational spectral analysis of normal and pathological skin tissue in the region of 850 - 4000 cm-1 are discussed.

  16. Numerical modeling for investigating the optical breakdown threshold of laser-induced air plasmas at different laser characteristics

    Science.gov (United States)

    Hamam, Kholoud A.; Gaabour, Laila H.; Gamal, Yosr E. E. D.

    2017-07-01

    In this work, we report a numerical investigation of two sets of experimental measurements that were previously carried out to study the breakdown threshold dependence on laser characteristics (wavelength, pulse width, and spot size) in the breakdown of laboratory air at different pressures. The study aimed to inspect the significance of the physical mechanisms in air breakdown as related to the applied experimental conditions. In doing so, we adopted a simple theoretical formulation relying on the numerical solution of a rate equation that describes the growth of electron density due to the joined effect of multi-photon and avalanche ionization processes given in our earlier work [Gaabour et al., J. Mod. Phys. 3, 1683-1691 (2012)]. Here, the rate equation is adapted to include the effect of electron loss due to attachment processes. This equation is then solved numerically using the Runge-Kutta fourth order technique. The influence of electron gain and loss processes on the breakdown threshold is studied by calculating the breakdown threshold intensity and RMS electric field for atmospheric air using different laser parameters (wavelength, pulse widths, and focal length lenses), in correspondence to the experimental conditions given by Tambay and Thareja [J. Appl. Phys. 70(5), 2890 (1991)]. To validate the model, a comparison is made between those calculated thresholds and the experimentally measured ones. Moreover, the effective contribution of each of the considered physical processes to the breakdown phenomenon is examined by studying the effect of laser wavelength and spot diameter on the threshold intensities, as well as on the temporal variation of the electron density. The correlation between the threshold intensity and gas pressure is tested in relation to the measurements of Tambay et al. [Pramana-J. Phys. 37(2), 163 (1991)]. Calculations are also carried out to depict the impact of pulse width on the threshold intensity.

  17. Numerical analysis of intermodal delay in few-mode fibers for mode division multiplexing in optical fiber communication systems

    Science.gov (United States)

    Munir, Abid; Xin, Xiang-jun; Liu, Bo; Latif, Abdul; Hussain, Aftab; Niazi, Shahab Ahmad

    2012-03-01

    In order to achieve higher spectral efficiency, mode division multiplexing (MDM) in few-mode fibers is a new research area. The idea faces lots of technical issues including intermodal delay and mode coupling which limit the achievable length of the system. This paper is designated to complete the analysis of intermodal delay in step-index few-mode fibers. We analyze numerically all the parameters of fiber, which could impact intermodal delay in few-mode fibers and identify the conditions which can increase the number of multiplex modes without significant increase in maximum intermodal delay.

  18. Digital adaptive optics for achieving space-invariant lateral resolution in optical coherence tomography

    International Nuclear Information System (INIS)

    Kumar, A.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive optical interferometric imaging technique that provides reflectivity profiles of the sample structures with high axial resolution. The high axial resolution is due to the use of low coherence (broad-band) light source. However, the lateral resolution in OCT depends on the numerical aperture (NA) of the focusing/imaging optics and it is affected by defocus and other higher order optical aberrations induced by the imperfect optics, or by the sample itself.Hardware based adaptive optics (AO) has been successfully combined with OCT to achieve high lateral resolution in combination with high axial resolution provided by OCT. AO, which conventionally uses Shack-Hartmann wavefront sensor (SH WFS) and deformable mirror for wavefront sensing and correction respectively, can compensate for optical aberration and can enable diffraction-limited resolution in OCT. Visualization of cone photoreceptors in 3-D has been successfully demonstrated using AO-OCT. However, OCT being an interferometric imaging technique can provide access to phase information.This phase information can be exploited by digital adaptive optics (DAO) techniques to correct optical aberration in the post-processing step to obtain diffraction-limited space invariant lateral resolution throughout the image volume. Thus, the need for hardware based AO can be eliminated, which in turn can reduce the system complexity and economical cost. In the first paper of this thesis, a novel DAO method based on sub-aperture correlation is presented which is the digital equivalent of SH WFS. The advantage of this method is that it is non-iterative in nature and it does not require a priori knowledge of any system parameters such wavelength, focal length, NA or detector pixel size. For experimental proof, a FF SS OCT system was used and the sample consisted of resolution test target and a plastic plate that introduced random optical aberration. Experimental results show that

  19. X-ray lenses with large aperture; Roentgenlinsen mit grosser Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Markus

    2010-07-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 {mu}m at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 {mu}m to 31 {mu}m, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling

  20. Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Hondebrink, Erwin; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2004-01-01

    A photoacoustic double-ring sensor, featuring a narrow angular aperture, is developed for laser-induced photoacoustic imaging of blood vessels. An integrated optical fiber enables reflection-mode detection of ultrasonic waves. By using the cross-correlation between the signals detected by the two

  1. Measurement of nonlinear refractive index in open-aperture Z-scan ...

    Indian Academy of Sciences (India)

    Abstract. We present an experimental study on measurement of nonlinear refractive index (n2) of organic liquids when the thermo-optic effects manifest into large nonlinear phase shifts ( φ0) in an open-aperture Z-scan configuration. Although we do not obtain the familiar peak–valley nor- malized transmittance curve as in ...

  2. Measurement of nonlinear refractive index in open-aperture Z-scan ...

    Indian Academy of Sciences (India)

    We present an experimental study on measurement of nonlinear refractive index (2) of organic liquids when the thermo-optic effects manifest into large nonlinear phase shifts (0) in an open-aperture ... School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar 751 005, India ...

  3. Numerical analysis of the electrical and the optical properties of green phosphorescent organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Wook; Lee, Hyeon Gi; Won, Tae Young [Inha University, Incheon (Korea, Republic of)

    2014-05-15

    In this paper, we report a theoretical study on the electrical-optical properties of phosphorescent organic light-emitting diodes (PHOLEDs). Our simulation reveals that the refractive index of each material plays a crucial role in the emission characteristics and that the barrier height at the interface significantly influences the behavior of charge transport as well as the generation of excitons. The calculated transient profiles indicate that the carrier recombination in the PHOLEDs takes place mainly at the interface between the emitting layer and the hole transport layer after 8 μs. In the case of high index of refraction, the simulation result via modal analysis implies a possibility for improving the light extraction by increasing the substrate mode. As the thickness of each layer has been altered, we observe that the chromaticity of the device changes periodically.

  4. Research on primary mirror lateral support structure of large-aperture telescope

    Science.gov (United States)

    Wang, Yang

    2010-05-01

    The primary mirror of large-aperture telescope is an important component of telescope system. The surface figure error of the primary mirror is a critical factor affecting the imaging quality of telescope system. With the augment of primary mirror aperture, the surface figure error of the primary mirror is affected by many factors, such as gravity, thermal deformation and so on. The factors that influence the surface figure error of the primary mirror are considered and analyzed roundly according to technical requirements of optical system. So the feasible project is researched on the lateral support structure of large-aperture telescope primary mirror. The primary mirror support system of large-aperture telescope is composed of axial support and lateral support. In traditional telescope, the contribution of lateral support to surface distortion is less than axial support. With increase of diameter to thickness ratio, lateral support is becoming more complicated and important than before. Lateral support is a key technology the same as axial support for the large-aperture telescope primary mirror. With the foundation of analysis, comparison and conclusion of related literature and monograph, according to primary mirror supporting principle of the large-aperture telescope. Lateral support methods, the influence of the primary mirror surface figure error due to primary mirror lateral support and lateral support structure of primary mirror are analyzed.

  5. ULYSSES JUPITER HISCALE COMPOSITION APERTURE ION COUNTS

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of HISCALE Composition Aperture (WARTD) ion counts. These measurements were taken during the Ulysses Jupiter encounter 1991-12-31 to...

  6. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for funding to continue development of an alternative beam combiner for Stellar Imager (SI), a 30-aperture, interferometric telescope chosen as one...

  7. Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay

    Science.gov (United States)

    Schwarz, Christina; Manzanera, Silvestre; Prieto, Pedro M.; Fernández, Enrique J.; Artal, Pablo

    2014-01-01

    Corneal small aperture inlays provide extended depth of focus as a solution to presbyopia. As this procedure is becoming more popular, it is interesting to compare its performance with traditional approaches, such as monovision. Here, binocular visual acuity was measured as a function of object vergence in three subjects by using a binocular adaptive optics vision analyzer. Visual acuity was measured at two luminance levels (photopic and mesopic) under several optical conditions: 1) natural vision (4 mm pupils, best corrected distance vision), 2) pure-defocus monovision ( + 1.25 D add in the nondominant eye), 3) small aperture monovision (1.6 mm pupil in the nondominant eye), and 4) combined small aperture and defocus monovision (1.6 mm pupil and a + 0.75 D add in the nondominant eye). Visual simulations of a small aperture corneal inlay suggest that the device extends DOF as effectively as traditional monovision in photopic light, in both cases at the cost of binocular summation. However, individual factors, such as aperture centration or sensitivity to mesopic conditions should be considered to assure adequate visual outcomes. PMID:25360355

  8. Manipulation of surface plasmon resonance of a graphene-based Au aperture antenna in visible and near-infrared regions

    Science.gov (United States)

    Wan, Yuan; An, Yashuai; Tao, Zhi; Deng, Luogen

    2018-03-01

    Behaviors of surface plasmon resonance (SPR) of a graphene-based Au aperture antenna are investigated in visible and near-infrared (vis-NIR) regions. Compared with the SPR wavelength of a traditional Au aperture antenna, the SPR wavelength of the graphene-based Au aperture antenna shows a remarkable blue shift due to the redistribution of the electric field in the proposed structure. The electric field of the graphene-based Au aperture antenna is highly localized on the surface of the graphene in the aperture and redistributed to be a standing wave. Moreover, the SPR of a graphene-based Au aperture antenna is sensitive to the thickness and the refractive index of the dielectric layer, the graphene Fermi energy, the refractive index of the environment and the polarization direction of the incident light. Finally, we find the wavelength, intensity and phase of the reflected light of the graphene-based Au aperture antenna array can be actively modulated by varying the graphene Fermi energy. The proposed structure provides a promising platform for realizing a tunable optical filter, a highly sensitive refractive index sensor, and other actively tunable optical and optoelectronic devices.

  9. Segmented Aperture Interferometric Nulling Testbed (SAINT) II: component systems update

    Science.gov (United States)

    Hicks, Brian A.; Bolcar, Matthew R.; Helmbrecht, Michael A.; Petrone, Peter; Burke, Elliot; Corsetti, James; Dillon, Thomas; Lea, Andrew; Pellicori, Samuel; Sheets, Teresa; Shiri, Ron; Agolli, Jack; DeVries, John; Eberhardt, Andrew; McCabe, Tyler

    2017-09-01

    This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interferometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatories needed to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars in the quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNC wavefront control optics and mechanisms towards repeating narrowband results are described. A narrative is provided for the design of new optical components aimed at enabling broadband performance. Initial work with the hardware and software interface for controlling the segmented telescope mirror is also presented.

  10. Bridgman growth of large-aperture yttrium calcium oxyborate crystal

    International Nuclear Information System (INIS)

    Wu, Anhua; Jiang, Linwen; Qian, Guoxing; Zheng, Yanqing; Xu, Jun; Shi, Erwei

    2012-01-01

    Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa 4 O(BO 3 ) 3 (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested for high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.

  11. Using a melanin granule lattice model to study the thermal effects of pulsed and scanning light irradiations through a measurement aperture

    Science.gov (United States)

    Kim, Do-Hyun

    2011-12-01

    Optical radiation hazards of scanning light sources are often evaluated using pulsed light source criteria, with the relevant pulse parameter equivalent to the scanning light source determined by the energy delivered through a measurement aperture. However, physical equivalence has not been completely understood: a pulsed light source is temporally dynamic but spatially stationary, while a scanning light source is temporally stationary but spatially dynamic. This study introduces a numerical analysis based upon the melanin granule lattice model to investigate the equivalence of scanning and pulsed light sources through a measurement aperture and their respective thermal effects in the pigmented retinal layer. The numerical analysis calculates the thermal contribution of individual melanin granules with varying temporal sequence, and finds that temperature changes and thermal damage thresholds for the two different types of light sources were not equal. However, dwell times of 40 to 200 μsec did not produce significant differences between pulsed and scanning light sources in temperature change and thermal damage thresholds to the sample tissue.

  12. Theoretical and numerical analysis of propagation and scattering of eigen- and non-eigenmodes of an irregular integrated-optical waveguide

    International Nuclear Information System (INIS)

    Egorov, Alexander A

    2012-01-01

    We consider theoretical and numerical methods for studying propagation and scattering of laser radiation of eigenmodes and non-eigenmodes in an irregular integrated-optical waveguide. Scattering of non-eigenmodes in an irregular integratedoptical waveguide is investigated for the first time. We present the calculated dispersion curves for TE and TM eigenmodes and TE non-eigenmodes. For the leaky TE 0 modes we plot the dependence of the complex dispersion relation and show the vertical complex profile of the field. The dependence of the scattered laser radiation field on the effective refractive index is obtained for the given parameters of the waveguide. We compare for the first time the calculated complex scattering diagram of laser radiation outside the waveguide layer in the plane, perpendicular to the plane of incidence, for the leaky and guided TE 0 modes.

  13. Numerical examination of the nonlinear dynamics of a hybrid acousto-optic Bragg cell with positive feedback under profiled beam propagation

    Science.gov (United States)

    Almehmadi, F. S.; Chatterjee, M. R.

    2014-04-01

    In standard weak interaction theory, acousto-optic Bragg analysis typically assumes that the incident light and sound beams are uniform plane waves. Acousto-optic Bragg diffraction with nonuniform profiled input beams is numerically examined under open loop via a transfer function formalism. Unexpected deviations in the first-order diffracted beam from the standard theory are observed for high Q values. These deviations are significant because the corresponding closed-loop system is sensitive to input amplitudes and initial conditions, and the overall impact on the dynamical behavior has not been studied previously in standard analyses. To explore the effect of such nonuniform output profiles on the feedback system, the numerically generated scattered output is fed back to the acoustic driver, and the resulting nonlinear dynamics are manipulated to create novel monostable, bistable, multistable, and chaotic regimes. The effects of the nonuniform input on these regimes are examined using the techniques of Lyapunov exponents and bifurcation maps. The orbital behavior is characterized with quadratic maps, which are an intuitive method of predicting the parametric behavior of the system. The latter trajectory-based approach offers yet a third arm in the process of developing a fuller understanding of the profiled output beam under feedback. The results of this work indicate that the nonlinear dynamical thresholds of the hybrid cell are significantly different for the profiled propagation problem than for the uniform case. The mono and bistable regimes do not coincide with the well-known uniform plane wave results, and the chaotic thresholds, which are critical to understanding encryption applications, are altered noticeably.

  14. Field-based dynamic light scattering microscopy: theory and numerical analysis.

    Science.gov (United States)

    Joo, Chulmin; de Boer, Johannes F

    2013-11-01

    We present a theoretical framework for field-based dynamic light scattering microscopy based on a spectral-domain optical coherence phase microscopy (SD-OCPM) platform. SD-OCPM is an interferometric microscope capable of quantitative measurement of amplitude and phase of scattered light with high phase stability. Field-based dynamic light scattering (F-DLS) analysis allows for direct evaluation of complex-valued field autocorrelation function and measurement of localized diffusive and directional dynamic properties of biological and material samples with high spatial resolution. In order to gain insight into the information provided by F-DLS microscopy, theoretical and numerical analyses are performed to evaluate the effect of numerical aperture of the imaging optics. We demonstrate that sharp focusing of fields affects the measured diffusive and transport velocity, which leads to smaller values for the dynamic properties in the sample. An approach for accurately determining the dynamic properties of the samples is discussed.

  15. Optical proximity correction for anamorphic extreme ultraviolet lithography

    Science.gov (United States)

    Clifford, Chris; Lam, Michael; Raghunathan, Ananthan; Jiang, Fan; Fenger, Germain; Adam, Kostas

    2017-10-01

    The change from isomorphic to anamorphic optics in high numerical aperture (NA) extreme ultraviolet (EUV) scanners necessitates changes to the mask data preparation flow. The required changes for each step in the mask tape out process are discussed, with a focus on optical proximity correction (OPC). When necessary, solutions to new problems are demonstrated, and verified by rigorous simulation. Additions to the OPC model include accounting for anamorphic effects in the optics, mask electromagnetics, and mask manufacturing. The correction algorithm is updated to include awareness of anamorphic mask geometry for mask rule checking (MRC). OPC verification through process window conditions is enhanced to test different wafer scale mask error ranges in the horizontal and vertical directions. This work will show that existing models and methods can be updated to support anamorphic optics without major changes. Also, the larger mask size in the Y direction can result in better model accuracy, easier OPC convergence, and designs which are more tolerant to mask errors.

  16. Diffraction coherence in optics

    CERN Document Server

    Françon, M; Green, L L

    2013-01-01

    Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th

  17. A numerical study on the importance of non-uniform index modification during femtosecond grating inscription in microstructured optical fibers

    Science.gov (United States)

    Baghdasaryan, Tigran; Geernaert, Thomas; Thienpont, Hugo; Berghmans, Francis

    2016-04-01

    Fiber Bragg grating (FBG) inscription methods based on femtosecond laser sources are becoming increasingly popular owing to the (usually) non-linear nature of the index modification mechanism and to the resulting advantages. They allow, for example, fabricating fiber gratings that can survive temperatures exceeding 700°C, which can be an asset in the domain of fiber sensing. However applying femtosecond laser based grating fabrication to microstructured optical fibers (MOFs) can be challenging due to the presence of the air holes in the fiber cladding. The microstructured cladding not only impedes light delivery to the core in most cases, but also causes a non-uniform intensity distribution in the MOF core. To deal with these challenges we present a modeling approach that allows simulating how the reflectivity of the grating and the nature of the index modulation are affected by the inscription conditions. We rely on transverse coupling simulations, empirical data and coupled mode analysis to model the induced index change and the resulting grating reflectivity. For IR femtosecond grating inscription we show that due to the intensity redistribution in the core region, irreversible Type II index changes can be induced in a MOF at laser peak intensities below the Type II threshold for step-index fibers. The resulting non-uniform induced index change has repercussions on the reflection spectrum of the grating as well. Our coupled mode analysis reveals, for example, that although the average index change in the core region can be high, the partial overlap of the core mode with the index change region limits the reflectivity of the grating.

  18. Computational Investigation of Dynamic Glottal Aperture Effects on Respiratory Airflow

    Science.gov (United States)

    Xi, Jinxiang; Yan, Hong; Dong, Haibo

    2008-11-01

    The periodic movement of the glottal aperture (vocal folds) during tidal breathing has been long recognized as a factor in altering the airflow dynamics in the tracheobrnchial region. The potential influence from these altered flow structures on the transport and deposition of inhaled particles is not known. However, studies devoted to this dynamic physiological feature are scarce due to the complex anatomy in of the larynx and numerical challenges in simulating dynamic geometries. In this study, a high-fidelity immersed boundary solver is used to investigate this problem. A 3D human oral-larynx-lung model is firstly reconstructed from MRI data. The role of the vocal fold movement and associated airflow characteristics such as vortex shedding, Coanda effect etc. during inhalation and exhalation are then numerically studied.

  19. Synthetic aperture lidar as a future tool for earth observation

    Science.gov (United States)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Bergeron, Alain

    2017-11-01

    Synthetic aperture radar (SAR) is a tool of prime importance for Earth observation; it provides day and night capabilities in various weather conditions. State-of-the-art satellite SAR systems are a few meters in height and width and achieve resolutions of less than 1 m with revisit times on the order of days. Today's Earth observation needs demand higher resolution imaging together with timelier data collection within a compact low power consumption payload. Such needs are seen in Earth Observation applications such as disaster management of earthquakes, landslides, forest fires, floods and others. In these applications the availability of timely reliable information is critical to assess the extent of the disaster and to rapidly and safely deploy rescue teams. Synthetic aperture lidar (SAL) is based on the same basic principles as SAR. Both rely on the acquisition of multiple electromagnetic echoes to emulate a large antenna aperture providing the ability to produce high resolution images. However, in SAL, much shorter optical wavelengths (1.5 μm) are used instead of radar ones (wavelengths around 3 cm). Resolution being related to the wavelength, multiple orders of magnitude of improvement could be theoretically expected. Also, the sources, the detector, and the components are much smaller in optical domain than those for radar. The resulting system can thus be made compact opening the door to deployment onboard small satellites, airborne platforms and unmanned air vehicles. This has a strong impact on the time required to develop, deploy and use a payload. Moreover, in combination with airborne deployment, revisit times can be made much smaller and accessibility to the information can become almost in real-time. Over the last decades, studies from different groups have been done to validate the feasibility of a SAL system for 2D imagery and more recently for 3D static target imagery. In this paper, an overview of the advantages of this emerging technology will

  20. Oxide-apertured microcavity single-photon-emitting diodes-simultaneous confinement of current and light

    International Nuclear Information System (INIS)

    Ellis, David J P; Bennett, Anthony J; Dewhurst, Samuel J; Shields, Andrew J; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A

    2008-01-01

    We report on the development of a generation of microcavity single-photon sources in which an aluminium oxide aperture provides simultaneous confinement of the injected current and the optical mode. The aperture is formed by the wet oxidation of an aluminium-rich AlGaAs layer. This approach allows a high quality cavity to be successfully integrated into an electrical device, from which enhanced photon emission is observed through the Purcell effect. The resulting source demonstrated an improved photon collection efficiency and was shown to operate at repetition rates in excess of 0.5 GHz.

  1. Optimization for imaging through scattering media for confocal microscopes with divided elliptical apertures.

    Science.gov (United States)

    Tang, Hengjie; Wu, Chenxue; Gong, Wei; Zheng, Yao; Zhu, Xinpei; Wang, Jiahao; Si, Ke

    2017-12-29

    We develop a confocal system equipped with optimal elliptical apertures to improve axial point spread function and signal-to-background ratio (SBR) for different detector sizes. By adjusting the parameters of the elliptical apertures, the axial half width at half-maximum can be reduced to 4.986 (described in optical coordinates) and SBR can be improved to 0.176. We evaluate this system with the 1951 USAF resolution test chart and the primary cultured neuron from SD rat stained by Map-2, and observe better imaging performance, which indicates the potential applications in biological science. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Design of Octupole Channel for Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Chicago U.; Carlson, Kermit [Fermilab; Castellotti, Riccardo [Unlisted, IT; Valishev, Alexander [Fermilab; Wesseln, Steven [Fermilab

    2016-06-01

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.

  3. Extended depth of field imaging through multicore optical fibers.

    Science.gov (United States)

    Orth, Antony; Ploschner, Martin; Maksymov, Ivan S; Gibson, Brant C

    2018-03-05

    Compact microendoscopes use multicore optical fibers (MOFs) to visualize hard-to-reach regions of the body. These devices typically have a large numerical aperture (NA) and are fixed-focus, leading to blurry images from a shallow depth of field with little focus control. In this work, we demonstrate a method to digitally adjust the collection aperture and therefore extend the depth of field of lensless MOF imaging probes. We show that the depth of field can be more than doubled for certain spatial frequencies, and observe a resolution enhancement of up to 78% at a distance of 50μm from the MOF facet. Our technique enables imaging of complex 3D objects at a comparable working distance to lensed MOFs, but without the requirement of lenses, scan units or transmission matrix calibration. Our approach is implemented in post processing and may be used to improve contrast in any microendoscopic probe utilizing a MOF and incoherent light.

  4. Large-aperture subwavelength grating couplers.

    Science.gov (United States)

    Qi, Fan; Ma, Qingyan; Wang, Yufei; Zheng, Wanhua

    2016-04-10

    Subwavelength nanostructure grating couplers fabricated on silicon-on-insulator substrates are used to simplify the fabrication process while maintaining high coupling efficiency. The main obstacle for their application in photonic integrated circuits is the small aperture size of the nanostructure when TE polarization is involved, since they are difficult to achieve with 193 nm deep-ultraviolet lithography and cause problems in inductively coupled plasma etching. A larger lateral period has been used to increase the aperture size. Here, we propose that decreasing the effective index of the nanostructure can also enlarge the aperture size. We analyze the two methods in detail with a rectangle-hole nanostructure and 220 nm thick waveguide layer, aiming at TE polarization centered at 1560 nm. We find performance degenerations for large lateral periods, and this can be simply compensated by adjusting the width of the rectangle hole. The minimum linewidth of the nanostructure can reach 240 nm, while the coupling efficiency is just slightly decreased. The backreflections of a large-aperture grating increase but stay in the same order with ordinary ones, and we also show that this can be overcome by apodizing the grating structure. Finally, we experimentally demonstrate the designed large-aperture grating couplers and the coupling efficiencies are higher than 35%, and reach a rectangle-hole width.

  5. Experimental Observations from the LHC Dynamic Aperture Machine Development Study in 2012

    CERN Document Server

    Cave, SC; Giovannozzi, M; Ludwig, M; Macpherson, A; Redaelli, S; Roncarolo, F; Camillocci, MS; Delsolaro, WV

    2013-01-01

    In view of improving the understanding of the behaviour of the dynamic aperture and to benchmark the numerical simulations performed so far, two experimental sessions have been scheduled at the LHC. The observations of the first sessions have been reported elsewhere, while in this paper the latest observations in terms of beam currents, local losses and beam sizes will be described. The octupolar spool pieces have been used to artificially reduce the dynamic aperture and then induced slow beam losses. Alternating signs have been used in order to probe different configurations. Finally, scans over the strength of the decapolar spool pieces have been performed too.

  6. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  7. Fringe fields modeling for the high luminosity LHC large aperture quadrupoles

    CERN Document Server

    Dalena, B; Payet, J; Chancé, A; Brett, D R; Appleby, R B; De Maria, R; Giovannozzi, M

    2014-01-01

    The HL-LHC Upgrade project relies on large aperture magnets (mainly the inner Triplet and the separation dipole D1). The beam is much more sensitive to non-linear perturbations in this region, such as those induced by the fringe fields of the low-beta quadrupoles. Different tracking models are compared in order to provide a numerical estimate of the impact of fringe fields for the actual design of the inner triplet quadrupoles. The implementation of the fringe fields in SixTrack, to be used for dynamic apertures studies, is also discussed.

  8. Proposal of a relationship between dynamic aperture adn intensity evolution in a storage ring

    CERN Document Server

    Giovannozzi, M

    2010-01-01

    A scaling law for the time-dependence of the dynamic aperture, i.e., the region of phase space where stable motion occurs, was proposed in previous papers, about ten years ago. The use of fundamental theorems of the theory of dynamical systems allowed showing that the dynamic aperture has a logarithmic dependence on time. In this paper this result, proved by mean of numerical simulations, is used as a basis for deriving a scaling law for the intensity evolution in a storage ring. The proposed scaling law is also tested against experimental data showing a remarkable agreement.

  9. An ultra-lightweight, large aperture, deployable telescope for advanced lidar applications

    Science.gov (United States)

    Mazzinghi, P.; Bratina, V.; Ferruzzi, D.; Gambicorti, L.; Simonetti, F.; Zuccaro Marchi, A.; Salinari, P.; Lisi, F.; Olivier, M.; Bursi, A.; Pereira do Carmo, J.

    2017-11-01

    This work presents a new technological concept for large aperture, lightweight, telescopes using thin deployable active mirrors, currently under a feasibility study for spaceborne Lidars. The study is mainly addressed to a DIAL (Differential Absorption Lidar) at 935.5 nm for the measurement of water vapour profile in atmosphere, to be part of a typical small ESA Earth Observation satellite to be launched with ROCKOT vehicle. A detailed telescope optical design will be presented, including the results of angular and spatial resolution, effective optical aperture and radiometric transmission, optical alignment tolerances, stray-light and baffling. Also the results of a complete thermo-mechanical model will be shown, discussing temporal and thermal stability, deployment technology and performances, overall mass budget, technological and operational risk and system complexity.

  10. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, I. V.; Doronina-Amitonova, L. V. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Kurchatov Institute National Research Center, Moscow (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Anokhin, K. V. [Kurchatov Institute National Research Center, Moscow (Russian Federation); P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kilin, S. Ya. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zheltikov, A. M. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Center of Photochemistry, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 117421 (Russian Federation)

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  11. Programmable Aperture with MEMS Microshutter Arrays

    Science.gov (United States)

    Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer

    2011-01-01

    A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where

  12. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  13. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  14. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  15. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... is determined by estimating the flow velocity in all directions and choosing the one with the strongest correlation. The method works for all angles, including fully axial and fully transverse flows. Field II simulations with a 192 element, 7 MHz linear array are made of laminar, transverse flow profiles...

  16. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  17. Synthetic aperture ladar based on a MOPAW laser

    Science.gov (United States)

    Turbide, Simon; Marchese, Linda; Bergeron, Alain; Desbiens, Louis; Paradis, Patrick

    2016-10-01

    Long range land surveillance is a critical need in numerous military and civilian security applications, such as threat detection, terrain mapping and disaster prevention. A key technology for land surveillance, synthetic aperture radar (SAR) continues to provide high resolution radar images in all weather conditions from remote distances. State of the art SAR systems based on dual-use satellites are capable of providing ground resolutions of one meter; while their airborne counterparts obtain resolutions of 10 cm. Certain land surveillance applications such as subsidence monitoring, landslide hazard prediction and tactical target tracking could benefit from improved resolution. The ultimate limitation to the achievable resolution of any imaging system is its wavelength. State-of-the-art SAR systems are approaching this limit. The natural extension to improve resolution is to thus decrease the wavelength, i.e. design a synthetic aperture system in a different wavelength regime. One such system offering the potential for vastly improved resolution is Synthetic Aperture Ladar (SAL). This system operates at infrared wavelengths, ten thousand times smaller radar wavelengths. This paper presents a SAL platform based on the INO Master Oscillator with Programmable Amplitude Waveform (MOPAW) laser that has a wavelength sweep of Δλ=1.22 nm, a pulse repetition rate up to 1 kHz and up to 200 μJ per pulse. The results for SAL 2D imagery at a range of 10 m are presented, indicating a reflectance sensibility of 8 %, ground-range and azimuth resolution of 1.7 mm and 0.84 mm respectively.

  18. Advanced Optical Fibers for High power Fiber lasers

    Science.gov (United States)

    2015-08-24

    silica single-mode opti‐ cal fiber with photonic crystal cladding,” Opt. Lett. 21, 1547 -1549 (1996). [4] T.A. Birks, J.C. Knight and P.St.J. Russell...Kozlov, J. Hernández-Cordero, R. L. Shubochkin, A. L. G. Carter, and T. F. Morse, “Silica–Air Double-Clad Optical Fiber,” IEEE Photonics Technology...Percival, G. Bouwmans, J.C. Knight, T.A. Birks, T.D. Hedley, and P.St.J. Russell, “Very high numerical aperture fibers,” IEEE Photonic Technology Letters

  19. Automated Polarimetry with Smaller Aperture Telescopes: The ROVOR Observatory

    Directory of Open Access Journals (Sweden)

    Joseph Moody

    2017-10-01

    Full Text Available To better understand possible blazar jet mechanisms and morphologies, brighter prototypical objects are regularly monitored for variability in optical broad-band light. If the monitoring filters are polarized, the position angles and polarization percentages can be measured and their evolution monitored over time. However, building up a statistically significant time base of polarization parameters requires the arduous task of monitoring sources for months or years to catch and follow interesting events such as flares. Fortunately, monitoring an object is easily done using remotely operated or robotic telescopes. The Remote Observatory for Variable Object Research (ROVOR is a small-aperture telescope that has monitored blazars in broad-band Johnson filters since 2009. Calibration data using a set of four plane-polarized filters suggest that it is suitable for polarimetric monitoring as well. We have successfully collected data on CTA 102 and are encouraged at the prospects of monitoring it and other similar objects. Long-term monitoring campaigns are a scientifically and educationally-effective use of underutilized smaller-aperture telescopes.

  20. Super Unit Cells in Aperture-Based Metamaterials

    Directory of Open Access Journals (Sweden)

    Dragan Tanasković

    2015-01-01

    Full Text Available An important class of electromagnetic metamaterials are aperture-based metasurfaces. Examples include extraordinary optical transmission arrays and double fishnets with negative refractive index. We analyze a generalization of such metamaterials where a simple aperture is now replaced by a compound object formed by superposition of two or more primitive objects (e.g., rectangles, circles, and ellipses. Thus obtained “super unit cell” shows far richer behavior than the subobjects that comprise it. We show that nonlocalities introduced by overlapping simple subobjects can be used to produce large deviations of spectral dispersion even for small additive modifications of the basic geometry. Technologically, some super cells may be fabricated by simple spatial shifting of the existing photolithographic masks. In our investigation we applied analytical calculations and ab initio finite element modeling to prove the possibility to tailor the dispersion including resonances for plasmonic nanocomposites by adjusting the local geometry and exploiting localized interactions at a subwavelength level. Any desired form could be defined using simple primitive objects, making the situation a geometrical analog of the case of series expansion of a function. Thus an additional degree of tunability of metamaterials is obtained. The obtained designer structures can be applied in different fields like waveguiding and sensing.

  1. Multi-Aperture CMOS Sun Sensor for Microsatellite Attitude Determination

    Directory of Open Access Journals (Sweden)

    Michele Grassi

    2009-06-01

    Full Text Available This paper describes the high precision digital sun sensor under development at the University of Naples. The sensor determines the sun line orientation in the sensor frame from the measurement of the sun position on the focal plane. It exploits CMOS technology and an original optical head design with multiple apertures. This allows simultaneous multiple acquisitions of the sun as spots on the focal plane. The sensor can be operated either with a fixed or a variable number of sun spots, depending on the required field of view and sun-line measurement precision. Multiple acquisitions are averaged by using techniques which minimize the computational load to extract the sun line orientation with high precision. Accuracy and computational efficiency are also improved thanks to an original design of the calibration function relying on neural networks. Extensive test campaigns are carried out using a laboratory test facility reproducing sun spectrum, apparent size and distance, and variable illumination directions. Test results validate the sensor concept, confirming the precision improvement achievable with multiple apertures, and sensor operation with a variable number of sun spots. Specifically, the sensor provides accuracy and precision in the order of 1 arcmin and 1 arcsec, respectively.

  2. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy

    Directory of Open Access Journals (Sweden)

    Stephen A. Boppart

    2008-06-01

    Full Text Available Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT, utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR. In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  3. Biomedical implications of dental-ceramic defects investigated by numerical simulation, radiographic, microcomputer tomography, and time-domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Ionita, Ciprian; Marsavina, Liviu; Negru, Radu; Topala, Florin; Petrescu, Emanuela; Rominu, Roxana; Fabriky, Mihai; Bradu, Adrian; Rominu, Mihai; Podoleanu, Adrian Gh.

    2011-10-01

    Imagistic investigation of the metal-ceramic crowns and fixed partial prostheses represent a very important issue in nowadays dentistry. At this time, in dental office, it is difficult or even impossible to evaluate a metal ceramic crown or bridge before setting it in the oral cavity. The possibilities of ceramic fractures are due to small fracture lines or material defects inside the esthetic layers. Material and methods: In this study 25 metal ceramic crowns and fixed partial prostheses were investigated by radiographic method (Rx), micro computer tomography (MicroCT) and optical coherence tomography (OCT) working in Time Domain, at 1300 nm. The OCT system contains two interferometers and one scanner. For each incident analysis a stuck made of 100 slices was obtain. These slices were used in order to obtain a 3D model of the ceramic interface. After detecting the presence and the positions of the ceramic defects the numerical simulation method was used to estimate the biomechanical effect of the masticatory forces on fractures propagations in ceramic materials. Results: For all the dental ceramic defects numerical simulation analysis was performed. The simulation of crack propagation shows that the crack could initiate from the upper, lower or both parts of the defect and propagates through the ceramic material where tensile stress field is present. RX and MicroCT are very powerful instruments that provide a good characterization of the dental construct. It is important to observe the reflections due to the metal infrastructure that could affect the evaluation of the metal ceramic crowns and bridges. The OCT investigations could complete the imagistic evaluation of the dental construct by offering important information when it is need it.

  4. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    Science.gov (United States)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  5. RTS Noise and Dark Current White Defects Reduction Using Selective Averaging Based on a Multi-Aperture System

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available In extremely low-light conditions, random telegraph signal (RTS noise and dark current white defects become visible. In this paper, a multi-aperture imaging system and selective averaging method which removes the RTS noise and the dark current white defects by minimizing the synthetic sensor noise at every pixel is proposed. In the multi-aperture imaging system, a very small synthetic F-number which is much smaller than 1.0 is achieved by increasing optical gain with multiple lenses. It is verified by simulation that the effective noise normalized by optical gain in the peak of noise histogram is reduced from 1.38e⁻ to 0.48 e⁻ in a 3 × 3-aperture system using low-noise CMOS image sensors based on folding-integration and cyclic column ADCs. In the experiment, a prototype 3 × 3-aperture camera, where each aperture has 200 × 200 pixels and an imaging lens with a focal length of 3.0 mm and F-number of 3.0, is developed. Under a low-light condition, in which the maximum average signal is 11e⁻ per aperture, the RTS and dark current white defects are removed and the peak signal-to-noise ratio (PSNR of the image is increased by 6.3 dB.

  6. RTS noise and dark current white defects reduction using selective averaging based on a multi-aperture system.

    Science.gov (United States)

    Zhang, Bo; Kagawa, Keiichiro; Takasawa, Taishi; Seo, Min Woong; Yasutomi, Keita; Kawahito, Shoji

    2014-01-16

    In extremely low-light conditions, random telegraph signal (RTS) noise and dark current white defects become visible. In this paper, a multi-aperture imaging system and selective averaging method which removes the RTS noise and the dark current white defects by minimizing the synthetic sensor noise at every pixel is proposed. In the multi-aperture imaging system, a very small synthetic F-number which is much smaller than 1.0 is achieved by increasing optical gain with multiple lenses. It is verified by simulation that the effective noise normalized by optical gain in the peak of noise histogram is reduced from 1.38e⁻ to 0.48 e⁻ in a 3 × 3-aperture system using low-noise CMOS image sensors based on folding-integration and cyclic column ADCs. In the experiment, a prototype 3 × 3-aperture camera, where each aperture has 200 × 200 pixels and an imaging lens with a focal length of 3.0 mm and F-number of 3.0, is developed. Under a low-light condition, in which the maximum average signal is 11e⁻ per aperture, the RTS and dark current white defects are removed and the peak signal-to-noise ratio (PSNR) of the image is increased by 6.3 dB.

  7. Chromatic corrections and dynamic aperture in the HERA electron ring. Pt. 1

    International Nuclear Information System (INIS)

    Brinkmann, R.; Willeke, F.

    1986-07-01

    Achromatic optical solutions for the HERA e - -ring are presented and discussed. The dynamic aperture for the three different optics is studied by particle tracking and perturbation theory. We found a significant advantage of quasi-superperiodic solutions with respect to the non-periodic solutions and an advantage of a 6-sextupole family solution with respect to a 2-family solution. The sextupole acceptance for the preferred optical solution is as large as 27 standard deviations at a beam energy of 35 GeV. (orig.)

  8. Calibration of circular aperture area using vision probe at inmetro

    Directory of Open Access Journals (Sweden)

    Costa Pedro Bastos

    2016-01-01

    Full Text Available Circular aperture areas are standards of high importance for the realization of photometric and radiometric measurements, where the accuracy of these measures is related to the accuracy of the circular aperture area calibrations. In order to attend the requirement for traceability was developed in Brazilian metrology institute, a methodology for circular aperture area measurement as requirements from the radiometric and photometric measurements. In the developed methodology apertures are measured by non-contact measurement through images of the aperture edges captured by a camera. These images are processed using computer vision techniques and then the values of the circular aperture area are determined.

  9. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  10. Diffraction contrast imaging using virtual apertures

    International Nuclear Information System (INIS)

    Gammer, Christoph; Burak Ozdol, V.; Liebscher, Christian H.; Minor, Andrew M.

    2015-01-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field

  11. Automated Change Detection for Synthetic Aperture Sonar

    Science.gov (United States)

    2014-01-01

    2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Automated Change Detection for Synthetic Aperture Sonar...R. Azimi-Sadjadi and S. Srinivasan, “Coherent Change Detection and Classification in Synthetic Aper - ture Radar Imagery Using Canonical Correlation

  12. MD2725: 16L2 aperture measurement

    CERN Document Server

    Mirarchi, Daniele; Rossi, Roberto; CERN. Geneva. ATS Department

    2018-01-01

    Dumps induced by sudden increase of losses in the half-cell 16L2 have been a serious machine limitation during the 2017 run. The aim of this MD was to perform local aperture measurements in order to assess differences after the beam screen regeneration, compared to first measurements in 2017.

  13. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy...

  14. A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    a geometrically based method for calculating the shear-induced hydraulic aperture, that is, an aperture of up to 0.5 mm (0.02 in.) that can result from shear displacement along irregular fracture walls. The geometrically based method does not require numerical simulations, but it can instead be directly applied...... to DFNs using the fracture orientation and spacing distributions in combination with an estimate of the regional stress tensor and orientation. The frequency distribution of hydraulic aperture from the geometrically based method is compared with finite-element models constructed from five real fracture...... networks, digitized from outcropping pavements. These networks cover a wide range of possible geometries and spatial distributions. The geometrically based method predicts the average hydraulic aperture and equivalent permeability of fractured porous media with error margins of less than 5%....

  15. In vivo endoscopic multi-beam optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Standish, Beau A; Mariampillai, Adrian; Munce, Nigel R; Leung, Michael K K; Vitkin, I Alex [Deptartment of Medical Biophysics, University of Toronto, Toronto (Canada); Lee, Kenneth K C; Yang, Victor X D [Ontario Cancer Institute/University Health Network, Toronto (Canada)], E-mail: standish@ee.ryerson.ca

    2010-02-07

    A multichannel optical coherence tomography (multi-beam OCT) system and an in vivo endoscopic imaging probe were developed using a swept-source OCT system. The distal optics were micro-machined to produce a high numerical aperture, multi-focus fibre optic array. This combination resulted in a transverse design resolution of <10 {mu}m full width half maximum (FWHM) throughout the entire imaging range, while also increasing the signal intensity within the focus of the individual channels. The system was used in a pre-clinical rabbit study to acquire in vivo structural images of the colon and ex vivo images of the oesophagus and trachea. A good correlation between the structural multi-beam OCT images and H and E histology was achieved, demonstrating the feasibility of this high-resolution system and its potential for in vivo human endoscopic imaging.

  16. In vivo endoscopic multi-beam optical coherence tomography

    International Nuclear Information System (INIS)

    Standish, Beau A; Mariampillai, Adrian; Munce, Nigel R; Leung, Michael K K; Vitkin, I Alex; Lee, Kenneth K C; Yang, Victor X D

    2010-01-01

    A multichannel optical coherence tomography (multi-beam OCT) system and an in vivo endoscopic imaging probe were developed using a swept-source OCT system. The distal optics were micro-machined to produce a high numerical aperture, multi-focus fibre optic array. This combination resulted in a transverse design resolution of <10 μm full width half maximum (FWHM) throughout the entire imaging range, while also increasing the signal intensity within the focus of the individual channels. The system was used in a pre-clinical rabbit study to acquire in vivo structural images of the colon and ex vivo images of the oesophagus and trachea. A good correlation between the structural multi-beam OCT images and H and E histology was achieved, demonstrating the feasibility of this high-resolution system and its potential for in vivo human endoscopic imaging.

  17. Practical UAV Optical Sensor Bench with Minimal Adjustability

    Science.gov (United States)

    Pilgrim, Jeffrey; Gonzales, Paula

    2013-01-01

    A multiple-pass optical platform eliminates essentially all optical alignment degrees of freedom, save one. A four-pass absorption spectrometer architecture is made rigid by firmly mounting dielectric-coated mirror prisms with no alignment capability to the platform. The laser diode beam is collimated by a small, custom-developed lens, which has only a rotational degree of freedom along the standard optical "z" axis. This degree is itself eliminated by adhesive after laser collimation. Only one degree of freedom is preserved by allowing the laser diode chip and mount subassembly to move relative to the collimating lens by using over-sized mounting holes. This allows full 360 deg motion of a few millimeters relative to the lens, which, due to the high numerical aperture of the lens, provides wide directional steering of the collimated laser beam.

  18. Modeling for deformable mirrors and the adaptive optics optimization program

    International Nuclear Information System (INIS)

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-01-01

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language

  19. Large aperture wide field multi-object spectroscopy for the 2020s: the science and status of the Maunakea Spectroscopic Explorer.

    Science.gov (United States)

    Devost, Daniel; McConnachie, Alan; Chambers, Kenneth; Gallagher, Sarah; Maunakea Spectroscopic Explorer Project office, MSE Science Advisory group, MSE Science Team

    2018-01-01

    Numerous international reports have recently highlighted the need for fully dedicated, large aperture, highly multiplexed spectroscopy at a range of spectral resolutions in the OIR wavelength range. Such a facility is the most obvious missing link in the emerging network of international multi-wavelength, astronomy facilities, and enables science from reverberation mapping of black holes to the nucleosynthetic history of the Galaxy, and will follow-up discoveries from the optical through to the radio with facilities such as LSST. The only fully dedicated large aperture MOS facility that is in the design phase is the Maunakea Spectroscopic Explorer (MSE), an 11.4m segmented mirror prime focus telescope with a 1.5 square degree field of view that has 3200 fibers at low (R~2500) and moderate (R~6000) resolution, and 1000 fibers at high (R=20/40000) resolution. I will provide an overview of MSE, describing the science drivers and the current design status, as well as the international partnership, and the results of multiple, newly completed, external reviews for the system and subsystems. The anticipated cost and timeline to first light will also be presented.

  20. Mechanical setup for optical aperture synthesis for wide field imaging

    NARCIS (Netherlands)

    Giesen, P.T.M.; Ouwerkerk, B.R.; Brug, H. van; Dool, T.C. van den; Avoort, C. van der

    2004-01-01

    Homothetic mapping is a technique that combines the images from several telescopes so that it looks like as though they came form a single large telescope. This technique enables a much wider interferometric field of image than current techniques can provide. To investigate the feasibility, a

  1. Deployable large aperture optics system for remote sensing applications

    International Nuclear Information System (INIS)

    Sumali, Anton Hartono; Martin, Jeffrey W.; Main, John A.; Macke, Benjamin T.; Massad, Jordan Elias; Chaplya, Pavel Mikhail

    2004-01-01

    This report summarizes research into effects of electron gun control on piezoelectric polyvinylidene fluoride (PVDF) structures. The experimental apparatus specific to the electron gun control of this structure is detailed, and the equipment developed for the remote examination of the bimorph surface profile is outlined. Experiments conducted to determine the optimum electron beam characteristics for control are summarized. Clearer boundaries on the bimorphs control output capabilities were determined, as was the closed loop response. Further controllability analysis of the bimorph is outlined, and the results are examined. In this research, the bimorph response was tested through a matrix of control inputs of varying current, frequency, and amplitude. Experiments also studied the response to electron gun actuation of piezoelectric bimorph thin film covered with multiple spatial regions of control. Parameter ranges that yielded predictable control under certain circumstances were determined. Research has shown that electron gun control can be used to make macrocontrol and nanocontrol adjustments for PVDF structures. The control response and hysteresis are more linear for a small range of energy levels. Current levels needed for optimum control are established, and the generalized controllability of a PVDF bimorph structure is shown

  2. Dynamical Aperture Control in Accelerator Lattices With Multipole Potentials

    CERN Document Server

    Morozov, I

    2017-01-01

    We develop tools for symbolic representation of a non-linear accelerator model and analytical methods for description of non-linear dynamics. Information relevant to the dynamic aperture (DA) is then obtained from this model and can be used for indirect DA control or as a complement to direct numerical optimization. We apply two analytical methods and use multipole magnets to satisfy derived analytical constraints. The accelerator model is represented as a product of unperturbed and perturbed exponential operators with the exponent of the perturbed operator given as a power series in the perturbation parameter. Normal forms can be applied to this representation and the lattice parameters are used to control the normal form Hamiltonian and normal form transformation. Hamiltonian control is used to compute a control term or controlled operator. Lattice parameters are then fitted to satisfy the imposed control constraints. Theoretical results, as well as illustrative examples, are presented.

  3. Assessment of injected warm plumes along a free surface flow channel using fiber-optic distributed temperature sensing and numerical simulations

    Science.gov (United States)

    Le Lay, Hugo; Thomas, Zahra; Rouault, François; Pichelin, Pascal; Bour, Olivier; Moatar, Florentina

    2017-04-01

    Understanding and predicting stream thermal regimes is a key goal for aquatic ecosystems resiliency to climate change. Mapping thermal anomalies finely becomes feasible thanks to methods such as fiber-optic distributed temperature sensing (FO-DTS). Despite being the main thermal anomalies in stream, groundwater inflows are difficult to detect because of high water stages and turbulent stream flow. We hypothesized that thresholds in flow regime and hydraulic parameters may affect thermal regime characterization. Our main objective was to test and validate the use of FO-DTS for the quantification of inflows in order to determine the physical processes behind these thresholds. Experiments were carried out outdoor, using an open flow hydraulic channel. A warm water tank was used to simulate groundwater inflows with known discharge rates and temperatures. These discharge rates varied between 4 and 72% of the channel flow. Numerical experiments were also conducted to test the consistency of our experimental results and discriminate the effect of inflow rate and hydraulic parameters. The water temperature in the channel was monitored by Fiber-Optic Distributed Temperature Sensing with cables set on two lines, over three depths. The injected warm plume was tracked along the channel and across the water stage to estimate temperature increases it induced. A relationship was found between these thermal anomalies and flow dynamic, defining different types of flow configurations. For given channel flow rate and water stage, a threshold for the inflow rate was identified at which the injected plume is not detectable by our means. The effect of the channel flow velocity over the plume spreading appears clearly with a dominance of advection for high flow rate. In addition, outdoor experiments were affected by atmospheric conditions (air temperature, solar radiation, etc.) while simulations allowed refining results without external artefacts and showed a good fit with measurements

  4. Fractal characteristics of fracture roughness and aperture data

    International Nuclear Information System (INIS)

    Kumar, S.; Boernge, J.

    1991-05-01

    In this study mathematical expressions are developed for the characteristics of apertures between rough surfaces. It has shown that the correlation between the opposite surfaces influences the aperture properties and different models are presented for these different surface correlations. Fracture and apertures profiles measured from intact fractures are evaluated and it is found that they qualitatively follow the mathematically predicted trends

  5. Synthetic aperture imaging in astronomy and aerospace: introduction.

    Science.gov (United States)

    Creech-Eakman, Michelle J; Carney, P Scott; Buscher, David F; Shao, Michael

    2017-05-01

    Aperture synthesis methods allow the reconstruction of images with the angular resolutions exceeding that of extremely large monolithic apertures by using arrays of smaller apertures together in combination. In this issue we present several papers with techniques relevant to amplitude interferometry, laser radar, and intensity interferometry applications.

  6. High Gain, Very Low Areal Density, Scalable RF Apertures Enabled by Membrane Aperture Shell Technology (MAST), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose that the Membrane Aperture Shell Technology (MAST) approach be expanded with a specific focus on space exploration orbiting comm network RF aperture...

  7. Performance results for Beamlet: A large aperture multipass Nd glass laser

    International Nuclear Information System (INIS)

    Campbell, J.H.; Barker, C.E.; VanWonterghem, B.M.; Speck, D.R.; Behrendt, W.C.; Murray, J.R.; Caird, J.A.; Decker, D.E.; Smith, I.C.

    1995-01-01

    The Beamlet laser is a large aperture, flashlamp pumped Nd: glass laser that is a scientific prototype of an advanced Inertial Fusion laser. Beamlet has achieved third harmonic, conversion efficiency of near 80% with its nominal 35cm x 35cm square beam at mean 3ω fluences in excess of 8 J/cm 2 (3-ns). Beamlet uses an adaptive optics system to correct for aberrations and achieve less than 2 x diffraction limited far field spot size

  8. A new approach to stitching optical metrology data

    Science.gov (United States)

    King, Christopher W.

    The next generation of optical instruments, including telescopes and imaging apparatus, will generate an increased requirement for larger and more complex optical forms. A major limiting factor for the production of such optical components is the metrology: how do we measure such parts and with respect to what reference datum This metrology can be thought of as part of a complete cycle in the production of optical components and it is currently the most challenging aspect of production. This thesis investigates a new and complete approach to stitching optical metrology data to extend the effective aperture or, in future, the dynamic range of optical metrology instruments. A practical approach is used to build up a complete process for stitching on piano and spherical parts. The work forms a basis upon which a stitching system for aspheres might be developed in the future, which is inherently more complicated. Beginning with a historical perspective and a review of optical polishing and metrology, the work presented relates the commercially available metrology instruments to the stitching process developed. The stitching is then performed by a numerical optimization routine that seeks to join together overlapping sub-aperture measurements by consideration of the aberrations introduced by the measurement scenario, and by the overlap areas between measurements. The stitching is part of a larger project, the PPARC Optical Manipulation and Metrology project, and was to benefit from new wavefront sensing technology developed by a project partner, and to be used for the sub-aperture measurement. Difficult mathematical problems meant that such a wavefront sensor was not avail able for this work and a work-around was therefore developed using commercial instruments. The techniques developed can be adapted to work on commercial ma chine platforms, and in partuicular, the OMAM NPL/UCL swing-arm profilometer described in chapter 5, or the computer controlled polishing machines

  9. Coded aperture imaging using imperfect detector systems

    International Nuclear Information System (INIS)

    Byard, K.; Ramsden, D.

    1994-01-01

    The imaging properties of a gamma-ray telescope which employs a coded aperture in conjunction with a modular detection plane has been investigated. Gaps in the detection plane, which arise as a consequence of the design of the position sensitive detector used, produce artifacts in the deconvolved images which reduce the signal to noise ratio for the detection of point sources. The application of an iterative image processing algorithm is shown to restore the image quality to that expected from an ideal detector. The efficiency of image processing has enabled its subsequent application to a general coded aperture system in order to gain a significant improvement in the field of view without compromising the angular resolution. (orig.)

  10. Miniature synthetic-aperture radar system

    Science.gov (United States)

    Stockton, Wayne; Stromfors, Richard D.

    1990-11-01

    Loral Defense Systems-Arizona has developed a high-performance synthetic-aperture radar (SAR) for small aircraft and unmanned aerial vehicle (UAV) reconnaissance applications. This miniature radar, called Miniature Synthetic-Aperture Radar (MSAR), is packaged in a small volume and has low weight. It retains key features of large SAR systems, including high-resolution imaging and all-weather operation. The operating frequency of MSAR can optionally be selected to provide foliage penetration capability. Many imaging radar configurations can be derived using this baseline system. MSAR with a data link provides an attractive UAV sensor. MSAR with a real-time image formation processor is well suited to installations where onboard processing and immediate image analysis are required. The MSAR system provides high-resolution imaging for short-to-medium range reconnaissance applications.

  11. IR aperture measurement at β*=40 cm

    CERN Document Server

    Bruce, Roderik; Hermes, Pascal Dominik; Kwee-Hinzmann, Regina; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua Ferrando, Belen Maria; Skowronski, Piotr Krzysztof; Valentino, Gianluca; Valloni, Alessandra; CERN. Geneva. ATS Department

    2015-01-01

    This note summarizes MD 307, performed on August 27 2015, during which we measured with beam the global apertures at 6.5 TeV with IR1 and IR5 squeezed to β* =40 cm and a half crossing angle of 205 rad. The measurement technique involved opening collimators in steps, while inducing beam losses at each step, until the main loss location moved from the collimators to the global bottleneck in one of the triplets. Measurements were performed in both beams and planes, and each measurement gave the minimum triplet aperture over IR1 and IR5. The results are in very good agreement with theoretical predictions. At the end of the MD, an asynchronous beam dump test was performed with all collimators moved in to so-called 2-σ retraction settings. This MD is one in a series meant to address various open points for the reach in β* in Run II.

  12. Adaptive optics optical coherence tomography at 1 MHz.

    Science.gov (United States)

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band.

  13. 47 CFR 25.134 - Licensing provisions of Very Small Aperture Terminal (VSAT) and C-band Small Aperture Terminal...

    Science.gov (United States)

    2010-10-01

    ... Terminal (VSAT) and C-band Small Aperture Terminal (CSAT) networks. 25.134 Section 25.134 Telecommunication... Applications and Licenses Earth Stations § 25.134 Licensing provisions of Very Small Aperture Terminal (VSAT) and C-band Small Aperture Terminal (CSAT) networks. (a)(1) VSAT networks operating in the 12/14 GHz...

  14. Embedded electronics for a video-rate distributed aperture passive millimeter-wave imager

    Science.gov (United States)

    Curt, Petersen F.; Bonnett, James; Schuetz, Christopher A.; Martin, Richard D.

    2013-05-01

    Optical upconversion for a distributed aperture millimeter wave imaging system is highly beneficial due to its superior bandwidth and limited susceptibility to EMI. These features mean the same technology can be used to collect information across a wide spectrum, as well as in harsh environments. Some practical uses of this technology include safety of flight in degraded visual environments (DVE), imaging through smoke and fog, and even electronic warfare. Using fiber-optics in the distributed aperture poses a particularly challenging problem with respect to maintaining coherence of the information between channels. In order to capture an image, the antenna aperture must be electronically steered and focused to a particular distance. Further, the state of the phased array must be maintained, even as environmental factors such as vibration, temperature and humidity adversely affect the propagation of the signals through the optical fibers. This phenomenon cannot be avoided or mitigated, but rather must be compensated for using a closed-loop control system. In this paper, we present an implementation of embedded electronics designed specifically for this purpose. This novel architecture is efficiently small, scalable to many simultaneously operating channels and sufficiently robust. We present our results, which include integration into a 220 channel imager and phase stability measurements as the system is stressed according to MIL-STD-810F vibration profiles of an H-53E heavy-lift helicopter.

  15. Coded-aperture imaging in nuclear medicine

    Science.gov (United States)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-11-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  16. Synthetic aperture radar processing with tiered subapertures

    Science.gov (United States)

    Doerry, A. W.

    1994-06-01

    Synthetic aperture radar (SAR) is used to form images that are maps of radar reflectivity of some scene of interest, from range soundings taken over some spatial aperture. Additionally, the range soundings are typically synthesized from a sampled frequency aperture. Efficient processing of the collected data necessitates using efficient digital signal processing techniques such as vector multiplies and fast implementations of the discrete fourier transform. Inherent in image formation algorithms that use these is a trade-off between the size of the scene that can be acceptably imaged and the resolution with which the image can be made. These limits arise from migration errors and spatially variant phase errors, and different algorithms mitigate these to varying degrees. Two fairly successful algorithms for airborne SARs are polar format processing and overlapped subaperture (OSA) processing. This report introduces and summarizes the analysis of generalized tiered subaperture (TSA) techniques that are a superset of both polar format processing and OSA processing. It is shown how tiers of subapertures in both azimuth and range can effectively mitigate both migration errors and spatially variant phase errors to allow virtually arbitrary scene sizes, even in a dynamic motion environment.

  17. Towards Very Large Aperture Massive MIMO

    DEFF Research Database (Denmark)

    Oliveras Martínez, Àlex; De Carvalho, Elisabeth; Nielsen, Jesper Ødum

    2014-01-01

    Massive MIMO is a new technique for wireless communications that claims to offer very high system throughput and energy efficiency in multi-user scenarios. The cost is to add a very large number of antennas at the base station. Theoretical research has probed these benefits, but very few measurem......Massive MIMO is a new technique for wireless communications that claims to offer very high system throughput and energy efficiency in multi-user scenarios. The cost is to add a very large number of antennas at the base station. Theoretical research has probed these benefits, but very few...... measurements have showed the potential of Massive MIMO in practice. We investigate the properties of measured Massive MIMO channels in a large indoor venue. We describe a measurement campaign using 3 arrays having different shape and aperture, with 64 antennas and 8 users with 2 antennas each. We focus...... on the impact of the array aperture which is the main limiting factor in the degrees of freedom available in the multiple antenna channel. We find that performance is improved as the aperture increases, with an impact mostly visible in crowded scenarios where the users are closely spaced. We also test MIMO...

  18. Coded-aperture imaging in nuclear medicine

    Science.gov (United States)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  19. Technical Progress in Research of Multibeam Synthetic Aperture Sonar

    Directory of Open Access Journals (Sweden)

    LI Haisen

    2017-10-01

    Full Text Available Recently, detailed underwater target detection and imaging sonar technology has become a research hotpot with the urgent need of marine research. Multibeam synthetic aperture sonar technology has been proposed combining the both technological advantages in this paper, owing to the emphatically analyses of the technology trends of multibeam bathymetric sonar and synthetic aperture sonar. The research progress in the key technologies of multibeam synthetic aperture sonar has been discussed in this paper, the effectiveness of multibeam synthetic aperture sonar detection mechanism is preliminary verified by the experiments. The potential that the multibeam synthetic aperture technique can effectively enhance the underwater target resolution has aslo been proved through the contrast experiment.

  20. Diffusion tensor optical coherence tomography

    Science.gov (United States)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.

    2018-01-01

    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  1. Efficient electromagnetic analysis of line-fed aperture antennas in thick conducting screens

    OpenAIRE

    Stevanovic, I.; Mosig, J. R.

    2004-01-01

    This paper presents a numerical and experimental verification of an approximate but efficient integral equation technique for the scattering by apertures in conducting planes with finite thicknesses. The approach is based on a perturbation method and modified Green's functions that take into account the finite metallization thickness. The computational effort and time needed for solving the problem are the same as in zero-thickness case. When compared to full-wave cavity treatment of thick ap...

  2. Dynamic aperture of NR-2000 in the work regime with a small radiation emittance

    International Nuclear Information System (INIS)

    Zelinskij, A.Yu.; Karnaukhov, I.M.; Kononenko, S.G.; Tarasenko, A.S.

    1991-01-01

    NR-2000 is an electron storage ring installation with 6-pole magnets compensating its chromatism. The results of NR-2000 dynamic aperture numerical modelling in 6-dimension space are given. Perturbation of the equilibrium orbit and that of magnetic field up to the third order of magnitude were taken into consideration. Calculations were made according to DeCA programme. 7 refs.; 5 figs. (author)

  3. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    Science.gov (United States)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  4. Filled aperture concepts for the Terrestrial Planet Finder

    Science.gov (United States)

    Ridgway, Stephen T.

    2003-02-01

    Filled aperture telescopes can deliver a real, high Strehl image which is well suited for discrimination of faint planets in the vicinity of bright stars and against an extended exo-zodiacal light. A filled aperture offers a rich variety of PSF control and diffraction suppression techniques. Filled apertures are under consideration for a wide spectral range, including visible and thermal-IR, each of which offers a significant selection of biomarker molecular bands. A filled aperture visible TPF may be simpler in several respects than a thermal-IR nuller. The required aperture size (or baseline) is much smaller, and no cryogenic systems are required. A filled aperture TPF would look and act like a normal telescope - vendors and users alike would be comfortable with its design and operation. Filled aperture telescopes pose significant challenges in production of large primary mirrors, and in very stringent wavefront requirements. Stability of the wavefront control, and hence of the PSF, is a major issue for filled aperture systems. Several groups have concluded that these and other issues can be resolved, and that filled aperture options are competitive for a TPF precursor and/or for the full TPF mission. Ball, Boeing-SVS and TRW have recently returned architecture reviews on filled aperture TPF concepts. In this paper, I will review some of the major considerations underlying these filled aperture concepts, and suggest key issues in a TPF Buyers Guide.

  5. Subdiffraction-limited radius measurements of microcylinders using conventional bright-field optical microscopy.

    Science.gov (United States)

    Little, Douglas J; Kane, Deborah M

    2014-09-01

    A technique for measuring the radius of dielectric microcylinders with subdiffraction-limited precision is presented. Diffraction fringes arising from the dielectric cylinder are measured using conventional bright-field optical microscopy and compared with theory to deduce the radii. The technique has been demonstrated measuring the radii of the major-ampullate silks from Plebs eburnus spiders. Precision better than 50 nm is demonstrated, using a standard optical microscope with a numerical aperture of 0.6 for the objective. Accuracy was verified using scanning electron microscopy. This technique will facilitate rapid, precise measurement of dielectric microcylinder radii, enabling a new optical-microscopy-based measurement approach for these challenging micro-optics.

  6. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  7. Sound scattering and transmission through a circular cylindrical aperture revisited using the radial polynomials.

    Science.gov (United States)

    Rdzanek, Wojciech P

    2018-03-01

    The problem of sound scattering and transmission through a circular cylindrical aperture in a flat thick rigid wall has been revisited rigorously using the radial polynomials. The acoustic power transmission and back scattering coefficients have been presented in the form of highly convergent hypergeometric series described earlier in the literature for vibrating circular pistons and plates based on the crucial property of the polynomials in terms of the Hankel transform. The problem is solved by using the continuity conditions at both aperture outlets. The complex integrals necessary to satisfy the continuity conditions are expressed as the exact formulas, which makes the final results for the acoustic power coefficients much more accurate than in the case of numerical integration. A significant improvement has also been reached in numerical efficiency. On average, the calculations are 500 times more efficient compared to numerical integration with no accuracy loss. Additionally, the acoustic pressure on the aperture outlets has been presented exactly in the form of a highly convergent hypergeometric series as well as using the modal impedance coefficients.

  8. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.

    2015-07-06

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  9. Detection optimization using linear systems analysis of a coded aperture laser sensor system

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, S.M. [Sandia National Labs., Albuquerque, NM (United States). Optoelectronic Design Dept.

    1994-09-01

    Minimum detectable irradiance levels for a diffraction grating based laser sensor were calculated to be governed by clutter noise resulting from reflected earth albedo. Features on the earth surface caused pseudo-imaging effects on the sensor`s detector arras that resulted in the limiting noise in the detection domain. It was theorized that a custom aperture transmission function existed that would optimize the detection of laser sources against this clutter background. Amplitude and phase aperture functions were investigated. Compared to the diffraction grating technique, a classical Young`s double-slit aperture technique was investigated as a possible optimized solution but was not shown to produce a system that had better clutter-noise limited minimum detectable irradiance. Even though the double-slit concept was not found to have a detection advantage over the slit-grating concept, one interesting concept grew out of the double-slit design that deserved mention in this report, namely the Barker-coded double-slit. This diffractive aperture design possessed properties that significantly improved the wavelength accuracy of the double-slit design. While a concept was not found to beat the slit-grating concept, the methodology used for the analysis and optimization is an example of the application of optoelectronic system-level linear analysis. The techniques outlined here can be used as a template for analysis of a wide range of optoelectronic systems where the entire system, both optical and electronic, contribute to the detection of complex spatial and temporal signals.

  10. Radiation of a charge in presence of a dielectric object: aperture method

    Science.gov (United States)

    Tyukhtin, A. V.; Vorobev, V. V.; Belonogaya, E. S.; Galyamin, S. N.

    2018-02-01

    We develop an original method for calculation of radiation from a charge moving in the presence of a dielectric object. The method can be applied to objects which are larger than the wavelengths under consideration. First, the field of a charge in an infinite medium (without external boundaries) is calculated. Further the field at the external boundary of the object ("the aperture") is found using the Snell's and Fresnel's laws. At final step of this technique, we calculate the field outside the target using Stratton-Chu formulae ("aperture integrals"). Contrary to the ray-optic technique, this method is valid for the observation point with arbitrary wave parameter (including Fraunhofer area) as well as in neighborhoods of focuses and caustics. We apply the method developed to the cone with vacuum channel where the charge moves (axially symmetrical problem). As well, this problem is simulated using COMSOL Multiphysics. Comparing results of both techniques one can conclude that the aperture method can be applied even for relatively small objects which have the size of several wavelengths. It is important as well that the accuracy of calculations increases with an increase in the distance from the aperture.

  11. Fabrication quality analysis of a fiber optic refractive index sensor created by CO2 laser machining.

    Science.gov (United States)

    Chen, Chien-Hsing; Yeh, Bo-Kuan; Tang, Jaw-Luen; Wu, Wei-Te

    2013-03-26

    This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10(-4) RIU (linear fitting R2 = 0.954) was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10(-5) RIU, and greater linearity at R2 = 0.999.

  12. Laser beam propagation through turbulence and adaptive optics for beam delivery improvement

    Science.gov (United States)

    Nicolas, Stephane

    2015-10-01

    We report results from numerical simulations of laser beam propagation through atmospheric turbulence. In particular, we study the statistical variations of the fractional beam energy hitting inside an optical aperture placed at several kilometer distance. The simulations are performed for different turbulence conditions and engagement ranges, with and without the use of turbulence mitigation. Turbulence mitigation is simulated with phase conjugation. The energy fluctuations are deduced from time sequence realizations. It is shown that turbulence mitigation leads to an increase of the mean energy inside the aperture and decrease of the fluctuations even in strong turbulence conditions and long distance engagement. As an example, the results are applied to a high energy laser countermeasure system, where we determine the probability that a single laser pulse, or one of the pulses in a sequence, will provide a lethal energy inside the target aperture. Again, turbulence mitigation contributes to increase the performance of the system at long-distance and for strong turbulence conditions in terms of kill probability. We also discuss a specific case where turbulence contributes to increase the pulse energy within the target aperture. The present analysis can be used to evaluate the performance of a variety of systems, such as directed countermeasures, laser communication, and laser weapons.

  13. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.

    Science.gov (United States)

    Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing

    2014-10-01

    Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.

  14. Study on coding strategies for radar coded-aperture imaging in terahertz band

    Science.gov (United States)

    Chen, Shuo; Luo, Chenggao; Deng, Bin; Qin, Yuliang; Wang, Hongqiang

    2017-09-01

    Motivated by the principle of coded-aperture imaging and microwave radar coincidence imaging (RCI), terahertz radar coded-aperture imaging (RCAI) is proposed to obtain high-resolution, forward-looking, and staring imaging. The terahertz RCAI method resolves target scatterers using the correlation processing of the modulated echoes and the reference signal matrix. This process is similar to the basic principle of RCI. To investigate the coding strategies of terahertz RCAI, this study derives three signal models describing operation with the coded aperture placed separately in the transmitting terminal and the receiving terminal and in both of them simultaneously. Furthermore, coding strategies are categorized according to coded-aperture placement and encoded signal, including amplitude modulation and phase modulation. In addition, qualitative and quantitative analysis methods are introduced to describe the resolving ability of terahertz RCAI. Numerical simulations are performed to analyze and compare the performance on different coding strategies. These analyses can provide constructive guidelines for the design of terahertz RCAI systems.

  15. Solid immersion lenses for enhancing the optical resolution of thermal and electroluminescence mapping of GaN-on-SiC transistors

    International Nuclear Information System (INIS)

    Pomeroy, J. W.; Kuball, M.

    2015-01-01

    Solid immersion lenses (SILs) are shown to greatly enhance optical spatial resolution when measuring AlGaN/GaN High Electron Mobility Transistors (HEMTs), taking advantage of the high refractive index of the SiC substrates commonly used for these devices. Solid immersion lenses can be applied to techniques such as electroluminescence emission microscopy and Raman thermography, aiding the development device physics models. Focused ion beam milling is used to fabricate solid immersion lenses in SiC substrates with a numerical aperture of 1.3. A lateral spatial resolution of 300 nm is demonstrated at an emission wavelength of 700 nm, and an axial spatial resolution of 1.7 ± 0.3 μm at a laser wavelength of 532 nm is demonstrated; this is an improvement of 2.5× and 5×, respectively, when compared with a conventional 0.5 numerical aperture objective lens without a SIL. These results highlight the benefit of applying the solid immersion lenses technique to the optical characterization of GaN HEMTs. Further improvements may be gained through aberration compensation and increasing the SIL numerical aperture

  16. Solid immersion lenses for enhancing the optical resolution of thermal and electroluminescence mapping of GaN-on-SiC transistors

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, J. W., E-mail: James.Pomeroy@Bristol.ac.uk; Kuball, M. [Center for Device Thermography and Reliability (CDTR), H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2015-10-14

    Solid immersion lenses (SILs) are shown to greatly enhance optical spatial resolution when measuring AlGaN/GaN High Electron Mobility Transistors (HEMTs), taking advantage of the high refractive index of the SiC substrates commonly used for these devices. Solid immersion lenses can be applied to techniques such as electroluminescence emission microscopy and Raman thermography, aiding the development device physics models. Focused ion beam milling is used to fabricate solid immersion lenses in SiC substrates with a numerical aperture of 1.3. A lateral spatial resolution of 300 nm is demonstrated at an emission wavelength of 700 nm, and an axial spatial resolution of 1.7 ± 0.3 μm at a laser wavelength of 532 nm is demonstrated; this is an improvement of 2.5× and 5×, respectively, when compared with a conventional 0.5 numerical aperture objective lens without a SIL. These results highlight the benefit of applying the solid immersion lenses technique to the optical characterization of GaN HEMTs. Further improvements may be gained through aberration compensation and increasing the SIL numerical aperture.

  17. Fast parametric beamformer for synthetic aperture imaging.

    Science.gov (United States)

    Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-08-01

    This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3D by their origin, direction, and inter-sample distance. The delay calculation is recursive and inspired by the coordinate rotation digital computer (CORDIC) algorithm. Only 3 parameters per channel and line are needed for their generation. The calculation of apodization coefficients is based on a piece- wise linear approximation. The implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed after every emission. Summing all low-resolution images produces a perfectly focused high-resolution image. The design of the beamformer is modular, and a single beamformation unit can produce 4600 low-resolution images per second, each consisting of 32 lines and 1024 complex samples per line. In its present incarnation, 3 such modules fit in a single device. The summation of low-resolution images is performed internally in the FPGA to reduce the required bandwidth. The delays are calculated with a precision of 1/16th of a sample, and the apodization coefficients with 7-bit precision. The accumulation of low-resolution images is performed with 24-bit precision. The level of the side- and grating lobes, introduced by the use of integer numbers in the calculations and truncation of intermediate results, is below -86 dB from the peak.

  18. Optical fibres

    CERN Document Server

    Geisler, J; Boutruche, J P

    1986-01-01

    Optical Fibers covers numerous research works on the significant advances in optical fibers, with particular emphasis on their application.This text is composed of three parts encompassing 15 chapters. The first part deals with the manufacture of optical fibers and the materials used in their production. The second part describes optical-fiber connectors, terminals and branches. The third part is concerned with the major optoelectronic components encountered in optical-communication systems.This book will be of value to research scientists, engineers, and patent workers.

  19. Optimization of Spatiotemporal Apertures in Channel Sounding

    DEFF Research Database (Denmark)

    Pedersen, Troels; Pedersen, Claus; Yin, Xuefeng

    2008-01-01

    In this paper we investigate the impact of the spatio-temporal aperture of a channel sounding system equipped with antenna arrays at the transmitter and receiver on the accuracy of joint estimation of Doppler frequency and bi-direction. The contribution of this work is three-fold. Firstly, we state...... a spatiotemporal model which can describe parallel as well as switched sounding systems. The proposed model is applicable for arbitrary layouts of the spatial arrays. To simplify the derivations we investigate the special case of linear spatial arrays. However, the results obtained for linear arrays can...

  20. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined......, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technol- ogy 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and pen- etration. In-vivo scans were also...

  1. VELO aperture considerations for the LHCb Upgrade

    CERN Document Server

    Appleby, RB; Ferro-Luzzi, M; Giovannozzi, M; Holzer, B

    2012-01-01

    In Long Shutdown 2 the VELO detectors will be replaced by new modules compatible with the LHCb Upgrade 40 MHz read-out system. A smaller inner radius of the VELO RF foil and of the silicon sensor active area will allow LHCb to considerably improve the impact parameter resolution. Here, a limit of the minimum VELO aperture during physics (Stable Beams) is discussed. A value of 3.5 mm for the nominal radius of the inner edge fo the RF foil seems acceptable.

  2. Synthetic aperture radar autofocus via semidefinite relaxation.

    Science.gov (United States)

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C

    2013-06-01

    The autofocus problem in synthetic aperture radar imaging amounts to estimating unknown phase errors caused by unknown platform or target motion. At the heart of three state-of-the-art autofocus algorithms, namely, phase gradient autofocus, multichannel autofocus (MCA), and Fourier-domain multichannel autofocus (FMCA), is the solution of a constant modulus quadratic program (CMQP). Currently, these algorithms solve a CMQP by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing problems. Experimental results show that our proposed methods provide promising performance improvements for MCA and FMCA through an increase in computational complexity.

  3. Performance modeling of the effects of aperture phase error, turbulence, and thermal blooming on tiled subaperture systems

    Science.gov (United States)

    Leakeas, Charles L.; Capehart, Shay R.; Bartell, Richard J.; Cusumano, Salvatore J.; Whiteley, Matthew R.

    2011-06-01

    Laser weapon systems comprised of tiled subapertures are rapidly emerging in importance in the directed energy community. Performance models of these laser weapon systems have been developed from numerical simulations of a high fidelity wave-optics code called WaveTrain which is developed by MZA Associates. System characteristics such as mutual coherence, differential jitter, and beam quality rms wavefront error are defined for a focused beam on the target. Engagement scenarios are defined for various platform and target altitudes, speeds, headings, and slant ranges along with the natural wind speed and heading. Inputs to the performance model include platform and target height and velocities, Fried coherence length, Rytov number, isoplanatic angle, thermal blooming distortion number, Greenwood and Tyler frequencies, and atmospheric transmission. The performance model fit is based on power-in-the-bucket (PIB) values against the PIB from the simulation results for the vacuum diffraction-limited spot size as the bucket. The goal is to develop robust performance models for aperture phase error, turbulence, and thermal blooming effects in tiled subaperture systems.

  4. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    Energy Technology Data Exchange (ETDEWEB)

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I., E-mail: fbaida@univ-fcomte.fr [Département d' Optique P.M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche–Comté, 25030 Besançon Cedex (France); Belkhir, Abderrahmane [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou (Algeria)

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  5. Numerical problems in physics

    CERN Document Server

    Singh, Devraj

    2015-01-01

    Numerical Problems in Physics, Volume 1 is intended to serve the need of the students pursuing graduate and post graduate courses in universities with Physics and Materials Science as subject including those appearing in engineering, medical, and civil services entrance examinations. KEY FEATURES: * 29 chapters on Optics, Wave & Oscillations, Electromagnetic Field Theory, Solid State Physics & Modern Physics * 540 solved numerical problems of various universities and ompetitive examinations * 523 multiple choice questions for quick and clear understanding of subject matter * 567 unsolved numerical problems for grasping concepts of the various topic in Physics * 49 Figures for understanding problems and concept

  6. Coded aperture systems as non-conventional lensless imagers for the visible and infrared

    Science.gov (United States)

    Slinger, Chris; Gordon, Neil; Lewis, Keith; McDonald, Gregor; McNie, Mark; Payne, Doug; Ridley, Kevin; Strens, Malcolm; De Villiers, Geoff; Wilson, Rebecca

    2007-10-01

    Coded aperture imaging (CAI) has been used extensively at gamma- and X-ray wavelengths, where conventional refractive and reflective techniques are impractical. CAI works by coding optical wavefronts from a scene using a patterned aperture, detecting the resulting intensity distribution, then using inverse digital signal processing to reconstruct an image. This paper will consider application of CAI to the visible and IR bands. Doing so has a number of potential advantages over existing imaging approaches at these longer wavelengths, including low mass, low volume, zero aberrations and distortions and graceful failure modes. Adaptive coded aperture (ACAI), facilitated by the use of a reconfigurable mask in a CAI configuration, adds further merits, an example being the ability to implement agile imaging modes with no macroscopic moving parts. However, diffraction effects must be considered and photon flux reductions can have adverse consequences on the image quality achievable. An analysis of these benefits and limitations is described, along with a description of a novel micro optical electro mechanical (MOEMS) microshutter technology for use in thermal band infrared ACAI systems. Preliminary experimental results are also presented.

  7. Exo-planet Direct Imaging with On-Axis and/or Segmented Apertures in Space: Adaptive Compensation of Aperture Discontinuities

    Science.gov (United States)

    Soummer, Remi

    Capitalizing on a recent breakthrough in wavefront control theory for obscured apertures made by our group, we propose to demonstrate a method to achieve high contrast exoplanet imaging with on-axis obscured apertures. Our new algorithm, which we named Adaptive Compensation of Aperture Discontinuities (ACAD), provides the ability to compensate for aperture discontinuities (segment gaps and/or secondary mirror supports) by controlling deformable mirrors in a nonlinear wavefront control regime not utilized before but conceptually similar to the beam reshaping used in PIAA coronagraphy. We propose here an in-air demonstration at 1E- 7 contrast, enabled by adding a second deformable mirror to our current test-bed. This expansion of the scope of our current efforts in exoplanet imaging technologies will enabling us to demonstrate an integrated solution for wavefront control and starlight suppression on complex aperture geometries. It is directly applicable at scales from moderate-cost exoplanet probe missions to the 2.4 m AFTA telescopes to future flagship UVOIR observatories with apertures potentially 16-20 m. Searching for nearby habitable worlds with direct imaging is one of the top scientific priorities established by the Astro2010 Decadal Survey. Achieving this ambitious goal will require 1e-10 contrast on a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of nearby stars. Such a mission must of course also be realized at an achievable cost. Lightweight segmented mirror technology allows larger diameter optics to fit in any given launch vehicle as compared to monolithic mirrors, and lowers total life-cycle costs from construction through integration & test, making it a compelling option for future large space telescopes. At smaller scales, on-axis designs with secondary obscurations and supports are less challenging to fabricate and thus more affordable than the off-axis unobscured primary mirror designs

  8. Measurements of pore-scale flow through apertures

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  9. Rotatable Aperture Coronagraph for Exoplanetary Studies (RACES)

    Science.gov (United States)

    Chakrabarti, Supriya; Mendillo, Christopher; Mukherjee, Sunip; Martel, Jason; Cook, Timothy; Polidan, Ronald S.; Rafanelli, Gerard L.; Spencer, Susan B.; Wolfe, Douglas w.

    2018-01-01

    We present the design and expected performance of RACES, a suborbital mission concept to directly image exo-Jupiters with a rotatable non-circular aperture telescope. By using a high-aspect ratio elliptical or rectangular primary mirror (2.3m x 0.6m), this mission achieves the same angular resolution and inner working angle as a 2.3m dia telescope. Such an elliptical or rectangular system would fill the volume of a cylindrical launch vehicle more efficiently and by choosing the aspect ratio one can appropriately tailor its light gathering power. RACES can therefore serve as a pathfinder for future larger missions for exoplanetary explorations. For example, the system described here approaches the collecting area of the well studied EXO-C concept and exceeds its angular resolution. The mission concept, design studies, observation strategy and expected target yield for RACES will be presented, as well as simulations of the high contrast vector vortex coronagraph operating with an un-obscured elliptical aperture.

  10. Coded aperture optimization using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Martineau, A.; Rocchisani, J.M.; Moretti, J.L.

    2010-01-01

    Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.

  11. Large Optical Telescope Based on High Efficiency Thin Film Planar Diffractive Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In future ground-based receivers for deep-space optical communications with spacecraft, aperture diameters of the order of 10 meters are required even with the most...

  12. Fourier transform digital holographic adaptive optics imaging system

    Science.gov (United States)

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  13. Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes

    Directory of Open Access Journals (Sweden)

    Joseba Zubia

    2011-07-01

    Full Text Available Polymer optical fibers (POFs doped with organic dyes can be used to make efficient lasers and amplifiers due to the high gains achievable in short distances. This paper analyzes the peculiarities of light amplification in POFs through some experimental data and a computational model capable of carrying out both power and spectral analyses. We investigate the emission spectral shifts and widths and on the optimum signal wavelength and pump power as functions of the fiber length, the fiber numerical aperture and the radial distribution of the dopant. Analyses for both step-index and graded-index POFs have been done.

  14. Fiber optic light collection system for scanning-tunneling-microscope-induced light emission.

    Science.gov (United States)

    Watkins, Neil J; Long, James P; Kafafi, Zakya H; Mäkinen, Antti J

    2007-05-01

    We report a compact light collection scheme suitable for retrofitting a scanning tunneling microscope (STM) for STM-induced light emission experiments. The approach uses a pair of optical fibers with large core diameters and high numerical apertures to maximize light collection efficiency and to moderate the mechanical precision required for alignment. Bench tests indicate that efficiency reduction is almost entirely due to reflective losses at the fiber ends, while losses due to fiber misalignment have virtually been eliminated. Photon-map imaging with nanometer features is demonstrated on a stepped Au(111) surface with signal rates exceeding 10(4) counts/s.

  15. A Large Aperture Superconducting Dipole for Beta Beams to Minimize Heat Deposition in the Coil

    CERN Document Server

    Wildner, E

    The aim of beta beams in a decay ring is to produce highly energetic pure electron neutrino and anti-neutrino beams coming from b-decay of 18Ne10+ and 6He2+ ion beams. The decay products, having different magnetic rigidities than the ion beam, are deviated inside the dipole. The aperture and the length of the magnet have to be optimized to avoid that the decay products hit the coil. The decay products are intercepted by absorber blocks inside the beam pipe between the dipoles to protect the following dipole. A first design of a 6T arc dipole using a cosine theta layout of the coil with an aperture of 80 mm fulfils the optics requirements. Heat deposition in the coil has been calculated using different absorber materials to find a solution to efficiently protect the coil. Aspects of impedance minimization for the case of having the absorbers inside the beam pipe have also been addressed.

  16. A Large Aperture Superconducting Dipole for Beta Beams to Minimize Heat Deposition in the Coil

    CERN Document Server

    Wildner, E

    2007-01-01

    The aim of beta beams in a decay ring is to produce highly energetic pure electron neutrino and anti-neutrino beams coming from b-decay of 18Ne10+ and 6He2+ ion beams. The decay products, having different magnetic rigidities than the main ion beam, are deviated inside the dipole. The aperture and the length of the magnet have to be optimized to avoid that the decay products hit the coil. The decay products are intercepted by absorber blocks inside the beam pipe between the dipoles to protect the following dipole. A first design of a 6T arc dipole using a cosine theta layout of the coil with an aperture of 80 mm fulfils the optics requirements. Heat deposition in the coil has been calculated using different absorber materials to find a solution to efficiently protect the coil. Aspects of impedance minimization for the case of having the absorbers inside the beam pipe have also been addressed.

  17. Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-03-01

    In an underwater wireless optical communication (UWOC) link, power fluctuations over finite-sized collecting lens are investigated for a horizontally propagating Gaussian beam wave. The power scintillation index, also known as the irradiance flux variance, for the received irradiance is evaluated in weak oceanic turbulence by using the Rytov method. This lets us further quantify the associated performance indicators, namely, the aperture averaging factor and the average bit-error rate (). The effects on the UWOC link performance of the oceanic turbulence parameters, i.e., the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, Kolmogorov microscale, the ratio of temperature to salinity contributions to the refractive index spectrum as well as system parameters, i.e., the receiver aperture diameter, Gaussian source size, laser wavelength and the link distance are investigated.

  18. Extended Aperture Photometry of K2 RR Lyrae stars

    Science.gov (United States)

    Plachy, Emese; Klagyivik, Péter; Molnár, László; Sódor, Ádám; Szabó, Róbert

    2017-10-01

    We present the method of the Extended Aperture Photometry (EAP) that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC) pipeline applied on the automated Single Aperture Photometry (SAP) and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP) data.

  19. Extended Aperture Photometry of K2 RR Lyrae stars

    Directory of Open Access Journals (Sweden)

    Plachy Emese

    2017-01-01

    Full Text Available We present the method of the Extended Aperture Photometry (EAP that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC pipeline applied on the automated Single Aperture Photometry (SAP and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP data.

  20. Enhanced Spectral Modeling of Sparse Aperture Imaging Systems

    National Research Council Canada - National Science Library

    Introne, Robert

    2005-01-01

    .... Unfortunately, spaceborne applications frequently encounter launch vehicle fairing and weight constraints that limit the size of the primarily aperture that can be utilized for a given application...

  1. Fabrication of ultrahigh-precision hemispherical mirrors for quantum-optics applications.

    Science.gov (United States)

    Higginbottom, Daniel B; Campbell, Geoff T; Araneda, Gabriel; Fang, Fengzhou; Colombe, Yves; Buchler, Ben C; Lam, Ping Koy

    2018-01-09

    High precision, high numerical aperture mirrors are desirable for mediating strong atom-light coupling in quantum optics applications and can also serve as important reference surfaces for optical metrology. In this work we demonstrate the fabrication of highly-precise hemispheric mirrors with numerical aperture NA = 0.996. The mirrors were fabricated from aluminum by single-point diamond turning using a stable ultra-precision lathe calibrated with an in-situ white-light interferometer. Our mirrors have a diameter of 25 mm and were characterized using a combination of wide-angle single-shot and small-angle stitched multi-shot interferometry. The measurements show root-mean-square (RMS) form errors consistently below 25 nm. The smoothest of our mirrors has a RMS error of 14 nm and a peak-to-valley (PV) error of 88 nm, which corresponds to a form accuracy of λ/50 for visible optics.

  2. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.

    Science.gov (United States)

    Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang

    2017-10-13

    Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.

  3. Numerical relativity

    CERN Document Server

    Shibata, Masaru

    2016-01-01

    This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.

  4. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  5. Fractal apertures in waveguides, conducting screens and cavities analysis and design

    CERN Document Server

    Ghosh, Basudeb; Kartikeyan, M V

    2014-01-01

    This book deals with the design and analysis of fractal apertures in waveguides, conducting screens and cavities using numerical electromagnetics and field-solvers. The aim is to obtain design solutions with improved accuracy for a wide range of applications. To achieve this goal, a few diverse problems are considered. The book is organized with adequate space dedicated for the design and analysis of fractal apertures in waveguides, conducting screens, and cavities, microwave/millimeter wave applications followed by detailed case-study problems to infuse better insight and understanding of the subject. Finally, summaries and suggestions are given for future work. Fractal geometries were widely used in electromagnetics, specifically for antennas and frequency selective surfaces (FSS). The self-similarity of fractal geometry gives rise to a multiband response, whereas the  space-filling nature of the fractal geometries makes it an efficient element in antenna and FSS unit cell miniaturization. Until now, no e...

  6. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    Science.gov (United States)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.

    2011-07-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  7. Event Localization in Bulk Scintillator Crystals Using Coded Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Braverman, Joshua B. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    The localization of radiation interactions in bulk scintillators is generally limited by the size of the light distribution at the readout surface of the crystal/light-pipe system. By finding the centroid of the light spot, which is typically of order centimeters across, practical single-event localization is limited to ~2 mm/cm of crystal thickness. Similar resolution can also be achieved for the depth of interaction by measuring the size of the light spot. Through the use of near-field coded-aperture techniques applied to the scintillation light, light transport simulations show that for 3-cm-thick crystals, more than a five-fold improvement (millimeter spatial resolution) can be achieved both laterally and in event depth. At the core of the technique is the requirement to resolve the shadow from an optical mask placed in the scintillation light path between the crystal and the readout. In this paper, experimental results are presented that demonstrate the overall concept using a 1D shadow mask, a thin-scintillator crystal and a light pipe of varying thickness to emulate a 2.2-cm-thick crystal. Spatial resolutions of ~ 1 mm in both depth and transverse to the readout face are obtained over most of the crystal depth.

  8. Full aperture backscatter diagnostic for the NIF laser facility (abstract)

    International Nuclear Information System (INIS)

    Sewall, Noel; Lewis, Izzy; Kirkwood, Robert; Moody, John; Celeste, John

    2001-01-01

    The current schemes for achieving ignition on the National Ignition Facility require efficient coupling of energy from 192 laser beams to the deuterium--tritium fuel capsule. Each laser beam must propagate through a long scalelength plasma region before being converted to x rays (indirect drive) or being absorbed on the capsule (direct drive). Laser-plasma instabilities such as stimulated Brillouin and stimulated Raman scattering (SBS and SRS) will scatter a fraction of the incident laser energy out of the target leading to an overall reduction in the coupling efficiency. It is important to measure the character of this scattered light in order to understand it and to develop methods for reducing it to acceptable levels. We are designing a system called the full aperature backscatter diagnostic with the capability to measure the time-dependent amplitude and spectral content of the light which is backscattered through the incident beam focusing optic. The backscattered light will be collected over about 85% of the full beam aperture and separated into the SBS wavelength band (348--354 nm) and the SRS wavelength band (400--700 nm). Spectrometers coupled to streak cameras will provide time-resolved spectra for both scattered light components. The scattered light amplitude will be measured with fast and slow diodes. The entire system will be routinely calibrated. Analysis of the data will provide important information for reducing scattered power, achieving power balance, and finally achieving ignition

  9. Defocus morphing in real aperture images.

    Science.gov (United States)

    Chaudhuri, Subhasis

    2005-11-01

    A new concept called defocus morphing in real aperture images is introduced. View morphing is an existing example of shape-preserving image morphing based on the motion cue. It is proved that images can also be morphed based on the depth-related defocus cue. This illustrates that the morphing operation is not necessarily a geometric process alone; one can also perform a photometry-based morphing wherein the shape information is implicitly buried in the image intensity field. A theoretical understanding of the defocus morphing process is presented. It is shown mathematically that, given two observations of a three-dimensional scene for different camera parameter settings, we can obtain a virtual observation for any camera parameter setting through a simple nonlinear combination of these observations.

  10. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen

    2010-01-01

    imaging systems are reviewed in terms of the employed architecture and data processing strategies. Active multichannel measurement method is found to be promising for real-time applications among the various terahertz imaging techniques and is chosen as a basis for the imaging instruments presented......This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz...... in this paper. An active system operation allows for a wide dynamic range, which is important for image quality. The described instruments employ a multichannel high-sensitivity heterodyne architecture and aperture filling techniques, with close to real-time image acquisition time. In the case of the photonic...

  11. Three-dimensional synthetic aperture particle image velocimetry

    Science.gov (United States)

    Belden, Jesse; Truscott, Tadd T.; Axiak, Michael C.; Techet, Alexandra H.

    2010-12-01

    We present a new method for resolving three-dimensional (3D) fluid velocity fields using a technique called synthetic aperture particle image velocimetry (SAPIV). By fusing methods from the imaging community pertaining to light field imaging with concepts that drive experimental fluid mechanics, SAPIV overcomes many of the inherent challenges of 3D particle image velocimetry (3D PIV). This method offers the ability to digitally refocus a 3D flow field at arbitrary focal planes throughout a volume. The viewable out-of-plane dimension (Z) can be on the same order as the viewable in-plane dimensions (X-Y), and these dimensions can be scaled from tens to hundreds of millimeters. Furthermore, the digital refocusing provides the ability to 'see-through' partial occlusions, enabling measurements in densely seeded volumes. The advantages are achieved using a camera array (typically at least five cameras) to image the seeded fluid volume. The theoretical limits on refocused plane spacing and viewable depth are derived and explored as a function of camera optics and spacing of the array. A geometric optics model and simulated PIV images are used to investigate system performance for various camera layouts, measurement volume sizes and seeding density; performance is quantified by the ability to reconstruct the 3D intensity field, and resolve 3D vector fields in densely seeded simulated flows. SAPIV shows the ability to reconstruct fields with high seeding density and large volume size. Finally, results from an experimental implementation of SAPIV using a low cost eight-camera array to study a vortex ring in a 65 × 40 × 32 mm3 volume are presented. The 3D PIV results are compared with 2D PIV data to demonstrate the capability of the 3D SAPIV technique.

  12. New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system

    Science.gov (United States)

    Shimada, Ken-ichi; Ide, Tatsuro; Shimano, Takeshi; Anderson, Ken; Curtis, Kevin

    2014-02-01

    A new optical architecture for holographic data storage system which is compatible with a Blu-ray Disc™ (BD) system is proposed. In the architecture, both signal and reference beams pass through a single objective lens with numerical aperture (NA) 0.85 for realizing angularly multiplexed recording. The geometry of the architecture brings a high affinity with an optical architecture in the BD system because the objective lens can be placed parallel to a holographic medium. Through the comparison of experimental results with theory, the validity of the optical architecture was verified and demonstrated that the conventional objective lens motion technique in the BD system is available for angularly multiplexed recording. The test-bed composed of a blue laser system and an objective lens of the NA 0.85 was designed. The feasibility of its compatibility with BD is examined through the designed test-bed.

  13. Comprehensive study of unexpected microscope condensers formed in sample arrangements commonly used in optical microscopy.

    Science.gov (United States)

    Desai, Darshan B; Aldawsari, Mabkhoot Mudith S; Alharbi, Bandar Mohammed H; Sen, Sanchari; Grave de Peralta, Luis

    2015-09-01

    We show that various setups for optical microscopy which are commonly used in biomedical laboratories behave like efficient microscope condensers that are responsible for observed subwavelength resolution. We present a series of experiments and simulations that reveal how inclined illumination from such unexpected condensers occurs when the sample is perpendicularly illuminated by a microscope's built-in white-light source. In addition, we demonstrate an inexpensive add-on optical module that serves as an efficient and lightweight microscope condenser. Using such add-on optical module in combination with a low-numerical-aperture objective lens and Fourier plane imaging microscopy technique, we demonstrate detection of photonic crystals with a period nearly eight times smaller than the Rayleigh resolution limit.

  14. Mask design and fabrication in coded aperture imaging

    International Nuclear Information System (INIS)

    Shutler, Paul M.E.; Springham, Stuart V.; Talebitaher, Alireza

    2013-01-01

    We introduce the new concept of a row-spaced mask, where a number of blank rows are interposed between every pair of adjacent rows of holes of a conventional cyclic difference set based coded mask. At the cost of a small loss in signal-to-noise ratio, this can substantially reduce the number of holes required to image extended sources, at the same time increasing mask strength uniformly across the aperture, as well as making the mask automatically self-supporting. We also show that the Finger and Prince construction can be used to wrap any cyclic difference set onto a two-dimensional mask, regardless of the number of its pixels. We use this construction to validate by means of numerical simulations not only the performance of row-spaced masks, but also the pixel padding technique introduced by in ’t Zand. Finally, we provide a computer program CDSGEN.EXE which, on a fast modern computer and for any Singer set of practical size and open fraction, generates the corresponding pattern of holes in seconds

  15. Second harmonic imaging using synthetic aperture sequential beamforming

    DEFF Research Database (Denmark)

    Du, Yigang; Rasmussen, Joachim; Jensen, Henrik

    2011-01-01

    The paper investigates Second Harmonic Imaging (SHI) using Synthetic Aperture Sequential Beamforming (SASB). The investigation is made by an experimental Synthetic Aperture Real-time Ultrasound System (SARUS). A linear array transducer is used to scan 4 wires at the image depths of f22.5, 47.5, 72...

  16. The sonar aperture and its neural representation in bats.

    Science.gov (United States)

    Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-10-26

    As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.

  17. Shadow Enhancement in Synthetic Aperture Sonar Using Fixed Focusing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Callow, H.J.; Sabel, J.C.; Sæbø, T.O.

    2009-01-01

    Abstract—A shadow cast by an object on the seafloor is important information for target recognition in synthetic aperture sonar (SAS) images. Synthetic aperture imaging causes a fundamental limitation to shadow clarity because the illuminator is moved during the data collection. This leads to a

  18. Reconfigurable metasurface aperture for security screening and microwave imaging

    Science.gov (United States)

    Sleasman, Timothy; Imani, Mohammadreza F.; Boyarsky, Michael; Pulido-Mancera, Laura; Reynolds, Matthew S.; Smith, David R.

    2017-05-01

    Microwave imaging systems have seen growing interest in recent decades for applications ranging from security screening to space/earth observation. However, hardware architectures commonly used for this purpose have not seen drastic changes. With the advent of metamaterials a wealth of opportunities have emerged for honing metasurface apertures for microwave imaging systems. Recent thrusts have introduced dynamic reconfigurability directly into the aperture layer, providing powerful capabilities from a physical layer with considerable simplicity. The waveforms generated from such dynamic metasurfaces make them suitable for application in synthetic aperture radar (SAR) and, more generally, computational imaging. In this paper, we investigate a dynamic metasurface aperture capable of performing microwave imaging in the K-band (17.5-26.5 GHz). The proposed aperture is planar and promises an inexpensive fabrication process via printed circuit board techniques. These traits are further augmented by the tunability of dynamic metasurfaces, which provides the dexterity necessary to generate field patterns ranging from a sequence of steered beams to a series of uncorrelated radiation patterns. Imaging is experimentally demonstrated with a voltage-tunable metasurface aperture. We also demonstrate the aperture's utility in real-time measurements and perform volumetric SAR imaging. The capabilities of a prototype are detailed and the future prospects of general dynamic metasurface apertures are discussed.

  19. Thermal front propagation in variable aperture fracture–matrix system

    Indian Academy of Sciences (India)

    heat transfer from rock matrix to fracture for the case of the parallel plate model is greatly dependent on the rock thermal conductivity (λm) as compared to variable aper- ture model. Further, the thermal front propagation for both parallel plate model and variable aperture model is sensitive to changes in fracture aperture.

  20. Naval Research Laboratory Ecological -- Photochemical -- Bio-optical--Numerical Experiment (Neptune) Version 1: A Portable, Flexible Modeling Environment Designed to Resolve Time-dependent Feedbacks Between Upper Ocean Ecology, Photochemistry, and Optics

    National Research Council Canada - National Science Library

    Jolliff, Jason K; Kindle, John C

    2007-01-01

    A modeling system has been constructed that combines ecological element cycling, photochemical processes, and bio-optical processes into a single simulation that may be coupled to hydrodynamic models...

  1. Microfabricated high-bandpass foucault aperture for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  2. Influence of pressure change during hydraulic tests on fracture aperture.

    Science.gov (United States)

    Ji, Sung-Hoon; Koh, Yong-Kwon; Kuhlman, Kristopher L; Lee, Moo Yul; Choi, Jong Won

    2013-03-01

    In a series of field experiments, we evaluate the influence of a small water pressure change on fracture aperture during a hydraulic test. An experimental borehole is instrumented at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The target fracture for testing was found from the analyses of borehole logging and hydraulic tests. A double packer system was developed and installed in the test borehole to directly observe the aperture change due to water pressure change. Using this packer system, both aperture and flow rate are directly observed under various water pressures. Results indicate a slight change in fracture hydraulic head leads to an observable change in aperture. This suggests that aperture change should be considered when analyzing hydraulic test data from a sparsely fractured rock aquifer. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  3. Material of LAPAN's thermal IR camera equipped with two microbolometers in one aperture

    Science.gov (United States)

    Bustanul, A.; Irwan, P.; Andi M., T.

    2017-11-01

    Besides the wavelength used, there is another factor that we have to notice in designing an optical system. It is material used which is correct for the spectral bands determined. Basically, due the limitation of the available range and expensive, choosing and determining materials for Infra Red (IR) wavelength are more difficult and complex rather than visible spectrum. We also had the same problem while designing our thermal IR camera equipped with two microbolometers sharing aperture. Two spectral bands, 3 - 4 μm (MWIR) and 8 - 12 μm (LWIR), have been decided to be our thermal IR camera spectrum to address missions, i.e., peat land fire, volcanoes activities, and Sea Surface Temperature (SST). Referring those bands, we chose the appropriate material for LAPAN's IR camera optics. This paper describes material of LAPAN's IR camera equipped with two microbolometer in one aperture. First of all, we were learning and understanding of optical materials properties all matters of IR technology including its bandwidths. Considering some aspects, i.e., Transmission, Index of Refraction, Thermal properties covering the index gradient and coefficient of thermal expansion (CTE), the analysis then has been accomplished. Moreover, we were utilizing a commercial software, Thermal Desktop/Sinda Fluint, to strengthen the process. Some restrictions such as space environment, low cost, and performance mainly durability and transmission, were also cared throughout the trade off the works. The results of all those analysis, either in graphs or in measurement, indicate that the lens of LAPAN's IR camera with sharing aperture is based on Germanium/Zinc Selenide materials.

  4. Average spectral efficiency analysis of FSO links over turbulence channel with adaptive transmissions and aperture averaging

    Science.gov (United States)

    Aarthi, G.; Ramachandra Reddy, G.

    2018-03-01

    In our paper, the impact of adaptive transmission schemes: (i) optimal rate adaptation (ORA) and (ii) channel inversion with fixed rate (CIFR) on the average spectral efficiency (ASE) are explored for free-space optical (FSO) communications with On-Off Keying (OOK), Polarization shift keying (POLSK), and Coherent optical wireless communication (Coherent OWC) systems under different turbulence regimes. Further to enhance the ASE we have incorporated aperture averaging effects along with the above adaptive schemes. The results indicate that ORA adaptation scheme has the advantage of improving the ASE performance compared with CIFR under moderate and strong turbulence regime. The coherent OWC system with ORA excels the other modulation schemes and could achieve ASE performance of 49.8 bits/s/Hz at the average transmitted optical power of 6 dBm under strong turbulence. By adding aperture averaging effect we could achieve an ASE of 50.5 bits/s/Hz under the same conditions. This makes ORA with Coherent OWC modulation as a favorable candidate for improving the ASE of the FSO communication system.

  5. High-contrast imager for Complex Aperture Telescopes (HiCAT): testbed design and coronagraph developments

    Science.gov (United States)

    N'Diaye, Mamadou; Choquet, E.; Pueyo, L.; Elliot, E.; Perrin, M. D.; Wallace, J.; Anderson, R. E.; Carlotti, A.; Groff, T. D.; Hartig, G. F.; Kasdin, J.; Lajoie, C.; Levecq, O.; Long, C.; Macintosh, B.; Mawet, D.; Norman, C. A.; Shaklan, S.; Sheckells, M.; Sivaramakrishnan, A.; Soummer, R.

    2014-01-01

    We present a new high-contrast imaging testbed designed to provide complete solutions for wavefront sensing and control and starlight suppression with complex aperture telescopes (NASA APRA; Soummer PI). This includes geometries with central obstruction, support structures, and/or primary mirror segmentation. Complex aperture telescopes are often associated with large telescope designs, which are considered for future space missions. However, these designs makes high-contrast imaging challenging because of additional diffraction features in the point spread function. We present a novel optimization approach for the testbed optical and opto-mechanical design that minimizes the impact of both phase and amplitude errors from the wave propagation of testbed optics surface errors. This design approach allows us to define the specification for the bench optics, which we then compare to the manufactured parts. We discuss the testbed alignment and first results. We also present our coronagraph design for different testbed pupil shapes (AFTA or ATLAST), which involves a new method for the optimization of Apodized Pupil Lyot Coronagraphs (APLC).

  6. Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells

    Science.gov (United States)

    Stocker, Michael T.; Barnes, Bryan M.; Sohn, Martin; Stanfield, Eric; Silver, Richard M.

    2017-10-01

    Widespread commercialization of proton exchange membrane fuel cells remains curbed by various manufacturing and infrastructure challenges. One such technical barrier identified by the U. S. Department of Energy is the need for high-speed, in-line process control of platinum-based catalyst layers in the membrane electrode assembly of the fuel cell. Using multiple reflectivity-based optical methods, such as optical scatterometry and large aperture projection scatterometry, we demonstrate in-line-capable catalyst loading measurements of carbon-supported Pt nanoparticle and Pt-alloy nanostructured thin film catalyst coated membranes. Large aperture projection scatterometry is a new high-throughput approach developed at the National Institute of Standards and Technology specifically for fuel cell manufacturing metrology. Angle- and wavelength-resolved measurements of these fuel cell soft goods validate the ability of reflectivity-based measurements to produce industrially relevant sensitivities to changes in Pt and Pt-alloy loading. The successful application of these optical methods to fuel cell manufacturing metrology directly addresses the shortage of high-throughput process control approaches needed to facilitate performance improvements and manufacturing cost-reductions required to make fuel cells commercially viable.

  7. Investigation on the structural and nonlinear optical properties of Pt doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Rahulan, K. Mani; Padmanathan, N.; Vinitha, G.; Kanakam, Charles Christopher

    2013-01-01

    Graphical abstract: The open aperture Z-scan traces of Pt doped TiO 2 nanoparticles at different Pt concentrations were carried out at an irradiation wavelength of 532 nm. It was numerically found that, two photon absorption (TPA) type process gives the best fit to the obtained open aperture Z-scan data. The nonlinear transmission was found to be of third order as it fits to a two-photon absorption. The optical limiting performances of nanoparticles were greatly enhanced with increased volume ratio of Pt. Increasing particle size reduced the limiting threshold and enhanced the optical limiting performance. - Highlights: • Pt doped TiO 2 nanoparticles with different concentrations of Pt have been synthesized by sol–gel method. • The average fluorescence lifetime decreases as the volume fraction of Pt dopant increases. • The effects of Pt content on the optical limiting property were investigated by open aperture Z-scan measurements done at 532 nm using 5 ns laser pulses. • The values of the third-order nonlinearities of nanoparticles are interesting from the application point of view which could be used as a potential candidate for the application of nonlinear optical device. - Abstract: Pt doped TiO 2 nanoparticles with different concentrations of Pt were prepared by sol–gel method. X-ray diffraction (XRD) study reveals that the samples have a homogeneous anatase phase tetragonal system and the lattice parameter analysis indicates that Pt ions substitute into the lattice of TiO 2 . The addition of dopant increases the growth of TiO 2 grains, agglomerates them and shifts the absorption band of TiO 2 from ultraviolet to visible region. The incorporation of Pt in TiO 2 is also confirmed by fluorescence quenching and the fluorescence lifetime decreases as the volume fraction of Pt dopant increases. Open aperture Z-scan measurements done at 532 nm using 7 ns laser pulses show nonlinear absorption which arises from an effective two photon absorption process

  8. Numerical Development

    Science.gov (United States)

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  9. Hindi Numerals.

    Science.gov (United States)

    Bright, William

    In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…

  10. A simplified model to evaluate the effect of fluid rheology on non-Newtonian flow in variable aperture fractures

    Science.gov (United States)

    Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio

    2017-04-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate

  11. Numerical analysis

    CERN Document Server

    Rao, G Shanker

    2006-01-01

    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  12. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  13. E-beam pumping and energy extraction from large-aperture KrF amplifiers

    Science.gov (United States)

    Zvorykin, V. D.; Arlantsev, S. V.; Bakaev, V. G.; Levchenko, A. O.; Molchanov, A. G.; Ustinovskii, N. N.

    2006-01-01

    Experiments were performed at 100-J-class GARPUN KrF laser installation on optimization of e-beam pumping and amplification of 20-ns pulses in e-beam-pumped amplifiers with gain volumes of 10 × 10 × 100 cm 3 and 16 × 18 × 100 cm 3. Amplified spontaneous emission (ASE) was measured in the near field close to the output window and in the far field along the amplifier axis. Suppression of transverse ASE by amplification of a laser signal was also investigated. The experimental data were compared with numerical simulations of e-beam transport using Monte Carlo code and 3-D numerical simulations of large-aperture single-pass and double-pass KrF laser amplifiers. Finally, the verified numerical codes were applied for optimization studies of large-scale KrF amplifiers with output energy up to 10 kJ being developed for Inertial Fusion Energy application.

  14. Magnetic domain structure investigation of Bi: YIG-thin films by combination of AFM and cantilever-based aperture SNOM

    International Nuclear Information System (INIS)

    Vysokikh, Yu E; Shevyakov, V I; Krasnoborodko, S Yu; Shelaev, A V; Prokopov, A R

    2016-01-01

    We present the results of magnetic domain structure investigation by combination of atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM). Special hollow-pyramid AFM cantilevers with aperture was used. This combination allows us use same probe for both topography and domain structure visualization of Bi -substituted ferrite garnet films of micro- and nano-meter thickness. Samples were excited through aperture by tightly focused linearly polarized laser beam. Magneto-optical effect rotates polarization of transmitted light depend on domain orientation. Visualization of magnetic domains was performed by detecting cross polarized component of transmitted light. SNOM allows to obtain high resolution magnetic domain image and prevent sample from any disturbance by magnetic probe. Same area SNOM and MFM images are presented. (paper)

  15. Motion measurement for synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  16. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    . The beamformer consists of a number of identical beamforming blocks, each processing data from several channels and producing part of the image. A number of these blocks can be accommodated in a modern field-programmable gate array device (FPGA), and a whole synthetic aperture system can be implemented using...... several FPGAs. For the current implementation, the input data is sampled at 4 times the center frequency of the excitation pulse and is match-filtered in the frequency domain. In-phase and quadrature data are beamformed with a sub-sample precision of the focusing delays of 1/16th of the sampling period...... with 255 levels. A beamforming block uses input data from 4 elements and produces a set of 10 lines. Linear interpolation is used to implement sub-sample delays. The VHDL code for the beamformer has been synthesized for a Xilinx V4FX100 speed grade 11 FPGA, where it can operate at a maximum clock frequency...

  17. Fiber taper characterization by optical backscattering reflectometry.

    Science.gov (United States)

    Lai, Yu-Hung; Yang, Ki Youl; Suh, Myoung-Gyun; Vahala, Kerry J

    2017-09-18

    Fiber tapers provide a way to rapidly measure the spectra of many types of optical microcavities. Proper fabrication of the taper ensures that its width varies sufficiently slowly (adiabatically) along the length of the taper so as to maintain single spatial mode propagation. This is usually accomplished by monitoring the spectral transmission through the taper. In addition to this characterization method it is also helpful to know the taper width versus length. By developing a model of optical backscattering within the fiber taper, it is possible to use backscatter measurements to characterize the taper width versus length. The model uses the concept of a local taper numerical aperture to accurately account for varying backscatter collection along the length of the taper. In addition to taper profile information, the backscatter reflectometry method delineates locations along the taper where fluctuations in fiber core refractive index, cladding refractive index, and taper surface roughness each provide the dominant source of backscattering. Rayleigh backscattering coefficients are also extracted by fitting the data with the model and are consistent with the fiber manufacturer's datasheet. The optical backscattering reflectometer is also used to observe defects resulting from microcracks and surface contamination. All of this information can be obtained before the taper is removed from its fabrication apparatus. The backscattering method should also be prove useful for characterization of nanofibers.

  18. In-vivo examples of synthetic aperture vector flow imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels; Hansen, Kristoffer Lindskov; Nielsen, Michael Bachmann

    2007-01-01

    are processed, and movies of full vector flow images are generated. This paper presents still frames from different time instances of these movies. The movie from the femoral data tracks the accelerating velocity in the femoral artery during systole and a backwards flow at the end of the systole. A complex flow...... would be needed. Synthetic aperture vector flow imaging could potentially provide this. The purpose of this paper is to test the synthetic aperture vector flow imaging method on challenging in-vivo data. Two synthetic aperture in-vivo data sets are acquired using a commercial linear array transducer...

  19. MD1405: Demonstration of forced dynamic aperture measurements at injection

    CERN Document Server

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  20. Adjustable off-focal aperture for x-ray tubes

    International Nuclear Information System (INIS)

    Mattson, R.A.; Levar, R.E.

    1990-01-01

    This patent describes an x-ray tube assembly for radiographic scanners. It comprises: an evacuated envelope; an anode rotatably mounted within the envelope; a housing surrounding the envelope to define a cooling fluid reservoir therebetween, the housing defining an aperture therein and having a collar surrounding the aperture; an x-ray permeable, fluid impermeable window mounted to the housing to seal the aperture; an x-ray beam defining means, an off-focal radiation attenuating means, a flexible cable means, and a first stop means

  1. Dynamic Aperture Measurements at the Advanced Light Source

    International Nuclear Information System (INIS)

    Decking, W.; Robin, D.

    1999-01-01

    A large dynamic aperture for a storage ring is of importance for long lifetimes and a high injection efficiency. Measurements of the dynamic aperture of the third generation synchrotron light source Advanced Light Source (ALS) using beam excitation with kicker magnets are presented. The experiments were done for various accelerator conditions, allowing us to investigate the influence of different working points, chromaticities, insertion devices, etc.. The results are compared both with tracking calculations and a simple model for the dynamic aperture yielding good agreements. This gives us confidence in the predictability of the nonlinear accelerator model. This is especially important for future ALS upgrades as well as new storage ring designs

  2. Numerical analysis

    CERN Document Server

    Scott, L Ridgway

    2011-01-01

    Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...

  3. High-contrast imaging with an arbitrary aperture: active correction of aperture discontinuities

    Science.gov (United States)

    Pueyo, Laurent; Norman, Colin; Soummer, Rémi; Perrin, Marshall; N'Diaye, Mamadou; Choquet, Elodie

    2013-09-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential Deformable Mirrors to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of Deformable Mirror Surfaces that yield high contrast Point Spread Functions is not linear, and non-linear methods are needed to find the true minimum in the optimization topology. We solve the highly non-linear Monge-Ampere equation that is the fundamental equation describing the physics of phase induced amplitude modulation. We determine the optimum configuration for our two sequential Deformable Mirror system and show that high-throughput and high contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to JWST, ACAD can attain at least 10-7 in contrast and an order of magnitude higher for future Extremely Large Telescopes, even when the pupil features a missing segment" . We show that the converging non-linear mappings resulting from our Deformable Mirror shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and strut's while not amplifying the diffraction at the aperture edges beyond the Fresnel regime and illustrate the broadband properties of ACAD in the case of the pupil configuration corresponding to the Astrophysics Focused Telescope Assets. Since details about these telescopes are not yet available to the broader astronomical community, our test case is based on a geometry mimicking the actual one, to the best of our knowledge.

  4. GPR thin - layer AVO analysis for fracture aperture and fill characterization

    Science.gov (United States)

    Kana, A. A.; West, L. J.; Clark, R.

    2011-12-01

    The ability of fractures to reflect radar waves and the dependence of this reflectivity on fracture properties (aperture and fill) makes the GPR method a promising tool for rock fracture characterization. Successful characterisation requires quantification of the reflectivity (reflection coefficient (R)) of individual fractures. The AVO method applied to fractures involves measuring the reflection amplitude variation with offset (incidence angle). Measuring the full AVO response using CMP (Common Mid Point) surveys enables estimation of fracture aperture and fill permittivity which has proved difficult to achieve with normal-incidence data such as that typically collected in Common Offset (CO) profiling. We carried out analysis of CMP data acquired over a bedding plane fracture in Carboniferous Limestone in Yorkshire, United Kingdom. The reflection amplitude measured in the field is related to the reflection coefficient but however, is also influenced by other factors including the source amplitude, antenna coupling with the ground surface, transmission losses from overlying interfaces, source and receiver radiation patterns, and attenuation. Raw amplitudes were corrected for spreading and antenna radiation/receiver patterns; offsets were further converted to incidence angles to obtain a diagnostic AVA curve. The antenna patterns were measured through transillumination surveys across limestone boulders and through numerical modelling using the GprMax 3D modelling code. Being a low loss formation, conductive attenuation was considered insignificant over the ray-path length. Because of the difficulty in characterizing the source pulse strength, both theoretical and measured amplitudes were normalized. Fracture properties are then obtained by comparing the normalised field derived AVA curve with normalized theoretical reflection coefficient curves for thin fractures with various apertures and fills. Resulting aperture and fill permittivity were consistent with field

  5. Improved Large Segmented Optics Fabrication Using Magnetorheological Finishing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Primary mirrors for large aperture telescopes (> 10 m) are collections of smaller (1-2 m), typically hexagonal, often aspheric, optical segments. NASA's next...

  6. Improved Large Segmented Optics Fabrication Using Magnetorheological Finishing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Primary mirrors for large aperture telescopes (> 10 m) are collections of smaller (1-2 m), typically hexagonal, often aspheric, optical segments. NASA's next...

  7. Improved Large Segmented Optics Fabrication Using Magnetorheological Finishing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Primary mirrors for large aperture telescopes (>10m) are collections of smaller (1-2m), typically hexagonal, often aspheric, optical segments. NASA?s next...

  8. Experimental and numerical study on growth of high-quality ZnO single-crystal microtubes by optical vapor supersaturated precipitation method

    Science.gov (United States)

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Jiang, Yijian

    2017-06-01

    In this work, high-quality free-standing ZnO single-crystal microtubes with hexagonal cross-section were fabricated by an optical image furnace. Optical vapor supersaturated precipitation (OVSP) and axial photo-thermal-decomposition were proposed to interpret the microrods growth and microtubes formation, respectively. The maximum dimensions of the grown microtube were 5 mm in length, 100 μm in diameter and 1 μm in facet wall thickness. In our previous work, a new room-temperature photoluminescence (PL) peak ( 392 nm) of ZnO microtubes was attributed to VZn-related donor-acceptor-pairs (DAP) transition. This work further confirmed the VZn-related acceptors widely existing during ZnO microrods/ microtubes growth by OVSP. The effects of major growth parameters (e.g. lamp power, filament geometry and growth platform shape) on temperature field at the growth platform of precursor rod were studied by a finite element model as well. The lamp power of 65% (1500 W), thick single-filament and appropriate conical growth platform were optimized for a uniform temperature field to achieve consistent finish quality of microtubes and prevent twin-microtubes formation. This work would be beneficial for batch growth of the novel ZnO microtubes/microrods with high quality for a variety of applications.

  9. Aperture Photometry Tool Versus SExtractor for Noncrowded Fields

    Science.gov (United States)

    Laher, Russ R.; Rebull, Luisa M.; Gorjian, Varoujan; Masci, Frank J.; Fowler, John W.; Grillmair, Carl; Surace, Jason; Mattingly, Sean; Jackson, Ed; Hacopeans, Eugean; Hamam, Nouhad; Groom, Steve; Teplitz, Harry; Mi, Wei; Helou, George; van Eyken, Julian C.; Law, Nicholas M.; Dekany, Richard G.; Rahmer, Gustavo; Hale, David; Smith, Roger; Quimby, Robert M.; Ofek, Eran O.; Kasliwal, Mansi M.; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Khahn; McKenna, Dan; Kulkarni, Shrinivas R.

    2012-07-01

    Outputs from new software program Aperture Photometry Tool (APT) are compared with similar outputs from SExtractor for sources extracted from R-band optical images acquired by the Palomar Transient Factory (PTF), infrared mosaics constructed from Spitzer Space Telescope images, and a processed visible/near-infrared image from the Hubble Legacy Archive (HLA). Two large samples from the PTF images are studied, each containing around 3 × 103 sources from noncrowded fields. The median values of source-intensity relative percentage differences between the two software programs, computed separately for two PTF samples, are +0.13% and +0.17%, with corresponding statistical dispersions of 1.43% and 1.84%, respectively. For the Spitzer mosaics, a similar large sample of extracted sources for each of channels 1-4 of Spitzer’s Infrared Array Camera (IRAC) are analyzed with two different sky annulus sizes, and we find that the median and modal values of source-intensity relative percentage differences between the two software programs are between -0.5% and +2.0%, and the corresponding statistical dispersions range from 1.4 to 6.7%, depending on the Spitzer IRAC channel and sky annulus. The results for the HLA image are mixed, as might be expected for a moderately crowded field. The comparisons for the three different kinds of images show that there is generally excellent agreement between APT and SExtractor. Differences in source-intensity uncertainty estimates for the PTF images amount to less than 3% for the PTF sources, and these are potentially caused by SExtractor’s omission of the sky background uncertainty term in the formula for source-intensity uncertainty, as well as differing methods of sky background estimation.

  10. Morphometric analysis of septal aperture of humerus

    Directory of Open Access Journals (Sweden)

    Raghavendra K, Anil kumar Reddy Y, Shirol VS, Daksha Dixit, Desai SP

    2014-04-01

    Full Text Available Introduction: Lower end of humerus shows olecranon and coronoid fossae separated by a thin bony septum, sometimes it may deficient and shows foramen which communicates both the fossae called Septal aperture, which is commonly referred as supratrochlear foramen (STF. Materials & Methods: We have studied 260 humeri (126 right side and 134 left side, measurements were taken by using vernier caliper, translucency septum was observed by keeping the lower end of humerus against the x-ray lobby. Results: A clear cut STF was observed in 19.2% bones, translucency septum was observed in 99 (91.6% humeri on the right side and 95 (93.1% humeri on the left sides respectively (Table – 1. Clinical significance: The presence of STF is always associated with the narrow medullary canal at the lower end of humerus, Supracondylar fracture of humerus is most common in paediatric age group, medullary nailing is done to treat the fractures in those cases the knowledge about the STF is very important for treating the fractures. It has been observed in x-ray of lower end of the humerus the STF is comparatively radiolucent, it is commonly seen as a type of ‘pseudolesions’ in an x-ray of the lower end of humerus and it may mistake for an osteolytic or cystic lesions. Conclusion: The present study can add data into anthropology and anatomy text books regarding STF and it gives knowledge of understanding anatomical variation of distal end of the humerus, which is significant for anthropologists, orthopaedic surgeons and radiologists in habitual clinical practice.

  11. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    Aston, D.; Awaji, N.; Barnett, B.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K + and K - interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K - p interactions during 1977 and 1978, which is also described briefly

  12. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  13. Self-Assembled Soft Optical Negative Index Materials

    Science.gov (United States)

    2008-08-05

    dividing the results of the closed aperture Z-scan by those from the open aperture Z-scan. The source of the Z-scan can be directly from a laser or...orientation and relative position with respect to precision scribe lines. This type of mapping enabled us to examine regions .of interest in optical...chirality of cysteine stabilizers has the distinct effect on both the growth kinetics and the optical properties of CdTe nanocrystals synthesized in

  14. Two mode optical fiber in space optics communication

    Science.gov (United States)

    Hampl, Martin

    2017-11-01

    In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.

  15. The development of deep learning in synthetic aperture radar imagery

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2017-05-01

    Full Text Available sensing techniques but comes at the price of additional complexities. To adequately cope with these, researchers have begun to employ advanced machine learning techniques known as deep learning to Synthetic Aperture Radar data. Deep learning represents...

  16. Ships as salient objects in synthetic aperture radar imaginary

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2016-07-01

    Full Text Available perspective on ships in Synthetic Aperture Radar imagery by viewing them as visually salient objects. The paper introduces common methods of ship object extraction and demonstrates how salient object mapping can improve the accuracy of extracted ships...

  17. Stellwagen Bank National Marine Sanctuary - Synthetic Aperture Radar (SAR) Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geodatabase contains Synthetic Aperture Radar images (SAR), which consist of a fine resolution (12.5-50m), two-dimensional radar backscatter map of the...

  18. CLPX-Satellite: Radarsat Synthetic Aperture Radar Imagery

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of time-series spaceborne Synthetic Aperture Radar (SAR) imagery of the three Cold Land Processes Field Experiment (CLPX) Meso-cell Study...

  19. Foamed Antenna Support for Very Large Apertures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Large aperture antennas are of interest to NASA for applications in establishing high-speed communication relays for interplanetary missions. Design goals include 20...

  20. Bistatic Synthetic Aperture Radar with Application to Moving Target Detection

    National Research Council Canada - National Science Library

    Whitewood, A. P; Mueller, B. R; Griffiths, H. D; Baker, C. J

    2005-01-01

    .... This paper describes a bistatic radar system which uses the combination of a spaceborne synthetic aperture radar transmitter on board the European Space Agency's Envisat satellite, and a low-cost...

  1. Multiple Aperture Radiation Therapy (MART) for Breast Cancer

    National Research Council Canada - National Science Library

    Li, Tianfang

    2006-01-01

    .... In this USAMRMC-supported project, we have developed a multiple-aperture radiation therapy (MART) procedure dedicated to breast irradiation, which combines the planning simplicity of the conventional OFT with the superior dose distribution of IMRT methods...

  2. Ultra-Lightweight Large Aperture Support Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-lightweight membranes may prove to be very attractive for large aperture systems, but their value will be fully realized only if they are mated with equally...

  3. Foamed Antenna Support for Very Large Apertures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program will demonstrate the feasibility of the in-space production of large aperture antenna structures. The use of a novel open cell foam,...

  4. CLPX-Airborne: Airborne Synthetic Aperture Radar (AIRSAR) Imagery

    Data.gov (United States)

    National Aeronautics and Space Administration — Airborne Synthetic Aperture Radar (AIRSAR) is a side-looking imaging radar that is able to collect data irrespective of daylight or cloud cover. The AIRSAR...

  5. Role of Sucrose in Emerging Mechanisms of Stomatal Aperture Regulation.

    Energy Technology Data Exchange (ETDEWEB)

    Outlaw, W. H.

    2000-09-15

    Focused on the second of 2 hypotheses that were proposed for testing that transpiration rate determines the extent to which suc accumulates in the GC wall providing a mechanism for regulating stomatal aperture size.

  6. Application of Linear Prediction Technique to Passive Synthetic Aperture Processing

    Directory of Open Access Journals (Sweden)

    Hou Yunshan

    2010-01-01

    Full Text Available A method for the synthesis of an aperture with improved angular resolution and array gain is described. The proposed method explores the merit of linear prediction technique to improve the performance of conventional ETAM (extended towed array measurements method. Previous efforts to improve the ETAM method generally focused on how to get more accurate estimation of overlap correlator, with an aim to reduce bearing estimation variance. In this paper, however, we discuss how to further improve the angular resolution when the effective synthetic aperture is rather limited. We resort to linear prediction technique to further extend the synthetic aperture obtained by ETAM, which produces a much longer virtual aperture. Results from simulations and lake experiment showed that the proposed LP-ETAM method achieved better angular resolution than ETAM.

  7. Application of Linear Prediction Technique to Passive Synthetic Aperture Processing

    Science.gov (United States)

    Hou, Yunshan; Huang, Jianguo; Jiang, Min; Jin, Yong

    2010-12-01

    A method for the synthesis of an aperture with improved angular resolution and array gain is described. The proposed method explores the merit of linear prediction technique to improve the performance of conventional ETAM (extended towed array measurements) method. Previous efforts to improve the ETAM method generally focused on how to get more accurate estimation of overlap correlator, with an aim to reduce bearing estimation variance. In this paper, however, we discuss how to further improve the angular resolution when the effective synthetic aperture is rather limited. We resort to linear prediction technique to further extend the synthetic aperture obtained by ETAM, which produces a much longer virtual aperture. Results from simulations and lake experiment showed that the proposed LP-ETAM method achieved better angular resolution than ETAM.

  8. Beam Combination for Sparse Aperture Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Stellar Imager, an ultraviolet, sparse-aperture telescope, was one of the fifteen Vision Missions chosen for a study completed last year. Stellar Imager will...

  9. Results from a partial lifetime test of a 40 mm-aperture 17 mm SSC model dipole

    Energy Technology Data Exchange (ETDEWEB)

    Radusewicz, P.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Potter, J.; Puglisi, M.; Sanger, P.; Schermer, R.; Tompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H. [Superconducting Super Collider Lab., Dallas, TX (United States); Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Roher, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Wanderer, P.; Willen, E. [Brookhaven National Lab., Upton, NY (United States); Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J. [Fermi National Accelerator Lab., Batavia, IL (United States); Royett, J.; Scanlan, R.; Taylor, C. [Lawrence Berkeley Lab., CA (United States)

    1992-03-01

    A 40-mm-aperture, 17-m-long Superconducting Super Collider (SSC) model dipole was assembled at Brookhaven National Laboratory (BNL) and tested initially at Fermi National Accelerator Lab (FNAL) and later at BNL. At BNL an extended cycle test was devised to examine the magnet`s performance through numerous cold tests and thermal cycles. This paper discusses the magnet`s mechanical and quench performance and magnet field measurements during the tests.

  10. Diffraction Effects in Measurements of Characteristics of High-Power Microwave Pulses with Wide-Aperture Liquid Calorimeters

    Science.gov (United States)

    Klimov, A. I.; Tot'meninov, E. M.

    2017-10-01

    Numerical nonstationary simulation of diffraction by a quasi-plane three-layer wide-aperture absorbing loads of liquid calorimeters intended for measuring the energy of high-power microwave radiation pulses is performed using the electromagnetic code KARAT with application to the S-band. It is shown that these effects can cause significant distortion of the microwave pulse shape behind the load as well as underestimation of the measured energy by 10-20%.

  11. Results from a partial lifetime test of a 40 mm-aperture 17 mm SSC model dipole

    International Nuclear Information System (INIS)

    Radusewicz, P.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Potter, J.; Puglisi, M.; Sanger, P.; Schermer, R.; Tompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Roher, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royett, J.; Scanlan, R.; Taylor, C.

    1992-03-01

    A 40-mm-aperture, 17-m-long Superconducting Super Collider (SSC) model dipole was assembled at Brookhaven National Laboratory (BNL) and tested initially at Fermi National Accelerator Lab (FNAL) and later at BNL. At BNL an extended cycle test was devised to examine the magnet's performance through numerous cold tests and thermal cycles. This paper discusses the magnet's mechanical and quench performance and magnet field measurements during the tests

  12. Results from a partial lifetime test of a 40-mm-aperture, 17-m-long SSC model dipole

    International Nuclear Information System (INIS)

    Radusewicz, P.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Potter, J.; Puglisi, M.; Sanger, P.; Schermer, R.; Tompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Roher, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royett, J.; Scanlan, R.; Taylor, C.

    1992-01-01

    -LA 40-mm-aperture, 17-m-long Superconducting Super Collider (SSC) model dipole was assembled at Brookhaven National Laboratory (BNL) and tested initially at Fermi National Accelerator Lab (FNAL) and later at BNL. At BNL an extended cycle test was devised to examine the magnet's performance through numerous cold tests and thermal cycles. This paper discusses the magnet's mechanical and quench performance and magnet field measurements during the tests

  13. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures

    Science.gov (United States)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2013-05-01

    An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.

  14. Transmission of high-power electron beams through small apertures

    International Nuclear Information System (INIS)

    Tschalär, C.; Alarcon, R.; Balascuta, S.; Benson, S.V.; Bertozzi, W.; Boyce, J.R.; Cowan, R.; Douglas, D.; Evtushenko, P.; Fisher, P.; Ihloff, E.; Kalantarians, N.; Kelleher, A.; Legg, R.; Milner, R.G.; Neil, G.R.; Ou, L.; Schmookler, B.; Tennant, C.; Williams, G.P.

    2013-01-01

    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 h continuous run

  15. Phase Centers of Subapertures in a Tapered Aperture Array.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Antenna apertures that are tapered for sidelobe control can also be parsed into subapertures for Direction of Arrival (DOA) measurements. However, the aperture tapering complicates phase center location for the subapertures, knowledge of which is critical for proper DOA calculation. In addition, tapering affects subaperture gains, making gain dependent on subaperture position. Techniques are presented to calculate subaperture phase center locations, and algorithms are given for equalizing subapertures’ gains. Sidelobe characteristics and mitigation are also discussed.

  16. Single photon sources using oxide apertured micropillars with integrated electrical control for novel functionalities

    Science.gov (United States)

    Stoltz, Nicholas G.

    The goal of this thesis is to apply the oxide apertured vertical cavity laser structure in order to explore quantum dot-microcavity coupling for the development of novel single photon sources (SPS). Optical microcavities combined with active emitters provide an opportunity to study the light matter interaction on a fundamental level. Edward Purcell first theorized in 1947 that the spontaneous emission (SE) rate of an optical emitter could be modified in the presence of an optical cavity. As semiconductor microcavity technology has advanced many optoelectronic devices have benefited from the increased SE rates predicted by the Purcell effect. The development of quantum emitters on an integrated semiconductor platform in the form of semiconductor self-assembled quantum dots (QDs) has expanded applications in the field. Coupling atomic emitters to optical microcavities in the solid state allows for the study of cavity quantum electrodynamics and the fabrication single photon (SP) devices. Optoelectronic devices providing non-classical light states have a broad range of applications in quantum information science, including quantum key distribution systems, quantum lithography, and quantum computing. Here, the oxide apertured micropillar approach demonstrates high quality microcavities with cavity quality factors up to 50,000 and measured Purcell enhancements of 10. In addition the inherent advantages provided by the oxide apertured micropillar, specifically high collection efficiency, have produced SPSs with record high SP rates and quantum efficiencies representing a six-fold improvement over reported values. In addition we have developed and integrated a scheme allowing for on-chip electrical control of SP devices for the implementation of SPSs with novel functionalities. The active electrical control of QD charge state has allowed for the elimination of dark states which severely limit SP rates and efficiencies. The active electrical tuning of QD emission energy

  17. Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT

    Science.gov (United States)

    Klein, Thomas; André, Raphael; Wieser, Wolfgang; Pfeiffer, Tom; Huber, Robert

    2013-01-01

    Joint-aperture optical coherence tomography (JA-OCT) is an angle-resolved OCT method, in which illumination from an active channel is simultaneously probed by several passive channels. JA-OCT increases the collection efficiency and effective sensitivity of the OCT system without increasing the power on the sample. Additionally, JA-OCT provides angular scattering information about the sample in a single acquisition, so the OCT imaging speed is not reduced. Thus, JA-OCT is especially suitable for ultra high speed in-vivo imaging. JA-OCT is compared to other angle-resolved techniques, and the relation between joint aperture imaging, adaptive optics, coherent and incoherent compounding is discussed. We present angle-resolved imaging of the human retina at an axial scan rate of 1.68 MHz, and demonstrate the benefits of JA-OCT: Speckle reduction, signal increase and suppression of specular and parasitic reflections. Moreover, in the future JA-OCT may allow for the reconstruction of the full Doppler vector and tissue discrimination by analysis of the angular scattering dependence. PMID:23577296

  18. Medium and Small Aperture Speckle Interferometry for Geostationary On-Orbit-Servicing Space Surveillance

    Science.gov (United States)

    Scott, R.

    On-Orbit-Servicing (OOS) in Geostationary Equatorial Orbit (GEO) is likely to become a space mission reality provoking new problems for the optical space surveillance community. OOS’ close-proximity flight of servicer and client satellites with separations less than 1 kilometer in GEO challenge the metric measurement capabilities of medium and small aperture space surveillance instruments. This paper describes an OOS monitoring technique based on Cross-Spectrum speckle interferometry to compensate for atmospheric turbulence and measure the OOS satellites’ differential relative position. Cross-Spectrum speckle interferometry, an astronomical technique developed to measure the astrometric positions of binary stars, was adapted to the geostationary OOS problem and was tested using Sloan i’ observations of co-located geostationary satellites. Medium (1.6m) and small (0.35m) aperture telescopes were used to observe these satellites undergoing optical conjunctions where their apparent line-of-sight separation narrowed within 5 arcseconds. During the initial development of the Cross-Spectrum approach some weaknesses were identified where particle strikes, faint background stars, anomalous fringe orientation angles and high relative angular rates corrupt the relative position measurement process. In this paper, newly adjusted compensation techniques to remedy these issues are described and the data is reprocessed. The Cross-Spectrum’s performance is shown to work well on closely-spaced GEO satellites with separations less than 3 arcseconds and evidence is shown suggesting the technique can measure satellite separations within 1.8 arcseconds.

  19. Planet detection and spectroscopy in visible light with a single aperture telescope and a nulling coronagraph

    Science.gov (United States)

    Shao, Michael; Serabyn, Eugene; Levine, Bruce Martin; Beichman, Charles; Liu, Duncan; Martin, Stefan; Orton, Glen; Mennesson, Bertrand; Morgan, Rhonda; Velusamy, Thangasamy; hide

    2003-01-01

    This talk describes a new concept for visible direct detection of Earth like extra solar planets using a nulling coronagraph instrument behind a 4m telescope in space. In the baseline design, a 4 beam nulling interferometer is synthesized from the telescope pupil, producing a very deep theta^4null which is then filtered by a coherent array of single mode fibers to suppress the residual scattered light. With perfect optics, the stellar leakage is less than 1e-11 of the starlight at the location of the planet. With diffraction limited telescope optics (lambda/20), suppression of the starlight to 1e-10 is possible. The concept is described along with the key advantages over more traditional approaches such as apodized aperture telescopes and Lyot type coronagraphs.

  20. Numerical analysis

    CERN Document Server

    Brezinski, C

    2012-01-01

    Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<

  1. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  2. A NEW HIGH RESOLUTION OPTICAL METHOD FOR OBTAINING THE TOPOGRAPHY OF FRACTURE SURFACES IN ROCKS

    Directory of Open Access Journals (Sweden)

    Steven Ogilvie

    2011-05-01

    Full Text Available Surface roughness plays a major role in the movement of fluids through fracture systems. Fracture surface profiling is necessary to tune the properties of numerical fractures required in fluid flow modelling to those of real rock fractures. This is achieved using a variety of (i mechanical and (ii optical techniques. Stylus profilometry is a popularly used mechanical method and can measure surface heights with high precision, but only gives a good horizontal resolution in one direction on the fracture plane. This method is also expensive and simultaneous coverage of the surface is not possible. Here, we describe the development of an optical method which images cast copies of rough rock fractures using in-house developed hardware and image analysis software (OptiProf™ that incorporates image improvement and noise suppression features. This technique images at high resolutions, 15-200 μm for imaged areas of 10 × 7.5 mm and 100 × 133 mm, respectively and a similar vertical resolution (15 μm for a maximum topography of 4 mm. It uses in-house developed hardware and image analysis (OptiProf™ software and is cheap and non-destructive, providing continuous coverage of the fracture surface. The fracture models are covered with dye and fluid thicknesses above the rough surfaces converted into topographies using the Lambert-Beer Law. The dye is calibrated using 2 devices with accurately known thickness; (i a polycarbonate tile with wells of different depths and (ii a wedge-shaped vial made from silica glass. The data from each of the two surfaces can be combined to provide an aperture map of the fracture for the scenario where the surfaces touch at a single point or any greater mean aperture. The topography and aperture maps are used to provide data for the generation of synthetic fractures, tuned to the original fracture and used in numerical flow modelling.

  3. Numerical Relativity

    Science.gov (United States)

    Baker, John G.

    2009-01-01

    Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.

  4. Synthetic Aperture Focusing Technique for the Ultrasonic Evaluation of Friction Stir Welds

    Science.gov (United States)

    Lévesque, D.; Dubourg, L.; Mandache, C.; Kruger, S. E.; Lord, M.; Merati, A.; Jahazi, M.; Monchalin, J.-P.

    2008-02-01

    An ultrasonic technique using numerical focusing and processing is presented in this paper for the detection of different types of flaws in friction stir welds (FSW). The data is acquired using immersion ultrasonic technique or laser ultrasonics, while the Synthetic Aperture Focusing Technique (SAFT) is used for numerical focusing. Measurements on the top and far sides of the weld for both lap and butt joints of thin aluminum sheets are investigated. Discontinuities such as wormholes, hooking, lack of penetration and voids are found to be easily detected. The limit of detectability and a comparison with mechanical properties are discussed. Also, the detection of joint line remnants or kissing bonds due to entrapped oxide layers seems possible in lap joint structures using high frequency laser-ultrasonics.

  5. Bio-optofluidics and Bio-photonics: Programmable Phase Optics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Pedersen, Finn

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...... tweezers, the BioPhotonics workstation is e.g. capable of long range 3D manipulation. This enables a variety of biological studies such as manipulation of intricate microfabricated assemblies or for automated and parallel optofluidic cell sorting. To further reduce its overhead, we propose ways of making...... the BioPhotonics Workstation platform more photon efficient by studying the 3D distribution of the counter propagating beams and utilizing the Generalized Phase Contrast (GPC) method for illuminating the applied spatial light modulators....

  6. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    Science.gov (United States)

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2011-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  7. Vibration measurement on composite material with embedded optical fiber based on phase-OTDR

    Science.gov (United States)

    Franciscangelis, C.; Margulis, W.; Floridia, C.; Rosolem, J. B.; Salgado, F. C.; Nyman, T.; Petersson, M.; Hallander, P.; Hällstrom, S.; Söderquist, I.; Fruett, F.

    2017-04-01

    Distributed sensors based on phase-optical time-domain reflectometry (phase-OTDR) are suitable for aircraft health monitoring due to electromagnetic interference immunity, small dimensions, low weight and flexibility. These features allow the fiber embedment into aircraft structures in a nearly non-intrusive way to measure vibrations along its length. The capability of measuring vibrations on avionics structures is of interest for what concerns the study of material fatigue or the occurrence of undesirable phenomena like flutter. In this work, we employed the phase-OTDR technique to measure vibrations ranging from some dozens of Hz to kHz in two layers of composite material board with embedded polyimide coating 0.24 numerical aperture single-mode optical fiber.

  8. Robust sampling-sourced numerical retrieval algorithm for optical energy loss function based on log–log mesh optimization and local monotonicity preserving Steffen spline

    Energy Technology Data Exchange (ETDEWEB)

    Maglevanny, I.I., E-mail: sianko@list.ru [Volgograd State Social Pedagogical University, 27 Lenin Avenue, Volgograd 400131 (Russian Federation); Smolar, V.A. [Volgograd State Technical University, 28 Lenin Avenue, Volgograd 400131 (Russian Federation)

    2016-01-15

    We introduce a new technique of interpolation of the energy-loss function (ELF) in solids sampled by empirical optical spectra. Finding appropriate interpolation methods for ELFs poses several challenges. The sampled ELFs are usually very heterogeneous, can originate from various sources thus so called “data gaps” can appear, and significant discontinuities and multiple high outliers can be present. As a result an interpolation based on those data may not perform well at predicting reasonable physical results. Reliable interpolation tools, suitable for ELF applications, should therefore satisfy several important demands: accuracy and predictive power, robustness and computational efficiency, and ease of use. We examined the effect on the fitting quality due to different interpolation schemes with emphasis on ELF mesh optimization procedures and we argue that the optimal fitting should be based on preliminary log–log scaling data transforms by which the non-uniformity of sampled data distribution may be considerably reduced. The transformed data are then interpolated by local monotonicity preserving Steffen spline. The result is a piece-wise smooth fitting curve with continuous first-order derivatives that passes through all data points without spurious oscillations. Local extrema can occur only at grid points where they are given by the data, but not in between two adjacent grid points. It is found that proposed technique gives the most accurate results and also that its computational time is short. Thus, it is feasible using this simple method to address practical problems associated with interaction between a bulk material and a moving electron. A compact C++ implementation of our algorithm is also presented.

  9. Numerical relativity

    CERN Document Server

    Nakamura, T

    1993-01-01

    In GR13 we heard many reports on recent. progress as well as future plans of detection of gravitational waves. According to these reports (see the report of the workshop on the detection of gravitational waves by Paik in this volume), it is highly probable that the sensitivity of detectors such as laser interferometers and ultra low temperature resonant bars will reach the level of h ~ 10—21 by 1998. in this level we may expect the detection of the gravitational waves from astrophysical sources such as coalescing binary neutron stars once a year or so. Therefore the progress in numerical relativity is urgently required to predict the wave pattern and amplitude of the gravitational waves from realistic astrophysical sources. The time left for numerical relativists is only six years or so although there are so many difficulties in principle as well as in practice.

  10. Free-space wavelength-multiplexed optical scanner.

    Science.gov (United States)

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  11. Far-field divergence of a vectorial plane wave diffracted by a circular aperture from the vectorial structure

    International Nuclear Information System (INIS)

    Zhou Guo-Quan

    2011-01-01

    Based on the vectorial structure of an electromagnetic wave, the analytical and concise expressions for the TE and TM terms of a vectorial plane wave diffracted by a circular aperture are derived in the far-field. The expressions of the energy flux distributions of the TE term, the TM term and the diffracted plane wave are also presented. The ratios of the power of the TE and TM terms to that of the diffracted plane wave are examined in the far-field. In addition, the far-field divergence angles of the TE term, the TM term and the diffracted plane wave, which are related to the energy flux distribution, are investigated. The different energy flux distributions of the TE and TM terms result in the discrepancy of their divergence angles. The influences of the linearly polarized angle and the radius of the circular aperture on the far-field divergence angles of the TE term, the TM term and the diffracted plane wave are discussed in detail. This research may promote the recognition of the optical propagation through a circular aperture. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Development of a numerical system to improve particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol optical data over Northeast Asia

    Science.gov (United States)

    Lee, Sojin; Song, Chul-han; Park, Rae Seol; Park, Mi Eun; Han, Kyung man; Kim, Jhoon; Choi, Myungje; Ghim, Young Sung; Woo, Jung-Hun

    2016-04-01

    To improve short-term particulate matter (PM) forecasts in South Korea, the initial distribution of PM composition, particularly over the upwind regions, is primarily important. To prepare the initial PM composition, the aerosol optical depth (AOD) data retrieved from a geostationary equatorial orbit (GEO) satellite sensor, GOCI (Geostationary Ocean Color Imager) which covers a part of Northeast Asia (113-146° E; 25-47° N), were used. Although GOCI can provide a higher number of AOD data in a semicontinuous manner than low Earth orbit (LEO) satellite sensors, it still has a serious limitation in that the AOD data are not available at cloud pixels and over high-reflectance areas, such as desert and snow-covered regions. To overcome this limitation, a spatiotemporal-kriging (STK) method was used to better prepare the initial AOD distributions that were converted into the PM composition over Northeast Asia. One of the largest advantages in using the STK method in this study is that more observed AOD data can be used to prepare the best initial AOD fields compared with other methods that use single frame of observation data around the time of initialization. It is demonstrated in this study that the short-term PM forecast system developed with the application of the STK method can greatly improve PM10 predictions in the Seoul metropolitan area (SMA) when evaluated with ground-based observations. For example, errors and biases of PM10 predictions decreased by ˜ 60 and ˜ 70{%}, respectively, during the first 6 h of short-term PM forecasting, compared with those without the initial PM composition. In addition, the influences of several factors on the performances of the short-term PM forecast were explored in this study. The influences of the choices of the control variables on the PM chemical composition were also investigated with the composition data measured via PILS-IC (particle-into-liquid sampler coupled with ion chromatography) and low air-volume sample

  13. Microarrays of near-field optical probes with adjustable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Chovin, A. [Laboratoire d' Analyse Chimique par Reconnaissance Moleculaire, Universite Bordeaux I, ENSCPB, 16 avenue Pey-Berland, 33607 Pessac (France); Garrigue, P. [Laboratoire d' Analyse Chimique par Reconnaissance Moleculaire, Universite Bordeaux I, ENSCPB, 16 avenue Pey-Berland, 33607 Pessac (France); Pecastaings, G. [Centre de Recherche Paul Pascal-CNRS, 115 avenue du Dr Schweitzer, 33600 Pessac (France); Saadaoui, H. [Centre de Recherche Paul Pascal-CNRS, 115 avenue du Dr Schweitzer, 33600 Pessac (France); Manek-Hoenninger, I. [Centre Lasers Intenses et Applications, Universite Bordeaux I, 351 Cours de la Liberation, 33405 Talence (France)]. E-mail: manek@celia.u-bordeaux1.fr; Sojic, N. [Laboratoire d' Analyse Chimique par Reconnaissance Moleculaire, Universite Bordeaux I, ENSCPB, 16 avenue Pey-Berland, 33607 Pessac (France)]. E-mail: sojic@enscpb.fr

    2006-01-15

    We present the fabrication and the characterization of high-density microarrays comprising thousands of near-field optical probes. Two types of microarrays have been prepared by adapting the SNOM methodology: arrays of uncoated fiber nanotips (i.e. apertureless probes) and arrays of apertures with adjustable subwavelength dimensions. Such arrays were fabricated by retaining the coherent structure of monomode optical fiber bundles and therefore keeping their imaging properties. The size of the apertures in a microarray was tuned at the nanometer scale by modifying the fabrication parameters. Far-field characterization of these near-field probe arrays shows completely different behavior depending both on their architecture and on their characteristic size. The angular distribution of the far-field intensity transmitted through the aperture arrays is used to determine the optical size of such diffracting apertures. Aperture radii ranging from 95 to 250 nm were found in good agreement with SEM data. Furthermore, each nanoaperture of the array is optically independent in the far-field regime. Eventually, this study demonstrates potential applications of these imaging arrays as parallel near-field optical probes in both configurations (apertureless and with apertures)

  14. Microarrays of near-field optical probes with adjustable dimensions.

    Science.gov (United States)

    Chovin, A; Garrigue, P; Pecastaings, G; Saadaoui, H; Manek-Hönninger, I; Sojic, N

    2006-01-01

    We present the fabrication and the characterization of high-density microarrays comprising thousands of near-field optical probes. Two types of microarrays have been prepared by adapting the SNOM methodology: arrays of uncoated fiber nanotips (i.e. apertureless probes) and arrays of apertures with adjustable subwavelength dimensions. Such arrays were fabricated by retaining the coherent structure of monomode optical fiber bundles and therefore keeping their imaging properties. The size of the apertures in a microarray was tuned at the nanometer scale by modifying the fabrication parameters. Far-field characterization of these near-field probe arrays shows completely different behavior depending both on their architecture and on their characteristic size. The angular distribution of the far-field intensity transmitted through the aperture arrays is used to determine the optical size of such diffracting apertures. Aperture radii ranging from 95 to 250 nm were found in good agreement with SEM data. Furthermore, each nanoaperture of the array is optically independent in the far-field regime. Eventually, this study demonstrates potential applications of these imaging arrays as parallel near-field optical probes in both configurations (apertureless and with apertures).

  15. Knowledge-based optical system design

    Science.gov (United States)

    Nouri, Taoufik

    1992-03-01

    This work is a new approach for the design of start optical systems and represents a new contribution of artificial intelligence techniques in the optical design field. A knowledge-based optical-systems design (KBOSD), based on artificial intelligence algorithms, first order logic, knowledge representation, rules, and heuristics on lens design, is realized. This KBOSD is equipped with optical knowledge in the domain of centered dioptrical optical systems used at low aperture and small field angles. It generates centered dioptrical, on-axis and low-aperture optical systems, which are used as start systems for the subsequent optimization by existing lens design programs. This KBOSD produces monochromatic or polychromatic optical systems, such as singlet lens, doublet lens, triplet lens, reversed singlet lens, reversed doublet lens, reversed triplet lens, and telescopes. In the design of optical systems, the KBOSD takes into account many user constraints such as cost, resistance of the optical material (glass) to chemical, thermal, and mechanical effects, as well as the optical quality such as minimal aberrations and chromatic aberrations corrections. This KBOSD is developed in the programming language Prolog and has knowledge on optical design principles and optical properties. It is composed of more than 3000 clauses. Inference engine and interconnections in the cognitive world of optical systems are described. The system uses neither a lens library nor a lens data base; it is completely based on optical design knowledge.

  16. Code aperture optimization for spectrally agile compressive imaging.

    Science.gov (United States)

    Arguello, Henry; Arce, Gonzalo R

    2011-11-01

    Coded aperture snapshot spectral imaging (CASSI) provides a mechanism for capturing a 3D spectral cube with a single shot 2D measurement. In many applications selective spectral imaging is sought since relevant information often lies within a subset of spectral bands. Capturing and reconstructing all the spectral bands in the observed image cube, to then throw away a large portion of this data, is inefficient. To this end, this paper extends the concept of CASSI to a system admitting multiple shot measurements, which leads not only to higher quality of reconstruction but also to spectrally selective imaging when the sequence of code aperture patterns is optimized. The aperture code optimization problem is shown to be analogous to the optimization of a constrained multichannel filter bank. The optimal code apertures allow the decomposition of the CASSI measurement into several subsets, each having information from only a few selected spectral bands. The rich theory of compressive sensing is used to effectively reconstruct the spectral bands of interest from the measurements. A number of simulations are developed to illustrate the spectral imaging characteristics attained by optimal aperture codes.

  17. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2011-01-01

    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  18. The optics of microscope image formation.

    Science.gov (United States)

    Wolf, David E

    2013-01-01

    Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.

  19. Results from a multi aperture Fizeau interferometer ground testbed: demonstrator for a future space-based interferometer

    Science.gov (United States)

    Baccichet, Nicola; Caillat, Amandine; Rakotonimbahy, Eddy; Dohlen, Kjetil; Savini, Giorgio; Marcos, Michel

    2016-08-01

    In the framework of the European FP7-FISICA (Far Infrared Space Interferometer Critical Assessment) program, we developed a miniaturized version of the hyper-telescope to demonstrate multi-aperture interferometry on ground. This setup would be ultimately integrated into a CubeSat platform, therefore providing the first real demonstrator of a multi aperture Fizeau interferometer in space. In this paper, we describe the optical design of the ground testbed and the data processing pipeline implemented to reconstruct the object image from interferometric data. As a scientific application, we measured the Sun diameter by fitting a limb-darkening model to our data. Finally, we present the design of a CubeSat platform carrying this miniature Fizeau interferometer, which could be used to monitor the Sun diameter over a long in-orbit period.

  20. Towards the use of bioresorbable fibers in time-domain diffuse optics.

    Science.gov (United States)

    Di Sieno, Laura; Boetti, Nadia G; Dalla Mora, Alberto; Pugliese, Diego; Farina, Andrea; Konugolu Venkata Sekar, Sanathana; Ceci-Ginistrelli, Edoardo; Janner, Davide; Pifferi, Antonio; Milanese, Daniel

    2018-01-01

    In the last years bioresorbable materials are gaining increasing interest for building implantable optical components for medical devices. In this work we show the fabrication of bioresorbable optical fibers designed for diffuse optics applications, featuring large core diameter (up to 200 μm) and numerical aperture (0.17) to maximize the collection efficiency of diffused light. We demonstrate the suitability of bioresorbable fibers for time-domain diffuse optical spectroscopy firstly checking the intrinsic performances of the setup by acquiring the instrument response function. We then validate on phantoms the use of bioresorbable fibers by applying the MEDPHOT protocol to assess the performance of the system in measuring optical properties (namely, absorption and scattering coefficients) of homogeneous media. Further, we show an ex-vivo validation on a chicken breast by measuring the absorption and scattering spectra in the 500-1100 nm range using interstitially inserted bioresorbable fibers. This work represents a step toward a new way to look inside the body using optical fibers that can be implanted in patients. These fibers could be useful either for diagnostic (e. g. for monitoring the evolution after surgical interventions) or treatment (e. g. photodynamic therapy) purposes. Picture: Microscopy image of the 100 μm core bioresorbable fiber. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.