WorldWideScience

Sample records for numerical abstract domain

  1. Converting One Type-Based Abstract Domain to Another

    DEFF Research Database (Denmark)

    Gallagher, John Patrick; Puebla, German; Albert, Elvira

    2006-01-01

    The specific problem that motivates this paper is how to obtain abstract descriptions of the meanings of imported predicates (such as built-ins) that can be used when analysing a module of a logic program with respect to some abstract domain. We assume that abstract descriptions of the imported....... We develop a method which has been applied in order to generate call and success patterns from the Ciaopp assertions for built-ins, for any given regular type-based domain. In the paper we present the method as an instance of the more general problem of mapping elements of one abstract domain...

  2. Domain-General Factors Influencing Numerical and Arithmetic Processing

    Directory of Open Access Journals (Sweden)

    André Knops

    2017-12-01

    Full Text Available This special issue contains 18 articles that address the question how numerical processes interact with domain-general factors. We start the editorial with a discussion of how to define domain-general versus domain-specific factors and then discuss the contributions to this special issue grouped into two core numerical domains that are subject to domain-general influences (see Figure 1. The first group of contributions addresses the question how numbers interact with spatial factors. The second group of contributions is concerned with factors that determine and predict arithmetic understanding, performance and development. This special issue shows that domain-general (Table 1a as well as domain-specific (Table 1b abilities influence numerical and arithmetic performance virtually at all levels and make it clear that for the field of numerical cognition a sole focus on one or several domain-specific factors like the approximate number system or spatial-numerical associations is not sufficient. Vice versa, in most studies that included domain-general and domain-specific variables, domain-specific numerical variables predicted arithmetic performance above and beyond domain-general variables. Therefore, a sole focus on domain-general aspects such as, for example, working memory, to explain, predict and foster arithmetic learning is also not sufficient. Based on the articles in this special issue we conclude that both domain-general and domain-specific factors contribute to numerical cognition. But the how, why and when of their contribution still needs to be better understood. We hope that this special issue may be helpful to readers in constraining future theory and model building about the interplay of domain-specific and domain-general factors.

  3. Fine-grained semantic categorization across the abstract and concrete domains.

    Directory of Open Access Journals (Sweden)

    Marta Ghio

    Full Text Available A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related and abstract (mental state-, emotion-, mathematics-related categories, with respect either to different semantic domain-related scales (rating study 1, or to concreteness, familiarity, and context availability (rating study 2. Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains.

  4. Making Sense of the Abstraction Hierarchy in the Power Plant Domain

    DEFF Research Database (Denmark)

    Lind, Morten

    2003-01-01

    The paper discusses the abstraction hierarchy proposed by Rasmussen [(1986) Information processing and human-machine interaction, North-Holland] for design of human-machine interfaces for supervisory control. The purpose of the abstraction hierarchy is to represent a work domain by multiple levels...... of means-end and part-whole abstractions. It is argued in the paper that the abstraction hierarchy suffers from both methodological and conceptual problems. A cluster of selected problems are analyzed and illustrated by concrete examples from the power plant domain. It is concluded that the semantics...... in the model-building process. It is also pointed out that attempts to clarify the semantics of the abstraction hierarchy will invariably reduce the range of work domains where it can be applied....

  5. Abstract Spatial Reasoning as an Autistic Strength

    Science.gov (United States)

    Stevenson, Jennifer L.; Gernsbacher, Morton Ann

    2013-01-01

    Autistic individuals typically excel on spatial tests that measure abstract reasoning, such as the Block Design subtest on intelligence test batteries and the Raven’s Progressive Matrices nonverbal test of intelligence. Such well-replicated findings suggest that abstract spatial processing is a relative and perhaps absolute strength of autistic individuals. However, previous studies have not systematically varied reasoning level – concrete vs. abstract – and test domain – spatial vs. numerical vs. verbal, which the current study did. Autistic participants (N = 72) and non-autistic participants (N = 72) completed a battery of 12 tests that varied by reasoning level (concrete vs. abstract) and domain (spatial vs. numerical vs. verbal). Autistic participants outperformed non-autistic participants on abstract spatial tests. Non-autistic participants did not outperform autistic participants on any of the three domains (spatial, numerical, and verbal) or at either of the two reasoning levels (concrete and abstract), suggesting similarity in abilities between autistic and non-autistic individuals, with abstract spatial reasoning as an autistic strength. PMID:23533615

  6. Abstract numerical discrimination learning in rats.

    Science.gov (United States)

    Taniuchi, Tohru; Sugihara, Junko; Wakashima, Mariko; Kamijo, Makiko

    2016-06-01

    In this study, we examined rats' discrimination learning of the numerical ordering positions of objects. In Experiments 1 and 2, five out of seven rats successfully learned to respond to the third of six identical objects in a row and showed reliable transfer of this discrimination to novel stimuli after being trained with three different training stimuli. In Experiment 3, the three rats from Experiment 2 continued to be trained to respond to the third object in an object array, which included an odd object that needed to be excluded when identifying the target third object. All three rats acquired this selective-counting task of specific stimuli, and two rats showed reliable transfer of this selective-counting performance to test sets of novel stimuli. In Experiment 4, the three rats from Experiment 3 quickly learned to respond to the third stimulus in object rows consisting of either six identical or six different objects. These results offer strong evidence for abstract numerical discrimination learning in rats.

  7. Temporal abstraction and temporal Bayesian networks in clinical domains: a survey.

    Science.gov (United States)

    Orphanou, Kalia; Stassopoulou, Athena; Keravnou, Elpida

    2014-03-01

    Temporal abstraction (TA) of clinical data aims to abstract and interpret clinical data into meaningful higher-level interval concepts. Abstracted concepts are used for diagnostic, prediction and therapy planning purposes. On the other hand, temporal Bayesian networks (TBNs) are temporal extensions of the known probabilistic graphical models, Bayesian networks. TBNs can represent temporal relationships between events and their state changes, or the evolution of a process, through time. This paper offers a survey on techniques/methods from these two areas that were used independently in many clinical domains (e.g. diabetes, hepatitis, cancer) for various clinical tasks (e.g. diagnosis, prognosis). A main objective of this survey, in addition to presenting the key aspects of TA and TBNs, is to point out important benefits from a potential integration of TA and TBNs in medical domains and tasks. The motivation for integrating these two areas is their complementary function: TA provides clinicians with high level views of data while TBNs serve as a knowledge representation and reasoning tool under uncertainty, which is inherent in all clinical tasks. Key publications from these two areas of relevance to clinical systems, mainly circumscribed to the latest two decades, are reviewed and classified. TA techniques are compared on the basis of: (a) knowledge acquisition and representation for deriving TA concepts and (b) methodology for deriving basic and complex temporal abstractions. TBNs are compared on the basis of: (a) representation of time, (b) knowledge representation and acquisition, (c) inference methods and the computational demands of the network, and (d) their applications in medicine. The survey performs an extensive comparative analysis to illustrate the separate merits and limitations of various TA and TBN techniques used in clinical systems with the purpose of anticipating potential gains through an integration of the two techniques, thus leading to a

  8. Numerical solutions of ordinary and partial differential equations in the frequency domain

    International Nuclear Information System (INIS)

    Hazi, G.; Por, G.

    1997-01-01

    Numerical problems during the noise simulation in a nuclear power plant are discussed. The solutions of ordinary and partial differential equations are studied in the frequency domain. Numerical methods by the transfer function method are applied. It is shown that the correctness of the numerical methods is limited for ordinary differential equations in the frequency domain. To overcome the difficulties, step-size selection is suggested. (author)

  9. AQUA-motion domain and metaphorization patterns in European Portuguese: AQUA-motion metaphor in AERO-motion and abstract domains

    Directory of Open Access Journals (Sweden)

    Hanna Jakubowicz Batoréo

    2016-03-01

    Full Text Available The AQUA-motion verbs – as studied by Majsak & Rahilina 2003 and 2007, Lander, Majsak & Rahilina [2005] 2008, 2012 and 2013, and Divjak & Lemmens 2007, and in European Portuguese (EP by Batoréo, 2007, 2008, 2009; Batoréo et al., 2007; Casadinho, 2007 – allow typically metaphorical uses, which we postulate can be organized in patterns. Our study shows that in European Portuguese there are two metaphorization patterns to be observed: (i AQUA-motion metaphor in AERO-motion domain and (ii AQUA-motion metaphor in abstract domain (e.g. abundance, arts, politics, etc.. In the first case, where the target domain of the metaphorization is the air, in EP we navigate through a crowd or we float in a waltz, whereas in the second, where it is abstract, we swim in money or in blood, and politicians navigate at sea or face floating currency in finances. In the present paper we survey the EP verbs of AQUA-motion metaphors in non-elicited data from electronically available language corpora (cf. Linguateca. In some cases comparisons are made with typologically diferent languages (as, e.g. Polish, cf. Prokofjeva’s 2007, Batoréo 2009.

  10. The numerical solution of boundary value problems over an infinite domain

    International Nuclear Information System (INIS)

    Shepherd, M.; Skinner, R.

    1976-01-01

    A method is presented for the numerical solution of boundary value problems over infinite domains. An example that illustrates also the strength and accuracy of a numerical procedure for calculating Green's functions is described in detail

  11. Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains

    Directory of Open Access Journals (Sweden)

    Tsugio Fukuchi

    2014-06-01

    Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.

  12. An automatic method to generate domain-specific investigator networks using PubMed abstracts

    Directory of Open Access Journals (Sweden)

    Gwinn Marta

    2007-06-01

    Full Text Available Abstract Background Collaboration among investigators has become critical to scientific research. This includes ad hoc collaboration established through personal contacts as well as formal consortia established by funding agencies. Continued growth in online resources for scientific research and communication has promoted the development of highly networked research communities. Extending these networks globally requires identifying additional investigators in a given domain, profiling their research interests, and collecting current contact information. We present a novel strategy for building investigator networks dynamically and producing detailed investigator profiles using data available in PubMed abstracts. Results We developed a novel strategy to obtain detailed investigator information by automatically parsing the affiliation string in PubMed records. We illustrated the results by using a published literature database in human genome epidemiology (HuGE Pub Lit as a test case. Our parsing strategy extracted country information from 92.1% of the affiliation strings in a random sample of PubMed records and in 97.0% of HuGE records, with accuracies of 94.0% and 91.0%, respectively. Institution information was parsed from 91.3% of the general PubMed records (accuracy 86.8% and from 94.2% of HuGE PubMed records (accuracy 87.0. We demonstrated the application of our approach to dynamic creation of investigator networks by creating a prototype information system containing a large database of PubMed abstracts relevant to human genome epidemiology (HuGE Pub Lit, indexed using PubMed medical subject headings converted to Unified Medical Language System concepts. Our method was able to identify 70–90% of the investigators/collaborators in three different human genetics fields; it also successfully identified 9 of 10 genetics investigators within the PREBIC network, an existing preterm birth research network. Conclusion We successfully created a

  13. Numerical capacities as domain-specific predictors beyond early mathematics learning: a longitudinal study.

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3(rd) and 4(th) grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively "start-up" tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school.

  14. Small planar domains in amorphous thin films: Nucleation and equilibrium conditions (abstract)

    Science.gov (United States)

    Labrune, M.; Hamzaoui, S.; Puchalska, I. B.; Battarel, C.; Hubert, A.

    1984-03-01

    The purpose of this work is to investigate a new type of small flat domain in the shape of lozenges. Such domains may be used for high-density nonvolatile shift register memories [C. Battarel, R. Morille, and A. Caplain, IEEE Trans. Magn. July (1983)]. Experimental and theoretical results for nucleation and stability of small lozenge domains less than 10 μm in length in Co-Ni-P and CoTi [G. Suran, K. Ounadjela, and J. Sztern (this Proceedings)] amorphous thin films 1500 Å thick are presented. The films have a low coercivity (Hc ˜1 Oe) and a significant in-plane uniaxial anisotropy (HK ˜35 Oe). The domains were observed in an optical microscope by longitudinal Kerr effect using an experimental method described by Prutton. Domain nucleation is obtained by applying a local field higher than HK. It must be emphasized that to stabilize the domain two constant fields having opposite direction are required: H1 applied inside the domain and parallel to its magnetization; H2 parallel to the main magnetization of the film (H1>H2). Experimental results obtained for such configuration of magnetic fields will be presented and compared with numerical computations. The theoretical model will be discussed and the role played by the magnetostatic energy emphasized. The model takes into account the spreading of the magnetic charges which appear at the boundary of the domain. Finally, application to experimental devices as mentioned in the first reference above will be shown.

  15. Knowing, Applying, and Reasoning about Arithmetic: Roles of Domain-General and Numerical Skills in Multiple Domains of Arithmetic Learning

    Science.gov (United States)

    Zhang, Xiao; Räsänen, Pekka; Koponen, Tuire; Aunola, Kaisa; Lerkkanen, Marja-Kristiina; Nurmi, Jari-Erik

    2017-01-01

    The longitudinal relations of domain-general and numerical skills at ages 6-7 years to 3 cognitive domains of arithmetic learning, namely knowing (written computation), applying (arithmetic word problems), and reasoning (arithmetic reasoning) at age 11, were examined for a representative sample of 378 Finnish children. The results showed that…

  16. Numerical Capacities as Domain-Specific Predictors beyond Early Mathematics Learning: A Longitudinal Study

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3rd and 4th grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively “start-up” tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school. PMID:24255710

  17. Application of Numerical Dispersion Compensation of the Yee-FDTD Algorithm on Elongated Domains

    DEFF Research Database (Denmark)

    Franek, Ondrej; Zhang, Shuai; Olesen, Kim

    2017-01-01

    A postprocessing method to compensate for the numerical dispersion of the Yee-FDTD scheme is presented. The method makes use of frequency domain deconvolution of the erroneous phase shift from the obtained results and can be applied on certain specific conditions, such as for simulations on elong......A postprocessing method to compensate for the numerical dispersion of the Yee-FDTD scheme is presented. The method makes use of frequency domain deconvolution of the erroneous phase shift from the obtained results and can be applied on certain specific conditions, such as for simulations...

  18. An automatic method to generate domain-specific investigator networks using PubMed abstracts

    Science.gov (United States)

    Yu, Wei; Yesupriya, Ajay; Wulf, Anja; Qu, Junfeng; Gwinn, Marta; Khoury, Muin J

    2007-01-01

    Background Collaboration among investigators has become critical to scientific research. This includes ad hoc collaboration established through personal contacts as well as formal consortia established by funding agencies. Continued growth in online resources for scientific research and communication has promoted the development of highly networked research communities. Extending these networks globally requires identifying additional investigators in a given domain, profiling their research interests, and collecting current contact information. We present a novel strategy for building investigator networks dynamically and producing detailed investigator profiles using data available in PubMed abstracts. Results We developed a novel strategy to obtain detailed investigator information by automatically parsing the affiliation string in PubMed records. We illustrated the results by using a published literature database in human genome epidemiology (HuGE Pub Lit) as a test case. Our parsing strategy extracted country information from 92.1% of the affiliation strings in a random sample of PubMed records and in 97.0% of HuGE records, with accuracies of 94.0% and 91.0%, respectively. Institution information was parsed from 91.3% of the general PubMed records (accuracy 86.8%) and from 94.2% of HuGE PubMed records (accuracy 87.0). We demonstrated the application of our approach to dynamic creation of investigator networks by creating a prototype information system containing a large database of PubMed abstracts relevant to human genome epidemiology (HuGE Pub Lit), indexed using PubMed medical subject headings converted to Unified Medical Language System concepts. Our method was able to identify 70–90% of the investigators/collaborators in three different human genetics fields; it also successfully identified 9 of 10 genetics investigators within the PREBIC network, an existing preterm birth research network. Conclusion We successfully created a web-based prototype

  19. Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms

    KAUST Repository

    Efendiev, Yalchin

    2012-02-22

    An abstract framework for constructing stable decompositions of the spaces corresponding to general symmetric positive definite problems into "local" subspaces and a global "coarse" space is developed. Particular applications of this abstract framework include practically important problems in porous media applications such as: the scalar elliptic (pressure) equation and the stream function formulation of its mixed form, Stokes\\' and Brinkman\\'s equations. The constant in the corresponding abstract energy estimate is shown to be robust with respect to mesh parameters as well as the contrast, which is defined as the ratio of high and low values of the conductivity (or permeability). The derived stable decomposition allows to construct additive overlapping Schwarz iterative methods with condition numbers uniformly bounded with respect to the contrast and mesh parameters. The coarse spaces are obtained by patching together the eigenfunctions corresponding to the smallest eigenvalues of certain local problems. A detailed analysis of the abstract setting is provided. The proposed decomposition builds on a method of Galvis and Efendiev [Multiscale Model. Simul. 8 (2010) 1461-1483] developed for second order scalar elliptic problems with high contrast. Applications to the finite element discretizations of the second order elliptic problem in Galerkin and mixed formulation, the Stokes equations, and Brinkman\\'s problem are presented. A number of numerical experiments for these problems in two spatial dimensions are provided. © EDP Sciences, SMAI, 2012.

  20. Numerical simulation of electromagnetic wave propagation using time domain meshless method

    International Nuclear Information System (INIS)

    Ikuno, Soichiro; Fujita, Yoshihisa; Itoh, Taku; Nakata, Susumu; Nakamura, Hiroaki; Kamitani, Atsushi

    2012-01-01

    The electromagnetic wave propagation in various shaped wave guide is simulated by using meshless time domain method (MTDM). Generally, Finite Differential Time Domain (FDTD) method is applied for electromagnetic wave propagation simulation. However, the numerical domain should be divided into rectangle meshes if FDTD method is applied for the simulation. On the other hand, the node disposition of MTDM can easily describe the structure of arbitrary shaped wave guide. This is the large advantage of the meshless time domain method. The results of computations show that the damping rate is stably calculated in case with R < 0.03, where R denotes a support radius of the weight function for the shape function. And the results indicate that the support radius R of the weight functions should be selected small, and monomials must be used for calculating the shape functions. (author)

  1. The development of efficient numerical time-domain modeling methods for geophysical wave propagation

    Science.gov (United States)

    Zhu, Lieyuan

    This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The

  2. Canum 2004 - 36. National Congress of Numerical Analysis. Book of abstracts, plenary conferences, mini-symposia, industry half-day, communications

    International Nuclear Information System (INIS)

    Gutnic, M.; Orphanides, C.; Salmon, S.; Sonnendrucker, E.; BESSE, Nicolas; Alouges, F.; Colin, T.; Esteban, M.; Grote, M.; Komornik, V.; Mohammadi, B.; Pierre, M.; Degond, Pierre; Noll, Dominikus; Parzani, Celine; Grangeat, Pierre; Israel-Jost, Vincent; Belaouar, Radoin; Boissoles, Patrice; Bonnaillie, Virginie; DESBAT, Laurent; Graille, Benjamin; Le Bourdiec, Solene; Marpeau, Fabien; Rouchdy, Youssef; ROUX, Sebastien; Barthelme, Regine; Bilgot, Anne; EL Ganaoui, Karima; Stietel, Anne; Lethanh, K.C.

    2004-06-01

    The IRMA national congress is an annual meeting for university students, researchers and industrialists involved in numerical analysis. The congress covers all aspects of numerical analysis in various domains like: biology, medicine, image processing, simulation, wave propagation, scientific calculation methods, acoustics, flow models, fluid-structure interactions, plasma physics, MHD, electromagnetism, aerosols etc. Several papers compiled in the book of abstracts have an interest for INIS, in particular those listed below: - Some modeling problems in plasma physics (Pierre Degond); - Movement compensation in dynamic X-ray tomography (Pierre Grangeat); - High-resolution tomo-scintigraphic reconstruction in conical geometry (Vincent Israel-Jost); - Theoretical and practical aspects of emission tomography (Dominikus Noll); - Landau damping in plasma physics (Radoin Belaouar); - Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the MHD system (Nicolas Besse); - Modeling and simulation of NMR-related problems (Patrice Boissoles); - Superconductivity analysis (Virginie Bonnaillie); - Sampling of 3D X-ray transformation, application to helicoidal geometry (Laurent Desbat); - Asymptotic stability of equilibrium states for ambipolar plasmas (Benjamin Graille); - Design of numerical schemes adapted to the dynamical simulation of Van Allen belts (Solene Le Bourdiec); - Numerical simulation of radionuclides migration in soils (Fabien Marpeau); - Plasma expansion in vacuum in two space dimensions (Celine Parzani et al.); - Analytical methods for deformations compensation in dynamical tomography (Sebastien Roux et al.); - Charge Conservation in PIC codes (Regine Barthelme); - Stressed 3D elastic model for segmentation in NMR imaging (Youssef Rouchdy) - Local inversion of the wavelet Radon transformation (Anne Bilgot et al.); - Homogenisation of a nonlinear conduction problem, CAST3M simulation (Karima El Ganaoui et al.)

  3. Perceptual and categorical decision making: goal-relevant representation of two domains at different levels of abstraction.

    Science.gov (United States)

    Shankar, Swetha; Kayser, Andrew S

    2017-06-01

    To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects' decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when

  4. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    Science.gov (United States)

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  5. Numerical modeling of time domain 3-D problems in accelerator physics

    International Nuclear Information System (INIS)

    Harfoush, F.A.; Jurgens, T.G.

    1990-06-01

    Time domain analysis is relevant in particle accelerators to study the electromagnetic field interaction of a moving source particle on a lagging test particle as the particles pass an accelerating cavity or some other structure. These fields are called wake fields. The travelling beam inside a beam pipe may undergo more complicated interactions with its environment due to the presence of other irregularities like wires, thin slots, joints and other types of obstacles. Analytical solutions of such problems is impossible and one has to resort to a numerical method. In this paper we present results of our first attempt to model these problems in 3-D using our finite difference time domain (FDTD) code. 10 refs., 9 figs

  6. Time domain numerical calculations of the short electron bunch wakefields in resistive structures

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanian, Andranik

    2010-10-15

    The acceleration of electron bunches with very small longitudinal and transverse phase space volume is one of the most actual challenges for the future International Linear Collider and high brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by the ultra-short electron bunches during its interaction with surrounding structures is a very important issue to prevent the beam quality degradation and to optimize the facility performance. The high accuracy time domain numerical calculations play the decisive role in correct evaluation of the wake fields in advanced accelerators. The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid numerical scheme in time domain for wake field calculation of ultra short bunches in structures with walls of finite conductivity. The basic approaches used in the thesis to solve the problem are the following. For materials with high but finite conductivity the model of the plane wave reflection from a conducting half-space is used. It is shown that in the conductive half-space the field components perpendicular to the interface can be neglected. The electric tangential component on the surface contributes to the tangential magnetic field in the lossless area just before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D space description. Further, a TE/TM (''transverse electric - transverse magnetic'') splitting implicit numerical scheme along with 1D conducting line model is applied to develop a new longitudinally dispersion-free hybrid numerical scheme in the time domain. The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. The convergence of the new scheme is analyzed by comparison with the well-known analytical solutions. The wakefield calculations for a number of

  7. Numerical electromagnetic frequency domain analysis with discrete exterior calculus

    Science.gov (United States)

    Chen, Shu C.; Chew, Weng Cho

    2017-12-01

    In this paper, we perform a numerical analysis in frequency domain for various electromagnetic problems based on discrete exterior calculus (DEC) with an arbitrary 2-D triangular or 3-D tetrahedral mesh. We formulate the governing equations in terms of DEC for 3-D and 2-D inhomogeneous structures, and also show that the charge continuity relation is naturally satisfied. Then we introduce a general construction for signed dual volume to incorporate material information and take into account the case when circumcenters fall outside triangles or tetrahedrons, which may lead to negative dual volume without Delaunay triangulation. Then we examine the boundary terms induced by the dual mesh and provide a systematical treatment of various boundary conditions, including perfect magnetic conductor (PMC), perfect electric conductor (PEC), Dirichlet, periodic, and absorbing boundary conditions (ABC) within this method. An excellent agreement is achieved through the numerical calculation of several problems, including homogeneous waveguides, microstructured fibers, photonic crystals, scattering by a 2-D PEC, and resonant cavities.

  8. Knowledge acquisition for temporal abstraction.

    Science.gov (United States)

    Stein, A; Musen, M A; Shahar, Y

    1996-01-01

    Temporal abstraction is the task of detecting relevant patterns in data over time. The knowledge-based temporal-abstraction method uses knowledge about a clinical domain's contexts, external events, and parameters to create meaningful interval-based abstractions from raw time-stamped clinical data. In this paper, we describe the acquisition and maintenance of domain-specific temporal-abstraction knowledge. Using the PROTEGE-II framework, we have designed a graphical tool for acquiring temporal knowledge directly from expert physicians, maintaining the knowledge in a sharable form, and converting the knowledge into a suitable format for use by an appropriate problem-solving method. In initial tests, the tool offered significant gains in our ability to rapidly acquire temporal knowledge and to use that knowledge to perform automated temporal reasoning.

  9. Scalable Domain Decomposition Preconditioners for Heterogeneous Elliptic Problems

    Directory of Open Access Journals (Sweden)

    Pierre Jolivet

    2014-01-01

    Full Text Available Domain decomposition methods are, alongside multigrid methods, one of the dominant paradigms in contemporary large-scale partial differential equation simulation. In this paper, a lightweight implementation of a theoretically and numerically scalable preconditioner is presented in the context of overlapping methods. The performance of this work is assessed by numerical simulations executed on thousands of cores, for solving various highly heterogeneous elliptic problems in both 2D and 3D with billions of degrees of freedom. Such problems arise in computational science and engineering, in solid and fluid mechanics. While focusing on overlapping domain decomposition methods might seem too restrictive, it will be shown how this work can be applied to a variety of other methods, such as non-overlapping methods and abstract deflation based preconditioners. It is also presented how multilevel preconditioners can be used to avoid communication during an iterative process such as a Krylov method.

  10. Combining numerical simulations with time-domain random walk for pathogen risk assessment in groundwater

    Science.gov (United States)

    Cvetkovic, V.; Molin, S.

    2012-02-01

    We present a methodology that combines numerical simulations of groundwater flow and advective transport in heterogeneous porous media with analytical retention models for computing the infection risk probability from pathogens in aquifers. The methodology is based on the analytical results presented in [1,2] for utilising the colloid filtration theory in a time-domain random walk framework. It is shown that in uniform flow, the results from the numerical simulations of advection yield comparable results as the analytical TDRW model for generating advection segments. It is shown that spatial variability of the attachment rate may be significant, however, it appears to affect risk in a different manner depending on if the flow is uniform or radially converging. In spite of the fact that numerous issues remain open regarding pathogen transport in aquifers on the field scale, the methodology presented here may be useful for screening purposes, and may also serve as a basis for future studies that would include greater complexity.

  11. A fast numerical method for ideal fluid flow in domains with multiple stirrers

    Science.gov (United States)

    Nasser, Mohamed M. S.; Green, Christopher C.

    2018-03-01

    A collection of arbitrarily-shaped solid objects, each moving at a constant speed, can be used to mix or stir ideal fluid, and can give rise to interesting flow patterns. Assuming these systems of fluid stirrers are two-dimensional, the mathematical problem of resolving the flow field—given a particular distribution of any finite number of stirrers of specified shape and speed—can be formulated as a Riemann-Hilbert (R-H) problem. We show that this R-H problem can be solved numerically using a fast and accurate algorithm for any finite number of stirrers based around a boundary integral equation with the generalized Neumann kernel. Various systems of fluid stirrers are considered, and our numerical scheme is shown to handle highly multiply connected domains (i.e. systems of many fluid stirrers) with minimal computational expense.

  12. The Contributions of Domain-General and Numerical Factors to Third-Grade Arithmetic Skills and Mathematical Learning Disability

    Science.gov (United States)

    Cowan, Richard; Powell, Daisy

    2014-01-01

    Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills…

  13. Computational domain discretization in numerical analysis of flow within granular materials

    Science.gov (United States)

    Sosnowski, Marcin

    2018-06-01

    The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.

  14. Numerical integration of the Teukolsky equation in the time domain

    International Nuclear Information System (INIS)

    Pazos-Avalos, Enrique; Lousto, Carlos O.

    2005-01-01

    We present a fourth-order convergent (2+1)-dimensional, numerical formalism to solve the Teukolsky equation in the time domain. Our approach is first to rewrite the Teukolsky equation as a system of first-order differential equations. In this way we get a system that has the form of an advection equation. This is then used in combination with a series expansion of the solution in powers of time. To obtain a fourth-order scheme we kept terms up to fourth derivative in time and use the advectionlike system of differential equations to substitute the temporal derivatives by spatial derivatives. This scheme is applied to evolve gravitational perturbations in the Schwarzschild and Kerr backgrounds. Our numerical method proved to be stable and fourth-order convergent in r* and θ directions. The correct power-law tail, ∼1/t 2l+3 , for general initial data, and ∼1/t 2l+4 , for time-symmetric data, was found in our runs. We noted that it is crucial to resolve accurately the angular dependence of the mode at late times in order to obtain these values of the exponents in the power-law decay. In other cases, when the decay was too fast and round-off error was reached before a tail was developed, then the quasinormal modes frequencies provided a test to determine the validity of our code

  15. Super-Grid Modeling of the Elastic Wave Equation in Semi-Bounded Domains

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, N. Anders; Sjögreen, Björn

    2014-10-01

    <span class="hlt">Abstract</span>

    We develop a super-grid modeling technique for solving the elastic wave equation in semi-bounded two- and three-dimensional spatial domains. In this method, waves are slowed down and dissipated in sponge layers near the far-field boundaries. Mathematically, this is equivalent to a coordinate mapping that transforms a very large physical domain to a significantly smaller computational domain, where the elastic wave equation is solved numerically on a regular grid. To damp out waves that become poorly resolved because of the coordinate mapping, a high order artificial dissipation operator is added in layers near the boundaries of the computational domain. We prove by energy estimates that the super-grid modeling leads to a stable numerical method with decreasing energy, which is valid for heterogeneous material properties and a free surface boundary condition on one side of the domain. Our spatial discretization is based on a fourth order accurate finite difference method, which satisfies the principle of summation by parts. We show that the discrete energy estimate holds also when a centered finite difference stencil is combined with homogeneous Dirichlet conditions at several ghost points outside of the far-field boundaries. Therefore, the coefficients in the finite difference stencils need only be boundary modified near the free surface. This allows for improved computational efficiency and significant simplifications of the implementation of the proposed method in multi-dimensional domains. Numerical experiments in three space dimensions show that the modeling error from truncating the domain can be made very small by choosing a sufficiently wide super-grid damping layer. The numerical accuracy is first evaluated against analytical solutions of Lamb’s problem, where fourth order accuracy is observed with a sixth order artificial dissipation. We then use successive grid refinements to study the numerical accuracy in the more

  16. Abstract Interpretation and Attribute Gramars

    DEFF Research Database (Denmark)

    Rosendahl, Mads

    The objective of this thesis is to explore the connections between abstract interpretation and attribute grammars as frameworks in program analysis. Abstract interpretation is a semantics-based program analysis method. A large class of data flow analysis problems can be expressed as non-standard ...... is presented in the thesis. Methods from abstract interpretation can also be used in correctness proofs of attribute grammars. This proof technique introduces a new class of attribute grammars based on domain theory. This method is illustrated with examples....

  17. A numerical algorithm to evaluate the transient response for a synchronous scanning streak camera using a time-domain Baum–Liu–Tesche equation

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Tian, Jinshou [Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Wu, Shengli, E-mail: slwu@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); He, Jiai [School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu 730050 (China); Liu, Zhen [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China)

    2016-10-01

    The transient response is of great influence on the electromagnetic compatibility of synchronous scanning streak cameras (SSSCs). In this paper we propose a numerical method to evaluate the transient response of the scanning deflection plate (SDP). First, we created a simplified circuit model for the SDP used in an SSSC, and then derived the Baum–Liu–Tesche (BLT) equation in the frequency domain. From the frequency-domain BLT equation, its transient counterpart was derived. These parameters, together with the transient-BLT equation, were used to compute the transient load voltage and load current, and then a novel numerical method to fulfill the continuity equation was used. Several numerical simulations were conducted to verify this proposed method. The computed results were then compared with transient responses obtained by a frequency-domain/fast Fourier transform (FFT) method, and the accordance was excellent for highly conducting cables. The benefit of deriving the BLT equation in the time domain is that it may be used with slight modifications to calculate the transient response and the error can be controlled by a computer program. The result showed that the transient voltage was up to 1000 V and the transient current was approximately 10 A, so some protective measures should be taken to improve the electromagnetic compatibility.

  18. A numerical algorithm to evaluate the transient response for a synchronous scanning streak camera using a time-domain Baum–Liu–Tesche equation

    International Nuclear Information System (INIS)

    Pei, Chengquan; Tian, Jinshou; Wu, Shengli; He, Jiai; Liu, Zhen

    2016-01-01

    The transient response is of great influence on the electromagnetic compatibility of synchronous scanning streak cameras (SSSCs). In this paper we propose a numerical method to evaluate the transient response of the scanning deflection plate (SDP). First, we created a simplified circuit model for the SDP used in an SSSC, and then derived the Baum–Liu–Tesche (BLT) equation in the frequency domain. From the frequency-domain BLT equation, its transient counterpart was derived. These parameters, together with the transient-BLT equation, were used to compute the transient load voltage and load current, and then a novel numerical method to fulfill the continuity equation was used. Several numerical simulations were conducted to verify this proposed method. The computed results were then compared with transient responses obtained by a frequency-domain/fast Fourier transform (FFT) method, and the accordance was excellent for highly conducting cables. The benefit of deriving the BLT equation in the time domain is that it may be used with slight modifications to calculate the transient response and the error can be controlled by a computer program. The result showed that the transient voltage was up to 1000 V and the transient current was approximately 10 A, so some protective measures should be taken to improve the electromagnetic compatibility.

  19. Numerical study of time domain analogy applied to noise prediction from rotating blades

    Science.gov (United States)

    Fedala, D.; Kouidri, S.; Rey, R.

    2009-04-01

    Aeroacoustic formulations in time domain are frequently used to model the aerodynamic sound of airfoils, the time data being more accessible. The formulation 1A developed by Farassat, an integral solution of the Ffowcs Williams and Hawkings equation, holds great interest because of its ability to handle surfaces in arbitrary motion. The aim of this work is to study the numerical sensitivity of this model to specified parameters used in the calculation. The numerical algorithms, spatial and time discretizations, and approximations used for far-field acoustic simulation are presented. An approach of quantifying of the numerical errors resulting from implementation of formulation 1A is carried out based on Isom's and Tam's test cases. A helicopter blade airfoil, as defined by Farassat to investigate Isom's case, is used in this work. According to Isom, the acoustic response of a dipole source with a constant aerodynamic load, ρ0c02, is equal to the thickness noise contribution. Discrepancies are observed when the two contributions are computed numerically. In this work, variations of these errors, which depend on the temporal resolution, Mach number, source-observer distance, and interpolation algorithm type, are investigated. The results show that the spline interpolating algorithm gives the minimum error. The analysis is then extended to Tam's test case. Tam's test case has the advantage of providing an analytical solution for the first harmonic of the noise produced by a specific force distribution.

  20. Full Abstraction for HOPLA

    DEFF Research Database (Denmark)

    Nygaard, Mikkel; Winskel, Glynn

    2003-01-01

    A fully abstract denotational semantics for the higher-order process language HOPLA is presented. It characterises contextual and logical equivalence, the latter linking up with simulation. The semantics is a clean, domain-theoretic description of processes as downwards-closed sets of computation...

  1. Metaphor: Bridging embodiment to abstraction.

    Science.gov (United States)

    Jamrozik, Anja; McQuire, Marguerite; Cardillo, Eileen R; Chatterjee, Anjan

    2016-08-01

    Embodied cognition accounts posit that concepts are grounded in our sensory and motor systems. An important challenge for these accounts is explaining how abstract concepts, which do not directly call upon sensory or motor information, can be informed by experience. We propose that metaphor is one important vehicle guiding the development and use of abstract concepts. Metaphors allow us to draw on concrete, familiar domains to acquire and reason about abstract concepts. Additionally, repeated metaphoric use drawing on particular aspects of concrete experience can result in the development of new abstract representations. These abstractions, which are derived from embodied experience but lack much of the sensorimotor information associated with it, can then be flexibly applied to understand new situations.

  2. Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms

    KAUST Repository

    Efendiev, Yalchin; Galvis, Juan; Lazarov, Raytcho; Willems, Joerg

    2012-01-01

    An abstract framework for constructing stable decompositions of the spaces corresponding to general symmetric positive definite problems into "local" subspaces and a global "coarse" space is developed. Particular applications of this abstract

  3. Generalized algorithm for control of numerical dispersion in explicit time-domain electromagnetic simulations

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2013-04-01

    Full Text Available We describe a modification to the finite-difference time-domain algorithm for electromagnetics on a Cartesian grid which eliminates numerical dispersion error in vacuum for waves propagating along a grid axis. We provide details of the algorithm, which generalizes previous work by allowing 3D operation with a wide choice of aspect ratio, and give conditions to eliminate dispersive errors along one or more of the coordinate axes. We discuss the algorithm in the context of laser-plasma acceleration simulation, showing significant reduction—up to a factor of 280, at a plasma density of 10^{23}  m^{-3}—of the dispersion error of a linear laser pulse in a plasma channel. We then compare the new algorithm with the standard electromagnetic update for laser-plasma accelerator stage simulations, demonstrating that by controlling numerical dispersion, the new algorithm allows more accurate simulation than is otherwise obtained. We also show that the algorithm can be used to overcome the critical but difficult challenge of consistent initialization of a relativistic particle beam and its fields in an accelerator simulation.

  4. Numerical results for near surface time domain electromagnetic exploration: a full waveform approach

    Science.gov (United States)

    Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.

    2015-12-01

    Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two

  5. Time-domain modeling of electromagnetic diffusion with a frequency-domain code

    NARCIS (Netherlands)

    Mulder, W.A.; Wirianto, M.; Slob, E.C.

    2007-01-01

    We modeled time-domain EM measurements of induction currents for marine and land applications with a frequency-domain code. An analysis of the computational complexity of a number of numerical methods shows that frequency-domain modeling followed by a Fourier transform is an attractive choice if a

  6. Multi-domain/multi-method numerical approach for neutron transport equation; Couplage de methodes et decomposition de domaine pour la resolution de l'equation du transport des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, E

    2004-12-15

    A new methodology for the solution of the neutron transport equation, based on domain decomposition has been developed. This approach allows us to employ different numerical methods together for a whole core calculation: a variational nodal method, a discrete ordinate nodal method and a method of characteristics. These new developments authorize the use of independent spatial and angular expansion, non-conformal Cartesian and unstructured meshes for each sub-domain, introducing a flexibility of modeling which is not allowed in today available codes. The effectiveness of our multi-domain/multi-method approach has been tested on several configurations. Among them, one particular application: the benchmark model of the Phebus experimental facility at Cea-Cadarache, shows why this new methodology is relevant to problems with strong local heterogeneities. This comparison has showed that the decomposition method brings more accuracy all along with an important reduction of the computer time.

  7. Fictitious domain methods for elliptic problems with general boundary conditions with an application to the numerical simulation of two phase flows

    International Nuclear Information System (INIS)

    Ramiere, I.

    2006-09-01

    This work is dedicated to the introduction of two original fictitious domain methods for the resolution of elliptic problems (mainly convection-diffusion problems) with general and eventually mixed boundary conditions: Dirichlet, Robin or Neumann. The originality lies in the approximation of the immersed boundary by an approximate interface derived from the fictitious domain Cartesian mesh, which is generally not boundary-fitted to the physical domain. The same generic numerical scheme is used to impose the embedded boundary conditions. Hence, these methods require neither a surface mesh of the immersed boundary nor the local modification of the numerical scheme. We study two modelling of the immersed boundary. In the first one, called spread interface, the approximate immersed boundary is the union of the cells crossed by the physical immersed boundary. In the second one, called thin interface, the approximate immersed boundary lies on sides of mesh cells. Additional algebraic transmission conditions linking both flux and solution jumps through the thin approximate interface are introduced. The fictitious problem to solve as well as the treatment of the embedded boundary conditions are detailed for the two methods. A Q1 finite element scheme is implemented for the numerical validation of the spread interface approach while a new cell-centered finite volume scheme is derived for the thin interface approach with immersed jumps. Each method is then combined to multilevel local mesh refinement algorithms (with solution or flux residual) to increase the precision of the solution in the vicinity of the immersed interface. A convergence analysis of a Q1 finite element method with non-boundary fitted meshes is also presented. This study proves the convergence rates of the present methods. Among the various industrial applications, the simulation on a model of heat exchanger in french nuclear power plants enables us to appreciate the performances of the fictitious domain

  8. Garnet film rotator applied in polarizing microscope for domain image modulation (abstract)

    Science.gov (United States)

    Wakabayashi, K.; Numata, T.; Inokuchi, S.

    1991-04-01

    A garnet film polarization rotator placed before the analyzer in a polarizing microscope was investigated to obtain the difference image of a positive and a negative one of magnetic domain in real time along with an image processor. In the difference image, a nonmagnetic image can be reduced and hence the weak magnetic contrast enhanced. Theoretical calculation of S/N and contrast C of the domain image as a function of the rotation shows they take maxima at the rotation angle of 2.6° and 0.1°, respectively, with the extinction ratio of e=4×10-6 of a polarizing microscope. Thus, since the thickness of the garnet film required is 1 μm or so, the absorption by the garnet rotator does not bring a serious problem even in a visible region for the domain observation. The optimum rotation of the rotator for a high quality observation was obtained by a quantitative study of images obtained experimentally as well as by a visual evaluation. A magnetically unsaturated garnet film with perpendicular magnetization (i.e., multidomain) was employed as a rotator, in which the polarization rotation angle θm of the undeflected beam with respect to the light diffraction could be continuously varied by an applied magnetic field. The dependences of S/N and C on θm were measured, resulting in a well agreement between the measured and the calculated. The visually best image was obtained at θm=0.5° which made the product of S/N and C maximum. The domain image of the Kerr rotation angle of θk=0.22° was observed in S/N=47 dB and C=0.4 when Ar+ laser (λ=515 nm) of tenths of a watt was employed as a light source. Since the domain image with 47 dB S/N does not need an image summation for a noise reduction, a garnet film rotator makes it possible to invert the contrast of a domain image in a real time for an improved domain observation.

  9. Numerical experiments on the solution of the Holmholtz equation in the case of domains of complicated boundary shape

    International Nuclear Information System (INIS)

    Sarmiento, G.S.; Laura, P.A.A.

    1979-01-01

    Domains of complicated boundary shape are of great practical importance in several fields of technology and applied science; e.g. solid propellant rocket grains, electromagnetic and acoustic waveguides, and certain elements used in nuclear engineering. The technical literature contains very few comparative studies of analytical and numerical solutions when dealing with such rather complex geometries. The present study constitutes an effort in that direction. (Auth.)

  10. Spatial representations are specific to different domains of knowledge.

    Directory of Open Access Journals (Sweden)

    Rowena Beecham

    Full Text Available There is evidence that many abstract concepts are represented cognitively in a spatial format. However, it is unknown whether similar spatial processes are employed in different knowledge domains, or whether individuals exhibit similar spatial profiles within and across domains. This research investigated similarities in spatial representation in two knowledge domains--mathematics and music. Sixty-one adults completed analogous number magnitude and pitch discrimination tasks: the Spatial-Numerical Association of Response Codes and Spatial-Musical Association of Response Codes tasks. Subgroups of individuals with different response patterns were identified through cluster analyses. For both the mathematical and musical tasks, approximately half of the participants showed the expected spatial judgment effect when explicitly cued to focus on the spatial properties of the stimuli. Despite this, performances on the two tasks were largely independent. Consistent with previous research, the study provides evidence for the spatial representation of number and pitch in the majority of individuals. However, there was little evidence to support the claim that the same spatial representation processes underpin mathematical and musical judgments.

  11. Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index

    Directory of Open Access Journals (Sweden)

    Zomaya Albert Y

    2006-12-01

    Full Text Available Abstract Background Knowledge of protein domain boundaries is critical for the characterisation and understanding of protein function. The ability to identify domains without the knowledge of the structure – by using sequence information only – is an essential step in many types of protein analyses. In this present study, we demonstrate that the performance of DomainDiscovery is improved significantly by including the inter-domain linker index value for domain identification from sequence-based information. Improved DomainDiscovery uses a Support Vector Machine (SVM approach and a unique training dataset built on the principle of consensus among experts in defining domains in protein structure. The SVM was trained using a PSSM (Position Specific Scoring Matrix, secondary structure, solvent accessibility information and inter-domain linker index to detect possible domain boundaries for a target sequence. Results Improved DomainDiscovery is compared with other methods by benchmarking against a structurally non-redundant dataset and also CASP5 targets. Improved DomainDiscovery achieves 70% accuracy for domain boundary identification in multi-domains proteins. Conclusion Improved DomainDiscovery compares favourably to the performance of other methods and excels in the identification of domain boundaries for multi-domain proteins as a result of introducing support vector machine with benchmark_2 dataset.

  12. Taste in Art-Exposure to Histological Stains Shapes Abstract Art Preferences.

    Science.gov (United States)

    Böthig, Antonia M; Hayn-Leichsenring, Gregor U

    2017-01-01

    Exposure to art increases the appreciation of artworks. Here, we showed that this effect is domain independent. After viewing images of histological stains in a lecture, ratings increased for restricted subsets of abstract art images. In contrast, a lecture on art history generally enhanced ratings for all art images presented, while a lecture on town history without any visual stimuli did not increase the ratings. Therefore, we found a domain-independent exposure effect of images of histological stains to particular abstract paintings. This finding suggests that the 'taste' for abstract art is altered by visual impressions that are presented outside of an artistic context.

  13. Helicopter time-domain electromagnetic numerical simulation based on Leapfrog ADI-FDTD

    Science.gov (United States)

    Guan, S.; Ji, Y.; Li, D.; Wu, Y.; Wang, A.

    2017-12-01

    We present a three-dimension (3D) Alternative Direction Implicit Finite-Difference Time-Domain (Leapfrog ADI-FDTD) method for the simulation of helicopter time-domain electromagnetic (HTEM) detection. This method is different from the traditional explicit FDTD, or ADI-FDTD. Comparing with the explicit FDTD, leapfrog ADI-FDTD algorithm is no longer limited by Courant-Friedrichs-Lewy(CFL) condition. Thus, the time step is longer. Comparing with the ADI-FDTD, we reduce the equations from 12 to 6 and .the Leapfrog ADI-FDTD method will be easier for the general simulation. First, we determine initial conditions which are adopted from the existing method presented by Wang and Tripp(1993). Second, we derive Maxwell equation using a new finite difference equation by Leapfrog ADI-FDTD method. The purpose is to eliminate sub-time step and retain unconditional stability characteristics. Third, we add the convolution perfectly matched layer (CPML) absorbing boundary condition into the leapfrog ADI-FDTD simulation and study the absorbing effect of different parameters. Different absorbing parameters will affect the absorbing ability. We find the suitable parameters after many numerical experiments. Fourth, We compare the response with the 1-Dnumerical result method for a homogeneous half-space to verify the correctness of our algorithm.When the model contains 107*107*53 grid points, the conductivity is 0.05S/m. The results show that Leapfrog ADI-FDTD need less simulation time and computer storage space, compared with ADI-FDTD. The calculation speed decreases nearly four times, memory occupation decreases about 32.53%. Thus, this algorithm is more efficient than the conventional ADI-FDTD method for HTEM detection, and is more precise than that of explicit FDTD in the late time.

  14. Domain-Specific and Domain-General Training to Improve Kindergarten Children’s Mathematics

    Directory of Open Access Journals (Sweden)

    Geetha B. Ramani

    2017-12-01

    Full Text Available Ensuring that kindergarten children have a solid foundation in early numerical knowledge is of critical importance for later mathematical achievement. In this study, we targeted improving the numerical knowledge of kindergarteners (n = 81 from primarily low-income backgrounds using two approaches: one targeting their conceptual knowledge, specifically, their understanding of numerical magnitudes; and the other targeting their underlying cognitive system, specifically, their working memory. Both interventions involved playing game-like activities on tablet computers over the course of several sessions. As predicted, both interventions improved children’s numerical magnitude knowledge as compared to a no-contact control group, suggesting that both domain-specific and domain-general interventions facilitate mathematical learning. Individual differences in effort during the working memory game, but not the number knowledge training game predicted children’s improvements in number line estimation. The results demonstrate the potential of using a rapidly growing technology in early childhood classrooms to promote young children’s numerical knowledge.

  15. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    Schreiner, R.

    2001-01-01

    elements of the TSPA-SR model. The scope of the EBS RT Abstraction also does not include computational or numerical procedures for solving the process-level equations; rather, it identifies the important processes that must then be evaluated with process-level or component-level software using analytical or numerical solutions

  16. Numeral series hidden in the distribution of atomic mass of amino acids to codon domains in the genetic code.

    Science.gov (United States)

    Wohlin, Åsa

    2015-03-21

    The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  17. Convex Hull Abstraction in Specialisation of CLP Programs

    DEFF Research Database (Denmark)

    Peralta, J.C.; Gallagher, John Patrick

    2003-01-01

    We introduce an abstract domain consisting of atomic formulas constrained by linear arithmetic constraints (or convex hulls). This domain is used in an algorithm for specialization of constraint logic programs. The algorithm incorporates in a single phase both top-down goal directed propagation...... and bottom-up answer propagation, and uses a widening on the convex hull domain to ensure termination. We give examples to show the precision gained by this approach over other methods in the literature for specializing constraint logic programs. The specialization method can also be used for ordinary logic...

  18. The SHOCT domain: a widespread domain under-represented in model organisms.

    Directory of Open Access Journals (Sweden)

    Ruth Y Eberhardt

    Full Text Available We have identified a new protein domain, which we have named the SHOCT domain (Short C-terminal domain. This domain is widespread in bacteria with over a thousand examples. But we found it is missing from the most commonly studied model organisms, despite being present in closely related species. It's predominantly C-terminal location, co-occurrence with numerous other domains and short size is reminiscent of the Gram-positive anchor motif, however it is present in a much wider range of species. We suggest several hypotheses about the function of SHOCT, including oligomerisation and nucleic acid binding. Our initial experiments do not support its role as an oligomerisation domain.

  19. Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers

    Directory of Open Access Journals (Sweden)

    Roberto Alonso

    2016-08-01

    Full Text Available The Domain Name System (DNS is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS. The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.

  20. Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.

    Science.gov (United States)

    Alonso, Roberto; Monroy, Raúl; Trejo, Luis A

    2016-08-17

    The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.

  1. A contribution to the numerical calculation of static electromagnetic fields in unbounded domains

    International Nuclear Information System (INIS)

    Krawczyk, F.

    1990-11-01

    The numerical calculation of static electromagnetic fields for arbitrarily shaped three-dimensional structures, especially in unbounded domains, is very memory and cpu-time consuming. In this thesis several schemes that reduce memory and cpu-time consumption have been developed or introduced. The memory needed can be reduced by a special simulation of boundaries towards open space and by the use of a scalar potential for the field description. Known disadvantages of the use of such a potential are avoided by an improved formulation of the used algorithms. The cpu-time for the calculations can be reduced remarkably in many cases by using a multigrid solution scheme including a defect-correction. A computer code has been written that uses these algorithms. With the help of this program it has been demonstrated that using these algorithms, distinct improvements in terms of computer memory, cpu-time consumption and accuracy can be achieved. (orig.) [de

  2. Assume-Guarantee Abstraction Refinement Meets Hybrid Systems

    Science.gov (United States)

    Bogomolov, Sergiy; Frehse, Goran; Greitschus, Marius; Grosu, Radu; Pasareanu, Corina S.; Podelski, Andreas; Strump, Thomas

    2014-01-01

    Compositional verification techniques in the assume- guarantee style have been successfully applied to transition systems to efficiently reduce the search space by leveraging the compositional nature of the systems under consideration. We adapt these techniques to the domain of hybrid systems with affine dynamics. To build assumptions we introduce an abstraction based on location merging. We integrate the assume-guarantee style analysis with automatic abstraction refinement. We have implemented our approach in the symbolic hybrid model checker SpaceEx. The evaluation shows its practical potential. To the best of our knowledge, this is the first work combining assume-guarantee reasoning with automatic abstraction-refinement in the context of hybrid automata.

  3. Constraint-Based Abstraction of a Model Checker for Infinite State Systems

    DEFF Research Database (Denmark)

    Banda, Gourinath; Gallagher, John Patrick

    Abstract interpretation-based model checking provides an approach to verifying properties of infinite-state systems. In practice, most previous work on abstract model checking is either restricted to verifying universal properties, or develops special techniques for temporal logics such as modal t...... to implementation of abstract model checking algorithms for abstract domains based on constraints, making use of an SMT solver....

  4. Designing an image retrieval interface for abstract concepts within the domain of journalism

    NARCIS (Netherlands)

    R. Besseling (Ron)

    2011-01-01

    htmlabstractResearch has shown that users have difficulties finding images which illustrate abstract concepts. We carried out a user study that confirms the finding that the selection of search terms is perceived difficult and that users find the subjectivity of abstract concepts problematic. In

  5. Direct Time Domain Numerical Analysis of Transient Behavior of a VLFS during Unsteady External Loads in Wave Condition

    Directory of Open Access Journals (Sweden)

    Yong Cheng

    2014-01-01

    Full Text Available The transient response of the VLFS subjected to arbitrary external load is systematically investigated by a direct time domain modal expansion method, in which the BEM solutions based on time domain Kelvin sources are used for hydrodynamic forces. In the analysis, the time domain free-surface Green functions with sufficient accuracy are rapidly evaluated in finite water depth by the interpolation-tabulation method, and the boundary integral equation with a quarter VLFS model is established taking advantage of symmetry of flow field and structure. The validity of the present method is verified by comparing with the time histories of vertical displacements of the VLFS during a mass drop and airplane landing and takeoff in still water conditions, respectively. Then the developed numerical scheme is used in wave conditions to study the combined action taking into account the mass drop/airplane landing/takeoff loads as well as incident wave action. It is found that the elevation of structural waves due to mass drop load can be significantly changed near the impact region, while the vertical motion of runway in wave conditions is dominant as compared with that only generated by airplane.

  6. A numerical method for the solution of three-dimensional incompressible viscous flow using the boundary-fitted curvilinear coordinate transformation and domain decomposition technique

    International Nuclear Information System (INIS)

    Umegaki, Kikuo; Miki, Kazuyoshi

    1990-01-01

    A numerical method is developed to solve three-dimensional incompressible viscous flow in complicated geometry using curvilinear coordinate transformation and domain decomposition technique. In this approach, a complicated flow domain is decomposed into several subdomains, each of which has an overlapping region with neighboring subdomains. Curvilinear coordinates are numerically generated in each subdomain using the boundary-fitted coordinate transformation technique. The modified SMAC scheme is developed to solve Navier-Stokes equations in which the convective terms are discretized by the QUICK method. A fully vectorized computer program is developed on the basis of the proposed method. The program is applied to flow analysis in a semicircular curved, 90deg elbow and T-shape branched pipes. Computational time with the vector processor of the HITAC S-810/20 supercomputer system, is reduced to 1/10∼1/20 of that with a scalar processor. (author)

  7. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    Science.gov (United States)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  8. Domain-Specific Multimodeling

    DEFF Research Database (Denmark)

    Hessellund, Anders

    the overall level of abstraction. It does, however, also introduce a new problem of coordinating multiple different languages in a single system. We call this problem the coordination problem. In this thesis, we present the coordination method for domain-specific multimodeling that explicitly targets...

  9. Abstracts: NRC Waste Management Program reports

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Minichino, C.

    1979-11-01

    This document consists of abstracts of all reports published by the Nuclear Regulatory Commission (NRC) Waste Management Program at Lawrence Livermore Laboratory (LLL). It will be updated at regular intervals. Reports are arranged in numerical order, within each category. Unless otherwise specified, authors are LLL scientists and engineers.

  10. Abstracts: NRC Waste Management Program reports

    International Nuclear Information System (INIS)

    Heckman, R.A.; Minichino, C.

    1979-11-01

    This document consists of abstracts of all reports published by the Nuclear Regulatory Commission (NRC) Waste Management Program at Lawrence Livermore Laboratory (LLL). It will be updated at regular intervals. Reports are arranged in numerical order, within each category. Unless otherwise specified, authors are LLL scientists and engineers

  11. Abstract spatial concept priming dynamically influences real-world actions

    Directory of Open Access Journals (Sweden)

    Sarah M Tower-Richardi

    2012-09-01

    Full Text Available Experienced regularities in our perceptions and actions play important roles in grounding abstract concepts such as social status, time, and emotion. Might we similarly ground abstract spatial concepts in more experienced-based domains? The present experiment explores this possibility by implicitly priming abstract spatial terms (north, south, east, west and then measuring participants’ hand movement trajectories while they respond to a body-referenced spatial target (up, down, left, right in a verbal (Exp. 1 or spatial (Exp. 2 format. Results from two experiments demonstrate temporally-dynamic and prime-biased movement trajectories when the primes are incongruent with the targets (e.g., north – left, west – up. That is, priming abstract coordinate directions influences subsequent actions in response to concrete target directions. These findings provide the first evidence that abstract concepts of world-centered coordinate axes are implicitly understood in the context of concrete body-referenced axes; critically, this abstract-concrete relationship manifests in motor movements, and may have implications for spatial memory organization.

  12. Extracting meronomy relations from domain-specific, textual corporate databases

    NARCIS (Netherlands)

    Ittoo, R.A.; Bouma, G.; Maruster, L.; Wortmann, J.C.; Hopfe, C.J.; Rezgui, Y.; Métais, E.; Preece, A.; Li, H.

    2010-01-01

    Various techniques for learning meronymy relationships from open-domain corpora exist. However, extracting meronymy relationships from domain-specific, textual corporate databases has been overlooked, despite numerous application opportunities particularly in domains like product development and/or

  13. Direct time-domain techniques for transient radiation and scattering

    International Nuclear Information System (INIS)

    Miller, E.K.; Landt, J.A.

    1976-01-01

    A tutorial introduction to transient electromagnetics, focusing on direct time-domain techniques, is presented. Physical, mathematical, numerical, and experimental aspects of time-domain methods, with emphasis on wire objects excited as antennas or scatters are examined. Numerous computed examples illustrate the characteristics of direct time-domain procedures, especially where they may offer advantages over procedures in the more familiar frequency domain. These advantages include greater solution efficiency for many types of problems, the ability to handle nonlinearities, improved physical insight and interpretability, availability of wide-band information from a single calculation, and the possibility of isolating interactions among various parts of an object using time-range gating

  14. Embodied cognition, abstract concepts, and body manipulation

    Directory of Open Access Journals (Sweden)

    Katinka eDijkstra

    2014-08-01

    Full Text Available Current approaches on cognition hold that concrete concepts are grounded in concrete experiences. There is no consensus, however, as to whether this is equally true for abstract concepts. In this review we discuss how the body might be involved in understanding abstract concepts through metaphor activation. Substantial research has been conducted on the activation of common orientational metaphors with bodily manipulations, such as ‘power is up’ and ‘more is up’ representations. We will focus on the political metaphor that has a more complex association between the concept and the concrete domain. However, the outcomes of studies on this political metaphor have not always been consistent, possibly because the experimental manipulation was not implicit enough. The inclusion of new technological devices in this area of research, such as the Wii Balance Board, seems promising in order to assess the groundedness of abstract conceptual spatial metaphors in an implicit manner. This may aid further research to effectively demonstrate the interrelatedness between the body and more abstract representations.

  15. Numerical investigation of shape domain effect to its elasticity and surface energy using adaptive finite element method

    Science.gov (United States)

    Alfat, Sayahdin; Kimura, Masato; Firihu, Muhammad Zamrun; Rahmat

    2018-05-01

    In engineering area, investigation of shape effect in elastic materials was very important. It can lead changing elasticity and surface energy, and also increase of crack propagation in the material. A two-dimensional mathematical model was developed to investigation of elasticity and surface energy in elastic material by Adaptive Finite Element Method. Besides that, behavior of crack propagation has observed for every those materials. The government equations were based on a phase field approach in crack propagation model that developed by Takaishi-Kimura. This research has varied four shape domains where physical properties of materials were same (Young's modulus E = 70 GPa and Poisson's ratio ν = 0.334). Investigation assumptions were; (1) homogeneous and isotropic material, (2) there was not initial cracking at t = 0, (3) initial displacement was zero [u1, u2] = 0) at initial condition (t = 0), and (4) length of time simulation t = 5 with interval Δt = 0.005. Mode I/II or mixed mode crack propagation has been used for the numerical investigation. Results of this studies were very good and accurate to show changing energy and behavior of crack propagation. In the future time, this research can be developed to complex phenomena and domain. Furthermore, shape optimization can be investigation by the model.

  16. Domain patterns and hysteresis in phase-transforming solids: analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation

    Czech Academy of Sciences Publication Activity Database

    DeSimone, A.; Kružík, Martin

    2013-01-01

    Roč. 8, č. 2 (2013), s. 481-499 ISSN 1556-1801 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : hysteresis * shape memory Subject RIV: BA - General Mathematics Impact factor: 0.952, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/kruzik-domain patterns and hysteresis in phase-transforming solids analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation.pdf

  17. Horn clause verification with convex polyhedral abstraction and tree automata-based refinement

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2017-01-01

    In this paper we apply tree-automata techniques to refinement of abstract interpretation in Horn clause verification. We go beyond previous work on refining trace abstractions; firstly we handle tree automata rather than string automata and thereby can capture traces in any Horn clause derivations...... underlying the Horn clauses. Experiments using linear constraint problems and the abstract domain of convex polyhedra show that the refinement technique is practical and that iteration of abstract interpretation with tree automata-based refinement solves many challenging Horn clause verification problems. We...... compare the results with other state-of-the-art Horn clause verification tools....

  18. Numerical discrepancy between serial and MPI parallel computations

    Directory of Open Access Journals (Sweden)

    Sang Bong Lee

    2016-09-01

    Full Text Available Numerical simulations of 1D Burgers equation and 2D sloshing problem were carried out to study numerical discrepancy between serial and parallel computations. The numerical domain was decomposed into 2 and 4 subdomains for parallel computations with message passing interface. The numerical solution of Burgers equation disclosed that fully explicit boundary conditions used on subdomains of parallel computation was responsible for the numerical discrepancy of transient solution between serial and parallel computations. Two dimensional sloshing problems in a rectangular domain were solved using OpenFOAM. After a lapse of initial transient time sloshing patterns of water were significantly different in serial and parallel computations although the same numerical conditions were given. Based on the histograms of pressure measured at two points near the wall the statistical characteristics of numerical solution was not affected by the number of subdomains as much as the transient solution was dependent on the number of subdomains.

  19. Domain wall networks on solitons

    International Nuclear Information System (INIS)

    Sutcliffe, Paul

    2003-01-01

    Domain wall networks on the surface of a soliton are studied in a simple theory. It consists of two complex scalar fields, in 3+1 dimensions, with a global U(1)xZ n symmetry, where n>2. Solutions are computed numerically in which one of the fields forms a Q ball and the other field forms a network of domain walls localized on the surface of the Q ball. Examples are presented in which the domain walls lie along the edges of a spherical polyhedron, forming junctions at its vertices. It is explained why only a small restricted class of polyhedra can arise as domain wall networks

  20. An Algebraic Programming Style for Numerical Software and Its Optimization

    Directory of Open Access Journals (Sweden)

    T.B. Dinesh

    2000-01-01

    Full Text Available The abstract mathematical theory of partial differential equations (PDEs is formulated in terms of manifolds, scalar fields, tensors, and the like, but these algebraic structures are hardly recognizable in actual PDE solvers. The general aim of the Sophus programming style is to bridge the gap between theory and practice in the domain of PDE solvers. Its main ingredients are a library of abstract datatypes corresponding to the algebraic structures used in the mathematical theory and an algebraic expression style similar to the expression style used in the mathematical theory. Because of its emphasis on abstract datatypes, Sophus is most naturally combined with object-oriented languages or other languages supporting abstract datatypes. The resulting source code patterns are beyond the scope of current compiler optimizations, but are sufficiently specific for a dedicated source-to-source optimizer. The limited, domain-specific, character of Sophus is the key to success here. This kind of optimization has been tested on computationally intensive Sophus style code with promising results. The general approach may be useful for other styles and in other application domains as well.

  1. The Advantages of Abstract Control Knowledge in Expert System Design. Technical Report #7.

    Science.gov (United States)

    Clancey, William J.

    This paper argues that an important design principle for building expert systems is to represent all control knowledge abstractly and separately from the domain knowledge upon which it operates. Abstract control knowledge is defined as the specifications of when and how a program is to carry out its operations, such as pursuing a goal, focusing,…

  2. Fictitious domain methods for elliptic problems with general boundary conditions with an application to the numerical simulation of two phase flows; Methodes de domaine fictif pour des problemes elliptiques avec conditions aux limites generales en vue de la simulation numerique d'ecoulements diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Ramiere, I

    2006-09-15

    This work is dedicated to the introduction of two original fictitious domain methods for the resolution of elliptic problems (mainly convection-diffusion problems) with general and eventually mixed boundary conditions: Dirichlet, Robin or Neumann. The originality lies in the approximation of the immersed boundary by an approximate interface derived from the fictitious domain Cartesian mesh, which is generally not boundary-fitted to the physical domain. The same generic numerical scheme is used to impose the embedded boundary conditions. Hence, these methods require neither a surface mesh of the immersed boundary nor the local modification of the numerical scheme. We study two modelling of the immersed boundary. In the first one, called spread interface, the approximate immersed boundary is the union of the cells crossed by the physical immersed boundary. In the second one, called thin interface, the approximate immersed boundary lies on sides of mesh cells. Additional algebraic transmission conditions linking both flux and solution jumps through the thin approximate interface are introduced. The fictitious problem to solve as well as the treatment of the embedded boundary conditions are detailed for the two methods. A Q1 finite element scheme is implemented for the numerical validation of the spread interface approach while a new cell-centered finite volume scheme is derived for the thin interface approach with immersed jumps. Each method is then combined to multilevel local mesh refinement algorithms (with solution or flux residual) to increase the precision of the solution in the vicinity of the immersed interface. A convergence analysis of a Q1 finite element method with non-boundary fitted meshes is also presented. This study proves the convergence rates of the present methods. Among the various industrial applications, the simulation on a model of heat exchanger in french nuclear power plants enables us to appreciate the performances of the fictitious domain

  3. Conference presentation to publication: a retrospective study evaluating quality of abstracts and journal articles in medical education research

    Directory of Open Access Journals (Sweden)

    Christopher R. Stephenson

    2017-11-01

    Full Text Available Abstract Background There is little evidence regarding the comparative quality of abstracts and articles in medical education research. The Medical Education Research Study Quality Instrument (MERSQI, which was developed to evaluate the quality of reporting in medical education, has strong validity evidence for content, internal structure, and relationships to other variables. We used the MERSQI to compare the quality of reporting for conference abstracts, journal abstracts, and published articles. Methods This is a retrospective study of all 46 medical education research abstracts submitted to the Society of General Internal Medicine 2009 Annual Meeting that were subsequently published in a peer-reviewed journal. We compared MERSQI scores of the abstracts with scores for their corresponding published journal abstracts and articles. Comparisons were performed using the signed rank test. Results Overall MERSQI scores increased significantly for published articles compared with conference abstracts (11.33 vs 9.67; P < .001 and journal abstracts (11.33 vs 9.96; P < .001. Regarding MERSQI subscales, published articles had higher MERSQI scores than conference abstracts in the domains of sampling (1.59 vs 1.34; P = .006, data analysis (3.00 vs 2.43; P < .001, and validity of evaluation instrument (1.04 vs 0.28; P < .001. Published articles also had higher MERSQI scores than journal abstracts in the domains of data analysis (3.00 vs 2.70; P = .004 and validity of evaluation instrument (1.04 vs 0.26; P < .001. Conclusions To our knowledge, this is the first study to compare the quality of medical education abstracts and journal articles using the MERSQI. Overall, the quality of articles was greater than that of abstracts. However, there were no significant differences between abstracts and articles for the domains of study design and outcomes, which indicates that these MERSQI elements may be applicable to abstracts. Findings

  4. Handbook of numerical analysis

    CERN Document Server

    Ciarlet, Philippe G

    Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas an

  5. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  6. A Highly Accurate Regular Domain Collocation Method for Solving Potential Problems in the Irregular Doubly Connected Domains

    Directory of Open Access Journals (Sweden)

    Zhao-Qing Wang

    2014-01-01

    Full Text Available Embedding the irregular doubly connected domain into an annular regular region, the unknown functions can be approximated by the barycentric Lagrange interpolation in the regular region. A highly accurate regular domain collocation method is proposed for solving potential problems on the irregular doubly connected domain in polar coordinate system. The formulations of regular domain collocation method are constructed by using barycentric Lagrange interpolation collocation method on the regular domain in polar coordinate system. The boundary conditions are discretized by barycentric Lagrange interpolation within the regular domain. An additional method is used to impose the boundary conditions. The least square method can be used to solve the overconstrained equations. The function values of points in the irregular doubly connected domain can be calculated by barycentric Lagrange interpolation within the regular domain. Some numerical examples demonstrate the effectiveness and accuracy of the presented method.

  7. Abstract Cauchy problems three approaches

    CERN Document Server

    Melnikova, Irina V

    2001-01-01

    Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularization methods. Semigroup and distribution methods restore well-posedness, in a modern weak sense. Regularization methods provide approximate solutions to ill-posed problems. Although these approaches were extensively developed over the last decades by many researchers, nowhere could one find a comprehensive treatment of all three approaches.Abstract Cauchy Problems: Three Approaches provides an innovative, self-contained account of these methods and, furthermore, demonstrates and studies some of the profound connections between them. The authors discuss the application of different methods not only to the Cauchy problem that is not well-posed in the classical sense, b...

  8. Numerical methods and analysis of multiscale problems

    CERN Document Server

    Madureira, Alexandre L

    2017-01-01

    This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

  9. Domain Specific Language Support for Exascale

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, Ponnuswamy [The Ohio State Univ., Columbus, OH (United States)

    2017-02-24

    Domain-Specific Languages (DSLs) offer an attractive path to Exascale software since they provide expressive power through appropriate abstractions and enable domain-specific optimizations. But the advantages of a DSL compete with the difficulties of implementing a DSL, even for a narrowly defined domain. The DTEC project addresses how a variety of DSLs can be easily implemented to leverage existing compiler analysis and transformation capabilities within the ROSE open source compiler as part of a research program focusing on Exascale challenges. The OSU contributions to the DTEC project are in the area of code generation from high-level DSL descriptions, as well as verification of the automatically-generated code.

  10. Laplace-Fourier-domain dispersion analysis of an average derivative optimal scheme for scalar-wave equation

    Science.gov (United States)

    Chen, Jing-Bo

    2014-06-01

    By using low-frequency components of the damped wavefield, Laplace-Fourier-domain full waveform inversion (FWI) can recover a long-wavelength velocity model from the original undamped seismic data lacking low-frequency information. Laplace-Fourier-domain modelling is an important foundation of Laplace-Fourier-domain FWI. Based on the numerical phase velocity and the numerical attenuation propagation velocity, a method for performing Laplace-Fourier-domain numerical dispersion analysis is developed in this paper. This method is applied to an average-derivative optimal scheme. The results show that within the relative error of 1 per cent, the Laplace-Fourier-domain average-derivative optimal scheme requires seven gridpoints per smallest wavelength and smallest pseudo-wavelength for both equal and unequal directional sampling intervals. In contrast, the classical five-point scheme requires 23 gridpoints per smallest wavelength and smallest pseudo-wavelength to achieve the same accuracy. Numerical experiments demonstrate the theoretical analysis.

  11. Automatic Probabilistic Program Verification through Random Variable Abstraction

    Directory of Open Access Journals (Sweden)

    Damián Barsotti

    2010-06-01

    Full Text Available The weakest pre-expectation calculus has been proved to be a mature theory to analyze quantitative properties of probabilistic and nondeterministic programs. We present an automatic method for proving quantitative linear properties on any denumerable state space using iterative backwards fixed point calculation in the general framework of abstract interpretation. In order to accomplish this task we present the technique of random variable abstraction (RVA and we also postulate a sufficient condition to achieve exact fixed point computation in the abstract domain. The feasibility of our approach is shown with two examples, one obtaining the expected running time of a probabilistic program, and the other the expected gain of a gambling strategy. Our method works on general guarded probabilistic and nondeterministic transition systems instead of plain pGCL programs, allowing us to easily model a wide range of systems including distributed ones and unstructured programs. We present the operational and weakest precondition semantics for this programs and prove its equivalence.

  12. Scalable and Precise Abstraction of Programs for Trustworthy Software

    Science.gov (United States)

    2017-01-01

    1.2.3 A mobile contract infrastructure for Java , with corresponding higher-order generalizations of relational abstract domains...precision of a static analysis. These parameters induce an analytic framework that spans a continuum from the null analysis up to the concrete semantics...inevitable merging that creates false positives. Global monotonicity still guarantees termination. 1.2.3 A mobile contract infrastructure for Java , with

  13. Improved numerical algorithm and experimental validation of a system thermal-hydraulic/CFD coupling method for multi-scale transient simulations of pool-type reactors

    International Nuclear Information System (INIS)

    Toti, A.; Vierendeels, J.; Belloni, F.

    2017-01-01

    Highlights: • A system thermal-hydraulic/CFD coupling methodology is proposed for high-fidelity transient flow analyses. • The method is based on domain decomposition and implicit numerical scheme. • A novel interface Quasi-Newton algorithm is implemented to improve stability and convergence rate. • Preliminary validation analyses on the TALL-3D experiment. - Abstract: The paper describes the development and validation of a coupling methodology between the best-estimate system thermal-hydraulic code RELAP5-3D and the CFD code FLUENT, conceived for high fidelity plant-scale safety analyses of pool-type reactors. The computational tool is developed to assess the impact of three-dimensional phenomena occurring in accidental transients such as loss of flow (LOF) in the research reactor MYRRHA, currently in the design phase at the Belgian Nuclear Research Centre, SCK• CEN. A partitioned, implicit domain decomposition coupling algorithm is implemented, in which the coupled domains exchange thermal-hydraulics variables at coupling boundary interfaces. Numerical stability and interface convergence rates are improved by a novel interface Quasi-Newton algorithm, which is compared in this paper with previously tested numerical schemes. The developed computational method has been assessed for validation purposes against the experiment performed at the test facility TALL-3D, operated by the Royal Institute of Technology (KTH) in Sweden. This paper details the results of the simulation of a loss of forced convection test, showing the capability of the developed methodology to predict transients influenced by local three-dimensional phenomena.

  14. Domain Walls and Matter-Antimatter Domains in the Early Universe

    Directory of Open Access Journals (Sweden)

    Dolgov A.D.

    2017-01-01

    Full Text Available We suggest a scenario of spontaneous (or dynamical C and CP violation according to which it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP violation existed only in the early universe and later it disappeared with the only trace of generated matter and antimatter domains. So this scenario does not suffer from the problem of domain walls. According to this scenario the width of the domain wall should grow exponentially to prevent annihilation at the domain boundaries. Though there is a classical result obtained by Basu and Vilenkin that the width of the wall tends to the one of the stationary solution (constant physical width. That is why we considered thick domain walls in a de Sitter universe following paper by Basu and Vilenkin. However, we were interested not only in stationary solutions found therein, but also investigated the general case of domain wall evolution with time. When the wall thickness parameter, δ0 , is smaller than H−1/2 where H is the Hubble parameter in de Sitter space-time, then the stationary solutions exist, and initial field configurations tend with time to the stationary ones. However, there are no stationary solutions for δ0>H−1/2 We have calculated numerically the rate of the wall expansion in this case and have found that the width of the wall grows exponentially fast for δ0≫H−1 An explanation for the critical value δ0c=H−1/2 is also proposed.

  15. On solution of Maxwell's equations in axisymmetric domains with edges. Part II: Numerical aspects

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-10-01

    In this paper we consider the Fourier-finite-element method for treating the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges. By means of partial Fourier analysis, the 3D BVP is decomposed into an infinite sequence of 2D variational equations in the plane meridian domain of the axisymmetric domain, a finite number of which is considered and treated using nodal H 1 -conforming finite elements. For domains with reentrant edges, the singular field method is employed to compensate the singular behavior of the solutions. Emphases are given to estimates of the Fourier-finite-element approximation error and convergence analysis in the H 1 -norm under different regularity assumptions. (author)

  16. Numerical calculations near spatial infinity

    International Nuclear Information System (INIS)

    Zenginoglu, Anil

    2007-01-01

    After describing in short some problems and methods regarding the smoothness of null infinity for isolated systems, I present numerical calculations in which both spatial and null infinity can be studied. The reduced conformal field equations based on the conformal Gauss gauge allow us in spherical symmetry to calculate numerically the entire Schwarzschild-Kruskal spacetime in a smooth way including spacelike, null and timelike infinity and the domain close to the singularity

  17. Abstract Word Definition in Patients with Amnestic Mild Cognitive Impairment

    Science.gov (United States)

    Kim, Soo Ryon; Baek, Min Jae; Kim, HyangHee

    2015-01-01

    The aims of this study were to investigate concrete and abstract word definition ability (1) between patients with amnestic mild cognitive impairment (aMCI) and normal adults and (2) between the aMCI subtypes (i.e., amnestic single-domain MCI and amnestic multidomain MCI; asMCI and amMCI) and normal controls. The 68 patients with aMCI (29 asMCI and 39 amMCI) and 93 age- and education-matched normal adults performed word definition tasks composed of five concrete (e.g., train) and five abstract nouns (e.g., jealousy). Task performances were analyzed on total score, number of core meanings, and number of supplementary meanings. The results were as follows. First, the aMCI patients scored significantly poorer than the normal controls in only abstract word definition. Second, both subtypes of aMCI performed worse than the controls in only abstract word definition. In conclusion, a definition task of abstract rather than concrete concepts may provide richer information to show semantic impairment of aMCI. PMID:26347214

  18. Abstract Word Definition in Patients with Amnestic Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Soo Ryon Kim

    2015-01-01

    Full Text Available The aims of this study were to investigate concrete and abstract word definition ability (1 between patients with amnestic mild cognitive impairment (aMCI and normal adults and (2 between the aMCI subtypes (i.e., amnestic single-domain MCI and amnestic multidomain MCI; asMCI and amMCI and normal controls. The 68 patients with aMCI (29 asMCI and 39 amMCI and 93 age- and education-matched normal adults performed word definition tasks composed of five concrete (e.g., train and five abstract nouns (e.g., jealousy. Task performances were analyzed on total score, number of core meanings, and number of supplementary meanings. The results were as follows. First, the aMCI patients scored significantly poorer than the normal controls in only abstract word definition. Second, both subtypes of aMCI performed worse than the controls in only abstract word definition. In conclusion, a definition task of abstract rather than concrete concepts may provide richer information to show semantic impairment of aMCI.

  19. Multivariate Cross-Classification: Applying machine learning techniques to characterize abstraction in neural representations

    Directory of Open Access Journals (Sweden)

    Jonas eKaplan

    2015-03-01

    Full Text Available Here we highlight an emerging trend in the use of machine learning classifiers to test for abstraction across patterns of neural activity. When a classifier algorithm is trained on data from one cognitive context, and tested on data from another, conclusions can be drawn about the role of a given brain region in representing information that abstracts across those cognitive contexts. We call this kind of analysis Multivariate Cross-Classification (MVCC, and review several domains where it has recently made an impact. MVCC has been important in establishing correspondences among neural patterns across cognitive domains, including motor-perception matching and cross-sensory matching. It has been used to test for similarity between neural patterns evoked by perception and those generated from memory. Other work has used MVCC to investigate the similarity of representations for semantic categories across different kinds of stimulus presentation, and in the presence of different cognitive demands. We use these examples to demonstrate the power of MVCC as a tool for investigating neural abstraction and discuss some important methodological issues related to its application.

  20. Nucleation of domains under the influence of temperature in ...

    Indian Academy of Sciences (India)

    Abstract. It is found that the nucleation of domains can take place in Ba5Ti2O7Cl4 under the influence of temperature unlike in many other ferroelectrics. The nucleated domain can also be removed from the structure under the randomizing effect of tem- perature. These observations have been explained on the basis of a ...

  1. A multi-domain spectral method for time-fractional differential equations

    Science.gov (United States)

    Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.

    2015-07-01

    This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.

  2. Problems in abstract algebra

    CERN Document Server

    Wadsworth, A R

    2017-01-01

    This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.

  3. From Abstract Art to Abstracted Artists

    Directory of Open Access Journals (Sweden)

    Romi Mikulinsky

    2016-11-01

    Full Text Available What lineage connects early abstract films and machine-generated YouTube videos? Hans Richter’s famous piece Rhythmus 21 is considered to be the first abstract film in the experimental tradition. The Webdriver Torso YouTube channel is composed of hundreds of thousands of machine-generated test patterns designed to check frequency signals on YouTube. This article discusses geometric abstraction vis-à-vis new vision, conceptual art and algorithmic art. It argues that the Webdriver Torso is an artistic marvel indicative of a form we call mathematical abstraction, which is art performed by computers and, quite possibly, for computers.

  4. Numerical simulation of fire vortex

    Science.gov (United States)

    Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.

    2018-05-01

    The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.

  5. Spectral element method for elastic and acoustic waves in frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Na, E-mail: liuna@xmu.edu.cn [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Qing Huo, E-mail: qhliu@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708 (United States)

    2016-12-15

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  6. Owl: A General-Purpose Numerical Library in OCaml

    OpenAIRE

    Wang, Liang

    2017-01-01

    Owl is a new numerical library developed in the OCaml language. It focuses on providing a comprehensive set of high-level numerical functions so that developers can quickly build up data analytical applications. In this abstract, we will present Owl's design, core components, and its key functionality.

  7. Multi-domain comparison of safety standards

    International Nuclear Information System (INIS)

    Baufreton, Ph.; Derrien, J.C.; Ricque, B.; Blanquart, J.P.; Boulanger, J.L.; Delseny, H.; Gassino, J.; Ladier, G.; Ledinot, E.; Leeman, M.; Quere, Ph.

    2011-01-01

    This paper presents an analysis of safety standards and their implementation in certification strategies from different domains such as aeronautics, automation, automotive, nuclear, railway and space. This work, performed in the context of the CG2E ('Club des Grandes Entreprises de l'Embarque'), aims at identifying the main similarities and dissimilarities, for potential cross-domain harmonization. We strive to find the most comprehensive 'trans-sectorial' approach, within a large number of industrial domains. Exhibiting the 'true goals' of their numerous applicable standards, related to the safety of system and software, is a first important step towards harmonization, sharing common approaches, methods and tools whenever possible. (authors)

  8. Domain growth in weakly disordered magnets: A coupled map lattice approach

    International Nuclear Information System (INIS)

    Biswal, B.; Puri, S.; Chowdhury, D.

    1994-06-01

    We developed a novel numerical method of studying domain growth in the Ising-type models. Using this method we investigate the laws of domain growth in random-exchange Ising model. (author). 23 refs, 5 figs

  9. Domain walls in the extensions of the Standard Model

    Science.gov (United States)

    Krajewski, Tomasz; Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł

    2018-05-01

    Our main interest is the evolution of domain walls of the Higgs field in the early Universe. The aim of this paper is to understand how dynamics of Higgs domain walls could be influenced by yet unknown interactions from beyond the Standard Model. We assume that the Standard Model is valid up to certain, high, energy scale Λ and use the framework of the effective field theory to describe physics below that scale. Performing numerical simulations with different values of the scale Λ we are able to extend our previous analysis [1]. Our recent numerical simulations show that evolution of Higgs domain walls is rather insensitive to interactions beyond the Standard Model as long as masses of new particles are grater than 1012 GeV. For lower values of Λ the RG improved effective potential is strongly modified at field strengths crucial to the evolution of domain walls. However, we find that even for low values of Λ, Higgs domain walls decayed shortly after their formation for generic initial conditions. On the other hand, in simulations with specifically chosen initial conditions Higgs domain walls can live longer and enter the scaling regime. We also determine the energy spectrum of gravitational waves produced by decaying domain walls of the Higgs field. For generic initial field configurations the amplitude of the signal is too small to be observed in planned detectors.

  10. An introduction to abstract algebra

    CERN Document Server

    Robinson, Derek JS

    2003-01-01

    This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader''s skill and progress. The book should be suitable for students ...

  11. Multi-domain comparison of safety standards; Comparaison de normes de securite-innocuite de plusieurs domaines industriels

    Energy Technology Data Exchange (ETDEWEB)

    Baufreton, Ph.; Derrien, J.C.; Ricque, B. [Sagem Defense Securite, 75 - Paris (France); Blanquart, J.P. [Astrium Satellites, France (France); Boulanger, J.L. [CERTIFER, 75 - Paris (France); Delseny, H. [Airbus, 31 - Toulouse (France); Gassino, J. [Institut de Radioprotection et de Surete Nucleaire, IRSN, 92 - Fontenay aux Roses (France); Ladier, G. [Airbus / Aerospace Valley, 31 - Toulouse (France); Ledinot, E. [Dassault Aviation, 92 - Saint Cloud (France); Leeman, M. [Valeo, 75 - Paris (France); Quere, Ph. [Renault, 75 - Paris (France)

    2011-07-01

    This paper presents an analysis of safety standards and their implementation in certification strategies from different domains such as aeronautics, automation, automotive, nuclear, railway and space. This work, performed in the context of the CG2E ('Club des Grandes Entreprises de l'Embarque'), aims at identifying the main similarities and dissimilarities, for potential cross-domain harmonization. We strive to find the most comprehensive 'trans-sectorial' approach, within a large number of industrial domains. Exhibiting the 'true goals' of their numerous applicable standards, related to the safety of system and software, is a first important step towards harmonization, sharing common approaches, methods and tools whenever possible. (authors)

  12. Abstraction/Representation Theory for heterotic physical computing.

    Science.gov (United States)

    Horsman, D C

    2015-07-28

    We give a rigorous framework for the interaction of physical computing devices with abstract computation. Device and program are mediated by the non-logical representation relation; we give the conditions under which representation and device theory give rise to commuting diagrams between logical and physical domains, and the conditions for computation to occur. We give the interface of this new framework with currently existing formal methods, showing in particular its close relationship to refinement theory, and the implications for questions of meaning and reference in theoretical computer science. The case of hybrid computing is considered in detail, addressing in particular the example of an Internet-mediated social machine, and the abstraction/representation framework used to provide a formal distinction between heterotic and hybrid computing. This forms the basis for future use of the framework in formal treatments of non-standard physical computers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Exploiting Spatial Abstraction in Predictive Analytics of Vehicle Traffic

    Directory of Open Access Journals (Sweden)

    Natalia Andrienko

    2015-04-01

    Full Text Available By applying visual analytics techniques to vehicle traffic data, we found a way to visualize and study the relationships between the traffic intensity and movement speed on links of a spatially abstracted transportation network. We observed that the traffic intensities and speeds in an abstracted network are interrelated in the same way as they are in a detailed street network at the level of street segments. We developed interactive visual interfaces that support representing these interdependencies by mathematical models. To test the possibility of utilizing them for performing traffic simulations on the basis of abstracted transportation networks, we devised a prototypical simulation algorithm employing these dependency models. The algorithm is embedded in an interactive visual environment for defining traffic scenarios, running simulations, and exploring their results. Our research demonstrates a principal possibility of performing traffic simulations on the basis of spatially abstracted transportation networks using dependency models derived from real traffic data. This possibility needs to be comprehensively investigated and tested in collaboration with transportation domain specialists.

  14. Time-domain numerical computations of electromagnetic fields in cylindrical co-ordinates using the transmission line matrix: evaluation of radiaion losses from a charge bunch passing through a pill-box resonator

    International Nuclear Information System (INIS)

    Sarma, J.; Robson, P.N.

    1979-01-01

    The two dimensional transmission line matrix (TLM) numerical method has been adapted to compute electromagnetic field distributions in cylindrical co-ordinates and it is applied to evaluate the radiation loss from a charge bunch passing through a 'pill-box' resonator. The computer program has been developed to calculate not only the total energy loss to the resonator but also that component of it which exists in the TM 010 mode. The numerically computed results are shown to agree very well with the analytically derived values as found in the literature which, therefore, established the degree of accuracy that is obtained with the TLM method. The particular features of computational simplicity, numerical stability and the inherently time-domain solutions produced by the TLM method are cited as additional, attractive reasons for using this numerical procedure in solving such problems. (Auth.)

  15. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  16. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping; Shi, Yifei; Jiang, Lijun; Bagci, Hakan

    2014-01-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer's shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  17. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping

    2014-05-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  18. GOClonto: an ontological clustering approach for conceptualizing PubMed abstracts.

    Science.gov (United States)

    Zheng, Hai-Tao; Borchert, Charles; Kim, Hong-Gee

    2010-02-01

    Concurrent with progress in biomedical sciences, an overwhelming of textual knowledge is accumulating in the biomedical literature. PubMed is the most comprehensive database collecting and managing biomedical literature. To help researchers easily understand collections of PubMed abstracts, numerous clustering methods have been proposed to group similar abstracts based on their shared features. However, most of these methods do not explore the semantic relationships among groupings of documents, which could help better illuminate the groupings of PubMed abstracts. To address this issue, we proposed an ontological clustering method called GOClonto for conceptualizing PubMed abstracts. GOClonto uses latent semantic analysis (LSA) and gene ontology (GO) to identify key gene-related concepts and their relationships as well as allocate PubMed abstracts based on these key gene-related concepts. Based on two PubMed abstract collections, the experimental results show that GOClonto is able to identify key gene-related concepts and outperforms the STC (suffix tree clustering) algorithm, the Lingo algorithm, the Fuzzy Ants algorithm, and the clustering based TRS (tolerance rough set) algorithm. Moreover, the two ontologies generated by GOClonto show significant informative conceptual structures.

  19. An EMOF-Compliant Abstract Syntax for Bigraphs

    Directory of Open Access Journals (Sweden)

    Timo Kehrer

    2016-12-01

    Full Text Available Bigraphs are an emerging modeling formalism for structures in ubiquitous computing. Besides an algebraic notation, which can be adopted to provide an algebraic syntax for bigraphs, the bigraphical theory introduces a visual concrete syntax which is intuitive and unambiguous at the same time; the standard visual notation can be customized and thus tailored to domain-specific requirements. However, in contrast to modeling standards based on the Meta-Object Facility (MOF and domain-specific languages typically used in model-driven engineering (MDE, the bigraphical theory lacks a precise definition of an abstract syntax for bigraphical modeling languages. As a consequence, available modeling and analysis tools use proprietary formats for representing bigraphs internally and persistently, which hampers the exchange of models across tool boundaries. Moreover, tools can be hardly integrated with standard MDE technologies in order to build sophisticated tool chains and modeling environments, as required for systematic engineering of large systems or fostering experimental work to evaluate the bigraphical theory in real-world applications. To overcome this situation, we propose an abstract syntax for bigraphs which is compliant to the Essential MOF (EMOF standard defined by the Object Management Group (OMG. We use typed graphs as a formal underpinning of EMOF-based models and present a canonical mapping which maps bigraphs to typed graphs in a natural way. We also discuss application-specific variation points in the graph-based representation of bigraphs. Following standard techniques from software product line engineering, we present a framework to customize the graph-based representation to support a variety of application scenarios.

  20. Calculation of nonzero-temperature Casimir forces in the time domain

    International Nuclear Information System (INIS)

    Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.

    2011-01-01

    We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.

  1. A Generalized FDM for solving the Poisson's Equation on 3D Irregular Domains

    Directory of Open Access Journals (Sweden)

    J. Izadian

    2014-01-01

    Full Text Available In this paper a new method for solving the Poisson's equation with Dirichlet conditions on irregular domains is presented. For this purpose a generalized finite differences method is applied for numerical differentiation on irregular meshes. Three examples on cylindrical and spherical domains are considered. The numerical results are compared with analytical solution. These results show the performance and efficiency of the proposed method.

  2. Abstract numeric relations and the visual structure of algebra.

    Science.gov (United States)

    Landy, David; Brookes, David; Smout, Ryan

    2014-09-01

    Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the use of notation without particular regard to the details of the physical structure of the equation itself (Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment of numbers and symbols in an equation) plays a role in the process of interpreting or constructing symbolic equations. We propose in particular that construction processes involve an alignment of notational structures across representation systems, biasing reasoners toward the selection of formal notations that maintain the visuospatial structure of source representations. For example, in the statement "There are 5 elephants for every 3 rhinoceroses," the spatial proximity of 5 and elephants and 3 and rhinoceroses will bias reasoners to write the incorrect expression 5E = 3R, because that expression maintains the spatial relationships encoded in the source representation. In 3 experiments, participants constructed equations with given structure, based on story problems with a variety of phrasings. We demonstrate how the notational alignment approach accounts naturally for a variety of previously reported phenomena in equation construction and successfully predicts error patterns that are not accounted for by prior explanations, such as the left to right transcription heuristic.

  3. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    International Nuclear Information System (INIS)

    Ma Ji; Fang Guang-You; Ji Yi-Cai

    2015-01-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)

  4. Time space domain decomposition methods for reactive transport - Application to CO2 geological storage

    International Nuclear Information System (INIS)

    Haeberlein, F.

    2011-01-01

    Reactive transport modelling is a basic tool to model chemical reactions and flow processes in porous media. A totally reduced multi-species reactive transport model including kinetic and equilibrium reactions is presented. A structured numerical formulation is developed and different numerical approaches are proposed. Domain decomposition methods offer the possibility to split large problems into smaller subproblems that can be treated in parallel. The class of Schwarz-type domain decomposition methods that have proved to be high-performing algorithms in many fields of applications is presented with a special emphasis on the geometrical viewpoint. Numerical issues for the realisation of geometrical domain decomposition methods and transmission conditions in the context of finite volumes are discussed. We propose and validate numerically a hybrid finite volume scheme for advection-diffusion processes that is particularly well-suited for the use in a domain decomposition context. Optimised Schwarz waveform relaxation methods are studied in detail on a theoretical and numerical level for a two species coupled reactive transport system with linear and nonlinear coupling terms. Well-posedness and convergence results are developed and the influence of the coupling term on the convergence behaviour of the Schwarz algorithm is studied. Finally, we apply a Schwarz waveform relaxation method on the presented multi-species reactive transport system. (author)

  5. A novel domain overlapping strategy for the multiscale coupling of CFD with 1D system codes with applications to transient flows

    International Nuclear Information System (INIS)

    Grunloh, T.P.; Manera, A.

    2016-01-01

    Highlights: • A novel domain overlapping coupling method is presented. • Method calculates closure coefficients for system codes based on CFD results. • Convergence and stability are compared with a domain decomposition implementation. • Proposed method is tested in several 1D cases. • Proposed method found to exhibit more favorable convergence and stability behavior. - Abstract: A novel multiscale coupling methodology based on a domain overlapping approach has been developed to couple a computational fluid dynamics code with a best-estimate thermal hydraulic code. The methodology has been implemented in the coupling infrastructure code Janus, developed at the University of Michigan, providing methods for the online data transfer between the commercial computational fluid dynamics code STAR-CCM+ and the US NRC best-estimate thermal hydraulic system code TRACE. Coupling between these two software packages is motivated by the desire to extend the range of applicability of TRACE to scenarios in which local momentum and energy transfer are important, such as three-dimensional mixing. These types of flows are relevant, for example, in the simulation of passive safety systems including large containment pools, or for flow mixing in the reactor pressure vessel downcomer of current light water reactors and integral small modular reactors. The intrafluid shear forces neglected by TRACE equations of motion are readily calculated from computational fluid dynamics solutions. Consequently, the coupling methods used in this study are built around correcting TRACE solutions with data from a corresponding STAR-CCM+ solution. Two coupling strategies are discussed in the paper: one based on a novel domain overlapping approach specifically designed for transient operation, and a second based on the well-known domain decomposition approach. In the present paper, we discuss the application of the two coupling methods to the simulation of open and closed loops in both steady

  6. Evaluation of Damping Using Time Domain OMA Techniques

    DEFF Research Database (Denmark)

    Bajric, Anela; Brincker, Rune; Georgakis, Christos T.

    2014-01-01

    . In this paper a comparison is made of the effectiveness of three existing OMA techniques in providing accurate damping estimates for varying loadings, levels of noise, number of added measurement channels and structural damping. The evaluated techniques are derived in the time domain and are namely the Ibrahim...... Time Domain (ITD), Eigenvalue Realization Algorithm (ERA) and the Polyreference Time Domain (PTD). The response of a two degree-of-freedom (2DOF) system is numerically established from specified modal parameters with well separated and closely spaced modes. Two types of response are considered, free...

  7. Multiple graph regularized protein domain ranking

    Directory of Open Access Journals (Sweden)

    Wang Jim

    2012-11-01

    Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  8. Methods and Techniques for the Design and Implementation of Domain-Specific Languages

    NARCIS (Netherlands)

    Hemel, Z.

    2012-01-01

    Domain-Specific Languages (DSLs) are programming language aimed at a particular problem domain, e.g. banking, database querying or website page lay-outs. Through the use of high-level concepts, a DSL raises the level of abstraction and expressive power of the programmer, and reduces the size of

  9. Resource Allocation Model for Modelling Abstract RTOS on Multiprocessor System-on-Chip

    DEFF Research Database (Denmark)

    Virk, Kashif Munir; Madsen, Jan

    2003-01-01

    Resource Allocation is an important problem in RTOS's, and has been an active area of research. Numerous approaches have been developed and many different techniques have been combined for a wide range of applications. In this paper, we address the problem of resource allocation in the context...... of modelling an abstract RTOS on multiprocessor SoC platforms. We discuss the implementation details of a simplified basic priority inheritance protocol for our abstract system model in SystemC....

  10. Three dimensional numerical modeling for ground penetrating radar using finite difference time domain (FDTD) method; Jikan ryoiki yugen sabunho ni yoru chika radar no sanjigen suchi modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y; Ashida, Y; Sassa, K [Kyoto University, Kyoto (Japan)

    1996-10-01

    3-D numerical modeling by FDTD method was studied for ground penetrating radar. Radar radiates electromagnetic wave, and determines the existence and distance of objects by reflection wave. Ground penetrating radar uses the above functions for underground surveys, however, its resolution and velocity analysis accuracy are problems. In particular, propagation characteristics of electromagnetic wave in media such as heterogeneous and anisotropic soil and rock are essential. The behavior of electromagnetic wave in the ground could be precisely reproduced by 3-D numerical modeling using FDTD method. FDTD method makes precise analysis in time domain and electric and magnetic fields possible by sequentially calculating the difference equation of Maxwell`s equation. Because of the high calculation efficiency of FDTD method, more precise complicated analysis can be expected by using the latest advanced computers. The numerical model and calculation example are illustrated for surface type electromagnetic pulse ground penetrating radar assuming the survey of steel pipes of 1m deep. 4 refs., 3 figs., 1 tab.

  11. Computer-Aided Numerical Inversion of Laplace Transform

    Directory of Open Access Journals (Sweden)

    Umesh Kumar

    2000-01-01

    Full Text Available This paper explores the technique for the computer aided numerical inversion of Laplace transform. The inversion technique is based on the properties of a family of three parameter exponential probability density functions. The only limitation in the technique is the word length of the computer being used. The Laplace transform has been used extensively in the frequency domain solution of linear, lumped time invariant networks but its application to the time domain has been limited, mainly because of the difficulty in finding the necessary poles and residues. The numerical inversion technique mentioned above does away with the poles and residues but uses precomputed numbers to find the time response. This technique is applicable to the solution of partially differentiable equations and certain classes of linear systems with time varying components.

  12. Cross domains Arabic named entity recognition system

    KAUST Repository

    Al-Ahmari, S. Saad

    2016-07-11

    Named Entity Recognition (NER) plays an important role in many Natural Language Processing (NLP) applications such as; Information Extraction (IE), Question Answering (QA), Text Clustering, Text Summarization and Word Sense Disambiguation. This paper presents the development and implementation of domain independent system to recognize three types of Arabic named entities. The system works based on a set of domain independent grammar-rules along with Arabic part of speech tagger in addition to gazetteers and lists of trigger words. The experimental results shown, that the system performed as good as other systems with better results in some cases of cross-domains corpora. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  13. Cross domains Arabic named entity recognition system

    KAUST Repository

    Al-Ahmari, S. Saad; Abdullatif Al-Johar, B.

    2016-01-01

    Named Entity Recognition (NER) plays an important role in many Natural Language Processing (NLP) applications such as; Information Extraction (IE), Question Answering (QA), Text Clustering, Text Summarization and Word Sense Disambiguation. This paper presents the development and implementation of domain independent system to recognize three types of Arabic named entities. The system works based on a set of domain independent grammar-rules along with Arabic part of speech tagger in addition to gazetteers and lists of trigger words. The experimental results shown, that the system performed as good as other systems with better results in some cases of cross-domains corpora. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  14. Image-domain full waveform inversion

    KAUST Repository

    Zhang, Sanzong

    2013-08-20

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in velocity model. To reduce this nonlinearity, we define the image-domain objective function to minimize the difference of the suboffset-domain common image gathers (CIGs) obtained by migrating the observed data and the calculated data. The derivation shows that the gradient of this new objective function is the combination of the gradient of the conventional FWI and the image-domain differential semblance optimization (DSO). Compared to the conventional FWI, the imagedomain FWI is immune to cycle skipping problems by smearing the nonzero suboffset images along wavepath. It also can avoid the edge effects and the gradient artifacts that are inherent in DSO due to the falsely over-penalized focused images. This is achieved by subtracting the focused image associated with the calculated data from the unfocused image associated with the observed data in the image-domain misfit function. The numerical results of the Marmousi model show that image-domain FWI is less sensitive the initial model than the conventional FWI. © 2013 SEG.

  15. Image-domain full waveform inversion

    KAUST Repository

    Zhang, Sanzong; Schuster, Gerard T.

    2013-01-01

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in velocity model. To reduce this nonlinearity, we define the image-domain objective function to minimize the difference of the suboffset-domain common image gathers (CIGs) obtained by migrating the observed data and the calculated data. The derivation shows that the gradient of this new objective function is the combination of the gradient of the conventional FWI and the image-domain differential semblance optimization (DSO). Compared to the conventional FWI, the imagedomain FWI is immune to cycle skipping problems by smearing the nonzero suboffset images along wavepath. It also can avoid the edge effects and the gradient artifacts that are inherent in DSO due to the falsely over-penalized focused images. This is achieved by subtracting the focused image associated with the calculated data from the unfocused image associated with the observed data in the image-domain misfit function. The numerical results of the Marmousi model show that image-domain FWI is less sensitive the initial model than the conventional FWI. © 2013 SEG.

  16. Abstraction and Modularization in the BETA Programming Language

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann

    2000-01-01

    abstraction mechanisms and lead to a number of new possibilities. Patterns and their instances are intended for modeling concepts and phenomena in the application domain and provide the logical structure of a given system. Modularization is viewed as a means for describing the physical structure of a program....... Modules are units of program text that may be edited, stored in libraries, exist in different variants, be separately compiled, etc. Modularization is provided by a language-independent mechanism based on the context-free grammar of the language. In principle, any correct sequence of terminal...

  17. Time Domain Modeling and Simulation of Nonlinear Slender Viscoelastic Beams Associating Cosserat Theory and a Fractional Derivative Model

    Directory of Open Access Journals (Sweden)

    Adailton S. Borges

    Full Text Available Abstract A broad class of engineering systems can be satisfactory modeled under the assumptions of small deformations and linear material properties. However, many mechanical systems used in modern applications, like structural elements typical of aerospace and petroleum industries, have been characterized by increased slenderness and high static and dynamic loads. In such situations, it becomes indispensable to consider the nonlinear geometric effects and/or material nonlinear behavior. At the same time, in many cases involving dynamic loads, there comes the need for attenuation of vibration levels. In this context, this paper describes the development and validation of numerical models of viscoelastic slender beam-like structures undergoing large displacements. The numerical approach is based on the combination of the nonlinear Cosserat beam theory and a viscoelastic model based on Fractional Derivatives. Such combination enables to derive nonlinear equations of motion that, upon finite element discretization, can be used for predicting the dynamic behavior of the structure in the time domain, accounting for geometric nonlinearity and viscoelastic damping. The modeling methodology is illustrated and validated by numerical simulations, the results of which are compared to others available in the literature.

  18. Insights into numerical cognition: considering eye-fixations in number processing and arithmetic.

    Science.gov (United States)

    Mock, J; Huber, S; Klein, E; Moeller, K

    2016-05-01

    Considering eye-fixation behavior is standard in reading research to investigate underlying cognitive processes. However, in numerical cognition research eye-tracking is used less often and less systematically. Nevertheless, we identified over 40 studies on this topic from the last 40 years with an increase of eye-tracking studies on numerical cognition during the last decade. Here, we review and discuss these empirical studies to evaluate the added value of eye-tracking for the investigation of number processing. Our literature review revealed that the way eye-fixation behavior is considered in numerical cognition research ranges from investigating basic perceptual aspects of processing non-symbolic and symbolic numbers, over assessing the common representational space of numbers and space, to evaluating the influence of characteristics of the base-10 place-value structure of Arabic numbers and executive control on number processing. Apart from basic results such as reading times of numbers increasing with their magnitude, studies revealed that number processing can influence domain-general processes such as attention shifting-but also the other way round. Domain-general processes such as cognitive control were found to affect number processing. In summary, eye-fixation behavior allows for new insights into both domain-specific and domain-general processes involved in number processing. Based thereon, a processing model of the temporal dynamics of numerical cognition is postulated, which distinguishes an early stage of stimulus-driven bottom-up processing from later more top-down controlled stages. Furthermore, perspectives for eye-tracking research in numerical cognition are discussed to emphasize the potential of this methodology for advancing our understanding of numerical cognition.

  19. Solving the Schroedinger equation using the finite difference time domain method

    International Nuclear Information System (INIS)

    Sudiarta, I Wayan; Geldart, D J Wallace

    2007-01-01

    In this paper, we solve the Schroedinger equation using the finite difference time domain (FDTD) method to determine energies and eigenfunctions. In order to apply the FDTD method, the Schroedinger equation is first transformed into a diffusion equation by the imaginary time transformation. The resulting time-domain diffusion equation is then solved numerically by the FDTD method. The theory and an algorithm are provided for the procedure. Numerical results are given for illustrative examples in one, two and three dimensions. It is shown that the FDTD method accurately determines eigenfunctions and energies of these systems

  20. Feedback options in nonlinear numerical finance

    DEFF Research Database (Denmark)

    Hugger, Jens; Mashayekhi, Sima

    2012-01-01

    on an infinite slab is presented and boundary values on a bounded domain are derived. This bounded, nonlinear, 2 dimensional initial-boundary value problem is solved numerically using a number of standard finite difference schemes and the methods incorporated in the symbolic software Maple™....

  1. Professional mathematicians differ from controls in their spatial-numerical associations.

    Science.gov (United States)

    Cipora, Krzysztof; Hohol, Mateusz; Nuerk, Hans-Christoph; Willmes, Klaus; Brożek, Bartosz; Kucharzyk, Bartłomiej; Nęcka, Edward

    2016-07-01

    While mathematically impaired individuals have been shown to have deficits in all kinds of basic numerical representations, among them spatial-numerical associations, little is known about individuals with exceptionally high math expertise. They might have a more abstract magnitude representation or more flexible spatial associations, so that no automatic left/small and right/large spatial-numerical association is elicited. To pursue this question, we examined the Spatial Numerical Association of Response Codes (SNARC) effect in professional mathematicians which was compared to two control groups: Professionals who use advanced math in their work but are not mathematicians (mostly engineers), and matched controls. Contrarily to both control groups, Mathematicians did not reveal a SNARC effect. The group differences could not be accounted for by differences in mean response speed, response variance or intelligence or a general tendency not to show spatial-numerical associations. We propose that professional mathematicians possess more abstract and/or spatially very flexible numerical representations and therefore do not exhibit or do have a largely reduced default left-to-right spatial-numerical orientation as indexed by the SNARC effect, but we also discuss other possible accounts. We argue that this comparison with professional mathematicians also tells us about the nature of spatial-numerical associations in persons with much less mathematical expertise or knowledge.

  2. Differences between time domain and Fourier domain optical coherence tomography in imaging tissues.

    Science.gov (United States)

    Gao, W; Wu, X

    2017-11-01

    It has been numerously demonstrated that both time domain and Fourier domain optical coherence tomography (OCT) can generate high-resolution depth-resolved images of living tissues and cells. In this work, we compare the common points and differences between two methods when the continuous and random properties of live tissue are taken into account. It is found that when relationships that exist between the scattered light and tissue structures are taken into account, spectral interference measurements in Fourier domain OCT (FDOCT) is more advantageous than interference fringe envelope measurements in time domain OCT (TDOCT) in the cases where continuous property of tissue is taken into account. It is also demonstrated that when random property of tissue is taken into account FDOCT measures the Fourier transform of the spatial correlation function of the refractive index and speckle phenomena will limit the effective limiting imaging resolution in both TDOCT and FDOCT. Finally, the effective limiting resolution of both TDOCT and FDOCT are given which can be used to estimate the effective limiting resolution in various practical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  3. An acceleration technique for 2D MOC based on Krylov subspace and domain decomposition methods

    International Nuclear Information System (INIS)

    Zhang Hongbo; Wu Hongchun; Cao Liangzhi

    2011-01-01

    Highlights: → We convert MOC into linear system solved by GMRES as an acceleration method. → We use domain decomposition method to overcome the inefficiency on large matrices. → Parallel technology is applied and a matched ray tracing system is developed. → Results show good efficiency even in large-scale and strong scattering problems. → The emphasis is that the technique is geometry-flexible. - Abstract: The method of characteristics (MOC) has great geometrical flexibility but poor computational efficiency in neutron transport calculations. The generalized minimal residual (GMRES) method, a type of Krylov subspace method, is utilized to accelerate a 2D generalized geometry characteristics solver AutoMOC. In this technique, a form of linear algebraic equation system for angular flux moments and boundary fluxes is derived to replace the conventional characteristics sweep (i.e. inner iteration) scheme, and then the GMRES method is implemented as an efficient linear system solver. This acceleration method is proved to be reliable in theory and simple for implementation. Furthermore, as introducing no restriction in geometry treatment, it is suitable for acceleration of an arbitrary geometry MOC solver. However, it is observed that the speedup decreases when the matrix becomes larger. The spatial domain decomposition method and multiprocessing parallel technology are then employed to overcome the problem. The calculation domain is partitioned into several sub-domains. For each of them, a smaller matrix is established and solved by GMRES; and the adjacent sub-domains are coupled by 'inner-edges', where the trajectory mismatches are considered adequately. Moreover, a matched ray tracing system is developed on the basis of AutoCAD, which allows a user to define the sub-domains on demand conveniently. Numerical results demonstrate that the acceleration techniques are efficient without loss of accuracy, even in the case of large-scale and strong scattering

  4. Numerical solution of singularity-perturbed two-point boundary-value problems

    International Nuclear Information System (INIS)

    Masenge, R.W.P.

    1993-07-01

    Physical processes which involve transportation of slowly diffusing substances in a fast-flowing medium are mathematically modelled by so-called singularly-perturbed second order convection diffusion differential equations in which the convective first order terms dominate over the diffusive second order terms. In general, analytical solutions of such equations are characterized by having sharp solution fronts in some sections of the interior and/or the boundary of the domain of solution. The presence of these (usually very narrow) layer regions in the solution domain makes the task of globally approximating such solutions by standard numerical techniques very difficult. In this expository paper we use a simple one-dimensional prototype problem as a vehicle for analysing the nature of the numerical approximation difficulties involved. In the sequel we present, without detailed derivation, two practical numerical schemes which succeed in varying degrees in numerically resolving the layer of the solution to the prototype problem. (author). 3 refs, 1 fig., 1 tab

  5. Using context to improve protein domain identification

    Directory of Open Access Journals (Sweden)

    Llinás Manuel

    2011-03-01

    Full Text Available Abstract Background Identifying domains in protein sequences is an important step in protein structural and functional annotation. Existing domain recognition methods typically evaluate each domain prediction independently of the rest. However, the majority of proteins are multidomain, and pairwise domain co-occurrences are highly specific and non-transitive. Results Here, we demonstrate how to exploit domain co-occurrence to boost weak domain predictions that appear in previously observed combinations, while penalizing higher confidence domains if such combinations have never been observed. Our framework, Domain Prediction Using Context (dPUC, incorporates pairwise "context" scores between domains, along with traditional domain scores and thresholds, and improves domain prediction across a variety of organisms from bacteria to protozoa and metazoa. Among the genomes we tested, dPUC is most successful at improving predictions for the poorly-annotated malaria parasite Plasmodium falciparum, for which over 38% of the genome is currently unannotated. Our approach enables high-confidence annotations in this organism and the identification of orthologs to many core machinery proteins conserved in all eukaryotes, including those involved in ribosomal assembly and other RNA processing events, which surprisingly had not been previously known. Conclusions Overall, our results demonstrate that this new context-based approach will provide significant improvements in domain and function prediction, especially for poorly understood genomes for which the need for additional annotations is greatest. Source code for the algorithm is available under a GPL open source license at http://compbio.cs.princeton.edu/dpuc/. Pre-computed results for our test organisms and a web server are also available at that location.

  6. Convergence of Wachspress coordinates: from polygons to curved domains

    KAUST Repository

    Kosinka, Jiří

    2014-08-08

    Given a smooth, strictly convex planar domain, we investigate point-wise convergence of the sequence of Wachspress coordinates defined over finer and finer inscribed polygonal approximations of the domain. Based on a relation between the discrete Wachspress case and the limit smooth case given by the Wachspress kernel defined by Warren et al., we show that the corresponding sequences of Wachspress interpolants and mappings converge as 𝓞(h2) for a sampling step size h of the boundary curve of the domain as h → 0. Several examples are shown to numerically validate the results and to visualise the behaviour of discrete interpolants and mappings as they converge to their smooth counterparts. Empirically, the same convergence order is observed also for mean value coordinates. Moreover, our numerical tests suggest that the convergence of interpolants and mappings is uniform both in the Wachspress and mean value cases. © 2014 Springer Science+Business Media New York.

  7. Convergence of Wachspress coordinates: from polygons to curved domains

    KAUST Repository

    Kosinka, Jiří ; Barton, Michael

    2014-01-01

    Given a smooth, strictly convex planar domain, we investigate point-wise convergence of the sequence of Wachspress coordinates defined over finer and finer inscribed polygonal approximations of the domain. Based on a relation between the discrete Wachspress case and the limit smooth case given by the Wachspress kernel defined by Warren et al., we show that the corresponding sequences of Wachspress interpolants and mappings converge as 𝓞(h2) for a sampling step size h of the boundary curve of the domain as h → 0. Several examples are shown to numerically validate the results and to visualise the behaviour of discrete interpolants and mappings as they converge to their smooth counterparts. Empirically, the same convergence order is observed also for mean value coordinates. Moreover, our numerical tests suggest that the convergence of interpolants and mappings is uniform both in the Wachspress and mean value cases. © 2014 Springer Science+Business Media New York.

  8. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    Directory of Open Access Journals (Sweden)

    Serrano Luis

    2008-10-01

    Full Text Available Abstract Background Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism that directly relates protein structural dynamics to information exchange between functional sites is still lacking. Results Here we introduce a method to analyze protein dynamics within the framework of information theory and show that signal transduction within proteins can be considered as a particular instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located in the phosphopeptide and specificity binding sites and a number of residues at the other side of the domain near the linkers that connect the SH2 domain to the SH3 and kinase domains. We find that for this particular domain, communication is affected by a series of contiguous residues that connect distal sites by crossing the core of the SH2 domain. Conclusion As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road, next to the existing attempts at sequence level, to predict long-range interactions within protein structures.

  9. Numerical study of particle filtration in an induction crucible furnace

    International Nuclear Information System (INIS)

    Asad, Amjad; Kratzsch, Christoph; Dudczig, Steffen; Aneziris, Christos G.; Schwarze, Rüdiger

    2016-01-01

    Highlights: • Removing particles from a melt in an induction furnace by using a filter is introduced. • The effect of filter and its permeability on the melt flow is shown. • The impact of filter permeability and particle diameter on filter efficiency is studied. • The filter efficiency depends on filter position and number of the used filter. - Abstract: The present paper deals with a numerical investigation of the turbulent melt flow driven by the electromagnetic force in an induction furnace. The main scope of the paper is to present a new principle to remove non-metallic particles from steel melt in an induction furnace by immersing a porous filter in the melt. The magnetic field acting on the melt is calculated by using the open source software MaxFEM"®, while the turbulent flow is simulated by means of the open source computational fluid dynamics library OpenFOAM"®. The validation of the numerical model is accomplished by using experimental results for the flow without the immersed filter. Here it is shown that the time-averaged flow, obtained numerically is in a good quantitive agreement with the experimental data. Then, the validated numerical model is employed to simulate the melt flow with the immersed filter in the induction furnace of a new type of real steel casting simulator investigated at Technische Universität Bergakademie Freiberg. The considerable effect of the filter on the flow pattern is indicated in the present work. Moreover, it is shown that the filter permeability and its position have a significant influence on the melt flow in the induction furnace. Additionally, particles are injected in the flow domain and tracked by using Lagrangian framework. In this case, the efficiency of the used filter is determined in the present investigation depending on its permeability, its position and the particles diameter.

  10. Preface of "The Second Symposium on Border Zones Between Experimental and Numerical Application Including Solution Approaches By Extensions of Standard Numerical Methods"

    Science.gov (United States)

    Ortleb, Sigrun; Seidel, Christian

    2017-07-01

    In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.

  11. Stable multi-domain spectral penalty methods for fractional partial differential equations

    Science.gov (United States)

    Xu, Qinwu; Hesthaven, Jan S.

    2014-01-01

    We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.

  12. Decaying quasi-two-dimensional viscous flow on a square domain

    DEFF Research Database (Denmark)

    Konijnenberg, J.A. van de; Flor, J.B.; Heijst, G.J.F. van

    1998-01-01

    A comparison is made between experimental, numerical and analytical results for the two-dimensional flow on a square domain. The experiments concern the flow at the interface of a two-layer stratified fluid, evoked by either stirring the fluid with a rake, or by injecting additional fluid...... at the interface. Two numerical simulations were performed with initial conditions and boundary conditions that correspond approximately with those met in the experiments. The analytical results concern the calculation of the lowest modes of a decaying Stokes flow on a square domain. At late times...... relationship between vorticity and stream function in the experiments and the simulations. (C) 1998 American Institute of Physics....

  13. Scalable Domain Decomposed Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  14. Applying a text mining framework to the extraction of numerical parameters from scientific literature in the biotechnology domain

    Directory of Open Access Journals (Sweden)

    André SANTOS

    2012-07-01

    Full Text Available Scientific publications are the main vehicle to disseminate information in the field of biotechnology for wastewater treatment. Indeed, the new research paradigms and the application of high-throughput technologies have increased the rate of publication considerably. The problem is that manual curation becomes harder, prone-to-errors and time-consuming, leading to a probable loss of information and inefficient knowledge acquisition. As a result, research outputs are hardly reaching engineers, hampering the calibration of mathematical models used to optimize the stability and performance of biotechnological systems. In this context, we have developed a data curation workflow, based on text mining techniques, to extract numerical parameters from scientific literature, and applied it to the biotechnology domain. A workflow was built to process wastewater-related articles with the main goal of identifying physico-chemical parameters mentioned in the text. This work describes the implementation of the workflow, identifies achievements and current limitations in the overall process, and presents the results obtained for a corpus of 50 full-text documents.

  15. Applying a text mining framework to the extraction of numerical parameters from scientific literature in the biotechnology domain

    Directory of Open Access Journals (Sweden)

    Anália LOURENÇO

    2013-07-01

    Full Text Available Scientific publications are the main vehicle to disseminate information in the field of biotechnology for wastewater treatment. Indeed, the new research paradigms and the application of high-throughput technologies have increased the rate of publication considerably. The problem is that manual curation becomes harder, prone-to-errors and time-consuming, leading to a probable loss of information and inefficient knowledge acquisition. As a result, research outputs are hardly reaching engineers, hampering the calibration of mathematical models used to optimize the stability and performance of biotechnological systems. In this context, we have developed a data curation workflow, based on text mining techniques, to extract numerical parameters from scientific literature, and applied it to the biotechnology domain. A workflow was built to process wastewater-related articles with the main goal of identifying physico-chemical parameters mentioned in the text. This work describes the implementation of the workflow, identifies achievements and current limitations in the overall process, and presents the results obtained for a corpus of 50 full-text documents.

  16. Concept of Triangle: Examples of Mathematical Abstraction in Two Different Contexts

    Directory of Open Access Journals (Sweden)

    Farida Nurhasanah

    2017-02-01

    Full Text Available In attempt to explain how students learning geometry in concept of triangle, this study explore the learning process of students and the process of solving geometry problems in the topic of triangle.  As known as one of the domain in school of mathematics, geometry has abstract notions to be learnt so that all those notions cannot be just transferred into students’ mind like a bunch of information that should be memorized. Students need to construct those concepts during their learning process. This process of knowledge construction can be considered as an abstraction process. This study aimed to qualitatively compare students’ abstraction process who learn topic of triangle in conventional method of teaching and in van Hiele model of teaching aided by Geometers’ sketchpad. Subjects of this study were junir high school students in grade 7. Based on the aims of this study, this is a qualitative study with grounded theory design. Data were collected through classroom observation, test, and task-based interview. Results of the study show that theoretical abstraction processes tend to dominate classrom with conventional method of teaching while classroom with van Hiele model of teaching aided by Geometers’ sketchpad accommodated empirical abstraction process of the students

  17. Numerical modeling of two-phase binary fluid mixing using mixed finite elements

    KAUST Repository

    Sun, Shuyu

    2012-07-27

    Diffusion coefficients of dense gases in liquids can be measured by considering two-phase binary nonequilibrium fluid mixing in a closed cell with a fixed volume. This process is based on convection and diffusion in each phase. Numerical simulation of the mixing often requires accurate algorithms. In this paper, we design two efficient numerical methods for simulating the mixing of two-phase binary fluids in one-dimensional, highly permeable media. Mathematical model for isothermal compositional two-phase flow in porous media is established based on Darcy\\'s law, material balance, local thermodynamic equilibrium for the phases, and diffusion across the phases. The time-lag and operator-splitting techniques are used to decompose each convection-diffusion equation into two steps: diffusion step and convection step. The Mixed finite element (MFE) method is used for diffusion equation because it can achieve a high-order and stable approximation of both the scalar variable and the diffusive fluxes across grid-cell interfaces. We employ the characteristic finite element method with moving mesh to track the liquid-gas interface. Based on the above schemes, we propose two methods: single-domain and two-domain methods. The main difference between two methods is that the two-domain method utilizes the assumption of sharp interface between two fluid phases, while the single-domain method allows fractional saturation level. Two-domain method treats the gas domain and the liquid domain separately. Because liquid-gas interface moves with time, the two-domain method needs work with a moving mesh. On the other hand, the single-domain method allows the use of a fixed mesh. We derive the formulas to compute the diffusive flux for MFE in both methods. The single-domain method is extended to multiple dimensions. Numerical results indicate that both methods can accurately describe the evolution of the pressure and liquid level. © 2012 Springer Science+Business Media B.V.

  18. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    Science.gov (United States)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

  19. Abstract interpretation over non-deterministic finite tree automate for set-based analysis of logic programs

    DEFF Research Database (Denmark)

    Gallagher, John Patrick; Puebla, G.

    2002-01-01

    , and describe its implementation. Both goal-dependent and goal-independent analysis are considered. Variations on the abstract domains operations are introduced, and we discuss the associated tradeoffs of precision and complexity. The experimental results indicate that this approach is a practical way...

  20. DC-SIGN neck domain is a pH-sensor controlling oligomerization: SAXS and hydrodynamic studies of extracellular domain.

    Science.gov (United States)

    Tabarani, Georges; Thépaut, Michel; Stroebel, David; Ebel, Christine; Vivès, Corinne; Vachette, Patrice; Durand, Dominique; Fieschi, Franck

    2009-08-07

    DC-SIGN is a C-type lectin receptor of dendritic cells and is involved in the early stages of numerous infectious diseases. DC-SIGN is organized into a tetramer enabling multivalent interaction with pathogens. Once formed, the DC-SIGN-pathogen complex can be internalized into compartments of increasing acidity. We have studied the pH dependence of the oligomerization state and conformation of the entire extracellular domain and neck region. We present evidence for equilibrium between the monomeric and tetrameric states of the extracellular domain, which exhibits a marked dependence with respect to both pH and ionic strength. Using solution x-ray scattering we have obtained a molecular envelope of the extracellular domain in which a model has been built. Our results highlight the central role of the neck domain in the pH-sensitive control of the oligomerization state, in the extended conformation of the protein, and in carbohydrate recognition domain organization and presentation. This work opens new insight into the molecular mechanism of ligand release and points to new avenues to block the first step of this important infection pathway.

  1. Hybrid Numerical-Analytical Scheme for Calculating Elastic Wave Diffraction in Locally Inhomogeneous Waveguides

    Science.gov (United States)

    Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.

    2018-01-01

    Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.

  2. Protein domain organisation: adding order

    Directory of Open Access Journals (Sweden)

    Kummerfeld Sarah K

    2009-01-01

    Full Text Available Abstract Background Domains are the building blocks of proteins. During evolution, they have been duplicated, fused and recombined, to produce proteins with novel structures and functions. Structural and genome-scale studies have shown that pairs or groups of domains observed together in a protein are almost always found in only one N to C terminal order and are the result of a single recombination event that has been propagated by duplication of the multi-domain unit. Previous studies of domain organisation have used graph theory to represent the co-occurrence of domains within proteins. We build on this approach by adding directionality to the graphs and connecting nodes based on their relative order in the protein. Most of the time, the linear order of domains is conserved. However, using the directed graph representation we have identified non-linear features of domain organization that are over-represented in genomes. Recognising these patterns and unravelling how they have arisen may allow us to understand the functional relationships between domains and understand how the protein repertoire has evolved. Results We identify groups of domains that are not linearly conserved, but instead have been shuffled during evolution so that they occur in multiple different orders. We consider 192 genomes across all three kingdoms of life and use domain and protein annotation to understand their functional significance. To identify these features and assess their statistical significance, we represent the linear order of domains in proteins as a directed graph and apply graph theoretical methods. We describe two higher-order patterns of domain organisation: clusters and bi-directionally associated domain pairs and explore their functional importance and phylogenetic conservation. Conclusion Taking into account the order of domains, we have derived a novel picture of global protein organization. We found that all genomes have a higher than expected

  3. Dressed Domain Walls and holography

    International Nuclear Information System (INIS)

    Grisa, Luca; Pujolas, Oriol

    2008-01-01

    The cutoff version of the AdS/CFT correspondence states that the Randall Sundrum scenario is dual to a Conformal Field Theory (CFT) coupled to gravity in four dimensions. The gravitational field produced by relativistic Domain Walls can be exactly solved in both sides of the correspondence, and thus provides one further check of it. We show in the two sides that for the most symmetric case, the wall motion does not lead to particle production of the CFT fields. Still, there are nontrivial effects. Due to the trace anomaly, the CFT effectively renormalizes the Domain Wall tension. On the five dimensional side, the wall is a codimension 2 brane localized on the Randall-Sundrum brane, which pulls the wall in a uniform acceleration. This is perceived from the brane as a Domain Wall with a tension slightly larger than its bare value. In both cases, the deviation from General Relativity appears at nonlinear level in the source, and the leading corrections match to the numerical factors.

  4. Numerical models for differential problems

    CERN Document Server

    Quarteroni, Alfio

    2017-01-01

    In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, an...

  5. Abstract interfaces for data analysis - component architecture for data analysis tools

    International Nuclear Information System (INIS)

    Barrand, G.; Binko, P.; Doenszelmann, M.; Pfeiffer, A.; Johnson, A.

    2001-01-01

    The fast turnover of software technologies, in particular in the domain of interactivity (covering user interface and visualisation), makes it difficult for a small group of people to produce complete and polished software-tools before the underlying technologies make them obsolete. At the HepVis'99 workshop, a working group has been formed to improve the production of software tools for data analysis in HENP. Beside promoting a distributed development organisation, one goal of the group is to systematically design a set of abstract interfaces based on using modern OO analysis and OO design techniques. An initial domain analysis has come up with several categories (components) found in typical data analysis tools: Histograms, Ntuples, Functions, Vectors, Fitter, Plotter, analyzer and Controller. Special emphasis was put on reducing the couplings between the categories to a minimum, thus optimising re-use and maintainability of any component individually. The interfaces have been defined in Java and C++ and implementations exist in the form of libraries and tools using C++ (Anaphe/Lizard, OpenScientist) and Java (Java Analysis Studio). A special implementation aims at accessing the Java libraries (through their Abstract Interfaces) from C++. The authors give an overview of the architecture and design of the various components for data analysis as discussed in AIDA

  6. A thermodynamic definition of protein domains.

    Science.gov (United States)

    Porter, Lauren L; Rose, George D

    2012-06-12

    Protein domains are conspicuous structural units in globular proteins, and their identification has been a topic of intense biochemical interest dating back to the earliest crystal structures. Numerous disparate domain identification algorithms have been proposed, all involving some combination of visual intuition and/or structure-based decomposition. Instead, we present a rigorous, thermodynamically-based approach that redefines domains as cooperative chain segments. In greater detail, most small proteins fold with high cooperativity, meaning that the equilibrium population is dominated by completely folded and completely unfolded molecules, with a negligible subpopulation of partially folded intermediates. Here, we redefine structural domains in thermodynamic terms as cooperative folding units, based on m-values, which measure the cooperativity of a protein or its substructures. In our analysis, a domain is equated to a contiguous segment of the folded protein whose m-value is largely unaffected when that segment is excised from its parent structure. Defined in this way, a domain is a self-contained cooperative unit; i.e., its cooperativity depends primarily upon intrasegment interactions, not intersegment interactions. Implementing this concept computationally, the domains in a large representative set of proteins were identified; all exhibit consistency with experimental findings. Specifically, our domain divisions correspond to the experimentally determined equilibrium folding intermediates in a set of nine proteins. The approach was also proofed against a representative set of 71 additional proteins, again with confirmatory results. Our reframed interpretation of a protein domain transforms an indeterminate structural phenomenon into a quantifiable molecular property grounded in solution thermodynamics.

  7. Collage-type approach to inverse problems for elliptic PDEs on perforated domains

    Directory of Open Access Journals (Sweden)

    Herb E. Kunze

    2015-02-01

    Full Text Available We present a collage-based method for solving inverse problems for elliptic partial differential equations on a perforated domain. The main results of this paper establish a link between the solution of an inverse problem on a perforated domain and the solution of the same model on a domain with no holes. The numerical examples at the end of the paper show the goodness of this approach.

  8. Evolutionary dynamics of protein domain architecture in plants

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Cheng

    2012-01-01

    Full Text Available Abstract Background Protein domains are the structural, functional and evolutionary units of the protein. Protein domain architectures are the linear arrangements of domain(s in individual proteins. Although the evolutionary history of protein domain architecture has been extensively studied in microorganisms, the evolutionary dynamics of domain architecture in the plant kingdom remains largely undefined. To address this question, we analyzed the lineage-based protein domain architecture content in 14 completed green plant genomes. Results Our analyses show that all 14 plant genomes maintain similar distributions of species-specific, single-domain, and multi-domain architectures. Approximately 65% of plant domain architectures are universally present in all plant lineages, while the remaining architectures are lineage-specific. Clear examples are seen of both the loss and gain of specific protein architectures in higher plants. There has been a dynamic, lineage-wise expansion of domain architectures during plant evolution. The data suggest that this expansion can be largely explained by changes in nuclear ploidy resulting from rounds of whole genome duplications. Indeed, there has been a decrease in the number of unique domain architectures when the genomes were normalized into a presumed ancestral genome that has not undergone whole genome duplications. Conclusions Our data show the conservation of universal domain architectures in all available plant genomes, indicating the presence of an evolutionarily conserved, core set of protein components. However, the occurrence of lineage-specific domain architectures indicates that domain architecture diversity has been maintained beyond these core components in plant genomes. Although several features of genome-wide domain architecture content are conserved in plants, the data clearly demonstrate lineage-wise, progressive changes and expansions of individual protein domain architectures, reinforcing

  9. A discontinuous galerkin time domain-boundary integral method for analyzing transient electromagnetic scattering

    KAUST Repository

    Li, Ping

    2014-07-01

    This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.

  10. Structural insights into the regulation and the recognition of histone marks by the SET domain of NSD1

    International Nuclear Information System (INIS)

    Morishita, Masayo; Di Luccio, Eric

    2011-01-01

    Highlights: → NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1 are histone methyltransferases linked to numerous cancers. → Little is known about the NSD pathways and HMTase inhibitors are sorely needed in the epigenetic therapy of cancers. → We investigate the regulation and the recognition of histone marks by the SET domain of NSD1. → A unique and key mechanism is driven by a loop at the interface of the SET and postSET region. → Implications for developing specific and selective HMTase inhibitors are presented. -- Abstract: The development of epigenetic therapies fuels cancer hope. DNA-methylation inhibitors, histone-deacetylase and histone-methyltransferase (HMTase) inhibitors are being developed as the utilization of epigenetic targets is emerging as an effective and valuable approach to chemotherapy as well as chemoprevention of cancer. The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1 that are critical in maintaining the chromatin integrity. A growing number of studies have reported alterations or amplifications of NSD1, NSD2, or NSD3 in numerous carcinogenic events. Reducing NSDs activity through specific lysine-HMTase inhibitors appears promising to help suppressing cancer growth. However, little is known about the NSD pathways and our understanding of the histone lysine-HMTase mechanism is partial. To shed some light on both the recognition and the regulation of epigenetic marks by the SET domain of the NSD family, we investigate the structural mechanisms of the docking of the histone-H4 tail on the SET domain of NSD1. Our finding exposes a key regulatory and recognition mechanism driven by the flexibility of a loop at the interface of the SET and postSET region. Finally, we prospect the special value of this regulatory region for developing specific and selective NSD inhibitors for the epigenetic therapy of cancers.

  11. Combining Domain-driven Design and Mashups for Service Development

    Science.gov (United States)

    Iglesias, Carlos A.; Fernández-Villamor, José Ignacio; Del Pozo, David; Garulli, Luca; García, Boni

    This chapter presents the Romulus project approach to Service Development using Java-based web technologies. Romulus aims at improving productivity of service development by providing a tool-supported model to conceive Java-based web applications. This model follows a Domain Driven Design approach, which states that the primary focus of software projects should be the core domain and domain logic. Romulus proposes a tool-supported model, Roma Metaframework, that provides an abstraction layer on top of existing web frameworks and automates the application generation from the domain model. This metaframework follows an object centric approach, and complements Domain Driven Design by identifying the most common cross-cutting concerns (security, service, view, ...) of web applications. The metaframework uses annotations for enriching the domain model with these cross-cutting concerns, so-called aspects. In addition, the chapter presents the usage of mashup technology in the metaframework for service composition, using the web mashup editor MyCocktail. This approach is applied to a scenario of the Mobile Phone Service Portability case study for the development of a new service.

  12. Is there any need for domain-dependent control information? A reply

    Energy Technology Data Exchange (ETDEWEB)

    Minton, S. [USC Information Sciences Inst., Marina del Rey, CA (United States)

    1996-12-31

    In this paper, we consider the role that domain-dependent control knowledge plays in problem solving systems. Ginsberg and Geddis have claimed that domain-dependent control information has no place in declarative systems; instead, they say, such information should be derived from declarative facts about the domain plus domain-independent principles. We dispute their conclusion, arguing that it is impractical to generate control knowledge solely on the basis of logical derivations. We propose that simplifying abstractions are crucial for deriving control knowledge, and, as a result, empirical utility evaluation of the resulting rules will frequently be necessary to validate the utility of derived control knowledge. We illustrate our arguments with examples from two implemented systems.

  13. Grounding abstractness: Abstract concepts and the activation of the mouth

    Directory of Open Access Journals (Sweden)

    Anna M Borghi

    2016-10-01

    Full Text Available One key issue for theories of cognition is how abstract concepts, such as freedom, are represented. According to the WAT (Words As social Tools proposal, abstract concepts activate both sensorimotor and linguistic/social information, and their acquisition modality involves the linguistic experience more than the acquisition of concrete concepts. We report an experiment in which participants were presented with abstract and concrete definitions followed by concrete and abstract target-words. When the definition and the word matched, participants were required to press a key, either with the hand or with the mouth. Response times and accuracy were recorded. As predicted, we found that abstract definitions and abstract words yielded slower responses and more errors compared to concrete definitions and concrete words. More crucially, there was an interaction between the target-words and the effector used to respond (hand, mouth. While responses with the mouth were overall slower, the advantage of the hand over the mouth responses was more marked with concrete than with abstract concepts. The results are in keeping with grounded and embodied theories of cognition and support the WAT proposal, according to which abstract concepts evoke linguistic-social information, hence activate the mouth. The mechanisms underlying the mouth activation with abstract concepts (re-enactment of acquisition experience, or re-explanation of the word meaning, possibly through inner talk are discussed. To our knowledge this is the first behavioral study demonstrating with real words that the advantage of the hand over the mouth is more marked with concrete than with abstract concepts, likely because of the activation of linguistic information with abstract concepts.

  14. Mixed first- and second-order transport method using domain decomposition techniques for reactor core calculations

    International Nuclear Information System (INIS)

    Girardi, E.; Ruggieri, J.M.

    2003-01-01

    The aim of this paper is to present the last developments made on a domain decomposition method applied to reactor core calculations. In this method, two kind of balance equation with two different numerical methods dealing with two different unknowns are coupled. In the first part the two balance transport equations (first order and second order one) are presented with the corresponding following numerical methods: Variational Nodal Method and Discrete Ordinate Nodal Method. In the second part, the Multi-Method/Multi-Domain algorithm is introduced by applying the Schwarz domain decomposition to the multigroup eigenvalue problem of the transport equation. The resulting algorithm is then provided. The projection operators used to coupled the two methods are detailed in the last part of the paper. Finally some preliminary numerical applications on benchmarks are given showing encouraging results. (authors)

  15. A numerical method for resonance integral calculations

    International Nuclear Information System (INIS)

    Tanbay, Tayfun; Ozgener, Bilge

    2013-01-01

    A numerical method has been proposed for resonance integral calculations and a cubic fit based on least squares approximation to compute the optimum Bell factor is given. The numerical method is based on the discretization of the neutron slowing down equation. The scattering integral is approximated by taking into account the location of the upper limit in energy domain. The accuracy of the method has been tested by performing computations of resonance integrals for uranium dioxide isolated rods and comparing the results with empirical values. (orig.)

  16. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    International Nuclear Information System (INIS)

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun; Chun, ChangJu; Im, Young Jun

    2014-01-01

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering

  17. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Junsen; Yang, Huiseon [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Eom, Soo Hyun [School of Life Sciences, Steitz Center for Structural Biology, and Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Chun, ChangJu, E-mail: cchun1130@jnu.ac.kr [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Im, Young Jun, E-mail: imyoungjun@jnu.ac.kr [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.

  18. Numerical investigation of power requirements for ultra-high-speed serial-to-parallel conversion

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Palushani, Evarist

    2012-01-01

    We present a numerical bit-error rate investigation of 160-640 Gbit/s serial-to-parallel conversion by four-wave mixing based time-domain optical Fourier transformation, showing an inverse scaling of the required pump energy per bit with the bit rate.......We present a numerical bit-error rate investigation of 160-640 Gbit/s serial-to-parallel conversion by four-wave mixing based time-domain optical Fourier transformation, showing an inverse scaling of the required pump energy per bit with the bit rate....

  19. Assessment of perceptual diffuseness in the time domain

    DEFF Research Database (Denmark)

    Garcia, Julian Martinez-Villalba; Jeong, Cheol-Ho; Brunskog, Jonas

    2017-01-01

    This study proposes a numerical and experimental framework for evaluating the perceptual aspect of the diffuse field condition with intended final use in music auditoria. Multiple Impulse Responses are simulated based on the time domain Poisson process with increasing reflection density. Different...

  20. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  1. Numerical simulation of thermal fracture in functionally graded

    Indian Academy of Sciences (India)

    Numerical simulation of thermal fracture in functionally graded materials using element-free ... Initially, the temperature distribution over the domain is obtained by solving the heat transfer problem. ... Department of Mechanical Engineering, National Institute of Technology, Hamirpur 177005, India ... Contact | Site index.

  2. Numerical Solution of the Kzk Equation for Pulsed Finite Amplitude Sound Beams in Thermoviscous Fluids

    Science.gov (United States)

    Lee, Yang-Sub

    A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.

  3. Glycogen synthase kinase 3-{beta} phosphorylates novel S/T-P-S/T domains in Notch1 intracellular domain and induces its nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiangzi [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Preventive Medicine, Yanbian University College of Medicine, Yanji (China); Ju, Ji-hyun [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Novel S/T-P-S/T domains were identified in NICD. Black-Right-Pointing-Pointer Phosphorylation of NICD on the S/T-P-S/T domains induced nuclear localization. Black-Right-Pointing-Pointer GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. -- Abstract: We identified two S/T-P-S/T domains (2122-2124, 2126-2128) inducing Notch intracellular domain (NICD) nuclear localization. The GFP-NICD (1963-2145) fusion protein deletion mutant without classical NLS was localized in the nucleus like the full length GFP-NICD. However, quadruple substitution mutant (T2122A T2124A S2126A T2128A) showed increased cytoplasmic localization. GSK-3{beta} enhanced nuclear localization and transcriptional activity of WT NICD but not of quadruple substitution mutant. In vitro kinase assays revealed that GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. These results suggest that the novel S/T-P-S/T domain, phosphorylated by GSK-3{beta} is also involved in the nuclear localization of NICD as well as classical NLS.

  4. Numerical simulation and physical aspects of supersonic vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Kandil, O. A.; Kandil, H. A.

    1993-01-01

    Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.

  5. Spectral element method for wave propagation on irregular domains

    Indian Academy of Sciences (India)

    Yan Hui Geng

    2018-03-14

    Mar 14, 2018 ... Abstract. A spectral element approximation of acoustic propagation problems combined with a new mapping method on irregular domains is proposed. Following this method, the Gauss–Lobatto–Chebyshev nodes in the standard space are applied to the spectral element method (SEM). The nodes in the ...

  6. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach

    DEFF Research Database (Denmark)

    Pan, Xiaoyong; Shen, Hong Bin

    2017-01-01

    , their domain specific features and formats have posed significant computational challenges. One of current difficulties is that the cross-source shared common knowledge is at a higher abstraction level beyond the observed data, resulting in a low efficiency of direct integration of observed data across domains...... space using multiple layers of learning blocks, where the shared representations across different domains are integrated. To validate our iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets, and our results show that by integrating multiple sources of data, the average AUC can...... be improved by 8% compared to the best single-source-based predictor; and through cross-domain knowledge integration at an abstraction level, it outperforms the state-of-the-art predictors by 6%. Besides the overall enhanced prediction performance, the convolutional neural network module embedded in i...

  7. Numerical analysis in electromagnetics the TLM method

    CERN Document Server

    Saguet, Pierre

    2013-01-01

    The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been

  8. Mechanisms for integration of information models across related domains

    Science.gov (United States)

    Atkinson, Rob

    2010-05-01

    It is well recognised that there are opportunities and challenges in cross-disciplinary data integration. A significant barrier, however, is creating a conceptual model of the combined domains and the area of integration. For example, a groundwater domain application may require information from several related domains: geology, hydrology, water policy, etc. Each domain may have its own data holdings and conceptual models, but these will share various common concepts (eg. The concept of an aquifer). These areas of semantic overlap present significant challenges, firstly to choose a single representation (model) of a concept that appears in multiple disparate models,, then to harmonise these other models with the single representation. In addition, models may exist at different levels of abstraction depending on how closely aligned they are with a particular implementation. This makes it hard for modellers in one domain to introduce elements from another domain without either introducing a specific style of implementation, or conversely dealing with a set of abstract patterns that are hard to integrate with existing implementations. Models are easier to integrate if they are broken down into small units, with common concepts implemented using common models from well-known, and predictably managed shared libraries. This vision however requires development of a set of mechanisms (tools and procedures) for implementing and exploiting libraries of model components. These mechanisms need to handle publication, discovery, subscription, versioning and implementation of models in different forms. In this presentation a coherent suite of such mechanisms is proposed, using a scenario based on re-use of geosciences models. This approach forms the basis of a comprehensive strategy to empower domain modellers to create more interoperable systems. The strategy address a range of concerns and practice, and includes methodologies, an accessible toolkit, improvements to available

  9. Domain decomposition techniques for boundary elements application to fluid flow

    CERN Document Server

    Brebbia, C A; Skerget, L

    2007-01-01

    The sub-domain techniques in the BEM are nowadays finding its place in the toolbox of numerical modellers, especially when dealing with complex 3D problems. We see their main application in conjunction with the classical BEM approach, which is based on a single domain, when part of the domain needs to be solved using a single domain approach, the classical BEM, and part needs to be solved using a domain approach, BEM subdomain technique. This has usually been done in the past by coupling the BEM with the FEM, however, it is much more efficient to use a combination of the BEM and a BEM sub-domain technique. The advantage arises from the simplicity of coupling the single domain and multi-domain solutions, and from the fact that only one formulation needs to be developed, rather than two separate formulations based on different techniques. There are still possibilities for improving the BEM sub-domain techniques. However, considering the increased interest and research in this approach we believe that BEM sub-do...

  10. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; van Heijst, G.J.F.

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  11. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; Heijst, van G.J.F.

    2009-01-01

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  12. Domain decomposition methods for core calculations using the MINOS solver

    International Nuclear Information System (INIS)

    Guerin, P.; Baudron, A. M.; Lautard, J. J.

    2007-01-01

    Cell by cell homogenized transport calculations of an entire nuclear reactor core are currently too expensive for industrial applications, even if a simplified transport (SPn) approximation is used. In order to take advantage of parallel computers, we propose here two domain decomposition methods using the mixed dual finite element solver MINOS. The first one is a modal synthesis method on overlapping sub-domains: several Eigenmodes solutions of a local problem on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second one is an iterative method based on non-overlapping domain decomposition with Robin interface conditions. At each iteration, we solve the problem on each sub-domain with the interface conditions given by the solutions on the close sub-domains estimated at the previous iteration. For these two methods, we give numerical results which demonstrate their accuracy and their efficiency for the diffusion model on realistic 2D and 3D cores. (authors)

  13. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth

    2005-01-01

    coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...... is depressed to zero....

  14. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain

    Science.gov (United States)

    Hilbert, Brendan J.; Hayes, Janelle A.; Stone, Nicholas P.; Xu, Rui-Gang

    2017-01-01

    Abstract Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA. PMID:28082398

  15. Development of Numerical Estimation in Young Children

    Science.gov (United States)

    Siegler, Robert S.; Booth, Julie L.

    2004-01-01

    Two experiments examined kindergartners', first graders', and second graders' numerical estimation, the internal representations that gave rise to the estimates, and the general hypothesis that developmental sequences within a domain tend to repeat themselves in new contexts. Development of estimation in this age range on 0-to-100 number lines…

  16. Affective priming using facial expressions modulates liking for abstract art.

    Science.gov (United States)

    Flexas, Albert; Rosselló, Jaume; Christensen, Julia F; Nadal, Marcos; Olivera La Rosa, Antonio; Munar, Enric

    2013-01-01

    We examined the influence of affective priming on the appreciation of abstract artworks using an evaluative priming task. Facial primes (showing happiness, disgust or no emotion) were presented under brief (Stimulus Onset Asynchrony, SOA = 20 ms) and extended (SOA = 300 ms) conditions. Differences in aesthetic liking for abstract paintings depending on the emotion expressed in the preceding primes provided a measure of the priming effect. The results showed that, for the extended SOA, artworks were liked more when preceded by happiness primes and less when preceded by disgust primes. Facial expressions of happiness, though not of disgust, exerted similar effects in the brief SOA condition. Subjective measures and a forced-choice task revealed no evidence of prime awareness in the suboptimal condition. Our results are congruent with findings showing that the affective transfer elicited by priming biases evaluative judgments, extending previous research to the domain of aesthetic appreciation.

  17. Affective priming using facial expressions modulates liking for abstract art.

    Directory of Open Access Journals (Sweden)

    Albert Flexas

    Full Text Available We examined the influence of affective priming on the appreciation of abstract artworks using an evaluative priming task. Facial primes (showing happiness, disgust or no emotion were presented under brief (Stimulus Onset Asynchrony, SOA = 20 ms and extended (SOA = 300 ms conditions. Differences in aesthetic liking for abstract paintings depending on the emotion expressed in the preceding primes provided a measure of the priming effect. The results showed that, for the extended SOA, artworks were liked more when preceded by happiness primes and less when preceded by disgust primes. Facial expressions of happiness, though not of disgust, exerted similar effects in the brief SOA condition. Subjective measures and a forced-choice task revealed no evidence of prime awareness in the suboptimal condition. Our results are congruent with findings showing that the affective transfer elicited by priming biases evaluative judgments, extending previous research to the domain of aesthetic appreciation.

  18. Making the invisible visible: Enhancing students' conceptual understanding by introducing representations of abstract objects in a simulation

    NARCIS (Netherlands)

    Olympiou, G.; Zacharias, Z.; de Jong, Anthonius J.M.

    2013-01-01

    This study aimed to identify if complementing representations of concrete objects with representations of abstract objects improves students’ conceptual understanding as they use a simulation to experiment in the domain of Light and Color. Moreover, we investigated whether students’ prior knowledge

  19. Grounded understanding of abstract concepts: The case of STEM learning.

    Science.gov (United States)

    Hayes, Justin C; Kraemer, David J M

    2017-01-01

    Characterizing the neural implementation of abstract conceptual representations has long been a contentious topic in cognitive science. At the heart of the debate is whether the "sensorimotor" machinery of the brain plays a central role in representing concepts, or whether the involvement of these perceptual and motor regions is merely peripheral or epiphenomenal. The domain of science, technology, engineering, and mathematics (STEM) learning provides an important proving ground for sensorimotor (or grounded) theories of cognition, as concepts in science and engineering courses are often taught through laboratory-based and other hands-on methodologies. In this review of the literature, we examine evidence suggesting that sensorimotor processes strengthen learning associated with the abstract concepts central to STEM pedagogy. After considering how contemporary theories have defined abstraction in the context of semantic knowledge, we propose our own explanation for how body-centered information, as computed in sensorimotor brain regions and visuomotor association cortex, can form a useful foundation upon which to build an understanding of abstract scientific concepts, such as mechanical force. Drawing from theories in cognitive neuroscience, we then explore models elucidating the neural mechanisms involved in grounding intangible concepts, including Hebbian learning, predictive coding, and neuronal recycling. Empirical data on STEM learning through hands-on instruction are considered in light of these neural models. We conclude the review by proposing three distinct ways in which the field of cognitive neuroscience can contribute to STEM learning by bolstering our understanding of how the brain instantiates abstract concepts in an embodied fashion.

  20. Vivaldi: A Domain-Specific Language for Volume Processing and Visualization on Distributed Heterogeneous Systems.

    Science.gov (United States)

    Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki

    2014-12-01

    As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.

  1. Theoretical and numerical investigations of sub-wavelength diffractive optical structures

    DEFF Research Database (Denmark)

    Dridi, Kim

    2000-01-01

    The work in this thesis concerns theoretical and numerical investigations of sub-wavelength diffractive optical structures, relying on advanced two-dimensional vectorial numerical models that have applications in Optics and Electromagnetics. Integrated Optics is predicted to play a major role......, such as in dielectric waveguides with gratings and periodic media or photonic crystal structures. The vectorial electromagnetic nature of light is therefore taken into account in the modeling of these diffractive structures. An electromagnetic vector-field model for optical components design based on the classical...... finite-difference time domain method and exact radiation integrals is implemented for the polarization where the electric field vector is perpendicular to the two dimentional plane of symmetry. The computational model solves the full vectorial time domain Maxwell equations with general sources...

  2. Gaining industrial confidence for the introduction of domain-specific languages

    NARCIS (Netherlands)

    Mooij, A.J.; Hooman, J.; Albers, R.

    2013-01-01

    Domain-Specific Languages (DSLs) receive attention as the possible next abstraction step in programming. Despite the benefits of using DSLs, in the industry there is also some reluctance against their introduction in product development. We address a number of issues that are important to gain

  3. Visually defining and querying consistent multi-granular clinical temporal abstractions.

    Science.gov (United States)

    Combi, Carlo; Oliboni, Barbara

    2012-02-01

    The main goal of this work is to propose a framework for the visual specification and query of consistent multi-granular clinical temporal abstractions. We focus on the issue of querying patient clinical information by visually defining and composing temporal abstractions, i.e., high level patterns derived from several time-stamped raw data. In particular, we focus on the visual specification of consistent temporal abstractions with different granularities and on the visual composition of different temporal abstractions for querying clinical databases. Temporal abstractions on clinical data provide a concise and high-level description of temporal raw data, and a suitable way to support decision making. Granularities define partitions on the time line and allow one to represent time and, thus, temporal clinical information at different levels of detail, according to the requirements coming from the represented clinical domain. The visual representation of temporal information has been considered since several years in clinical domains. Proposed visualization techniques must be easy and quick to understand, and could benefit from visual metaphors that do not lead to ambiguous interpretations. Recently, physical metaphors such as strips, springs, weights, and wires have been proposed and evaluated on clinical users for the specification of temporal clinical abstractions. Visual approaches to boolean queries have been considered in the last years and confirmed that the visual support to the specification of complex boolean queries is both an important and difficult research topic. We propose and describe a visual language for the definition of temporal abstractions based on a set of intuitive metaphors (striped wall, plastered wall, brick wall), allowing the clinician to use different granularities. A new algorithm, underlying the visual language, allows the physician to specify only consistent abstractions, i.e., abstractions not containing contradictory conditions on

  4. Temporal abstraction and inductive logic programming for arrhythmia recognition from electrocardiograms.

    Science.gov (United States)

    Carrault, G; Cordier, M-O; Quiniou, R; Wang, F

    2003-07-01

    This paper proposes a novel approach to cardiac arrhythmia recognition from electrocardiograms (ECGs). ECGs record the electrical activity of the heart and are used to diagnose many heart disorders. The numerical ECG is first temporally abstracted into series of time-stamped events. Temporal abstraction makes use of artificial neural networks to extract interesting waves and their features from the input signals. A temporal reasoner called a chronicle recogniser processes such series in order to discover temporal patterns called chronicles which can be related to cardiac arrhythmias. Generally, it is difficult to elicit an accurate set of chronicles from a doctor. Thus, we propose to learn automatically from symbolic ECG examples the chronicles discriminating the arrhythmias belonging to some specific subset. Since temporal relationships are of major importance, inductive logic programming (ILP) is the tool of choice as it enables first-order relational learning. The approach has been evaluated on real ECGs taken from the MIT-BIH database. The performance of the different modules as well as the efficiency of the whole system is presented. The results are rather good and demonstrate that integrating numerical techniques for low level perception and symbolic techniques for high level classification is very valuable.

  5. Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires

    Science.gov (United States)

    Kuteifan, Majd; Lubarda, M. V.; Fu, S.; Chang, R.; Escobar, M. A.; Mangin, S.; Fullerton, E. E.; Lomakin, V.

    2016-04-01

    Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.

  6. Mixed metaphors: Electrophysiological brain responses to (un)expected concrete and abstract prepositional phrases.

    Science.gov (United States)

    Zane, Emily; Shafer, Valerie

    2018-02-01

    Languages around the world use spatial terminology, like prepositions, to describe non-spatial, abstract concepts, including time (e.g., in the moment). The Metaphoric Mapping Theory explains this pattern by positing that a universal human cognitive process underlies it, whereby abstract concepts are conceptualized via the application of concrete, three-dimensional space onto abstract domains. The alternative view is that the use of spatial propositions in abstract phrases is idiomatic, and thus does not trigger metaphoric mapping. In the current study, event-related potentials (ERPs) were used to examine the time-course of neural processing of concrete and abstract phrases consisting of the prepositions in or on followed by congruent and incongruent nouns (e.g., in the bowl/plate and in the moment/mend). ERPs were recorded from the onset of reference nouns in 28 adult participants using a 128-channel electrode net. Results show that congruency has differential effects on neural measures, depending on whether the noun is concrete or abstract. Incongruent reference nouns in concrete phrases (e.g., on the bowl) elicited a significant central negativity (an N400 effect), while incongruent reference nouns in abstract phrases (e.g., on the moment) did not. These results suggest that spatially incongruent concrete nouns are semantically unexpected (N400 effect). A P600 effect, which might indicate rechecking, reanalysis and/or reconstruction, was predicted for incongruent abstract nouns, but was not observed, possibly due to the variability in abstract stimuli. Findings cast doubt on accounts claiming that abstract uses of prepositions are cognitively and metaphorically linked to their spatial sense during natural, on-line processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Numerical experimentation on convective coolant flow in Ghana ...

    African Journals Online (AJOL)

    Numerical experiments on one dimensional convective coolant flow during steady state operation of the Ghana Research Reactor-1 (GHARR-I) were performed to determine the thermal hydraulic parameters of temperature, density and flow rate. The computational domain was the reactor vessel, including the reactor core.

  8. Visualizing the nuclear science and technology knowledge domain

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Bruno Mattos Souza de Souza; Honaiser, Eduardo H.R. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)]. E-mails: brunomelo@ieee.org; ehonaiser@yahoo.com.br

    2007-07-01

    In this paper, a knowledge domain visualization approach is applied to the nuclear science and technology fields. A so-called concept density map based on the abstracts of the papers presented at the ICONE 14 is constructed. The concept map provides an overview of the nuclear science and technology fields by visualizing the associations between their main concepts. To analyze recent developments the concept map is compared with a concept map based on abstracts of earlier ICONE meetings. The analysis presented in the paper provides insight into the structure of the nuclear science and technology fields and into the most significant developments carried out during the last few years. (author)

  9. From knowledge abstraction to management using Ranganathan's faceted schema to develop conceptual frameworks for digital libraries

    CERN Document Server

    Suman, Aparajita

    2013-01-01

    The increasing volume of information in the contemporary world entails demand for efficient knowledge management (KM) systems; a logical method of information organization that will allow proper semantic querying to identify things that match meaning in natural language. On this concept, the role of an information manager goes beyond implementing a search and clustering system, to the ability to map and logically present the subject domain and related cross domains. From Knowledge Abstraction to Management answers this need by analysing ontology tools and techniques, helping the reader develop

  10. Aperiodic topological order in the domain configurations of functional materials

    Science.gov (United States)

    Huang, Fei-Ting; Cheong, Sang-Wook

    2017-03-01

    In numerous functional materials, such as steels, ferroelectrics and magnets, new functionalities can be achieved through the engineering of the domain structures, which are associated with the ordering of certain parameters within the material. The recent progress in technologies that enable imaging at atomic-scale spatial resolution has transformed our understanding of domain topology, revealing that, along with simple stripe-like or irregularly shaped domains, intriguing vortex-type topological domain configurations also exist. In this Review, we present a new classification scheme of 'Zm Zn domains with Zl vortices' for 2D macroscopic domain structures with m directional variants and n translational antiphases. This classification, together with the concepts of topological protection and topological charge conservation, can be applied to a wide range of materials, such as multiferroics, improper ferroelectrics, layered transition metal dichalcogenides and magnetic superconductors, as we discuss using selected examples. The resulting topological considerations provide a new basis for the understanding of the formation, kinetics, manipulation and property optimization of domains and domain boundaries in functional materials.

  11. DRO: domain-based route optimization scheme for nested mobile networks

    Directory of Open Access Journals (Sweden)

    Chuang Ming-Chin

    2011-01-01

    Full Text Available Abstract The network mobility (NEMO basic support protocol is designed to support NEMO management, and to ensure communication continuity between nodes in mobile networks. However, in nested mobile networks, NEMO suffers from the pinball routing problem, which results in long packet transmission delays. To solve the problem, we propose a domain-based route optimization (DRO scheme that incorporates a domain-based network architecture and ad hoc routing protocols for route optimization. DRO also improves the intra-domain handoff performance, reduces the convergence time during route optimization, and avoids the out-of-sequence packet problem. A detailed performance analysis and simulations were conducted to evaluate the scheme. The results demonstrate that DRO outperforms existing mechanisms in terms of packet transmission delay (i.e., better route-optimization, intra-domain handoff latency, convergence time, and packet tunneling overhead.

  12. Numerical Simulations of Kinetic Alfvén Waves to Study Spectral ...

    Indian Academy of Sciences (India)

    Numerical Simulations of Kinetic Alfvén Waves to Study Spectral. Index in Solar Wind Turbulence and Particle Heating. R. P. Sharma. ∗. & H. D. Singh. Center for Energy Studies, Indian Institute of Technology, Delhi 110 016, India. ∗ e-mail: rpsharma@ces.iitd.ernet.in. Abstract. We present numerical simulations of the ...

  13. Numerical and experimental analysis of the flow around a two-element wingsail at Reynolds number 0.53 × 10"6

    International Nuclear Information System (INIS)

    Fiumara, Alessandro; Gourdain, Nicolas; Chapin, Vincent; Senter, Julien; Bury, Yannick

    2016-01-01

    Highlights: • An experimental campaign including pressure measurements, oil visualizations and PIV was performed on a scale wingsail. • Unsteady RANS simulations were carried out on the wingsail scale model reproducing also the wind tunnel domain. • The geometrical slot parameters affect the circulation around the main element influencing the pressure distribution on it. - Abstract: The rigid wingsail is a propulsion system, utilized in sailing competitions in order to enhance the yacht performance in both upwind and downwind conditions. Nevertheless, this new rig is sensitive to upstream flow variations, making its steering difficult. This issue suggests the need to perform a study on wingsail aerodynamics. Thus this paper reports some investigations done to better understand the flow physics around a scaled model of an America’s Cup wingsail, based on a two-element AC72 profile. First a wind tunnel test campaign was carried out to generate a database for aerodynamic phenomena analyses and CFD validation. Unsteady RANS simulations were performed to predict and validate the flow characteristics on the wingsail, in the wind tunnel test conditions. The wind tunnel domain was fully modeled, in order to take into account the facility confinement effects. Numerical simulations in freestream and wind tunnel conditions were then compared with experimental data. This analysis shows the necessity to consider the wind tunnel walls when experimental and numerical data are compared. Numerical simulations correctly reproduce the flow field for low-to-moderate flow angles. However, discrepancies on the pressure distribution increase when the boundary layer starts to separate from the wingsail. In this regard, the flow generated by the slot between both elements of the wingsail is of paramount importance. This slot flow is analyzed in details through PIV measurements and numerical simulations. While the numerical simulation correctly predicts the jet flow itself, it only

  14. On the numerical simulation of tracer flows in porous media

    International Nuclear Information System (INIS)

    Aquino, J.; Pereira, F.; Amaral Souto, H.P.; Francisco, A.S.

    2007-01-01

    We discuss in detail a new Lagrangian, locally conservative procedure which has been proposed for the numerical solution of linear transport problems in porous media. The new scheme is computationally efficient, virtually free of numerical diffusion, and can be applied to investigate numerically the time evolution of radionuclide contaminant plumes. Results of two-dimensional simulations of tracer flows will be presented to show the influence on the computed solutions of distinct interpolation functions for evaluating the velocity field at any position of the physical domain, as required by the Lagrangian scheme. (author)

  15. Operator theory and numerical methods

    CERN Document Server

    Fujita, H; Suzuki, T

    2001-01-01

    In accordance with the developments in computation, theoretical studies on numerical schemes are now fruitful and highly needed. In 1991 an article on the finite element method applied to evolutionary problems was published. Following the method, basically this book studies various schemes from operator theoretical points of view. Many parts are devoted to the finite element method, but other schemes and problems (charge simulation method, domain decomposition method, nonlinear problems, and so forth) are also discussed, motivated by the observation that practically useful schemes have fine mathematical structures and the converses are also true. This book has the following chapters: 1. Boundary Value Problems and FEM. 2. Semigroup Theory and FEM. 3. Evolution Equations and FEM. 4. Other Methods in Time Discretization. 5. Other Methods in Space Discretization. 6. Nonlinear Problems. 7. Domain Decomposition Method.

  16. Evolution based on domain combinations: the case of glutaredoxins

    Directory of Open Access Journals (Sweden)

    Herrero Enrique

    2009-03-01

    Full Text Available Abstract Background Protein domains represent the basic units in the evolution of proteins. Domain duplication and shuffling by recombination and fusion, followed by divergence are the most common mechanisms in this process. Such domain fusion and recombination events are predicted to occur only once for a given multidomain architecture. However, other scenarios may be relevant in the evolution of specific proteins, such as convergent evolution of multidomain architectures. With this in mind, we study glutaredoxin (GRX domains, because these domains of approximately one hundred amino acids are widespread in archaea, bacteria and eukaryotes and participate in fusion proteins. GRXs are responsible for the reduction of protein disulfides or glutathione-protein mixed disulfides and are involved in cellular redox regulation, although their specific roles and targets are often unclear. Results In this work we analyze the distribution and evolution of GRX proteins in archaea, bacteria and eukaryotes. We study over one thousand GRX proteins, each containing at least one GRX domain, from hundreds of different organisms and trace the origin and evolution of the GRX domain within the tree of life. Conclusion Our results suggest that single domain GRX proteins of the CGFS and CPYC classes have, each, evolved through duplication and divergence from one initial gene that was present in the last common ancestor of all organisms. Remarkably, we identify a case of convergent evolution in domain architecture that involves the GRX domain. Two independent recombination events of a TRX domain to a GRX domain are likely to have occurred, which is an exception to the dominant mechanism of domain architecture evolution.

  17. Static analysis: from theory to practice; Static analysis of large-scale embedded code, generation of abstract domains

    International Nuclear Information System (INIS)

    Monniaux, D.

    2009-06-01

    Software operating critical systems (aircraft, nuclear power plants) should not fail - whereas most computerised systems of daily life (personal computer, ticket vending machines, cell phone) fail from time to time. This is not a simple engineering problem: it is known, since the works of Turing and Cook, that proving that programs work correctly is intrinsically hard. In order to solve this problem, one needs methods that are, at the same time, efficient (moderate costs in time and memory), safe (all possible failures should be found), and precise (few warnings about nonexistent failures). In order to reach a satisfactory compromise between these goals, one can research fields as diverse as formal logic, numerical analysis or 'classical' algorithmics. From 2002 to 2007 I participated in the development of the Astree static analyser. This suggested to me a number of side projects, both theoretical and practical (use of formal proof techniques, analysis of numerical filters...). More recently, I became interested in modular analysis of numerical property and in the applications to program analysis of constraint solving techniques (semi-definite programming, SAT and SAT modulo theory). (author)

  18. Numerical methods for axisymmetric and 3D nonlinear beams

    Science.gov (United States)

    Pinton, Gianmarco F.; Trahey, Gregg E.

    2005-04-01

    Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.

  19. Resolution of unsteady Maxwell equations with charges in non convex domains

    International Nuclear Information System (INIS)

    Garcia, Emmanuelle

    2002-01-01

    This research thesis deals with the modelling and numerical resolution of problems related to plasma physics. The interaction of charged particles (electrons and ions) with electromagnetic fields is modelled with the system of unsteady Vlasov-Maxwell coupled equations (the Vlasov system describes the transport of charged particles and the Maxwell equations describe the wave propagation). The author presents definitions related to singular domains, establishes a Helmholtz decomposition in a space of electro-magnetostatic solutions. He reports a mathematical analysis of decompositions into a regular and a singular part of general functional spaces intervening in the investigation of the Maxwell system in complex geometries. The method is then implemented for bi-dimensional domains. A last part addressed the study and the numerical resolution of three-dimensional problems

  20. About numerical analysis of a plasma physics problem

    International Nuclear Information System (INIS)

    Almeida Cipolatti, R. de

    1985-01-01

    A numerical study on macroscopic equilibrium of a plasma at interior of a tokamak device, considering boundary problems for the case which f(s)=sis presented. The abstract Dirichlet problem enumerating main results which is applied to plasma model is studied. (M.C.K.) [pt

  1. Chasing probabilities — Signaling negative and positive prediction errors across domains

    DEFF Research Database (Denmark)

    Meder, David; Madsen, Kristoffer H; Hulme, Oliver

    2016-01-01

    of the two. We acquired functional MRI data while volunteers performed four probabilistic reversal learning tasks which differed in terms of outcome valence (reward-seeking versus punishment-avoidance) and domain (abstract symbols versus facial expressions) of outcomes. We found that ventral striatum...

  2. The effects of multi-domain versus single-domain cognitive training in non-demented older people: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Cheng Yan

    2012-03-01

    Full Text Available Abstract Background Whether healthy older people can benefit from cognitive training (CogTr remains controversial. This study explored the benefits of CogTr in community dwelling, healthy, older adults and compared the effects of single-domain with multi-domain CogTr interventions. Methods A randomized, controlled, 3-month trial of CogTr with double-blind assessments at baseline and immediate, 6-month and 12-month follow-up after training completion was conducted. A total of 270 healthy Chinese older people, 65 to 75 years old, were recruited from the Ganquan-area community in Shanghai. Participants were randomly assigned to three groups: multi-domain CogTr, single-domain CogTr, and a wait-list control group. Twenty-four sessions of CogTr were administrated to the intervention groups over a three-month period. Six months later, three booster training sessions were offered to 60% of the initial training participants. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS, Form A, the Color Word Stroop test (CWST, the Visual Reasoning test and the Trail Making test (TMT were used to assess cognitive function. Results Multi-domain CogTr produced statistically significant training effects on RBANS, visual reasoning, and immediate and delayed memory, while single-domain CogTr showed training effects on RBANS, visual reasoning, word interference, and visuospatial/constructional score (all P Conclusions Cognitive training can improve memory, visual reasoning, visuospatial construction, attention and neuropsychological status in community-living older people and can help maintain their functioning over time. Multi-domain CogTr enhanced memory proficiency, while single-domain CogTr augmented visuospatial/constructional and attention abilities. Multi-domain CogTr had more advantages in training effect maintenance. Clinical Trial Registration Chinese Clinical Trial Registry. Registration number: ChiCTR-TRC-09000732.

  3. Langevin equations with multiplicative noise: application to domain growth

    International Nuclear Information System (INIS)

    Sancho, J.M.; Hernandez-Machado, A.; Ramirez-Piscina, L.; Lacasta, A.M.

    1993-01-01

    Langevin equations of Ginzburg-Landau form with multiplicative noise, are proposed to study the effects of fluctuations in domain growth. These equations are derived from a coarse-grained methodology. The Cahn-Hilliard-Cook linear stability analysis predicts some effects in the transitory regime. We also derive numerical algorithms for the computer simulation of these equations. The numerical results corroborate the analytical productions of the linear analysis. We also present simulation results for spinodal decomposition at large times. (author). 28 refs, 2 figs

  4. Numerical simulation of thermal fracture in functionally graded ...

    Indian Academy of Sciences (India)

    Sahil Garg

    Initially, the temperature distribution over the domain is obtained by solving the heat ... The goal of producing such engineered material systems is ... developed like using equivalent eigenstrain and distributed .... where ˜W is the strain energy density and nj is the jth ..... Thus, numerical evaluation of interaction integral from.

  5. Conference presentation to publication: a retrospective study evaluating quality of abstracts and journal articles in medical education research.

    Science.gov (United States)

    Stephenson, Christopher R; Vaa, Brianna E; Wang, Amy T; Schroeder, Darrell R; Beckman, Thomas J; Reed, Darcy A; Sawatsky, Adam P

    2017-11-09

    There is little evidence regarding the comparative quality of abstracts and articles in medical education research. The Medical Education Research Study Quality Instrument (MERSQI), which was developed to evaluate the quality of reporting in medical education, has strong validity evidence for content, internal structure, and relationships to other variables. We used the MERSQI to compare the quality of reporting for conference abstracts, journal abstracts, and published articles. This is a retrospective study of all 46 medical education research abstracts submitted to the Society of General Internal Medicine 2009 Annual Meeting that were subsequently published in a peer-reviewed journal. We compared MERSQI scores of the abstracts with scores for their corresponding published journal abstracts and articles. Comparisons were performed using the signed rank test. Overall MERSQI scores increased significantly for published articles compared with conference abstracts (11.33 vs 9.67; P quality of medical education abstracts and journal articles using the MERSQI. Overall, the quality of articles was greater than that of abstracts. However, there were no significant differences between abstracts and articles for the domains of study design and outcomes, which indicates that these MERSQI elements may be applicable to abstracts. Findings also suggest that abstract quality is generally preserved from original presentation to publication.

  6. Domain decomposition methods for fluid dynamics

    International Nuclear Information System (INIS)

    Clerc, S.

    1995-01-01

    A domain decomposition method for steady-state, subsonic fluid dynamics calculations, is proposed. The method is derived from the Schwarz alternating method used for elliptic problems, extended to non-linear hyperbolic problems. Particular emphasis is given on the treatment of boundary conditions. Numerical results are shown for a realistic three-dimensional two-phase flow problem with the FLICA-4 code for PWR cores. (from author). 4 figs., 8 refs

  7. Embodied cognition, abstract concepts, and the benefits of new technology for implicit body manipulation

    Science.gov (United States)

    Dijkstra, Katinka; Eerland, Anita; Zijlmans, Josjan; Post, Lysanne S.

    2014-01-01

    Current approaches on cognition hold that concrete concepts are grounded in concrete experiences. There is no consensus, however, as to whether this is equally true for abstract concepts. In this review we discuss how the body might be involved in understanding abstract concepts through metaphor activation. Substantial research has been conducted on the activation of common orientational metaphors with bodily manipulations, such as “power is up” and “more is up” representations. We will focus on the political metaphor that has a more complex association between the concept and the concrete domain. However, the outcomes of studies on this political metaphor have not always been consistent, possibly because the experimental manipulation was not implicit enough. The inclusion of new technological devices in this area of research, such as the Wii Balance Board, seems promising in order to assess the groundedness of abstract conceptual spatial metaphors in an implicit manner. This may aid further research to effectively demonstrate the interrelatedness between the body and more abstract representations. PMID:25191282

  8. Domain swapping reveals that the N-terminal domain of the sensor kinase KdpD in Escherichia coli is important for signaling

    Directory of Open Access Journals (Sweden)

    Lippert Marie-Luise

    2009-07-01

    Full Text Available Abstract Background The KdpD/KdpE two-component system of Escherichia coli regulates expression of the kdpFABC operon encoding the high affinity K+ transport system KdpFABC. The input domain of KdpD comprises a domain that belongs to the family of universal stress proteins (Usp. It has been previously demonstrated that UspC binds to this domain, resulting in KdpD/KdpE scaffolding under salt stress. However the mechanistic significance of this domain for signaling remains unclear. Here, we employed a "domain swapping" approach to replace the KdpD-Usp domain with four homologous domains or with the six soluble Usp proteins of E. coli. Results Full response to salt stress was only achieved with a chimera that contains UspC, probably due to unaffected scaffolding of the KdpD/KdpE signaling cascade by soluble UspC. Unexpectedly, chimeras containing either UspF or UspG not only prevented kdpFABC expression under salt stress but also under K+ limiting conditions, although these hybrid proteins exhibited kinase and phosphotransferase activities in vitro. These are the first KdpD derivatives that do not respond to K+ limitation due to alterations in the N-terminal domain. Analysis of the KdpD-Usp tertiary structure revealed that this domain has a net positively charged surface, while UspF and UspG are characterized by net negative surface charges. Conclusion The Usp domain within KdpD not only functions as a binding surface for the scaffold UspC, but it is also important for KdpD signaling. We propose that KdpD sensing/signaling involves alterations of electrostatic interactions between the large N- and C-terminal cytoplasmic domains.

  9. Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Andrew M Huettner

    Full Text Available A new method for designing radiofrequency (RF pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging.

  10. Domain Specific Language Support for Exascale

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)

    2017-10-20

    A multi-institutional project known as D-TEC (short for “Domain- specific Technology for Exascale Computing”) set out to explore technologies to support the construction of Domain Specific Languages (DSLs) to map application programs to exascale architectures. DSLs employ automated code transformation to shift the burden of delivering portable performance from application programmers to compilers. Two chief properties contribute: DSLs permit expression at a high level of abstraction so that a programmer’s intent is clear to a compiler and DSL implementations encapsulate human domain-specific optimization knowledge so that a compiler can be smart enough to achieve good results on specific hardware. Domain specificity is what makes these properties possible in a programming language. If leveraging domain specificity is the key to keep exascale software tractable, a corollary is that many different DSLs will be needed to encompass the full range of exascale computing applications; moreover, a single application may well need to use several different DSLs in conjunction. As a result, developing a general toolkit for building domain-specific languages was a key goal for the D-TEC project. Different aspects of the D-TEC research portfolio were the focus of work at each of the partner institutions in the multi-institutional project. D-TEC research and development work at Rice University focused on on three principal topics: understanding how to automate the tuning of code for complex architectures, research and development of the Rosebud DSL engine, and compiler technology to support complex execution platforms. This report provides a summary of the research and development work on the D-TEC project at Rice University.

  11. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, E.; Ruggieri, J.M. [CEA Cadarache (DER/SPRC/LEPH), 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs; Santandrea, S. [CEA Saclay, Dept. Modelisation de Systemes et Structures DM2S/SERMA/LENR, 91 - Gif sur Yvette (France)

    2005-07-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  12. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    International Nuclear Information System (INIS)

    Girardi, E.; Ruggieri, J.M.

    2005-01-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  13. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  14. Numerical Modeling and Analysis of Transient Electromagnetic Wave Propagation and Scattering

    National Research Council Canada - National Science Library

    Petropoulos, Peter

    2000-01-01

    .... We are continuing with analysis and numerical comparisons with exact ABC's in ABC's instead of the simpler Dirichlet boundary condition to terminate the sponge layers in the time-domain is desirable...

  15. Arithmetic and algebraic problem solving and resource allocation: the distinct impact of fluid and numerical intelligence.

    Science.gov (United States)

    Dix, Annika; van der Meer, Elke

    2015-04-01

    This study investigates cognitive resource allocation dependent on fluid and numerical intelligence in arithmetic/algebraic tasks varying in difficulty. Sixty-six 11th grade students participated in a mathematical verification paradigm, while pupil dilation as a measure of resource allocation was collected. Students with high fluid intelligence solved the tasks faster and more accurately than those with average fluid intelligence, as did students with high compared to average numerical intelligence. However, fluid intelligence sped up response times only in students with average but not high numerical intelligence. Further, high fluid but not numerical intelligence led to greater task-related pupil dilation. We assume that fluid intelligence serves as a domain-general resource that helps to tackle problems for which domain-specific knowledge (numerical intelligence) is missing. The allocation of this resource can be measured by pupil dilation. Copyright © 2014 Society for Psychophysiological Research.

  16. Time-Domain Three Dimensional BE-FE Method for Transient Response of Floating Structures Under Unsteady Loads

    Directory of Open Access Journals (Sweden)

    R. E. S. Ismail

    Full Text Available Abstract This paper presents a direct time-domain three dimensional (3D numerical procedure to simulate the transient response of very large floating structures (VLFS subjected to unsteady external loads as well as moving mass. The proposed procedure employs the Boundary Element and Finite Element methods (FEM-BEM. The floating structure and the surrounding fluid are discretized by 4-node isoparametric finite elements (FE and by 4-node constant boundary elements (BE, respectively. Structural analysis is based on Mindlin's plate theory. The equation of motion is constructed taking into account the effect of inertia loading due to the moving mass. In order to obtain the hydrodynamic forces (added mass and radiation damping, the coupled natural frequencies are first obtained by an iterative method, since hydrodynamic forces become frequency-dependent. Then the Newark integration method is employed to solve the equation of motion for structural system. In order to prove the validity of the present method, a FORTRAN program is developed and numerical examples are carried out to compare its results with those of published experimental results of a scale model of VLFS under a weight drop and airplane landing and takeoff in still water condition. The comparisons show very good agreement.

  17. Experiences with IR Top N Optimization in a Main Memory DBMS: Applying 'The Database Approach' in New Domains

    NARCIS (Netherlands)

    Read, B.; Blok, H.E.; de Vries, A.P.; Blanken, Henk; Apers, Peter M.G.

    Data abstraction and query processing techniques are usually studied in the domain of administrative applications. We present a case-study in the non-standard domain of (multimedia) information retrieval, mainly intended as a feasibility study in favor of the `database approach' to data management.

  18. Towards High Resolution Numerical Algorithms for Wave Dominated Physical Phenomena

    Science.gov (United States)

    2009-01-30

    Modelling and Numerical Analysis, 40(5):815-841, 2006. [31] Michael Dumbser, Martin Kaser, and Eleuterio F. Toro. An arbitrary high-order Discontinuous...proximation of PML, SIAM J. Numer. Anal., 41 (2003), pp. 287-305. [60] E. BECACHE, S. FAUQUEUX, AND P. JOLY , Stability of perfectly matched layers, group...time-domain performance analysis, IEEE Trans, on Magnetics, 38 (2002), pp. 657- 660. [64] J. DIAZ AND P. JOLY , An analysis of higher-order boundary

  19. The structure of the nucleoprotein binding domain of lyssavirus phosphoprotein reveals a structural relationship between the N-RNA binding domains of Rhabdoviridae and Paramyxoviridae.

    Science.gov (United States)

    Delmas, Olivier; Assenberg, Rene; Grimes, Jonathan M; Bourhy, Hervé

    2010-01-01

    The phosphoprotein P of non-segmented negative-sense RNA viruses is an essential component of the replication and transcription complex and acts as a co-factor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. We have obtained the structure of the C-terminal domain of P of Mokola virus (MOKV), a lyssavirus that belongs to the Rhabdoviridae family and mapped at the amino acid level the crucial positions involved in interaction with N and in the formation of the viral replication complex. Comparison of the N-RNA binding domains of P solved to date suggests that the N-RNA binding domains are structurally conserved among paramyxoviruses and rhabdoviruses in spite of low sequence conservation. We also review the numerous other functions of this domain and more generally of the phosphoprotein.

  20. ACRATA: a novel electron transfer domain associated to apoptosis and cancer

    Directory of Open Access Journals (Sweden)

    Martinez-A Carlos

    2004-12-01

    Full Text Available Abstract Background Recently, several members of a vertebrate protein family containing a six trans-membrane (6TM domain and involved in apoptosis and cancer (e.g. STEAP, STAMP1, TSAP6, have been identified in Golgi and cytoplasmic membranes. The exact function of these proteins remains unknown. Methods We related this 6TM domain to distant protein families using intermediate sequences and methods of iterative profile sequence similarity search. Results Here we show for the first time that this 6TM domain is homolog to the 6TM heme binding domain of both the NADPH oxidase (Nox family and the YedZ family of bacterial oxidoreductases. Conclusions This finding gives novel insights about the existence of a previously undetected electron transfer system involved in apoptosis and cancer, and suggests further steps in the experimental characterization of these evolutionarily related families.

  1. A multiscale numerical algorithm for heat transfer simulation between multidimensional CFD and monodimensional system codes

    Science.gov (United States)

    Chierici, A.; Chirco, L.; Da Vià, R.; Manservisi, S.; Scardovelli, R.

    2017-11-01

    Nowadays the rapidly-increasing computational power allows scientists and engineers to perform numerical simulations of complex systems that can involve many scales and several different physical phenomena. In order to perform such simulations, two main strategies can be adopted: one may develop a new numerical code where all the physical phenomena of interest are modelled or one may couple existing validated codes. With the latter option, the creation of a huge and complex numerical code is avoided but efficient methods for data exchange are required since the performance of the simulation is highly influenced by its coupling techniques. In this work we propose a new algorithm that can be used for volume and/or boundary coupling purposes for both multiscale and multiphysics numerical simulations. The proposed algorithm is used for a multiscale simulation involving several CFD domains and monodimensional loops. We adopt the overlapping domain strategy, so the entire flow domain is simulated with the system code. We correct the system code solution by matching averaged inlet and outlet fields located at the boundaries of the CFD domains that overlap parts of the monodimensional loop. In particular we correct pressure losses and enthalpy values with source-sink terms that are imposed in the system code equations. The 1D-CFD coupling is a defective one since the CFD code requires point-wise values on the coupling interfaces and the system code provides only averaged quantities. In particular we impose, as inlet boundary conditions for the CFD domains, the mass flux and the mean enthalpy that are calculated by the system code. With this method the mass balance is preserved at every time step of the simulation. The coupling between consecutive CFD domains is not a defective one since with the proposed algorithm we can interpolate the field solutions on the boundary interfaces. We use the MED data structure as the base structure where all the field operations are

  2. Spatial domain decomposition for neutron transport problems

    International Nuclear Information System (INIS)

    Yavuz, M.; Larsen, E.W.

    1989-01-01

    A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness)

  3. Domain decomposition methods for the neutron diffusion problem

    International Nuclear Information System (INIS)

    Guerin, P.; Baudron, A. M.; Lautard, J. J.

    2010-01-01

    The neutronic simulation of a nuclear reactor core is performed using the neutron transport equation, and leads to an eigenvalue problem in the steady-state case. Among the deterministic resolution methods, simplified transport (SPN) or diffusion approximations are often used. The MINOS solver developed at CEA Saclay uses a mixed dual finite element method for the resolution of these problems. and has shown his efficiency. In order to take into account the heterogeneities of the geometry, a very fine mesh is generally required, and leads to expensive calculations for industrial applications. In order to take advantage of parallel computers, and to reduce the computing time and the local memory requirement, we propose here two domain decomposition methods based on the MINOS solver. The first approach is a component mode synthesis method on overlapping sub-domains: several Eigenmodes solutions of a local problem on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second approach is an iterative method based on a non-overlapping domain decomposition with Robin interface conditions. At each iteration, we solve the problem on each sub-domain with the interface conditions given by the solutions on the adjacent sub-domains estimated at the previous iteration. Numerical results on parallel computers are presented for the diffusion model on realistic 2D and 3D cores. (authors)

  4. Finite-difference time-domain simulation of thermal noise in open cavities

    International Nuclear Information System (INIS)

    Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem; Cao Changqi

    2008-01-01

    A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes

  5. Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR

    Directory of Open Access Journals (Sweden)

    P. Leidenberger

    2006-01-01

    Full Text Available We present a numerical model for time domain reflectometry (TDR signal propagation in dispersive dielectric materials. The numerical probe model is terminated with a parallel circuit, consisting of an ohmic resistor and an ideal capacitance. We derive analytical approximations for the capacitance, the inductance and the conductance of three-wire probes. We couple the time domain model with global optimization in order to reconstruct water content profiles from TDR traces. For efficiently solving the inverse problem we use genetic algorithms combined with a hierarchical parameterization. We investigate the performance of the method by reconstructing synthetically generated profiles. The algorithm is then applied to retrieve dielectric profiles from TDR traces measured in the field. We succeed in reconstructing dielectric and ohmic profiles where conventional methods, based on travel time extraction, fail.

  6. Evaluating, Comparing, and Interpreting Protein Domain Hierarchies

    Science.gov (United States)

    2014-01-01

    Abstract Arranging protein domain sequences hierarchically into evolutionarily divergent subgroups is important for investigating evolutionary history, for speeding up web-based similarity searches, for identifying sequence determinants of protein function, and for genome annotation. However, whether or not a particular hierarchy is optimal is often unclear, and independently constructed hierarchies for the same domain can often differ significantly. This article describes methods for statistically evaluating specific aspects of a hierarchy, for probing the criteria underlying its construction and for direct comparisons between hierarchies. Information theoretical notions are used to quantify the contributions of specific hierarchical features to the underlying statistical model. Such features include subhierarchies, sequence subgroups, individual sequences, and subgroup-associated signature patterns. Underlying properties are graphically displayed in plots of each specific feature's contributions, in heat maps of pattern residue conservation, in “contrast alignments,” and through cross-mapping of subgroups between hierarchies. Together, these approaches provide a deeper understanding of protein domain functional divergence, reveal uncertainties caused by inconsistent patterns of sequence conservation, and help resolve conflicts between competing hierarchies. PMID:24559108

  7. Numerical solution of non-linear diffusion problems

    International Nuclear Information System (INIS)

    Carmen, A. del; Ferreri, J.C.

    1998-01-01

    This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs

  8. A hybrid method combining the Time-Domain Method of Moments, the Time-Domain Uniform Theory of Diffraction and the FDTD

    Directory of Open Access Journals (Sweden)

    A. Becker

    2007-06-01

    Full Text Available In this paper a hybrid method combining the Time-Domain Method of Moments (TD-MoM, the Time-Domain Uniform Theory of Diffraction (TD-UTD and the Finite-Difference Time-Domain Method (FDTD is presented. When applying this new hybrid method, thin-wire antennas are modeled with the TD-MoM, inhomogeneous bodies are modelled with the FDTD and large perfectly conducting plates are modelled with the TD-UTD. All inhomogeneous bodies are enclosed in a so-called FDTD-volume and the thin-wire antennas can be embedded into this volume or can lie outside. The latter avoids the simulation of white space between antennas and inhomogeneous bodies. If the antennas are positioned into the FDTD-volume, their discretization does not need to agree with the grid of the FDTD. By using the TD-UTD large perfectly conducting plates can be considered efficiently in the solution-procedure. Thus this hybrid method allows time-domain simulations of problems including very different classes of objects, applying the respective most appropriate numerical techniques to every object.

  9. Modeling of Coaxial Slot Waveguides Using Analytical and Numerical Approaches: Revisited

    Directory of Open Access Journals (Sweden)

    Kok Yeow You

    2012-01-01

    Full Text Available Our reviews of analytical methods and numerical methods for coaxial slot waveguides are presented. The theories, background, and physical principles related to frequency-domain electromagnetic equations for coaxial waveguides are reassessed. Comparisons of the accuracies of various types of admittance and impedance equations and numerical simulations are made, and the fringing field at the aperture sensor, which is represented by the lumped capacitance circuit, is evaluated. The accuracy and limitations of the analytical equations are explained in detail. The reasons for the replacement of analytical methods by numerical methods are outlined.

  10. A prognostic model for temporal courses that combines temporal abstraction and case-based reasoning.

    Science.gov (United States)

    Schmidt, Rainer; Gierl, Lothar

    2005-03-01

    Since clinical management of patients and clinical research are essentially time-oriented endeavours, reasoning about time has become a hot topic in medical informatics. Here we present a method for prognosis of temporal courses, which combines temporal abstractions with case-based reasoning. It is useful for application domains where neither well-known standards, nor known periodicity, nor a complete domain theory exist. We have used our method in two prognostic applications. The first one deals with prognosis of the kidney function for intensive care patients. The idea is to elicit impairments on time, especially to warn against threatening kidney failures. Our second application deals with a completely different domain, namely geographical medicine. Its intention is to compute early warnings against approaching infectious diseases, which are characterised by irregular cyclic occurrences. So far, we have applied our program on influenza and bronchitis. In this paper, we focus on influenza forecast and show first experimental results.

  11. Wavefield Extrapolation in Pseudo-depth Domain

    KAUST Repository

    Ma, Xuxin

    2011-12-11

    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential

  12. Domain switching in single-phase multiferroics

    Science.gov (United States)

    Jia, Tingting; Cheng, Zhenxiang; Zhao, Hongyang; Kimura, Hideo

    2018-06-01

    Multiferroics are a time-honoured research subject by reason for their tremendous application potential in the information industry, such as in multi-state information storage devices and new types of sensors. An outburst of studies on multiferroicity has been witnessed in the 21st century, although this field has a long research history since the 19th century. Multiferroicity has now become one of the hottest research topics in condensed matter physics and materials science. Numerous efforts have been made to investigate the cross-coupling phenomena among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, and ferroelasticity, especially the coupling between electric and magnetic orderings that would account for the magnetoelectric (ME) effect in multiferroic materials. The magnetoelectric properties and coupling behavior of single phase multiferroics are dominated by their domain structures. It was also noted that, however, the multiferroic materials exhibit very complicated domain structures. Studies on domain structure characterization and domain switching are a crucial step in the exploration of approaches to the control and manipulation of magnetic (electric) properties using an electric (magnetic) field or other means. In this review, following a concise outline of our current basic knowledge on the magnetoelectric (ME) effect, we summarize some important research activities on domain switching in single-phase multiferroic materials in the form of single crystals and thin films, especially domain switching behavior involving strain and the related physics in the last decade. We also introduce recent developments in characterization techniques for domain structures of ferroelectric or multiferroic materials, which have significantly advanced our understanding of domain switching dynamics and interactions. The effects of a series of issues such as electric field, magnetic field, and stress effects on domain switching are been discussed as well. It

  13. Experimental and numerical simulation of carbon manganese steel ...

    African Journals Online (AJOL)

    Experimental and numerical simulation of carbon manganese steel for cyclic plastic behaviour. J Shit, S Dhar, S Acharyya. Abstract. The paper deals with finite element modeling of saturated low cycle fatigue and the cyclic hardening phenomena of the materials Sa333 grade 6 carbon steel and SS316 stainless steel.

  14. Making the Invisible Visible: Enhancing Students' Conceptual Understanding by Introducing Representations of Abstract Objects in a Simulation

    Science.gov (United States)

    Olympiou, Georgios; Zacharias, Zacharia; deJong, Ton

    2013-01-01

    This study aimed to identify if complementing representations of concrete objects with representations of abstract objects improves students' conceptual understanding as they use a simulation to experiment in the domain of "Light and Color". Moreover, we investigated whether students' prior knowledge is a factor that must be considered in deciding…

  15. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    Directory of Open Access Journals (Sweden)

    Matthew J Simpson

    Full Text Available Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0domain. Comparing our exact solutions with numerical approximations confirms the veracity of the method. Furthermore, our examples illustrate a delicate interplay between: (i the rate at which the domain elongates, (ii the diffusivity associated with the spreading density profile, (iii the reaction rate, and (iv the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t.

  16. Abstract Interfaces for Data Analysis Component Architecture for Data Analysis Tools

    CERN Document Server

    Barrand, G; Dönszelmann, M; Johnson, A; Pfeiffer, A

    2001-01-01

    The fast turnover of software technologies, in particular in the domain of interactivity (covering user interface and visualisation), makes it difficult for a small group of people to produce complete and polished software-tools before the underlying technologies make them obsolete. At the HepVis '99 workshop, a working group has been formed to improve the production of software tools for data analysis in HENP. Beside promoting a distributed development organisation, one goal of the group is to systematically design a set of abstract interfaces based on using modern OO analysis and OO design techniques. An initial domain analysis has come up with several categories (components) found in typical data analysis tools: Histograms, Ntuples, Functions, Vectors, Fitter, Plotter, Analyzer and Controller. Special emphasis was put on reducing the couplings between the categories to a minimum, thus optimising re-use and maintainability of any component individually. The interfaces have been defined in Java and C++ and i...

  17. Is the isolated ligand binding domain a good model of the domain in the native receptor?

    Science.gov (United States)

    Deming, Dustin; Cheng, Qing; Jayaraman, Vasanthi

    2003-05-16

    Numerous studies have used the atomic level structure of the isolated ligand binding domain of the glutamate receptor to elucidate the agonist-induced activation and desensitization processes in this group of proteins. However, no study has demonstrated the structural equivalence of the isolated ligand binding fragments and the protein in the native receptor. In this report, using visible absorption spectroscopy we show that the electronic environment of the antagonist 6-cyano-7-nitro-2,3-dihydroxyquinoxaline is identical for the isolated protein and the native glutamate receptors expressed in cells. Our results hence establish that the local structure of the ligand binding site is the same in the two proteins and validate the detailed structure-function relationships that have been developed based on a comparison of the structure of the isolated ligand binding domain and electrophysiological consequences in the native receptor.

  18. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    Science.gov (United States)

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0exact solutions with numerical approximations confirms the veracity of the method. Furthermore, our examples illustrate a delicate interplay between: (i) the rate at which the domain elongates, (ii) the diffusivity associated with the spreading density profile, (iii) the reaction rate, and (iv) the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t).

  19. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  20. Large Scale Simulation of Hydrogen Dispersion by a Stabilized Balancing Domain Decomposition Method

    Directory of Open Access Journals (Sweden)

    Qing-He Yao

    2014-01-01

    Full Text Available The dispersion behaviour of leaking hydrogen in a partially open space is simulated by a balancing domain decomposition method in this work. An analogy of the Boussinesq approximation is employed to describe the connection between the flow field and the concentration field. The linear systems of Navier-Stokes equations and the convection diffusion equation are symmetrized by a pressure stabilized Lagrange-Galerkin method, and thus a balancing domain decomposition method is enabled to solve the interface problem of the domain decomposition system. Numerical results are validated by comparing with the experimental data and available numerical results. The dilution effect of ventilation is investigated, especially at the doors, where flow pattern is complicated and oscillations appear in the past research reported by other researchers. The transient behaviour of hydrogen and the process of accumulation in the partially open space are discussed, and more details are revealed by large scale computation.

  1. Convex polyhedral abstractions, specialisation and property-based predicate splitting in Horn clause verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2014-01-01

    We present an approach to constrained Horn clause (CHC) verification combining three techniques: abstract interpretation over a domain of convex polyhedra, specialisation of the constraints in CHCs using abstract interpretation of query-answer transformed clauses, and refinement by splitting...... in conjunction with specialisation for propagating constraints it can frequently solve challenging verification problems. This is a contribution in itself, but refinement is needed when it fails, and the question of how to refine convex polyhedral analyses has not been studied much. We present a refinement...... technique based on interpolants derived from a counterexample trace; these are used to drive a property-based specialisation that splits predicates, leading in turn to more precise convex polyhedral analyses. The process of specialisation, analysis and splitting can be repeated, in a manner similar...

  2. Programme and abstracts

    International Nuclear Information System (INIS)

    1975-01-01

    Abstracts of 25 papers presented at the congress are given. The abstracts cover various topics including radiotherapy, radiopharmaceuticals, radioimmunoassay, health physics, radiation protection and nuclear medicine

  3. 2018 Congress Podium Abstracts

    Science.gov (United States)

    2018-02-21

    Each abstract has been indexed according to first author. Abstracts appear as they were submitted and have not undergone editing or the Oncology Nursing Forum’s review process. Only abstracts that will be presented appear here. For Congress scheduling information, visit congress.ons.org or check the Congress guide. Data published in abstracts presented at the ONS 43rd Annual Congress are embargoed until the conclusion of the presentation. Coverage and/or distribution of an abstract, poster, or any of its supplemental material to or by the news media, any commercial entity, or individuals, including the authors of said abstract, is strictly prohibited until the embargo is lifted. Promotion of general topics and speakers is encouraged within these guidelines.

  4. Operational Cybersecurity Risks and Their Effect on Adoption of Additive Manufacturing in the Naval Domain

    Science.gov (United States)

    2017-12-01

    CYBERSECURITY RISKS AND THEIR EFFECT ON ADOPTION OF ADDITIVE MANUFACTURING IN THE NAVAL DOMAIN by Michael D. Grimshaw December 2017 Thesis...OF ADDITIVE MANUFACTURING IN THE NAVAL DOMAIN 5. FUNDING NUMBERS 6. AUTHOR(S) Michael D. Grimshaw 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Additive manufacturing (AM) has been proven to provide multiple benefits over traditional

  5. The profile of the domain walls in amorphous glass-covered microwires

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F.; Rigue, J.N. [Universidade Federal de Santa Maria, Campus Cachoeira do Sul, RS (Brazil); Carara, M., E-mail: carara@smail.ufsm.br [Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2017-08-01

    Highlights: • Glass-covered microwires with positive magnetostriction were studied. • The single domain wall dynamics was studied under different conditions. • We have evaluated the profile and shape of the moving domain walls. • The domain wall evolves from a bell shape to a parabolic one when a current is applied. - Abstract: We have studied the domain wall dynamics in Joule-annealed amorphous glass-covered microwires with positive magnetostriction in the presence of an electric current, in order to evaluate the profile and shape of the moving domain wall. Such microwires are known to present magnetic bi-stability when axially magnetized. The single domain wall dynamics was evaluated under different conditions, under an axially applied stress and an electric current. We have observed the well known increasing of the domain wall damping with the applied stress due to the increase in the magnetoelastic anisotropy and, when the current is applied, depending on the current intensity and direction, a modification on the axial domain wall damping. When the orthogonal motion of the domain wall is considered, we have observed that the associated velocity present a smaller dependence on the applied current intensity. It was observed a modification on both the domain wall shape and length. In a general way, the domain wall evolves from a bell shape to a parabolic shape as the current intensity is increased. The results were explained in terms of the change in the magnetic energy promoted by the additional Oersted field.

  6. Going from microscopic to macroscopic on nonuniform growing domains.

    Science.gov (United States)

    Yates, Christian A; Baker, Ruth E; Erban, Radek; Maini, Philip K

    2012-08-01

    Throughout development, chemical cues are employed to guide the functional specification of underlying tissues while the spatiotemporal distributions of such chemicals can be influenced by the growth of the tissue itself. These chemicals, termed morphogens, are often modeled using partial differential equations (PDEs). The connection between discrete stochastic and deterministic continuum models of particle migration on growing domains was elucidated by Baker, Yates, and Erban [Bull. Math. Biol. 72, 719 (2010)] in which the migration of individual particles was modeled as an on-lattice position-jump process. We build on this work by incorporating a more physically reasonable description of domain growth. Instead of allowing underlying lattice elements to instantaneously double in size and divide, we allow incremental element growth and splitting upon reaching a predefined threshold size. Such a description of domain growth necessitates a nonuniform partition of the domain. We first demonstrate that an individual-based stochastic model for particle diffusion on such a nonuniform domain partition is equivalent to a PDE model of the same phenomenon on a nongrowing domain, providing the transition rates (which we derive) are chosen correctly and we partition the domain in the correct manner. We extend this analysis to the case where the domain is allowed to change in size, altering the transition rates as necessary. Through application of the master equation formalism we derive a PDE for particle density on this growing domain and corroborate our findings with numerical simulations.

  7. On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Lu, Mingyu

    2013-01-01

    Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although 'relaxed initial conditions,' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made 'invisible' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE.

  8. On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation

    KAUST Repository

    Shi, Yifei

    2013-08-01

    Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although \\'relaxed initial conditions,\\' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made \\'invisible\\' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE.

  9. Possible description of domain walls in two-dimensional spin glasses by stochastic Loewner evolutions

    International Nuclear Information System (INIS)

    Bernard, Denis; Le Doussal, Pierre; Middleton, A. Alan

    2007-01-01

    Domain walls for spin glasses are believed to be scale invariant; a stronger symmetry, conformal invariance, has the potential to hold. The statistics of zero-temperature Ising spin glass domain walls in two dimensions are used to test the hypothesis that these domain walls are described by a Schramm-Loewner evolution SLE κ . Multiple tests are consistent with SLE κ , where κ=2.32±0.08. Both conformal invariance and the domain Markov property are tested. The latter does not hold in small systems, but detailed numerical evidence suggests that it holds in the continuum limit

  10. Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Aleman, Ramon [Physical Sciences Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00931 (Puerto Rico); Khanna, Gaurav [Natural Science Division, Long Island University, Southampton, NY 11968 (United States); Pullin, Jorge [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States)

    2003-07-21

    We consider the problem of the gravitational waves produced by a particle of negligible mass orbiting a Kerr black hole. We treat the Teukolsky perturbation equation in the time domain numerically as a 2 + 1 partial differential equation. We model the particle by smearing the singularities in the source term by the use of narrow Gaussian distributions. We have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency-domain formalism. The time-domain approach is however geared for a more general evolution, for instance of nearly geodesic orbits under the effects of radiation reaction.

  11. Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation

    International Nuclear Information System (INIS)

    Lopez-Aleman, Ramon; Khanna, Gaurav; Pullin, Jorge

    2003-01-01

    We consider the problem of the gravitational waves produced by a particle of negligible mass orbiting a Kerr black hole. We treat the Teukolsky perturbation equation in the time domain numerically as a 2 + 1 partial differential equation. We model the particle by smearing the singularities in the source term by the use of narrow Gaussian distributions. We have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency-domain formalism. The time-domain approach is however geared for a more general evolution, for instance of nearly geodesic orbits under the effects of radiation reaction

  12. Finite-Difference Frequency-Domain Method in Nanophotonics

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra

    Optics and photonics are exciting, rapidly developing fields building their success largely on use of more and more elaborate artificially made, nanostructured materials. To further advance our understanding of light-matter interactions in these complicated artificial media, numerical modeling...... is often indispensable. This thesis presents the development of rigorous finite-difference method, a very general tool to solve Maxwell’s equations in arbitrary geometries in three dimensions, with an emphasis on the frequency-domain formulation. Enhanced performance of the perfectly matched layers...... is obtained through free space squeezing technique, and nonuniform orthogonal grids are built to greatly improve the accuracy of simulations of highly heterogeneous nanostructures. Examples of the use of the finite-difference frequency-domain method in this thesis range from simulating localized modes...

  13. 2018 Congress Poster Abstracts

    Science.gov (United States)

    2018-02-21

    Each abstract has been indexed according to the first author. Abstracts appear as they were submitted and have not undergone editing or the Oncology Nursing Forum’s review process. Only abstracts that will be presented appear here. Poster numbers are subject to change. For updated poster numbers, visit congress.ons.org or check the Congress guide. Data published in abstracts presented at the ONS 43rd Annual Congress are embargoed until the conclusion of the presentation. Coverage and/or distribution of an abstract, poster, or any of its supplemental material to or by the news media, any commercial entity, or individuals, including the authors of said abstract, is strictly prohibited until the embargo is lifted. Promotion of general topics and speakers is encouraged within these guidelines.

  14. A domain-based approach to predict protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-06-01

    Full Text Available Abstract Background Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins. Results DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms. Conclusion We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed

  15. Analogical scaffolding and the learning of abstract ideas in physics: Empirical studies

    Directory of Open Access Journals (Sweden)

    Noah S. Podolefsky

    2007-09-01

    Full Text Available Previously, we proposed a model of student reasoning which combines the roles of representation, analogy, and layering of meaning—analogical scaffolding [Podolefsky and Finkelstein, Phys. Rev. ST Phys. Educ. Res. 3, 010109 (2007]. The present empirical studies build on this model to examine its utility and demonstrate the vital intertwining of representation, analogy, and conceptual learning in physics. In two studies of student reasoning using analogy, we show that representations couple to students’ existing prior knowledge and also lead to the dynamic formation of new knowledge. Students presented with abstract, concrete, or blended (both abstract and concrete representations produced markedly different response patterns. In the first study, using analogies to scaffold understanding of electromagnetic (EM waves, students in the blend group were more likely to reason productively about EM waves than students in the abstract group by as much as a factor of 3 (73% vs 24% correct, p=0.002. In the second study, examining representation use within one domain (sound waves, the blend group was more likely to reason productively about sound waves than the abstract group by as much as a factor of 2 (48% vs 23% correct, p=0.002. Using the analogical scaffolding model we examine when and why students succeed and fail to use analogies and interpret representations appropriately.

  16. Analogical scaffolding and the learning of abstract ideas in physics: Empirical studies

    Directory of Open Access Journals (Sweden)

    Noah D. Finkelstein

    2007-09-01

    Full Text Available Previously, we proposed a model of student reasoning which combines the roles of representation, analogy, and layering of meaning—analogical scaffolding [Podolefsky and Finkelstein, Phys. Rev. ST Phys. Educ. Res. 3, 010109 (2007]. The present empirical studies build on this model to examine its utility and demonstrate the vital intertwining of representation, analogy, and conceptual learning in physics. In two studies of student reasoning using analogy, we show that representations couple to students’ existing prior knowledge and also lead to the dynamic formation of new knowledge. Students presented with abstract, concrete, or blended (both abstract and concrete representations produced markedly different response patterns. In the first study, using analogies to scaffold understanding of electromagnetic (EM waves, students in the blend group were more likely to reason productively about EM waves than students in the abstract group by as much as a factor of 3 (73% vs 24% correct, p=0.002 . In the second study, examining representation use within one domain (sound waves, the blend group was more likely to reason productively about sound waves than the abstract group by as much as a factor of 2 (48% vs 23% correct, p=0.002 . Using the analogical scaffolding model we examine when and why students succeed and fail to use analogies and interpret representations appropriately.

  17. Developing Teaching Material Software Assisted for Numerical Methods

    Science.gov (United States)

    Handayani, A. D.; Herman, T.; Fatimah, S.

    2017-09-01

    The NCTM vision shows the importance of two things in school mathematics, which is knowing the mathematics of the 21st century and the need to continue to improve mathematics education to answer the challenges of a changing world. One of the competencies associated with the great challenges of the 21st century is the use of help and tools (including IT), such as: knowing the existence of various tools for mathematical activity. One of the significant challenges in mathematical learning is how to teach students about abstract concepts. In this case, technology in the form of mathematics learning software can be used more widely to embed the abstract concept in mathematics. In mathematics learning, the use of mathematical software can make high level math activity become easier accepted by student. Technology can strengthen student learning by delivering numerical, graphic, and symbolic content without spending the time to calculate complex computing problems manually. The purpose of this research is to design and develop teaching materials software assisted for numerical method. The process of developing the teaching material starts from the defining step, the process of designing the learning material developed based on information obtained from the step of early analysis, learners, materials, tasks that support then done the design step or design, then the last step is the development step. The development of teaching materials software assisted for numerical methods is valid in content. While validator assessment for teaching material in numerical methods is good and can be used with little revision.

  18. An efficient domain decomposition strategy for wave loads on surface piercing circular cylinders

    DEFF Research Database (Denmark)

    Paulsen, Bo Terp; Bredmose, Henrik; Bingham, Harry B.

    2014-01-01

    A fully nonlinear domain decomposed solver is proposed for efficient computations of wave loads on surface piercing structures in the time domain. A fully nonlinear potential flow solver was combined with a fully nonlinear Navier–Stokes/VOF solver via generalized coupling zones of arbitrary shape....... Sensitivity tests of the extent of the inner Navier–Stokes/VOF domain were carried out. Numerical computations of wave loads on surface piercing circular cylinders at intermediate water depths are presented. Four different test cases of increasing complexity were considered; 1) weakly nonlinear regular waves...

  19. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    Energy Technology Data Exchange (ETDEWEB)

    Shewamare, Sisay, E-mail: sisayshewa20@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Mal' nev, V.N., E-mail: vadimnmalnev@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2012-12-15

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  20. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    International Nuclear Information System (INIS)

    Shewamare, Sisay; Mal'nev, V.N.

    2012-01-01

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  1. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    Science.gov (United States)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  2. Iterative procedures for wave propagation in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongjai [Rice Univ., Houston, TX (United States); Symes, W.W.

    1996-12-31

    A parallelizable two-grid iterative algorithm incorporating a domain decomposition (DD) method is considered for solving the Helmholtz problem. Since a numerical method requires choosing at least 6 to 8 grid points per wavelength, the coarse-grid problem itself is not an easy task for high frequency applications. We solve the coarse-grid problem using a nonoverlapping DD method. To accelerate the convergence of the iteration, an artificial damping technique and relaxation parameters are introduced. Automatic strategies for finding efficient parameters are discussed. Numerical results are presented to show the effectiveness of the method. It is numerically verified that the rate of convergence of the algorithm depends on the wave number sub-linearly and does not deteriorate as the mesh size decreases.

  3. Scaling properties of domain wall networks

    International Nuclear Information System (INIS)

    Leite, A. M. M.; Martins, C. J. A. P.

    2011-01-01

    We revisit the cosmological evolution of domain wall networks, taking advantage of recent improvements in computing power. We carry out high-resolution field theory simulations in two, three and four spatial dimensions to study the effects of dimensionality and damping on the evolution of the network. Our results are consistent with the expected scale-invariant evolution of the network, which suggests that previous hints of deviations from this behavior may have been due to the limited dynamical range of those simulations. We also use the results of very large (1024 3 ) simulations in three cosmological epochs to provide a calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c w =0.5±0.2 and k w =1.1±0.3.

  4. Importance of a Conserved Lys/Arg Residue for Ligand/PDZ Domain Interactions as Examined by Protein Semisynthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren W; Moran, Griffin E; Sereikaité, Vita

    2016-01-01

    PDZ domains are ubiquitous small protein domains that are mediators of numerous protein-protein interactions, and play a pivotal role in protein trafficking, synaptic transmission, and the assembly of signaling-transduction complexes. In recent years, PDZ domains have emerged as novel and exciting...... drug targets for diseases (in the brain in particular), so understanding the molecular details of PDZ domain interactions is of fundamental importance. PDZ domains bind to a protein partner at either a C-terminal peptide or internal peptide motifs. Here, we examined the importance of a conserved Lys...

  5. Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method

    Science.gov (United States)

    Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2012-01-01

    Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939

  6. Hybrid meshes and domain decomposition for the modeling of oil reservoirs; Maillages hybrides et decomposition de domaine pour la modelisation des reservoirs petroliers

    Energy Technology Data Exchange (ETDEWEB)

    Gaiffe, St

    2000-03-23

    In this thesis, we are interested in the modeling of fluid flow through porous media with 2-D and 3-D unstructured meshes, and in the use of domain decomposition methods. The behavior of flow through porous media is strongly influenced by heterogeneities: either large-scale lithological discontinuities or quite localized phenomena such as fluid flow in the neighbourhood of wells. In these two typical cases, an accurate consideration of the singularities requires the use of adapted meshes. After having shown the limits of classic meshes we present the future prospects offered by hybrid and flexible meshes. Next, we consider the generalization possibilities of the numerical schemes traditionally used in reservoir simulation and we draw two available approaches: mixed finite elements and U-finite volumes. The investigated phenomena being also characterized by different time-scales, special treatments in terms of time discretization on various parts of the domain are required. We think that the combination of domain decomposition methods with operator splitting techniques may provide a promising approach to obtain high flexibility for a local tune-steps management. Consequently, we develop a new numerical scheme for linear parabolic equations which allows to get a higher flexibility in the local space and time steps management. To conclude, a priori estimates and error estimates on the two variables of interest, namely the pressure and the velocity are proposed. (author)

  7. On the initial condition problem of the time domain PMCHWT surface integral equation

    KAUST Repository

    Uysal, Ismail Enes

    2017-05-13

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.

  8. Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer

    Science.gov (United States)

    Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi

    2018-04-01

    Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.

  9. Numerical experiment with modelled return echo of a satellite

    Indian Academy of Sciences (India)

    Abstract. We have simulated the return echo of a satellite altimeter from a rough ocean surface using an analytical formula and have studied its sensitivity with respect to various oceanic and altimeter parameters. Our numerical expcriment shows that for normally observed significant wave heights (SWFI) the effect of ...

  10. On the sedimentation problems in water abstraction channels at power plant sites at tidal estuaries

    International Nuclear Information System (INIS)

    Jensen, J.; Arns, A.; Frank, T.; Meiswinkel, R.; Richei, A.

    2010-01-01

    The required cooling water supply of a nuclear power plant the required flow deepness in the water abstraction channels has to be provided. Since the abstraction channels are usually in main stream orientation of the river periodic sedimentation occur, that have to be removed by dredging techniques. Especially in tidal estuaries the complex flow situation induces transport mechanisms that have to be studied in order to develop cost saving and effective measures and procedures to reduce the sedimentation and pollutants deposition. The authors recommend experimental determinations of the sold material transport and numerical hydrodynamic transport modeling to identify the transport pathways.

  11. Benchmarking numerical codes for tracer transport with the aid of laboratory-scale experiments in 2D heterogeneous porous media.

    Science.gov (United States)

    Maina, Fadji Hassane; Ackerer, Philippe; Younes, Anis; Guadagnini, Alberto; Berkowitz, Brian

    2017-06-07

    We present a combined experimental and numerical modeling study that addresses two principal questions: (i) is any particular Eulerian-based method used to solve the classical advection-dispersion equation (ADE) clearly superior (relative to the others), in terms of yielding solutions that reproduce BTCs of the kind that are typically sampled at the outlet of a laboratory cell? and (ii) in the presence of matches of comparable quality against such BTCs, do any of these methods render different (or similar) numerical BTCs at locations within the domain? To address these questions, we obtained measurements from carefully controlled laboratory experiments, and employ them as a reference against which numerical results are benchmarked and compared. The experiments measure solute transport breakthrough curves (BTCs) through a square domain containing various configurations of coarse, medium, and fine quartz sand. The approaches to solve the ADE involve Eulerian-Lagrangian and Eulerian (finite volume, finite elements, mixed and discontinuous finite elements) numerical methods. Model calibration is not examined; permeability and porosity of each sand were determined previously through separate, standard laboratory tests, while dispersivities are assigned values proportional to mean grain size. We find that the spatial discretization of the flow field is of critical importance, due to the non-uniformity of the domain. Although simulated BTCs at the system outlet are observed to be very similar for these various numerical methods, computed local (point-wise, inside the domain) BTCs can be very different. We find that none of the numerical methods is able to fully reproduce the measured BTCs. The impact of model parameter uncertainty on the calculated BTCs is characterized through a set of numerical Monte Carlo simulations; in cases where the impact is significant, assessment of simulation matches to the experimental data can be ambiguous. Copyright © 2017 Elsevier B.V. All

  12. COMSOL-PHREEQC: a tool for high performance numerical simulation of reactive transport phenomena

    International Nuclear Information System (INIS)

    Nardi, Albert; Vries, Luis Manuel de; Trinchero, Paolo; Idiart, Andres; Molinero, Jorge

    2012-01-01

    Document available in extended abstract form only. Comsol Multiphysics (COMSOL, from now on) is a powerful Finite Element software environment for the modelling and simulation of a large number of physics-based systems. The user can apply variables, expressions or numbers directly to solid and fluid domains, boundaries, edges and points, independently of the computational mesh. COMSOL then internally compiles a set of equations representing the entire model. The availability of extremely powerful pre and post processors makes COMSOL a numerical platform well known and extensively used in many branches of sciences and engineering. On the other hand, PHREEQC is a freely available computer program for simulating chemical reactions and transport processes in aqueous systems. It is perhaps the most widely used geochemical code in the scientific community and is openly distributed. The program is based on equilibrium chemistry of aqueous solutions interacting with minerals, gases, solid solutions, exchangers, and sorption surfaces, but also includes the capability to model kinetic reactions with rate equations that are user-specified in a very flexible way by means of Basic statements directly written in the input file. Here we present COMSOL-PHREEQC, a software interface able to communicate and couple these two powerful simulators by means of a Java interface. The methodology is based on Sequential Non Iterative Approach (SNIA), where PHREEQC is compiled as a dynamic subroutine (iPhreeqc) that is called by the interface to solve the geochemical system at every element of the finite element mesh of COMSOL. The numerical tool has been extensively verified by comparison with computed results of 1D, 2D and 3D benchmark examples solved with other reactive transport simulators. COMSOL-PHREEQC is parallelized so that CPU time can be highly optimized in multi-core processors or clusters. Then, fully 3D detailed reactive transport problems can be readily simulated by means of

  13. Numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities

    International Nuclear Information System (INIS)

    Milioli, F.E.

    1985-01-01

    In this research work a numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities of a Boussinesq fluid is presented. The conservation equations are written in a general curvilinear coordinate system which matches the irregular boundaries of the domain. The nonorthogonal system is generated by a suitable system of elliptic equations. The momentum and continuity equations are transformed from the Cartesian system to the general curvilinear system keeping the Cartesian velocity components as the dependent variables in the transformed domain. Finite difference equations are obtained for the contravariant velocity components in the transformed domain. The numerical calculations are performed in a fixed rectangular domain and both the Cartesian and the contravariant velocity components take part in the solutiomn procedure. The dependent variables are arranged on the grid in a staggered manner. The numerical model is tested by solving the driven flow in a square cavity with a moving side using a nonorthogoanl grid. The natural convenction in a square cavity, using an orthogonal and a nonorthogonal grid, is also solved for the model test. Also, the solution for the buoyancy flow between a square cylinder placed inside a circular cylinder is presented. The results of the test problems are compared with those available in the specialized literature. Finally, in order to show the generality of the model, the natural convection problem inside a very irregular cavity is presented. (Author) [pt

  14. Behavioral modeling of SRIM tables for numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Martinie, S., E-mail: sebastien.martinie@cea.fr; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L., E-mail: jean-luc.autran@univ-amu.fr

    2014-03-01

    Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits.

  15. Behavioral modeling of SRIM tables for numerical simulation

    International Nuclear Information System (INIS)

    Martinie, S.; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L.

    2014-01-01

    Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits

  16. The interior of axisymmetric and stationary black holes: Numerical and analytical studies

    International Nuclear Information System (INIS)

    Ansorg, Marcus; Hennig, Joerg

    2011-01-01

    We investigate the interior hyperbolic region of axisymmetric and stationary black holes surrounded by a matter distribution. First, we treat the corresponding initial value problem of the hyperbolic Einstein equations numerically in terms of a single-domain fully pseudo-spectral scheme. Thereafter, a rigorous mathematical approach is given, in which soliton methods are utilized to derive an explicit relation between the event horizon and an inner Cauchy horizon. This horizon arises as the boundary of the future domain of dependence of the event horizon. Our numerical studies provide strong evidence for the validity of the universal relation A + A - (8πJ) 2 where A + and A - are the areas of event and inner Cauchy horizon respectively, and J denotes the angular momentum. With our analytical considerations we are able to prove this relation rigorously.

  17. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Abstracts of the papers given at the conference are presented. The abstracts are arranged under sessions entitled:Theoretical Physics; Nuclear Physics; Solid State Physics; Spectroscopy; Physics Education; SANCGASS; Astronomy; Plasma Physics; Physics in Industry; Applied and General Physics.

  18. Program and abstracts

    International Nuclear Information System (INIS)

    1975-01-01

    Abstracts of the papers given at the conference are presented. The abstracts are arranged under sessions entitled:Theoretical Physics; Nuclear Physics; Solid State Physics; Spectroscopy; Physics Education; SANCGASS; Astronomy; Plasma Physics; Physics in Industry; Applied and General Physics

  19. Self-consistent field theory simulations of polymers on arbitrary domains

    Energy Technology Data Exchange (ETDEWEB)

    Ouaknin, Gaddiel, E-mail: gaddielouaknin@umail.ucsb.edu [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070 (United States); Laachi, Nabil; Delaney, Kris [Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5080 (United States); Fredrickson, Glenn H. [Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5080 (United States); Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080 (United States); Department of Materials, University of California, Santa Barbara, CA 93106-5050 (United States); Gibou, Frederic [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070 (United States); Department of Computer Science, University of California, Santa Barbara, CA 93106-5110 (United States)

    2016-12-15

    We introduce a framework for simulating the mesoscale self-assembly of block copolymers in arbitrary confined geometries subject to Neumann boundary conditions. We employ a hybrid finite difference/volume approach to discretize the mean-field equations on an irregular domain represented implicitly by a level-set function. The numerical treatment of the Neumann boundary conditions is sharp, i.e. it avoids an artificial smearing in the irregular domain boundary. This strategy enables the study of self-assembly in confined domains and enables the computation of physically meaningful quantities at the domain interface. In addition, we employ adaptive grids encoded with Quad-/Oc-trees in parallel to automatically refine the grid where the statistical fields vary rapidly as well as at the boundary of the confined domain. This approach results in a significant reduction in the number of degrees of freedom and makes the simulations in arbitrary domains using effective boundary conditions computationally efficient in terms of both speed and memory requirement. Finally, in the case of regular periodic domains, where pseudo-spectral approaches are superior to finite differences in terms of CPU time and accuracy, we use the adaptive strategy to store chain propagators, reducing the memory footprint without loss of accuracy in computed physical observables.

  20. Program and abstracts

    International Nuclear Information System (INIS)

    1976-01-01

    Abstracts of the papers given at the conference are presented. The abstracts are arranged under sessions entitled: Theoretical Physics; Nuclear Physics; Solid State Physics; Spectroscopy; Plasma Physics; Solar-Terrestrial Physics; Astrophysics and Astronomy; Radioastronomy; General Physics; Applied Physics; Industrial Physics

  1. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  2. A new time–space domain high-order finite-difference method for the acoustic wave equation

    KAUST Repository

    Liu, Yang; Sen, Mrinal K.

    2009-01-01

    A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time-space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time-space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2 M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2 M)th-order accuracy and is always stable. The 2D method can reach (2 M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2 M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time-space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. © 2009 Elsevier Inc.

  3. A new time–space domain high-order finite-difference method for the acoustic wave equation

    KAUST Repository

    Liu, Yang

    2009-12-01

    A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time-space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time-space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2 M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2 M)th-order accuracy and is always stable. The 2D method can reach (2 M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2 M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time-space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. © 2009 Elsevier Inc.

  4. Application of plurigaussian simulation to delineate the layout of alteration domains in Sungun copper deposit

    Science.gov (United States)

    Talebi, Hassan; Asghari, Omid; Emery, Xavier

    2013-12-01

    An accurate estimation of mineral grades in ore deposits with heterogeneous spatial variations requires defining geological domains that differentiate the types of mineralogy, alteration and lithology. Deterministic models define the layout of the domains based on the interpretation of the drill holes and do not take into account the uncertainty in areas with fewer data. Plurigaussian simulation (PGS) can be an alternative to generate multiple numerical models of the ore body, with the aim of assessing the uncertainty in the domain boundaries and improving the geological controls in the characterization of quantitative attributes. This study addresses the application of PGS to Sungun porphyry copper deposit (Iran), in order to simulate the layout of four hypogene alteration zones: potassic, phyllic, propylitic and argillic. The aim of this study is to construct numerical models in which the alteration structures reflect the evolution observed in the geology.

  5. Abstracting Concepts and Methods.

    Science.gov (United States)

    Borko, Harold; Bernier, Charles L.

    This text provides a complete discussion of abstracts--their history, production, organization, publication--and of indexing. Instructions for abstracting are outlined, and standards and criteria for abstracting are stated. Management, automation, and personnel are discussed in terms of possible economies that can be derived from the introduction…

  6. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain

    Directory of Open Access Journals (Sweden)

    Spaan Willy JM

    2009-05-01

    Full Text Available Abstract Background Hepatitis C virus (HCV induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. Results A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH. The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. Conclusion Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.

  7. Numerical solution of fully developed heat transfer problem with constant wall temperature and application to isosceles triangle and parabolic ducts

    International Nuclear Information System (INIS)

    Karabulut, Halit; Ipci, Duygu; Cinar, Can

    2016-01-01

    Highlights: • A numerical method has been developed for fully developed flows with constant wall temperature. • The governing equations were transformed to boundary fitted coordinates. • The Nusselt number of parabolic duct has been investigated. • Validation of the numerical method has been made by comparing published data. - Abstract: In motor-vehicles the use of more compact radiators have several advantages such as; improving the aerodynamic form of cars, reducing the weight and volume of the cars, reducing the material consumption and environmental pollutions, and enabling faster increase of the engine coolant temperature after starting to run and thereby improving the thermal efficiency. For the design of efficient and compact radiators, the robust determination of the heat transfer coefficient becomes imperative. In this study the external heat transfer coefficient of the radiator has been investigated for hydrodynamically and thermally fully developed flows in channels with constant wall temperature. In such situation the numerical treatment of the problem results in a trivial solution. To find a non-trivial solution the problem is treated either as an eigenvalue problem or as a thermally developing flow problem. In this study a numerical solution procedure has been developed and the heat transfer coefficients of the fully developed flow in triangular and parabolic air channels were investigated. The governing equations were transformed to boundary fitted coordinates and numerically solved. The non-trivial solution was obtained by means of guessing the temperature of any grid point within the solution domain. The correction of the guessed temperature was performed via smoothing the temperature profile on a line passing through the mentioned grid point. Results were compared with literature data and found to be consistent.

  8. Numerical resolution of the time-domain three-dimensional Maxwell equations by a conform finite element approximation. Part II: numerical results

    International Nuclear Information System (INIS)

    Heintze, E.

    1993-01-01

    The aim of this report is to validate the program MAX3D built up from the discretization of the formulation (FB) established in part 1. A qualitative and quantitative analysis is carried out on numerical results obtained with various test cases of which, for most of them, analytical solutions are known. 32 figs., 3 refs

  9. A Momentum-Exchange/Fictitious Domain-Lattice Boltzmann Method for Solving Particle Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seok Yun; Yoon, Joon Yong [Hanyang Univ., Seoul (Korea, Republic of); Kim, Chul Kyu [Korea Institute of Civil Engineering and Building Technology, Goyang (Korea, Republic of); Shin, Myung Seob [Korea Intellectual Property Office(KIPO), Daejeon (Korea, Republic of)

    2016-06-15

    This study presents a Lattice Boltzmann Method (LBM) coupled with a momentum-exchange approach/fictitious domain (MEA/FD) method for the simulation of particle suspensions. The method combines the advantages of the LB and the FD methods by using two unrelated meshes, namely, a Eulerian mesh for the flow domain and a Lagrangian mesh for the solid domain. The rigid body conditions are enforced by the momentum-exchange scheme in which the desired value of velocity is imposed directly in the particle inner domain by introducing a pseudo body force to satisfy the constraint of rigid body motion, which is the key idea of a fictitious domain (FD) method. The LB-MEA/FD method has been validated by simulating two different cases, and the results have been compared with those through other methods. The numerical evidence illustrated the capability and robustness of the present method for simulating particle suspensions.

  10. Optimal time-domain technique for pulse width modulation in power electronics

    Directory of Open Access Journals (Sweden)

    I. Mayergoyz

    2018-05-01

    Full Text Available Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.

  11. Completeness of Lyapunov Abstraction

    Directory of Open Access Journals (Sweden)

    Rafael Wisniewski

    2013-08-01

    Full Text Available In this work, we continue our study on discrete abstractions of dynamical systems. To this end, we use a family of partitioning functions to generate an abstraction. The intersection of sub-level sets of the partitioning functions defines cells, which are regarded as discrete objects. The union of cells makes up the state space of the dynamical systems. Our construction gives rise to a combinatorial object - a timed automaton. We examine sound and complete abstractions. An abstraction is said to be sound when the flow of the time automata covers the flow lines of the dynamical systems. If the dynamics of the dynamical system and the time automaton are equivalent, the abstraction is complete. The commonly accepted paradigm for partitioning functions is that they ought to be transversal to the studied vector field. We show that there is no complete partitioning with transversal functions, even for particular dynamical systems whose critical sets are isolated critical points. Therefore, we allow the directional derivative along the vector field to be non-positive in this work. This considerably complicates the abstraction technique. For understanding dynamical systems, it is vital to study stable and unstable manifolds and their intersections. These objects appear naturally in this work. Indeed, we show that for an abstraction to be complete, the set of critical points of an abstraction function shall contain either the stable or unstable manifold of the dynamical system.

  12. Single Molecule Effects of Osteogenesis Imperfecta Mutations in Tropocollagen Protein Domains

    Science.gov (United States)

    2008-12-02

    Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains Alfonso Gautieri,1,2 Simone Vesentini,2 Alberto...2008 proteinscience.org Abstract: Osteogenesis imperfecta (OI) is a genetic disease characterized by fragile bones, skeletal deformities and, in severe...diagnosis and treatment, an effort referred to as materiomics. Keywords: steered molecular dynamics; osteogenesis imperfecta ; Young’s modulus; collagen

  13. Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates

    Science.gov (United States)

    Chang, Shu-Ming; Lin, Chang-Shou; Lin, Tai-Chia; Lin, Wen-Wei

    2004-09-01

    In this paper, we study the distribution of m segregated nodal domains of the m-mixture of Bose-Einstein condensates under positive and large repulsive scattering lengths. It is shown that components of positive bound states may repel each other and form segregated nodal domains as the repulsive scattering lengths go to infinity. Efficient numerical schemes are created to confirm our theoretical results and discover a new phenomenon called verticillate multiplying, i.e., the generation of multiple verticillate structures. In addition, our proposed Gauss-Seidel-type iteration method is very effective in that it converges linearly in 10-20 steps.

  14. Spectral domain optical coherence tomography findings in tamoxifen retinopathy--a case report.

    Science.gov (United States)

    Nair, Sandhya Narayanan; Anantharaman, Giridhar; Gopalakrishnan, Mahesh; Vyas, Jyothiprakash

    2013-01-01

    To report spectral domain optical coherence tomography findings in a case of typical tamoxifen retinopathy. In this observational case report, a patient with tamoxifen retinopathy was imaged with spectral domain optical coherence tomography and fundus auto fluorescence. Spectral domain optical coherence tomography showed numerous hyperreflective spots within the retina, mainly in the inner retinal layers in both the eyes. The external limiting membrane, the Inner Segment-Outer Segment junction, and the photoreceptors were not discernable at the fovea in the right eye. In the left eye, there was foveal atrophy with total loss of photoreceptors. The autofluorescent images showed macular hypofluorescence with foveal hyperfluorescence. Spectral domain optical coherence tomography demonstrated abnormalities in the outer retinal layers in tamoxifen retinopathy. There were also characteristic alterations in the autofluorescence pattern at the macula in tamoxifen retinopathy.

  15. Abstract algebra

    CERN Document Server

    Garrett, Paul B

    2007-01-01

    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  16. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    KAUST Repository

    Valdes, Felipe; Ghaffari-Miab, Mohsen; Andriulli, Francesco P.; Cools, Kristof; Michielssen,

    2013-01-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  17. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    KAUST Repository

    Valdes, Felipe

    2013-05-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  18. Modular Domain-Specific Language Components in Scala

    DEFF Research Database (Denmark)

    Hofer, Christian; Ostermann, Klaus

    2010-01-01

    Programs in domain-­specific embedded languages (DSELs) can be represented in the host language in different ways, for instance implicitly as libraries, or explicitly in the form of abstract syntax trees. Each of these representations has its own strengths and weaknesses. The implicit approach ha...... or transformation. We propose a new design for implementing DSELs in Scala which makes it easy to use different program representations at the same time. It enables the DSL implementor to define modular language components and to compose transformations and interpretations for them....

  19. Abstracts and abstracting a genre and set of skills for the twenty-first century

    CERN Document Server

    Koltay, Tibor

    2010-01-01

    Despite their changing role, abstracts remain useful in the digital world. Highly beneficial to information professionals and researchers who work and publish in different fields, this book summarizes the most important and up-to-date theory of abstracting, as well as giving advice and examples for the practice of writing different kinds of abstracts. The book discusses the length, the functions and basic structure of abstracts, outlining a new approach to informative and indicative abstracts. The abstractors' personality, their linguistic and non-linguistic knowledge and skills are also discu

  20. A Numerical Algorithm to find All Scalar Feedback Nash Equilibria

    NARCIS (Netherlands)

    Engwerda, J.C.

    2013-01-01

    Abstract: In this note we generalize a numerical algorithm presented in [9] to calculate all solutions of the scalar algebraic Riccati equations that play an important role in finding feedback Nash equilibria of the scalar N-player linear affine-quadratic differential game. The algorithm is based on

  1. Numerical simulations of the metallicity distribution in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Ripamonti, E.; Tolstoy, E.; Helmi, A.; Battaglia, G.; Abel, T.

    2006-01-01

    Abstract: Recent observations show that the number of stars with very low metallicities in the dwarf spheroidal satellites of the Milky Way is low, despite the low average metallicities of stars in these systems. We undertake numerical simulations of star formation and metal enrichment of dwarf

  2. Atomic resolution structure of the E. coli YajR transporter YAM domain

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Daohua [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China); School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao, Yan [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China); School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Fan, Junping; Liu, Xuehui; Wu, Yan; Feng, Wei [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China); Zhang, Xuejun C., E-mail: zhangc@ibp.ac.cn [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China)

    2014-07-25

    Highlights: • We report the crystal structure of the YAM domain of YajR transporter at 1.07 Å. • The YAM dimerization is related to the halogen-dependent high thermal stability. • A belt of poly-pentagonal water molecules was observed in the dimer interface. - Abstract: YajR is an Escherichia coli transporter that belongs to the major facilitator superfamily. Unlike most MFS transporters, YajR contains a carboxyl terminal, cytosolic domain of 67 amino acid residues termed YAM domain. Although it is speculated that the function of this small soluble domain is to regulate the conformational change of the 12-helix transmembrane domain, its precise regulatory role remains unclear. Here, we report the crystal structure of the YAM domain at 1.07-Å resolution, along with its structure determined using nuclear magnetic resonance. Detailed analysis of the high resolution structure revealed a symmetrical dimer in which a belt of well-ordered poly-pentagonal water molecules is embedded. A mutagenesis experiment and a thermal stability assay were used to analyze the putative role of this dimerization in response to changes in halogen concentration.

  3. Truthful Monadic Abstractions

    DEFF Research Database (Denmark)

    Brock-Nannestad, Taus; Schürmann, Carsten

    2012-01-01

    indefinitely, finding neither a proof nor a disproof of a given subgoal. In this paper we characterize a family of truth-preserving abstractions from intuitionistic first-order logic to the monadic fragment of classical first-order logic. Because they are truthful, these abstractions can be used to disprove...

  4. Cyberspace at the Operational Level: Warfighting in All Five Domains

    Science.gov (United States)

    2016-05-13

    Sean Hall 5e. TASK NUMBER Paper Advisor: Prof John Sappenfield 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...decisive, operational objective, center of gravity , planner, commander. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...requires much more than doctrinal definitions. History shows how well or poorly nations integrated the sea, air, and space domains in their infancy

  5. Numerical modelling of the HAB Energy Buoy: Stage 1

    DEFF Research Database (Denmark)

    Kurniawan, Adi

    This report presents the results of the first stage of the project "Numerical modelling of the HAB Energy Buoy". The objectives of this stage are to develop a numerical model of the HAB Energy Buoy, a self-reacting wave energy device consisting of two heaving bodies, and to investigate a number...... and a summary of the main findings is presented. A numerical model of the HAB Energy Buoy has been developed in the frequency domain using two alternative formulations of the equations of motion. The model is capable of predicting the power capture, motion response, and power take-off loads of the device...... configuration are imposed to give a more realistic prediction of the power capture and help ensure a fair comparison. Recommendations with regard to the HAB design are finally suggested....

  6. The Numerical Simulation of the Nanosecond Switching of a p-SOS Diode

    Science.gov (United States)

    Podolska, N. I.; Lyublinskiy, A. G.; Grekhov, I. V.

    2017-12-01

    Abrupt high-density reverse current interruption has been numerically simulated for switching from forward to reverse bias in a silicon p + P 0 n + structure ( p-SOS diode). It has been shown that the current interruption in this structure occurs as a result of the formation of two dynamic domains of a strong electric field in regions in which the free carrier concentration substantially exceeds the concentration of the doping impurity. The first domain is formed in the n + region at the n + P 0 junction, while the second domain is formed in the P 0 region at the interface with the p + layer. The second domain expands much faster, and this domain mainly determines the current interruption rate. Good agreement is achieved between the simulation results and the experimental data when the actual electric circuit determining the electron-hole plasma pumping in and out is accurately taken into account.

  7. A simple numerical model of a geometrically nonlinear Timoshenko beam

    NARCIS (Netherlands)

    Keijdener, C.; Metrikine, A.

    2015-01-01

    In the original problem for which this model was developed, onedimensional flexible objects interact through a non-linear contact model. Due to the non-linear nature of the contact model, a numerical time-domain approach was adopted. One of the goals was to see if the coupling between axial and

  8. Assessment of adherence to the CONSORT statement for quality of reports on randomized controlled trial abstracts from four high-impact general medical journals.

    Science.gov (United States)

    Ghimire, Saurav; Kyung, Eunjung; Kang, Wonku; Kim, Eunyoung

    2012-06-07

    The extended Consolidated Standards of Reporting Trials (CONSORT) Statement for Abstracts was developed to improve the quality of reports of randomized controlled trials (RCTs) because readers often base their assessment of a trial solely on the abstract. To date, few data exist regarding whether it has achieved this goal. We evaluated the extent of adherence to the CONSORT for Abstract statement for quality of reports on RCT abstracts by four high-impact general medical journals. A descriptive analysis of published RCT abstracts in The New England Journal of Medicine (NEJM), The Lancet, The Journal of American Medical Association (JAMA), and the British Medical Journal (BMJ) in the year 2010 was conducted by two reviewers, independently extracting data from a MEDLINE/PubMed search. We identified 271 potential RCT abstracts meeting our inclusion criteria. More than half of the abstracts identified the study as randomized in the title (58.7%; 159/271), reported the specific objective/hypothesis (72.7%; 197/271), described participant eligibility criteria with settings for data collection (60.9%; 165/271), detailed the interventions for both groups (90.8%; 246/271), and clearly defined the primary outcome (94.8%; 257/271). However, the methodological quality domains were inadequately reported: allocation concealment (11.8%; 32/271) and details of blinding (21.0%; 57/271). Reporting the primary outcome results for each group was done in 84.1% (228/271). Almost all of the abstracts reported trial registration (99.3%; 269/271), whereas reports of funding and of harm or side effects from the interventions were found in only 47.6% (129/271) and 42.8% (116/271) of the abstracts, respectively. These findings show inconsistencies and non-adherence to the CONSORT for abstract guidelines, especially in the methodological quality domains. Improvements in the quality of RCT reports can be expected by adhering to existing standards and guidelines as expressed by the CONSORT group.

  9. Direct numerical simulation of rotating fluid flow in a closed cylinder

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Christensen, Erik Adler

    1995-01-01

    , is validated against experimental visualizations of both transient and stable periodic flows. The complexity of the flow problem is illuminated numerically by injecting flow tracers into the flow domain and following their evolution in time. The vortex dynamics appears as stretching, folding and squeezing...

  10. A hybrid absorbing boundary condition for frequency-domain finite-difference modelling

    International Nuclear Information System (INIS)

    Ren, Zhiming; Liu, Yang

    2013-01-01

    Liu and Sen (2010 Geophysics 75 A1–6; 2012 Geophys. Prospect. 60 1114–32) proposed an efficient hybrid scheme to significantly absorb boundary reflections for acoustic and elastic wave modelling in the time domain. In this paper, we extend the hybrid absorbing boundary condition (ABC) into the frequency domain and develop specific strategies for regular-grid and staggered-grid modelling, respectively. Numerical modelling tests of acoustic, visco-acoustic, elastic and vertically transversely isotropic (VTI) equations show significant absorptions for frequency-domain modelling. The modelling results of the Marmousi model and the salt model also demonstrate the effectiveness of the hybrid ABC. For elastic modelling, the hybrid Higdon ABC and the hybrid Clayton and Engquist (CE) ABC are implemented, respectively. Numerical simulations show that the hybrid Higdon ABC gets better absorption than the hybrid CE ABC, especially for S-waves. We further compare the hybrid ABC with the classical perfectly matched layer (PML). Results show that the two ABCs cost the same computation time and memory space for the same absorption width. However, the hybrid ABC is more effective than the PML for the same small absorption width and the absorption effects of the two ABCs gradually become similar when the absorption width is increased. (paper)

  11. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  12. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-02-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  13. A numerical study on the usage of phase change material (PCM) to prolong compressor off period in a beverage cooler

    International Nuclear Information System (INIS)

    Ezan, Mehmet Akif; Ozcan Doganay, Esra; Yavuz, Fazil Erinc; Tavman, Ismail Hakkı

    2017-01-01

    Highlights: • A 3D transient model is developed in a commercial CFD solver for vertical beverage cooler with PCM. • PCM slab is directly contacted with the airflow. • Regarding the run-time ratio best performance is achieved with 6 mm PCM slab. • Due to thermal inertia within the PCM domain, the VBC preserves its temperature for a long time. - Abstract: This study numerically investigates the influence of integration of a phase change material (PCM) slab inside a vertical beverage cooler (VBC) on the energy consumption, the thermal stability and flow characteristics of air inside the cooler. The PCM, water, slab is placed on the rear side of the flat plate roll bond evaporator with five different thicknesses, such as 2, 4, 6, 8, and 10 mm. In the current work, transient numerical analyses are performed with ANSYS-FLUENT software for an empty cooler. To simulate the on/off controller of the cooling system a dedicated user-defined-function (UDF) is implemented in the software. Unlike the counterparts in the recent literature, instead of reducing the problem into a 1D or 2D lumped models a three-dimensional cooler domain is simulated in a commercial CFD solver. The predictions are compared with the experimental measurement for the cooler without PCM regarding the transient variations of the mean temperatures of evaporator surface and the indoor air. Consequently, the parametric set of analyses deduced that the PCM integration into the cooler enhances the cooling performance of the VBC by prolonging compressor off duration. Moreover, during the compressor off time, PCM preserves the air temperature inside the refrigerated space in the desired range by limiting the sudden temperature increments.

  14. Birth and death of protein domains: A simple model of evolution explains power law behavior

    Directory of Open Access Journals (Sweden)

    Berezovskaya Faina S

    2002-10-01

    Full Text Available Abstract Background Power distributions appear in numerous biological, physical and other contexts, which appear to be fundamentally different. In biology, power laws have been claimed to describe the distributions of the connections of enzymes and metabolites in metabolic networks, the number of interactions partners of a given protein, the number of members in paralogous families, and other quantities. In network analysis, power laws imply evolution of the network with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs. Exploration of different types of evolutionary models in an attempt to determine which of them lead to power law distributions has the potential of revealing non-trivial aspects of genome evolution. Results A simple model of evolution of the domain composition of proteomes was developed, with the following elementary processes: i domain birth (duplication with divergence, ii death (inactivation and/or deletion, and iii innovation (emergence from non-coding or non-globular sequences or acquisition via horizontal gene transfer. This formalism can be described as a birth, death and innovation model (BDIM. The formulas for equilibrium frequencies of domain families of different size and the total number of families at equilibrium are derived for a general BDIM. All asymptotics of equilibrium frequencies of domain families possible for the given type of models are found and their appearance depending on model parameters is investigated. It is proved that the power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and deletion rates are asymptotically equal up to the second order. It is further proved that any power asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs, namely simple, linear, polynomial and rational

  15. Modeling Patient Treatment With Medical Records: An Abstraction Hierarchy to Understand User Competencies and Needs.

    Science.gov (United States)

    St-Maurice, Justin D; Burns, Catherine M

    2017-07-28

    Health care is a complex sociotechnical system. Patient treatment is evolving and needs to incorporate the use of technology and new patient-centered treatment paradigms. Cognitive work analysis (CWA) is an effective framework for understanding complex systems, and work domain analysis (WDA) is useful for understanding complex ecologies. Although previous applications of CWA have described patient treatment, due to their scope of work patients were previously characterized as biomedical machines, rather than patient actors involved in their own care. An abstraction hierarchy that characterizes patients as beings with complex social values and priorities is needed. This can help better understand treatment in a modern approach to care. The purpose of this study was to perform a WDA to represent the treatment of patients with medical records. The methods to develop this model included the analysis of written texts and collaboration with subject matter experts. Our WDA represents the ecology through its functional purposes, abstract functions, generalized functions, physical functions, and physical forms. Compared with other work domain models, this model is able to articulate the nuanced balance between medical treatment, patient education, and limited health care resources. Concepts in the analysis were similar to the modeling choices of other WDAs but combined them in as a comprehensive, systematic, and contextual overview. The model is helpful to understand user competencies and needs. Future models could be developed to model the patient's domain and enable the exploration of the shared decision-making (SDM) paradigm. Our work domain model links treatment goals, decision-making constraints, and task workflows. This model can be used by system developers who would like to use ecological interface design (EID) to improve systems. Our hierarchy is the first in a future set that could explore new treatment paradigms. Future hierarchies could model the patient as a

  16. A general model and numerical method for multiconductor systems in frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Jonas, F. [Swedish Transmission Research Inst., Ludvika (Sweden); Varju, G. [Technical Univ. of Budapest (Hungary). Dept. of Electric Power Systems

    1995-12-01

    A general multi-conductor model is described in this article. It is based on the distributed line parameter simulation with acceptance of non-homogeneous line sections, discrete and distributed sources, complex discrete elements of any kind at any point. Every parameter and element can be non-linear. The model and the software implementation has successfully been used for solution of different frequency domain problems, e.g. harmonic penetration in unbalanced power networks, railway circuits with auto- or booster transformers, telecommunication circuits. The results of a number of calculated cases have been verified by field tests. An application example is demonstrated in the article: calculation of telecommunication disturbances caused by a railway line with booster transformers in an armored cable. 10 refs, 10 figs, 2 tabs

  17. Numerical Modeling of a Spherical Array of Monopoles Using FDTD Method

    DEFF Research Database (Denmark)

    Franek, Ondrej; Pedersen, Gert Frølund; Andersen, Jørgen Bach

    2006-01-01

    In this paper, the spherical-coordinate finite-difference time-domain method is applied to numerical analysis of phased array of monopoles distributed over a sphere. Outer boundary of the given problem is modeled by accurate spherical-coordinate anisotropic perfectly matched layer. The problem...... of increased cell aspect ratio near the sphere poles causing degradation of results is solved by dispersion optimization through artificial anisotropy. The accuracy of the approach is verified by comparing a model case with an exact solution. Finally, radiation patterns obtained by frequency-domain near-to-far-field...

  18. Dependence of the ferroelectric domain shape on the electric field of the microscope tip

    International Nuclear Information System (INIS)

    Starkov, Alexander S.; Starkov, Ivan A.

    2015-01-01

    A theory of an equilibrium shape of the domain formed in an electric field of a scanning force microscope (SFM) tip is proposed. We do not assume a priori that the domain has a fixed form. The shape of the domain is defined by the minimum of the free energy of the ferroelectric. This energy includes the energy of the depolarization field, the energy of the domain wall, and the energy of the interaction between the domain and the electric field of the SFM tip. The contributions of the apex and conical part of the tip are examined. Moreover, in the proposed approach, any narrow tip can be considered. The surface energy is determined on the basis of the Ginzburg-Landau-Devonshire theory and takes into account the curvature of the domain wall. The variation of the free energy with respect to the domain shape leads to an integro-differential equation, which must be solved numerically. Model results are illustrated for lithium tantalate ceramics

  19. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event

    Directory of Open Access Journals (Sweden)

    Gheysen Godelieve

    2008-11-01

    Full Text Available Abstract Background Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5 have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN. The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Results Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea; all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida. Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. Conclusion We conclude that the ancestral

  20. Abstracts

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Western Theories of War Ethics and Contemporary Controversies Li Xiaodong U Ruijing (4) [ Abstract] In the field of international relations, war ethics is a concept with distinct westem ideological color. Due to factors of history and reality, the in

  1. Multiple Shooting and Time Domain Decomposition Methods

    CERN Document Server

    Geiger, Michael; Körkel, Stefan; Rannacher, Rolf

    2015-01-01

    This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time-dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms.  The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics.  This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied...

  2. Domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase

    Directory of Open Access Journals (Sweden)

    Liu Liangwei

    2012-06-01

    Full Text Available Abstract Background Domain fusion is limited at enzyme one terminus. The issue was explored by swapping a mesophilic Aspergillus niger GH11 xylanase (Xyn with a hyper-thermophilic Thermotoga maritima glucanase (Glu to construct two chimeras, Xyn-Glu and Glu-Xyn, with an intention to create thermostable xylanase containing glucanase activity. Results When expressed in E. coli BL21(DE3, the two chimeras exhibited bi-functional activities of xylanase and glucanase. The Xyn-Glu Xyn moiety had optimal reaction temperature (Topt at 50 °C and thermal in-activation half-life (t1/2 at 50 °C for 47.6 min, compared to 47 °C and 17.6 min for the Xyn. The Glu-Xyn Xyn moiety had equivalent Topt to and shorter t1/2 (5.2 min than the Xyn. Both chimera Glu moieties were more thermostable than the Glu, and the three enzyme Topt values were higher than 96 °C. The Glu-Xyn Glu moiety optimal pH was 5.8, compared to 3.8 for the Xyn-Glu Glu moiety and the Glu. Both chimera two moieties cooperated with each other in degrading substrates. Conclusions Domain-swapping created different effects on each moiety properties. Fusing the Glu domain at C-terminus increased the xylanase thermostability, but fusing the Glu domain at N-terminus decreased the xylanase thermostability. Fusing the Xyn domain at either terminus increased the glucanase thermostability, and fusing the Xyn domain at C-terminus shifted the glucanase pH property 2 units higher towards alkaline environments. Fusing a domain at C-terminus contributes more to enzyme catalytic activity; whereas, fusing a bigger domain at N-terminus disturbs enzyme substrate binding affinity.

  3. NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL

    Science.gov (United States)

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...

  4. Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons

    OpenAIRE

    Bustos, Claudio; Herrera, Claudio García; Celentano, Diego; Chen, Daming; Cruchaga, Marcela

    2016-01-01

    Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an...

  5. Numerical models for fluid-grains interactions: opportunities and limitations

    Science.gov (United States)

    Esteghamatian, Amir; Rahmani, Mona; Wachs, Anthony

    2017-06-01

    In the framework of a multi-scale approach, we develop numerical models for suspension flows. At the micro scale level, we perform particle-resolved numerical simulations using a Distributed Lagrange Multiplier/Fictitious Domain approach. At the meso scale level, we use a two-way Euler/Lagrange approach with a Gaussian filtering kernel to model fluid-solid momentum transfer. At both the micro and meso scale levels, particles are individually tracked in a Lagrangian way and all inter-particle collisions are computed by a Discrete Element/Soft-sphere method. The previous numerical models have been extended to handle particles of arbitrary shape (non-spherical, angular and even non-convex) as well as to treat heat and mass transfer. All simulation tools are fully-MPI parallel with standard domain decomposition and run on supercomputers with a satisfactory scalability on up to a few thousands of cores. The main asset of multi scale analysis is the ability to extend our comprehension of the dynamics of suspension flows based on the knowledge acquired from the high-fidelity micro scale simulations and to use that knowledge to improve the meso scale model. We illustrate how we can benefit from this strategy for a fluidized bed, where we introduce a stochastic drag force model derived from micro-scale simulations to recover the proper level of particle fluctuations. Conversely, we discuss the limitations of such modelling tools such as their limited ability to capture lubrication forces and boundary layers in highly inertial flows. We suggest ways to overcome these limitations in order to enhance further the capabilities of the numerical models.

  6. Intra nodal reconstruction of the numerical solution generated by the spectro nodal constant for Sn problems of eigenvalues in two-dimensional rectangular geometry

    International Nuclear Information System (INIS)

    Menezes, Welton Alves de

    2009-01-01

    In this dissertation the spectral nodal method SD-SGF-CN, cf. spectral diamond - spectral Green's function - constant nodal, is used to determine the angular fluxes averaged along the edges of the homogenized nodes in heterogeneous domains. Using these results, we developed an algorithm for the reconstruction of the node-edge average angular fluxes within the nodes of the spatial grid set up on the domain, since more localized numerical solutions are not generated by coarse-mesh numerical methods. Numerical results are presented to illustrate the accuracy of the algorithm we offer. (author)

  7. Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments

    DEFF Research Database (Denmark)

    Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd

    2011-01-01

    In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the T...

  8. Explicit solution of Calderon preconditioned time domain integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2013-07-01

    An explicit marching on-in-time (MOT) scheme for solving Calderon-preconditioned time domain integral equations is proposed. The scheme uses Rao-Wilton-Glisson and Buffa-Christiansen functions to discretize the domain and range of the integral operators and a PE(CE)m type linear multistep to march on in time. Unlike its implicit counterpart, the proposed explicit solver requires the solution of an MOT system with a Gram matrix that is sparse and well-conditioned independent of the time step size. Numerical results demonstrate that the explicit solver maintains its accuracy and stability even when the time step size is chosen as large as that typically used by an implicit solver. © 2013 IEEE.

  9. Numerical simulation of elasto-plastic electro-osmosis consolidation at large strain

    NARCIS (Netherlands)

    Yuan, J.; Hicks, M.A.

    2015-01-01

    n this paper, a numerical solution for the electro-osmosis consolidation of clay in multi-dimensional domains at large strains is presented, with the coupling of the soil mechanical behaviour, pore water transport and electrical fields being considered. In particular, the Modified Cam Clay model is

  10. Domain wall manipulation in magnetic nanotubes induced by electric current pulses

    International Nuclear Information System (INIS)

    Otálora, J A; López-López, J A; Landeros, P; Núñez, A S

    2012-01-01

    We propose that the injection of electric currents can be used to independently manipulate the position and chirality of vortex-like domain walls in metallic ferromagnetic nanotubes. We support this proposal upon theoretical and numerical assessment of the magnetization dynamics driven by such currents. We show that proper interplay between the tube geometry, magnitude of the electric current and the duration of a current pulse, can be used to manipulate the position, velocity and chirality of a vortex domain wall. Our calculations suggest that domain wall velocities greater than 1 km s -1 can be achieved for tube diameters of the order of 30 nm and increasing with it. We also find that the transition from steady to precessional domain wall motion occurs for very high electric current densities, of the order of 10 13 A m -2 . Furthermore, the great stability displayed by such chiral magnetic configurations, and the reduced Ohmic loses provided by the current pulses, lead to highly reproducible and efficient domain wall reversal mechanisms.

  11. Domain decomposition method of stochastic PDEs: a two-level scalable preconditioner

    International Nuclear Information System (INIS)

    Subber, Waad; Sarkar, Abhijit

    2012-01-01

    For uncertainty quantification in many practical engineering problems, the stochastic finite element method (SFEM) may be computationally challenging. In SFEM, the size of the algebraic linear system grows rapidly with the spatial mesh resolution and the order of the stochastic dimension. In this paper, we describe a non-overlapping domain decomposition method, namely the iterative substructuring method to tackle the large-scale linear system arising in the SFEM. The SFEM is based on domain decomposition in the geometric space and a polynomial chaos expansion in the probabilistic space. In particular, a two-level scalable preconditioner is proposed for the iterative solver of the interface problem for the stochastic systems. The preconditioner is equipped with a coarse problem which globally connects the subdomains both in the geometric and probabilistic spaces via their corner nodes. This coarse problem propagates the information quickly across the subdomains leading to a scalable preconditioner. For numerical illustrations, a two-dimensional stochastic elliptic partial differential equation (SPDE) with spatially varying non-Gaussian random coefficients is considered. The numerical scalability of the the preconditioner is investigated with respect to the mesh size, subdomain size, fixed problem size per subdomain and order of polynomial chaos expansion. The numerical experiments are performed on a Linux cluster using MPI and PETSc parallel libraries.

  12. Developing a Domain Model for Relay Circuits

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    2009-01-01

    In this paper we stepwise develop a domain model for relay circuits as used in railway control systems. First we provide an abstract, property-oriented model of networks consisting of components that can be glued together with connectors. This model is strongly inspired by a network model...... for railways madeby Bjørner et.al., however our model is more general: the components can be of any kind and can later be refined to e.g. railway components or circuit components. Then we show how the abstract network model can be refined into an explicit model for relay circuits. The circuit model describes...... the statics as well as the dynamics of relay circuits, i.e. how a relay circuit can be composed legally from electrical components as well as how the components may change state over time. Finally the circuit model is transformed into an executable model, and we show how a concrete circuit can be defined...

  13. Time-Domain Analytical Expression for Near Fields of Arbitrarily Oriented Electric Dipole and Its Application

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2017-01-01

    Full Text Available The near fields of electric dipole are commonly used in wide-band analysis of complex electromagnetic problems. In this paper, we propose new near field time-domain expressions for electric dipole. The analytical expressions for the frequency-domain of arbitrarily oriented electric dipole are given at first; next we give the time-domain expressions by time-frequency transformation. The proposed expressions are used in hybrid TDIE/DGTD method for analysis of circular antenna with radome. The accuracy of the proposed algorithm is verified by numerical examples.

  14. A domain specific language for performance portable molecular dynamics algorithms

    Science.gov (United States)

    Saunders, William Robert; Grant, James; Müller, Eike Hermann

    2018-03-01

    Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a "Separation of Concerns" approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-the-art simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework.

  15. Check Sample Abstracts.

    Science.gov (United States)

    Alter, David; Grenache, David G; Bosler, David S; Karcher, Raymond E; Nichols, James; Rajadhyaksha, Aparna; Camelo-Piragua, Sandra; Rauch, Carol; Huddleston, Brent J; Frank, Elizabeth L; Sluss, Patrick M; Lewandrowski, Kent; Eichhorn, John H; Hall, Janet E; Rahman, Saud S; McPherson, Richard A; Kiechle, Frederick L; Hammett-Stabler, Catherine; Pierce, Kristin A; Kloehn, Erica A; Thomas, Patricia A; Walts, Ann E; Madan, Rashna; Schlesinger, Kathie; Nawgiri, Ranjana; Bhutani, Manoop; Kanber, Yonca; Abati, Andrea; Atkins, Kristen A; Farrar, Robert; Gopez, Evelyn Valencerina; Jhala, Darshana; Griffin, Sonya; Jhala, Khushboo; Jhala, Nirag; Bentz, Joel S; Emerson, Lyska; Chadwick, Barbara E; Barroeta, Julieta E; Baloch, Zubair W; Collins, Brian T; Middleton, Owen L; Davis, Gregory G; Haden-Pinneri, Kathryn; Chu, Albert Y; Keylock, Joren B; Ramoso, Robert; Thoene, Cynthia A; Stewart, Donna; Pierce, Arand; Barry, Michelle; Aljinovic, Nika; Gardner, David L; Barry, Michelle; Shields, Lisa B E; Arnold, Jack; Stewart, Donna; Martin, Erica L; Rakow, Rex J; Paddock, Christopher; Zaki, Sherif R; Prahlow, Joseph A; Stewart, Donna; Shields, Lisa B E; Rolf, Cristin M; Falzon, Andrew L; Hudacki, Rachel; Mazzella, Fermina M; Bethel, Melissa; Zarrin-Khameh, Neda; Gresik, M Vicky; Gill, Ryan; Karlon, William; Etzell, Joan; Deftos, Michael; Karlon, William J; Etzell, Joan E; Wang, Endi; Lu, Chuanyi M; Manion, Elizabeth; Rosenthal, Nancy; Wang, Endi; Lu, Chuanyi M; Tang, Patrick; Petric, Martin; Schade, Andrew E; Hall, Geraldine S; Oethinger, Margret; Hall, Geraldine; Picton, Avis R; Hoang, Linda; Imperial, Miguel Ranoa; Kibsey, Pamela; Waites, Ken; Duffy, Lynn; Hall, Geraldine S; Salangsang, Jo-Anne M; Bravo, Lulette Tricia C; Oethinger, Margaret D; Veras, Emanuela; Silva, Elvia; Vicens, Jimena; Silva, Elvio; Keylock, Joren; Hempel, James; Rushing, Elizabeth; Posligua, Lorena E; Deavers, Michael T; Nash, Jason W; Basturk, Olca; Perle, Mary Ann; Greco, Alba; Lee, Peng; Maru, Dipen; Weydert, Jamie Allen; Stevens, Todd M; Brownlee, Noel A; Kemper, April E; Williams, H James; Oliverio, Brock J; Al-Agha, Osama M; Eskue, Kyle L; Newlands, Shawn D; Eltorky, Mahmoud A; Puri, Puja K; Royer, Michael C; Rush, Walter L; Tavora, Fabio; Galvin, Jeffrey R; Franks, Teri J; Carter, James Elliot; Kahn, Andrea Graciela; Lozada Muñoz, Luis R; Houghton, Dan; Land, Kevin J; Nester, Theresa; Gildea, Jacob; Lefkowitz, Jerry; Lacount, Rachel A; Thompson, Hannis W; Refaai, Majed A; Quillen, Karen; Lopez, Ana Ortega; Goldfinger, Dennis; Muram, Talia; Thompson, Hannis

    2009-02-01

    The following abstracts are compiled from Check Sample exercises published in 2008. These peer-reviewed case studies assist laboratory professionals with continuing medical education and are developed in the areas of clinical chemistry, cytopathology, forensic pathology, hematology, microbiology, surgical pathology, and transfusion medicine. Abstracts for all exercises published in the program will appear annually in AJCP.

  16. Error estimates for a numerical method for the compressible Navier-Stokes system on sufficiently smooth domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Hošek, Radim; Maltese, D.; Novotný, A.

    2017-01-01

    Roč. 51, č. 1 (2017), s. 279-319 ISSN 0764-583X EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Navier-Stokes system * finite element numerical method * finite volume numerical method Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.727, year: 2016 http://www.esaim-m2an.org/ articles /m2an/abs/2017/01/m2an150157/m2an150157.html

  17. Fast convergent frequency-domain MIMO equalizer for few-mode fiber communication systems

    Science.gov (United States)

    He, Xuan; Weng, Yi; Wang, Junyi; Pan, Z.

    2018-02-01

    Space division multiplexing using few-mode fibers has been extensively explored to sustain the continuous traffic growth. In few-mode fiber optical systems, both spatial and polarization modes are exploited to transmit parallel channels, thus increasing the overall capacity. However, signals on spatial channels inevitably suffer from the intrinsic inter-modal coupling and large accumulated differential mode group delay (DMGD), which causes spatial modes de-multiplex even harder. Many research articles have demonstrated that frequency domain adaptive multi-input multi-output (MIMO) equalizer can effectively compensate the DMGD and demultiplex the spatial channels with digital signal processing (DSP). However, the large accumulated DMGD usually requires a large number of training blocks for the initial convergence of adaptive MIMO equalizers, which will decrease the overall system efficiency and even degrade the equalizer performance in fast-changing optical channels. Least mean square (LMS) algorithm is always used in MIMO equalization to dynamically demultiplex the spatial signals. We have proposed to use signal power spectral density (PSD) dependent method and noise PSD directed method to improve the convergence speed of adaptive frequency domain LMS algorithm. We also proposed frequency domain recursive least square (RLS) algorithm to further increase the convergence speed of MIMO equalizer at cost of greater hardware complexity. In this paper, we will compare the hardware complexity and convergence speed of signal PSD dependent and noise power directed algorithms against the conventional frequency domain LMS algorithm. In our numerical study of a three-mode 112 Gbit/s PDM-QPSK optical system with 3000 km transmission, the noise PSD directed and signal PSD dependent methods could improve the convergence speed by 48.3% and 36.1% respectively, at cost of 17.2% and 10.7% higher hardware complexity. We will also compare the frequency domain RLS algorithm against

  18. Untangling spider silk evolution with spidroin terminal domains

    Directory of Open Access Journals (Sweden)

    Garb Jessica E

    2010-08-01

    Full Text Available Abstract Background Spidroins are a unique family of large, structural proteins that make up the bulk of spider silk fibers. Due to the highly variable nature of their repetitive sequences, spidroin evolutionary relationships have principally been determined from their non-repetitive carboxy (C-terminal domains, though they offer limited character data. The few known spidroin amino (N-terminal domains have been difficult to obtain, but potentially contain critical phylogenetic information for reconstructing the diversification of spider silks. Here we used silk gland expression data (ESTs from highly divergent species to evaluate the functional significance and phylogenetic utility of spidroin N-terminal domains. Results We report 11 additional spidroin N-termini found by sequencing ~1,900 silk gland cDNAs from nine spider species that shared a common ancestor > 240 million years ago. In contrast to their hyper-variable repetitive regions, spidroin N-terminal domains have retained striking similarities in sequence identity, predicted secondary structure, and hydrophobicity. Through separate and combined phylogenetic analyses of N-terminal domains and their corresponding C-termini, we find that combined analysis produces the most resolved trees and that N-termini contribute more support and less conflict than the C-termini. These analyses show that paralogs largely group by silk gland type, except for the major ampullate spidroins. Moreover, spidroin structural motifs associated with superior tensile strength arose early in the history of this gene family, whereas a motif conferring greater extensibility convergently evolved in two distantly related paralogs. Conclusions A non-repetitive N-terminal domain appears to be a universal attribute of spidroin proteins, likely retained from the origin of spider silk production. Since this time, spidroin N-termini have maintained several features, consistent with this domain playing a key role in silk

  19. Abstract Datatypes in PVS

    Science.gov (United States)

    Owre, Sam; Shankar, Natarajan

    1997-01-01

    PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs. This document deals primarily with the abstract datatype mechanism in PVS which generates theories containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as a subtype of binary trees where the ordering relation is also taken as a parameter. We define the operations of inserting an element into, and searching for an element in an ordered binary tree; the bulk of the report is devoted to PVS proofs of some useful properties of these operations. These proofs illustrate various approaches to proving properties of abstract datatype operations. They also describe the built-in capabilities of the PVS proof checker for simplifying abstract datatype expressions.

  20. Numerical analysis of propeller induced ground vortices by actuator disk model

    NARCIS (Netherlands)

    Yang, Y.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: During the ground operation of aircraft, the interaction between the propulsor-induced flow field and the ground may lead to the generation of ground vortices. Utilizing numerical approaches, the source of vorticity entering ground vortices is investigated. The results show that the

  1. Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis

    International Nuclear Information System (INIS)

    Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.

    2013-01-01

    Highlights: ► Quasi direct numerical simulations (q-DNSs) of a pebble bed configuration have been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS of temperature and respective turbulent heat fluxes are extensively reported in this paper. -- Abstract: Good prediction of the flow and heat transfer phenomena in the pebble bed core of a high temperature reactor (HTR) is a challenge for available turbulence models, which still require to be validated. While experimental data are generally desirable in this validation process, due to the complex geometric configuration and measurement difficulties, a very limited amount of data is currently available. On the other hand, direct numerical simulation (DNS) is considered an accurate simulation technique, which may serve as an alternative for validating turbulence models. In the framework of the present study, quasi-direct numerical simulation (q-DNS) of a single face cubic centered pebble bed is performed, which will serve as a reference for the validation of different turbulence modeling approaches in order to perform calculations for a randomly arranged pebble bed. These simulations were performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Results related to flow field (mean, RMS and covariance of velocity) have been presented in Part-I, whereas, in the present article, we focus our attention to the analysis of the temperature field. A wide range of qualitative and quantitative data for the thermal field (mean, RMS and turbulent heat flux) has been generated

  2. Conformational analysis of isolated domains of Helicobacter pylori CagA.

    Directory of Open Access Journals (Sweden)

    Amanda P Woon

    Full Text Available The CagA protein of Helicobacter pylori is associated with increased virulence and gastric cancer risk. CagA is translocated into the host cell by a H. pylori type IV secretion system via mechanisms that are poorly understood. Translocated CagA interacts with numerous host factors, altering a variety of host signalling pathways. The recently determined crystal structure of C-terminally-truncated CagA indicated the presence of two domains: the smaller, flexible N-terminal domain and the larger, middle domain. In this study, we have investigated the conformation, oligomeric state and stability of the N-terminal, middle and glutamate-proline-isoleucine-tyrosine-alanine (EPIYA-repeats domains. All three domains are monomeric, suggesting that the multimerisation of CagA observed in infected cells is likely to be mediated not by CagA itself but by its interacting partners. The middle and the C-terminal domains, but not the N-terminal domain, are capable of refolding spontaneously upon heat denaturation, lending support to the hypothesis that unfolded CagA is threaded C-terminus first through the type IV secretion channel with its N-terminal domain, which likely requires interactions with other domains to refold, being threaded last. Our findings also revealed that the C-terminal EPIYA-repeats domain of CagA exists in an intrinsically disordered premolten globule state with regions in PPII conformation--a feature that is shared by many scaffold proteins that bind multiple protein components of signalling pathways. Taken together, these results provide a deeper understanding of the physicochemical properties of CagA that underpin its complex cellular and oncogenic functions.

  3. Numerical investigations on the performance of external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    The performance of an external-cavity mode-locked semiconductor laser is analyzed theoretically and numerically. Passive mode-locking is described using a fully-distributed time-domain model including fast effects, spectral hole burning and carrier heating. We provide optimization rules in order ...

  4. An Algebro-Topological Description of Protein Domain Structure

    Science.gov (United States)

    Penner, Robert Clark; Knudsen, Michael; Wiuf, Carsten; Andersen, Jørgen Ellegaard

    2011-01-01

    The space of possible protein structures appears vast and continuous, and the relationship between primary, secondary and tertiary structure levels is complex. Protein structure comparison and classification is therefore a difficult but important task since structure is a determinant for molecular interaction and function. We introduce a novel mathematical abstraction based on geometric topology to describe protein domain structure. Using the locations of the backbone atoms and the hydrogen bonds, we build a combinatorial object – a so-called fatgraph. The description is discrete yet gives rise to a 2-dimensional mathematical surface. Thus, each protein domain corresponds to a particular mathematical surface with characteristic topological invariants, such as the genus (number of holes) and the number of boundary components. Both invariants are global fatgraph features reflecting the interconnectivity of the domain by hydrogen bonds. We introduce the notion of robust variables, that is variables that are robust towards minor changes in the structure/fatgraph, and show that the genus and the number of boundary components are robust. Further, we invesigate the distribution of different fatgraph variables and show how only four variables are capable of distinguishing different folds. We use local (secondary) and global (tertiary) fatgraph features to describe domain structures and illustrate that they are useful for classification of domains in CATH. In addition, we combine our method with two other methods thereby using primary, secondary, and tertiary structure information, and show that we can identify a large percentage of new and unclassified structures in CATH. PMID:21629687

  5. Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    Science.gov (United States)

    Tanaka, Ken; Tomeba, Hiromichi; Adachi, Fumiyuki

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.

  6. One-dimensional in-plane edge domain walls in ultrathin ferromagnetic films

    Science.gov (United States)

    Lund, Ross G.; Muratov, Cyrill B.; Slastikov, Valeriy V.

    2018-03-01

    We study existence and properties of 1D edge domain walls in ultrathin ferromagnetic films with uniaxial in-plane magnetic anisotropy. In these materials, the magnetization vector is constrained to lie entirely in the film plane, with the preferred directions dictated by the magnetocrystalline easy axis. We consider magnetization profiles in the vicinity of a straight film edge oriented at an arbitrary angle with respect to the easy axis. To minimize the micromagnetic energy, these profiles form transition layers in which the magnetization vector rotates away from the direction of the easy axis to align with the film edge. We prove existence of edge domain walls as minimizers of the appropriate 1D micromagnetic energy functional and show that they are classical solutions of the associated Euler-Lagrange equation with a Dirichlet boundary condition at the edge. We also perform a numerical study of these 1D domain walls and uncover further properties of these domain wall profiles.

  7. Numerical resolution of Navier-Stokes equations coupled to the heat equation

    International Nuclear Information System (INIS)

    Zenouda, Jean-Claude

    1970-08-01

    The author proves a uniqueness theorem for the time dependent Navier-Stokes equations coupled with heat flow in the two-dimensional case. He studies stability and convergence of several finite - difference schemes to solve these equations. Numerical experiments are done in the case of a square domain. (author) [fr

  8. Numerical Modelling of a Bidirectional Long Ring Raman Fiber Laser Dynamics

    Science.gov (United States)

    Sukhanov, S. V.; Melnikov, L. A.; Mazhirina, Yu A.

    2017-11-01

    The numerical model for the simulation of the dynamics of a bidirectional long ring Raman fiber laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees method. Different regimes of a bidirectional long ring Raman fiber laser and long time-domain realizations are investigated.

  9. A fast numerical method for the valuation of American lookback put options

    Science.gov (United States)

    Song, Haiming; Zhang, Qi; Zhang, Ran

    2015-10-01

    A fast and efficient numerical method is proposed and analyzed for the valuation of American lookback options. American lookback option pricing problem is essentially a two-dimensional unbounded nonlinear parabolic problem. We reformulate it into a two-dimensional parabolic linear complementary problem (LCP) on an unbounded domain. The numeraire transformation and domain truncation technique are employed to convert the two-dimensional unbounded LCP into a one-dimensional bounded one. Furthermore, the variational inequality (VI) form corresponding to the one-dimensional bounded LCP is obtained skillfully by some discussions. The resulting bounded VI is discretized by a finite element method. Meanwhile, the stability of the semi-discrete solution and the symmetric positive definiteness of the full-discrete matrix are established for the bounded VI. The discretized VI related to options is solved by a projection and contraction method. Numerical experiments are conducted to test the performance of the proposed method.

  10. A time-domain finite element model reduction method for viscoelastic linear and nonlinear systems

    Directory of Open Access Journals (Sweden)

    Antônio Marcos Gonçalves de Lima

    Full Text Available AbstractMany authors have shown that the effective design of viscoelastic systems can be conveniently carried out by using modern mathematical models to represent the frequency- and temperature-dependent behavior of viscoelastic materials. However, in the quest for design procedures of real-word engineering structures, the large number of exact evaluations of the dynamic responses during iterative procedures, combined with the typically high dimensions of large finite element models, makes the numerical analysis very costly, sometimes unfeasible. It is especially true when the viscoelastic materials are used to reduce vibrations of nonlinear systems. As a matter of fact, which the resolution of the resulting nonlinear equations of motion with frequency- and temperature-dependent viscoelastic damping forces is an interesting, but hard-to-solve problem. Those difficulties motivate the present study, in which a time-domain condensation strategy of viscoelastic systems is addressed, where the viscoelastic behavior is modeled by using a four parameter fractional derivative model. After the discussion of various theoretical aspects, the exact and reduced time responses are calculated for a three-layer sandwich plate by considering nonlinear boundary conditions.

  11. Co-occurrence graphs for word sense disambiguation in the biomedical domain.

    Science.gov (United States)

    Duque, Andres; Stevenson, Mark; Martinez-Romo, Juan; Araujo, Lourdes

    2018-05-01

    Word sense disambiguation is a key step for many natural language processing tasks (e.g. summarization, text classification, relation extraction) and presents a challenge to any system that aims to process documents from the biomedical domain. In this paper, we present a new graph-based unsupervised technique to address this problem. The knowledge base used in this work is a graph built with co-occurrence information from medical concepts found in scientific abstracts, and hence adapted to the specific domain. Unlike other unsupervised approaches based on static graphs such as UMLS, in this work the knowledge base takes the context of the ambiguous terms into account. Abstracts downloaded from PubMed are used for building the graph and disambiguation is performed using the personalized PageRank algorithm. Evaluation is carried out over two test datasets widely explored in the literature. Different parameters of the system are also evaluated to test robustness and scalability. Results show that the system is able to outperform state-of-the-art knowledge-based systems, obtaining more than 10% of accuracy improvement in some cases, while only requiring minimal external resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Numerical and experimental evaluation of masonry prisms by finite element method

    Directory of Open Access Journals (Sweden)

    C. F.R. SANTOS

    Full Text Available Abstract This work developed experimental tests and numerical models able to represent the mechanical behavior of prisms made of ordinary and high strength concrete blocks. Experimental tests of prisms were performed and a detailed micro-modeling strategy was adopted for numerical analysis. In this modeling technique, each material (block and mortar was represented by its own mechanical properties. The validation of numerical models was based on experimental results. It was found that the obtained numerical values of compressive strength and modulus of elasticity differ by 5% from the experimentally observed values. Moreover, mechanisms responsible for the rupture of the prisms were evaluated and compared to the behaviors observed in the tests and those described in the literature. Through experimental results it is possible to conclude that the numerical models have been able to represent both the mechanical properties and the mechanisms responsible for failure.

  13. Explicit appropriate basis function method for numerical solution of stiff systems

    International Nuclear Information System (INIS)

    Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling

    2015-01-01

    Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations

  14. Frequency-domain waveform inversion using the phase derivative

    KAUST Repository

    Choi, Yun Seok

    2013-09-26

    Phase wrapping in the frequency domain or cycle skipping in the time domain is the major cause of the local minima problem in the waveform inversion when the starting model is far from the true model. Since the phase derivative does not suffer from the wrapping effect, its inversion has the potential of providing a robust and reliable inversion result. We propose a new waveform inversion algorithm using the phase derivative in the frequency domain along with the exponential damping term to attenuate reflections. We estimate the phase derivative, or what we refer to as the instantaneous traveltime, by taking the derivative of the Fourier-transformed wavefield with respect to the angular frequency, dividing it by the wavefield itself and taking the imaginary part. The objective function is constructed using the phase derivative and the gradient of the objective function is computed using the back-propagation algorithm. Numerical examples show that our inversion algorithm with a strong damping generates a tomographic result even for a high ‘single’ frequency, which can be a good initial model for full waveform inversion and migration.

  15. Domains and domain loss

    DEFF Research Database (Denmark)

    Haberland, Hartmut

    2005-01-01

    politicians and in the media, especially in the discussion whether some languages undergo ‘domain loss’ vis-à-vis powerful international languages like English. An objection that has been raised here is that domains, as originally conceived, are parameters of language choice and not properties of languages...

  16. Verifying large modular systems using iterative abstraction refinement

    International Nuclear Information System (INIS)

    Lahtinen, Jussi; Kuismin, Tuomas; Heljanko, Keijo

    2015-01-01

    Digital instrumentation and control (I&C) systems are increasingly used in the nuclear engineering domain. The exhaustive verification of these systems is challenging, and the usual verification methods such as testing and simulation are typically insufficient. Model checking is a formal method that is able to exhaustively analyse the behaviour of a model against a formally written specification. If the model checking tool detects a violation of the specification, it will give out a counter-example that demonstrates how the specification is violated in the system. Unfortunately, sometimes real life system designs are too big to be directly analysed by traditional model checking techniques. We have developed an iterative technique for model checking large modular systems. The technique uses abstraction based over-approximations of the model behaviour, combined with iterative refinement. The main contribution of the work is the concrete abstraction refinement technique based on the modular structure of the model, the dependency graph of the model, and a refinement sampling heuristic similar to delta debugging. The technique is geared towards proving properties, and outperforms BDD-based model checking, the k-induction technique, and the property directed reachability algorithm (PDR) in our experiments. - Highlights: • We have developed an iterative technique for model checking large modular systems. • The technique uses BDD-based model checking, k-induction, and PDR in parallel. • We have tested our algorithm by verifying two models with it. • The technique outperforms classical model checking methods in our experiments

  17. Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons

    Directory of Open Access Journals (Sweden)

    Claudio Bustos

    Full Text Available Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an eyeball under glaucoma conditions.

  18. Statistical learning is constrained to less abstract patterns in complex sensory input (but not the least).

    Science.gov (United States)

    Emberson, Lauren L; Rubinstein, Dani Y

    2016-08-01

    The influence of statistical information on behavior (either through learning or adaptation) is quickly becoming foundational to many domains of cognitive psychology and cognitive neuroscience, from language comprehension to visual development. We investigate a central problem impacting these diverse fields: when encountering input with rich statistical information, are there any constraints on learning? This paper examines learning outcomes when adult learners are given statistical information across multiple levels of abstraction simultaneously: from abstract, semantic categories of everyday objects to individual viewpoints on these objects. After revealing statistical learning of abstract, semantic categories with scrambled individual exemplars (Exp. 1), participants viewed pictures where the categories as well as the individual objects predicted picture order (e.g., bird1-dog1, bird2-dog2). Our findings suggest that participants preferentially encode the relationships between the individual objects, even in the presence of statistical regularities linking semantic categories (Exps. 2 and 3). In a final experiment we investigate whether learners are biased towards learning object-level regularities or simply construct the most detailed model given the data (and therefore best able to predict the specifics of the upcoming stimulus) by investigating whether participants preferentially learn from the statistical regularities linking individual snapshots of objects or the relationship between the objects themselves (e.g., bird_picture1-dog_picture1, bird_picture2-dog_picture2). We find that participants fail to learn the relationships between individual snapshots, suggesting a bias towards object-level statistical regularities as opposed to merely constructing the most complete model of the input. This work moves beyond the previous existence proofs that statistical learning is possible at both very high and very low levels of abstraction (categories vs. individual

  19. Large ethnic variations in recommended physical activity according to activity domains in Amsterdam, the Netherlands

    NARCIS (Netherlands)

    de Munter, Jeroen S. L.; van Valkengoed, Irene G. M.; Agyemang, Charles; Kunst, Anton E.; Stronks, Karien

    2010-01-01

    ABSTRACT: Purpose: The level of recommended physical activity (PA) is met less frequently by people from some ethnic minorities than others. We explored whether these differences in recommended PA between ethnic minority groups and the general population varied by domain and type of

  20. Numerical Simulation of Moving Load on Concrete Pavements

    Directory of Open Access Journals (Sweden)

    Lajčáková Gabriela

    2015-06-01

    Full Text Available The knowledge of the development with time of the strain and stress states in pavement structures is needed in the solution of various engineering tasks as the design fatigue lifetime reliability maintenance and structure development. The space computing model of the truck TATRA 815 is introduced. The pavement computing model is created in the sense of Kirchhof theory of the thin slab on elastic foundation. The goal of the calculation is to obtain the vertical deflection in the middle of the slab and the time courses of vertical tire forces. The equations of motion are derived in the form of differential equations. The assumption about the shape of the slab deflection area is adopted. The equations of the motion are solved numerically in the environment of program system MATLAB. The dependences following the influence of various parameters (speed of vehicle motion, stiffness of subgrade, slab thickness, road profile on the pavement vertical deflections and the vertical tire forces are introduced. The results obtained from the plate computing model are compared with the results obtained by the FEM analysis. The outputs of the numerical solution in the time domain can be transformed into a frequency domain and subsequently used to solve various engineering tasks.

  1. Assessment of damage domains of the High-Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Flores, Alain; Izquierdo, José María; Tuček, Kamil; Gallego, Eduardo

    2014-01-01

    Highlights: • We developed an adequate model for the identification of damage domains of the HTTR. • We analysed an anticipated operational transient, using the HTTR5+/GASTEMP code. • We simulated several transients of the same sequence. • We identified the corresponding damage domains using two methods. • We calculated exceedance frequency using the two methods. - Abstract: This paper presents an assessment analysis of damage domains of the 30 MW th prototype High-Temperature Engineering Test Reactor (HTTR) operated by the Japan Atomic Energy Agency (JAEA). For this purpose, an in-house deterministic risk assessment computational tool was developed based on the Theory of Stimulated Dynamics (TSD). To illustrate the methodology and applicability of the developed modelling approach, assessment results of a control rod (CR) withdrawal accident during subcritical conditions are presented and compared with those obtained by the JAEA

  2. A deterministic combination of numerical and physical models for coastal waves

    DEFF Research Database (Denmark)

    Zhang, Haiwen

    2006-01-01

    of numerical and physical modelling hence provides an attractive alternative to the use of either tool on it's own. The goal of this project has been to develop a deterministically combined numerical/physical model where the physical wave tank is enclosed in a much larger computational domain, and the two......Numerical and physical modelling are the two main tools available for predicting the influence of water waves on coastlines and structures placed in the near-shore environment. Numerical models can cover large areas at the correct scale, but are limited in their ability to capture strong...... nonlinearities, wave breaking, splash, mixing, and other such complicated physics. Physical models naturally include the real physics (at the model scale), but are limited by the physical size of the facility and must contend with the fact that different physical effects scale differently. An integrated use...

  3. A protein domain interaction interface database: InterPare

    Directory of Open Access Journals (Sweden)

    Lee Jungsul

    2005-08-01

    Full Text Available Abstract Background Most proteins function by interacting with other molecules. Their interaction interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to fatal disorders in cells. Rational drug discovery includes computational methods to identify the interaction sites of lead compounds to the target molecules. Identifying and classifying protein interaction interfaces on a large scale can help researchers discover drug targets more efficiently. Description We introduce a large-scale protein domain interaction interface database called InterPare http://interpare.net. It contains both inter-chain (between chains interfaces and intra-chain (within chain interfaces. InterPare uses three methods to detect interfaces: 1 the geometric distance method for checking the distance between atoms that belong to different domains, 2 Accessible Surface Area (ASA, a method for detecting the buried region of a protein that is detached from a solvent when forming multimers or complexes, and 3 the Voronoi diagram, a computational geometry method that uses a mathematical definition of interface regions. InterPare includes visualization tools to display protein interior, surface, and interaction interfaces. It also provides statistics such as the amino acid propensities of queried protein according to its interior, surface, and interface region. The atom coordinates that belong to interface, surface, and interior regions can be downloaded from the website. Conclusion InterPare is an open and public database server for protein interaction interface information. It contains the large-scale interface data for proteins whose 3D-structures are known. As of November 2004, there were 10,583 (Geometric distance, 10,431 (ASA, and 11,010 (Voronoi diagram entries in the Protein Data Bank (PDB containing interfaces, according to the above three methods. In the case of the geometric distance method, there are 31,620 inter-chain domain-domain

  4. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing

    OpenAIRE

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko

    2007-01-01

    The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak ...

  5. Hyperbole, abstract motion and spatial knowledge: sequential versus simultaneous scanning.

    Science.gov (United States)

    Catricalà, Maria; Guidi, Annarita

    2012-08-01

    Hyperbole is an interesting trope in the perspective of Space Grammar, since it is related to the displacing of a limit (Lausberg in Elemente der literarischen Rhetorik. M.H. Verlag, Munchen 1967; see the Ancient Greek meaning 'to throw over' > 'exaggerate'). Hyperbole semantic mechanisms are related to virtual scanning (Holmqvist and Płuciennik in Imagery in language. Peter Lang, Frankfurt am Main, pp 777-785, 2004). Basic concepts of SIZE and QUANTITY, related image-schemas (IS) and conceptual metaphors (UP IS MORE; IMPORTANT IS BIG: Lakoff 1987, Johnson 1987) are implied in hyperbole processing. The virtual scanning is the simulation of a perceptual domain (here, the vertically oriented space). The virtual limit is defined by expected values on the relevant scale. Since hyperbole is a form of intensification, its linguistic interest lies in cases involving the extremes of a scale, for which a limit can be determined (Schemann 1994). In this experimental study, we analyze the concept of 'limit' in terms of 'abstract motion' and 'oriented space' domains (Langacker 1990) with respect to hyperboles expressed by Italian Verbs of movement. The IS considered are PATH and SOURCE-PATH-GOAL. The latter corresponds to a virtual scale whose limit is arrived at, or overcome, in hyperboles.

  6. Hybrid TE-TM scheme for time domain numerical calculations of wakefields in structures with walls of finite conductivity

    Directory of Open Access Journals (Sweden)

    Andranik Tsakanian

    2012-05-01

    Full Text Available In particle accelerators a preferred direction, the direction of motion, is well defined. If in a numerical calculation the (numerical dispersion in this direction is suppressed, a quite coarse mesh and moderate computational resources can be used to reach accurate results even for extremely short electron bunches. Several approaches have been proposed in the past decades to reduce the accumulated dispersion error in wakefield calculations for perfectly conducting structures. In this paper we extend the TE/TM splitting algorithm to a new hybrid scheme that allows for wakefield calculations in structures with walls of finite conductivity. The conductive boundary is modeled by one-dimensional wires connected to each boundary cell. A good agreement of the numerical simulations with analytical results and other numerical approaches is obtained.

  7. Fast damage imaging using the time-reversal technique in the frequency–wavenumber domain

    International Nuclear Information System (INIS)

    Zhu, R; Huang, G L; Yuan, F G

    2013-01-01

    The time-reversal technique has been successfully used in structural health monitoring (SHM) for quantitative imaging of damage. However, the technique is very time-consuming when it is implemented in the time domain. In this paper, we study the technique in the frequency–wavenumber (f–k) domain for fast real-time imaging of multiple damage sites in plates using scattered flexural plate waves. Based on Mindlin plate theory, the time reversibility of dispersive flexural waves in an isotropic plate is theoretically investigated in the f–k domain. A fast damage imaging technique is developed by using the cross-correlation between the back-propagated scattered wavefield and the incident wavefield in the frequency domain. Numerical simulations demonstrate that the proposed technique cannot only localize multiple damage sites but also potentially identify their sizes. Moreover, the time-reversal technique in the f–k domain is about two orders of magnitude faster than the method in the time domain. Finally, experimental testing of an on-line SHM system with a sparse piezoelectric sensor array is conducted for fast multiple damage identification using the proposed technique. (paper)

  8. A highly accurate spectral method for the Navier–Stokes equations in a semi-infinite domain with flexible boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Toshiki; Ishioka, Keiichi, E-mail: matsushima@kugi.kyoto-u.ac.jp, E-mail: ishioka@gfd-dennou.org [Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2017-04-15

    This paper presents a spectral method for numerically solving the Navier–Stokes equations in a semi-infinite domain bounded by a flat plane: the aim is to obtain high accuracy with flexible boundary conditions. The proposed use is for numerical simulations of small-scale atmospheric phenomena near the ground. We introduce basis functions that fit the semi-infinite domain, and an integral condition for vorticity is used to reduce the computational cost when solving the partial differential equations that appear when the viscosity term is treated implicitly. Furthermore, in order to ensure high accuracy, two iteration techniques are applied when solving the system of linear equations and in determining boundary values. This significantly reduces numerical errors, and the proposed method enables high-resolution numerical experiments. This is demonstrated by numerical experiments showing the collision of a vortex ring into a wall; these were performed using numerical models based on the proposed method. It is shown that the time evolution of the flow field is successfully obtained not only near the boundary, but also in a region far from the boundary. The applicability of the proposed method and the integral condition is discussed. (paper)

  9. Dynamics of domain coverage of the protein sequence universe

    Directory of Open Access Journals (Sweden)

    Rekapalli Bhanu

    2012-11-01

    Full Text Available Abstract Background The currently known protein sequence space consists of millions of sequences in public databases and is rapidly expanding. Assigning sequences to families leads to a better understanding of protein function and the nature of the protein universe. However, a large portion of the current protein space remains unassigned and is referred to as its “dark matter”. Results Here we suggest that true size of “dark matter” is much larger than stated by current definitions. We propose an approach to reducing the size of “dark matter” by identifying and subtracting regions in protein sequences that are not likely to contain any domain. Conclusions Recent improvements in computational domain modeling result in a decrease, albeit slowly, in the relative size of “dark matter”; however, its absolute size increases substantially with the growth of sequence data.

  10. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures - comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  11. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures : comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  12. Some approximating formulae to the solution of an abstract evolution problem

    International Nuclear Information System (INIS)

    Ngongo, M.E.

    1991-12-01

    We consider discrete semigroups of operators associated with the first two primary sub-families of A-acceptable Norsett's rational approximations to e q , S 1 (γ;q) and S 2 (γ;q) with q is an element of C and γ a real parameter, and construct approximating formulae to the solution of an abstract evolution problem. The study of convergence is reduced to exploiting previous fundamental results of the author for this class of semigroups and this results, for associated numerical schemes, in a convergence independent of the regularity of the data of the problem. (author). 17 refs, 3 tabs

  13. Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Science.gov (United States)

    Candy, Adam S.; Pietrzak, Julie D.

    2018-01-01

    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.

  14. Convectons in periodic and bounded domains

    International Nuclear Information System (INIS)

    Mercader, Isabel; Batiste, Oriol; Alonso, Arantxa; Knobloch, Edgar

    2010-01-01

    Numerical continuation is used to compute spatially localized convection in a binary fluid with no-slip laterally insulating boundary conditions and the results are compared with the corresponding ones for periodic boundary conditions (PBC). The change in the boundary conditions produces a dramatic change in the snaking bifurcation diagram that describes the organization of localized states with PBC: the snaking branches turn continuously into a large amplitude state that resembles periodic convection with defects at the sidewalls. Odd parity convectons are more affected by the boundary conditions since the sidewalls suppress the horizontal pumping action that accompanies these states in spatially periodic domains.

  15. Convectons in periodic and bounded domains

    Energy Technology Data Exchange (ETDEWEB)

    Mercader, Isabel; Batiste, Oriol; Alonso, Arantxa [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Barcelona (Spain); Knobloch, Edgar [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2010-04-15

    Numerical continuation is used to compute spatially localized convection in a binary fluid with no-slip laterally insulating boundary conditions and the results are compared with the corresponding ones for periodic boundary conditions (PBC). The change in the boundary conditions produces a dramatic change in the snaking bifurcation diagram that describes the organization of localized states with PBC: the snaking branches turn continuously into a large amplitude state that resembles periodic convection with defects at the sidewalls. Odd parity convectons are more affected by the boundary conditions since the sidewalls suppress the horizontal pumping action that accompanies these states in spatially periodic domains.

  16. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  17. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  18. NovelFam3000 – Uncharacterized human protein domains conserved across model organisms

    Directory of Open Access Journals (Sweden)

    Sonnhammer Erik LL

    2006-03-01

    Full Text Available Abstract Background Despite significant efforts from the research community, an extensive portion of the proteins encoded by human genes lack an assigned cellular function. Most metazoan proteins are composed of structural and/or functional domains, of which many appear in multiple proteins. Once a domain is characterized in one protein, the presence of a similar sequence in an uncharacterized protein serves as a basis for inference of function. Thus knowledge of a domain's function, or the protein within which it arises, can facilitate the analysis of an entire set of proteins. Description From the Pfam domain database, we extracted uncharacterized protein domains represented in proteins from humans, worms, and flies. A data centre was created to facilitate the analysis of the uncharacterized domain-containing proteins. The centre both provides researchers with links to dispersed internet resources containing gene-specific experimental data and enables them to post relevant experimental results or comments. For each human gene in the system, a characterization score is posted, allowing users to track the progress of characterization over time or to identify for study uncharacterized domains in well-characterized genes. As a test of the system, a subset of 39 domains was selected for analysis and the experimental results posted to the NovelFam3000 system. For 25 human protein members of these 39 domain families, detailed sub-cellular localizations were determined. Specific observations are presented based on the analysis of the integrated information provided through the online NovelFam3000 system. Conclusion Consistent experimental results between multiple members of a domain family allow for inferences of the domain's functional role. We unite bioinformatics resources and experimental data in order to accelerate the functional characterization of scarcely annotated domain families.

  19. Abstraction and art.

    Science.gov (United States)

    Gortais, Bernard

    2003-07-29

    In a given social context, artistic creation comprises a set of processes, which relate to the activity of the artist and the activity of the spectator. Through these processes we see and understand that the world is vaster than it is said to be. Artistic processes are mediated experiences that open up the world. A successful work of art expresses a reality beyond actual reality: it suggests an unknown world using the means and the signs of the known world. Artistic practices incorporate the means of creation developed by science and technology and change forms as they change. Artists and the public follow different processes of abstraction at different levels, in the definition of the means of creation, of representation and of perception of a work of art. This paper examines how the processes of abstraction are used within the framework of the visual arts and abstract painting, which appeared during a period of growing importance for the processes of abstraction in science and technology, at the beginning of the twentieth century. The development of digital platforms and new man-machine interfaces allow multimedia creations. This is performed under the constraint of phases of multidisciplinary conceptualization using generic representation languages, which tend to abolish traditional frontiers between the arts: visual arts, drama, dance and music.

  20. Minimum-domain impulse theory for unsteady aerodynamic force

    Science.gov (United States)

    Kang, L. L.; Liu, L. Q.; Su, W. D.; Wu, J. Z.

    2018-01-01

    We extend the impulse theory for unsteady aerodynamics from its classic global form to finite-domain formulation then to minimum-domain form and from incompressible to compressible flows. For incompressible flow, the minimum-domain impulse theory raises the finding of Li and Lu ["Force and power of flapping plates in a fluid," J. Fluid Mech. 712, 598-613 (2012)] to a theorem: The entire force with discrete wake is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures. For compressible flows, we find that the global form in terms of the curl of momentum ∇ × (ρu), obtained by Huang [Unsteady Vortical Aerodynamics (Shanghai Jiaotong University Press, 1994)], can be generalized to having an arbitrary finite domain, but the formula is cumbersome and in general ∇ × (ρu) no longer has discrete structures and hence no minimum-domain theory exists. Nevertheless, as the measure of transverse process only, the unsteady field of vorticity ω or ρω may still have a discrete wake. This leads to a minimum-domain compressible vorticity-moment theory in terms of ρω (but it is beyond the classic concept of impulse). These new findings and applications have been confirmed by our numerical experiments. The results not only open an avenue to combine the theory with computation-experiment in wide applications but also reveal a physical truth that it is no longer necessary to account for all wake vortical structures in computing the force and moment.

  1. Numerical study of liquid crystal elastomers by a mixed finite element method

    KAUST Repository

    LUO, C.

    2011-08-22

    Liquid crystal elastomers present features not found in ordinary elastic materials, such as semi-soft elasticity and the related stripe domain phenomenon. In this paper, the two-dimensional Bladon-Terentjev-Warner model and the one-constant Oseen-Frank energy expression are combined to study the liquid crystal elastomer. We also impose two material constraints, the incompressibility of the elastomer and the unit director norm of the liquid crystal. We prove existence of minimiser of the energy for the proposed model. Next we formulate the discrete model, and also prove that it possesses a minimiser of the energy. The inf-sup values of the discrete linearised system are then related to the smallest singular values of certain matrices. Next the existence and uniqueness of the Lagrange multipliers associated with the two material constraints are proved under the assumption that the inf-sup conditions hold. Finally numerical simulations of the clamped-pulling experiment are presented for elastomer samples with aspect ratio 1 or 3. The semi-soft elasticity is successfully recovered in both cases. The stripe domain phenomenon, however, is not observed, which might be due to the relative coarse mesh employed in the numerical experiment. Possible improvements are discussed that might lead to the recovery of the stripe domain phenomenon. © Copyright Cambridge University Press 2011.

  2. Numerical Diffusion Effect in Dynamic Simulation of Thermohydraulic Systems

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo; Delmastro, Dario

    2003-01-01

    In this work, the behavior of the explicit - up-wind method is studied in two phase natural convection circuit, near the instabilities boundaries.The effect of the numerical diffusion of the scheme upon the system stability is evaluated by means of linearization by small perturbations.The results are compared with a non-diffusive method, in the frequency domain, that solves analytically the linearized equations around a steady state condition.Moreover, a conservation equation transport model using the method of characteristics is implemented and studied.This method is compared with the explicit - up-wind scheme and it is found that it significantly reduces numerical diffusion in the equations solution. Several advantages are visualized for particular cases

  3. Atmospheric models in the numerical simulation system (SPEEDI-MP) for environmental studies

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Terada, Hiroaki

    2007-01-01

    As a nuclear emergency response system, numerical models to predict the atmospheric dispersion of radionuclides have been developed at Japan Atomic Energy Agency (JAEA). Evolving these models by incorporating new schemes for physical processes and up-to-date computational technologies, a numerical simulation system, which consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, has been constructed to apply for various environmental studies. In this system, the combination of a non-hydrostatic atmospheric dynamic model and Lagrangian particle dispersion model is used for the emergency response system. The utilization of detailed meteorological field by the atmospheric model improves the model performance for diffusion and deposition calculations. It also calculates a large area domain with coarse resolution and local area domain with high resolution simultaneously. The performance of new model system was evaluated using measurements of surface deposition of 137 Cs over Europe during the Chernobyl accident. (author)

  4. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    Directory of Open Access Journals (Sweden)

    Laakso Kati

    2007-10-01

    Full Text Available Abstract Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1 and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains.

  5. Comparison of S. cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site

    Science.gov (United States)

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.

    2015-01-01

    SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000

  6. Completeness of Lyapunov Abstraction

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Sloth, Christoffer

    2013-01-01

    the vector field, which allows the generation of a complete abstraction. To compute the functions that define the subdivision of the state space in an algorithm, we formulate a sum of squares optimization problem. This optimization problem finds the best subdivisioning functions, with respect to the ability......This paper addresses the generation of complete abstractions of polynomial dynamical systems by timed automata. For the proposed abstraction, the state space is divided into cells by sublevel sets of functions. We identify a relation between these functions and their directional derivatives along...

  7. Numerical sensitivity computation for discontinuous gradient-only optimization problems using the complex-step method

    CSIR Research Space (South Africa)

    Wilke, DN

    2012-07-01

    Full Text Available problems that utilise remeshing (i.e. the mesh topology is allowed to change) between design updates. Here, changes in mesh topology result in abrupt changes in the discretization error of the computed response. These abrupt changes in turn manifests... in shape optimization but may be present whenever (partial) differential equations are ap- proximated numerically with non-constant discretization methods e.g. remeshing of spatial domains or automatic time stepping in temporal domains. Keywords: Complex...

  8. Perlindungan Merek Terdaftar Dari Kejahatan Dunia Maya Melalui Pembatasan Pendaftaran Nama Domain

    Directory of Open Access Journals (Sweden)

    Setia Dharma

    2015-05-01

    Full Text Available Abstract: The Protection of Registered Trademark of Cyber Crime Through The Restriction of The Domain Name Registration. The progress of science and technology has implications for the progress of the current trading method. It is not only done conventionally but also carried out through cyberspace. Trading in the virtual world requires the use of a domain name (cyber squatting as a differentiator between one company with other companies. Law No. 11 Year 2008 on Information and Electronic Transactions regulate the use of domain names and emphasize the element of good faith in the implementation. In practice, there is a breach of the domain name registration is a crime which is the trademark or name that has a commercial value. This paper is going to examine aspects of protection-registered trademark of cyber crime through the restriction of the domain name registration and implementation of good faith. Abstrak: Perlindungan Merek Terdaftar Dari Kejahatan Dunia Maya Melalui Pembatasan Pendaftaran Nama Domain. Kemajuan ilmu dan teknologi membawa implikasi pada kemajuan metode perdagangan yang saat ini bukan hanya dilakukan secara konvensional, namun juga dilakukan melalui dunia maya. Perdagangan dalam dunia maya mensyaratkan penggunaan nama domain (cyber squatting sebagai pembeda antara satu perusahaan dengan perusahaan yang lainnya. Undang-Undang No. 11 Tahun 2008 Tentang Informasi dan Transaksi elektronik mengatur penggunaan nama domain tersebut dan menekankan unsur iktikad baik dalam pelaksanaannya. Prakteknya, terdapat pelanggaran nama domain tersebut yang merupakan merupakan kejahatan pendaftaran merek dagang atau nama yang memiliki nilai komersial. Tulisan ini hendak mengkaji aspek perlindungan merek terdaftar dari kejahatan dunia maya melalui pembatasan pendaftaran nama domain dan pelaksanaan iktikad baik. DOI: 10.15408/jch.v1i2.1463

  9. Numerical Analysis Objects

    Science.gov (United States)

    Henderson, Michael

    1997-08-01

    The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.

  10. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    Science.gov (United States)

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  11. On solution of Maxwell's equations in axisymmetric domains with edges. Part I: Theoretical aspects

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-10-01

    In this paper we present the basic mathematical tools for treating boundary value problems for the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges by means of partial Fourier analysis. We consider the decomposition of the classical and regularized time-harmonic three-dimensional Maxwell's equations into variational equations in the plane meridian domain of the axisymmetric domain and define suitable weighted Sobolev spaces for their treatment. The trace properties of these spaces on the rotational axis and some properties of the solutions are proved, which are important for further numerical treatment, e.g. by the finite-element method. Particularly, a priori estimates of the solutions of the reduced system are given and the asymptotic behavior of these solutions near reentrant corners of the meridian domain is explicitly described by suitable singular functions. (author)

  12. Technical abstracts: Mechanical engineering, 1990

    International Nuclear Information System (INIS)

    Broesius, J.Y.

    1991-01-01

    This document is a compilation of the published, unclassified abstracts produced by mechanical engineers at Lawrence Livermore National Laboratory (LLNL) during the calendar year 1990. Many abstracts summarize work completed and published in report form. These are UCRL-JC series documents, which include the full text of articles to be published in journals and of papers to be presented at meetings, and UCID reports, which are informal documents. Not all UCIDs contain abstracts: short summaries were generated when abstracts were not included. Technical Abstracts also provides descriptions of those documents assigned to the UCRL-MI (miscellaneous) category. These are generally viewgraphs or photographs presented at meetings. An author index is provided at the back of this volume for cross referencing

  13. Non-linear wave loads and ship responses by a time-domain strip theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    . Based on this time-domain strip theory, an efficient non-linear hydroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented as a Timoshenko beam. Numerical calculations are presented for the S175 Containership...

  14. Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    . Based on this time-domain strip theory, an efficient non-linear hyroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented by the Timoshenko beam theory. Numerical calculations are presented for the S175...

  15. TE/TM field solver for particle beam simulations without numerical Cherenkov radiation

    Directory of Open Access Journals (Sweden)

    Igor Zagorodnov

    2005-04-01

    Full Text Available The Yee finite-difference time domain method (FDTD is commonly used in wake field and particle-in-cell simulations. However, in accelerator modeling the high energy particles can travel in vacuum faster than their own radiation. This effect is commonly referred to as numerical Cherenkov radiation and is a consequence of numerical grid dispersion. Several numerical approaches are proposed to reduce the dispersion for all angles and for a given frequency range, that justifies itself for domains big in all three directions. On the contrary, in accelerator modeling the transverse dimensions and transverse beam velocity are small, but it is extremely important to eliminate the dispersion error in the well-defined direction of the beam motion for all frequencies. In this paper we propose a new two-level economical conservative scheme for electromagnetic field calculations in three dimensions. The scheme does not have dispersion in the longitudinal direction and is staircase-free (second order convergent. Unlike the FDTD method, it is based on a “transversal-electric/transversal-magnetic” (TE/TM-like splitting of the field components in time. The scheme assures energy and charge conservation. Additionally, the usage of damping terms allows suppressing high frequency noise generated due to the transverse dispersion and the current fluctuations. The dispersion relation of the damping scheme is analyzed. As numerical examples show, the new scheme is much more accurate on the long-time scale than the conventional FDTD approach.

  16. Numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system

    Science.gov (United States)

    Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.

    2000-01-01

    In this paper, two numerical models are presented to simulate an enhanced very early time electromagnetic (VETEM) prototype system, which is used for buried-object detection and environmental problems. Usually, the VETEM system contains a transmitting loop antenna and a receiving loop antenna, which run on a lossy ground to detect buried objects. In the first numerical model, the loop antennas are accurately analyzed using the Method of Moments (MoM) for wire antennas above or buried in lossy ground. Then, Conjugate Gradient (CG) methods, with the use of the fast Fourier transform (FFT) or MoM, are applied to investigate the scattering from buried objects. Reflected and scattered magnetic fields are evaluated at the receiving loop to calculate the output electric current. However, the working frequency for the VETEM system is usually low and, hence, two magnetic dipoles are used to replace the transmitter and receiver in the second numerical model. Comparing these two models, the second one is simple, but only valid for low frequency or small loops, while the first modeling is more general. In this paper, all computations are performed in the frequency domain, and the FFT is used to obtain the time-domain responses. Numerical examples show that simulation results from these two models fit very well when the frequency ranges from 10 kHz to 10 MHz, and both results are close to the measured data.

  17. The triconnected abstraction of process models

    OpenAIRE

    Polyvyanyy, Artem; Smirnov, Sergey; Weske, Mathias

    2009-01-01

    Contents: Artem Polyvanny, Sergey Smirnow, and Mathias Weske The Triconnected Abstraction of Process Models 1 Introduction 2 Business Process Model Abstraction 3 Preliminaries 4 Triconnected Decomposition 4.1 Basic Approach for Process Component Discovery 4.2 SPQR-Tree Decomposition 4.3 SPQR-Tree Fragments in the Context of Process Models 5 Triconnected Abstraction 5.1 Abstraction Rules 5.2 Abstraction Algorithm 6 Related Work and Conclusions

  18. Experimental-numerical study of heat flow in deep low-enthalpy geothermal conditions

    NARCIS (Netherlands)

    Saeid, S.; Al-Khoury, R.; Nick, H.M.; Barends, F.

    2014-01-01

    This paper presents an intensive experimental-numerical study of heat flow in a saturated porous domain. A temperature and a flow rate range compared to that existing in a typical deep low-enthalpy hydrothermal system is studied. Two main issues are examined: the effect of fluid density and

  19. Elastic frequency-domain finite-difference contrast source inversion method

    International Nuclear Information System (INIS)

    He, Qinglong; Chen, Yong; Han, Bo; Li, Yang

    2016-01-01

    In this work, we extend the finite-difference contrast source inversion (FD-CSI) method to the frequency-domain elastic wave equations, where the parameters describing the subsurface structure are simultaneously reconstructed. The FD-CSI method is an iterative nonlinear inversion method, which exhibits several strengths. First, the finite-difference operator only relies on the background media and the given angular frequency, both of which are unchanged during inversion. Therefore, the matrix decomposition is performed only once at the beginning of the iteration if a direct solver is employed. This makes the inversion process relatively efficient in terms of the computational cost. In addition, the FD-CSI method automatically normalizes different parameters, which could avoid the numerical problems arising from the difference of the parameter magnitude. We exploit a parallel implementation of the FD-CSI method based on the domain decomposition method, ensuring a satisfactory scalability for large-scale problems. A simple numerical example with a homogeneous background medium is used to investigate the convergence of the elastic FD-CSI method. Moreover, the Marmousi II model proposed as a benchmark for testing seismic imaging methods is presented to demonstrate the performance of the elastic FD-CSI method in an inhomogeneous background medium. (paper)

  20. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  1. Using a {sigma}-coordinate numerical ocean model for simulating the circulation at Ormen Lange

    Energy Technology Data Exchange (ETDEWEB)

    Eliassen, Inge K.; Berntsen, Jarle

    2000-01-01

    This report describes a numerical model for the simulation of circulation at the Ormen Lange oil field. The model uses a topography following vertical coordinate and time split integration procedure. The model is implemented for a 28 km x 46 km area at Ormen Lange. The equations are given in detail and numerical experiments are discussed. The numerical studies investigate how the flow specified at open boundaries surrounding the Ormen Lange area may be interpolated into the interior domain taking into account the conservation laws that are believed to determine the flow and the local topography.

  2. Computer numerically controlled (CNC) aspheric shaping with toroidal Wheels (Abstract Only)

    Science.gov (United States)

    Ketelsen, D.; Kittrell, W. C.; Kuhn, W. M.; Parks, R. E.; Lamb, George L.; Baker, Lynn

    1987-01-01

    Contouring with computer numerically controlled (CNC) machines can be accomplished with several different tool geometries and coordinated machine axes. To minimize the number of coordinated axes for nonsymmetric work to three, it is common practice to use a spherically shaped tool such as a ball-end mill. However, to minimize grooving due to the feed and ball radius, it is desirable to use a long ball radius, but there is clearly a practical limit to ball diameter with the spherical tool. We have found that the use of commercially available toroidal wheels permits long effective cutting radii, which in turn improve finish and minimize grooving for a set feed. In addition, toroidal wheels are easier than spherical wheels to center accurately. Cutting parameters are also easier to control because the feed rate past the tool does not change as the slope of the work changes. The drawback to the toroidal wheel is the more complex calculation of the tool path. Of course, once the algorithm is worked out, the tool path is as easily calculated as for a spherical tool. We have performed two experiments with the Large Optical Generator (LOG) that were ideally suited to three-axis contouring--surfaces that have no axis of rotational symmetry. By oscillating the cutting head horizontally or vertically (in addition to the motions required to generate the power of the surface) , and carefully coordinating those motions with table rotation, the mostly astigmatic departure for these surfaces is produced. The first experiment was a pair of reflector molds that together correct the spherical aberration of the Arecibo radio telescope. The larger of these was 5 m in diameter and had a 12 cm departure from the best-fit sphere. The second experiment was the generation of a purely astigmatic surface to demonstrate the feasibility of producing axially symmetric asphe.rics while mounted and rotated about any off-axis point. Measurements of the latter (the first experiment had relatively

  3. Numerical and spectral investigations of novel infinite elements

    International Nuclear Information System (INIS)

    Barai, P.; Harari, I.; Barbonet, P.E.

    1998-01-01

    Exterior problems of time-harmonic acoustics are addressed by a novel infinite element formulation, defined on a bounded computational domain. For two-dimensional configurations with circular interfaces, the infinite element results match Quell both analytical values and those obtained from. other methods like DtN. Along 1uith the numerical performance of this formulation, of considerable interest are its complex-valued eigenvalues. Hence, a spectral analysis of the present scheme is also performed here, using various infinite elements

  4. Numerical Modeling of a Wave Energy Point Absorber

    DEFF Research Database (Denmark)

    Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning

    2009-01-01

    The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....

  5. A domain-decomposition method to implement electrostatic free boundary conditions in the radial direction for electric discharges

    Science.gov (United States)

    Malagón-Romero, A.; Luque, A.

    2018-04-01

    At high pressure electric discharges typically grow as thin, elongated filaments. In a numerical simulation this large aspect ratio should ideally translate into a narrow, cylindrical computational domain that envelops the discharge as closely as possible. However, the development of the discharge is driven by electrostatic interactions and, if the computational domain is not wide enough, the boundary conditions imposed to the electrostatic potential on the external boundary have a strong effect on the discharge. Most numerical codes circumvent this problem by either using a wide computational domain or by calculating the boundary conditions by integrating the Green's function of an infinite domain. Here we describe an accurate and efficient method to impose free boundary conditions in the radial direction for an elongated electric discharge. To facilitate the use of our method we provide a sample implementation. Finally, we apply the method to solve Poisson's equation in cylindrical coordinates with free boundary conditions in both radial and longitudinal directions. This case is of particular interest for the initial stages of discharges in long gaps or natural discharges in the atmosphere, where it is not practical to extend the simulation volume to be bounded by two electrodes.

  6. A Modal-Logic Based Graph Abstraction

    NARCIS (Netherlands)

    Bauer, J.; Boneva, I.B.; Kurban, M.E.; Rensink, Arend; Ehrig, H; Heckel, R.; Rozenberg, G.; Taentzer, G.

    2008-01-01

    Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract

  7. A New Efficient Algorithm for the 2D WLP-FDTD Method Based on Domain Decomposition Technique

    Directory of Open Access Journals (Sweden)

    Bo-Ao Xu

    2016-01-01

    Full Text Available This letter introduces a new efficient algorithm for the two-dimensional weighted Laguerre polynomials finite difference time-domain (WLP-FDTD method based on domain decomposition scheme. By using the domain decomposition finite difference technique, the whole computational domain is decomposed into several subdomains. The conventional WLP-FDTD and the efficient WLP-FDTD methods are, respectively, used to eliminate the splitting error and speed up the calculation in different subdomains. A joint calculation scheme is presented to reduce the amount of calculation. Through our work, the iteration is not essential to obtain the accurate results. Numerical example indicates that the efficiency and accuracy are improved compared with the efficient WLP-FDTD method.

  8. Numerical solutions of diffusive logistic equation

    International Nuclear Information System (INIS)

    Afrouzi, G.A.; Khademloo, S.

    2007-01-01

    In this paper we investigate numerically positive solutions of a superlinear Elliptic equation on bounded domains. The study of Diffusive logistic equation continues to be an active field of research. The subject has important applications to population migration as well as many other branches of science and engineering. In this paper the 'finite difference scheme' will be developed and compared for solving the one- and three-dimensional Diffusive logistic equation. The basis of the analysis of the finite difference equations considered here is the modified equivalent partial differential equation approach, developed from many authors these years

  9. Numerical Inversion for the Multiple Fractional Orders in the Multiterm TFDE

    Directory of Open Access Journals (Sweden)

    Chunlong Sun

    2017-01-01

    Full Text Available The fractional order in a fractional diffusion model is a key parameter which characterizes the anomalous diffusion behaviors. This paper deals with an inverse problem of determining the multiple fractional orders in the multiterm time-fractional diffusion equation (TFDE for short from numerics. The homotopy regularization algorithm is applied to solve the inversion problem using the finite data at one interior point in the space domain. The inversion fractional orders with random noisy data give good approximations to the exact order demonstrating the efficiency of the inversion algorithm and numerical stability of the inversion problem.

  10. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  11. Seismic Consequence Abstraction

    International Nuclear Information System (INIS)

    Gross, M.

    2004-01-01

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274])

  12. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  13. Convergence of a numerical method for the compressible Navier-Stokes system on general domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Karper, T.; Michálek, Martin

    2016-01-01

    Roč. 134, č. 4 (2016), s. 667-704 ISSN 0029-599X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : numerical methods * Navier-Stokes system Subject RIV: BA - General Mathematics Impact factor: 2.152, year: 2016 http://link.springer.com/article/10.1007%2Fs00211-015-0786-6

  14. Convergence of a numerical method for the compressible Navier-Stokes system on general domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Karper, T.; Michálek, Martin

    2016-01-01

    Roč. 134, č. 4 (2016), s. 667-704 ISSN 0029-599X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : numerical methods * Navier - Stokes system Subject RIV: BA - General Mathematics Impact factor: 2.152, year: 2016 http://link.springer.com/article/10.1007%2Fs00211-015-0786-6

  15. Modal abstractions of concurrent behavior

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nanz, Sebastian; Nielson, Hanne Riis

    2011-01-01

    We present an effective algorithm for the automatic construction of finite modal transition systems as abstractions of potentially infinite concurrent processes. Modal transition systems are recognized as valuable abstractions for model checking because they allow for the validation as well...... as refutation of safety and liveness properties. However, the algorithmic construction of finite abstractions from potentially infinite concurrent processes is a missing link that prevents their more widespread usage for model checking of concurrent systems. Our algorithm is a worklist algorithm using concepts...... from abstract interpretation and operating upon mappings from sets to intervals in order to express simultaneous over- and underapprox-imations of the multisets of process actions available in a particular state. We obtain a finite abstraction that is 3-valued in both states and transitions...

  16. Optimal Control of Heterogeneous Systems with Endogenous Domain of Heterogeneity

    International Nuclear Information System (INIS)

    Belyakov, Anton O.; Tsachev, Tsvetomir; Veliov, Vladimir M.

    2011-01-01

    The paper deals with optimal control of heterogeneous systems, that is, families of controlled ODEs parameterized by a parameter running over a domain called domain of heterogeneity. The main novelty in the paper is that the domain of heterogeneity is endogenous: it may depend on the control and on the state of the system. This extension is crucial for several economic applications and turns out to rise interesting mathematical problems. A necessary optimality condition is derived, where one of the adjoint variables satisfies a differential inclusion (instead of equation) and the maximization of the Hamiltonian takes the form of “min-max”. As a consequence, a Pontryagin-type maximum principle is obtained under certain regularity conditions for the optimal control. A formula for the derivative of the objective function with respect to the control from L ∞ is presented together with a sufficient condition for its existence. A stylized economic example is investigated analytically and numerically.

  17. Stability of numerical method for semi-linear stochastic pantograph differential equations

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-01-01

    Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.

  18. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    Science.gov (United States)

    Zeng, C. J.; Xiao, Y. X.; Zhu, W.; Yao, Y. Y.; Wang, Z. W.

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail.

  19. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    International Nuclear Information System (INIS)

    Zeng, C J; Xiao, Y X; Zhu, W; Yao, Y Y; Wang, Z W

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail

  20. Time and frequency domain analyses of the Hualien Large-Scale Seismic Test

    International Nuclear Information System (INIS)

    Kabanda, John; Kwon, Oh-Sung; Kwon, Gunup

    2015-01-01

    Highlights: • Time- and frequency-domain analysis methods are verified against each other. • The two analysis methods are validated against Hualien LSST. • The nonlinear time domain (NLTD) analysis resulted in more realistic response. • The frequency domain (FD) analysis shows amplification at resonant frequencies. • The NLTD analysis requires significant modeling and computing time. - Abstract: In the nuclear industry, the equivalent-linear frequency domain analysis method has been the de facto standard procedure primarily due to the method's computational efficiency. This study explores the feasibility of applying the nonlinear time domain analysis method for the soil–structure-interaction analysis of nuclear power facilities. As a first step, the equivalency of the time and frequency domain analysis methods is verified through a site response analysis of one-dimensional soil, a dynamic impedance analysis of soil–foundation system, and a seismic response analysis of the entire soil–structure system. For the verifications, an idealized elastic soil–structure system is used to minimize variables in the comparison of the two methods. Then, the verified analysis methods are used to develop time and frequency domain models of Hualien Large-Scale Seismic Test. The predicted structural responses are compared against field measurements. The models are also analyzed with an amplified ground motion to evaluate discrepancies of the time and frequency domain analysis methods when the soil–structure system behaves beyond the elastic range. The analysis results show that the equivalent-linear frequency domain analysis method amplifies certain frequency bands and tends to result in higher structural acceleration than the nonlinear time domain analysis method. A comparison with field measurements shows that the nonlinear time domain analysis method better captures the frequency distribution of recorded structural responses than the frequency domain

  1. Metrology for terahertz time-domain spectrometers

    Science.gov (United States)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  2. An Operator-Integration-Factor Splitting (OIFS) method for Incompressible Flows in Moving Domains

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Saumil S. [Argonne National Lab. (ANL), Argonne, IL (United States); Fischer, Paul F. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois, Urbana-Champaign, IL (United States); Min, Misun [Argonne National Lab. (ANL), Argonne, IL (United States); Tomboulides, Ananias G [Argonne National Lab. (ANL), Argonne, IL (United States); Aristotle Univ., Thessaloniki (Greece)

    2017-10-21

    In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an effcient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian-Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of the scheme.

  3. Effects of Conjugate Gradient Methods and Step-Length Formulas on the Multiscale Full Waveform Inversion in Time Domain: Numerical Experiments

    Science.gov (United States)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José; Liu, Qinya; Zhou, Bing

    2017-05-01

    We carry out full waveform inversion (FWI) in time domain based on an alternative frequency-band selection strategy that allows us to implement the method with success. This strategy aims at decomposing the seismic data within partially overlapped frequency intervals by carrying out a concatenated treatment of the wavelet to largely avoid redundant frequency information to adapt to wavelength or wavenumber coverage. A pertinent numerical test proves the effectiveness of this strategy. Based on this strategy, we comparatively analyze the effects of update parameters for the nonlinear conjugate gradient (CG) method and step-length formulas on the multiscale FWI through several numerical tests. The investigations of up to eight versions of the nonlinear CG method with and without Gaussian white noise make clear that the HS (Hestenes and Stiefel in J Res Natl Bur Stand Sect 5:409-436, 1952), CD (Fletcher in Practical methods of optimization vol. 1: unconstrained optimization, Wiley, New York, 1987), and PRP (Polak and Ribière in Revue Francaise Informat Recherche Opertionelle, 3e Année 16:35-43, 1969; Polyak in USSR Comput Math Math Phys 9:94-112, 1969) versions are more efficient among the eight versions, while the DY (Dai and Yuan in SIAM J Optim 10:177-182, 1999) version always yields inaccurate result, because it overestimates the deeper parts of the model. The application of FWI algorithms using distinct step-length formulas, such as the direct method ( Direct), the parabolic search method ( Search), and the two-point quadratic interpolation method ( Interp), proves that the Interp is more efficient for noise-free data, while the Direct is more efficient for Gaussian white noise data. In contrast, the Search is less efficient because of its slow convergence. In general, the three step-length formulas are robust or partly insensitive to Gaussian white noise and the complexity of the model. When the initial velocity model deviates far from the real model or the

  4. The deleuzian abstract machines

    DEFF Research Database (Denmark)

    Werner Petersen, Erik

    2005-01-01

    To most people the concept of abstract machines is connected to the name of Alan Turing and the development of the modern computer. The Turing machine is universal, axiomatic and symbolic (E.g. operating on symbols). Inspired by Foucault, Deleuze and Guattari extended the concept of abstract...

  5. Typesafe Abstractions for Tensor Operations

    OpenAIRE

    Chen, Tongfei

    2017-01-01

    We propose a typesafe abstraction to tensors (i.e. multidimensional arrays) exploiting the type-level programming capabilities of Scala through heterogeneous lists (HList), and showcase typesafe abstractions of common tensor operations and various neural layers such as convolution or recurrent neural networks. This abstraction could lay the foundation of future typesafe deep learning frameworks that runs on Scala/JVM.

  6. Comparison of numerical dispersion for finite-difference algorithms in transversely isotropic media with a vertical symmetry axis

    International Nuclear Information System (INIS)

    Liang, Wen-Quan; Wang, Yan-Fei; Yang, Chang-Chun

    2015-01-01

    Numerical simulation of the wave equation is widely used to synthesize seismograms theoretically and is also the basis of the reverse time migration and full waveform inversion. For the finite difference methods, grid dispersion often exists because of the discretization of the time and the spatial derivatives in the wave equation. How to suppress the grid dispersion is therefore a key problem for finite difference (FD) approaches. The FD operators for the space derivatives are usually obtained in the space domain. However, the wave equations are discretized in the time and space directions simultaneously. So it would be better to design the FD operators in the time–space domain. We improved the time–space domain method for obtaining the FD operators in an acoustic vertically transversely isotropic (VTI) media so as to cover a much wider range of frequencies. Dispersion analysis and seismic numerical simulation demonstrate the effectiveness of the proposed method. (paper)

  7. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains

    KAUST Repository

    Madzvamuse, Anotida; Gaffney, Eamonn A.; Maini, Philip K.

    2009-01-01

    By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Our theoretical findings are confirmed and reinforced by numerical simulations for the special cases of isotropic linear, exponential and logistic growth profiles. In particular we illustrate an example of a reaction-diffusion system which cannot exhibit a diffusively-driven instability on a fixed domain but is unstable in the presence of slow growth. © Springer-Verlag 2009.

  8. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains

    KAUST Repository

    Madzvamuse, Anotida

    2009-08-29

    By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Our theoretical findings are confirmed and reinforced by numerical simulations for the special cases of isotropic linear, exponential and logistic growth profiles. In particular we illustrate an example of a reaction-diffusion system which cannot exhibit a diffusively-driven instability on a fixed domain but is unstable in the presence of slow growth. © Springer-Verlag 2009.

  9. Structure determination of human Lck unique and SH3 domains by nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Willbold Dieter

    2003-05-01

    Full Text Available Abstract Background Protein tyrosine kinases are involved in signal transduction pathways that regulate cell growth, differentiation, activation and transformation. Human lymphocyte specific kinase (Lck is a 56 kDa protein involved in T-cell- and IL2-receptor signaling. Three-dimensional structures are known for SH3, SH2 and kinase domains of Lck as well as for other tyrosine kinases. No structure is known for the unique domain of any Src-type tyrosine kinase. Results Lck(1–120 comprising unique and SH3 domains was structurally investigated by nuclear magnetic resonance spectroscopy. We found the unique domain, in contrast to the SH3 part, to have basically no defined structural elements. The solution structure of the SH3 part could be determined with very high precision. It does not show significant differences to Lck SH3 in the absence of the unique domain. Minor differences were observed to the X-ray structure of Lck SH3. Conclusion The unique domain of Lck does not contain any defined structure elements in the absence of ligands and membranes. Presence of the unique domain is not relevant to the three-dimensional structure of the Lck SH3 domain.

  10. On spurious resonant modes in the MOT solution of time domain EFIE

    KAUST Repository

    Shi, Yifei

    2013-07-01

    Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal resonant modes do not satisfy these initial conditions. However, these spurious modes are always observed in the MOT solution. It has been conjectured in the past that numerical errors might establish the necessary initial conditions and allow the incident field to induce the internal resonant modes. Systematic numerical experiments carried out in this work prove this conjecture by demonstrating that the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors and the spectrum of the incident field. © 2013 IEEE.

  11. Inventory Abstraction

    International Nuclear Information System (INIS)

    Leigh, C.

    2000-01-01

    The purpose of the inventory abstraction as directed by the development plan (CRWMS M and O 1999b) is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M and O 1999c, 1999d). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) (NRC 1999) key technical issue (KTI): ''The rate at which radionuclides in SNF [Spent Nuclear Fuel] are released from the EBS [Engineered Barrier System] through the oxidation and dissolution of spent fuel'' (Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release to the accessible environment. The inventory abstraction is important in assessing system performance because

  12. Numerical study of the shape parameter dependence of the local radial point interpolation method in linear elasticity.

    Science.gov (United States)

    Moussaoui, Ahmed; Bouziane, Touria

    2016-01-01

    The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).

  13. Methods for enhancing numerical integration

    International Nuclear Information System (INIS)

    Doncker, Elise de

    2003-01-01

    We give a survey of common strategies for numerical integration (adaptive, Monte-Carlo, Quasi-Monte Carlo), and attempt to delineate their realm of applicability. The inherent accuracy and error bounds for basic integration methods are given via such measures as the degree of precision of cubature rules, the index of a family of lattice rules, and the discrepancy of uniformly distributed point sets. Strategies incorporating these basic methods often use paradigms to reduce the error by, e.g., increasing the number of points in the domain or decreasing the mesh size, locally or uniformly. For these processes the order of convergence of the strategy is determined by the asymptotic behavior of the error, and may be too slow in practice for the type of problem at hand. For certain problem classes we may be able to improve the effectiveness of the method or strategy by such techniques as transformations, absorbing a difficult part of the integrand into a weight function, suitable partitioning of the domain, transformations and extrapolation or convergence acceleration. Situations warranting the use of these techniques (possibly in an 'automated' way) are described and illustrated by sample applications

  14. Stability of a pinned magnetic domain wall as a function of its internal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M. [Institut Jean Lamour, Université de Lorraine, CNRS, BP 70239, F-54506 Vandoeuvre lès Nancy (France); Childress, J. R. [HGST San Jose Research Center, 3403 Yerba Buena Rd, San Jose, California 95135 (United States)

    2015-01-14

    It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.

  15. Compiling Dictionaries Using Semantic Domains*

    Directory of Open Access Journals (Sweden)

    Ronald Moe

    2011-10-01

    Full Text Available

    Abstract: The task of providing dictionaries for all the world's languages is prodigious, re-quiring efficient techniques. The text corpus method cannot be used for minority languages lacking texts. To meet the need, the author has constructed a list of 1 600 semantic domains, which he has successfully used to collect words. In a workshop setting, a group of speakers can collect as many as 17 000 words in ten days. This method results in a classified word list that can be efficiently expanded into a full dictionary. The method works because the mental lexicon is a giant web or-ganized around key concepts. A semantic domain can be defined as an important concept together with the words directly related to it by lexical relations. A person can utilize the mental web to quickly jump from word to word within a domain. The author is developing a template for each domain to aid in collecting words and in de-scribing their semantics. Investigating semantics within the context of a domain yields many in-sights. The method permits the production of both alphabetically and semantically organized dic-tionaries. The list of domains is intended to be universal in scope and applicability. Perhaps due to universals of human experience and universals of linguistic competence, there are striking simi-larities in various lists of semantic domains developed for languages around the world. Using a standardized list of domains to classify multiple dictionaries opens up possibilities for cross-lin-guistic research into semantic and lexical universals.

    Keywords: SEMANTIC DOMAINS, SEMANTIC FIELDS, SEMANTIC CATEGORIES, LEX-ICAL RELATIONS, SEMANTIC PRIMITIVES, DOMAIN TEMPLATES, MENTAL LEXICON, SEMANTIC UNIVERSALS, MINORITY LANGUAGES, LEXICOGRAPHY

    Opsomming: Samestelling van woordeboeke deur gebruikmaking van se-mantiese domeine. Die taak van die voorsiening van woordeboeke aan al die tale van die wêreld is geweldig en vereis doeltreffende tegnieke. Die

  16. Molecular Details of Olfactomedin Domains Provide Pathway to Structure-Function Studies.

    Directory of Open Access Journals (Sweden)

    Shannon E Hill

    Full Text Available Olfactomedin (OLF domains are found within extracellular, multidomain proteins in numerous tissues of multicellular organisms. Even though these proteins have been implicated in human disorders ranging from cancers to attention deficit disorder to glaucoma, little is known about their structure(s and function(s. Here we biophysically, biochemically, and structurally characterize OLF domains from H. sapiens olfactomedin-1 (npoh-OLF, also called noelin, pancortin, OLFM1, and hOlfA, and M. musculus gliomedin (glio-OLF, also called collomin, collmin, and CRG-L2, and compare them with available structures of myocilin (myoc-OLF recently reported by us and R. norvegicus glio-OLF and M. musculus latrophilin-3 (lat3-OLF by others. Although the five-bladed β-propeller architecture remains unchanged, numerous physicochemical characteristics differ among these OLF domains. First, npoh-OLF and glio-OLF exhibit prominent, yet distinct, positive surface charges and copurify with polynucleotides. Second, whereas npoh-OLF and myoc-OLF exhibit thermal stabilities typical of human proteins near 55°C, and most myoc-OLF variants are destabilized and highly prone to aggregation, glio-OLF is nearly 20°C more stable and significantly more resistant to chemical denaturation. Phylogenetically, glio-OLF is most similar to primitive OLFs, and structurally, glio-OLF is missing distinguishing features seen in OLFs such as the disulfide bond formed by N- and C- terminal cysteines, the sequestered Ca2+ ion within the propeller central hydrophilic cavity, and a key loop-stabilizing cation-π interaction on the top face of npoh-OLF and myoc-OLF. While deciphering the explicit biological functions, ligands, and binding partners for OLF domains will likely continue to be a challenging long-term experimental pursuit, we used structural insights gained here to generate a new antibody selective for myoc-OLF over npoh-OLF and glio-OLF as a first step in overcoming the impasse in

  17. Interdisciplinary Study of Numerical Methods and Power Plants Engineering

    Directory of Open Access Journals (Sweden)

    Ioana OPRIS

    2014-08-01

    Full Text Available The development of technology, electronics and computing opened the way for a cross-disciplinary research that brings benefits by combining the achievements of different fields. To prepare the students for their future interdisciplinary approach,aninterdisciplinary teaching is adopted. This ensures their progress in knowledge, understanding and ability to navigate through different fields. Aiming these results, the Universities introduce new interdisciplinary courses which explore complex problems by studying subjects from different domains. The paper presents a problem encountered in designingpower plants. The method of solvingthe problem isused to explain the numerical methods and to exercise programming.The goal of understanding a numerical algorithm that solves a linear system of equations is achieved by using the knowledge of heat transfer to design the regenerative circuit of a thermal power plant. In this way, the outcomes from the prior courses (mathematics and physics are used to explain a new subject (numerical methods and to advance future ones (power plants.

  18. Numerical analysis of energetic particle stabilization of ballooning modes in finite-aspect-ratio tokamaks

    International Nuclear Information System (INIS)

    He Qibing; Peng Qiyang; Qu Wenxiao

    1993-09-01

    The effect of energetic trapped particles on the stabilization of ballooning modes in finite-aspect-ratio tokamaks is numerically analyzed. The numerical solution of boundary value problem of an integro-differential equation is successfully obtained by RKF integral method with variable step size. The results show that the instability domain of ballooning modes becomes small along with the increase of energetic particles pressure. The energetic trapped particles can partially or completely suppress the instability of ballooning modes

  19. Time-domain simulations for metallic nano-structures - a Krylov-subspace approach beyond the limitations of FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Michael [Institut fuer Theoretische Festkoerperphysik, Universitaet Karlsruhe (Germany); Karlsruhe School of Optics and Photonics (KSOP), Universitaet Karlsruhe (Germany); Niegemann, Jens; Tkeshelashvili, Lasha; Busch, Kurt [Institut fuer Theoretische Festkoerperphysik, Universitaet Karlsruhe (Germany); DFG Forschungszentrum Center for Functional Nanostructures (CFN), Universitaet Karlsruhe (Germany); Karlsruhe School of Optics and Photonics (KSOP), Universitaet Karlsruhe (Germany)

    2008-07-01

    Numerical simulations of metallic nano-structures are crucial for the efficient design of plasmonic devices. Conventional time-domain solvers such as FDTD introduce large numerical errors especially at metallic surfaces. Our approach combines a discontinuous Galerkin method on an adaptive mesh for the spatial discretisation with a Krylov-subspace technique for the time-stepping procedure. Thus, the higher-order accuracy in both time and space is supported by unconditional stability. As illustrative examples, we compare numerical results obtained with our method against analytical reference solutions and results from FDTD calculations.

  20. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    Science.gov (United States)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  1. A new scaling approach for the mesoscale simulation of magnetic domain structures using Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, B., E-mail: radhakrishnb@ornl.gov; Eisenbach, M.; Burress, T.A.

    2017-06-15

    Highlights: • Developed new scaling technique for dipole–dipole interaction energy. • Developed new scaling technique for exchange interaction energy. • Used scaling laws to extend atomistic simulations to micrometer length scale. • Demonstrated transition from mono-domain to vortex magnetic structure. • Simulated domain wall width and transition length scale agree with experiments. - Abstract: A new scaling approach has been proposed for the spin exchange and the dipole–dipole interaction energy as a function of the system size. The computed scaling laws are used in atomistic Monte Carlo simulations of magnetic moment evolution to predict the transition from single domain to a vortex structure as the system size increases. The width of a 180° – domain wall extracted from the simulated structures is in close agreement with experimentally values for an F–Si alloy. The transition size from a single domain to a vortex structure is also in close agreement with theoretically predicted and experimentally measured values for Fe.

  2. Human mate-choice copying is domain-general social learning.

    Science.gov (United States)

    Street, Sally E; Morgan, Thomas J H; Thornton, Alex; Brown, Gillian R; Laland, Kevin N; Cross, Catharine P

    2018-01-29

    Women appear to copy other women's preferences for men's faces. This 'mate-choice copying' is often taken as evidence of psychological adaptations for processing social information related to mate choice, for which facial information is assumed to be particularly salient. No experiment, however, has directly investigated whether women preferentially copy each other's face preferences more than other preferences. Further, because prior experimental studies used artificial social information, the effect of real social information on attractiveness preferences is unknown. We collected attractiveness ratings of pictures of men's faces, men's hands, and abstract art given by heterosexual women, before and after they saw genuine social information gathered in real time from their peers. Ratings of faces were influenced by social information, but no more or less than were images of hands and abstract art. Our results suggest that evidence for domain-specific social learning mechanisms in humans is weaker than previously suggested.

  3. Effects of biases in domain wall network evolution. II. Quantitative analysis

    Science.gov (United States)

    Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.

    2018-04-01

    Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.

  4. The BAH domain of BAF180 is required for PCNA ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Atsuko [Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Hopkins, Suzanna R; Downs, Jessica A [Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ (United Kingdom); Masutani, Chikahide, E-mail: masutani@riem.nagoya-u.ac.jp [Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2015-09-15

    Highlights: • The expression of BAF180 promotes UV-induced PCNA ubiquitination during S phase. • The BAH domains of BAF180 alone are sufficient to promote PCNA ubiquitination. • The BAH domains are not assembled into the PBAF in the absence of the C-terminus. - Abstract: Monoubiquitination of proliferating cell nuclear antigen (PCNA) is a critical regulator of post replication repair (PRR). The depletion of BAF180, a unique subunit of the PBAF chromatin remodeling complex in human cells results in reduced PCNA ubiquitination leading to less efficient fork progression following DNA damage, but little is known about the mechanism. Here, we report that the expression of exogenous BAF180 in cells promotes PCNA ubiquitination during S-phase after UV irradiation and it persists for many hours. No correlation was observed between the protein level of ubiquitin-specific protease 1 (USP1) and ubiquitinated PCNA in BAF180 expressing cells. Analysis of cells expressing BAF180 deletion mutants showed that the bromo-adjacent homology (BAH) domains are responsible for this effect. Surprisingly, a deletion construct encoding only the BAH domain region is able to increase the level of ubiquitinated PCNA, even though it is unable to be assembled into the PBAF complex. These results suggest that the ATPase-dependent chromatin remodeling activity of PBAF is not necessary, but instead the BAH domains are sufficient to promote PCNA ubiquitination.

  5. Polyhedral meshing as an innovative approach to computational domain discretization of a cyclone in a fluidized bed CLC unit

    Directory of Open Access Journals (Sweden)

    Sosnowski Marcin

    2017-01-01

    Full Text Available Chemical Looping Combustion (CLC is a technology that allows the separation of CO2, which is generated by the combustion of fossil fuels. The majority of process designs currently under investigation are systems of coupled fluidized beds. Advances in the development of power generation system using CLC cannot be introduced without using numerical modelling as a research tool. The primary and critical activity in numerical modelling is the computational domain discretization. It influences the numerical diffusion as well as convergence of the model and therefore the overall accuracy of the obtained results. Hence an innovative approach of computational domain discretization using polyhedral (POLY mesh is proposed in the paper. This method reduces both the numerical diffusion of the mesh as well as the time cost of preparing the model for subsequent calculation. The major advantage of POLY mesh is that each individual cell has many neighbours, so gradients can be much better approximated in comparison to commonly-used tetrahedral (TET mesh. POLYs are also less sensitive to stretching than TETs which results in better numerical stability of the model. Therefore detailed comparison of numerical modelling results concerning subsection of CLC system using tetrahedral and polyhedral mesh is covered in the paper.

  6. Generalized multiscale finite element methods for problems in perforated heterogeneous domains

    KAUST Repository

    Chung, Eric T.

    2015-06-08

    Complex processes in perforated domains occur in many real-world applications. These problems are typically characterized by physical processes in domains with multiple scales. Moreover, these problems are intrinsically multiscale and their discretizations can yield very large linear or nonlinear systems. In this paper, we investigate multiscale approaches that attempt to solve such problems on a coarse grid by constructing multiscale basis functions in each coarse grid, where the coarse grid can contain many perforations. In particular, we are interested in cases when there is no scale separation and the perforations can have different sizes. In this regard, we mention some earlier pioneering works, where the authors develop multiscale finite element methods. In our paper, we follow Generalized Multiscale Finite Element Method (GMsFEM) and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems. We show that with a few basis functions in each coarse block, one can approximate the solution, where each coarse block can contain many small inclusions. We apply our general concept to (1) Laplace equation in perforated domains; (2) elasticity equation in perforated domains; and (3) Stokes equations in perforated domains. Numerical results are presented for these problems using two types of heterogeneous perforated domains. The analysis of the proposed methods will be presented elsewhere. © 2015 Taylor & Francis

  7. A mutually profitable alliance - Asymptotic expansions and numerical computations

    Science.gov (United States)

    Euvrard, D.

    Problems including the flow past a wing airfoil at Mach 1, and the two-dimensional flow past a partially immersed body are used to show the advantages of coupling a standard numerical method for the whole domain where everything is of the order of 1, with an appropriate asymptotic expansion in the vicinity of some singular point. Cases more closely linking the two approaches are then considered. In the localized finite element method, the asymptotic expansion at infinity becomes a convergent series and the problem reduces to a variational form. Combined analytical and numerical methods are used in the singularity distribution method and in the various couplings of finite elements and a Green integral representation to design a subroutine to compute the Green function and its derivatives.

  8. Information Pre-Processing using Domain Meta-Ontology and Rule Learning System

    Science.gov (United States)

    Ranganathan, Girish R.; Biletskiy, Yevgen

    Around the globe, extraordinary amounts of documents are being created by Enterprises and by users outside these Enterprises. The documents created in the Enterprises constitute the main focus of the present chapter. These documents are used to perform numerous amounts of machine processing. While using thesedocuments for machine processing, lack of semantics of the information in these documents may cause misinterpretation of the information, thereby inhibiting the productiveness of computer assisted analytical work. Hence, it would be profitable to the Enterprises if they use well defined domain ontologies which will serve as rich source(s) of semantics for the information in the documents. These domain ontologies can be created manually, semi-automatically or fully automatically. The focus of this chapter is to propose an intermediate solution which will enable relatively easy creation of these domain ontologies. The process of extracting and capturing domain ontologies from these voluminous documents requires extensive involvement of domain experts and application of methods of ontology learning that are substantially labor intensive; therefore, some intermediate solutions which would assist in capturing domain ontologies must be developed. This chapter proposes a solution in this direction which involves building a meta-ontology that will serve as an intermediate information source for the main domain ontology. This chapter proposes a solution in this direction which involves building a meta-ontology as a rapid approach in conceptualizing a domain of interest from huge amount of source documents. This meta-ontology can be populated by ontological concepts, attributes and relations from documents, and then refined in order to form better domain ontology either through automatic ontology learning methods or some other relevant ontology building approach.

  9. Versions of the Collocation and Least Residuals Method for Solving Problems of Mathematical Physics in the Convex Quadrangular Domains

    Directory of Open Access Journals (Sweden)

    Vasily A. Belyaev

    2017-01-01

    Full Text Available The new versions of the collocations and least residuals (CLR method of high-order accuracy are proposed and implemented for the numerical solution of the boundary value problems for PDE in the convex quadrangular domains. Their implementation and numerical experiments are performed by the examples of solving the biharmonic and Poisson equations. The solution of the biharmonic equation is used for simulation of the stress-strain state of an isotropic plate under the action of the transverse load. Differential problems are projected into the space of fourth-degree polynomials by the CLR method. The boundary conditions for the approximate solution are put down exactly on the boundary of the computational domain. The versions of the CLR method are implemented on the grids, which are constructed by two different ways. In the first version, a “quasiregular” grid is constructed in the domain, the extreme lines of this grid coincide with the boundaries of the domain. In the second version, the domain is initially covered by a regular grid with rectangular cells. Herewith, the collocation and matching points that are situated outside the domain are used for approximation of the differential equations in the boundary cells that had been crossed by the boundary. In addition the “small” irregular triangular cells that had been cut off by the domain boundary from rectangular cells of the initial regular grid are joined to adjacent quadrangular cells. This technique allowed to essentially reduce the conditionality of the system of linear algebraic equations of the approximate problem in comparison with the case when small irregular cells together with other cells were used as independent ones for constructing an approximate solution of the problem. It is shown that the approximate solution of problems converges with high order and matches with high accuracy with the analytical solution of the test problems in the case of the known solution in

  10. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations

    DEFF Research Database (Denmark)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.

    2018-01-01

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and conc...

  11. A Unified Framework for Creating Domain Dependent Polarity Lexicons from User Generated Reviews.

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Asghar

    Full Text Available The exponential increase in the explosion of Web-based user generated reviews has resulted in the emergence of Opinion Mining (OM applications for analyzing the users' opinions toward products, services, and policies. The polarity lexicons often play a pivotal role in the OM, indicating the positivity and negativity of a term along with the numeric score. However, the commonly available domain independent lexicons are not an optimal choice for all of the domains within the OM applications. The aforementioned is due to the fact that the polarity of a term changes from one domain to other and such lexicons do not contain the correct polarity of a term for every domain. In this work, we focus on the problem of adapting a domain dependent polarity lexicon from set of labeled user reviews and domain independent lexicon to propose a unified learning framework based on the information theory concepts that can assign the terms with correct polarity (+ive, -ive scores. The benchmarking on three datasets (car, hotel, and drug reviews shows that our approach improves the performance of the polarity classification by achieving higher accuracy. Moreover, using the derived domain dependent lexicon changed the polarity of terms, and the experimental results show that our approach is more effective than the base line methods.

  12. Nuclear medicine. Abstracts; Nuklearmedizin 2000. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-07-01

    This issue of the journal contains the abstracts of the 183 conference papers as well as 266 posters presented at the conference. Subject fields covered are: Neurology, psychology, oncology, pediatrics, radiopharmacy, endocrinology, EDP, measuring equipment and methods, radiological protection, cardiology, and therapy. (orig./CB) [German] Die vorliegende Zeitschrift enthaelt die Kurzfassungen der 183 auf der Tagung gehaltenen Vortraege sowie der 226 praesentierten Poster, die sich mit den folgenden Themen befassten: Neurologie, Psychiatrie, Onkologie, Paediatrie, Radiopharmazie, Endokrinologie, EDV, Messtechnik, Strahlenschutz, Kardiologie sowie Therapie. (MG)

  13. Mechanical Engineering Department technical abstracts

    International Nuclear Information System (INIS)

    Denney, R.M.

    1982-01-01

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts

  14. On mathematical modelling and numerical simulation of transient compressible flow across open boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Rian, Kjell Erik

    2003-07-01

    In numerical simulations of turbulent reacting compressible flows, artificial boundaries are needed to obtain a finite computational domain when an unbounded physical domain is given. Artificial boundaries which fluids are free to cross are called open boundaries. When calculating such flows, non-physical reflections at the open boundaries may occur. These reflections can pollute the solution severely, leading to inaccurate results, and the generation of spurious fluctuations may even cause the numerical simulation to diverge. Thus, a proper treatment of the open boundaries in numerical simulations of turbulent reacting compressible flows is required to obtain a reliable solution for realistic conditions. A local quasi-one-dimensional characteristic-based open-boundary treatment for the Favre-averaged governing equations for time-dependent three-dimensional multi-component turbulent reacting compressible flow is presented. A k-{epsilon} model for turbulent compressible flow and Magnussen's EDC model for turbulent combustion is included in the analysis. The notion of physical boundary conditions is incorporated in the method, and the conservation equations themselves are applied on the boundaries to complement the set of physical boundary conditions. A two-dimensional finite-difference-based computational fluid dynamics code featuring high-order accurate numerical schemes was developed for the numerical simulations. Transient numerical simulations of the well-known, one-dimensional shock-tube problem, a two-dimensional pressure-tower problem in a decaying turbulence field, and a two-dimensional turbulent reacting compressible flow problem have been performed. Flow- and combustion-generated pressure waves seem to be well treated by the non-reflecting subsonic open-boundary conditions. Limitations of the present open-boundary treatment are demonstrated and discussed. The simple and solid physical basis of the method makes it both favourable and relatively easy to

  15. Theoretical and numerical study of an optimum design algorithm

    International Nuclear Information System (INIS)

    Destuynder, Philippe.

    1976-08-01

    This work can be separated into two main parts. First, the behavior of the solution of an elliptic variational equation is analyzed when the domain is submitted to a small perturbation. The case of inequations is also considered. Secondly the previous results are used for deriving an optimum design algorithm. This algorithm was suggested by the center-method proposed by Huard. Numerical results show the superiority of the method on other different optimization techniques [fr

  16. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    Science.gov (United States)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  17. Framing Effects: Dynamics and Task Domains

    Science.gov (United States)

    Wang

    1996-11-01

    The author examines the mechanisms and dynamics of framing effects in risky choices across three distinct task domains (i.e., life-death, public property, and personal money). The choice outcomes of the problems presented in each of the three task domains had a binary structure of a sure thing vs a gamble of equal expected value; the outcomes differed in their framing conditions and the expected values, raging from 6000, 600, 60, to 6, numerically. It was hypothesized that subjects would become more risk seeking, if the sure outcome was below their aspiration level (the minimum requirement). As predicted, more subjects preferred the gamble when facing the life-death choice problems than facing the counterpart problems presented in the other two task domains. Subjects' risk preference varied categorically along the group size dimension in the life-death domain but changed more linearly over the expected value dimension in the monetary domain. Framing effects were observed in 7 of 13 pairs of problems, showing a positive frame-risk aversion and negative frame-risk seeking relationship. In addition, two types of framing effects were theoretically defined and empirically identified. A bidirectional framing effect involves a reversal in risk preference, and occurs when a decision maker's risk preference is ambiguous or weak. Four bidirectional effects were observed; in each case a majority of subjects preferred the sure outcome under a positive frame but the gamble under a negative frame. In contrast, a unidirectional framing effect refers to a preference shift due to the framing of choice outcomes: A majority of subjects preferred one choice outcome (either the sure thing or the gamble) under both framing conditions, with positive frame augmented the preference for the sure thing and negative frame augmented the preference for the gamble. These findings revealed some dynamic regularities of framing effects and posed implications for developing predictive and testable

  18. Molecular dynamics simulations of ferroelectric domain formation by oxygen vacancy

    Science.gov (United States)

    Zhu, Lin; You, Jeong Ho; Chen, Jinghong; Yeo, Changdong

    2018-05-01

    An oxygen vacancy, known to be detrimental to ferroelectric properties, has been investigated numerically for the potential uses to control ferroelectric domains in films using molecular dynamics simulations based on the first-principles effective Hamiltonian. As an electron donor, an oxygen vacancy generates inhomogeneous electrostatic and displacement fields which impose preferred polarization directions near the oxygen vacancy. When the oxygen vacancies are placed at the top and bottom interfaces, the out-of-plane polarizations are locally developed near the interfaces in the directions away from the interfaces. These polarizations from the interfaces are in opposite directions so that the overall out-of-plane polarization becomes significantly reduced. In the middle of the films, the in-plane domains are formed with containing 90° a 1/a 2 domain walls and the films are polarized along the [1 1 0] direction even when no electric field is applied. With oxygen vacancies placed at the top interface only, the films exhibit asymmetric hysteresis loops, confirming that the oxygen vacancies are one of the possible sources of ferroelectric imprint. It has been qualitatively demonstrated that the domain structures in the imprint films can be turned on and off by controlling an external field along the thickness direction. This study shows qualitatively that the oxygen vacancies can be utilized for tuning ferroelectric domain structures in films.

  19. Quasi-exact evaluation of time domain MFIE MOT matrix elements

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Shanker, Balasubramaniam; Lu, Mingyu; Michielssen, Eric

    2013-01-01

    A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.

  20. Quasi-exact evaluation of time domain MFIE MOT matrix elements

    KAUST Repository

    Shi, Yifei

    2013-07-01

    A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.

  1. A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains

    Science.gov (United States)

    Johansen, Hans; Colella, Phillip

    1998-11-01

    We present a numerical method for solving Poisson's equation, with variable coefficients and Dirichlet boundary conditions, on two-dimensional regions. The approach uses a finite-volume discretization, which embeds the domain in a regular Cartesian grid. We treat the solution as a cell-centered quantity, even when those centers are outside the domain. Cells that contain a portion of the domain boundary use conservative differencing of second-order accurate fluxes on each cell volume. The calculation of the boundary flux ensures that the conditioning of the matrix is relatively unaffected by small cell volumes. This allows us to use multigrid iterations with a simple point relaxation strategy. We have combined this with an adaptive mesh refinement (AMR) procedure. We provide evidence that the algorithm is second-order accurate on various exact solutions and compare the adaptive and nonadaptive calculations.

  2. The BRCT domain is a phospho-protein binding domain.

    Science.gov (United States)

    Yu, Xiaochun; Chini, Claudia Christiano Silva; He, Miao; Mer, Georges; Chen, Junjie

    2003-10-24

    The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.

  3. Implementation and assessment of high-resolution numerical methods in TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dean, E-mail: wangda@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley RD 6167, Oak Ridge, TN 37831 (United States); Mahaffy, John H.; Staudenmeier, Joseph; Thurston, Carl G. [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-10-15

    Highlights: • Study and implement high-resolution numerical methods for two-phase flow. • They can achieve better numerical accuracy than the 1st-order upwind scheme. • They are of great numerical robustness and efficiency. • Great application for BWR stability analysis and boron injection. -- Abstract: The 1st-order upwind differencing numerical scheme is widely employed to discretize the convective terms of the two-phase flow transport equations in reactor systems analysis codes such as TRACE and RELAP. While very robust and efficient, 1st-order upwinding leads to excessive numerical diffusion. Standard 2nd-order numerical methods (e.g., Lax–Wendroff and Beam–Warming) can effectively reduce numerical diffusion but often produce spurious oscillations for steep gradients. To overcome the difficulties with the standard higher-order schemes, high-resolution schemes such as nonlinear flux limiters have been developed and successfully applied in numerical simulation of fluid-flow problems in recent years. The present work contains a detailed study on the implementation and assessment of six nonlinear flux limiters in TRACE. These flux limiters selected are MUSCL, Van Leer (VL), OSPRE, Van Albada (VA), ENO, and Van Albada 2 (VA2). The assessment is focused on numerical stability, convergence, and accuracy of the flux limiters and their applicability for boiling water reactor (BWR) stability analysis. It is found that VA and MUSCL work best among of the six flux limiters. Both of them not only have better numerical accuracy than the 1st-order upwind scheme but also preserve great robustness and efficiency.

  4. Implementation and assessment of high-resolution numerical methods in TRACE

    International Nuclear Information System (INIS)

    Wang, Dean; Mahaffy, John H.; Staudenmeier, Joseph; Thurston, Carl G.

    2013-01-01

    Highlights: • Study and implement high-resolution numerical methods for two-phase flow. • They can achieve better numerical accuracy than the 1st-order upwind scheme. • They are of great numerical robustness and efficiency. • Great application for BWR stability analysis and boron injection. -- Abstract: The 1st-order upwind differencing numerical scheme is widely employed to discretize the convective terms of the two-phase flow transport equations in reactor systems analysis codes such as TRACE and RELAP. While very robust and efficient, 1st-order upwinding leads to excessive numerical diffusion. Standard 2nd-order numerical methods (e.g., Lax–Wendroff and Beam–Warming) can effectively reduce numerical diffusion but often produce spurious oscillations for steep gradients. To overcome the difficulties with the standard higher-order schemes, high-resolution schemes such as nonlinear flux limiters have been developed and successfully applied in numerical simulation of fluid-flow problems in recent years. The present work contains a detailed study on the implementation and assessment of six nonlinear flux limiters in TRACE. These flux limiters selected are MUSCL, Van Leer (VL), OSPRE, Van Albada (VA), ENO, and Van Albada 2 (VA2). The assessment is focused on numerical stability, convergence, and accuracy of the flux limiters and their applicability for boiling water reactor (BWR) stability analysis. It is found that VA and MUSCL work best among of the six flux limiters. Both of them not only have better numerical accuracy than the 1st-order upwind scheme but also preserve great robustness and efficiency

  5. Constraint-Based Abstract Semantics for Temporal Logic

    DEFF Research Database (Denmark)

    Banda, Gourinath; Gallagher, John Patrick

    2010-01-01

    Abstract interpretation provides a practical approach to verifying properties of infinite-state systems. We apply the framework of abstract interpretation to derive an abstract semantic function for the modal mu-calculus, which is the basis for abstract model checking. The abstract semantic funct...

  6. Expert System Architecture for Rocket Engine Numerical Simulators: A Vision

    Science.gov (United States)

    Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.

    1998-01-01

    Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.

  7. Article Abstract

    African Journals Online (AJOL)

    Abstract. Simple learning tools to improve clinical laboratory practical skills training. B Taye, BSc, MPH. Addis Ababa University, College of Health Sciences, Addis Ababa, ... concerns about the competence of medical laboratory science graduates. ... standardised practical learning guides and assessment checklists would.

  8. Water Pollution Abstracts. Volume 43, Number 4, Abstracts 645-849.

    Science.gov (United States)

    WATER POLLUTION, *ABSTRACTS, PURIFICATION, WASTES(INDUSTRIAL), CONTROL, SEWAGE, WATER SUPPLIES, PUBLIC HEALTH, PETROLEUM PRODUCTS, DEGRADATION, DAMS...ESTUARIES, PLANKTON, PHOTOSYNTHESIS, VIRUSES, SEA WATER , MICROBIOLOGY, UNITED KINGDOM.

  9. Accurate calibration of the velocity-dependent one-scale model for domain walls

    International Nuclear Information System (INIS)

    Leite, A.M.M.; Martins, C.J.A.P.; Shellard, E.P.S.

    2013-01-01

    We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048 3 , and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c w =0.34±0.16 and k w =0.98±0.07, which are of higher precision than (but in agreement with) earlier estimates.

  10. Accurate calibration of the velocity-dependent one-scale model for domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Leite, A.M.M., E-mail: up080322016@alunos.fc.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ecole Polytechnique, 91128 Palaiseau Cedex (France); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2013-01-08

    We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048{sup 3}, and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c{sub w}=0.34{+-}0.16 and k{sub w}=0.98{+-}0.07, which are of higher precision than (but in agreement with) earlier estimates.

  11. A Bayesian Sampler for Optimization of Protein Domain Hierarchies

    Science.gov (United States)

    2014-01-01

    Abstract The process of identifying and modeling functionally divergent subgroups for a specific protein domain class and arranging these subgroups hierarchically has, thus far, largely been done via manual curation. How to accomplish this automatically and optimally is an unsolved statistical and algorithmic problem that is addressed here via Markov chain Monte Carlo sampling. Taking as input a (typically very large) multiple-sequence alignment, the sampler creates and optimizes a hierarchy by adding and deleting leaf nodes, by moving nodes and subtrees up and down the hierarchy, by inserting or deleting internal nodes, and by redefining the sequences and conserved patterns associated with each node. All such operations are based on a probability distribution that models the conserved and divergent patterns defining each subgroup. When we view these patterns as sequence determinants of protein function, each node or subtree in such a hierarchy corresponds to a subgroup of sequences with similar biological properties. The sampler can be applied either de novo or to an existing hierarchy. When applied to 60 protein domains from multiple starting points in this way, it converged on similar solutions with nearly identical log-likelihood ratio scores, suggesting that it typically finds the optimal peak in the posterior probability distribution. Similarities and differences between independently generated, nearly optimal hierarchies for a given domain help distinguish robust from statistically uncertain features. Thus, a future application of the sampler is to provide confidence measures for various features of a domain hierarchy. PMID:24494927

  12. Impact of non-white noises in pulse amplitude measurements: a time-domain approach

    International Nuclear Information System (INIS)

    Pullia, A.

    1998-01-01

    The contribution of the 1/f-noise to the spectral line broadening in pulse amplitude measurements is derived with a time-domain analysis. The known time-domain relationships which provide the contributions of the series and parallel white noises are generalised for the case of 1/f and other typical non-white noises, by using the fractional derivative of either the system impulse response (time-invariant linear filters) or its weight function folded (time-variant linear filters). It is shown that a time-domain approach is also effective to determine the contribution of Lorentzian noises. A simple rule suitable to derive numerically the fractional derivative is given, which permits to calculate the effect of non-white noises even when the filter impulse response is not known analytically but only in sampled form. (orig.)

  13. Characterizing Functional Domains for TIM-Mediated Enveloped Virus Entry

    Science.gov (United States)

    Moller-Tank, Sven; Albritton, Lorraine M.; Rennert, Paul D.

    2014-01-01

    ABSTRACT T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral

  14. Numerical investigation of nanoparticles transport in anisotropic porous media

    KAUST Repository

    Salama, Amgad

    2015-07-13

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.

  15. Numerical investigation of nanoparticles transport in anisotropic porous media

    KAUST Repository

    Salama, Amgad; Negara, Ardiansyah; El Amin, Mohamed; Sun, Shuyu

    2015-01-01

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.

  16. INVENTORY ABSTRACTION

    International Nuclear Information System (INIS)

    Ragan, G.

    2001-01-01

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M andO 2000e for/ICN--02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M andO 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release

  17. Simultaneous storage of medical images in the spatial and frequency domain: A comparative study

    Directory of Open Access Journals (Sweden)

    Acharya U Rajendra

    2004-06-01

    Full Text Available Abstract Background Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. Methods The patient information is encrypted before interleaving with images to ensure greater security. The bio-signals are compressed and subsequently interleaved with the image. This interleaving is carried out in the spatial domain and Frequency domain. The performance of interleaving in the spatial, Discrete Fourier Transform (DFT, Discrete Cosine Transform (DCT and Discrete Wavelet Transform (DWT coefficients is studied. Differential pulse code modulation (DPCM is employed for data compression as well as encryption and results are tabulated for a specific example. Results It can be seen from results, the process does not affect the picture quality. This is attributed to the fact that the change in LSB of a pixel changes its brightness by 1 part in 256. Spatial and DFT domain interleaving gave very less %NRMSE as compared to DCT and DWT domain. Conclusion The Results show that spatial domain the interleaving, the %NRMSE was less than 0.25% for 8-bit encoded pixel intensity. Among the frequency domain interleaving methods, DFT was found to be very efficient.

  18. Numerical simulation of flow-induced vibrations in tube bundles

    International Nuclear Information System (INIS)

    Elisabeth Longatte; Zaky Bendjeddou; Mhamed Souli

    2005-01-01

    Full text of publication follows: In many industrial components mechanical structures like rod cluster control assembly, fuel assembly and heat exchanger tube bundles are submitted to complex flows causing possible vibrations and damage. Fluid forces are usually split into two parts: structure motion independent forces and fluid-elastic forces coupled with tube motion and responsible for possible dynamic instability development leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics (C.F.D.), numerical fluid force identification is now practicable in the presence of industrial configurations. The present paper is devoted to numerical simulation of flow-induced vibrations of tube bundles submitted to single-phase cross flows by using C.F.D. codes. Direct Numerical Simulation (D.N.S.), Arbitrary Lagrange Euler formulation (A.L.E.) and code coupling process are involved to predict fluid forces responsible for tube bundle vibrations in the presence of fluid structure and fluid-elastic coupling effects. In the presence of strong multi-physics coupling, simulation of flow-induced vibrations requires a fluid structure code coupling process. The methodology consists in solving in the same time thermohydraulics and mechanics problems by using an A.L.E. formulation for the fluid computation. The purpose is to take into account coupling between flow and structure motions in order to be able to capture coupling effects. From a numerical point of view, there are three steps in the computation: the fluid problem is solved on the computational domain; fluid forces acting on the moving tube are estimated; finally they are introduced in the structure solver providing the tube displacement that is used to actualize the fluid computational domain. Specific

  19. On a numerical strategy to compute gravity currents of non-Newtonian fluids

    International Nuclear Information System (INIS)

    Vola, D.; Babik, F.; Latche, J.-C.

    2004-01-01

    This paper is devoted to the presentation of a numerical scheme for the simulation of gravity currents of non-Newtonian fluids. The two dimensional computational grid is fixed and the free-surface is described as a polygonal interface independent from the grid and advanced in time by a Lagrangian technique. Navier-Stokes equations are semi-discretized in time by the Characteristic-Galerkin method, which finally leads to solve a generalized Stokes problem posed on a physical domain limited by the free surface to only a part of the computational grid. To this purpose, we implement a Galerkin technique with a particular approximation space, defined as the restriction to the fluid domain of functions of a finite element space. The decomposition-coordination method allows to deal without any regularization with a variety of non-linear and possibly non-differentiable constitutive laws. Beside more analytical tests, we revisit with this numerical method some simulations of gravity currents of the literature, up to now investigated within the simplified thin-flow approximation framework

  20. A Numerical Study of Natural Convection Heat Transfer in Fin Ribbed Radiator

    Directory of Open Access Journals (Sweden)

    Hua-Shu Dou

    2015-01-01

    Full Text Available This paper numerically investigates the thermal flow and heat transfer by natural convection in a cavity fixed with a fin array. The computational domain consists of both solid (copper and fluid (air areas. The finite volume method and the SIMPLE scheme are used to simulate the steady flow in the domain. Based on the numerical results, the energy gradient function K of the energy gradient theory is calculated. It is observed from contours of the temperature and energy gradient function that the position where thermal instability takes place correlates well with the region of large K values, which demonstrates that the energy gradient method reveals the physical mechanism of the flow instability. Furthermore, the effects of the fin height, the fin number, and the fin shape on the heat transfer rate are also investigated. It is found that the thermal performance of the fin array is determined by the combined effect of the fin space and fin height. It is also observed that the effect of fin shape on heat transfer is insignificant.