Aeroacoustic computation of low Mach number flow
Energy Technology Data Exchange (ETDEWEB)
Dahl, K.S.
1996-12-01
This thesis explores the possibilities of applying a recently developed numerical technique to predict aerodynamically generated sound from wind turbines. The technique is a perturbation technique that has the advantage that the underlying flow field and the sound field are computed separately. Solution of the incompressible, time dependent flow field yields a hydrodynamic density correction to the incompressible constant density. The sound field is calculated from a set of equations governing the inviscid perturbations about the corrected flow field. Here, the emphasis is placed on the computation of the sound field. The nonlinear partial differential equations governing the sound field are solved numerically using an explicit MacCormack scheme. Two types of non-reflecting boundary conditions are applied; one based on the asymptotic solution of the governing equations and the other based on a characteristic analysis of the governing equations. The former condition is easy to use and it performs slightly better than the characteristic based condition. The technique is applied to the problems of the sound generation of a pulsating sphere, which is a monopole; a co-rotating vortex pair, which is a quadrupole, and the viscous flow over a circular cylinder, which is a dipole. The governing equations are written and solved for spherical, Cartesian, and cylindrical coordinates, respectively, thus, representing three common orthogonal coordinate systems. Numerical results agree very well with the analytical solutions for the problems of the pulsating sphere and the co-rotating vortex pair. Numerical results for the viscous flow over a cylinder are presented and evaluated qualitatively. The technique has potential for applications to airfoil flows as they are on a wind turbine blade, as well as for other low Mach number flows. (au) 2 tabs., 33 ills., 48 refs.
Aeroacoustic computation of low mach number flow
Energy Technology Data Exchange (ETDEWEB)
Skriver Dahl, K. [Risoe National Laboratory, Roskilde (Denmark)
1997-12-31
The possibilities of applying a recently developed numerical technique to predict aerodynamically generated sound from wind turbines is explored. The technique is a perturbation technique that has the advantage that the underlying flow field and the sound field are computed separately. Solution of the incompressible, time dependent flow field yields a hydrodynamic density correction to the incompressible constant density. The sound field is calculated from a set of equations governing the inviscid perturbations about the corrected flow field. Here, the emphasis is placed on the computation of the sound field. The nonlinear partial differential equations governing the sound fields are solved numerically using an explicit MacCormack scheme. Two types of non-reflecting boundary conditions are applied; one based on the asymptotic solution of the governing equations and the other based on a characteristic analysis of the governing equations. The former condition is easy to use and it performs slightly better than the charcteristic based condition. The technique is applied to the problems of the sound generation of a co-rotating vortex pair, which is a quadrupole, and the viscous flow over a circular cylinder, which is a dipole. Numerical results agree very well with the analytical solution for the problem of the co-rotating vortex pair. Numerical results for the viscous flow over a cylinder are presented and evaluated qualitatively. (au)
Computation of high Reynolds number internal/external flows
Cline, M. C.; Wilmoth, R. G.
1981-01-01
A general, user oriented computer program, called VNAP2, was developed to calculate high Reynolds number, internal/ external flows. The VNAP2 program solves the two dimensional, time dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack Scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.
Computation of high Reynolds number internal/external flows
International Nuclear Information System (INIS)
Cline, M.C.; Wilmoth, R.G.
1981-01-01
A general, user oriented computer program, called VNAP2, has been developed to calculate high Reynolds number, internal/external flows. VNAP2 solves the two-dimensional, time-dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented
Practical computational aeroacoustics for compact surfaces in low mach number flows
DEFF Research Database (Denmark)
Pradera-Mallabiabarrena, Ainara; Keith, Graeme; Jacobsen, Finn
2011-01-01
compared to the wavelength of interest. This makes it possible to focus on the surface source term of the Ffowcs Williams-Hawkings equation. In this paper, in order to illustrate the basic method for storing and utilizing data from the CFD analysis, the flow past a circular cylinder at a Reynolds number...
Kneusel, Ronald T
2015-01-01
This is a book about numbers and how those numbers are represented in and operated on by computers. It is crucial that developers understand this area because the numerical operations allowed by computers, and the limitations of those operations, especially in the area of floating point math, affect virtually everything people try to do with computers. This book aims to fill this gap by exploring, in sufficient but not overwhelming detail, just what it is that computers do with numbers. Divided into two parts, the first deals with standard representations of integers and floating point numb
DEFF Research Database (Denmark)
Pradera-Mallabiabarrena, Ainara; Jacobsen, Finn; Svendsen, Christian
2013-01-01
-compact surfaces are involved. Here the generation of noise is dominated by the interaction of the flow with a surface whose maximum dimension is shorter than the wavelength of interest. The analysis is based on the surface-source term of the Ffowcs Williams-Hawkings equation. The acoustic source data of the flow...
Computational analysis of locally forced flow over a wall-mounted hump at high-Re number
International Nuclear Information System (INIS)
Saric, S.; Jakirlic, S.; Djugum, A.; Tropea, C.
2006-01-01
An incompressible, high-Reynolds number flow (slightly less then 1 Mio. per chord) over a smoothly contoured, asymmetric, wall-mounted hump was computationally studied using the LES (large eddy simulation) and DES (detached eddy simulation) methods. In addition, several second-moment and eddy-viscosity closures within the RANS (Reynolds-averaged Navier-Stokes) framework were tested. The focus of the investigation was on the effects of local perturbation of the hump boundary layer introduced by spatially uniform (in the spanwise direction) steady suction and oscillatory suction/blowing through a narrow opening (1.7 mm) situated at the hump crest immediately upstream of the natural separation point. Reference experiments have shown that both flow control mechanisms cause a shortening of the recirculation bubble relative to the baseline configuration with no flow control. All statistical turbulence models used in the RANS framework resulted in a substantially larger recirculation zone independent of the modelling level, being a consequence of a too low turbulence level in the separated shear layer. Accordingly, the effect of the steady suction, namely the reduction of the reattachment length, was underpredicted. The LES method, despite a relatively coarse mesh (with a total of 4 Mio. cells) for such a high-Reynolds number, wall-bounded flow, was capable of capturing important effects of the flow control qualitatively and quantitatively. DES failed to do so in the suction case, despite good results in the baseline and oscillatory blowing/suction cases, indicating that a shallow separation from curved surfaces poses a challenge to this hybrid RANS/LES strategy. A sensitivity study of the RANS/LES interface position within the DES approach shows that a RANS region chosen too thin (with the interface situated at the very beginning of the logarithmic layer) can lead to a strong reduction of the turbulent viscosity causing a low turbulence level within the shear layer
Feldmann, Daniel; Bauer, Christian; Wagner, Claus
2018-03-01
We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.
Random Numbers and Quantum Computers
McCartney, Mark; Glass, David
2002-01-01
The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…
Improving Euler computations at low Mach numbers
Koren, B.; Leer, van B.; Deconinck, H.; Koren, B.
1997-01-01
The paper consists of two parts, both dealing with conditioning techniques for lowMach-number Euler-flow computations, in which a multigrid technique is applied. In the first part, for subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing behavior of
Improving Euler computations at low Mach numbers
Koren, B.
1996-01-01
This paper consists of two parts, both dealing with conditioning techniques for low-Mach-number Euler-flow computations, in which a multigrid technique is applied. In the first part, for subsonic flows and upwind-discretized linearized 1-D Euler equations, the smoothing behavior of
Tang, Yifeng; Akhavan, Rayhaneh
2014-11-01
A nested-LES wall-modeling approach for high Reynolds number, wall-bounded turbulence is presented. In this approach, a coarse-grained LES is performed in the full-domain, along with a nested, fine-resolution LES in a minimal flow unit. The coupling between the two domains is achieved by renormalizing the instantaneous LES velocity fields to match the profiles of kinetic energies of components of the mean velocity and velocity fluctuations in both domains to those of the minimal flow unit in the near-wall region, and to those of the full-domain in the outer region. The method is of fixed computational cost, independent of Reτ , in homogenous flows, and is O (Reτ) in strongly non-homogenous flows. The method has been applied to equilibrium turbulent channel flows at 1000 shear-driven, 3D turbulent channel flow at Reτ ~ 2000 . In equilibrium channel flow, the friction coefficient and the one-point turbulence statistics are predicted in agreement with Dean's correlation and available DNS and experimental data. In shear-driven, 3D channel flow, the evolution of turbulence statistics is predicted in agreement with experimental data of Driver & Hebbar (1991) in shear-driven, 3D boundary layer flow.
Cryptography and computational number theory
Shparlinski, Igor; Wang, Huaxiong; Xing, Chaoping; Workshop on Cryptography and Computational Number Theory, CCNT'99
2001-01-01
This volume contains the refereed proceedings of the Workshop on Cryptography and Computational Number Theory, CCNT'99, which has been held in Singapore during the week of November 22-26, 1999. The workshop was organized by the Centre for Systems Security of the Na tional University of Singapore. We gratefully acknowledge the financial support from the Singapore National Science and Technology Board under the grant num ber RP960668/M. The idea for this workshop grew out of the recognition of the recent, rapid development in various areas of cryptography and computational number the ory. The event followed the concept of the research programs at such well-known research institutions as the Newton Institute (UK), Oberwolfach and Dagstuhl (Germany), and Luminy (France). Accordingly, there were only invited lectures at the workshop with plenty of time for informal discussions. It was hoped and successfully achieved that the meeting would encourage and stimulate further research in information and computer s...
Computers and Information Flow.
Patrick, R. L.
This paper is designed to fill the need for an easily understood introduction to the computing and data processing field for the layman who has, or can expect to have, some contact with it. Information provided includes the unique terminology and jargon of the field, the various types of computers and the scope of computational capabilities, and…
Aeroacoustic Computations for Turbulent Airfoil Flows
DEFF Research Database (Denmark)
Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær
2009-01-01
a NACA 0015 airfoil at a Mach number of 0.2 and a Reynolds number of 1.6 x 10(5) for different angles of attack. The flow solutions are validated by comparing lift and drag characteristics with experimental data. The comparisons show good agreements between the computed and measured airfoil lift...
Stirring inertia in time-dependent low Reynolds number flows
Yecko, Philip; Luchtenburg, Dirk Martin (Mark); Forgoston, Eric; Billings, Lora
2017-11-01
Diagnosis of a kinematic flow and its transport using Lagrangian coherent structures (LCS) based on finite-time Lyapunov exponents (FTLE) neglects dynamical effects, such as pressure, as well as dynamically important constraints, such as potential vorticity conservation. Chaotic advection, on the other hand, often neglects inertial effects, which are prominent in LCS. We present results for very low Reynolds number laboratory flows, including a Stokes double gyre, vertically sheared strain and a four roll mill. Images of tracer (dye) and FTLE fields computed from particle image velocimetry (PIV) reveal complementary sets of flow structures, giving a more complete picture of transport in these flows. We confirm by computing FTLE of an exact time-dependent Stokes flow solution and present implications of these findings for inertial object transport in flows. Support of NSF DMS-1418956 is gratefully acknoweldged.
Computational foundations of the visual number sense.
Stoianov, Ivilin Peev; Zorzi, Marco
2017-01-01
We provide an emergentist perspective on the computational mechanism underlying numerosity perception, its development, and the role of inhibition, based on our deep neural network model. We argue that the influence of continuous visual properties does not challenge the notion of number sense, but reveals limit conditions for the computation that yields invariance in numerosity perception. Alternative accounts should be formalized in a computational model.
Computing with concepts, computing with numbers: Llull, Leibniz, and Boole
Uckelman, S.L.
2010-01-01
We consider two ways to understand "reasoning as computation", one which focuses on the computation of concept symbols and the other on the computation of number symbols. We illustrate these two ways with Llull’s Ars Combinatoria and Leibniz’s attempts to arithmetize language, respectively. We then
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Partial Cavity Flows at High Reynolds Numbers
Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven
2009-11-01
Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.
Mathematical and numerical aspects of low mach number flows
Energy Technology Data Exchange (ETDEWEB)
Schochet, St.; Bresch, D.; Grenier, E.; Alazard, T.; Gordner, A.; Sankaran, V.; Massot, M.; Sery, R.; Pebay, P.; Lunch, O.; Mazhorova, O.; Turkel, O.E.; Faille, I.; Danchin, R.; Allain, O.; Birken, P.; Lafitte, O.; Kloczko, T.; Frick, W.; Bui, T.; Dellacherie, S.; Klein, R.; Roe, Ph.; Accary, G.; Braack, M.; Picano, F.; Cadiou, A.; Dinescu, C.; Lesage, A.C.; Wesseling, P.; Heuveline, V.; Jobelin, M.; Weisman, C.; Merkle, C.
2004-07-01
Low Mach number flows represent a significant part of the various flows encountered in geophysics, industry or every day life. Paradoxically, the mathematical analysis of the equations governing these flows is difficult and on the practical side, the research of numerical algorithms valid for all flow speeds is continuing to be a challenge. However, in the last decade, both from the theoretical and the numerical sides, significant progresses were made in the understanding and analysis of the equations governing these flows. This conference intends to provide an up-to-date inventory of recent mathematical and numerical results in the analysis of these flows by bringing together both mathematicians and numericists active in this area. In the framework of the conference, a numerical workshop is organized which proposes to compute several challenging low Mach number flows: liquid flow around non-cavitating and cavitating NACA0015 hydrofoil, natural convection with large temperature differences, free convection, free surface flow, vessel pressurization. This document brings together the descriptions of the test cases of the numerical workshop and the abstracts of the conference papers: A 3D high order finite volume method for the prediction of near-critical fluid flows (G. ACCARY, I. RASPO, P. BONTOUX, B. ZAPPOLI); low Mach number limit of the non-isentropic Navier-Stokes equations (T. ALAZARD); simulation of cavitation rolls past a forward step with a bubble model (O. ALLAIN, N. BLASKA, C. LECA); flux preconditioning methods and fire events (P. BIRKEN, A. MEISTER); an adaptive finite element solver for compressible flows: application to heat-driven cavity benchmarks in 2D and 3D (M. BRAACK); comparison of various implicit, explicit, centered and upwind schemes for the simulation of compressed flows on moving mesh (A. CADIOU, M. BUFFAT, L. Le PENVEN, C. Le RIBAULT); low Mach number limit for viscous compressible flows (R. DANCHIN); some Properties of the low Mach number
Tjahjana, Dominicus Danardono Dwi Prija; Purbaningrum, Pradityasari; Hadi, Syamsul; Wicaksono, Yoga Arob; Adiputra, Dimas
2018-02-01
Cross flow turbine can be one of the alternative energies for regions with low wind speed. Collision between wind and the blades which happened two times caused the cross flow turbine to have high power coefficient. Some factors that influence the turbine power coefficient are diameter ratio and blade number. The objective of the research was to study the effect of the diameter ratio and the blade number to the cross flow wind turbine performance. The study was done in two dimensional (2D) computational fluid dynamics (CFD) simulation method using the ANSYS-Fluent software. The turbine diameter ratio were 0.58, 0.63, 0.68 and 0.73. The diameter ratio resulting in the highest power coefficient value was then simulated by varying the number of blades, namely 16, 20 and 24. Each variation was tested on the wind speed of 2 m/s and at the tip speed ratio (TSR) of 0.1 to 0.4 with the interval of 0.1. The wind turbine with the ratio diameter of 0.68 and the number of blades of 20 generated the highest power coefficient of 0.5 at the TSR of 0.3.
Parallel computation of rotating flows
DEFF Research Database (Denmark)
Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær
1999-01-01
This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process....... In the first step, the vorticity at the new time level is computed using the velocity at the previous time level. In the second step, the velocity at the new time level is computed using the new vorticity. We discuss here the second part which is by far the most time‐consuming. The numerical problem...
Computer simulation of hopper flow
International Nuclear Information System (INIS)
Potapov, A.V.; Campbell, C.S.
1996-01-01
This paper describes two-dimensional computer simulations of granular flow in plane hoppers. The simulations can reproduce an experimentally observed asymmetric unsteadiness for monodispersed particle sizes, but also could eliminate it by adding a small amount of polydispersity. This appears to be a result of the strong packings that may be formed by monodispersed particles and is thus a noncontinuum effect. The internal stress state was also sampled, which among other things, allows an evaluation of common assumptions made in granular material models. These showed that the internal friction coefficient is far from a constant, which is in contradiction to common models based on plasticity theory which assume that the material is always at the point of imminent yield. Furthermore, it is demonstrated that rapid granular flow theory, another common modeling technique, is inapplicable to this problem even near the exit where the flow is moving its fastest. copyright 1996 American Institute of Physics
Computation of Viscous Incompressible Flows
Kwak, Dochan
2011-01-01
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engine...
Parallel computation of rotating flows
DEFF Research Database (Denmark)
Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær
1999-01-01
This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process...... is that of solving a singular, large, sparse, over‐determined linear system of equations, and the iterative method CGLS is applied for this purpose. We discuss some of the mathematical and numerical aspects of this procedure and report on the performance of our software on a wide range of parallel computers. Darbe...
Low-Reynolds number compressible flow around a triangular airfoil
Munday, Phillip; Taira, Kunihiko; Suwa, Tetsuya; Numata, Daiju; Asai, Keisuke
2013-11-01
We report on the combined numerical and experimental effort to analyze the nonlinear aerodynamics of a triangular airfoil in low-Reynolds number compressible flow that is representative of wings on future Martian air vehicles. The flow field around this airfoil is examined for a wide range of angles of attack and Mach numbers with three-dimensional direct numerical simulations at Re = 3000 . Companion experiments are conducted in a unique Martian wind tunnel that is placed in a vacuum chamber to simulate the Martian atmosphere. Computational findings are compared with pressure sensitive paint and direct force measurements and are found to be in agreement. The separated flow from the leading edge is found to form a large leading-edge vortex that sits directly above the apex of the airfoil and provides enhanced lift at post stall angles of attack. For higher subsonic flows, the vortical structures elongate in the streamwise direction resulting in reduced lift enhancement. We also observe that the onset of spanwise instability for higher angles of attack is delayed at lower Mach numbers. Currently at Mitsubishi Heavy Industries, Ltd., Nagasaki.
Computer software summaries. Numbers 325 through 423
Energy Technology Data Exchange (ETDEWEB)
1978-08-01
The National Energy Software Center (NESC) serves as the software exchange and information center for the U.S. Department of Energy and the Nuclear Regulatory Commission. These summaries describe agency-sponsored software which is at the specification stage, under development, being checked out, in use, or available at agency offices, laboratories, and contractor installations. They describe software which is not included in the NESC library due to its preliminary status or because it is believed to be of limited interest. Codes dealing with the following subjects are included: cross section and resonance integral calculations; spectrum calculations, generation of group constants, lattice and cell problems; static design studies; depletion, fuel management, cost analysis, and power plant economics; space-independent kinetics; space--time kinetics, coupled neutronics--hydrodynamics--thermodynamics; and excursion simulations; radiological safety, hazard and accident analysis; heat transfer and fluid flow; deformation and stress distribution computations, structural analysis, and engineering design studies; gamma heating and shield design; reactor systems analysis; data preparation; data management; subsidiary calculations; experimental data processing; general mathematical and computing system routines; materials; environmental and earth sciences; space sciences; electronics and engineering equipment; chemistry; particle accelerators and high-voltage machines; physics; magnetic fusion research; biology and medicine; and data. (RWR)
Computer software summaries. Numbers 325 through 423
International Nuclear Information System (INIS)
1978-08-01
The National Energy Software Center (NESC) serves as the software exchange and information center for the U.S. Department of Energy and the Nuclear Regulatory Commission. These summaries describe agency-sponsored software which is at the specification stage, under development, being checked out, in use, or available at agency offices, laboratories, and contractor installations. They describe software which is not included in the NESC library due to its preliminary status or because it is believed to be of limited interest. Codes dealing with the following subjects are included: cross section and resonance integral calculations; spectrum calculations, generation of group constants, lattice and cell problems; static design studies; depletion, fuel management, cost analysis, and power plant economics; space-independent kinetics; space--time kinetics, coupled neutronics--hydrodynamics--thermodynamics; and excursion simulations; radiological safety, hazard and accident analysis; heat transfer and fluid flow; deformation and stress distribution computations, structural analysis, and engineering design studies; gamma heating and shield design; reactor systems analysis; data preparation; data management; subsidiary calculations; experimental data processing; general mathematical and computing system routines; materials; environmental and earth sciences; space sciences; electronics and engineering equipment; chemistry; particle accelerators and high-voltage machines; physics; magnetic fusion research; biology and medicine; and data
Computational analysis of the flow field downstream of flow conditioners
Energy Technology Data Exchange (ETDEWEB)
Erdal, Asbjoern
1997-12-31
Technological innovations are essential for maintaining the competitiveness for the gas companies and here metering technology is one important area. This thesis shows that computational fluid dynamic techniques can be a valuable tool for examination of several parameters that may affect the performance of a flow conditioner (FC). Previous design methods, such as screen theory, could not provide fundamental understanding of how a FC works. The thesis shows, among other things, that the flow pattern through a complex geometry, like a 19-hole plate FC, can be simulated with good accuracy by a k-{epsilon} turbulence model. The calculations illuminate how variations in pressure drop, overall porosity, grading of porosity across the cross-section and the number of holes affects the performance of FCs. These questions have been studied experimentally by researchers for a long time. Now an understanding of the important mechanisms behind efficient FCs emerges from the predictions. 179 ref., 110 figs., 8 tabs.
Computation of tokamak equilibria with steady flow
International Nuclear Information System (INIS)
Kerner, W.; Tokuda, Shinji
1987-08-01
The equations for ideal MHD equilibria with stationary flow are reexamined and addressed as numerically applied to tokamak configurations with a free plasma boundary. Both the isothermal (purely toroidal flow) and the poloidal flow cases are treated. Experiment-relevant states with steady flow (so far only in the toroidal direction) are computed by the modified SELENE40 code. (author)
Numerical simulation of low Mach number reacting flows
International Nuclear Information System (INIS)
Bell, J B; Aspden, A J; Day, M S; Lijewski, M J
2007-01-01
Using examples from active research areas in combustion and astrophysics, we demonstrate a computationally efficient numerical approach for simulating multiscale low Mach number reacting flows. The method enables simulations that incorporate an unprecedented range of temporal and spatial scales, while at the same time, allows an extremely high degree of reaction fidelity. Sample applications demonstrate the efficiency of the approach with respect to a traditional time-explicit integration method, and the utility of the methodology for studying the interaction of turbulence with terrestrial and astrophysical flame structures
Computed Flow Through An Artificial Heart Valve
Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee
1994-01-01
Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).
High Reynolds Number Liquid Flow Measurements
1988-08-01
25. .n Fig. 25, the dotted line represents data taken from Eckelmann’s study in the thick viscous sublaver of an oil channel. Scatter in the...measurements of the fundamental physical quantities are not only an essencial part in an understanding of multiphase flows but also in the measurement process...technique. One of the most yloei’ used techniques, however, is some form of flow visualization. This includes the use o: tufts, oil paint films
Cloud Computing. Technology Briefing. Number 1
Alberta Education, 2013
2013-01-01
Cloud computing is Internet-based computing in which shared resources, software and information are delivered as a service that computers or mobile devices can access on demand. Cloud computing is already used extensively in education. Free or low-cost cloud-based services are used daily by learners and educators to support learning, social…
Numberical Solution to Transient Heat Flow Problems
Kobiske, Ronald A.; Hock, Jeffrey L.
1973-01-01
Discusses the reduction of the one- and three-dimensional diffusion equation to the difference equation and its stability, convergence, and heat-flow applications under different boundary conditions. Indicates the usefulness of this presentation for beginning students of physics and engineering as well as college teachers. (CC)
Hybrid RANS/LES method for high Reynolds numbers, applied to atmospheric flow over complex terrain
DEFF Research Database (Denmark)
Bechmann, Andreas; Sørensen, Niels N.; Johansen, Jeppe
2007-01-01
The use of Large-Eddy Simulation (LES) to predict wall-bounded flows has presently been limited to low Reynolds number flows. Since the number of computational grid points required to resolve the near-wall turbulent structures increase rapidly with Reynolds number, LES has been unattainable...... for flows at high Reynolds numbers. To reduce the computational cost of traditional LES a hybrid method is proposed in which the near-wall eddies are modelled in a Reynolds-averaged sense. Close to walls the flow is treated with the RANS-equations and this layer act as wall model for the outer flow handled...... by LES. The wellknown high Reynolds number two-equation k - ǫ turbulence model is used in the RANS layer and the model automatically switches to a two-equation k - ǫ subgrid-scale stress model in the LES region. The approach can be used for flow over rough walls. To demonstrate the ability...
Computational Analysis of Human Blood Flow
Panta, Yogendra; Marie, Hazel; Harvey, Mark
2009-11-01
Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.
Computational modeling of concrete flow
DEFF Research Database (Denmark)
Roussel, Nicolas; Geiker, Mette Rica; Dufour, Frederic
2007-01-01
particle flow, and numerical techniques allowing the modeling of particles suspended in a fluid. The general concept behind each family of techniques is described. Pros and cons for each technique are given along with examples and references to applications to fresh cementitious materials....
Computational aspects of unsteady flows
Cebeci, T.; Carr, L. W.; Khattab, A. A.; Schimke, S. M.
1985-01-01
The calculation of unsteady flows and the development of numerical methods for solving unsteady boundary layer equations and their application to the flows around important configurations such as oscillating airfoils are presented. A brief review of recent work is provided with emphasis on the need for numerical methods which can overcome possible problems associated with flow reversal and separation. The zig-zag and characteristic box schemes are described in this context, and when embodied in a method which permits interaction between solutions of inviscid and viscous equations, the characteristic box scheme is shown to avoid the singularity associated with boundary layer equations and prescribed pressure gradient. Calculations were performed for a cylinder started impulsively from rest and oscillating airfoils. The results are presented and discussed. It is conlcuded that turbulence models based on an algebraic specification of eddy viscosity can be adequate, that location of translation is important to the calculation of the location of flow separation and, therefore, to the overall lift of an oscillating airfoil.
Random Number Generation for High Performance Computing
2015-01-01
number streams, a quality metric for the parallel random number streams. * * * * * Atty. Dkt . No.: 5660-14400 Customer No. 35690 Eric B. Meyertons...responsibility to ensure timely payment of maintenance fees when due. Pagel of3 PTOL-85 (Rev. 02/11) Atty. Dkt . No.: 5660-14400 Page 1 Meyertons...with each subtask executed by a separate thread or process (henceforth, process). Each process has Atty. Dkt . No.: 5660-14400 Page 2 Meyertons
Flow boiling heat transfer at low liquid Reynolds number
International Nuclear Information System (INIS)
Weizhong Zhang; Takashi Hibiki; Kaichiro Mishima
2005-01-01
Full text of publication follows: In view of the significance of a heat transfer correlation of flow boiling at conditions of low liquid Reynolds number or liquid laminar flow, and very few existing correlations in principle suitable for such flow conditions, this study is aiming at developing a heat transfer correlation of flow boiling at low liquid Reynolds number conditions. The obtained results are as follows: 1. A new heat transfer correlation has been developed for saturated flow boiling at low liquid Reynolds number conditions based on superimposition of two boiling mechanisms, namely convective boiling and nucleate boiling. In the new correlation, two terms corresponding to the mechanisms of nucleate boiling and convective boiling are obtained from the pool boiling correlation by Forster and Zuber and the analytical annular flow model by Hewitt and Hall-Taylor, respectively. 2. An extensive database was collected for saturated flow boiling heat transfer at low liquid Reynolds number conditions, including data for different channels geometries (circular and rectangular), flow orientations (vertical and horizontal), and working fluids (water, R11, R12, R113). 3. An extensive comparison of the new correlation with the collected database shows that the new correlation works satisfactorily with the mean deviation of 16.6% for saturated flow boiling at low liquid Reynolds number conditions. 4. The detailed discussion reveals the similarity of the newly developed correlation for flow boiling at low liquid Reynolds number to the Chen correlation for flow boiling at high liquid Reynolds number. The Reynolds number factor F can be analytically deduced in this study. (authors)
Magnetohydrodynamic duct and channel flows at finite magnetic Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Bandaru, Vinodh Kumar
2015-11-27
Magnetohydrodynamic duct flows have so far been studied only in the limit of negligible magnetic Reynolds numbers (R{sub m}). When R{sub m} is finite, the secondary magnetic field becomes significant, leading to a fully coupled evolution of the magnetic field and the conducting flow. Characterization of such flows is essential in understanding wall-bounded magnetohydrodynamic turbulence at finite R{sub m} as well as in industrial applications like the design of electromagnetic pumps and measurement of transient flows using techniques such as Lorentz force velocimetry. This thesis presents the development of a numerical framework for direct numerical simulations (DNS) of magnetohydrodynamic flows in straight rectangular ducts at finite R{sub m}, which is subsequently used to study three specific problems. The thesis opens with a brief overview of MHD and a review of the existing state of art in duct and channel MHD flows. This is followed by a description of the physical model governing the problem of MHD duct flow with insulating walls and streamwise periodicity. In the main part of the thesis, a hybrid finite difference-boundary element computational procedure is developed that is used to solve the magnetic induction equation with boundary conditions that satisfy interior-exterior matching of the magnetic field at the domain wall boundaries. The numerical procedure is implemented into a code and a detailed verification of the same is performed in the limit of low R{sub m} by comparing with the results obtained using a quasistatic approach that has no coupling with the exterior. Following this, the effect of R{sub m} on the transient response of Lorentz force is studied using the problem of a strongly accelerated solid conducting bar in the presence of an imposed localized magnetic field. The response time of Lorentz force depends linearly on R{sub m} and shows a good agreement with the existing experiments. For sufficiently large values of R{sub m}, the peak
High Reynolds number flows using liquid and gaseous helium
International Nuclear Information System (INIS)
Donnelly, R.J.
1991-01-01
Consideration is given to liquid and gaseous helium as test fluids, high Reynolds number test requirements in low speed aerodynamics, the measurement of subsonic flow around an appended body of revolution at cryogenic conditions in the NTF, water tunnels, flow visualization, the six component magnetic suspension system for wind tunnel testing, and recent aerodynamic measurements with magnetic suspension systems. Attention is also given to application of a flow visualization technique to a superflow experiment, experimental investigations of He II flows at high Reynolds numbers, a study of homogeneous turbulence in superfluid helium, and thermal convection in liquid helium
Multigrid Computation of Stratified Flow over Two-Dimensional Obstacles
Paisley, M. F.
1997-09-01
A robust multigrid method for the incompressible Navier-Stokes equations is presented and applied to the computation of viscous flow over obstacles in a bounded domain under conditions of neutral stability and stable density stratification. Two obstacle shapes have been used, namely a vertical barrier, for which the grid is Cartesian, and a smooth cosine-shaped obstacle, for which a boundary-conforming transformation is incorporated. Results are given for laminar flows at low Reynolds numbers and turbulent flows at a high Reynolds number, when a simple mixing length turbulence model is included. The multigrid algorithm is used to compute steady flows for each obstacle at low and high Reynolds numbers in conditions of weak static stability, defined byK=ND/πU≤ 1, whereU,N, andDare the upstream velocity, bouyancy frequency, and domain height respectively. Results are also presented for the vertical barrier at low and high Reynolds number in conditions of strong static stability,K> 1, when lee wave motions ensure that the flow is unsteady, and the multigrid algorithm is used to compute the flow at each timestep.
Computer software summaries. Numbers 1 through 423
International Nuclear Information System (INIS)
1979-09-01
The National Energy Software Center (NESC) serves as the software exchange and information center for the US Department of Energy and the Nuclear Regulatory Commission. A major activity of the Center is the preparation and publication of two reports issued periodically - the Center's compilation of program abstracts, ANL-7411, and this software summaries report, ANL-8040. The abstracts describe the softward packages available in the software exchange library maintained and distributed by the Center. The summaries describe agency-sponsored software that is at the specification stage, under development, being checked out, in use, or available at agency offices, laboratories, and contractor installations. Summaries describe software that is not included in the NESC library due to its preliminary status or because it is believed to be of limited interest. The purpose of the summaries report is to keep agency and contractor personnel informed as to the existence, status, and availability of computer programs within the agency, and thereby minimize duplication costs and maximize the value of agency software development efforts
All-Particle Multiscale Computation of Hypersonic Rarefied Flow
Jun, E.; Burt, J. M.; Boyd, I. D.
2011-05-01
This study examines a new hybrid particle scheme used as an alternative means of multiscale flow simulation. The hybrid particle scheme employs the direct simulation Monte Carlo (DSMC) method in rarefied flow regions and the low diffusion (LD) particle method in continuum flow regions. The numerical procedures of the low diffusion particle method are implemented within an existing DSMC algorithm. The performance of the LD-DSMC approach is assessed by studying Mach 10 nitrogen flow over a sphere with a global Knudsen number of 0.002. The hybrid scheme results show good overall agreement with results from standard DSMC and CFD computation. Subcell procedures are utilized to improve computational efficiency and reduce sensitivity to DSMC cell size in the hybrid scheme. This makes it possible to perform the LD-DSMC simulation on a much coarser mesh that leads to a significant reduction in computation time.
Modelling of high-enthalpy, high-Mach number flows
International Nuclear Information System (INIS)
Degrez, G; Lani, A; Panesi, M; Chazot, O; Deconinck, H
2009-01-01
A review is made of the computational models of high-enthalpy flows developed over the past few years at the von Karman Institute and Universite Libre de Bruxelles, for the modelling of high-enthalpy hypersonic (re-)entry flows. Both flows in local thermo-chemical equilibrium (LTE) and flows in thermo-chemical non-equilibrium (TCNEQ) are considered. First, the physico-chemical models are described, i.e. the set of conservation laws, the thermodynamics, transport phenomena and chemical kinetics models. Particular attention is given to the correct modelling of elemental (LTE flows) and species (chemical non-equilibrium-CNEQ-flows) transport. The numerical algorithm, based on a state-of-the-art finite volume discretization, is then briefly described. Finally, selected examples are included to illustrate the capabilities of the developed solver. (review article)
Physical and numerical modelling of low mach number compressible flows
International Nuclear Information System (INIS)
Paillerre, H.; Clerc, S.; Dabbene, F.; Cueto, O.
1999-01-01
This article reviews various physical models that may be used to describe compressible flow at low Mach numbers, as well as the numerical methods developed at DRN to discretize the different systems of equations. A selection of thermal-hydraulic applications illustrate the need to take into account compressibility and multidimensional effects as well as variable flow properties. (authors)
The RANDOM computer program: A linear congruential random number generator
Miles, R. F., Jr.
1986-01-01
The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.
Multi-dimensional two-fluid flow computation. An overview
International Nuclear Information System (INIS)
Carver, M.B.
1992-01-01
This paper discusses a repertoire of three-dimensional computer programs developed to perform critical analysis of single-phase, two-phase and multi-fluid flow in reactor components. The basic numerical approach to solving the governing equations common to all the codes is presented and the additional constitutive relationships required for closure are discussed. Particular applications are presented for a number of computer codes. (author). 12 refs
Computing Hypergraph Ramsey Numbers by Using Quantum Circuit
Qu, Ri; Li, Zong-shang; Wang, Juan; Bao, Yan-ru; Cao, Xiao-chun
2012-01-01
Gaitan and Clark [Phys. Rev. Lett. 108, 010501 (2012)] have recently shown a quantum algorithm for the computation of the Ramsey numbers using adiabatic quantum evolution. We present a quantum algorithm to compute the two-color Ramsey numbers for r-uniform hypergraphs by using the quantum counting circuit.
Efficient multigrid computation of steady hypersonic flows
Koren, B.; Hemker, P.W.; Murthy, T.K.S.
1991-01-01
In steady hypersonic flow computations, Newton iteration as a local relaxation procedure and nonlinear multigrid iteration as an acceleration procedure may both easily fail. In the present chapter, same remedies are presented for overcoming these problems. The equations considered are the steady,
A computer model for dispersed fluid-solid turbulent flows
International Nuclear Information System (INIS)
Liu, C.H.; Tulig, T.J.
1985-01-01
A computer model is being developed to simulate two-phase turbulent flow phenomena in fluids containing finely dispersed solids. The model is based on a dual-continuum picture of the individual phases and an extension of a two-equation turbulence closure theory. The resulting set of nonlinear partial differential equations are solved using a finite difference procedure with special treatment to promote convergence. The model has been checked against a number of idealized flow problems with known solutions. The authors are currently comparing model predictions with measurements to determine a proper set of turbulence parameters needed for simulating two-phase turbulent flows
Pseudo-random number generator for the Sigma 5 computer
Carroll, S. N.
1983-01-01
A technique is presented for developing a pseudo-random number generator based on the linear congruential form. The two numbers used for the generator are a prime number and a corresponding primitive root, where the prime is the largest prime number that can be accurately represented on a particular computer. The primitive root is selected by applying Marsaglia's lattice test. The technique presented was applied to write a random number program for the Sigma 5 computer. The new program, named S:RANDOM1, is judged to be superior to the older program named S:RANDOM. For applications requiring several independent random number generators, a table is included showing several acceptable primitive roots. The technique and programs described can be applied to any computer having word length different from that of the Sigma 5.
Computational sieving applied to some classical number-theoretic problems
H.J.J. te Riele (Herman)
1998-01-01
textabstractMany problems in computational number theory require the application of some sieve. Efficient implementation of these sieves on modern computers has extended our knowledge of these problems considerably. This is illustrated by three classical problems: the Goldbach conjecture, factoring
Vegetation-Induced Roughness in Low-Reynold's Number Flows
Piercy, C. D.; Wynn, T. M.
2008-12-01
Wetlands are important ecosystems, providing habitat for wildlife and fish and shellfish production, water storage, erosion control, and water quality improvement and preservation. Models to estimate hydraulic resistance due to vegetation in emergent wetlands are crucial to good wetland design and analysis. The goal of this project is to improve modeling of emergent wetlands by linking properties of the vegetation to flow. Existing resistance equations such as Hoffmann (2004), Kadlec (1990), Moghadam and Kouwen (1997), Nepf (1999), and Stone and Shen (2002) were evaluated. A large outdoor vegetated flume was constructed at the Price's Fork Research Center near Blacksburg, Virginia to measure flow and water surface slope through woolgrass (Scirpus cyperinus), a common native emergent wetland plant. Measurements of clump and stem density, diameter, and volume, blockage factor, and stiffness were made after each set of flume runs. Flow rates through the flume were low (3-4 L/s) resulting in very low stem-Reynold's numbers (15-102). Since experimental flow conditions were in the laminar to transitional range, most of the models considered did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. At low stem-Reynold's numbers (drag coefficient is inversely proportional to the Reynold's number and can vary greatly with flow conditions. Most of the models considered assumed a stem-Reynold's number in the 100-105 range in which the drag coefficient is relatively constant and as a result did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. The only model that accurately predicted stem layer velocity was the Kadlec (1990) model since it does not make assumptions about flow regime; instead, the parameters are adjusted according to the site conditions. Future work includes relating the parameters used to fit the Kadlec (1990) model to measured vegetation
Computational Analysis of the G-III Laminar Flow Glove
Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan
2011-01-01
Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.
Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers
Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan
2015-01-01
Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.
DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers
Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan
2013-01-01
Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.
Maccormack, R. W.
1978-01-01
The calculation of flow fields past aircraft configuration at flight Reynolds numbers is considered. Progress in devising accurate and efficient numerical methods, in understanding and modeling the physics of turbulence, and in developing reliable and powerful computer hardware is discussed. Emphasis is placed on efficient solutions to the Navier-Stokes equations.
International Nuclear Information System (INIS)
Yamamoto, Yoshinobu; Kunugi, Tomoaki
2015-01-01
Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Department of Mechanical Systems Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki [Department of Nuclear Engineering, Kyoto University Yoshida, Sakyo, Kyoto 606-8501 (Japan)
2015-01-15
Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study.
Features of round air jet flowing at low Reynolds numbers
Lemanov, V. V.; Sharov, K. A.; Gorinovich, N. V.
2018-03-01
The laminar-turbulent transition in a round jet flowing from a cylindrical channel with the diameter of 3.2 mm was studied experimentally. In experiments, the range of Reynolds numbers determined by the mean-flow velocity was Re = Ud/ν = 700-12000. The measurements were carried out using a PIV system and one-component hot-wire anemometer. The profiles of average velocities and their pulsations in the zone of laminar-turbulent transition were obtained along with axial distributions of longitudinal velocity and pulsations of longitudinal velocity.
Manipulating low-Reynolds-number flow by a watermill
Zhu, Lailai; Stone, Howard
2017-11-01
Cilia and filaments have evolved in nature to achieve swimming, mixing and pumping at low Reynolds number. Their unique capacity has inspired a variety of biomimetic strategies employing artificial slender structures to manipulate flows in microfluidic devices. Most of them have to rely on an external field, such as magnetic or electric fields to actuate the slender structures actively. In this talk, we will present a new approach of utilizing the underlying flow alone to drive these structures passively. We investigate theoretically and numerically a watermill composing several rigid slender rods in simple flows. Slender body theory with and without considering hydrodynamic interactions is adopted. The theoretical predictions agree qualitatively with the numerical results and quantitatively in certain configurations. A VR International Postdoc Grant from Swedish Research Council ``2015-06334'' (L.Z.) is gratefully acknowledged.
Finite volume simulation of 2-D steady square lid driven cavity flow at high reynolds numbers
Directory of Open Access Journals (Sweden)
K. Yapici
2013-12-01
Full Text Available In this work, computer simulation results of steady incompressible flow in a 2-D square lid-driven cavity up to Reynolds number (Re 65000 are presented and compared with those of earlier studies. The governing flow equations are solved by using the finite volume approach. Quadratic upstream interpolation for convective kinematics (QUICK is used for the approximation of the convective terms in the flow equations. In the implementation of QUICK, the deferred correction technique is adopted. A non-uniform staggered grid arrangement of 768x768 is employed to discretize the flow geometry. Algebraic forms of the coupled flow equations are then solved through the iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation algorithm. The outlined computational methodology allows one to meet the main objective of this work, which is to address the computational convergence and wiggled flow problems encountered at high Reynolds and Peclet (Pe numbers. Furthermore, after Re > 25000 additional vortexes appear at the bottom left and right corners that have not been observed in earlier studies.
Direct Numerical Simulation of Low Capillary Number Pore Scale Flows
Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.
2017-12-01
The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM
Computational strategies for three-dimensional flow simulations on distributed computer systems
Sankar, Lakshmi N.; Weed, Richard A.
1995-08-01
This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.
Computational strategies for three-dimensional flow simulations on distributed computer systems
Sankar, Lakshmi N.; Weed, Richard A.
1995-01-01
This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.
USERDA computer program summaries. Numbers 177--239
International Nuclear Information System (INIS)
1975-10-01
Since 1960 the Argonne Code Center has served as a U. S. Atomic Energy Commission information center for computer programs developed and used primarily for the solution of problems in nuclear physics, reactor design, reactor engineering and operation. The Center, through a network of registered installations, collects, validates, maintains, and distributes a library of these computer programs and publishes a compilation of abstracts describing them. In 1972 the scope of the Center's activities was officially expanded to include computer programs developed in all of the U. S. Atomic Energy Commission program areas and the compilation and publication of this report. The Computer Program Summary report contains summaries of computer programs at the specification stage, under development, being checked out, in use, or available at ERDA offices, laboratories, and contractor installations. Programs are divided into the following categories: cross section and resonance integral calculations; spectrum calculations, generation of group constants, lattice and cell problems; static design studies; depletion, fuel management, cost analysis, and reactor economics; space-independent kinetics; space--time kinetics, coupled neutronics--hydrodynamics--thermodynamics and excursion simulations; radiological safety, hazard and accident analysis; heat transfer and fluid flow; deformation and stress distribution computations, structural analysis and engineering design studies; gamma heating and shield design programs; reactor systems analysis; data preparation; data management; subsidiary calculations; experimental data processing; general mathematical and computing system routines; materials; environmental and earth sciences; space sciences; electronics and engineering equipment; chemistry; particle accelerators and high-voltage machines; physics; controlled thermonuclear research; biology and medicine; and data
Flow around an oscillating cylinder: computational issues
Energy Technology Data Exchange (ETDEWEB)
Jiang, Fengjian; Gallardo, José P; Pettersen, Bjørnar [Department of Marine Technology, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Andersson, Helge I, E-mail: fengjian.jiang@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)
2017-10-15
We consider different computational issues related to the three-dimensionalities of the flow around an oscillating circular cylinder. The full time-dependent Navier–Stokes equations are directly solved in a moving reference frame by introducing a forcing term. The choice of quantitative validation criteria is discussed and discrepancies of previously published results are addressed. The development of Honji vortices shows that short simulation times may lead to incorrect quasi-stable vortex patterns. The viscous decay of already established Honji vortices is also examined. (paper)
Computer data exchanges spur need for worldwide well numbering standard
International Nuclear Information System (INIS)
Anon.
1992-01-01
This paper reports that the American Association of Petroleum Geologists database standards subcommittee has voted to pursue development of a worldwide well numbering standard. Aim of such a standard would be to facilitate the exchange of well data between operators, service companies, and governments. The need for such a standard is heightened by the explosive growth of electronic data interchange (EDI), which uses industry standards to exchange data computer to computer. The subcommittee has reviewed various well numbering methods, identified advantages and disadvantages of each approach for publication to obtain industrywide comments
Dynamics of number systems computation with arbitrary precision
Kurka, Petr
2016-01-01
This book is a source of valuable and useful information on the topics of dynamics of number systems and scientific computation with arbitrary precision. It is addressed to scholars, scientists and engineers, and graduate students. The treatment is elementary and self-contained with relevance both for theory and applications. The basic prerequisite of the book is linear algebra and matrix calculus. .
Connecting Neural Coding to Number Cognition: A Computational Account
Prather, Richard W.
2012-01-01
The current study presents a series of computational simulations that demonstrate how the neural coding of numerical magnitude may influence number cognition and development. This includes behavioral phenomena cataloged in cognitive literature such as the development of numerical estimation and operational momentum. Though neural research has…
Noise radiated by low-Reynolds number flows past a hemisphere at Ma = 0.3
Yao, Hua-Dong; Davidson, Lars; Eriksson, Lars-Erik
2017-07-01
Flows past a hemisphere and their noise generation are investigated at the Reynolds numbers (Re) of 1000 and 5000. The Mach number is 0.3. The computational method of the flows is large eddy simulation. The noise is computed using the Ffowcs Williams and Hawkings Formulation 1C (F1C). An integral surface with an open end is defined for the F1C. The end surface is removed to reduce the numerical contamination that is introduced by vortices passing this surface. However, the contamination cannot be completely reduced since a discontinuity of the flow quantities still exists at the open surface boundary. This problem is solved using a surface correction method, in which a buffer zone is set up at the end of the integral surface. The transformation of flow structures due to Re is explored. Large coherent structures are observable at low Re, whereas they diminish at high Re. A large amount of small-scale turbulent vortices occur in the latter case. It is found that these characteristics of the flows have an important influence on the noise generation in regard to the noise spectra. In the flows studied in this work, the fluctuating pressure on the walls is a negligible noise contributor as compared with the wake.
Modeling Scramjet Flows with Variable Turbulent Prandtl and Schmidt Numbers
Xiao, X.; Hassan, H. A.; Baurle, R. A.
2006-01-01
A complete turbulence model, where the turbulent Prandtl and Schmidt numbers are calculated as part of the solution and where averages involving chemical source terms are modeled, is presented. The ability of avoiding the use of assumed or evolution Probability Distribution Functions (PDF's) results in a highly efficient algorithm for reacting flows. The predictions of the model are compared with two sets of experiments involving supersonic mixing and one involving supersonic combustion. The results demonstrate the need for consideration of turbulence/chemistry interactions in supersonic combustion. In general, good agreement with experiment is indicated.
Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation
Doronina, Olga; Christopher, Jason; Hamlington, Peter; Dahm, Werner
2017-11-01
Autonomic closure is a new technique for achieving fully adaptive and physically accurate closure of coarse-grained turbulent flow governing equations, such as those solved in large eddy simulations (LES). Although autonomic closure has been shown in recent a priori tests to more accurately represent unclosed terms than do dynamic versions of traditional LES models, the computational cost of the approach makes it challenging to implement for simulations of practical turbulent flows at realistically high Reynolds numbers. The optimization step used in the approach introduces large matrices that must be inverted and is highly memory intensive. In order to reduce memory requirements, here we propose to use approximate Bayesian computation (ABC) in place of the optimization step, thereby yielding a computationally-efficient implementation of autonomic closure that trades memory-intensive for processor-intensive computations. The latter challenge can be overcome as co-processors such as general purpose graphical processing units become increasingly available on current generation petascale and exascale supercomputers. In this work, we outline the formulation of ABC-enabled autonomic closure and present initial results demonstrating the accuracy and computational cost of the approach.
Low-Mach number simulations of transcritical flows
Lapenna, Pasquale E.
2018-01-08
A numerical framework for the direct simulation, in the low-Mach number limit, of reacting and non-reacting transcritical flows is presented. The key feature are an efficient and detailed representation of the real fluid properties and an high-order spatial discretization. The latter is of fundamental importance to correctly resolve the largely non-linear behavior of the fluid in the proximity of the pseudo-boiling. The validity of the low-Mach number assumptions is assessed for a previously developed non-reacting DNS database of transcritical and supercritical mixing. Fully resolved DNS data employing high-fidelity thermodynamical models are also used to investigate the spectral characteristic as well as the differences between transcritical and supercritical jets.
Turbulent flows at very large Reynolds numbers: new lessons learned
International Nuclear Information System (INIS)
Barenblatt, G I; Prostokishin, V M; Chorin, A J
2014-01-01
The universal (Reynolds-number-independent) von Kármán–Prandtl logarithmic law for the velocity distribution in the basic intermediate region of a turbulent shear flow is generally considered to be one of the fundamental laws of engineering science and is taught universally in fluid mechanics and hydraulics courses. We show here that this law is based on an assumption that cannot be considered to be correct and which does not correspond to experiment. Nor is Landau's derivation of this law quite correct. In this paper, an alternative scaling law explicitly incorporating the influence of the Reynolds number is discussed, as is the corresponding drag law. The study uses the concept of intermediate asymptotics and that of incomplete similarity in the similarity parameter. Yakov Borisovich Zeldovich played an outstanding role in the development of these ideas. This work is a tribute to his glowing memory. (100th anniversary of the birth of ya b zeldovich)
USERDA computer software summaries: numbers 240 through 324
International Nuclear Information System (INIS)
1976-12-01
Since 1960 the Argonne Code Center has served as a U.S. Atomic Energy Commission information center for computer programs developed and used primarily for the solution of problems in nuclear physics, reactor design, reactor engineering and operation. The Center, through a network of registered installations, collects, validates, maintains, and distributes a library of these computer programs and publishes a compilation of abstracts describing them. In 1972 the scope of the Center's activities was officially expanded to include computer programs developed in all of the U.S. Atomic Energy Commission program areas and the compilation and publicatuon of this report. The Computer Software Summary report contains summaries of computer programs at the specification stage, under development, being checked out, in use, or available at ERDA offices, laboratories, and contractor installations. Programs are divided into the following categories : cross section and resonance integral calculations; spectrum calculations, generation of group constants, lattice and cell problems; static design studies; depletion, fuel management, cost analysis, and reactor economics; space-independent k;inetics; pace--time kinetics, coupled neutronics--hydrodynamics--thermodynmics and excursion simulations; radiological safety, hazard and accident analysis; heat transfer and fluid flow; deformation and stress distribution computations, structural analysis and engineering design studies; gamma heating and shielddesign programs; reactor systems analysis; data preparation; data management; subsidiary calculations; experimental data processing; general mathematical and computing system routines; materials; environmental and earth sciences; space sciences; electronics and engineering equipment; chemistry; particle accelerators and high-voltage machines; physics; controlled thermonuclear research; biology and medicine; and data
Computation of viscous transonic flow about a lifting airfoil
Walitt, L.; Liu, C. Y.
1976-01-01
The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.
Study of turbulent natural-circulation flow and low-Prandtl-number forced-convection flow
International Nuclear Information System (INIS)
Chung, K.S.; Thompson, D.H.
1980-01-01
Calculational methods and results are discussed for the coupled energy and momentum equations of turbulent natural circulation flow and low Prandtl number forced convection flow. The objective of this paper is to develop a calculational method for the study of the thermal-hydraulic behavior of coolant flowing in a liquid metal fast breeder reactor channel under natural circulation conditions. The two-equation turbulence model is used to evaluate the turbulent momentum transport property. Because the analogy between momentum transfer and heat transfer does not generally hold for low Prandtl number fluid and natural circulation flow conditions, the turbulent thermal conductivity is calculated independently using equations similar to the two-equation turbulence model. The numerical technique used in the calculation is the finite element method
Mach Number effects on turbulent superstructures in wall bounded flows
Kaehler, Christian J.; Bross, Matthew; Scharnowski, Sven
2017-11-01
Planer and three-dimensional flow field measurements along a flat plat boundary layer in the Trisonic Wind Tunnel Munich (TWM) are examined with the aim to characterize the scaling, spatial organization, and topology of large scale turbulent superstructures in compressible flow. This facility is ideal for this investigation as the ratio of boundary layer thickness to test section spanwise extent ratio is around 1/25, ensuring minimal sidewall and corner effects on turbulent structures in the center of the test section. A major difficulty in the experimental investigation of large scale features is the mutual size of the superstructures which can extend over many boundary layer thicknesses. Using multiple PIV systems, it was possible to capture the full spatial extent of large-scale structures over a range of Mach numbers from Ma = 0.3 - 3. To calculate the average large-scale structure length and spacing, the acquired vector fields were analyzed by statistical multi-point methods that show large scale structures with a correlation length of around 10 boundary layer thicknesses over the range of Mach numbers investigated. Furthermore, the average spacing between high and low momentum structures is on the order of a boundary layer thicknesses. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures of the Deutsche Forschungsgemeinschaft.
Pulsatility role in cylinder flow dynamics at low Reynolds number
Qamar, Adnan
2012-01-01
We present dynamics of pulsatile flow past a stationary cylinder characterized by three non-dimensional parameters: the Reynolds number (Re), non-dimensional amplitude (A) of the pulsatile flow velocity, and Keulegan-Carpenter number (KC = Uo/Dωc). This work is motivated by the development of total artificial lungs (TAL) device, which is envisioned to provide ambulatory support to patients. Results are presented for 0.2 ≤ A ≤ 0.6 and 0.57 ≤ KC ≤ 2 at Re = 5 and 10, which correspond to the operating range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last fraction of the pulsatile cycle. The vortex size is independent of KC, but with an exponential dependency on A. In regime I, the separation point remains attached to the cylinder surface. In regime II, the separation point migrates upstream of the cylinder. Two distinct vortex collapse mechanisms are observed. For A < 0.4 and all KC and Re values, collapse occurs on the cylinder surface, whereas for A > 0.4 the separation vortex detaches from the cylinder surface and collapses at a certain distance downstream of the cylinder. The average drag coefficient is found to be independent of A and KC, and depends only on Re. However, for A > 0.4, for a fraction of the pulsatile cycle, the instantaneous drag coefficient is negative indicating a thrust production. © 2012 American Institute of Physics.
Computing Flows Using Chimera and Unstructured Grids
Liou, Meng-Sing; Zheng, Yao
2006-01-01
DRAGONFLOW is a computer program that solves the Navier-Stokes equations of flows in complexly shaped three-dimensional regions discretized by use of a direct replacement of arbitrary grid overlapping by nonstructured (DRAGON) grid. A DRAGON grid (see figure) is a combination of a chimera grid (a composite of structured subgrids) and a collection of unstructured subgrids. DRAGONFLOW incorporates modified versions of two prior Navier-Stokes-equation-solving programs: OVERFLOW, which is designed to solve on chimera grids; and USM3D, which is used to solve on unstructured grids. A master module controls the invocation of individual modules in the libraries. At each time step of a simulated flow, DRAGONFLOW is invoked on the chimera portion of the DRAGON grid in alternation with USM3D, which is invoked on the unstructured subgrids of the DRAGON grid. The USM3D and OVERFLOW modules then immediately exchange their solutions and other data. As a result, USM3D and OVERFLOW are coupled seamlessly.
CFD analysis on heat transfer in low Prandtl number fluid flows
Energy Technology Data Exchange (ETDEWEB)
Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.; Sinha, R.K., E-mail: bananta@barc.gov.in [Bhabha Atomic Research Centre, Reactor Engineering Div., Trombay, Mumbai (India)
2011-07-01
Use of Computational Fluid Dynamics (CFD) code is helpful for designing liquid metal cooled nuclear reactor systems. Before using any CFD code proper evaluation of the code is essential for simulation of heat transfer in liquid metal flow. In this paper, a review of the literature on the correlations for liquid metal heat transfer is carried out and a comparison with experimental results is performed. CFD analysis is carried out using PHOENICS-3.6 code on heat transfer in molten Lead Bismuth Eutectic (LBE) flowing through tube. Turbulent flow analyses are carried out for the evaluation of the CFD code. The CFD results are compared with the available correlations. Assessment of various turbulence models and correlations for turbulent Prandtl number in the tube geometry are carried out. From the analysis it is found that, the CFD prediction can be improved with modified turbulent Prandtl number in the turbulence models. (author)
COMPUTATIONAL ANALYSIS OF BACKWARD-FACING STEP FLOW
Directory of Open Access Journals (Sweden)
Erhan PULAT
2001-01-01
Full Text Available In this study, backward-facing step flow that are encountered in electronic systems cooling, heat exchanger design, and gas turbine cooling are investigated computationally. Steady, incompressible, and two-dimensional air flow is analyzed. Inlet velocity is assumed uniform and it is obtained from parabolic profile by using maximum velocity. In the analysis, the effects of channel expansion ratio and Reynolds number to reattachment length are investigated. In addition, pressure distribution throughout the channel length is also obtained and flow is analyzed for the Reynolds number values of 50 and 150 and channel expansion ratios of 1.5 and 2. Governing equations are solved by using Galerkin finite element mothod of ANSYS-FLOTRAN code. Obtained results are compared with the solutions of lattice BGK method that is relatively new method in fluid dynamics and other numerical and experimental results. It is concluded that reattachment length increases with increasing Reynolds number and at the same Reynolds number it decreases with increasing channel expansion ratio.
International Nuclear Information System (INIS)
Patil, Sunil; Tafti, Danesh
2012-01-01
Highlights: ► Large eddy simulation. ► Wall layer modeling. ► Synthetic inlet turbulence. ► Swirl flows. - Abstract: Large eddy simulations of complex high Reynolds number flows are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system is presented and applied in the near wall zonal treatment. This formulation reduces the computational time in the inner layer significantly compared to the conventional two layer formulations present in the literature and is most suitable for complex geometries involving body fitted structured and unstructured meshes. The cost effectiveness and accuracy of the proposed wall model, used with the synthetic eddy method (SEM) to generate inlet turbulence, is investigated in turbulent channel flow, flow over a backward facing step, and confined swirling flows at moderately high Reynolds numbers. Predictions are compared with available DNS, experimental LDV data, as well as wall resolved LES. In all cases, there is at least an order of magnitude reduction in computational cost with no significant loss in prediction accuracy.
On the Values for the Turbulent Schmidt Number in Environmental Flows
Directory of Open Access Journals (Sweden)
Carlo Gualtieri
2017-04-01
Full Text Available Computational Fluid Dynamics (CFD has consolidated as a tool to provide understanding and quantitative information regarding many complex environmental flows. The accuracy and reliability of CFD modelling results oftentimes come under scrutiny because of issues in the implementation of and input data for those simulations. Regarding the input data, if an approach based on the Reynolds-Averaged Navier-Stokes (RANS equations is applied, the turbulent scalar fluxes are generally estimated by assuming the standard gradient diffusion hypothesis (SGDH, which requires the definition of the turbulent Schmidt number, Sct (the ratio of momentum diffusivity to mass diffusivity in the turbulent flow. However, no universally-accepted values of this parameter have been established or, more importantly, methodologies for its computation have been provided. This paper firstly presents a review of previous studies about Sct in environmental flows, involving both water and air systems. Secondly, three case studies are presented where the key role of a correct parameterization of the turbulent Schmidt number is pointed out. These include: (1 transverse mixing in a shallow water flow; (2 tracer transport in a contact tank; and (3 sediment transport in suspension. An overall picture on the use of the Schmidt number in CFD emerges from the paper.
Computer simulation of two-phase flow in nuclear reactors
International Nuclear Information System (INIS)
Wulff, W.
1993-01-01
Two-phase flow models dominate the requirements of economic resources for the development and use of computer codes which serve to analyze thermohydraulic transients in nuclear power plants. An attempt is made to reduce the effort of analyzing reactor transients by combining purpose-oriented modelling with advanced computing techniques. Six principles are presented on mathematical modeling and the selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited than the two-fluid model for the analysis of two-phase flow in nuclear reactors, because of the latter's closure problems. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost. (orig.)
The Granular Blasius Problem: High inertial number granular flows
Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie
2017-11-01
The classical Blasius problem considers the formation of a boundary layer through the change at x = 0 from a free-slip to a no-slip boundary beneath an otherwise steady uniform flow. Discrete particle model (DPM) simulations of granular gravity currents show that a similar phenomenon exists for a steady flow over a uniformly sloped surface that is smooth upstream (allowing slip) but rough downstream (imposing a no-slip condition). The boundary layer is a region of high shear rate and therefore high inertial number I; its dynamics are governed by the asymptotic behaviour of the granular rheology as I -> ∞ . The μ(I) rheology asserts that dμ / dI = O(1 /I2) as I -> ∞ , but current experimental evidence is insufficient to confirm this. We show that `generalised μ(I) rheologies', with different behaviours as I -> ∞ , all permit the formation of a boundary layer. We give approximate solutions for the velocity profile under each rheology. The change in boundary condition considered here mimics more complex topography in which shear stress increases in the streamwise direction (e.g. a curved slope). Such a system would be of interest in avalanche modelling. EPSRC studentship (Tsang) and Royal Society Dorothy Hodgkin Fellowship (Vriend).
Flow control at low Reynolds numbers using periodic airfoil morphing
Jones, Gareth; Santer, Matthew; Papadakis, George; Bouremel, Yann; Debiasi, Marco; Imperial-NUS Joint PhD Collaboration
2014-11-01
The performance of airfoils operating at low Reynolds numbers is known to suffer from flow separation even at low angles of attack as a result of their boundary layers remaining laminar. The lack of mixing---a characteristic of turbulent boundary layers---leaves laminar boundary layers with insufficient energy to overcome the adverse pressure gradient that occurs in the pressure recovery region. This study looks at periodic surface morphing as an active flow control technique for airfoils in such a flight regime. It was discovered that at sufficiently high frequencies an oscillating surface is capable of not only reducing the size of the separated region---and consequently significantly reducing drag whilst simultaneously increasing lift---but it is also capable of delaying stall and as a result increasing CLmax. Furthermore, by bonding Macro Fiber Composite actuators (MFCs) to the underside of an airfoil skin and driving them with a sinusoidal frequency, it is shown that this control technique can be practically implemented in a lightweight, energy efficient way. Imperial-NUS Joint Ph.D. Programme.
Numerical solutions of unsteady flows with low inlet Mach numbers
Czech Academy of Sciences Publication Activity Database
Punčochářová, Petra; Furst, Jiří; Horáček, Jaromír; Kozel, Karel
2010-01-01
Roč. 80, č. 8 (2010), s. 1795-1805 ISSN 0378-4754 R&D Projects: GA AV ČR IAA200760613 Institutional research plan: CEZ:AV0Z20760514 Keywords : finite volume method * unsteady flow * low Mach number * viscous compressible fluid Subject RIV: BI - Acoustics Impact factor: 0.812, year: 2010 http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V0T-4Y0D67D-1-R&_cdi=5655&_user=640952&_pii=S0378475409003607&_origin=search&_coverDate=04%2F30%2F2010&_sk=999199991&view=c&wchp=dGLbVlb-zSkzk&md5=ed6eaf0a050968ee978714fd54e7f131&ie=/sdarticle.pdf
Automated flow cytometric analysis across large numbers of samples and cell types.
Chen, Xiaoyi; Hasan, Milena; Libri, Valentina; Urrutia, Alejandra; Beitz, Benoît; Rouilly, Vincent; Duffy, Darragh; Patin, Étienne; Chalmond, Bernard; Rogge, Lars; Quintana-Murci, Lluis; Albert, Matthew L; Schwikowski, Benno
2015-04-01
Multi-parametric flow cytometry is a key technology for characterization of immune cell phenotypes. However, robust high-dimensional post-analytic strategies for automated data analysis in large numbers of donors are still lacking. Here, we report a computational pipeline, called FlowGM, which minimizes operator input, is insensitive to compensation settings, and can be adapted to different analytic panels. A Gaussian Mixture Model (GMM)-based approach was utilized for initial clustering, with the number of clusters determined using Bayesian Information Criterion. Meta-clustering in a reference donor permitted automated identification of 24 cell types across four panels. Cluster labels were integrated into FCS files, thus permitting comparisons to manual gating. Cell numbers and coefficient of variation (CV) were similar between FlowGM and conventional gating for lymphocyte populations, but notably FlowGM provided improved discrimination of "hard-to-gate" monocyte and dendritic cell (DC) subsets. FlowGM thus provides rapid high-dimensional analysis of cell phenotypes and is amenable to cohort studies. Copyright © 2015. Published by Elsevier Inc.
Computer program for compressible flow network analysis
Wilton, M. E.; Murtaugh, J. P.
1973-01-01
Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.
Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics
Ismail, Mourad
2001-01-01
These are the proceedings of the conference "Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics" held at the Department of Mathematics, University of Florida, Gainesville, from November 11 to 13, 1999. The main emphasis of the conference was Com puter Algebra (i. e. symbolic computation) and how it related to the fields of Number Theory, Special Functions, Physics and Combinatorics. A subject that is common to all of these fields is q-series. We brought together those who do symbolic computation with q-series and those who need q-series in cluding workers in Physics and Combinatorics. The goal of the conference was to inform mathematicians and physicists who use q-series of the latest developments in the field of q-series and especially how symbolic computa tion has aided these developments. Over 60 people were invited to participate in the conference. We ended up having 45 participants at the conference, including six one hour plenary speakers and 28 half hour speakers. T...
Turbulent flow computation in a circular U-Bend
Directory of Open Access Journals (Sweden)
Miloud Abdelkrim
2014-03-01
Full Text Available Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds–Averaged Navier–Stokes (RANS equations. The performances of standard k-ε and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.
Turbulent flow computation in a circular U-Bend
Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir
2014-03-01
Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.
Computational fluid dynamics incompressible turbulent flows
Kajishima, Takeo
2017-01-01
This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...
Simulation of Reynolds number influence on heat exchange in turbulent flow of medium slurry
Bartosik, A.
2016-10-01
The paper deals with the numerical simulation of mass and heat exchange in turbulent flow of solid-liquid mixture in the range of averaged solid particle diameter from 0.10mm to 0.80mm, named further as the medium slurry. Physical model assumes that dispersed phase is fully suspended and a turbulent flow is hydro-dynamically, and thermally developed in a straight horizontal pipeline. Taking into account the aforementioned assumptions the slurry is treated as a single-phase flow with increased density, while viscosity is equals to a carrier liquid viscosity. The mathematical model constitutes time averaged momentum equation in which the turbulent stress tensor was designated using a two-equation turbulence model, which makes use of the Boussinesq eddy-viscosity hypothesis. Turbulence damping function in the turbulence model was especially designed for the medium slurry. In addition, an energy equation has been used in which a convective term was determined from the energy balance acting on a unit pipe length, assuming linear changes of temperature in main flow direction. Finally, the mathematical model of non-isothermal medium slurry flow comprises four partial differential equations, namely momentum and energy equations, equations of kinetic energy of turbulence and its dissipation rate. Four partial differential equations were solved by a finite difference scheme using own computer code. The objective of the paper is to examine the influence of Reynolds number on temperature profiles and Nusselt number in turbulent flow of medium slurry in the range of solids concentration from 0% to 30% by volume. The effect of influential factors on heat transfer between the pipe and slurry is analysed. The paper demonstrates substantial impact of Reynolds number and solids volume fraction on the Nusselt number. The results of numerical simulation are reviewed.
NUMERICAL SIMULATIONS OF FLOW BEHAVIOR IN DRIVEN CAVITY AT HIGH REYNOLDS NUMBERS
Directory of Open Access Journals (Sweden)
Fudhail Bin Abdul Munir
2012-02-01
Full Text Available In recent years, due to rapidly increasing computational power, computational methods have become the essential tools to conduct researches in various engineering fields. In parallel to the development of ultra high speed digital computers, computational fluid dynamics (CFD has become the new third approach apart from theory and experiment in the philosophical study and development of fluid dynamics. Lattice Boltzmann method (LBM is an alternative method to conventional CFD. LBM is relatively new approach that uses simple microscopic models to simulate complicated microscopic behavior of transport phenomena. In this paper, fluid flow behaviors of steady incompressible flow inside lid driven square cavity are studied. Numerical calculations are conducted for different Reynolds numbers by using Lattice Boltzmann scheme. The objective of the paper is to demonstrate the capability of this lattice Boltzmann scheme for engineering applications particularly in fluid transport phenomena. Keywords-component; lattice Boltzmann method, lid driven cavity, computational fluid dynamics.
Aspects of magnetohydrodynamic duct flow at high magnetic Reynolds number
International Nuclear Information System (INIS)
Turner, R.B.
1973-07-01
The thesis is concerned with the performance of a flow coupler, which consists of an MHD generator coupled to an MHD pump so that one stream of fluid is induced to move by the motion of another. The flow coupler investigations include: the effects caused by eddy currents on the applied magnetic field and electric potential distribution, the velocity perturbation which occurs as a liquid flows through a magnetic field, devices in which large currents flow through a moving conductor and through an external circuit, and the movement of two conductors through the gap of a magnet. The expected performance of a flow coupler is calculated. (U.K.)
CISM-IUTAM School on Advanced Turbulent Flow Computations
Krause, Egon
2000-01-01
This book collects the lecture notes concerning the IUTAM School on Advanced Turbulent Flow Computations held at CISM in Udine September 7–11, 1998. The course was intended for scientists, engineers and post-graduate students interested in the application of advanced numerical techniques for simulating turbulent flows. The topic comprises two closely connected main subjects: modelling and computation, mesh pionts necessary to simulate complex turbulent flow.
Computed Flow Through An Artificial Heart And Valve
Rogers, Stuart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee
1994-01-01
NASA technical memorandum discusses computations of flow of blood through artificial heart and through tilting-disk artificial heart valve. Represents further progress in research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478). One purpose of research to exploit advanced techniques of computational fluid dynamics and capabilities of supercomputers to gain understanding of complicated internal flows of viscous, essentially incompressible fluids like blood. Another to use understanding to design better artificial hearts and valves.
Computational methods for two-phase flow and particle transport
Lee, Wen Ho
2013-01-01
This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
Chen, X.; Qin, G.; Ai, Z.; Ji, Y.
2017-08-01
As an effective and economic method for flow range enhancement, circumferential groove casing treatment (CGCT) is widely used to increase the stall margin of compressors. Different from traditional grooved casing treatments, in which the grooves are always located over the rotor in both axial and radial compressors, one or several circumferential grooves are located along the shroud side of the diffuser passage in this paper. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with CGCT in diffuser. Computational fluid dynamics (CFD) analysis is performed under stage environment in order to find the optimum location of the circumferential casing groove in consideration of stall margin enhancement and efficiency gain at design point, and the impact of groove number to the effect of this grooved casing treatment configuration in enhancing the stall margin of the compressor stage is studied. The results indicate that the centrifugal compressor with circumferential groove in vaned diffuser can obtain obvious improvement in the stall margin with sacrificing design efficiency a little. Efforts were made to study blade level flow mechanisms to determine how the CGCT impacts the compressor’s stall margin (SM) and performance. The flow structures in the passage, the tip gap, and the grooves as well as their mutual interactions were plotted and analysed.
Computations of the Magnus effect for slender bodies in supersonic flow
Sturek, W. B.; Schiff, L. B.
1980-01-01
A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.
Dimas, Athanassios A.; Kolokythas, Gerasimos A.
Numerical simulations of the free-surface flow, developing by the propagation of nonlinear water waves over a rippled bottom, are performed assuming that the corresponding flow is two-dimensional, incompressible and viscous. The simulations are based on the numerical solution of the Navier-Stokes equations subject to the fully-nonlinear free-surface boundary conditions and appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. For the spatial discretization, a hybrid scheme is used where central finite-differences, in the horizontal direction, and a pseudo-spectral approximation method with Chebyshev polynomials, in the vertical direction, are applied. A fractional time-step scheme is used for the temporal discretization. Over the rippled bed, the wave boundary layer thickness increases significantly, in comparison to the one over flat bed, due to flow separation at the ripple crests, which generates alternating circulation regions. The amplitude of the wall shear stress over the ripples increases with increasing ripple height or decreasing Reynolds number, while the corresponding friction force is insensitive to the ripple height change. The amplitude of the form drag forces due to dynamic and hydrostatic pressures increase with increasing ripple height but is insensitive to the Reynolds number change, therefore, the percentage of friction in the total drag force decreases with increasing ripple height or increasing Reynolds number.
High Reynolds number liquid layer flow with flexible walls
Indian Academy of Sciences (India)
School of Mathematics, University of Manchester, Manchester, M13 9PL, UK ... tions have potential application to aerodynamic and marine flows. .... Next, assume that the displacement of the free-surface induces a transverse pressure gradient.
Prandtl number variation on transient forced convection flow in a ...
African Journals Online (AJOL)
user
2Manufacturing Engineering Department, The Public Authority for Applied Education and ... A transient numerical study is conducted to investigate the transport .... The model describes a valve where it is possible to direct the flow into one.
International Nuclear Information System (INIS)
Okhotnikov, Ivan; Noroozi, Siamak; Sewell, Philip; Godfrey, Philip
2017-01-01
Highlights: • A novel design of a rotary flow control valve driven by a stepper motor is proposed. • The intended use of the valve in the high flow rate independent metering hydraulic system is suggested. • Pressure drops, steady flow torques of the valve for various flow rates and orifice openings are studied by means of computational fluid dynamics. • The discharge coefficient and flow jet angles dependencies on the orifice opening are obtained. • A design method to decrease the flow forces without reducing the flow rate in single-staged valves is demonstrated. - Abstract: In this paper, a novel design of a rotary hydraulic flow control valve has been presented for high flow rate fluid power systems. High flow rates in these systems account for substantial flow forces acting on the throttling elements of the valves and cause the application of mechanically sophisticated multi-staged servo valves for flow regulation. The suggested design enables utilisation of single-stage valves in power hydraulics operating at high flow rates regimes. A spool driver and auxiliary mechanisms of the proposed valve design were discussed and selection criteria were suggested. Analytical expressions for metering characteristics as well as steady flow torques have been derived. Computational fluid dynamics (CFD) analysis of steady state flow regimes was conducted to evaluate the hydraulic behaviour of the proposed valve. This study represents a special case of an independent metering concept applied to the design of power hydraulic systems with direct proportional valve control operating at flow rates above 150 litres per minute. The result gained using parametric CFD simulations predicted the induced torque and the pressure drops due to a steady flow. Magnitudes of these values prove that by minimising the number of spool's mobile metering surfaces it is possible to reduce the flow-generated forces in the new generation of hydraulic valves proposed in this study
On turbulence models for rod bundle flow computations
International Nuclear Information System (INIS)
Hazi, Gabor
2005-01-01
In commercial computational fluid dynamics codes there is more than one turbulence model built in. It is the user responsibility to choose one of those models, suitable for the problem studied. In the last decade, several computations were presented using computational fluid dynamics for the simulation of various problems of the nuclear industry. A common feature in a number of those simulations is that they were performed using the standard k-ε turbulence model without justifying the choice of the model. The simulation results were rarely satisfactory. In this paper, we shall consider the flow in a fuel rod bundle as a case study and discuss why the application of the standard k-ε model fails to give reasonable results in this situation. We also show that a turbulence model based on the Reynolds stress transport equations can provide qualitatively correct results. Generally, our aim is pedagogical, we would like to call the readers attention to the fact that turbulence models have to be selected based on theoretical considerations and/or adequate information obtained from measurements
Rotation induced flow suppression around two tandem circular cylinders at low Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Dipankar [Advanced Design and Analysis Group, CSIR—Central Mechanical Engineering Research Institute, Durgapur-713209 (India); Gupta, Krishan [Department of Mechanical Engineering, Sardar Vallabhai National Institute of Technology Surat, Surat-395007 (India); Kumar, Virendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna-800013 (India); Varghese, Sachin Abraham, E-mail: d_chatterjee@cmeri.res.in [Department of Mechanical Engineering, National Institute of Technology Durgapur, Durgapur-713209 (India)
2017-08-15
The rotation to a bluff object is known to have a stabilizing effect on the fluid dynamic transport around the body. An unsteady periodic flow can be degenerated into a steady flow pattern depending on the rate of rotation imparted to the body. On the other hand, multiple bodies placed in tandem arrangement with respect to an incoming flow can cause destabilization to the flow as a result of the complicated wake interaction between the bodies. Accordingly, the spacing between the bodies and the rate of rotation have significant impact on the overall fluid dynamic transport around them. The present work aims to understand how these two competing factors are actually influencing the fluidic transport across a pair of identical rotating circular cylinders kept in tandem arrangement in an unconfined medium. The cylinders are subjected to a uniform free stream flow and the gaps between the cylinders are varied as 0.2, 0.7, 1.5 and 3.0. Both the cylinders are made to rotate in the clockwise sense. The Reynolds number based on the free stream flow is taken as 100. A two-dimensional finite volume based transient computation is performed for a range of dimensionless rotational speeds of the cylinders (0 ≤ Ω ≤ 2.75). The results show that the shedding phenomena can be observed up to a critical rate of rotation (Ω{sub cr}) depending on the gap spacing. Beyond Ω{sub cr}, the flow becomes stabilized and finally completely steady as Ω increases further. Increasing the gap initially causes a slight decrease in the critical rotational speed, however, it increases at a rapid rate for larger gap spacing. (paper)
Effect of finite cavity width on flow oscillation in a low-Mach-number cavity flow
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ke; Naguib, Ahmed M. [Michigan State University, East Lansing, MI (United States)
2011-11-15
The current study is focused on examining the effect of the cavity width and side walls on the self-sustained oscillation in a low Mach number cavity flow with a turbulent boundary layer at separation. An axisymmetric cavity geometry is employed in order to provide a reference condition that is free from any side-wall influence, which is not possible to obtain with a rectangular cavity. The cavity could then be partially filled to form finite-width geometry. The unsteady surface pressure is measured using microphone arrays that are deployed on the cavity floor along the streamwise direction and on the downstream wall along the azimuthal direction. In addition, velocity measurements using two-component Laser Doppler Anemometer are performed simultaneously with the array measurements in different azimuthal planes. The compiled data sets are used to investigate the evolution of the coherent structures generating the pressure oscillation in the cavity using linear stochastic estimation of the velocity field based on the wall-pressure signature on the cavity end wall. The results lead to the discovery of pronounced harmonic pressure oscillations near the cavity's side walls. These oscillations, which are absent in the axisymmetric cavity, are linked to the establishment of a secondary mean streamwise circulating flow pattern near the side walls and the interaction of this secondary flow with the shear layer above the cavity. (orig.)
Solution adaptive grids applied to low Reynolds number flow
de With, G.; Holdø, A. E.; Huld, T. A.
2003-08-01
A numerical study has been undertaken to investigate the use of a solution adaptive grid for flow around a cylinder in the laminar flow regime. The main purpose of this work is twofold. The first aim is to investigate the suitability of a grid adaptation algorithm and the reduction in mesh size that can be obtained. Secondly, the uniform asymmetric flow structures are ideal to validate the mesh structures due to mesh refinement and consequently the selected refinement criteria. The refinement variable used in this work is a product of the rate of strain and the mesh cell size, and contains two variables Cm and Cstr which determine the order of each term. By altering the order of either one of these terms the refinement behaviour can be modified.
Program Computes Flows Of Fluids And Heat
Cullimore, Brent; Ring, Steven; Welch, Mark
1993-01-01
SINDA'85/FLUINT incorporates lumped-parameter-network and one-dimensional-flow mathematical models. System enables analysis of mutual influences of thermal and flow phenomena. Offers two finite-difference numerical solution techniques: forward-difference explicit approximation and Crank-Nicholson approximation. Enables simulation of nonuniform heating and facilitates mathematical modeling of thin-walled heat exchangers. Ability to model nonequilibrium behavior within two-phase volumes included. Recent changes in program improve modeling of real evaporator pumps and other capillary-assist evaporators. Written in FORTRAN 77.
Computer network prepared to handle massive data flow
2006-01-01
"Massive quantities of data will soon begin flowing from the largest scientific instrument ever built into an internationl network of computer centers, including one operated jointly by the University of Chicago and Indiana University." (2 pages)
Pulsatility role in cylinder flow dynamics at low Reynolds number
Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.
2012-01-01
range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last
Asymmetric energy flow in liquid alkylbenzenes: A computational study
International Nuclear Information System (INIS)
Leitner, David M.; Pandey, Hari Datt
2015-01-01
Ultrafast IR-Raman experiments on substituted benzenes [B. C. Pein et al., J. Phys. Chem. B 117, 10898–10904 (2013)] reveal that energy can flow more efficiently in one direction along a molecule than in others. We carry out a computational study of energy flow in the three alkyl benzenes, toluene, isopropylbenzene, and t-butylbenzene, studied in these experiments, and find an asymmetry in the flow of vibrational energy between the two chemical groups of the molecule due to quantum mechanical vibrational relaxation bottlenecks, which give rise to a preferred direction of energy flow. We compare energy flow computed for all modes of the three alkylbenzenes over the relaxation time into the liquid with energy flow through the subset of modes monitored in the time-resolved Raman experiments and find qualitatively similar results when using the subset compared to all the modes
Flow through collapsible tubes at low Reynolds numbers. Applicability of the waterfall model.
Lyon, C K; Scott, J B; Wang, C Y
1980-07-01
The applicability of the waterfall model was tested using the Starling resistor and different viscosities of fluids to vary the Reynolds number. The waterfall model proved adequate to describe flow in the Starling resistor model only at very low Reynolds numbers (Reynolds number less than 1). Blood flow characterized by such low Reynolds numbers occurs only in the microvasculature. Thus, it is inappropriate to apply the waterfall model indiscriminately to flow through large collapsible veins.
Computational fluid dynamics (CFD) simulation of hot air flow ...
African Journals Online (AJOL)
Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...
Computational analysis of turbulent flow in hydroelectric plant intakes
Energy Technology Data Exchange (ETDEWEB)
Bouhadji, L.; Lemon, D.D.; Billenness, D.; Fissel, D. [ASL Environmental Sciences Inc., Sidney, British Columbia (Canada)]. E-mail: lbouhadji@aslenv.com; Djilali, N. [Univ. of Victoria, Dept. of Mechanical Engineering, Victoria, British Columbia (Canada)]. E-mail: ndjilali@uvic.ca
2003-07-01
Turbulent flows in the Lower Monumental powerhouse intake are investigated using computational fluid dynamics. Simulations are carried out to gain an understanding into the impact of a grid-like trash rack on the downstream turbulent flow characteristics within the intake. (author)
Incremental Optimization of Hub and Spoke Network for the Spokes’ Numbers and Flow
Directory of Open Access Journals (Sweden)
Yanfeng Wang
2015-01-01
Full Text Available Hub and spoke network problem is solved as part of a strategic decision making process which may have a profound effect on the future of enterprises. In view of the existing network structure, as time goes on, the number of spokes and the flow change because of different sources of uncertainty. Hence, the incremental optimization of hub and spoke network problem is considered in this paper, and the policy makers should adopt a series of strategies to cope with the change, such as setting up new hubs, adjusting the capacity level of original hubs, or closing some original hubs. The objective is to minimize the total cost, which includes the setup costs for the new hubs, the closure costs, and the adjustment costs for the original hubs as well as the flow routing costs. Two mixed-integer linear programming formulations are proposed and analyzed for this problem. China Deppon Logistics as an example is performed to present computational analysis, and we analyze the changes in the solutions driven by the number of spokes and the flow. The tests also allow an analysis to consider the effect of variation in parameters on network.
Computation of subsonic flow around airfoil systems with multiple separation
Jacob, K.
1982-01-01
A numerical method for computing the subsonic flow around multi-element airfoil systems was developed, allowing for flow separation at one or more elements. Besides multiple rear separation also sort bubbles on the upper surface and cove bubbles can approximately be taken into account. Also, compressibility effects for pure subsonic flow are approximately accounted for. After presentation the method is applied to several examples and improved in some details. Finally, the present limitations and desirable extensions are discussed.
Drag of evaporating or condensing droplets in low Reynolds number flow
International Nuclear Information System (INIS)
Dukowicz, J.K.
1984-01-01
The steady-state drag of evaporating or condensing droplets in low Reynolds number flow is computed. Droplet drag in air is obtained for five representative liquids (water, methanol, benzene, heptane, octane) for a range of ambient temperatures, pressures, and vapor concentrations. The drag is in general increased for a condensing droplet, and decreased for an evaporating droplet. The changes in drag can be quite large and depend in detail on the degree of evaporation or condensation, and on the individual liquid and vapor properties. The present results are used to test the existing experimentally derived correlations of Eisenklam and Yuen and Chen in the low Reynolds number regime. The Yuen and Chen correlation is found to be quite successful, but only in the case of condensation or mild evaporation. An improved correlation is suggested for evaporating droplets
Computational Analysis of Multi-Rotor Flows
Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.
2016-01-01
Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.
Computational Investigation of Soot and Radiation in Turbulent Reacting Flows
Lalit, Harshad
This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of
Ground effects on the stability of separated flow around an airfoil at low Reynolds numbers
He, Wei; Yu, Peng; Li, Larry K. B.
2017-11-01
We perform a BiGlobal stability analysis on the separated flow around a NACA 4415 airfoil at low Reynolds numbers (Re = 300 - 1000) and a high angle of attack α =20° with a focus on the effect of the airfoil's proximity to a moving ground. The results show that the most dominant perturbation is the Kelvin-Helmholtz mode and that this traveling mode becomes less unstable as the airfoil approaches the ground, although this stabilizing effect diminishes with increasing Reynolds number. By performing a Floquet analysis, we find that this ground effect can also stabilize secondary instabilities. This numerical-theoretical study shows that the ground can have a significant influence on the stability of separated flow around an airfoil at low Reynolds numbers, which could have implications for the design of micro aerial vehicles and for the understanding of natural flyers such as insects and birds. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815) and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No.U1501501.
Parallel computation of Euler and Navier-Stokes flows
International Nuclear Information System (INIS)
Swisshelm, J.M.; Johnson, G.M.; Kumar, S.P.
1986-01-01
A multigrid technique useful for accelerating the convergence of Euler and Navier-Stokes flow computations has been restructured to improve its performance on both SIMD and MIMD computers. The new algorithm allows both the construction of longer coarse-grid vectors and the multitasking of entire grids. Computational results are presented for the CDC Cyber 205, Cray X-MP, and Denelcor HEP I. 15 references
Computational fluid dynamics simulations of light water reactor flows
International Nuclear Information System (INIS)
Tzanos, C.P.; Weber, D.P.
1999-01-01
Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed
Dwindling Numbers of Female Computer Students: What Are We Missing?
Saulsberry, Donna
2012-01-01
There is common agreement among researchers that women are under-represented in both 2-year and 4-year collegiate computer study programs. This leads to women being under-represented in the computer industry which may be limiting the progress of technology developments that will benefit mankind. It may also be depriving women of the opportunity to…
Suresh, P V; Jayanti, Sreenivas
2016-10-01
Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.
Numerical computation of space shuttle orbiter flow field
Tannehill, John C.
1988-01-01
A new parabolized Navier-Stokes (PNS) code has been developed to compute the hypersonic, viscous chemically reacting flow fields around 3-D bodies. The flow medium is assumed to be a multicomponent mixture of thermally perfect but calorically imperfect gases. The new PNS code solves the gas dynamic and species conservation equations in a coupled manner using a noniterative, implicit, approximately factored, finite difference algorithm. The space-marching method is made well-posed by special treatment of the streamwise pressure gradient term. The code has been used to compute hypersonic laminar flow of chemically reacting air over cones at angle of attack. The results of the computations are compared with the results of reacting boundary-layer computations and show excellent agreement.
Three-dimensional study of flow past a square cylinder at low Reynolds numbers
International Nuclear Information System (INIS)
Saha, A.K.; Biswas, G.; Muralidhar, K.
2003-01-01
The spatial evolution of vortices and transition to three-dimensionality in the wake of a square cylinder have been numerically studied. A Reynolds number range between 150 and 500 has been considered. Starting from the two-dimensional Karman vortex street, the transition to three-dimensionality is found to take place at a Reynolds number between 150 and 175. The three-dimensional wake of the square cylinder has been characterized using indicators appropriate for the wake of a bluff body as described by the earlier workers. In these terms, the secondary vortices of Mode-A are seen to persist over the Reynolds number range of 175-240. At about a Reynolds number of 250, Mode-B secondary vortices are present, these having predominantly small-scale structures. The transitional flow around a square cylinder exhibits an intermittent low frequency modulation due to the formation of a large-scale irregularity in the near-wake, called vortex dislocation. The superposition of vortex dislocation and the Mode-A vortices leads to a new pattern, labelled as Mode-A with dislocations. The results for the square cylinder are in good accordance with the three-dimensional modes of transition that are well-known in the circular cylinder wake. In the case of a circular cylinder, the transition from periodic vortex shedding to Mode-A is characterized by a discontinuity in the Strouhal number-Reynolds number relationship at about a Reynolds of 190. The transition from Mode-A to Mode-B is characterized by a second discontinuity in the frequency law at a Reynolds number of ∼250. The numerical computations of the present study with a square cylinder show that the values of the Strouhal number and the time-averaged drag-coefficient are closely associated with each other over the range of Reynolds numbers of interest and reflect the spatial structure of the wake
Fast algorithm for computing complex number-theoretic transforms
Reed, I. S.; Liu, K. Y.; Truong, T. K.
1977-01-01
A high-radix FFT algorithm for computing transforms over FFT, where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.
Low Mach number asymptotics for reacting compressible fluid flows
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Petzeltová, Hana
2010-01-01
Roč. 26, č. 2 (2010), s. 455-480 ISSN 1078-0947 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : low Mach number * Navier-Stokes-Fourier system * reacting fluids Subject RIV: BA - General Mathematics Impact factor: 0.986, year: 2010 http://www.aimsciences.org/journals/displayArticles.jsp?paperID=4660
Flow-based model of computer hackers' motivation.
Voiskounsky, Alexander E; Smyslova, Olga V
2003-04-01
Hackers' psychology, widely discussed in the media, is almost entirely unexplored by psychologists. In this study, hackers' motivation is investigated, using the flow paradigm. Flow is likely to motivate hackers, according to views expressed by researchers and by hackers themselves. Taken as granted that hackers experience flow, it was hypothesized that flow increases with the increase of hackers' competence in IT use. Self-selected subjects were recruited on specialized web sources; 457 hackers filled out a web questionnaire. Competence in IT use, specific flow experience, and demographic data were questioned. An on-line research was administered within the Russian-speaking community (though one third of Ss are non-residents of Russian Federation); since hacking seems to be international, the belief is expressed that the results are universal. The hypothesis is not confirmed: flow motivation characterizes the least and the most competent hackers, and the members of an intermediate group, that is, averagely competent Ss report the "flow crisis"-no (or less) flow experience. Two differing strategies of task choice were self-reported by Ss: a step-by-step increase of the difficulty of choices leads to a match of challenges and skills (and to preserving the flow experience); putting choices irrespective of the likelihood of solution leads to a "flow crisis." The findings give productive hints on processes of hackers' motivational development. The flow-based model of computer hackers' motivation was developed. It combines both empirically confirmed and theoretically possible ways of hackers' "professional" growth.
Generalized flow and determinism in measurement-based quantum computation
Energy Technology Data Exchange (ETDEWEB)
Browne, Daniel E [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Kashefi, Elham [Computing Laboratory and Christ Church College, University of Oxford, Parks Road, Oxford OX1 3QD (United Kingdom); Mhalla, Mehdi [Laboratoire d' Informatique de Grenoble, CNRS - Centre national de la recherche scientifique, Universite de Grenoble (France); Perdrix, Simon [Preuves, Programmes et Systemes (PPS), Universite Paris Diderot, Paris (France)
2007-08-15
We extend the notion of quantum information flow defined by Danos and Kashefi (2006 Phys. Rev. A 74 052310) for the one-way model (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 910) and present a necessary and sufficient condition for the stepwise uniformly deterministic computation in this model. The generalized flow also applied in the extended model with measurements in the (X, Y), (X, Z) and (Y, Z) planes. We apply both measurement calculus and the stabiliser formalism to derive our main theorem which for the first time gives a full characterization of the stepwise uniformly deterministic computation in the one-way model. We present several examples to show how our result improves over the traditional notion of flow, such as geometries (entanglement graph with input and output) with no flow but having generalized flow and we discuss how they lead to an optimal implementation of the unitaries. More importantly one can also obtain a better quantum computation depth with the generalized flow rather than with flow. We believe our characterization result is particularly valuable for the study of the algorithms and complexity in the one-way model.
Generalized flow and determinism in measurement-based quantum computation
International Nuclear Information System (INIS)
Browne, Daniel E; Kashefi, Elham; Mhalla, Mehdi; Perdrix, Simon
2007-01-01
We extend the notion of quantum information flow defined by Danos and Kashefi (2006 Phys. Rev. A 74 052310) for the one-way model (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 910) and present a necessary and sufficient condition for the stepwise uniformly deterministic computation in this model. The generalized flow also applied in the extended model with measurements in the (X, Y), (X, Z) and (Y, Z) planes. We apply both measurement calculus and the stabiliser formalism to derive our main theorem which for the first time gives a full characterization of the stepwise uniformly deterministic computation in the one-way model. We present several examples to show how our result improves over the traditional notion of flow, such as geometries (entanglement graph with input and output) with no flow but having generalized flow and we discuss how they lead to an optimal implementation of the unitaries. More importantly one can also obtain a better quantum computation depth with the generalized flow rather than with flow. We believe our characterization result is particularly valuable for the study of the algorithms and complexity in the one-way model
Theoretical and Computational Analyses of Bernoulli Levitation Flows
Energy Technology Data Exchange (ETDEWEB)
Nam, Jong Soon; Kim, Gyu Wan; Kim, Jin Hyeon; Kim, Heuy Dong [Andong Nat' l Univ., Andong (Korea, Republic of)
2013-07-15
Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-{omega} turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, work piece diameter,and clearance gap between the work piece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force.
Theoretical and Computational Analyses of Bernoulli Levitation Flows
International Nuclear Information System (INIS)
Nam, Jong Soon; Kim, Gyu Wan; Kim, Jin Hyeon; Kim, Heuy Dong
2013-01-01
Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-ω turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, work piece diameter,and clearance gap between the work piece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force
Computation and theory of Euler sums of generalized hyperharmonic numbers
Xu, Ce
2017-01-01
Recently, Dil and Boyadzhiev \\cite{AD2015} proved an explicit formula for the sum of multiple harmonic numbers whose indices are the sequence $\\left( {{{\\left\\{ 0 \\right\\}}_r},1} \\right)$. In this paper we show that the sums of multiple harmonic numbers whose indices are the sequence $\\left( {{{\\left\\{ 0 \\right\\}}_r,1};{{\\left\\{ 1 \\right\\}}_{k-1}}} \\right)$ can be expressed in terms of (multiple) zeta values, multiple harmonic numbers and Stirling numbers of the first kind, and give an explic...
Hydrodynamic interaction of two particles in confined linear shear flow at finite Reynolds number
Yan, Yiguang; Morris, Jeffrey F.; Koplik, Joel
2007-11-01
We discuss the hydrodynamic interactions of two solid bodies placed in linear shear flow between parallel plane walls in a periodic geometry at finite Reynolds number. The computations are based on the lattice Boltzmann method for particulate flow, validated here by comparison to previous results for a single particle. Most of our results pertain to cylinders in two dimensions but some examples are given for spheres in three dimensions. Either one mobile and one fixed particle or else two mobile particles are studied. The motion of a mobile particle is qualitatively similar in both cases at early times, exhibiting either trajectory reversal or bypass, depending upon the initial vector separation of the pair. At longer times, if a mobile particle does not approach a periodic image of the second, its trajectory tends to a stable limit point on the symmetry axis. The effect of interactions with periodic images is to produce nonconstant asymptotic long-time trajectories. For one free particle interacting with a fixed second particle within the unit cell, the free particle may either move to a fixed point or take up a limit cycle. Pairs of mobile particles starting from symmetric initial conditions are shown to asymptotically reach either fixed points, or mirror image limit cycles within the unit cell, or to bypass one another (and periodic images) indefinitely on a streamwise periodic trajectory. The limit cycle possibility requires finite Reynolds number and arises as a consequence of streamwise periodicity when the system length is sufficiently short.
Energy Technology Data Exchange (ETDEWEB)
Cline, M.C.
1981-08-01
VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.
High-Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids
2016-05-05
AFRL-AFOSR-VA-TR-2016-0192 High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids Marsha Berger NEW YORK UNIVERSITY Final...TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 30/04/2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) High- Reynolds 4. TITLE AND...SUBTITLE High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1
Nishi, Yasuyuki; Hatano, Kentaro; Inagaki, Terumi
2017-10-01
Recently, small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels. The authors have evaluated the application of cross-flow water turbines in open channels as an undershot type after removing the casings and guide vanes to substantially simplify these water turbines. However, because undershot cross-flow water turbines are designed on the basis of cross-flow water turbine runners used in typical pipelines, it remains unclear whether the number of blades has an effect on the performance or flow fields. Thus, in this research, experiments and numerical analyses are employed to study the performance and flow fields of undershot cross-flow water turbines with varying number of blades. The findings show that the turbine output and torque are lower, the fluctuation is significantly higher, and the turbine efficiency is higher for runners with 8 blades as opposed to those with 24 blades.
Spyropoulos, Evangelos T.; Holmes, Bayard S.
1997-01-01
The dynamic subgrid-scale model is employed in large-eddy simulations of flow over a cylinder at a Reynolds number, based on the diameter of the cylinder, of 90,000. The Centric SPECTRUM(trademark) finite element solver is used for the analysis. The far field sound pressure is calculated from Lighthill-Curle's equation using the computed fluctuating pressure at the surface of the cylinder. The sound pressure level at a location 35 diameters away from the cylinder and at an angle of 90 deg with respect to the wake's downstream axis was found to have a peak value of approximately 110 db. Slightly smaller peak values were predicted at the 60 deg and 120 deg locations. A grid refinement study suggests that the dynamic model demands mesh refinement beyond that used here.
Cluster Analysis of Flow Cytometric List Mode Data on a Personal Computer
Bakker Schut, Tom C.; Bakker schut, T.C.; de Grooth, B.G.; Greve, Jan
1993-01-01
A cluster analysis algorithm, dedicated to analysis of flow cytometric data is described. The algorithm is written in Pascal and implemented on an MS-DOS personal computer. It uses k-means, initialized with a large number of seed points, followed by a modified nearest neighbor technique to reduce
Computer modeling of flow induced in-reactor vibrations
International Nuclear Information System (INIS)
Turula, P.; Mulcahy, T.M.
1977-01-01
An assessment of the reliability of finite element method computer models, as applied to the computation of flow induced vibration response of components used in nuclear reactors, is presented. The prototype under consideration was the Fast Flux Test Facility reactor being constructed for US-ERDA. Data were available from an extensive test program which used a scale model simulating the hydraulic and structural characteristics of the prototype components, subjected to scaled prototypic flow conditions as well as to laboratory shaker excitations. Corresponding analytical solutions of the component vibration problems were obtained using the NASTRAN computer code. Modal analyses and response analyses were performed. The effect of the surrounding fluid was accounted for. Several possible forcing function definitions were considered. Results indicate that modal computations agree well with experimental data. Response amplitude comparisons are good only under conditions favorable to a clear definition of the structural and hydraulic properties affecting the component motion. 20 refs
Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter
Energy Technology Data Exchange (ETDEWEB)
Singer, M A; Henshaw, W D; Wang, S L
2008-02-04
To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flow in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating
Computer programs for the numerical modelling of water flow in rock masses
International Nuclear Information System (INIS)
Croney, P.; Richards, L.R.
1985-08-01
Water flow in rock joints provides a very important possible route for the migration of radio-nuclides from radio-active waste within a repository back to the biosphere. Two computer programs DAPHNE and FPM have been developed to model two dimensional fluid flow in jointed rock masses. They have been developed to run on microcomputer systems suitable for field locations. The fluid flows in a number of jointed rock systems have been examined and certain controlling functions identified. A methodology has been developed for assessing the anisotropic permeability of jointed rock. A number of examples of unconfined flow into surface and underground openings have been analysed and ground water lowering, pore water pressures and flow quantities predicted. (author)
Center for Computer Security newsletter. Volume 2, Number 3
Energy Technology Data Exchange (ETDEWEB)
None
1983-05-01
The Fifth Computer Security Group Conference was held November 16 to 18, 1982, at the Knoxville Hilton in Knoxville, Tennessee. Attending were 183 people, representing the Department of Energy, DOE contractors, other government agencies, and vendor organizations. In these papers are abridgements of most of the papers presented in Knoxville. Less than half-a-dozen speakers failed to furnish either abstracts or full-text papers of their Knoxville presentations.
Dan MATEESCU
2015-01-01
This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV) flying at low speed and very low Reynolds numb...
Improving flow distribution in influent channels using computational fluid dynamics.
Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae
2016-10-01
Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.
Directory of Open Access Journals (Sweden)
Withada Jedsadaratanachai
2014-01-01
Full Text Available This paper presents a 3D numerical analysis of fully developed periodic laminar flow in a circular tube fitted with 45° inclined baffles with inline arrangement. The computations are based on a finite volume method, and the SIMPLE algorithm has been implemented. The characteristics of fluid flow are presented for Reynolds number, Re = 100–1000, based on the hydraulic diameter (D of the tube. The angled baffles were repeatedly inserted at the middle of the test tube with inline arrangement to generate vortex flows over the tested tube. Effects of different Reynolds numbers and blockage ratios (b/D, BR with a single pitch ratio of 1 on flow structure in the tested tube were emphasized. The flows in baffled tube show periodic flow at x/D ≈ 2-3, and become a fully developed periodic flow profiles at x/D ≈ 6-7, depending on Re, BR and transverse plane positions. The computational results reveal that the higher of BR and closer position of turbulators, the faster of fully developed periodic flow profiles.
Zadeh, L A
2001-04-01
Interest in issues relating to consciousness has grown markedly during the last several years. And yet, nobody can claim that consciousness is a well-understood concept that lends itself to precise analysis. It may be argued that, as a concept, consciousness is much too complex to fit into the conceptual structure of existing theories based on Aristotelian logic and probability theory. An approach suggested in this paper links consciousness to perceptions and perceptions to their descriptors in a natural language. In this way, those aspects of consciousness which relate to reasoning and concept formation are linked to what is referred to as the methodology of computing with words (CW). Computing, in its usual sense, is centered on manipulation of numbers and symbols. In contrast, computing with words, or CW for short, is a methodology in which the objects of computation are words and propositions drawn from a natural language (e.g., small, large, far, heavy, not very likely, the price of gas is low and declining, Berkeley is near San Francisco, it is very unlikely that there will be a significant increase in the price of oil in the near future, etc.). Computing with words is inspired by the remarkable human capability to perform a wide variety of physical and mental tasks without any measurements and any computations. Familiar examples of such tasks are parking a car, driving in heavy traffic, playing golf, riding a bicycle, understanding speech, and summarizing a story. Underlying this remarkable capability is the brain's crucial ability to manipulate perceptions--perceptions of distance, size, weight, color, speed, time, direction, force, number, truth, likelihood, and other characteristics of physical and mental objects. Manipulation of perceptions plays a key role in human recognition, decision and execution processes. As a methodology, computing with words provides a foundation for a computational theory of perceptions: a theory which may have an important
Relaxation-type nonlocal inertial-number rheology for dry granular flows
Lee, Keng-lin; Yang, Fu-ling
2017-12-01
We propose a constitutive model to describe the nonlocality, hysteresis, and several flow features of dry granular materials. Taking the well-known inertial number I as a measure of sheared-induced local fluidization, we derive a relaxation model for I according to the evolution of microstructure during avalanche and dissipation processes. The model yields a nonmonotonic flow law for a homogeneous flow, accounting for hysteretic solid-fluid transition and intermittency in quasistatic flows. For an inhomogeneous flow, the model predicts a generalized Bagnold shear stress revealing the interplay of two microscopic nonlocal mechanisms: collisions among correlated structures and the diffusion of fluidization within the structures. In describing a uniform flow down an incline, the model reproduces the hysteretic starting and stopping heights and the Pouliquen flow rule for mean velocity. Moreover, a dimensionless parameter reflecting the nonlocal effect on the flow is discovered, which controls the transition between Bagnold and creeping flow dynamics.
Computation of Cavitating Flow in a Francis Hydroturbine
Leonard, Daniel; Lindau, Jay
2013-11-01
In an effort to improve cavitation characteristics at off-design conditions, a steady, periodic, multiphase, RANS CFD study of an actual Francis hydroturbine was conducted and compared to experimental results. It is well-known that operating hydroturbines at off-design conditions usually results in the formation of large-scale vaporous cavities. These cavities, and their subsequent collapse, reduce efficiency and cause damage and wear to surfaces. The conventional hydro community has expressed interest in increasing their turbine's operating ranges, improving their efficiencies, and reducing damage and wear to critical turbine components. In this work, mixing planes were used to couple rotating and stationary stages of the turbine which have non-multiple periodicity, and provide a coupled solution for the stay vanes, wicket gates, runner blades, and draft tube. The mixture approach is used to simulate the multiphase flow dynamics, and cavitation models were employed to govern the mass transfer between liquid and gas phases. The solution is compared with experimental results across a range of cavitation numbers which display all the major cavitation features in the machine. Unsteady computations are necessary to capture inherently unsteady cavitation phenomena, such as the precessing vortex rope, and the shedding of bubbles from the wicket gates and their subsequent impingement upon the leading edge of the runner blades. To display these features, preliminary unsteady simulations of the full machine are also presented.
IHT: Tools for Computing Insolation Absorption by Particle Laden Flows
Energy Technology Data Exchange (ETDEWEB)
Grout, R. W.
2013-10-01
This report describes IHT, a toolkit for computing radiative heat exchange between particles. Well suited for insolation absorption computations, it is also has potential applications in combustion (sooting flames), biomass gasification processes and similar processes. The algorithm is based on the 'Photon Monte Carlo' approach and implemented in a library that can be interfaced with a variety of computational fluid dynamics codes to analyze radiative heat transfer in particle-laden flows. The emphasis in this report is on the data structures and organization of IHT for developers seeking to use the IHT toolkit to add Photon Monte Carlo capabilities to their own codes.
3 D flow computations under a reactor vessel closure head
International Nuclear Information System (INIS)
Daubert, O.; Bonnin, O.; Hofmann, F.; Hecker, M.
1995-12-01
The flow under a vessel cover of a pressurised water reactor is investigated by using several computations and a physical model. The case presented here is turbulent, isothermal and incompressible. Computations are made with N3S code using a k-epsilon model. Comparisons between numerical and experimental results are on the whole satisfying. Some local improvements are expected either with more sophisticated turbulence models or with mesh refinements automatically computed by using the adaptive meshing technique which has been just implemented in N3S for 3D cases. (authors). 6 refs., 7 figs
Regulation of flow computers for the measurement of biofuels
Almeida, R. O.; Aguiar Júnior, E. A.; Costa-Felix, R. P. B.
2018-03-01
This article aims to discuss the need to develop a standard or regulation applicable to flow computers in the measurement of biofuels. International standards and recommendations are presented which are possibly adequate to fill this gap and at the end of the article a way is proposed to obtain a single document on the subject.
Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes
International Nuclear Information System (INIS)
Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.
2002-01-01
A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)
Computer-Aided Test Flow in Core-Based Design
Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.
2000-01-01
This paper copes with the efficient test-pattern generation in a core-based design. A consistent Computer-Aided Test (CAT) flow is proposed based on the required core-test strategy. It generates a test-pattern set for the embedded cores with high fault coverage and low DfT area overhead. The CAT
Computer-Aided Test Flow in Core-Based Design
Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.
2000-01-01
This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of
Computation of turbulent flow and heat transfer in subassemblies
International Nuclear Information System (INIS)
Slagter, W.
1979-01-01
This research is carried out in order to provide information on the thermohydraulic behaviour of fast reactor subassemblies. The research work involves the development of versatile computation methods and the evaluation of combined theoretical and experimental work on fluid flow and heat transfer in fuel rod bundles. The computation method described here rests on the application of the distributed parameter approach. The conditions considered cover steady, turbulent flow and heat transfer of incompressible fluids in bundles of bare rods. Throughout 1978 main efforts were given to the development of the VITESSE program and to the validation of the hydrodynamic part of the code. In its present version the VITESSE program is applicable to predict the fully developed turbulent flow and heat transfer in the subchannels of a bundle with bare rods. In this paper the main features of the code are described as well as the present status of development
Energy Technology Data Exchange (ETDEWEB)
Sari, Salih [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Erguen, Sule [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey)
2009-03-15
In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data.
International Nuclear Information System (INIS)
Sari, Salih; Erguen, Sule; Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi
2009-01-01
In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data
Directory of Open Access Journals (Sweden)
Dan MATEESCU
2015-12-01
Full Text Available This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV flying at low speed and very low Reynolds number. The unsteady aerodynamic analysis is performed with an efficient time-accurate numerical method developed for the solution of the Navier-Stokes equations at low Reynolds numbers, which is second-order-accurate in time and space. The paper presents solutions for the unsteady aerodynamic coefficients of lift and drag and for the lift-to-drag ratio of several symmetric and cambered airfoils with Gurney flaps. It was found that although the airfoil is considered stationary, starting from a relatively small incidence (about 8 degrees the flow becomes unsteady due to the unsteadiness of the flow separations occurring at low Reynolds numbers, and the aerodynamic coefficients display periodic oscillations in time. A detailed study is presented in the paper on the influence of various geometric and flow parameters, such as the Gurney flap height, Reynolds number, airfoil relative thickness and relative camber, on the aerodynamic coefficients of lift, drag and lift-to-drag ratio. The flow separation is also studied with the aid of flow visualizations illustrating the changes in the flow pattern at various moments in time.
Computational issues of solving the 1D steady gradually varied flow equation
Directory of Open Access Journals (Sweden)
Artichowicz Wojciech
2014-09-01
Full Text Available In this paper a problem of multiple solutions of steady gradually varied flow equation in the form of the ordinary differential energy equation is discussed from the viewpoint of its numerical solution. Using the Lipschitz theorem dealing with the uniqueness of solution of an initial value problem for the ordinary differential equation it was shown that the steady gradually varied flow equation can have more than one solution. This fact implies that the nonlinear algebraic equation approximating the ordinary differential energy equation, which additionally coincides with the wellknown standard step method usually applied for computing of the flow profile, can have variable number of roots. Consequently, more than one alternative solution corresponding to the same initial condition can be provided. Using this property it is possible to compute the water flow profile passing through the critical stage.
Seethaler, Pamela M.; Fuchs, Lynn S.; Star, Jon R.; Bryant, Joan
2011-01-01
The purpose of the present study was to explore the 3rd-grade cognitive predictors of 5th-grade computational skill with rational numbers and how those are similar to and different from the cognitive predictors of whole-number computational skill. Students (n=688) were assessed on incoming whole-number calculation skill, language, nonverbal…
Three-dimensional pseudo-random number generator for implementing in hybrid computer systems
International Nuclear Information System (INIS)
Ivanov, M.A.; Vasil'ev, N.P.; Voronin, A.V.; Kravtsov, M.Yu.; Maksutov, A.A.; Spiridonov, A.A.; Khudyakova, V.I.; Chugunkov, I.V.
2012-01-01
The algorithm for generating pseudo-random numbers oriented to implementation by using hybrid computer systems is considered. The proposed solution is characterized by a high degree of parallel computing [ru
Nash, Rupert W; Carver, Hywel B; Bernabeu, Miguel O; Hetherington, James; Groen, Derek; Krüger, Timm; Coveney, Peter V
2014-02-01
Modeling blood flow in larger vessels using lattice-Boltzmann methods comes with a challenging set of constraints: a complex geometry with walls and inlets and outlets at arbitrary orientations with respect to the lattice, intermediate Reynolds (Re) number, and unsteady flow. Simple bounce-back is one of the most commonly used, simplest, and most computationally efficient boundary conditions, but many others have been proposed. We implement three other methods applicable to complex geometries [Guo, Zheng, and Shi, Phys. Fluids 14, 2007 (2002); Bouzidi, Firdaouss, and Lallemand, Phys. Fluids 13, 3452 (2001); Junk and Yang, Phys. Rev. E 72, 066701 (2005)] in our open-source application hemelb. We use these to simulate Poiseuille and Womersley flows in a cylindrical pipe with an arbitrary orientation at physiologically relevant Re number (1-300) and Womersley (4-12) numbers and steady flow in a curved pipe at relevant Dean number (100-200) and compare the accuracy to analytical solutions. We find that both the Bouzidi-Firdaouss-Lallemand (BFL) and Guo-Zheng-Shi (GZS) methods give second-order convergence in space while simple bounce-back degrades to first order. The BFL method appears to perform better than GZS in unsteady flows and is significantly less computationally expensive. The Junk-Yang method shows poor stability at larger Re number and so cannot be recommended here. The choice of collision operator (lattice Bhatnagar-Gross-Krook vs multiple relaxation time) and velocity set (D3Q15 vs D3Q19 vs D3Q27) does not significantly affect the accuracy in the problems studied.
Monitoring of Shadow Cash Flows Using Computer Modelling
Directory of Open Access Journals (Sweden)
Evgeniya Vladimirovna Baturina
2018-03-01
Full Text Available The computer simulation of economic systems is a promising tool in the development of the theory of the country’s economic security. We have examined the Russian banking legislation and synthesized judicial economic expertise. This has allowed to develop an algorithm for the investigation of the marker pattern of shadow cash flows. The authors’ algorithm of marker monitoring of cash flow consists of the following sequences. Firstly, we set the time of the first receipt of money and the first withdrawals. Secondly, we compare cash balance of an organization at the beginning of the period with the first withdrawals. Thirdly, under the given condition, the minimum value of interested money flow in these withdrawals is calculated. This value is characterized by the marker parameters and forms a table containing data on the cash flow, recipients and payers, spheres of their activity. And last, on the basis of this table, we build a graph of relationships between the subjects of the shadow economy. The graph’s vertices represent these subjects. The visual representation of the graph is a marker pattern of shadow cash flow. The practical importance of this algorithm is due to its applicability in the investigation of economic crimes both at the stage of intelligence operations, and when obtaining proofs of the brought criminal cases in the form of the conclusions of expertseconomists. In addition, marker patterns of shadow cash flows can describe the state of the shadow economy of a region as a whole including its dynamics. This expands its parameterization. The created database of the shadow flows of the economy can be also useful for the scientific community. On the basis of the received results, we have developed management decisions to create and administer the information resource of the Bank of Russia “Shadow economy of a region”. This information resource ensures tracking the marker trace of cash flow in the bank environment by the
International Nuclear Information System (INIS)
Kimura, Toshiya.
1997-03-01
A two-dimensional explicit Euler solver has been implemented for five MIMD parallel computers of different machine architectures in Center for Promotion of Computational Science and Engineering of Japan Atomic Energy Research Institute. These parallel computers are Fujitsu VPP300, NEC SX-4, CRAY T94, IBM SP2, and Hitachi SR2201. The code was parallelized by several parallelization methods, and a typical compressible flow problem has been calculated for different grid sizes changing the number of processors. Their effective performances for parallel calculations, such as calculation speed, speed-up ratio and parallel efficiency, have been investigated and evaluated. The communication time among processors has been also measured and evaluated. As a result, the differences on the performance and the characteristics between vector-parallel and scalar-parallel computers can be pointed, and it will present the basic data for efficient use of parallel computers and for large scale CFD simulations on parallel computers. (author)
Separation and reattachment in flows over asymmetric cavities at small Reynolds numbers
International Nuclear Information System (INIS)
Tavoularis, S.; Goldman, A.; Floryan, J.M.
1985-01-01
Recent experimental and analytical studies of flows at extremely small Reynolds numbers have revealed rather complicated flow patterns, often beyond intuitive explanation. Such flows are common in biological systems as well as in industrial applications involving small particle suspensions. The present study was motivated by Nachtigall's observation that scales on certain butterfly and moth upper wing surfaces appear aerodynamically advantageous, since their removal results in decrease of the lift without an appreciable change of the drag. Since low Reynolds number flows are nearly reversible, it seems that geometrical asymmetry and not random roughness is responsible for this effect. Stokes flows (i.e. at 'zero' Reynolds number) are known to separate behind steps and obstacles, contrary to the expectation that the fluid motion would follow the boundary shape, if its inertia became negligible. (author)
Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow
Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi
2016-11-01
The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.
Using artificial intelligence to control fluid flow computations
Gelsey, Andrew
1992-01-01
Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.
Approaching multiphase flows from the perspective of computational fluid dynamics
International Nuclear Information System (INIS)
Banas, A.O.
1992-01-01
Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with regard to the established thermalhydraulic methods of analysis is indicated. (author). 8 refs
Modeling of low-capillary number segmented flows in microchannels using OpenFOAM
Hoang, D.A.; Van Steijn, V.; Portela, L.M.; Kreutzer, M.T.; Kleijn, C.R.
2012-01-01
Modeling of low-Capillary number segmented flows in microchannels is important for the design of microfluidic devices. We present numerical validations of microfluidic flow simulations using the volume-of-fluid (VOF) method as implemented in OpenFOAM. Two benchmark cases were investigated to ensure
Characterization of General TCP Traffic under a Large Number of Flows Regime
National Research Council Canada - National Science Library
Tinnakornsrisuphap, Peerapol; La, Richard J; Makowski, Armand M
2002-01-01
.... Accurate traffic modeling of a large number of short-lived TCP flows is extremely difficult due to the interaction between session, transport, and network layers, and the explosion of the size...
Seethaler, Pamela M; Fuchs, Lynn S; Star, Jon R; Bryant, Joan
2011-10-01
The purpose of the present study was to explore the 3(rd)-grade cognitive predictors of 5th-grade computational skill with rational numbers and how those are similar to and different from the cognitive predictors of whole-number computational skill. Students (n = 688) were assessed on incoming whole-number calculation skill, language, nonverbal reasoning, concept formation, processing speed, and working memory in the fall of 3(rd) grade. Students were followed longitudinally and assessed on calculation skill with whole numbers and with rational numbers in the spring of 5(th) grade. The unique predictors of skill with whole-number computation were incoming whole-number calculation skill, nonverbal reasoning, concept formation, and working memory (numerical executive control). In addition to these cognitive abilities, language emerged as a unique predictor of rational-number computational skill.
Sand Dunes in Steady Flow at Low Froude Numbers: Dune Height Evolution and Flow Resistance
DEFF Research Database (Denmark)
Niemann, S. L.; Fredsøe, Jørgen; Jacobsen, Niels Gjøl
2011-01-01
equilibrium shape. The flow modeling is based on a k-ω turbulence closure. The sediment transport is assumed to be bed-load only, with an avalanche-like movement on the steep dune front. The model is also found capable of predicting the growth in wavelength if the initially prescribed wavelength...
Stoutemyer, D. R.
1977-01-01
The computer algebra language MACSYMA enables the programmer to include symbolic physical units in computer calculations, and features automatic detection of dimensionally-inhomogeneous formulas and conversion of inconsistent units in a dimensionally homogeneous formula. Some examples illustrate these features.
Computational Optimization of a Natural Laminar Flow Experimental Wing Glove
Hartshom, Fletcher
2012-01-01
Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.
Three-dimensional turbulent swirling flow in a cylinder: Experiments and computations
International Nuclear Information System (INIS)
Gupta, Amit; Kumar, Ranganathan
2007-01-01
Dynamics of the three-dimensional flow in a cyclone with tangential inlet and tangential exit were studied using particle tracking velocimetry (PTV) and a three-dimensional computational model. The PTV technique is described in this paper and appears to be well suited for the current flow situation. The flow was helical in nature and a secondary recirculating flow was observed and well predicted by computations using the RNG k-ε turbulence model. The secondary flow was characterized by a single vortex which circulated around the axis and occupied a large fraction of the cylinder diameter. The locus of the vortex center meandered around the cylinder axis, making one complete revolution for a cylinder aspect ratio of 2. Tangential velocities from both experiments and computations were compared and found to be in good agreement. The general structure of the flow does not vary significantly as the Reynolds number is increased. However, slight changes in all components of velocity and pressure were seen as the inlet velocity is increased. By increasing the inlet aspect ratio it was observed that the vortex meandering changed significantly
Three-dimensional turbulent swirling flow in a cylinder: Experiments and computations
Energy Technology Data Exchange (ETDEWEB)
Gupta, Amit [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Kumar, Ranganathan [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)]. E-mail: rnkumar@mail.ucf.edu
2007-04-15
Dynamics of the three-dimensional flow in a cyclone with tangential inlet and tangential exit were studied using particle tracking velocimetry (PTV) and a three-dimensional computational model. The PTV technique is described in this paper and appears to be well suited for the current flow situation. The flow was helical in nature and a secondary recirculating flow was observed and well predicted by computations using the RNG k-{epsilon} turbulence model. The secondary flow was characterized by a single vortex which circulated around the axis and occupied a large fraction of the cylinder diameter. The locus of the vortex center meandered around the cylinder axis, making one complete revolution for a cylinder aspect ratio of 2. Tangential velocities from both experiments and computations were compared and found to be in good agreement. The general structure of the flow does not vary significantly as the Reynolds number is increased. However, slight changes in all components of velocity and pressure were seen as the inlet velocity is increased. By increasing the inlet aspect ratio it was observed that the vortex meandering changed significantly.
A vectorization of the Hess McDonnell Douglas potential flow program NUED for the STAR-100 computer
Boney, L. R.; Smith, R. E., Jr.
1979-01-01
The computer program NUED for analyzing potential flow about arbitrary three dimensional lifting bodies using the panel method was modified to use vector operations and run on the STAR-100 computer. A high speed of computation and ability to approximate the body surface with a large number of panels are characteristics of NUEDV. The new program shows that vector operations can be readily implemented in programs of this type to increase the computational speed on the STAR-100 computer. The virtual memory architecture of the STAR-100 facilitates the use of large numbers of panels to approximate the body surface.
Computer-Aided Test Flow in Core-Based Design
Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.
2000-01-01
This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of embedded cores. The CAT now is applied to a few cores within the Philips Core Test Pilot IC project
Fine-grained Information Flow for Concurrent Computation
DEFF Research Database (Denmark)
Li, Ximeng
and reference monitors, have been proposed in the context of programming languages and process calculi, to enforce such properties. The most widely used definitions of information flow security are noninterference-like properties. For concurrent systems where processes communicate with each other to accomplish...... computational tasks, fine-grained security policies can be formulated by distinguishing between whether communication can happen, and what is communicated. As the first contribution of this PhD thesis, we formulate a noninterference-like property that takes all combinations of sensitivity levels for “whether...... to a classical one when the two dimensions are intentionally blurred. As the second contribution, we focus on the “what” dimension and further allow the flow policy to vary under different contents stored and communicated. This is the area of content-dependent (or conditional) information flow, which has...
FLASH: A finite element computer code for variably saturated flow
International Nuclear Information System (INIS)
Baca, R.G.; Magnuson, S.O.
1992-05-01
A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A
Computational simulation of heat transfer in laser melted material flow
International Nuclear Information System (INIS)
Shankar, V.; Gnanamuthu, D.
1986-01-01
A computational procedure has been developed to study the heat transfer process in laser-melted material flow associated with surface heat treatment of metallic alloys to improve wear-and-tear and corrosion resistance. The time-dependent incompressible Navier-Stokes equations are solved, accounting for both convective and conductive heat transfer processes. The convection, induced by surface tension and high surface temperature gradients, sets up a counterrotating vortex flow within the molten pool. This recirculating material flow is responsible for determining the molten pool shape and the associated cooling rates which affect the solidifying material composition. The numerical method involves an implicit triple-approximate factorization scheme for the energy equation, and an explicit treatment for the momentum and the continuity equations. An experimental setup, using a continuous wave CO 2 laser beam as a heat source, has been carried out to generate data for validation of the computational model. Results in terms of the depth, width, and shape of the molten pool and the heat-affected zone for various power settings and shapes of the laser, and for various travel speeds of the workpiece, compare very well with experimental data. The presence of the surface tension-induced vortex flow is demonstrated
A computational technique for turbulent flow of wastewater sludge.
Bechtel, Tom B
2005-01-01
A computational fluid dynamics (CFD) technique applied to the turbulent flow of wastewater sludge in horizontal, smooth-wall, circular pipes is presented. The technique uses the Crank-Nicolson finite difference method in conjunction with the variable secant method, an algorithm for determining the pressure gradient of the flow. A simple algebraic turbulence model is used. A Bingham-plastic rheological model is used to describe the shear stress/shear rate relationship for the wastewater sludge. The method computes velocity gradient and head loss, given a fixed volumetric flow, pipe size, and solids concentration. Solids concentrations ranging from 3 to 10% (by weight) and nominal pipe sizes from 0.15 m (6 in.) to 0.36 m (14 in.) are studied. Comparison of the CFD results for water to established values serves to validate the numerical method. The head loss results are presented in terms of a head loss ratio, R(hl), which is the ratio of sludge head loss to water head loss. An empirical equation relating R(hl) to pipe velocity and solids concentration, derived from the results of the CFD calculations, is presented. The results are compared with published values of Rhl for solids concentrations of 3 and 6%. A new expression for the Fanning friction factor for wastewater sludge flow is also presented.
Use of a genetic algorithm to solve two-fluid flow problems on an NCUBE multiprocessor computer
International Nuclear Information System (INIS)
Pryor, R.J.; Cline, D.D.
1992-01-01
A method of solving the two-phase fluid flow equations using a genetic algorithm on a NCUBE multiprocessor computer is presented. The topics discussed are the two-phase flow equations, the genetic representation of the unknowns, the fitness function, the genetic operators, and the implementation of the algorithm on the NCUBE computer. The efficiency of the implementation is investigated using a pipe blowdown problem. Effects of varying the genetic parameters and the number of processors are presented
Use of a genetic agorithm to solve two-fluid flow problems on an NCUBE multiprocessor computer
International Nuclear Information System (INIS)
Pryor, R.J.; Cline, D.D.
1993-01-01
A method of solving the two-phases fluid flow equations using a genetic algorithm on a NCUBE multiprocessor computer is presented. The topics discussed are the two-phase flow equations, the genetic representation of the unkowns, the fitness function, the genetic operators, and the implementation of the algorithm on the NCUBE computer. The efficiency of the implementation is investigated using a pipe blowdown problem. Effects of varying the genetic parameters and the number of processors are presented. (orig.)
Valasek, Lukas; Glasa, Jan
2017-12-01
Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.
Javed, Tariq; Ahmed, B.; Sajid, M.
2018-04-01
The current study focuses on the numerical investigation of the mixed convective peristaltic mechanism through a vertical tube for non-zero Reynolds and wave number. In the set of constitutional equations, energy equation contains the term representing heat generation parameter. The problem is formulated by dropping the assumption of lubrication theory that turns the model mathematically into a system of the nonlinear partial differential equations. The results of the long wavelength in a creeping flow are deduced from the present analysis. Thus, the current study explores the neglected features of peristaltic heat flow in the mixed convective model by considering moderate values of Reynolds and wave numbers. The finite element based on Galerkin’s weighted residual scheme is applied to solve the governing equations. The computed solution is presented in the form of contours of streamlines and isothermal lines, velocity and temperature profiles for variation of different involved parameters. The investigation shows that the strength of circulation for stream function increases by increasing the wave number and Reynolds number. Symmetric isotherms are reported for small values of time-mean flow. Linear behavior of pressure is noticed by vanishing inertial forces while the increase in pressure is observed by amplifying the Reynolds number.
Applicability of higher-order TVD method to low mach number compressible flows
International Nuclear Information System (INIS)
Akamatsu, Mikio
1995-01-01
Steep gradients of fluid density are the influential factor of spurious oscillation in numerical solutions of low Mach number (M<<1) compressible flows. The total variation diminishing (TVD) scheme is a promising remedy to overcome this problem and obtain accurate solutions. TVD schemes for high-speed flows are, however, not compatible with commonly used methods in low Mach number flows using pressure-based formulation. In the present study a higher-order TVD scheme is constructed on a modified form of each individual scalar equation of primitive variables. It is thus clarified that the concept of TVD is applicable to low Mach number flows within the framework of the existing numerical method. Results of test problems of the moving interface of two-component gases with the density ratio ≥ 4, demonstrate the accurate and robust (wiggle-free) profile of the scheme. (author)
Experimental and computational analysis of pressure response in a multiphase flow loop
Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed
2016-07-01
The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.
Ansari, Abtin; Chen, Kevin K.; Burrell, Robert R.; Egolfopoulos, Fokion N.
2018-04-01
The opposed-jet counterflow configuration is widely used to measure fundamental flame properties that are essential targets for validating chemical kinetic models. The main and key assumption of the counterflow configuration in laminar flame experiments is that the flow field is steady and quasi-one-dimensional. In this study, experiments and numerical simulations were carried out to investigate the behavior and controlling parameters of counterflowing isothermal air jets for various nozzle designs, Reynolds numbers, and surrounding geometries. The flow field in the jets' impingement region was analyzed in search of instabilities, asymmetries, and two-dimensional effects that can introduce errors when the data are compared with results of quasi-one-dimensional simulations. The modeling involved transient axisymmetric numerical simulations along with bifurcation analysis, which revealed that when the flow field is confined between walls, local bifurcation occurs, which in turn results in asymmetry, deviation from the one-dimensional assumption, and sensitivity of the flow field structure to boundary conditions and surrounding geometry. Particle image velocimetry was utilized and results revealed that for jets of equal momenta at low Reynolds numbers of the order of 300, the flow field is asymmetric with respect to the middle plane between the nozzles even in the absence of confining walls. The asymmetry was traced to the asymmetric nozzle exit velocity profiles caused by unavoidable imperfections in the nozzle assembly. The asymmetry was not detectable at high Reynolds numbers of the order of 1000 due to the reduced sensitivity of the flow field to boundary conditions. The cases investigated computationally covered a wide range of Reynolds numbers to identify designs that are minimally affected by errors in the experimental procedures or manufacturing imperfections, and the simulations results were used to identify conditions that best conform to the assumptions of
Klein, D. Harley; Leal, L. Gary; García-Cervera, Carlos J.; Ceniceros, Hector D.
2007-02-01
We consider the behavior of the Doi-Marrucci-Greco (DMG) model for nematic liquid crystalline polymers in planar shear flow. We found the DMG model to exhibit dynamics in both qualitative and quantitative agreement with experimental observations reported by Larson and Mead [Liq. Cryst. 15, 151 (1993)] for the Ericksen number and Deborah number cascades. For increasing shear rates within the Ericksen number cascade, the DMG model displays three distinct regimes: stable simple shear, stable roll cells, and irregular structure accompanied by disclination formation. In accordance with experimental observations, the model predicts both ±1 and ±1/2 disclinations. Although ±1 defects form via the ridge-splitting mechanism first identified by Feng, Tao, and Leal [J. Fluid Mech. 449, 179 (2001)], a new mechanism is identified for the formation of ±1/2 defects. Within the Deborah number cascade, with increasing Deborah number, the DMG model exhibits a streamwise banded texture, in the absence of disclinations and roll cells, followed by a monodomain wherein the mean orientation lies within the shear plane throughout the domain.
Direct numerical simulation of reactor two-phase flows enabled by high-performance computing
Energy Technology Data Exchange (ETDEWEB)
Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.; Feng, Jinyong; Gouws, Andre; Li, Mengnan; Bolotnov, Igor A.
2018-04-01
Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent research progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.
Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers
Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik
2011-12-01
Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.
Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers
International Nuclear Information System (INIS)
Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P Henrik
2011-01-01
Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.
Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.
2016-01-01
Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.
Numerical investigation on flow-induced vibration of a triangular cylinder at a low Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Wang, Huakun; Zhao, Dongliang; Yang, Wenyu; Yu, Guoliang, E-mail: yugl@sjtu.edu.cn [State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China (China)
2015-02-01
Flow-induced vibration (FIV) of a triangular cylinder is numerically investigated at a Reynolds number of Re = 100. The four-step fractional finite element method is employed to solve the two-dimensional (2D) incompressible Navier–Stokes equations. The cylinder is endowed with a two-degree-of-freedom motion with the reduced mass ratio of M{sub r} = 2. Three typical flow incidence angles, α = 0°, 30° and 60°, are examined to identify the effect of incidence angle on the vibration characteristics of the cylinder. For each α, computations are conducted in a wide range of reduced velocities 2 U{sub r} ≤ 18. The numerical results show that at α = 0° and 30°, the responses of the cylinder are dominated by vortex-induced vibration which resembles that of a circular cylinder. At α = 0°, the peak amplitude of transverse vibration is the smallest among the three investigated α, and most of the cylinder motions exhibit a regular figure-eight trajectory. Some single-loop trajectories are observed at α = 30°, where the vibration frequency in the in-line direction is always identical to that in the transverse direction. At α = 60°, the triangular cylinder undergoes a typical transverse galloping with large amplitude and low frequency, and the vibration trajectories appear to be regular or irregular figure-eight patterns, which are strongly affected by the reduced velocity. (paper)
Crowell, Andrew Rippetoe
This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two
Effect of Reynolds number and inflow parameters on mean and turbulent flow over complex topography
DEFF Research Database (Denmark)
Kilpatrick, Ryan; Hangan, Horia; Siddiqui, Kamran
2016-01-01
inflow conditions were tested in order to isolate the impact of key parameters such as Reynolds number, inflow shear profile, and effective roughness, on flow behaviour over the escarpment. The results show that the mean flow behaviour was generally not affected by the Reynolds number; however, a slight...... (TKE) over the escarpment was found be a strong function of inflow roughness and a weak function of the Reynolds number. The local change in the inflow wind shear was found to have the most significant influence on the TKE magnitude, which more closely approximated the full-scale TKE data, a result...
Computational Fluid Dynamic Pressure Drop Estimation of Flow between Parallel Plates
Energy Technology Data Exchange (ETDEWEB)
Son, Hyung Min; Yang, Soo Hyung; Park, Jong Hark [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
Many pool type reactors have forced downward flows inside the core during normal operation; there is a chance of flow inversion when transients occur. During this phase, the flow undergo transition between turbulent and laminar regions where drastic changes take place in terms of momentum and heat transfer, and the decrease in safety margin is usually observed. Additionally, for high Prandtl number fluids such as water, an effect of the velocity profile inside the channel on the temperature distribution is more pronounced over the low Prandtl number ones. This makes the checking of its pressure drop estimation accuracy less important, assuming the code verification is complete. With an advent of powerful computer hardware, engineering applications of computational fluid dynamics (CFD) methods have become quite common these days. Especially for a fully-turbulent and single phase convective heat transfer, the predictability of the commercial codes has matured enough so that many well-known companies adopt those to accelerate a product development cycle and to realize an increased profitability. In contrast to the above, the transition models for the CFD code are still under development, and the most of the models show limited generality and prediction accuracy. Unlike the system codes, the CFD codes estimate the pressure drop from the velocity profile which is obtained by solving momentum conservation equations, and the resulting friction factor can be a representative parameter for a constant cross section channel flow. In addition, the flow inside a rectangular channel with a high span to gap ratio can be approximated by flow inside parallel plates. The computational fluid dynamics simulation on the flow between parallel plates showed reasonable prediction capability for the laminar and the turbulent regime.
Numerical computation of fluid flow in different nonferrous metallurgical reactors
International Nuclear Information System (INIS)
Lackner, A.
1996-10-01
anode slime particles during electrolysis. The computations show the disadvantages of the common used principle of transverse flow. Different arrangements for the electrolyte in- and outlet are suggested to optimize the electrolyte flow. (author)
Effects of swirl in turbulent pipe flows : computational studies
Energy Technology Data Exchange (ETDEWEB)
Nygaard, Frode
2011-07-01
last part of this thesis includes the simulations of flows with helical fin(s) at the pipe wall. First laminar flow in different pipe configurations were investigated; varying fin height, fin number, and fin angle. Secondly, turbulent flow in a pipe configuration with one helical fin was studied.(au)
Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish
2015-10-01
Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.
Computational Studies on the Performance of Flow Distributor in Tank
International Nuclear Information System (INIS)
Shin, Soo Jai; Kim, Young In; Ryu, Seungyeob; Bae, Youngmin
2014-01-01
Core make-up tank (CMT) is full of borated water and provides makeup and boration to the reactor coolant system (RCS) for early stage of loss of coolant accident (LOCA) and non-LOCA. The top and bottom of CMT are connected to the RCS through the pressure balance line (PBL) and the safety injection line (SIL), respectively. Each PBL is normally open to maintain pressure of the CMT at RCS, and this arrangement enables the CMT to inject water to the RCS by gravity when the isolation valves of SIL are open. During CMT injection into the Reactor, the condensation and thermal stratification are observed in CMT and the rapid condensation disturbed the injection operation. The optimal design of the flow distributor is very important to ensure structural integrity of the reactor system and their safe operation during some transient or accident conditions. In the present study, we numerically investigated the performance of flow distributor in tank with different shape factor such as the total number of the holes, the pitch-to-hole diameter ratios (p/d), the diameter of the hole and the area ratios. These data will contribute to the design the flow distributor. In the present study, the model of the flow distributor in tank is simulated using the commercial CFD software, Fluent 13.0 with varying the different shape factor of the flow distributor such as the total number of the holes, the diameter of the holes and the area ratio. As the diameter of the hole is smaller, the velocity difference between holes, which is located at upper position and lower position of the flow distributor, also decreases. For larger area ratio, the velocity of the holes is slower. When the diameter of the hole is large enough for the velocity difference between holes to be large, however, the velocity of the holes is not in inverse proportional to the area ratio
Computational Studies on the Performance of Flow Distributor in Tank
Energy Technology Data Exchange (ETDEWEB)
Shin, Soo Jai; Kim, Young In; Ryu, Seungyeob; Bae, Youngmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
Core make-up tank (CMT) is full of borated water and provides makeup and boration to the reactor coolant system (RCS) for early stage of loss of coolant accident (LOCA) and non-LOCA. The top and bottom of CMT are connected to the RCS through the pressure balance line (PBL) and the safety injection line (SIL), respectively. Each PBL is normally open to maintain pressure of the CMT at RCS, and this arrangement enables the CMT to inject water to the RCS by gravity when the isolation valves of SIL are open. During CMT injection into the Reactor, the condensation and thermal stratification are observed in CMT and the rapid condensation disturbed the injection operation. The optimal design of the flow distributor is very important to ensure structural integrity of the reactor system and their safe operation during some transient or accident conditions. In the present study, we numerically investigated the performance of flow distributor in tank with different shape factor such as the total number of the holes, the pitch-to-hole diameter ratios (p/d), the diameter of the hole and the area ratios. These data will contribute to the design the flow distributor. In the present study, the model of the flow distributor in tank is simulated using the commercial CFD software, Fluent 13.0 with varying the different shape factor of the flow distributor such as the total number of the holes, the diameter of the holes and the area ratio. As the diameter of the hole is smaller, the velocity difference between holes, which is located at upper position and lower position of the flow distributor, also decreases. For larger area ratio, the velocity of the holes is slower. When the diameter of the hole is large enough for the velocity difference between holes to be large, however, the velocity of the holes is not in inverse proportional to the area ratio.
Computing Programs for Determining Traffic Flows from Roundabouts
Boroiu, A. A.; Tabacu, I.; Ene, A.; Neagu, E.; Boroiu, A.
2017-10-01
For modelling road traffic at the level of a road network it is necessary to specify the flows of all traffic currents at each intersection. These data can be obtained by direct measurements at the traffic light intersections, but in the case of a roundabout this is not possible directly and the literature as well as the traffic modelling software doesn’t offer ways to solve this issue. Two sets of formulas are proposed by which all traffic flows from the roundabouts with 3 or 4 arms are calculated based on the streams that can be measured. The objective of this paper is to develop computational programs to operate with these formulas. For each of the two sets of analytical relations, a computational program was developed in the Java operating language. The obtained results fully confirm the applicability of the calculation programs. The final stage for capitalizing these programs will be to make them web pages in HTML format, so that they can be accessed and used on the Internet. The achievements presented in this paper are an important step to provide a necessary tool for traffic modelling because these computational programs can be easily integrated into specialized software.
Practical computation of multidimensional thermal flows in a gas centrifuge
International Nuclear Information System (INIS)
Berger, M.H.
1982-12-01
A finite-element theory is derived for Onsager's two-dimensional equation approximating the steady, viscous, gas motion in a high-speed centrifuge. A new high-order tensor product element is proposed to make the computations easy. The method of weighted residuals is used to construct the stiffness matrix, associated boundary integrals, and load vectors. Ekman suction conditions along horizontal surfaces are shown to be natural boundary conditions of the weak approximation. A class of pure bounary-value problems are solved for the field variables of interest. We evaluate the effect of Ekman suction on the flow by computing with and without suction. Also, we compute the case of pure two-dimensional flow where the azimuthal velocity perturbation is presumed to vanish. The effect of this simplifying assumption on the end-to-end temperature difference necessary for a given circulation is discussed. Numerical results are presented graphically and we show that the so-called streamfunction must be graphed in physical coordinates for the isolines to be streamlines. Only in this form do the velocity vectors lie tangent to the contours. Also, the radial velocity is redefined for graphical purposes
Spectroscopic studies of a high Mach-number rotating plasma flow
International Nuclear Information System (INIS)
Ando, Akira; Ashino, Masashi; Sagi, Yukiko; Inutake, Masaaki; Hattori, Kunihiko; Yoshinuma, Mikirou; Imasaki, Atsushi; Tobari, Hiroyuki; Yagai, Tsuyoshi
2001-01-01
Characteristics of an axially-magnetized rotating plasma are investigated by spectroscopy in the HITOP device of Tohoku University. A He plasma flows our axially and rotates azimuthally near the muzzle region of the MPD arcjet. Flow and rotational velocities and temperature of He ions and atoms are measured by Doppler shift and broadening of the HeII (γ=468.58 nm) and HeI (γ=587.56 nm) lines. Rotational velocity increases with the increase of axially-applied magnetic field strength and discharge current. As discharge current increases and mass flow rate decreases, the plasma flow velocity increases and T i increases. Ion acoustic Mach number of the plasma flow also increases, but tends to saturate at near 1. Radial profile of space potential is calculated from the obtained rotational velocity. The potential profile in the core region is parabolic corresponding to the observed rigid-body rotation of the core plasma. (author)
Spectroscopic studies of a high Mach-number rotating plasma flow
Energy Technology Data Exchange (ETDEWEB)
Ando, Akira; Ashino, Masashi; Sagi, Yukiko; Inutake, Masaaki; Hattori, Kunihiko; Yoshinuma, Mikirou; Imasaki, Atsushi; Tobari, Hiroyuki; Yagai, Tsuyoshi [Tohoku Univ., Dept. of Electrical Engineering, Sendai, Miyagi (Japan)
2001-07-01
Characteristics of an axially-magnetized rotating plasma are investigated by spectroscopy in the HITOP device of Tohoku University. A He plasma flows our axially and rotates azimuthally near the muzzle region of the MPD arcjet. Flow and rotational velocities and temperature of He ions and atoms are measured by Doppler shift and broadening of the HeII ({gamma}=468.58 nm) and HeI ({gamma}=587.56 nm) lines. Rotational velocity increases with the increase of axially-applied magnetic field strength and discharge current. As discharge current increases and mass flow rate decreases, the plasma flow velocity increases and T{sub i} increases. Ion acoustic Mach number of the plasma flow also increases, but tends to saturate at near 1. Radial profile of space potential is calculated from the obtained rotational velocity. The potential profile in the core region is parabolic corresponding to the observed rigid-body rotation of the core plasma. (author)
Pulmonary blood flow distribution measured by radionuclide computed tomography
International Nuclear Information System (INIS)
Maeda, H.; Itoh, H.; Ishii, Y.
1982-01-01
Distributions of pulmonary blood flow per unit lung volume were measured in sitting patients with a radionuclide computed tomography (RCT) by intravenously administered Tc-99m macroaggregates of human serum albumin (MAA). Four different types of distribution were distinguished, among which a group referred as type 2 had a three zonal blood flow distribution as previously reported (West and co-workers, 1964). The pulmonary arterial pressure (Pa) and the venous pressure (Pv) were determined in this group of distribution. These values showed satifactory agreements with the pulmonary artery pressure (Par) and the capillary wedged pressure (Pcw) measured by Swan-Ganz catheter in eighteen supine patients. Those good correlations enable to establish a noninvasive methodology for measurement of pulmonary vascular pressures
Mapping flow distortion on oceanographic platforms using computational fluid dynamics
Directory of Open Access Journals (Sweden)
N. O'Sullivan
2013-10-01
Full Text Available Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from −60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s−1 in increments of 0.5 m s−1. The numerical analysis showed close agreement to experimental measurements.
Numerical simulation of 3D backward facing step flows at various Reynolds numbers
Directory of Open Access Journals (Sweden)
Louda Petr
2015-01-01
Full Text Available The work deals with the numerical simulation of 3D turbulent flow over backward facing step in a narrow channel. The mathematical model is based on the RANS equations with an explicit algebraic Reynolds stress model (EARSM. The numerical method uses implicit finite volume upwind discretization. While the eddy viscosity models fail in predicting complex 3D flows, the EARSM model is shown to provide results which agree well with experimental PIV data. The reference experimental data provide the 3D flow field. The simulations are compared with experiment for 3 values of Reynolds number.
Energy Technology Data Exchange (ETDEWEB)
Küchlin, Stephan, E-mail: kuechlin@ifd.mavt.ethz.ch; Jenny, Patrick
2017-01-01
A major challenge for the conventional Direct Simulation Monte Carlo (DSMC) technique lies in the fact that its computational cost becomes prohibitive in the near continuum regime, where the Knudsen number (Kn)—characterizing the degree of rarefaction—becomes small. In contrast, the Fokker–Planck (FP) based particle Monte Carlo scheme allows for computationally efficient simulations of rarefied gas flows in the low and intermediate Kn regime. The Fokker–Planck collision operator—instead of performing binary collisions employed by the DSMC method—integrates continuous stochastic processes for the phase space evolution in time. This allows for time step and grid cell sizes larger than the respective collisional scales required by DSMC. Dynamically switching between the FP and the DSMC collision operators in each computational cell is the basis of the combined FP-DSMC method, which has been proven successful in simulating flows covering the whole Kn range. Until recently, this algorithm had only been applied to two-dimensional test cases. In this contribution, we present the first general purpose implementation of the combined FP-DSMC method. Utilizing both shared- and distributed-memory parallelization, this implementation provides the capability for simulations involving many particles and complex geometries by exploiting state of the art computer cluster technologies.
Computations of Torque-Balanced Coaxial Rotor Flows
Yoon, Seokkwan; Chan, William M.; Pulliam, Thomas H.
2017-01-01
Interactional aerodynamics has been studied for counter-rotating coaxial rotors in hover. The effects of torque balancing on the performance of coaxial-rotor systems have been investigated. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. Computational results for an experimental model are compared to available data. The results for a coaxial quadcopter vehicle with and without torque balancing are discussed. Understanding interactions in coaxial-rotor flows would help improve the design of next-generation autonomous drones.
Computation of hypersonic axisymmetric flows of equilibrium gas over blunt bodies
International Nuclear Information System (INIS)
Hejranfar, K.; Esfahanian, V.; Moghadam, R.K.
2005-01-01
An appropriate combination of the thin-layer Navier-Stokes (TLNS) and parabolized Navier-Stokes (PNS) solvers is used to accurately and efficiently compute hypersonic flowfields of equilibrium air around blunt-body configurations. The TLNS equations are solved in the nose region to provide the initial data plane needed for the solution of the PNS equations. Then the PNS equations are employed to efficiently compute the flowfield for the afterbody region by using a space marching procedure. Both the TLNS and the PNS equations are numerically solved by using the implicit non-iterative finite-difference algorithm of Beam and Warming. A shock fitting technique is used in both the TLNS and PNS codes to obtain accurate solution in the vicinity of the shock. To validate the results of the developed TLNS code, hypersonic laminar flow over a sphere at Mach number of 11.26 is computed. To demonstrate the accuracy and efficiency of using the present TLNS-PNS methodology, the computations are performed for hypersonic flow over 5 o long slender blunt cone at Mach number of 19.25. The results of these computations are found to be in good agreement with available numerical and experimental data. The effects of real gas on the flowfield characteristics are also studied in both the TLNS and PNS solutions. (author)
Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN
International Nuclear Information System (INIS)
Mills, Richard Tran; Lu, Chuan; Lichtner, Peter C; Hammond, Glenn E
2007-01-01
We describe PFLOTRAN, a recently developed code for modeling multi-phase, multi-component subsurface flow and reactive transport using massively parallel computers. PFLOTRAN is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation. Leveraging PETSc has allowed us to develop-with a relatively modest investment in development effort-a code that exhibits excellent performance on the largest-scale supercomputers. Very significant enhancements to the code are planned during our SciDAC-2 project. Here we describe the current state of the code, present an example of its use on Jaguar, the Cray XT3/4 system at Oak Ridge National Laboratory consisting of 11706 dual-core Opteron processor nodes, and briefly outline our future plans for the code
Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN
Energy Technology Data Exchange (ETDEWEB)
Mills, Richard Tran [Computational Earth Sciences Group, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6015 (United States); Lu, Chuan [Hydrology, Geochemistry, and Geology Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lichtner, Peter C [Hydrology, Geochemistry, and Geology Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hammond, Glenn E [Hydrology Group, Environmental Technology Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)
2007-07-15
We describe PFLOTRAN, a recently developed code for modeling multi-phase, multi-component subsurface flow and reactive transport using massively parallel computers. PFLOTRAN is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation. Leveraging PETSc has allowed us to develop-with a relatively modest investment in development effort-a code that exhibits excellent performance on the largest-scale supercomputers. Very significant enhancements to the code are planned during our SciDAC-2 project. Here we describe the current state of the code, present an example of its use on Jaguar, the Cray XT3/4 system at Oak Ridge National Laboratory consisting of 11706 dual-core Opteron processor nodes, and briefly outline our future plans for the code.
Computer aided hydraulic design of axial flow pump impeller
International Nuclear Information System (INIS)
Sreedhar, B.K.; Rao, A.S.L.K.; Kumaraswamy, S.
1994-01-01
Pumps are the heart of any power plant and hence their design requires great attention. Computers with their potential for rapid computation can be successfully employed in the design and manufacture of these machines. The paper discusses a program developed for the hydraulic design of axial flow pump impeller. The program, written in FORTRAN 77, is interactive and performs the functions of design calculation, drafting and generation of numerical data for blade manufacture. The drafting function, which makes use of the software ACAD, is carried out automatically by means of suitable interface programs. In addition data for blade manufacture is also generated in either the x-y-z or r-θ-z system. (author). 4 refs., 3 figs
Introduction: Scaling and structure in high Reynolds number wall-bounded flows
International Nuclear Information System (INIS)
McKeon, B.J.; Sreenivasan, K.R.
2007-05-01
The papers discussed in this report are dealing with the following aspects: Fundamental scaling relations for canonical flows and asymptotic approach to infinite Reynolds numbers; large and very large scales in near-wall turbulences; the influence of roughness and finite Reynolds number effects; comparison between internal and external flows and the universality of the near-wall region; qualitative and quantitative models of the turbulent boundary layer; the neutrally stable atmospheric surface layer as a model for a canonical zero-pressure-gradient boundary layer (author)
Parallel Computation of Unsteady Flows on a Network of Workstations
1997-01-01
Parallel computation of unsteady flows requires significant computational resources. The utilization of a network of workstations seems an efficient solution to the problem where large problems can be treated at a reasonable cost. This approach requires the solution of several problems: 1) the partitioning and distribution of the problem over a network of workstation, 2) efficient communication tools, 3) managing the system efficiently for a given problem. Of course, there is the question of the efficiency of any given numerical algorithm to such a computing system. NPARC code was chosen as a sample for the application. For the explicit version of the NPARC code both two- and three-dimensional problems were studied. Again both steady and unsteady problems were investigated. The issues studied as a part of the research program were: 1) how to distribute the data between the workstations, 2) how to compute and how to communicate at each node efficiently, 3) how to balance the load distribution. In the following, a summary of these activities is presented. Details of the work have been presented and published as referenced.
Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres
Zhou, Qiang; Fan, Liang-Shih
2015-07-01
Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.
Large-eddy simulation of flow over a grooved cylinder up to transcritical Reynolds numbers
Cheng, W.
2017-11-27
We report wall-resolved large-eddy simulation (LES) of flow over a grooved cylinder up to the transcritical regime. The stretched-vortex subgrid-scale model is embedded in a general fourth-order finite-difference code discretization on a curvilinear mesh. In the present study grooves are equally distributed around the circumference of the cylinder, each of sinusoidal shape with height , invariant in the spanwise direction. Based on the two parameters, and the Reynolds number where is the free-stream velocity, the diameter of the cylinder and the kinematic viscosity, two main sets of simulations are described. The first set varies from to while fixing . We study the flow deviation from the smooth-cylinder case, with emphasis on several important statistics such as the length of the mean-flow recirculation bubble , the pressure coefficient , the skin-friction coefficient and the non-dimensional pressure gradient parameter . It is found that, with increasing at fixed , some properties of the mean flow behave somewhat similarly to changes in the smooth-cylinder flow when is increased. This includes shrinking and nearly constant minimum pressure coefficient. In contrast, while the non-dimensional pressure gradient parameter remains nearly constant for the front part of the smooth cylinder flow, shows an oscillatory variation for the grooved-cylinder case. The second main set of LES varies from to with fixed . It is found that this range spans the subcritical and supercritical regimes and reaches the beginning of the transcritical flow regime. Mean-flow properties are diagnosed and compared with available experimental data including and the drag coefficient . The timewise variation of the lift and drag coefficients are also studied to elucidate the transition among three regimes. Instantaneous images of the surface, skin-friction vector field and also of the three-dimensional Q-criterion field are utilized to further understand the dynamics of the near-surface flow
Advanced lattice Boltzmann scheme for high-Reynolds-number magneto-hydrodynamic flows
De Rosis, Alessandro; Lévêque, Emmanuel; Chahine, Robert
2018-06-01
Is the lattice Boltzmann method suitable to investigate numerically high-Reynolds-number magneto-hydrodynamic (MHD) flows? It is shown that a standard approach based on the Bhatnagar-Gross-Krook (BGK) collision operator rapidly yields unstable simulations as the Reynolds number increases. In order to circumvent this limitation, it is here suggested to address the collision procedure in the space of central moments for the fluid dynamics. Therefore, an hybrid lattice Boltzmann scheme is introduced, which couples a central-moment scheme for the velocity with a BGK scheme for the space-and-time evolution of the magnetic field. This method outperforms the standard approach in terms of stability, allowing us to simulate high-Reynolds-number MHD flows with non-unitary Prandtl number while maintaining accuracy and physical consistency.
Computation of a turbulent channel flow using PDF method
International Nuclear Information System (INIS)
Minier, J.P.; Pozorski, J.
1997-05-01
The purpose of the present paper is to present an analysis of a PDF model (Probability Density Function) and an illustration of the possibilities offered by such a method for a high-Reynolds turbulent channel flow. The first part presents the principles of the PDF approach and the introduction of stochastic processes along with a Lagrangian point of view. The model retained is the one put forward by Pope (1991) and includes evolution equations for location, velocity and dissipation of a large number of particles. Wall boundary conditions are then developed for particles. These conditions allow statistical results of the logarithmic region to be correctly reproduced. Simulation of non-homogeneous flows require a pressure-gradient algorithm which is briefly described. Developments are validated by analysing numerical predictions with respect to Comte Bellot experimental data (1965) on a channel flow. This example illustrates the ability of the approach to simulate wall-bounded flows and to provide detailed information such as skewness and flatness factors. (author)
Novel approach for dam break flow modeling using computational intelligence
Seyedashraf, Omid; Mehrabi, Mohammad; Akhtari, Ali Akbar
2018-04-01
A new methodology based on the computational intelligence (CI) system is proposed and tested for modeling the classic 1D dam-break flow problem. The reason to seek for a new solution lies in the shortcomings of the existing analytical and numerical models. This includes the difficulty of using the exact solutions and the unwanted fluctuations, which arise in the numerical results. In this research, the application of the radial-basis-function (RBF) and multi-layer-perceptron (MLP) systems is detailed for the solution of twenty-nine dam-break scenarios. The models are developed using seven variables, i.e. the length of the channel, the depths of the up-and downstream sections, time, and distance as the inputs. Moreover, the depths and velocities of each computational node in the flow domain are considered as the model outputs. The models are validated against the analytical, and Lax-Wendroff and MacCormack FDM schemes. The findings indicate that the employed CI models are able to replicate the overall shape of the shock- and rarefaction-waves. Furthermore, the MLP system outperforms RBF and the tested numerical schemes. A new monolithic equation is proposed based on the best fitting model, which can be used as an efficient alternative to the existing piecewise analytic equations.
The time scale for the transition to turbulence in a high Reynolds number, accelerated flow
International Nuclear Information System (INIS)
Robey, H.F.; Zhou Ye; Buckingham, A.C.; Keiter, P.; Remington, B.A.; Drake, R.P.
2003-01-01
An experiment is described in which an interface between materials of different density is subjected to an acceleration history consisting of a strong shock followed by a period of deceleration. The resulting flow at this interface, initiated by the deposition of strong laser radiation into the initially well characterized solid materials, is unstable to both the Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities. These experiments are of importance in their ability to access a difficult experimental regime characterized by very high energy density (high temperature and pressure) as well as large Reynolds number and Mach number. Such conditions are of interest, for example, in the study of the RM/RT induced mixing that occurs during the explosion of a core-collapse supernova. Under these experimental conditions, the flow is in the plasma state and given enough time will transition to turbulence. By analysis of the experimental data and a corresponding one-dimensional numerical simulation of the experiment, it is shown that the Reynolds number is sufficiently large (Re>10 5 ) to support a turbulent flow. An estimate of three key turbulence length scales (the Taylor and Kolmogorov microscales and a viscous diffusion scale), however, shows that the temporal duration of the present flow is insufficient to allow for the development of a turbulent inertial subrange. A methodology is described for estimating the time required under these conditions for the development of a fully turbulent flow
Determination of the critical Shields number for particle erosion in laminar flow
Ouriemi , Malika; Aussillous , Pascale; Medale , Marc; Peysson , Yannick; Guazzelli , Élisabeth
2007-01-01
International audience; We present reproducible experimental measurements for the onset of grain motion in laminar flow and find a constant critical Shields number for particle erosion, i.e., c = 0.12± 0.03, over a large range of small particle Reynolds number: 1.5 10 −5 Re p 0.76. Comparison with previous studies found in the literature is provided.
DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01
Energy Technology Data Exchange (ETDEWEB)
Tiselj, Iztok, E-mail: iztok.tiselj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon, E-mail: leon.cizelj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)
2012-12-15
Highlights: Black-Right-Pointing-Pointer DNS database for turbulent channel flow at Prandtl number 0.01 and various Re{sub {tau}}. Black-Right-Pointing-Pointer Two ideal boundary condition analyzed: non-fluctuating and fluctuating temperature. Black-Right-Pointing-Pointer DNS database with conjugate heat transfer for liquid sodium-steel contact. Black-Right-Pointing-Pointer Penetration of the turbulent temperature fluctuations into the solid wall analyzed. - Abstract: Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in a turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed with passive scalar approximation at Prandtl number 0.01, which roughly corresponds to the Prandtl number of liquid sodium. DNSs were performed at friction Reynolds numbers 180, 395 and 590. The obtained statistical quantities like mean temperatures, profiles of the root-mean-square (RMS) temperature fluctuations for various thermal properties of wall and fluid, and various wall thicknesses were obtained from a pseudo-spectral channel-flow code. Even for the highest implemented Reynolds number the temperature profile in the fluid does not exhibit log-law region and the near-wall RMS temperature fluctuations show Reynolds number dependence. Conjugate heat transfer simulations of liquid sodium-steel system point to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall. Database containing the results is available in a digital form.
DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01
International Nuclear Information System (INIS)
Tiselj, Iztok; Cizelj, Leon
2012-01-01
Highlights: ► DNS database for turbulent channel flow at Prandtl number 0.01 and various Re τ . ► Two ideal boundary condition analyzed: non-fluctuating and fluctuating temperature. ► DNS database with conjugate heat transfer for liquid sodium–steel contact. ► Penetration of the turbulent temperature fluctuations into the solid wall analyzed. - Abstract: Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in a turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed with passive scalar approximation at Prandtl number 0.01, which roughly corresponds to the Prandtl number of liquid sodium. DNSs were performed at friction Reynolds numbers 180, 395 and 590. The obtained statistical quantities like mean temperatures, profiles of the root-mean-square (RMS) temperature fluctuations for various thermal properties of wall and fluid, and various wall thicknesses were obtained from a pseudo-spectral channel-flow code. Even for the highest implemented Reynolds number the temperature profile in the fluid does not exhibit log-law region and the near-wall RMS temperature fluctuations show Reynolds number dependence. Conjugate heat transfer simulations of liquid sodium–steel system point to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall. Database containing the results is available in a digital form.
Interface tracking computations of bubble dynamics in nucleate flow boiling
International Nuclear Information System (INIS)
Giustini, G.
2015-01-01
The boiling process is of utter importance for the design and operation of water-cooled nuclear reactors. Despite continuous effort over the past decades, a fully mechanistic model of boiling in the presence of a solid surface has not yet been achieved. Uncertainties exist at fundamental level, since the microscopic phenomena governing nucleate boiling are still not understood, and as regards 'component scale' modelling, which relies heavily on empirical representations of wall boiling. Accurate models of these phenomena at sub-milli-metric scale are capable of elucidating the various processes and to produce quantitative data needed for up-scaling. Within this context, Direct Numerical Simulation (DNS) represents a powerful tool for CFD analysis of boiling flows. In this contribution, DNS coupled with an Interface Tracking method (Y. Sato, B. Niceno, Journal of Computational Physics, Volume 249, 15 September 2013, Pages 127-161) are used to analyse the hydrodynamics and heat transfer associated with heat diffusion controlled bubble growth at a solid substrate during nucleate flow boiling. The growth of successive bubbles from a single nucleation site is simulated with a computational model that includes heat conduction in the solid substrate and evaporation from the liquid film (micro-layer) present beneath the bubble. Bubble evolution is investigated and the additional (with respect to single phase convection) heat transfer mechanisms due to the ebullition cycle are quantified. The simulations show that latent heat exchange due to evaporation in the micro-layer and sensible heat exchange during the waiting time after bubble departure are the main heat transfer mechanisms. It is found that the presence of an imposed flow normal to the bubble rising path determines a complex velocity and temperature distribution near the nucleation site. This conditions can result in bubble sliding, and influence bubble shape, departure diameter and departure frequency
Assessment of RANS at low Prandtl number and simulation of sodium boiling flows with a CMFD code
Energy Technology Data Exchange (ETDEWEB)
Mimouni, S., E-mail: stephane.mimouni@edf.fr; Guingo, M.; Lavieville, J.
2017-02-15
Highlights: • Modelling of boiling sodium flows in a multiphase flow solver. • Rod heated with a constant heat flux in a pipe liquid metal flow. • Sodium boiling flow around a rod heated with a constant heat. • Computations in progress in an assembly constituted of 19 pins equipped with a wrapped wire. - Abstract: In France, Sodium-cooled Fast Reactors (SFR) have recently received a renewed interest. In 2006, the decision was taken by the French Government to initiate research in order to build a first Generation IV prototype (called ASTRID) by 2020. The improvement in the safety of SFR is one of the key points in their conception. Accidental sequences may lead to a significant increase of reactivity. This is for instance the case when the sodium coolant is boiling within the fissile zone. As a consequence, incipient boiling superheat of sodium is an important parameter, as it can influence boiling process which may appear during some postulated accidents as the unexpected loss of flow (ULOF). The problem is that despite the reduction in core power, when boiling conditions are reached, the flow decreases progressively and vapour expands into the heating zone. A crucial investigating way is to optimize the design of the fissile assemblies of the core in order to lead to stable boiling during a ULOF accident, without voiding of the fissile zone. Moreover, in order to evaluate nuclear plant design and safety, a CFD tool has been developed at EDF in the framework of the nuclear industry. Advanced models dedicated to boiling flows have been implemented and validated against experimental data for ten years now including a wall law for boiling flows, wall transfer for nucleate boiling, turbulence and polydispersion model. This paper aims at evaluating the generalization of these models to SFR. At least two main issues are encountered. Firstly, at low Prandtl numbers such as those of liquid metal, classical approaches derived for unity or close to unity fail to
Reynolds number effects in a turbulent pipe flow for low to moderate Re
Toonder, den J.M.J.; Nieuwstadt, F.T.M.
1997-01-01
We present in this paper high resolution, two-dimensional LDV measurements in a turbulent pipe flow of water over the Reynolds number range 500025000. Results for the turbulence statistics up to the fourth moment are presented, as well as power spectra in the near-wall region. These results clearly
Universal model of finite Reynolds number turbulent flow in channels and pipes
L'vov, V.S.; Procaccia, I.; Rudenko, O.
2008-01-01
In this Letter, we suggest a simple and physically transparent analytical model of pressure driven turbulent wall-bounded flows at high but finite Reynolds numbers Re. The model provides an accurate quantitative description of the profiles of the mean-velocity and Reynolds stresses (second order
Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime
Miau, J. J.; Tsai, H. W.; Lin, Y. J.; Tu, J. K.; Fang, C. H.; Chen, M. C.
2011-10-01
Experiments were conducted for 2D circular cylinders at Reynolds numbers in the range of 1.73 × 105-5.86 × 105. In the experiment, two circular cylinder models made of acrylic and stainless steel, respectively, were employed, which have similar dimensions but different surface roughness. Particular attention was paid to the unsteady flow behaviors inferred by the signals obtained from the pressure taps on the cylinder models and by a hot-wire probe in the near-wake region. At Reynolds numbers pertaining to the initial transition from the subcritical to the critical regimes, pronounced pressure fluctuations were measured on the surfaces of both cylinder models, which were attributed to the excursion of unsteady flow separation over a large circumferential region. At the Reynolds numbers almost reaching the one-bubble state, it was noted that the development of separation bubble might switch from one side to the other with time. Wavelet analysis of the pressure signals measured simultaneously at θ = ±90° further revealed that when no separation bubble was developed, the instantaneous vortex-shedding frequencies could be clearly resolved, about 0.2, in terms of the Strouhal number. The results of oil-film flow visualization on the stainless steel cylinder of the one-bubble and two-bubble states showed that the flow reattachment region downstream of a separation bubble appeared not uniform along the span of the model. Thus, the three dimensionality was quite evident.
Numerical simulation of unsteady compressible low Mach number flow in a channel
Czech Academy of Sciences Publication Activity Database
Punčochářová-Pořízková, P.; Kozel, Karel; Horáček, Jaromír; Fürst, J.
2010-01-01
Roč. 17, č. 2 (2010), s. 83-97 ISSN 1802-1484 R&D Projects: GA MŠk OC09019 Institutional research plan: CEZ:AV0Z20760514 Keywords : CFD * finite volume method * unsteady flow * low Mach number Subject RIV: BI - Acoustics
Background-oriented schlieren imaging of flow around a circular cylinder at low Mach numbers
Stadler, Hannes; Bauknecht, André; Siegrist, Silvan; Flesch, Robert; Wolf, C. Christian; van Hinsberg, Nils; Jacobs, Markus
2017-09-01
The background-oriented schlieren (BOS) imaging method has, for the first time, been applied in the investigation of the flow around a circular cylinder at low Mach numbers (Msuccessive imaging at incremental angular positions around the cylinder. This density distribution has been found to agree well with the pressure measurements and with potential theory where appropriate.
A two-dimensional, TVD numerical scheme for inviscid, high Mach number flows in chemical equilibrium
Eberhardt, S.; Palmer, G.
1986-01-01
A new algorithm has been developed for hypervelocity flows in chemical equilibrium. Solutions have been achieved for Mach numbers up to 15 with no adverse effect on convergence. Two methods of coupling an equilibrium chemistry package have been tested, with the simpler method proving to be more robust. Improvements in boundary conditions are still required for a production-quality code.
Chen, Shu-Cheng S.
2017-01-01
A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.
Computational modeling of plasma-flow switched foil implosions
International Nuclear Information System (INIS)
Lindemuth, I.R.
1985-01-01
A ''plasma-flow'', or ''commutator'', switch has been proposed as a means of achieving high dI/dt in a radially imploding metallic foil plasma. In this concept, an axially moving foil provides the initial coaxial gun discharge path for the prime power source and provides and ''integral'' inductive storage of magnetic energy. As the axially moving foil reaches the end of the coaxial gun, a radially imploding load foil is switched into the circuit. The authors have begun two-dimensional computer modeling of the two-foil implosion system. They use a magnetohydrodynamic (MHD) model which includes tabulated state and transport properties of the metallic foil material. Moving numerical grids are used to achieve adequate resolution of the moving foils. A variety of radiation models are used to compute the radiation generated when the imploding load foil converges on axis. These computations are attempting to examine the interaction of the switching foil with the load foil. In particular, they examine the relationship between foil placement and implosion quality
International Nuclear Information System (INIS)
Bricteux, L.; Duponcheel, M.; Winckelmans, G.; Tiselj, I.; Bartosiewicz, Y.
2012-01-01
Highlights: ► We perform direct and hybrid-large eddy simulations of high Reynolds and low Prandtl turbulent wall-bounded flows with heat transfer. ► We use a state-of-the-art numerical methods with low energy dissipation and low dispersion. ► We use recent multiscalesubgrid scale models. ► Important results concerning the establishment of near wall modeling strategy in RANS are provided. ► The turbulent Prandtl number that is predicted by our simulation is different than that proposed by some correlations of the literature. - Abstract: This paper deals with the issue of modeling convective turbulent heat transfer of a liquid metal with a Prandtl number down to 0.01, which is the order of magnitude of lead–bismuth eutectic in a liquid metal reactor. This work presents a DNS (direct numerical simulation) and a LES (large eddy simulation) of a channel flow at two different Reynolds numbers, and the results are analyzed in the frame of best practice guidelines for RANS (Reynolds averaged Navier–Stokes) computations used in industrial applications. They primarily show that the turbulent Prandtl number concept should be used with care and that even recent proposed correlations may not be sufficient.
Directory of Open Access Journals (Sweden)
Matas Richard
2012-04-01
Full Text Available The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.
Influence of elbow curvature on flow structure at elbow outlet under high Reynolds number condition
Energy Technology Data Exchange (ETDEWEB)
Ono, A., E-mail: ono.ayako@jaea.go.jp [Oarai Research and Development Center, Japan Atomic Energy Agency, Narita 4002, Oarai, Ibaraki 311-1393 (Japan); Kimura, N.; Kamide, H.; Tobita, A. [Oarai Research and Development Center, Japan Atomic Energy Agency, Narita 4002, Oarai, Ibaraki 311-1393 (Japan)
2011-11-15
In the design of Japan Sodium-cooled Fast Reactor (JSFR), coolant velocity is beyond 9 m/s in the primary hot leg pipe of 1.27 m diameter. The Reynolds number in the piping reaches 4.2 Multiplication-Sign 10{sup 7}. Moreover, a short-elbow is adopted in the hot leg pipe in order to achieve compact plant layout and to reduce plant construction cost. Therefore, the flow-induced vibration (FIV) arising from the piping geometry may occur in the short-elbow pipe. The FIV is due to the excitation source which is caused by the pressure fluctuation in the pipe. The pressure fluctuation in the pipe is closely related with the velocity fluctuation. As the first step of clarification of the FIV mechanism, it is important to grasp the mechanism of flow fluctuation in the elbow. In this study, water experiments with two types of elbows with different curvature ratios were conducted in order to investigate the interaction between flow separation and the secondary flow due to the elbow curvature. The experiments were conducted with the short-elbow and the long-elbow under Re = 1.8 Multiplication-Sign 10{sup 5} and 5.4 Multiplication-Sign 10{sup 5} conditions. The velocity fields in the elbows were measured using a high-speed Particle Image Velocimetry (PIV). The time-series of axial velocity fields and the cross-section velocity fields obtained by the high-speed PIV measurements revealed the unsteady and complex flow structure in the elbow. The flow separation always occurred in the short-elbow while the flow separation occurred intermittently in the long-elbow case. The circumferential secondary flows in clockwise and counterclockwise directions flowed forward downstream of reattachment point alternately in both elbows.
Reynolds number and friction coefficient for axial-parallel flow through complex cross-sections
International Nuclear Information System (INIS)
Markfort, D.
1975-01-01
Thermal and hydraulic lay-out of reactor fuel elements and other heat transfer equipment makes use of established functional relationship between dimensionless characters, the former being transferred from circular tube to more complex geometries. The stringent requirement (from theory) for 'geometrical similarity' is bypassed by defining 'equivalent diameters'. But dimensionless numbers may be derived from 'flow-integral-conditions' while the geometrical components contained therein reduce if not completely abolish the requirement for geometrical similarity. The derivation is demonstrated by using the Reynolds number. A friction coefficient valid for any kind of flow regime can be defined using integral-conditions. Correlations of friction coefficient and Reynolds number using universal-velocity profiles confirm the analysis when compared to well known experimental data. (orig.) [de
Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows
Kumar, Haribalan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long
2011-01-01
Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan–Carpenter (KC) number. PMID:21580803
Computational Study of Nonequilibrium Chemistry in High Temperature Flows
Doraiswamy, Sriram
Recent experimental measurements in the reflected shock tunnel CUBRC LENS-I facility raise questions about our ability to correctly model the recombination processes in high enthalpy flows. In the carbon dioxide flow, the computed shock standoff distance over the Mars Science Laboratory (MSL) shape was less than half of the experimental result. For the oxygen flows, both pressure and heat transfer data on the double cone geometry were not correctly predicted. The objective of this work is to investigate possible reasons for these discrepancies. This process involves systematically addressing different factors that could possibly explain the differences. These factors include vibrational modeling, role of electronic states and chemistry-vibrational coupling in high enthalpy flows. A state-specific vibrational model for CO2, CO, O2 and O system is devised by taking into account the first few vibrational states of each species. All vibrational states with energies at or below 1 eV are included in the present work. Of the three modes of vibration in CO2 , the antisymmetric mode is considered separately from the symmetric stretching mode and the doubly degenerate bending modes. The symmetric and the bending modes are grouped together since the energy transfer rates between the two modes are very large due to Fermi resonance. The symmetric and bending modes are assumed to be in equilibrium with the translational and rotational modes. The kinetic rates for the vibrational-translation energy exchange reactions, and the intermolecular and intramolecular vibrational-vibrational energy exchange reactions are based on experimental data to the maximum extent possible. Extrapolation methods are employed when necessary. This vibrational model is then coupled with an axisymmetric computational fluid dynamics code to study the expansion of CO2 in a nozzle. The potential role of low lying electronic states is also investigated. Carbon dioxide has a single excited state just below
Further experiments for mean velocity profile of pipe flow at high Reynolds number
Furuichi, N.; Terao, Y.; Wada, Y.; Tsuji, Y.
2018-05-01
This paper reports further experimental results obtained in high Reynolds number actual flow facility in Japan. The experiments were performed in a pipe flow with water, and the friction Reynolds number was varied up to Reτ = 5.3 × 104. This high Reynolds number was achieved by using water as the working fluid and adopting a large-diameter pipe (387 mm) while controlling the flow rate and temperature with high accuracy and precision. The streamwise velocity was measured by laser Doppler velocimetry close to the wall, and the mean velocity profile, called log-law profile U+ = (1/κ) ln(y+) + B, is especially focused. After careful verification of the mean velocity profiles in terms of the flow rate accuracy and an evaluation of the consistency of the present results with those from previously measurements in a smaller pipe (100 mm), it was found that the value of κ asymptotically approaches a constant value of κ = 0.384.
Directory of Open Access Journals (Sweden)
Razali Jidin
2017-10-01
Full Text Available The main feature of a run-off river hydroelectric system is a small size intake pond that overspills when river flow is more than turbines’ intake. As river flow fluctuates, a large proportion of the potential energy is wasted due to the spillages which can occur when turbines are operated manually. Manual operation is often adopted due to unreliability of water level-based controllers at many remote and unmanned run-off river hydropower plants. In order to overcome these issues, this paper proposes a novel method by developing a controller that derives turbine output set points from computed mass flow rate of rivers that feed the hydroelectric system. The computed flow is derived by summation of pond volume difference with numerical integration of both turbine discharge flows and spillages. This approach of estimating river flow allows the use of existing sensors rather than requiring the installation of new ones. All computations, including the numerical integration, have been realized as ladder logics on a programmable logic controller. The implemented controller manages the dynamic changes in the flow rate of the river better than the old point-level based controller, with the aid of a newly installed water level sensor. The computed mass flow rate of the river also allows the controller to straightforwardly determine the number of turbines to be in service with considerations of turbine efficiencies and auxiliary power conservation.
A study of flow patterns for staggered cylinders at low Reynolds number by spectral element method
Energy Technology Data Exchange (ETDEWEB)
Hsu, Li-Chieh; Chen, Chien-Lin; Ye, Jian-Zhi [National Yunlin University of Science and Technology, Taiwan (China)
2017-06-15
This study investigates the pattern of flow past two staggered array cylinders using the spectral element method by varying the distance between the cylinders and the angle of incidence (α) at low Reynolds numbers (Re = 100-800). Six flow patterns are identified as Shear layer reattachment (SLR), Induced separation (IS), Vortex impingement (VI), Synchronized vortex shedding (SVS), Vortex pairing and enveloping (VPE), and Vortex pairing splitting and enveloping (VPSE). These flow patterns can be transformed from one to another by changing the distance between the cylinders, the angle of incidence, or Re. SLR, IS and VI flow patterns appear in regimes with small angles of incidence (i.e., α ≤ 30° ) and hold only a single von Karman vortex shedding in a wake with one shedding frequency. SVS, VPE and VPSE flow patterns appear in regimes with large angles of incidence (i.e., 30° ≤ α ≤ 50° ) and present two synchronized von Karman vortices. Quantitative analyses and physical interpretation are also conducted to determine the generation mechanisms of the said flow patterns.
The nuclear flow and the mass number dependence of the balance point
International Nuclear Information System (INIS)
Sebille, F.; de la Mota, V.; Remaud, B.; Schuck, P.
1990-01-01
The nuclear flow is studied theoretically with the Landau Vlasov equation in the E/A = 50 to 150 MeV energy domain using the finite range Gogny force. For comparison also other equations of states based on velocity independent mean fields are used. In this paper the mass number dependence of the balance point is investigated. A sensitivity of the flow on the equation of state as a function of mass and energies around and above the balance point can tentatively be advanced
Effects of graphite surface roughness on bypass flow computations for an HTGR
Energy Technology Data Exchange (ETDEWEB)
Tung, Yu-Hsin, E-mail: touushin@gmail.com [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Johnson, Richard W., E-mail: Rich.Johnson@inl.gov [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Sato, Hiroyuki, E-mail: sato.hiroyuki09@jaea.go.jp [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States)
2012-11-15
Highlights: Black-Right-Pointing-Pointer CFD calculations are made of bypass flow between graphite blocks in HTGR. Black-Right-Pointing-Pointer Several turbulence models are employed to compare to friction and heat transfer correlations. Black-Right-Pointing-Pointer Parameters varied include bypass gap width and surface roughness. Black-Right-Pointing-Pointer Surface roughness causes increases in max fuel and coolant temperatures. Black-Right-Pointing-Pointer Surface roughness does not cause increase in outlet coolant temperature variation. - Abstract: Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow; it has been suggested that it may be as much as 20% of the total helium coolant flow [INL Report 2007, INL/EXT-07-13289]. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors for three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U.S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for steady flow in a
On the Behavior of ECN/RED Gateways Under a Large Number of TCP Flows: Limit Theorems
National Research Council Canada - National Science Library
Tinnakornsrisuphap, Peerapol; Makowski, Armand M
2005-01-01
.... As the number of competing flows becomes large, the asymptotic queue behavior at the gateway can be described by a simple recursion and the throughput behavior of individual TCP flows becomes asymptotically independent...
International Nuclear Information System (INIS)
Rizzo, Enrico; Heller, Reinhard; Richard, Laura Savoldi; Zanino, Roberto
2013-01-01
Highlights: • The laminar regime in the meander flow geometry has been analysed with a previously validated computational strategy. • Several meander flow geometries as well as flow conditions have been analysed. • A range for the Reynolds number has been defined in which the flow can be considered laminar. • Correlations for the pressure drop and the heat transfer coefficients in the laminar regime have been derived. • A comparison between the computed the experimental pressure drop of the W7-X HTS current lead prototype is presented. -- Abstract: The Karlsruhe Institute of Technology and the Politecnico di Torino have developed and validated a computational thermal-fluid dynamics (CtFD) strategy for the systematic analysis of the thermal-hydraulics inside the meander flow heat exchanger used in high-temperature superconducting current leads for fusion applications. In the recent past, the application of this CtFD technique has shown that some operating conditions occurring in these devices may not reach the turbulent regime region. With that motivation, the CtFD analysis of the helium thermal-fluid dynamics inside different meander flow geometries is extended here to the laminar flow regime. Our first aim is to clarify under which operative conditions the flow regime can be considered laminar and how the pressure drop as well as the heat transfer are related to the geometrical parameters and to the flow conditions. From the results of this analysis, correlations for the pressure drop and for the heat transfer coefficient in the meander flow geometry have been derived, which are applicable with good accuracy to the design of meander flow heat exchangers over a broad range of geometrical parameters
Energy Technology Data Exchange (ETDEWEB)
Rizzo, Enrico, E-mail: enrico.rizzo@kit.edu [Institute for Technical Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Heller, Reinhard [Institute for Technical Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Richard, Laura Savoldi; Zanino, Roberto [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy)
2013-11-15
Highlights: • The laminar regime in the meander flow geometry has been analysed with a previously validated computational strategy. • Several meander flow geometries as well as flow conditions have been analysed. • A range for the Reynolds number has been defined in which the flow can be considered laminar. • Correlations for the pressure drop and the heat transfer coefficients in the laminar regime have been derived. • A comparison between the computed the experimental pressure drop of the W7-X HTS current lead prototype is presented. -- Abstract: The Karlsruhe Institute of Technology and the Politecnico di Torino have developed and validated a computational thermal-fluid dynamics (CtFD) strategy for the systematic analysis of the thermal-hydraulics inside the meander flow heat exchanger used in high-temperature superconducting current leads for fusion applications. In the recent past, the application of this CtFD technique has shown that some operating conditions occurring in these devices may not reach the turbulent regime region. With that motivation, the CtFD analysis of the helium thermal-fluid dynamics inside different meander flow geometries is extended here to the laminar flow regime. Our first aim is to clarify under which operative conditions the flow regime can be considered laminar and how the pressure drop as well as the heat transfer are related to the geometrical parameters and to the flow conditions. From the results of this analysis, correlations for the pressure drop and for the heat transfer coefficient in the meander flow geometry have been derived, which are applicable with good accuracy to the design of meander flow heat exchangers over a broad range of geometrical parameters.
Flow and air conditioning simulations of computer turbinectomized nose models.
Pérez-Mota, J; Solorio-Ordaz, F; Cervantes-de Gortari, J
2018-04-16
Air conditioning for the human respiratory system is the most important function of the nose. When obstruction occurs in the nasal airway, turbinectomy is used to correct such pathology. However, mucosal atrophy may occur sometime after this surgery when it is overdone. There is not enough information about long-term recovery of nasal air conditioning performance after partial or total surgery. The purpose of this research was to assess if, based on the flow and temperature/humidity characteristics of the air intake to the choana, partial resection of turbinates is better than total resection. A normal nasal cavity geometry was digitized from tomographic scans and a model was printed in 3D. Dynamic (sinusoidal) laboratory tests and computer simulations of airflow were conducted with full agreement between numerical and experimental results. Computational adaptations were subsequently performed to represent six turbinectomy variations and a swollen nasal cavity case. Streamlines along the nasal cavity and temperature and humidity distributions at the choana indicated that the middle turbinate partial resection is the best alternative. These findings may facilitate the diagnosis of nasal obstruction and can be useful both to plan a turbinectomy and to reduce postoperative discomfort. Graphical Abstract ᅟ.
MPSalsa a finite element computer program for reacting flow problems. Part 2 - user`s guide
Energy Technology Data Exchange (ETDEWEB)
Salinger, A.; Devine, K.; Hennigan, G.; Moffat, H. [and others
1996-09-01
This manual describes the use of MPSalsa, an unstructured finite element (FE) code for solving chemically reacting flow problems on massively parallel computers. MPSalsa has been written to enable the rigorous modeling of the complex geometry and physics found in engineering systems that exhibit coupled fluid flow, heat transfer, mass transfer, and detailed reactions. In addition, considerable effort has been made to ensure that the code makes efficient use of the computational resources of massively parallel (MP), distributed memory architectures in a way that is nearly transparent to the user. The result is the ability to simultaneously model both three-dimensional geometries and flow as well as detailed reaction chemistry in a timely manner on MT computers, an ability we believe to be unique. MPSalsa has been designed to allow the experienced researcher considerable flexibility in modeling a system. Any combination of the momentum equations, energy balance, and an arbitrary number of species mass balances can be solved. The physical and transport properties can be specified as constants, as functions, or taken from the Chemkin library and associated database. Any of the standard set of boundary conditions and source terms can be adapted by writing user functions, for which templates and examples exist.
AN ANALYSIS OF NUMBER SENSE AND MENTAL COMPUTATION IN THE LEARNING OF MATHEMATICS
Directory of Open Access Journals (Sweden)
Parmit Singh Aperapar
2011-04-01
Full Text Available The purpose of this research was to assess students’ understanding of number sense and mental computation among Form One, Form Two, Form Three and Form Four students. A total of 1756 students, ages ranging from 12 to 17 years, from thirteen schools in Selangor participated in this study. A majority (74.9% of these students obtained an A grade for their respective year-end school examinations. The design for this study was quantitative in nature where the data on student’s sense of numbers was collected using two instruments, namely, Number Sense Test and Mental Computation Test. Each of these instruments consisted of 50 and 45 items respectively. The results from this study indicate that students were not able to cope to the Number Sense Test as compared to the Mental Computation Test. The former unveils a low percentage of 37.3% to 47.7% as compared to the latter of 79% to 88.6% across the levels. In the number Sense Test, surprisingly, there was no significant difference in the results between Form 1 students and Form 2 students and also between Form 3 students and Form 4 students. This seems to indicate that as the number of years in schools increase, there is an increasing reliance on algorithm and procedures. Although in the literature it has been argued that including mental computation in a mathematics curriculum promotes number sense (McIntosh et. al., 1997; Reys, Reys, Nohda, & Emori, 2005, this was not the case in this study. It seems that an over reliance on paper and pencil computation at the expense of intuitive understanding of numbers is taking place among these students.
Drag Measurements over Embedded Cavities in a Low Reynolds Number Couette Flow
Gilmer, Caleb; Lang, Amy; Jones, Robert
2010-11-01
Recent research has revealed that thin-walled, embedded cavities in low Reynolds number flow have the potential to reduce the net viscous drag force acting on the surface. This reduction is due to the formation of embedded vortices allowing the outer flow to pass over the surface via a roller bearing effect. It is also hypothesized that the scales found on butterfly wings may act in a similar manner to cause a net increase in flying efficiency. In this experimental study, rectangular embedded cavities were designed as a means of successfully reducing the net drag across surfaces in a low Reynolds number flow. A Couette flow was generated via a rotating conveyor belt immersed in a tank of high viscosity mineral oil above which the plates with embedded cavities were placed. Drag induced on the plate models was measured using a force gauge and compared directly to measurements acquired over a flat plate. Various cavity aspect ratios and gap heights were tested in order to determine the conditions under which the greatest drag reductions occurred.
Influences of mach number and flow incidence on aerodynamic losses of steam turbine blade
International Nuclear Information System (INIS)
Yoo, Seok Jae; Ng, Wing Fai
2000-01-01
An experiment was conducted to investigate the aerodynamic losses of high pressure steam turbine nozzle (526A) subjected to a large range of incident angles (-34 .deg. to 26 .deg. ) and exit Mach numbers (0.6 and 1.15). Measurements included downstream pitot probe traverses, upstream total pressure, and endwall static pressures. Flow visualization techniques such as shadowgraph and color oil flow visualization were performed to complement the measured data. When the exit Mach number for nozzles increased from 0.9 to 1.1 the total pressure loss coefficient increased by a factor of 7 as compared to the total pressure losses measured at subsonic conditions (M 2 <0.9). For the range of incidence tested, the effect of flow incidence on the total pressure losses is less pronounced. Based on the shadowgraphs taken during the experiment, it's believed that the large increase in losses at transonic conditions is due to strong shock/ boundary layer interaction that may lead to flow separation on the blade suction surface
CFD Analysis of 2D Unsteady Flow Past a Square Cylinder at Low Reynolds Numbers
Directory of Open Access Journals (Sweden)
Li Zhenquan
2018-01-01
Full Text Available A study of the behaviour of flow past a square cylinder for Reynolds numbers 10 and 20 is presented. Open source software Navier2d in Matlab is used in this study. The investigation starts from a uniform initial mesh and then refine the initial mesh using a mesh refinement method which was proposed based on both qualitative theory of differential equations and the finite volume method implemented in Navier2d. The horizontal and vertical velocity component profiles and pressures are shown on the once refined meshes. The comparisons between the profiles and pressures are conducted to show the variations from Reynolds number 10 to 20. The twice refined meshes are also presented and these refined meshes provide the information where the behaviour of flow is complex.
Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows
Raayai-Ardakani, Shabnam; McKinley, Gareth H.
2017-09-01
Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.
Three dimensional computation of turbulent flow in meandering channels
Energy Technology Data Exchange (ETDEWEB)
Van Thinh Nguyen
2000-07-01
In this study a finite element calculation procedure together with two-equation turbulent model k-{epsilon} and mixing length are applied to the problem of simulating 3D turbulent flow in closed and open meandering channels. Near the wall a special approach is applied in order to overcome the weakness of the standard k-{epsilon} in the viscous sub-layer. A specialized shape function is used in the special near wall elements to capture accurately the strong variations of the mean flow variables in the viscosity-affected near wall region. Based on the analogy of water and air flows, a few characteristics of hydraulic problems can be examined in aerodynamic models, respectively. To study the relationships between an aerodynamic and a hydraulic model many experiments have been carried out by Federal Waterway Engineering and Research Institute of Karlsruhe, Germany. In order to test and examine the results of these physical models, an appropriated numerical model is necessary. The numerical mean will capture the limitations of the experimental setup. The similarity and the difference between an aerodynamic and a hydraulic model will be found out by the results of numerical computations and will be depicted in this study. Despite the presence of similarities between the flow in closed channels and the flow in open channels, it should be stated that the presence of a free surface in the open channel introduces serious complications to three dimensional computation. A new unknown, which represents the position of nodes on this free surface, is introduced. A special approach is required for solving this unknown. A procedure surface tracking is applied to the free surface boundary like a moving boundary. Grid nodes on the free surface are free to move in such a way that they belong to the spines, which are the generator lines to define the allowed motion of the nodes on the free surface. (orig.) [German] Die numerische Simulation ist heute ein wichtiges Hilfsmittel fuer die
Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow
Energy Technology Data Exchange (ETDEWEB)
Kang, Chang Woo; Yang, Kyung Soo [Inha University, Incheon (Korea, Republic of)
2014-12-15
Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re{sub r} = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in
Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow
International Nuclear Information System (INIS)
Kang, Chang Woo; Yang, Kyung Soo
2014-01-01
Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re r = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in the
Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu
2016-12-01
We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of compressible light dynamic stall flow at transitional Reynolds numbers
DEFF Research Database (Denmark)
Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.
1996-01-01
Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...
Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background
Floerchinger, Stefan
2015-01-01
Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane and rapidity. We examine how the time evolution of linear perturbations depends on the equation of state as well as on shear viscosity, bulk viscosity and heat conductivity for modes with different azimuthal, radial and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.
VISUALIZATION METHODS OF VORTICAL FLOWS IN COMPUTATIONAL FLUID DYNAMICS AND THEIR APPLICATIONS
Directory of Open Access Journals (Sweden)
K. N. Volkov
2014-05-01
Full Text Available The paper deals with conceptions and methods for visual representation of research numerical results in the problems of fluid mechanics and gas. The three-dimensional nature of unsteady flow being simulated creates significant difficulties for the visual representation of results. It complicates control and understanding of numerical data, and exchange and processing of obtained information about the flow field. Approaches to vortical flows visualization with the usage of gradients of primary and secondary scalar and vector fields are discussed. An overview of visualization techniques for vortical flows using different definitions of the vortex and its identification criteria is given. Visualization examples for some solutions of gas dynamics problems related to calculations of jets and cavity flows are presented. Ideas of the vortical structure of the free non-isothermal jet and the formation of coherent vortex structures in the mixing layer are developed. Analysis of formation patterns for spatial flows inside large-scale vortical structures within the enclosed space of the cubic lid-driven cavity is performed. The singular points of the vortex flow in a cubic lid-driven cavity are found based on the results of numerical simulation; their type and location are identified depending on the Reynolds number. Calculations are performed with fine meshes and modern approaches to the simulation of vortical flows (direct numerical simulation and large-eddy simulation. Paradigm of graphical programming and COVISE virtual environment are used for the visual representation of computational results. Application that implements the visualization of the problem is represented as a network which links are modules and each of them is designed to solve a case-specific problem. Interaction between modules is carried out by the input and output ports (data receipt and data transfer giving the possibility to use various input and output devices.
Verification of the network flow and transport/distributed velocity (NWFT/DVM) computer code
International Nuclear Information System (INIS)
Duda, L.E.
1984-05-01
The Network Flow and Transport/Distributed Velocity Method (NWFT/DVM) computer code was developed primarily to fulfill a need for a computationally efficient ground-water flow and contaminant transport capability for use in risk analyses where, quite frequently, large numbers of calculations are required. It is a semi-analytic, quasi-two-dimensional network code that simulates ground-water flow and the transport of dissolved species (radionuclides) in a saturated porous medium. The development of this code was carried out under a program funded by the US Nuclear Regulatory Commission (NRC) to develop a methodology for assessing the risk from disposal of radioactive wastes in deep geologic formations (FIN: A-1192 and A-1266). In support to the methodology development program, the NRC has funded a separate Maintenance of Computer Programs Project (FIN: A-1166) to ensure that the codes developed under A-1192 or A-1266 remain consistent with current operating systems, are as error-free as possible, and have up-to-date documentations for reference by the NRC staff. Part of this effort would include verification and validation tests to assure that a code correctly performs the operations specified and/or is representing the processes or system for which it is intended. This document contains four verification problems for the NWFT/DVM computer code. Two of these problems are analytical verifications of NWFT/DVM where results are compared to analytical solutions. The other two are code-to-code verifications where results from NWFT/DVM are compared to those of another computer code. In all cases NWFT/DVM showed good agreement with both the analytical solutions and the results from the other code
Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model
2014-09-19
the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to
Analysis of pressure-flow data in terms of computer-derived urethral resistance parameters.
van Mastrigt, R; Kranse, M
1995-01-01
The simultaneous measurement of detrusor pressure and flow rate during voiding is at present the only way to measure or grade infravesical obstruction objectively. Numerous methods have been introduced to analyze the resulting data. These methods differ in aim (measurement of urethral resistance and/or diagnosis of obstruction), method (manual versus computerized data processing), theory or model used, and resolution (continuously variable parameters or a limited number of classes, the so-called monogram). In this paper, some aspects of these fundamental differences are discussed and illustrated. Subsequently, the properties and clinical performance of two computer-based methods for deriving continuous urethral resistance parameters are treated.
The influence of the Reynolds number on the passive scalar field in a turbulent channel flow
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2006-01-01
Many different turbulent heat transfer calculations based on a very accurate pseudo-spectral code have been performed in the last 5 years. The main effort was to investigate temperature fields at different Prandtl numbers, ranging from Pr=0.7 to Pr=200. For the treatment of the turbulent heat transfer at low Reynolds and high Prandtl numbers, a Direct Numerical Simulation (DNS) was used for structures of the turbulent motions. DNS describes all the length and time scales for velocity and temperature fields. When Prandtl number is higher than 1, the smallest temperature scales are approximately inversely proportional to the square root of Prandtl number. For the smallest temperature scales, not resolved in the high Prandtl number simulation, a spectral turbulent diffusivity model was used in the pseudo-spectral computer code for DNS. A comparison of our temperature profiles obtained at friction Reynolds number Reτ=150 and Pr=100 and Pr=200 to the mean profiles of Calmet and Magnaudet, Wang and Lu and Kader's correlation that was built as a best fit of various experimental data at higher Reynolds numbers, revealed the discrepancies up to 10%. The most important reason for the differences was in different Reynolds numbers, which were much lower in our simulations than in the above mentioned LES simulations and experiments. The similar phenomenon as in our case can be found when DNS of Kawamura and Kader's results at Reτ=180 and Pr=0.71 were compared. On the other hand, the comparisons to the Kader's correlation at higher Reynolds numbers (i.e. DNS of Kawamura at Reτ=640 and DNS of Tiselj at Reτ=424) show that the differences are within statistical uncertainties. It follows that the heat transfer depends much more on Reynolds number in the range of low Reynolds numbers than in the range of high Reynolds numbers. (author)
Direct Numerical Simulation of Flows over an NACA-0012 Airfoil at Low and Moderate Reynolds Numbers
Balakumar, P.
2017-01-01
Direct numerical simulations (DNS) of flow over an NACA-0012 airfoil are performed at a low and a moderate Reynolds numbers of Re(sub c)=50 times10(exp 3) and 1times 10(exp 6). The angles of attack are 5 and 15 degrees at the low and the moderate Reynolds number cases respectively. The three-dimensional unsteady compressible Navier-Stokes equations are solved using higher order compact schemes. The flow field in the low Reynolds number case consists of a long separation bubble near the leading-edge region and an attached boundary layer on the aft part of the airfoil. The shear layer that formed in the separated region persisted up to the end of the airfoil. The roles of the turbulent diffusion, advection, and dissipation terms in the turbulent kinetic-energy balance equation change as the boundary layer evolves over the airfoil. In the higher Reynolds number case, the leading-edge separation bubble is very small in length and in height. A fully developed turbulent boundary layer is observed in a short distance downstream of the reattachment point. The boundary layer velocity near the wall gradually decreases along the airfoil. Eventually, the boundary layer separates near the trailing edge. The Reynolds stresses peak in the outer part of the boundary layer and the maximum amplitude also gradually increases along the chord.
Computational Modeling of Flow Control Systems for Aerospace Vehicles, Phase I
National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...
MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS
Energy Technology Data Exchange (ETDEWEB)
Joseph Katz and Omar Knio
2007-01-10
The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions
International Nuclear Information System (INIS)
Good, W.F.; Gur, D.
1987-01-01
The errors associated with derivation of cerebral blood flow values by the xenon-enhanced computed tomography (CT) method have been evaluated as a function of tissue heterogeneity and CT noise. The results of this study indicate that CT noise introduces large errors in the derived flow value when data for a single, unprocessed voxel are used for this purpose. CT noise increases the derived flow values in a systematic way. Tissue heterogeneity results in a systematic error which lowers the derived flow values. Errors due to both parameters are computed for typical and extreme conditions
Computing variational bounds for flow through random aggregates of Spheres
International Nuclear Information System (INIS)
Berryman, J.G.
1983-01-01
Known formulas for variational bounds on Darcy's constant for slow flow through porous media depend on two-point and three-poiint spatial correlation functions. Certain bounds due to Prager and Doi depending only a two-point correlation functions have been calculated for the first time for random aggregates of spheres with packing fractions (eta) up to eta = 0.64. Three radial distribution functions for hard spheres were tested for eta up to 0.49: (1) the uniform distribution or ''well-stirred approximation,'' (2) the Percus Yevick approximation, and (3) the semi-empirical distribution of Verlet and Weis. The empirical radial distribution functions of Benett andd Finney were used for packing fractions near the random-close-packing limit (eta/sub RCP/dapprox.0.64). An accurate multidimensional Monte Carlo integration method (VEGAS) developed by Lepage was used to compute the required two-point correlation functions. The results show that Doi's bounds are preferred for eta>0.10 while Prager's bounds are preferred for eta>0.10. The ''upper bounds'' computed using the well-stirred approximation actually become negative (which is physically impossible) as eta increases, indicating the very limited value of this approximation. The other two choices of radial distribution function give reasonable results for eta up to 0.49. However, these bounds do not decrease with eta as fast as expected for large eta. It is concluded that variational bounds dependent on three-point correlation functions are required to obtain more accurate bounds on Darcy's constant for large eta
Calculation of large Reynolds number two-dimensional flow using discrete vortices with random walk
International Nuclear Information System (INIS)
Milinazzo, F.; Saffman, P.G.
1977-01-01
The numerical calculation of two-dimensional rotational flow at large Reynolds number is considered. The method of replacing a continuous distribution of vorticity by a finite number, N, of discrete vortices is examined, where the vortices move under their mutually induced velocities plus a random component to simulate effects of viscosity. The accuracy of the method is studied by comparison with the exact solution for the decay of a circular vortex. It is found, and analytical arguments are produced in support, that the quantitative error is significant unless N is large compared with a characteristic Reynolds number. The mutually induced velocities are calculated by both direct summation and by the ''cloud in cell'' technique. The latter method is found to produce comparable error and to be much faster
Computer Mathematics Games and Conditions for Enhancing Young Children's Learning of Number Sense
Kermani, Hengameh
2017-01-01
Purpose: The present study was designed to examine whether mathematics computer games improved young children's learning of number sense under three different conditions: when used individually, with a peer, and with teacher facilitation. Methodology: This study utilized a mixed methodology, collecting both quantitative and qualitative data. A…
Mutlu, Yilmaz; Akgün, Levent
2017-01-01
The aim of this study is to examine the effects of computer assisted instruction materials on approximate number skills of students with mathematics learning difficulties. The study was carried out with pretest-posttest quasi experimental method with a single subject. The participants of the study consist of a girl and two boys who attend 3rd…
Directory of Open Access Journals (Sweden)
Mingyue Liu
2015-09-01
Full Text Available The Deep Draft Semi-Submersible (DDS concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around α = 15°. Furthermore, the flow around circular- section-cylinder arrays is also discussed in comparison with that of square cylinders.
Dispersion in cylindrical channels on the laminar flow at low Fourier numbers.
Kucza, Witold; Dąbrowa, Juliusz; Nawara, Katarzyna
2015-06-30
A numerical solution of the uniform dispersion model in cylindrical channels at low Fourier numbers is presented. The presented setup allowed to eliminate experimental non-idealities interfering the laminar flow. Double-humped responses measured in a flow injection system with impedance detection agreed with those predicted by theory. Simulated concentration profiles as well as flow injection analysis (FIA) responses show the predictive and descriptive power of the numerical approach. A strong dependence of peak shapes on Fourier numbers, at its low values, makes the approach suitable for determination of diffusion coefficients. In the work, the uniform dispersion model coupled with the Levenberg-Marquardt method of optimization allowed to determine the salt diffusion coefficient for KCl, NaCl, KMnO4 and CuSO4 in water. The determined values (1.83, 1.53, 1.57 and 0.90)×10(-9)m(2)s(-1), respectively, agree well with the literature data. Copyright © 2015 Elsevier B.V. All rights reserved.
Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows
Sun, P. N.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A. M.
2018-03-01
It is well known that the use of SPH models in simulating flow at high Reynolds numbers is limited because of the tensile instability inception in the fluid region characterized by high vorticity and negative pressure. In order to overcome this issue, the δ+-SPH scheme is modified by implementing a Tensile Instability Control (TIC). The latter consists of switching the momentum equation to a non-conservative formulation in the unstable flow regions. The loss of conservation properties is shown to induce small errors, provided that the particle distribution is regular. The latter condition can be ensured thanks to the implementation of a Particle Shifting Technique (PST). The novel variant of the δ+-SPH is proved to be effective in preventing the onset of tensile instability. Several challenging benchmark tests involving flows past bodies at large Reynolds numbers have been used. Within this a simulation characterized by a deforming foil that resembles a fish-like swimming body is used as a practical application of the δ+-SPH model in biological fluid mechanics.
Steady finite-Reynolds-number flows in three-dimensional collapsible tubes
Hazel, Andrew L.; Heil, Matthias
2003-07-01
A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.
Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar
2017-07-01
Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.
Reznik, A. L.; Tuzikov, A. V.; Solov'ev, A. A.; Torgov, A. V.
2016-11-01
Original codes and combinatorial-geometrical computational schemes are presented, which are developed and applied for finding exact analytical formulas that describe the probability of errorless readout of random point images recorded by a scanning aperture with a limited number of threshold levels. Combinatorial problems encountered in the course of the study and associated with the new generalization of Catalan numbers are formulated and solved. An attempt is made to find the explicit analytical form of these numbers, which is, on the one hand, a necessary stage of solving the basic research problem and, on the other hand, an independent self-consistent problem.
Turbulent flow in spiral tubes and effect of Prandtl number on a convective heat transfer
International Nuclear Information System (INIS)
Shistel', R.; Goss, Zh.
1976-01-01
Turbulent flow is analized of the fluid in the spiral tube with a pitch which is small enough as compared to the curvature radius. The effect of the curvature and the Prandtl number on the turbulent convection is studied. A description of three-dimensional model and its application for the spiral tubes is given. The example of heat convection in curved channels reveals the opportunity for employment of three-dimensional model to calculate the recirculating flows in complex-geometry channels, description of the turbulence field, and determination of the wall friction and heat transfer. The introduction of the wall functions into the numerical method affects adversely accuracy of calculations but ensures a considerable time saving and makes it possible to study the process in the first approximation. The example illustrates possible practical application of the calculation procedure
Theory of viscous transonic flow over airfoils at high Reynolds number
Melnik, R. E.; Chow, R.; Mead, H. R.
1977-01-01
This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.
Computational Stud of Flow in Curved Pipes with Circular-Section
Shirayama, Susumu; Kawamura, Tetsuya; Kuwahara, Kunio; 白山, 晋; 河村, 哲也; 桑原, 邦郎
1985-01-01
By solving the incompressible Navier-Stokes equations the flow field is calculated in a circular-sectioned pipe with a straight inlet or gradually enlarged inlet in the higher Dean number. With the straight inlet, a secondary flow of cross-stream planes was obtained and with the higher Dean number some different flow patterns were obtained. With the gradually enlarged inlet, the difference of flow patterns corresponding to Reynolds number could be simulated.
Computational fluid dynamics modeling of mixed convection flows in buildings enclosures
Energy Technology Data Exchange (ETDEWEB)
Kayne, Alexander; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)
2013-07-01
In recent years Computational Fluid Dynamics (CFD) simulations are increasingly used to model the air circulation and temperature environment inside the rooms of residential and office buildings to gain insight into the relative energy consumptions of various HVAC systems for cooling/heating for climate control and thermal comfort. This requires accurate simulation of turbulent flow and heat transfer for various types of ventilation systems using the Reynolds-Averaged Navier-Stokes (RANS) equations of fluid dynamics. Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) of Navier-Stokes equations is computationally intensive and expensive for simulations of this kind. As a result, vast majority of CFD simulations employ RANS equations in conjunction with a turbulence model. In order to assess the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for accurate simulations, it is critical to validate the calculations against the experimental data. For this purpose, we use three well known benchmark validation cases, one for natural convection in 2D closed vertical cavity, second for forced convection in a 2D rectangular cavity and the third for mixed convection in a 2D square cavity. The simulations are performed on a number of meshes of different density using a number of turbulence models. It is found that k-epsilon two-equation turbulence model with a second-order algorithm on a reasonable mesh gives the best results. This information is then used to determine the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for flows in 3D enclosures with different ventilation systems. In particular two cases are considered for which the experimental data is available. These cases are (1) air flow and heat transfer in a naturally ventilated room and (2) airflow and temperature distribution in an atrium. Good agreement with the experimental data and computations of other investigators is obtained.
Allen, Rebecca; Sun, Shuyu
2017-01-01
We compute effective properties (i.e., permeability, hydraulic tortuosity, and diffusive tortuosity) of three different digital porous media samples, including in-line array of uniform shapes, staggered-array of squares, and randomly distributed squares. The permeability and hydraulic tortuosity are computed by solving a set of rescaled Stokes equations obtained by homogenization, and the diffusive tortuosity is computed by solving a homogenization problem given for the effective diffusion coefficient that is inversely related to diffusive tortuosity. We find that hydraulic and diffusive tortuosity can be quantitatively different by up to a factor of ten in the same pore geometry, which indicates that these tortuosity terms cannot be used interchangeably. We also find that when a pore geometry is characterized by an anisotropic permeability, the diffusive tortuosity (and correspondingly the effective diffusion coefficient) can also be anisotropic. This finding has important implications for reservoir-scale modeling of flow and transport, as it is more realistic to account for the anisotropy of both the permeability and the effective diffusion coefficient.
Allen, Rebecca
2017-02-13
We compute effective properties (i.e., permeability, hydraulic tortuosity, and diffusive tortuosity) of three different digital porous media samples, including in-line array of uniform shapes, staggered-array of squares, and randomly distributed squares. The permeability and hydraulic tortuosity are computed by solving a set of rescaled Stokes equations obtained by homogenization, and the diffusive tortuosity is computed by solving a homogenization problem given for the effective diffusion coefficient that is inversely related to diffusive tortuosity. We find that hydraulic and diffusive tortuosity can be quantitatively different by up to a factor of ten in the same pore geometry, which indicates that these tortuosity terms cannot be used interchangeably. We also find that when a pore geometry is characterized by an anisotropic permeability, the diffusive tortuosity (and correspondingly the effective diffusion coefficient) can also be anisotropic. This finding has important implications for reservoir-scale modeling of flow and transport, as it is more realistic to account for the anisotropy of both the permeability and the effective diffusion coefficient.
Energy Technology Data Exchange (ETDEWEB)
Shadid, J.N.; Moffat, H.K.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Salinger, A.G.
1996-05-01
The theoretical background for the finite element computer program, MPSalsa, is presented in detail. MPSalsa is designed to solve laminar, low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow, heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solver coupled multiple Poisson or advection-diffusion- reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively. The code employs unstructured meshes, using the EXODUS II finite element data base suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec solver library.
Multiphase integral reacting flow computer code (ICOMFLO): User`s guide
Energy Technology Data Exchange (ETDEWEB)
Chang, S.L.; Lottes, S.A.; Petrick, M.
1997-11-01
A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air
Acoustic-hydrodynamic-flame coupling—A new perspective for zero and low Mach number flows
Pulikkottil, V. V.; Sujith, R. I.
2017-04-01
A combustion chamber has a hydrodynamic field that convects the incoming fuel and oxidizer into the chamber, thereby causing the mixture to react and produce heat energy. This heat energy can, in turn, modify the hydrodynamic and acoustic fields by acting as a source and thereby, establish a positive feedback loop. Subsequent growth in the amplitude of the acoustic field variables and their eventual saturation to a limit cycle is generally known as thermo-acoustic instability. Mathematical representation of these phenomena, by a set of equations, is the subject of this paper. In contrast to the ad hoc models, an explanation of the flame-acoustic-hydrodynamic coupling, based on fundamental laws of conservation of mass, momentum, and energy, is presented in this paper. In this paper, we use a convection reaction diffusion equation, which, in turn, is derived from the fundamental laws of conservation to explain the flame-acoustic coupling. The advantage of this approach is that the physical variables such as hydrodynamic velocity and heat release rate are coupled based on the conservation of energy and not based on an ad hoc model. Our approach shows that the acoustic-hydrodynamic interaction arises from the convection of acoustic velocity fluctuations by the hydrodynamic field and vice versa. This is a linear mechanism, mathematically represented as a convection operator. This mechanism resembles the non-normal mechanism studied in hydrodynamic theory. We propose that this mechanism could relate the instability mechanisms of hydrodynamic and thermo-acoustic systems. Furthermore, the acoustic-hydrodynamic interaction is shown to be responsible for the convection of entropy disturbances from the inlet of the chamber. The theory proposed in this paper also unifies the observations in the fields of low Mach number flows and zero Mach number flows. In contrast to the previous findings, where compressibility is shown to be causing different physics for zero and low Mach
Flowing of supersonic underexpanded micro-jets in the range of moderate Reynolds numbers
Mironov, S. G.; Aniskin, V. M.; Maslov, A. A.
2017-10-01
The paper presents new experimental results on the simulation of supersonic underexpanded micro-jets by macro-jet in the range of moderate Reynolds numbers of air outflow from the nozzle. A correlation is shown between the variations in the Pitot pressure in the model micro-jet with variations in the length of the supersonic core of real the micro-jets. The results of experiments on the effect of humidity on the pulsation of mass flow rate in a micro-jet are presented.
Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi
2011-09-01
In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.
DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers
International Nuclear Information System (INIS)
Schwertfirm, Florian; Manhart, Michael
2007-01-01
We perform DNS of passive scalar transport in low Reynolds number turbulent channel flow at Schmidt numbers up to Sc = 49. The high resolutions required to resolve the scalar concentration fields at such Schmidt numbers are achieved by a hierarchical algorithm in which only the scalar fields are solved on the grid dictated by the Batchelor scale. The velocity fields are solved on coarser grids and prolonged by a conservative interpolation to the fine-grid. The trends observed so far at lower Schmidt numbers Sc ≤ 10 are confirmed, i.e. the mean scalar gradient steepens at the wall with increasing Schmidt number, the peaks of turbulent quantities increase and move towards the wall. The instantaneous scalar fields show a dramatic change. Observable structures get longer and thinner which is connected with the occurrence of steeper gradients, but the wall concentrations penetrate less deeply into the plateau in the core of the channel. Our data shows that the thickness of the conductive sublayer, as defined by the intersection point of the linear with the logarithmic asymptote scales with Sc -0.29 . With this information it is possible to derive an expression for the dimensionless transfer coefficient K + which is only dependent on Sc and Re τ . This expression is in full accordance to previous results which demonstrates that the thickness of the conductive sublayer is the dominating quantity for the mean scalar profile
DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers
Energy Technology Data Exchange (ETDEWEB)
Schwertfirm, Florian [Fachgebiet Hydromechanik, Technische Universitaet Muenchen, Arcisstr. 21, 80337 Muenchen (Germany); Manhart, Michael [Fachgebiet Hydromechanik, Technische Universitaet Muenchen, Arcisstr. 21, 80337 Muenchen (Germany)], E-mail: m.manhart@bv.tum.de
2007-12-15
We perform DNS of passive scalar transport in low Reynolds number turbulent channel flow at Schmidt numbers up to Sc = 49. The high resolutions required to resolve the scalar concentration fields at such Schmidt numbers are achieved by a hierarchical algorithm in which only the scalar fields are solved on the grid dictated by the Batchelor scale. The velocity fields are solved on coarser grids and prolonged by a conservative interpolation to the fine-grid. The trends observed so far at lower Schmidt numbers Sc {<=} 10 are confirmed, i.e. the mean scalar gradient steepens at the wall with increasing Schmidt number, the peaks of turbulent quantities increase and move towards the wall. The instantaneous scalar fields show a dramatic change. Observable structures get longer and thinner which is connected with the occurrence of steeper gradients, but the wall concentrations penetrate less deeply into the plateau in the core of the channel. Our data shows that the thickness of the conductive sublayer, as defined by the intersection point of the linear with the logarithmic asymptote scales with Sc{sup -0.29}. With this information it is possible to derive an expression for the dimensionless transfer coefficient K{sup +} which is only dependent on Sc and Re{sub {tau}}. This expression is in full accordance to previous results which demonstrates that the thickness of the conductive sublayer is the dominating quantity for the mean scalar profile.
Computational model on pulsatile flow of blood through a tapered ...
Indian Academy of Sciences (India)
S PRIYADHARSHINI
2017-11-02
Nov 2, 2017 ... It is pertinent to note that the magnitudes of flow resistance are higher in the case of ... mathematical model on non-Newtonian flow of blood through a ..... The important predictions of the present investigation are enumerating the .... drug carriers for targeted drug delivery, reducing blood flow at the time of ...
Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.
1988-01-01
A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.
Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin
2016-07-01
Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor. Copyright © 2016 the American Physiological Society.
Computational Analyses of Complex Flows with Chemical Reactions
Bae, Kang-Sik
The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K--1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic
Verkaik, A.C.; Bogaerds, A.C.B.; Storti, F.; Van De Vosse, F.N.
2012-01-01
When blood is pumped through the aortic valves, it has a time dependent flow with a relatively high speed, resulting in Reynolds numbers between 1500 and 3000. Hence, flow is in the transitional regime between laminar and turbulent flow. Transitional flow contains small scale fluctuations, see
Heat or mass transfer from a sphere in Stokes flow at low Péclet number
Bell, Christopher G.
2013-04-01
We consider the low Péclet number, Pe≪1, asymptotic solution for steady-state heat or mass transfer from a sphere immersed in Stokes flow with a Robin boundary condition on its surface, representing Newton cooling or a first-order chemical reaction. The application of Van Dyke\\'s rule up to terms of O(Pe3) shows that the O(Pe3logPe) terms in the expression for the average Nusselt/Sherwood number are twice those previously derived in the literature. Inclusion of the O(Pe3) terms is shown to increase the range of validity of the expansion. © 2012 Elsevier Ltd. All rights reserved.
Computation of two-dimensional isothermal flow in shell-and-tube heat exchangers
International Nuclear Information System (INIS)
Carlucci, L.N.; Galpin, P.F.; Brown, J.D.; Frisina, V.
1983-07-01
A computational procedure is outlined whereby two-dimensional isothermal shell-side flow distributions can be calculated for tube bundles having arbitrary boundaries and flow blocking devices, such as sealing strips, defined in arbitrary locations. The procedure is described in some detail and several computed results are presented to illustrate the robustness and generality of the method
Comparisons of LES and RANS Computations with PIV Experiments on a Cylindrical Cavity Flow
Directory of Open Access Journals (Sweden)
Wen-Tao Su
2013-01-01
Full Text Available A comparison study on the numerical computations by large eddy simulation (LES and Reynolds-averaged Navier-Stokes (RANS methods with experiment on a cylindrical cavity flow was conducted in this paper. Numerical simulations and particle image velocimetry (PIV measurement were performed for two Reynolds numbers of the flow at a constant aspect ratio of H/R = 2.4 (R is the radius of the cylindrical cavity, and H is liquid level. The three components of velocity were extracted from 100 sequential PIV measured velocity frames with averaging, in order to illustrate the axial jet flow evolution and circulation distribution in the radial direction. The results show that LES can reproduce well the fine structure inside the swirling motions in both the meridional and the horizontal planes, as well as the distributions of velocity components and the circulation, in good agreement with experimental results, while the RANS method only provided a rough trend of inside vortex structure. Based on the analysis of velocity profiles at various locations, it indicates that LES is more suitable for predicting the complex flow characteristics inside complicated three-dimensional geometries.
An alternating direction algorithm for two-phase flow visualization using gamma computed tomography.
Xue, Qian; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi
2012-12-01
In order to build high-speed imaging systems with low cost and low radiation leakage, the number of radioactive sources and detectors in the multiphase flow computed tomography (CT) system has to be limited. Moreover, systematic and random errors are inevitable in practical applications. The limited and corrupted measurement data have made the tomographic inversion process the most critical part in multiphase flow CT. Although various iterative reconstruction algorithms have been developed based on least squares minimization, the imaging quality is still inadequate for the reconstruction of relatively complicated bubble flow. This paper extends an alternating direction method (ADM), which is originally proposed in compressed sensing, to image two-phase flow using a low-energy γ-CT system. An l(1) norm-based regularization technique is utilized to treat the ill-posedness of the inverse problem, and the image reconstruction model is reformulated into one having partially separable objective functions, thereafter a dual-based ADM is adopted to solve the resulting problem. The feasibility is demonstrated in prototype experiments. Comparisons between the ADM and the conventional iterative algorithms show that the former has obviously improved the space resolution in reasonable time.
Linear drag law for high-Reynolds-number flow past an oscillating body
Agre, Natalie; Childress, Stephen; Zhang, Jun; Ristroph, Leif
2016-07-01
An object immersed in a fast flow typically experiences fluid forces that increase with the square of speed. Here we explore how this high-Reynolds-number force-speed relationship is affected by unsteady motions of a body. Experiments on disks that are driven to oscillate while progressing through air reveal two distinct regimes: a conventional quadratic relationship for slow oscillations and an anomalous scaling for fast flapping in which the time-averaged drag increases linearly with flow speed. In the linear regime, flow visualization shows that a pair of counterrotating vortices is shed with each oscillation and a model that views a train of such dipoles as a momentum jet reproduces the linearity. We also show that appropriate scaling variables collapse the experimental data from both regimes and for different oscillatory motions into a single drag-speed relationship. These results could provide insight into the aerodynamic resistance incurred by oscillating wings in flight and they suggest that vibrations can be an effective means to actively control the drag on an object.
Holden, Michael S.; Harvey, John K.; Boyd, Iain D.; George, Jyothish; Horvath, Thomas J.
1997-01-01
pressure and heat transfer measurements on the sting, although the computed heat transfer rates in the recirculation region did not exhibit the same characteristics as the measurements. For the 10MJkg and 500 bar reservoir match point condition, the measurements and heat transfer along the sting from the first group of studies were in agreement with the Navier Stokes solutions for laminar conditions. A similar set of measurements made in later tests where the model was moved to a slightly different position in the test section indicated that the boundary layer in the reattachment compression region was close to transition or transitional where small changes in the test environment can result in larger than laminar heating rates. The maximum heating coefficients on the sting observed in the present studies was a small fraction of similar measurements obtained at nominally the same conditions in the HEG shock tunnel, where it is possible for transition to occur in the base flow, and in the low enthalpy studies conducted in the NASA Langley high Reynolds number Mach 10 tunnel where the base flow was shown to be turbulent. While the hybrid Navier- StokedDMSC calculations by Gochberg et al. (Reference 1) suggested that employing the Navier- Stokes calculations for the entire flowfield could be seriously in error in the base region for the 10 MJkg, 500 bar test case, similar calculations performed by Cornell, presented here, do not.
[Effect of Reading a Book on a Tablet Computer on Cerebral Blood Flow in the Prefrontal Cortex].
Sugiura, Akihiro; Eto, Takuya; Kinoshita, Fumiya; Takada, Hiroki
2018-01-01
By measuring cerebral blood flow in the prefrontal cortex, we aimed to determine how reading a book on a tablet computer affects sleep. Seven students (7 men age range, 21-32 years) participated in this study. In a controlled illuminance environment, the subjects read a novel in printed form or on a tablet computer from any distance. As the subjects were reading, the cerebral blood flow in their prefrontal cortex was measured by near-infrared spectroscopy. The study protocol was as follows. 1) Subjects mentally counted a sequence of numbers for 30 s as a pretest to standardized thinking and then 2) read the novel for 10 min, using the printed book or tablet computer. In step 2), the use of the book or tablet computer was in a random sequence. Subjects rested between the two tasks. Significantly increased brain activity (increase in regional cerebral blood flow) was observed following reading a novel on a tablet computer compared with that after reading a printed book. Furthermore, the region around Broca's area was more active when reading on a tablet computer than when reading a printed book. Considering the results of this study and previous studies on physiological characteristics during nonrapid eye movement sleep, we concluded that reading a book on a tablet computer before the onset of sleep leads to the potential inhibition of sound sleep through mechanisms other than the suppression of melatonin secretion.
Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.
1986-01-01
The complex integer multiplier and adder over the direct sum of two copies of finite field developed by Cozzens and Finkelstein (1985) is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplication over the rings of integers modulo Fermat numbers can be performed by means of two integer multiplications, whereas the complex integer multiplication requires three integer multiplications. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed to compute a systolic array of the DFT can be reduced substantially. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
Dynamics of an elastic capsule in moderate Reynolds number Poiseuille flow
International Nuclear Information System (INIS)
Shin, Soo Jai; Sung, Hyung Jin
2012-01-01
Highlights: ► Dynamics of a capsule in moderate Re Poiseuille flow were explored numerically. ► Capsule tends to tumbling motion for larger membrane elasticity and higher Re flow. ► Capsule undergoes swinging motion for larger size and aspect ratio of the capsule. ► Capsule tends to migrate to a specific lateral equilibrium as Re increases. ► Equilibrium position varies differently around the transition of the dynamic motion. - Abstract: The dynamic motions and lateral equilibrium positions of a two-dimensional elastic capsule in a Poiseuille flow were explored at moderate Reynolds number (10 ⩽ Re ⩽ 100) as a function of the initial lateral position (y 0 ), Re, aspect ratio (ε), size ratio (λ), membrane stretching coefficient (φ) and bending coefficient (γ). The transition between tank-treading (TT) and swinging (SW) to tumbling (TU) motions was observed and the lateral equilibrium positions of the capsules varied according to the conditions. The initial behavior of the elastic capsule was influenced by variation in the initial lateral position (y 0 ), but the equilibrium position and dynamic motion of the capsule were not affected by such variation. The capsules had a stronger tendency toward TU motion at higher values of Re, φ and γ, whereas the capsules underwent TT or SW motion as the values of ε and λ increased. Under moderate Re Poiseuille flows, capsules tended to migrate across streamlines to a specific equilibrium position. The lateral equilibrium position shifted toward the centerline at larger λ and migrated toward the wall at larger ε,φandγ. As Re increased, the equilibrium position first shifted toward the bottom wall, then toward the channel center. However, different equilibrium position trends were obtained around the SW–TU transition. The capsule undergoing TU motion tended to migrate downward toward the bottom wall more than the capsule undergoing SW motion, all other conditions being similar.
On the modelling of turbulent heat and mass transfer for the computation of buoyancy affected flows
International Nuclear Information System (INIS)
Viollet, P.-L.
1981-02-01
The k - epsilon eddy viscosity turbulence model is applied to simple test cases of buoyant flows. Vertical as horizontal stable flows are nearly well represented by the computation, and in unstable flows the mixing is underpredicted. The general agreement is good enough for allowing application to thermal-fluid engineering problems
Strouhal number effect on synchronized vibration range of a circular cylinder in cross flow
International Nuclear Information System (INIS)
Kawamura, T.; Nakao, T.; Hayashi, M.; Murayama, K.
2001-01-01
Synchronized vibrations were measured for a circular cylinder subjected to a water cross flow in the subcritical Reynolds numbers in order to compare the synchronized vibration range between the subcritical and supercritical regions and clarify the effect of the Strouhal number on it. A small peak vibration in the lift direction was found when the Karman vortex shedding frequency was about 1/5 of the cylinder natural frequency in only the subcritical region. The ratio of the Karman vortex frequency to the natural frequency where the self-excited vibration in the drag direction by the symmetrical vortices began was about 1/4 in the subcritical region, and increased to 0,32 at the Strouhal number of 0,29 in the supercritical region. The frequency ratio at the beginning of the lock-in vibration in the drag direction by the Karman vortex was about 1/2, and that in the lift direction decreased from 1 to about 0,8 with decreasing Strouhal number. (author)
Optimizing the Number of Cooperating Terminals for Energy Aware Task Computing in Wireless Networks
DEFF Research Database (Denmark)
Olsen, Anders Brødløs; Fitzek, Frank H. P.; Koch, Peter
2005-01-01
It is generally accepted that energy consumption is a significant design constraint for mobile handheld systems, therefore motivations for methods optimizing the energy consumption making better use of the restricted battery resources are evident. A novel concept of distributed task computing...... is previously proposed (D2VS), where the overall idea of selective distribution of tasks among terminals is made. In this paper the optimal number of terminals for cooperative task computing in a wireless network will be investigated. The paper presents an energy model for the proposed scheme. Energy...... consumption of the terminals with respect to their workload and the overhead of distributing tasks among terminals are taken into account. The paper shows, that the number of cooperating terminals is in general limited to a few, though alternating with respect to the various system parameters....
Phase transition and computational complexity in a stochastic prime number generator
Energy Technology Data Exchange (ETDEWEB)
Lacasa, L; Luque, B [Departamento de Matematica Aplicada y EstadIstica, ETSI Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Miramontes, O [Departamento de Sistemas Complejos, Instituto de FIsica, Universidad Nacional Autonoma de Mexico, Mexico 01415 DF (Mexico)], E-mail: lucas@dmae.upm.es
2008-02-15
We introduce a prime number generator in the form of a stochastic algorithm. The character of this algorithm gives rise to a continuous phase transition which distinguishes a phase where the algorithm is able to reduce the whole system of numbers into primes and a phase where the system reaches a frozen state with low prime density. In this paper, we firstly present a broader characterization of this phase transition, both in analytical and numerical terms. Critical exponents are calculated, and data collapse is provided. Further on, we redefine the model as a search problem, fitting it in the hallmark of computational complexity theory. We suggest that the system belongs to the class NP. The computational cost is maximal around the threshold, as is common in many algorithmic phase transitions, revealing the presence of an easy-hard-easy pattern. We finally relate the nature of the phase transition to an average-case classification of the problem.
Large-eddy simulation of flow over a grooved cylinder up to transcritical Reynolds numbers
Cheng, W.; Pullin, D. I.; Samtaney, Ravi
2017-01-01
for flow past a cylinder with different surface topographies is the result of a change in the global flow state generated by an interaction of primary flow separation with secondary flow recirculating motions that manifest as a mean-flow secondary bubble
Computations of ideal and real gas high altitude plume flows
Feiereisen, William J.; Venkatapathy, Ethiraj
1988-01-01
In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.
On the computation of the turbulent flow near rough surface
Matveev, S. K.; Jaychibekov, N. Zh.; Shalabayeva, B. S.
2018-05-01
One of the problems in constructing mathematical models of turbulence is a description of the flows near a rough surface. An experimental study of such flows is also difficult because of the impossibility of measuring "inside" the roughness. The theoretical calculation is difficult because of the lack of equations describing the flow in this zone. In this paper, a new turbulence model based on the differential equation of turbulent viscosity balance was used to describe a turbulent flow near a rough surface. The difference between the new turbulence model and the previously known consists in the choice of constants and functions that determine the generation, dissipation and diffusion of viscosity.
Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino
2017-11-01
In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.
Robust flow stability: Theory, computations and experiments in near wall turbulence
Bobba, Kumar Manoj
Helmholtz established the field of hydrodynamic stability with his pioneering work in 1868. From then on, hydrodynamic stability became an important tool in understanding various fundamental fluid flow phenomena in engineering (mechanical, aeronautics, chemical, materials, civil, etc.) and science (astrophysics, geophysics, biophysics, etc.), and turbulence in particular. However, there are many discrepancies between classical hydrodynamic stability theory and experiments. In this thesis, the limitations of traditional hydrodynamic stability theory are shown and a framework for robust flow stability theory is formulated. A host of new techniques like gramians, singular values, operator norms, etc. are introduced to understand the role of various kinds of uncertainty. An interesting feature of this framework is the close interplay between theory and computations. It is shown that a subset of Navier-Stokes equations are globally, non-nonlinearly stable for all Reynolds number. Yet, invoking this new theory, it is shown that these equations produce structures (vortices and streaks) as seen in the experiments. The experiments are done in zero pressure gradient transiting boundary layer on a flat plate in free surface tunnel. Digital particle image velocimetry, and MEMS based laser Doppler velocimeter and shear stress sensors have been used to make quantitative measurements of the flow. Various theoretical and computational predictions are in excellent agreement with the experimental data. A closely related topic of modeling, simulation and complexity reduction of large mechanics problems with multiple spatial and temporal scales is also studied. A nice method that rigorously quantifies the important scales and automatically gives models of the problem to various levels of accuracy is introduced. Computations done using spectral methods are presented.
Accurate Computation of Periodic Regions' Centers in the General M-Set with Integer Index Number
Directory of Open Access Journals (Sweden)
Wang Xingyuan
2010-01-01
Full Text Available This paper presents two methods for accurately computing the periodic regions' centers. One method fits for the general M-sets with integer index number, the other fits for the general M-sets with negative integer index number. Both methods improve the precision of computation by transforming the polynomial equations which determine the periodic regions' centers. We primarily discuss the general M-sets with negative integer index, and analyze the relationship between the number of periodic regions' centers on the principal symmetric axis and in the principal symmetric interior. We can get the centers' coordinates with at least 48 significant digits after the decimal point in both real and imaginary parts by applying the Newton's method to the transformed polynomial equation which determine the periodic regions' centers. In this paper, we list some centers' coordinates of general M-sets' k-periodic regions (k=3,4,5,6 for the index numbers α=−25,−24,…,−1 , all of which have highly numerical accuracy.
A novel potential/viscous flow coupling technique for computing helicopter flow fields
Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul
1993-01-01
The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.
Computation of gradually varied flow in compound open channel ...
Indian Academy of Sciences (India)
The flow of water in an open channel can be treated as steady, gradually varied flow for ... channel between two nodes is treated as a single reach to calculate the loss ... dition at control points and (iii) critical depth is also required to verify the ...
Directory of Open Access Journals (Sweden)
S. Abdul Gaffar
2015-01-01
Full Text Available Magnetic polymers are finding increasing applications in diverse fields of chemical and mechanical engineering. In this paper, we investigate the nonlinear steady boundary layer flow and heat transfer of such fluids from a nonisothermal wedge. The incompressible Eyring-Powell non-Newtonian fluid model is employed and a magnetohydrodynamic body force is included in the simulation. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging nondimensional parameters, namely, the Eyring-Powell rheological fluid parameter (ε, local non-Newtonian parameter based on length scale (δ, Prandtl number (Pr, Biot number (γ, pressure gradient parameter (m, magnetic parameter (M, mixed convection parameter (λ, and dimensionless tangential coordinate (ξ, on velocity and temperature evolution in the boundary layer regime is examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated.
DNS/LES Simulations of Separated Flows at High Reynolds Numbers
Balakumar, P.
2015-01-01
Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.
Robust second-order scheme for multi-phase flow computations
Shahbazi, Khosro
2017-06-01
A robust high-order scheme for the multi-phase flow computations featuring jumps and discontinuities due to shock waves and phase interfaces is presented. The scheme is based on high-order weighted-essentially non-oscillatory (WENO) finite volume schemes and high-order limiters to ensure the maximum principle or positivity of the various field variables including the density, pressure, and order parameters identifying each phase. The two-phase flow model considered besides the Euler equations of gas dynamics consists of advection of two parameters of the stiffened-gas equation of states, characterizing each phase. The design of the high-order limiter is guided by the findings of Zhang and Shu (2011) [36], and is based on limiting the quadrature values of the density, pressure and order parameters reconstructed using a high-order WENO scheme. The proof of positivity-preserving and accuracy is given, and the convergence and the robustness of the scheme are illustrated using the smooth isentropic vortex problem with very small density and pressure. The effectiveness and robustness of the scheme in computing the challenging problem of shock wave interaction with a cluster of tightly packed air or helium bubbles placed in a body of liquid water is also demonstrated. The superior performance of the high-order schemes over the first-order Lax-Friedrichs scheme for computations of shock-bubble interaction is also shown. The scheme is implemented in two-dimensional space on parallel computers using message passing interface (MPI). The proposed scheme with limiter features approximately 50% higher number of inter-processor message communications compared to the corresponding scheme without limiter, but with only 10% higher total CPU time. The scheme is provably second-order accurate in regions requiring positivity enforcement and higher order in the rest of domain.
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.
2017-01-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.
Blanco-Elorrieta, Esti; Pylkkänen, Liina
2016-01-01
What is the neurobiological basis of our ability to create complex messages with language? Results from multiple methodologies have converged on a set of brain regions as relevant for this general process, but the computational details of these areas remain to be characterized. The left anterior temporal lobe (LATL) has been a consistent node within this network, with results suggesting that although it rather systematically shows increased activation for semantically complex structured stimuli, this effect does not extend to number phrases such as 'three books.' In the present work we used magnetoencephalography to investigate whether numbers in general are an invalid input to the combinatory operations housed in the LATL or whether the lack of LATL engagement for stimuli such as 'three books' is due to the quantificational nature of such phrases. As a relevant test case, we employed complex number terms such as 'twenty-three', where one number term is not a quantifier of the other but rather, the two terms form a type of complex concept. In a number naming paradigm, participants viewed rows of numbers and depending on task instruction, named them as complex number terms ('twenty-three'), numerical quantifications ('two threes'), adjectival modifications ('blue threes') or non-combinatory lists (e.g., 'two, three'). While quantificational phrases failed to engage the LATL as compared to non-combinatory controls, both complex number terms and adjectival modifications elicited a reliable activity increase in the LATL. Our results show that while the LATL does not participate in the enumeration of tokens within a set, exemplified by the quantificational phrases, it does support conceptual combination, including the composition of complex number concepts. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Zadeh, Lotfi A.
2001-06-01
Computing, in its usual sense, is centered on manipulation of numbers and symbols. In contrast, computing with words, or CW for short, is a methodology in which the objects of computation are words and propositions drawn from a natural language, e.g., small, large, far, heavy, not very likely, the price of gas is low and declining, Berkeley is near San Francisco, it is very unlikely that there will be a significant increase in the price of oil in the near future, etc. Computing with words is inspired by the remarkable human capability to perform a wide variety of physical and mental tasks without any measurements and any computations. Familiar examples of such tasks are parking a car, driving in heavy traffic, playing golf, riding a bicycle, understanding speech and summarizing a story. Underlying this remarkable capability is the brain's crucial ability to manipulate perceptions-perceptions of distance, size, weight, color, speed, time, direction, force, number, truth, likelihood and other characteristics of physical and mental objects. Manipulation of perceptions plays a key role in human recognition, decision and execution processes. As a methodology, computing with words provides a foundation for a computational theory of perceptions-a theory which may have an important bearing on how humans make-and machines might make-perception-based rational decisions in an environment of imprecision, uncertainty and partial truth. A basic difference between perceptions and measurements is that, in general, measurements are crisp whereas perceptions are fuzzy. One of the fundamental aims of science has been and continues to be that of progressing from perceptions to measurements. Pursuit of this aim has led to brilliant successes. We have sent men to the moon; we can build computers that are capable of performing billions of computations per second; we have constructed telescopes that can explore the far reaches of the universe; and we can date the age of rocks that are
RICHTER, DAVID
2010-03-29
The results from a numerical investigation of inertial viscoelastic flow past a circular cylinder are presented which illustrate the significant effect that dilute concentrations of polymer additives have on complex flows. In particular, effects of polymer extensibility are studied as well as the role of viscoelasticity during three-dimensional cylinder wake transition. Simulations at two distinct Reynolds numbers (Re = 100 and Re = 300) revealed dramatic differences based on the choice of the polymer extensibility (L2 in the FENE-P model), as well as a stabilizing tendency of viscoelasticity. For the Re = 100 case, attention was focused on the effects of increasing polymer extensibility, which included a lengthening of the recirculation region immediately behind the cylinder and a sharp increase in average drag when compared to both the low extensibility and Newtonian cases. For Re = 300, a suppression of the three-dimensional Newtonian mode B instability was observed. This effect is more pronounced for higher polymer extensibilities where all three-dimensional structure is eliminated, and mechanisms for this stabilization are described in the context of roll-up instability inhibition in a viscoelastic shear layer. © 2010 Cambridge University Press.
Reynolds number and end-wall effects on a lid-driven cavity flow
International Nuclear Information System (INIS)
Prasad, A.K.; Koseff, J.R.
1989-01-01
A series of experiments has been conducted in a lid-driven cavity of square cross section (depth = width = 150 mm) for Reynolds numbers (Re, based on lid speed and cavity width) between 3200 and 10 000, and spanwise aspect ratios (SAR) between 0.25:1 and 1:1. Flow visualization using polystyrene beads and two-dimensional laser-Doppler anemometer (LDA) measurements have shed new light on the momentum transfer processes within the cavity. This paper focuses on the variation, with Re and SAR, of the mean and the rms velocities profiles, as well as the /similar to/(U'V') profile, along the horizontal and vertical centerlines in the symmetry plane. In addition, the contribution of the large-scale ''organized structures,'' and the high-frequency ''turbulent'' velocity fluctuations to the total rms is examined. At low Re, the organized structures account for most of the energy contained in the flow irrespective of SAR. As the Re increases, however, so does the energy content of the higher frequency fluctuations. This trend is not independent of SAR; a reduction in the SAR causes the ''organized structures'' to again become more evident
Dynamics of Number of Packets in Transit in Free Flow State of Data Network
International Nuclear Information System (INIS)
Shengkun Xie; Lawniczak, A.T.
2011-01-01
We study how the dynamics of Number of Packets in Transit (NPT) is affected by the coupling of a routing type with a volume of incoming packet traffic in a data network model of packet switching type. The NPT is a network performance indicator of an aggregate type that measures in '' real time '', how many packets are in the network on their routes to their destinations. We conduct our investigation using a time-discrete simulation model that is an abstraction of the Network Layer of the ISO OSI Seven Layer Reference Model. This model focuses on packets and their routing. We consider a static routing and two different types of dynamic routings coupled with different volumes of incoming packet traffic in the network free flow state. Our study shows that the order of the values of the NPT mean value time series depends on the coupling of a routing type with a volume of incoming packet traffic and changes when the volume of incoming packet traffic increases and is closed to the critical source load values, i.e. when it is closed to the phase transition points from the network free flow state to its congested states. (authors)
International Nuclear Information System (INIS)
Temperley, D.J.
1976-01-01
In this paper we consider fully developed, laminar, unidirectional flow of uniformly conducting, incompressible fluid through a rectangular duct of uniform cross-section. An externally applied magnetic field acts parallel to one pair of opposite walls and induced velocity and magnetic fields are generated in a direction parallel to the axis of the duct. The governing equations and boundary conditions for the latter fields are introduced and study is then concentrated on the special case of a duct having all walls non-conducting. For values of the Hartmann number M>>1, classical asymptotic analysis reveals the leading terms in the expansions of the induced fields in all key regions, with the exception of certain boundary layers near the corners of the duct. The order of magnitude of the affect of the latter layers on the flow-rate is discussed and closed-form solutions are obtained for the induced fields near the corners of the duct. Attempts were made to formulate a concise Principle of Minimum Singularity to enable the correct choice of eigen functions for the various field components in the boundary layers on the walls parallel to the applied field. It was found, however, that these components are best found by taking the outer expansion of the closed-form solution in those boundary-layers near the corners of the duct where classical asymptotic analysis is not applicable. (author)
Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.
1997-01-01
This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.
Halim, Herni; Abdullah, Ramdzani
2014-01-01
HIGHLIGHTS Highway traffic noise is a serious problem in Malaysia Heavy traffic flow highway recorded higher noise level compared to low traffic flow Noise level stabilized at certain number of vehicles on the road i.e above 500 vehicles. Although much research on road traffic noise has found that noise level increase are influenced by driver behavior and source-receiver distance, little attention has been paid to the relationship between noise level and total number of vehicles...
Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung
2018-04-01
Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.
Bioinformatics process management: information flow via a computational journal
Directory of Open Access Journals (Sweden)
Lushington Gerald
2007-12-01
Full Text Available Abstract This paper presents the Bioinformatics Computational Journal (BCJ, a framework for conducting and managing computational experiments in bioinformatics and computational biology. These experiments often involve series of computations, data searches, filters, and annotations which can benefit from a structured environment. Systems to manage computational experiments exist, ranging from libraries with standard data models to elaborate schemes to chain together input and output between applications. Yet, although such frameworks are available, their use is not widespread–ad hoc scripts are often required to bind applications together. The BCJ explores another solution to this problem through a computer based environment suitable for on-site use, which builds on the traditional laboratory notebook paradigm. It provides an intuitive, extensible paradigm designed for expressive composition of applications. Extensive features facilitate sharing data, computational methods, and entire experiments. By focusing on the bioinformatics and computational biology domain, the scope of the computational framework was narrowed, permitting us to implement a capable set of features for this domain. This report discusses the features determined critical by our system and other projects, along with design issues. We illustrate the use of our implementation of the BCJ on two domain-specific examples.
Energy Technology Data Exchange (ETDEWEB)
Abbas, M., E-mail: micheline.abbas@ensiacet.fr [Laboratoire de Génie Chimique, Université de Toulouse INPT-UPS, 31030, Toulouse (France); CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Magaud, P. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Gao, Y. [Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Geoffroy, S. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse (France); UPS, INSA, 31077, Toulouse (France)
2014-12-15
The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions.
International Nuclear Information System (INIS)
Abbas, M.; Magaud, P.; Gao, Y.; Geoffroy, S.
2014-01-01
The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions
An Efficient Computational Technique for Fractal Vehicular Traffic Flow
Directory of Open Access Journals (Sweden)
Devendra Kumar
2018-04-01
Full Text Available In this work, we examine a fractal vehicular traffic flow problem. The partial differential equations describing a fractal vehicular traffic flow are solved with the aid of the local fractional homotopy perturbation Sumudu transform scheme and the local fractional reduced differential transform method. Some illustrative examples are taken to describe the success of the suggested techniques. The results derived with the aid of the suggested schemes reveal that the present schemes are very efficient for obtaining the non-differentiable solution to fractal vehicular traffic flow problem.
Pederzani, Jean-Noel; Haj-Hariri, Hossein
2012-11-01
An embedded-boundary (or cut-cell) method for complex geometry with moving boundaries is used to solve the three dimensional Navier-Stokes equation around a self-propelling manta swimming at moderately high Reynolds numbers. The motion of the ray is prescribed using a kinematic model fitted to actual biological data. The dependence of thrust production mechanism on Strouhal and Reynolds numbers is investigated. The vortex core structures are accurately plotted and a correlation between wake structures and propulsive performance is established. This insight is critical in understanding the key flow features that a bio-inspired autonomous vehicle should reproduce in order to swim efficiently. The solution method is implemented, on a block-structured Cartesian grid using a cut-cell approach enabling the code to correctly evaluate the wall shear-stress, a key feature necessary at higher Reynolds. To enhance computational efficiency, a parallel adaptive mesh refinement technique is used. The present method is validated against published experimental results. Supported by ONR MURI.
Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim
2010-01-01
This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.
Correlation between coronary computed tomographic angiography and fractional flow reserve
DEFF Research Database (Denmark)
Kristensen, Thomas Skaarup; Engstrøm, Thomas; Kelbæk, Henning
2010-01-01
Coronary CT angiography (CCTA) has become an important modality to evaluate the presence of coronary artery disease. Coronary artery stenosis of intermediate severity remains a therapeutic dilemma. Measurement of fractional flow reserve (FFR) during coronary angiography is the most established...
Computational fluid dynamics analysis of a mixed flow pump impeller
African Journals Online (AJOL)
ATHARVA
International Journal of Engineering, Science and Technology ... From the CFD analysis software and advanced post processing tools the complex flow inside the ... The numerical simulation can provide quite accurate information on the fluid ...
Bogey , Christophe; Marsden , Olivier; Bailly , Christophe
2012-01-01
International audience; Five isothermal round jets at Mach number M = 0.9 and Reynolds number ReD=10(5) originating from a pipe nozzle are computed by large-eddy simulations to investigate the effects of initial turbulence on flow development and noise generation. In the pipe, the boundary layers are untripped in the first case and tripped numerically in the four others in order to obtain, at the exit, mean velocity profiles similar to a Blasius laminar profile of momentum thickness equal to ...
International Nuclear Information System (INIS)
Xue Yunjing; Gao Peiyi; Lin Yan
2007-01-01
Objective: To investigate flow patterns at carotid bifurcation in vivo by combining computational fluid dynamics (CFD)and MR angiography imaging. Methods: Seven subjects underwent contrast-enhanced MR angiography of carotid artery in Siemens 3.0 T MR. Flow patterns of the carotid artery bifurcation were calculated and visualized by combining MR vascular imaging post-processing and CFD. Results: The flow patterns of the carotid bifurcations in 7 subjects were varied with different phases of a cardiac cycle. The turbulent flow and back flow occurred at bifurcation and proximal of internal carotid artery (ICA) and external carotid artery (ECA), their occurrence and conformation were varied with different phase of a cardiac cycle. The turbulent flow and back flow faded out quickly when the blood flow to the distal of ICA and ECA. Conclusion: CFD combined with MR angiography can be utilized to visualize the cyclical change of flow patterns of carotid bifurcation with different phases of a cardiac cycle. (authors)
An Experimental study on a Method of Computing Minimum flow rate
International Nuclear Information System (INIS)
Cho, Yeon Sik; Kim, Tae Hyun; Kim, Chang Hyun
2009-01-01
Many pump reliability problems in the Nuclear Power Plants (NPPs) are being attributed to the operation of the pump at flow rates well below its best efficiency point(BEP). Generally, the manufacturer and the user try to avert such problems by specifying a minimum flow, below which the pump should not be operated. Pump minimum flow usually involves two considerations. The first consideration is normally termed the 'thermal minimum flow', which is that flow required to prevent the fluid inside the pump from reaching saturation conditions. The other consideration is often referred to as 'mechanical minimum flow', which is that flow required to prevent mechanical damage. However, the criteria for specifying such a minimum flow are not clearly understood by all parties concerned. Also various factor and information for computing minimum flow are not easily available as considering for the pump manufacturer' proprietary. The objective of this study is to obtain experimental data for computing minimum flow rate and to understand the pump performances due to low flow operation. A test loop consisted of the pump to be used in NPPs, water tank, flow rate measurements and piping system with flow control devices was established for this study
Renksizbulut, M.
Nusselt Numbers and drag coefficients of single-component liquid droplets and solid spheres in high temperature, intermediate Reynolds Number flows were investigated. The evaporation of suspended water, Methanol and n-Heptane droplets were followed in laminar air streams up to 1059 K in temperature using a steady-state measurement technique. It is found that the dynamic blowing effect of evaporation causes large reductions in heat transfer rates, and that the film conditions constitute an appropriate reference state for the evaluation of thermophysical properties. The numerical results indicate that the blowing effect of evaporation on momentum transfer is to reduce friction drag very significantly but at the same time increase pressure drag by almost an equal amount; the net effect on the total drag force being only a marginal reduction. In all cases, it is found that thermophysical property variations play a very dominant role in reducing the drag forces acting on cold particles. Results are analysed and a correlation for stagnation-point heat transfer is also presented.
Energy Technology Data Exchange (ETDEWEB)
Soerensen, Niels N.
2009-07-15
The report describes the application of the correlation based transition model of Menter et. al. [1, 2] to the cylinder drag crisis and the stalled flow over an DU-96-W-351 airfoil using the DES methodology. When predicting the flow over airfoils and rotors, the laminar-turbulent transition process can be important for the aerodynamic performance. Today, the most widespread approach is to use fully turbulent computations, where the transitional process is ignored and the entire boundary layer on the wings or airfoils is handled by the turbulence model. The correlation based transition model has lately shown promising results, and the present paper describes the application of the model to predict the drag and shedding frequency for flow around a cylinder from sub to super-critical Reynolds numbers. Additionally, the model is applied to the flow around the DU-96 airfoil, at high angles of attack. (au)
Three dimensional computations of the flow around a LM19 rotor
Energy Technology Data Exchange (ETDEWEB)
Hambraeus, T. [FFA, Bromma (Sweden)
1997-12-31
To achieve insight in the flow phenomenon occurring in wind power engineering modeling of the flow through the basic governing equations, Navier-Stokes and Euler, can be a great complement to experiments and other computational methods such as the BEM (Blade Element Momentum). Navier-Stokes methods is regularly used in prediction of air-foil flows but then mostly under attached flow conditions. One of the main differences between air-foil computations for aircraft industry and computations for wind turbine applications is that the former is not very interested in separated flow while for the latter case this is part of the operating conditions. It has been noted that separated flow poses problems since the most popular turbulence models such as Baldwin-Lomax and the {kappa}-{epsilon} model seems to over estimate the amount of turbulent viscosity produced and thus suppressing the separation. The work with finding better turbulence models is presently an area with large amount of research offering improved models. However, in the present report only the two mentioned turbulence models have been used. The present report shows computational results obtained with the Navier-Stokes solver EU-RANUS. First the results from a two-dimensional verification cases are shown to verify that the solver produces results comparable with other solvers. The flow computed is attached flow and slightly separated flow over the so called Profile-A. Secondly three dimensional computations of the flow over a full three dimensional rotor at attached and stalled conditions is shown. The computed results are compared with measured power data from field experiments. (EG)
International Nuclear Information System (INIS)
Chang, Chih-Hao; Liou, Meng-Sing
2007-01-01
In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations. Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM + -up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion
Modeling subsurface reactive flows using leadership-class computing
Energy Technology Data Exchange (ETDEWEB)
Mills, Richard Tran [Computational Earth Sciences Group, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6015 (United States); Hammond, Glenn E [Hydrology Group, Environmental Technology Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lichtner, Peter C [Hydrology, Geochemistry, and Geology Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sripathi, Vamsi [Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206 (United States); Mahinthakumar, G [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695-7908 (United States); Smith, Barry F, E-mail: rmills@ornl.go, E-mail: glenn.hammond@pnl.go, E-mail: lichtner@lanl.go, E-mail: vamsi_s@ncsu.ed, E-mail: gmkumar@ncsu.ed, E-mail: bsmith@mcs.anl.go [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844 (United States)
2009-07-01
We describe our experiences running PFLOTRAN-a code for simulation of coupled hydro-thermal-chemical processes in variably saturated, non-isothermal, porous media- on leadership-class supercomputers, including initial experiences running on the petaflop incarnation of Jaguar, the Cray XT5 at the National Center for Computational Sciences at Oak Ridge National Laboratory. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). We discuss some of the hurdles to 'at scale' performance with PFLOTRAN and the progress we have made in overcoming them on leadership-class computer architectures.
Modeling subsurface reactive flows using leadership-class computing
International Nuclear Information System (INIS)
Mills, Richard Tran; Hammond, Glenn E; Lichtner, Peter C; Sripathi, Vamsi; Mahinthakumar, G; Smith, Barry F
2009-01-01
We describe our experiences running PFLOTRAN-a code for simulation of coupled hydro-thermal-chemical processes in variably saturated, non-isothermal, porous media- on leadership-class supercomputers, including initial experiences running on the petaflop incarnation of Jaguar, the Cray XT5 at the National Center for Computational Sciences at Oak Ridge National Laboratory. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). We discuss some of the hurdles to 'at scale' performance with PFLOTRAN and the progress we have made in overcoming them on leadership-class computer architectures.
Investigation of Swirling Flow in Rod Bundle Subchannels Using Computational Fluid Dynamics
International Nuclear Information System (INIS)
Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.
2006-01-01
The fluid dynamics for turbulent flow through rod bundles representative of those used in pressurized water reactors is examined using computational fluid dynamics (CFD). The rod bundles of the pressurized water reactor examined in this study consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids are often used to create swirling flow in the rod bundle in an effort to improve the heat transfer characteristics for the rod bundle during both normal operating conditions and in accident condition scenarios. Computational fluid dynamics simulations for a two subchannel portion of the rod bundle were used to model the flow downstream of a split-vane pair support grid. A high quality computational mesh was used to investigate the choice of turbulence model appropriate for the complex swirling flow in the rod bundle subchannels. Results document a central swirling flow structure in each of the subchannels downstream of the split-vane pairs. Strong lateral flows along the surface of the rods, as well as impingement regions of lateral flow on the rods are documented. In addition, regions of lateral flow separation and low axial velocity are documented next to the rods. Results of the CFD are compared to experimental particle image velocimetry (PIV) measurements documenting the lateral flow structures downstream of the split-vane pairs. Good agreement is found between the computational simulation and experimental measurements for locations close to the support grid. (authors)
Computational Flow Field in Energy Efficient Engine (EEE)
Miki, Kenji; Moder, Jeff; Liou, Meng-Sing
2016-01-01
In this paper, preliminary results for the recently-updated Open National Combustion Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the EEE using different ways to introduce the fuel injection.
Flow field measurements using LDA and numerical computation for rod bundle of reactor fuel assembly
International Nuclear Information System (INIS)
Hu Jun; Zou Zunyu
1995-02-01
Local mean velocity and turbulence intensity measurements were obtained with DANTEC 55 X two-dimensional Laser Dopper Anemometry (LDA) for rod bundle of reactor fuel assembly test model which was a 4 x 4 rod bundle. The data were obtained from different experimental cross-sections both upstream and downstream of the model support plate. Measurements performed at test Reynolds numbers of 1.8 x 10 4 ∼3.6 x 10 4 . The results described the local and gross effects of the support plate on upstream and downstream flow distributions. A numerical computation was also given, the experimental results are in good agreement with the numerical one and the others in references. Finally, a few suggestions were proposed for how to use the LDA system well. (11 figs.)
Computational Analysis of Flow Through a Transonic Compressor Rotor
National Research Council Canada - National Science Library
Bochette, Nikolaus J
2005-01-01
.... In examining this problem two Computational Fluid Dynamic (CFD) codes have been used by the Naval Postgraduate School to predict the performance of a transonic compressor rotor that is being tested with steam ingestion...
2011-01-28
...; Computer Matching Program (SSA Internal Match)--Match Number 1014 AGENCY: Social Security Administration... regarding protections for such persons. The Privacy Act, as amended, regulates the use of computer matching....C. 552a, as amended, and the provisions of the Computer Matching and Privacy Protection Act of 1988...
Computer simulations of magnetic fluids in laminar pipe flows
International Nuclear Information System (INIS)
Ramos, D.M.; Cunha, F.R.; Sobral, Y.D.; Fontoura Rodrigues, J.L.A.
2005-01-01
Finite volume method is adapted to simulate momentum and magnetic coupled equations of a laminar magnetic fluid flow. An evolution equation is used to calculate the fluid magnetization. Pressure-driven flow under steady and oscillatory magnetic field is investigated. The magnetostatic limit of the Maxwell's equations is treated in terms of a Poisson equation numerically integrated. The SIMPLE algorithm is used to calculate the pressure-velocity coupling when the pressure field is not prescribed. Suitable boundary conditions for velocity, magnetization and field intensity on the pipe wall are described. Results are obtained for velocity and pressure response under several conditions of the identified physical parameters of the flow. The simulations are verified by comparing numerical results and asymptotic theory, and they show a very good agreement
Influence Of Number Of Pregnancies In Peak Expiratory Flow And Body Composition Of Pregnant Women
Directory of Open Access Journals (Sweden)
Andrea Carla Brandao da Costa Santos
2017-06-01
Full Text Available Objectives: to describe and compare the mean values of the body composition and the peak expiratory flow (PEF in primigravidae and multigravidae and, to determine its correlation with obstetric, anthropometric and body composition variables. Method: it was performed a cross-sectional study of 120 healthy pregnant women at low risk, including 77 primigravidae and 43 multigravidae. The PEF was measured by spirometry and the body composition by multisegmental electrical impedance. The unpaired t test was used to compare the groups and the Pearson correlation test was used to determine the association between PEF and independent variables. A multiple linear regression was used to estimate the relationship between the dependent variable, the PEF and the independent variables. Results: the body composition variables in multigravidae women showed higher values compared to the primigravidae, being statistically significant, except for fat mass. In primigravidae, the PEF was correlated significantly with maternal age and height. In multigravidae, the PEF was correlated with maternal age, height, pre-pregnancy and current weight, total body water, extracellular water, fat mass, lean mass and fat-free mass. A Multiple linear regression analysis showed that, in primigravidae, height and maternal age were associated with PEF, being responsible for explaining 14.5% of its variability. The current weight and the maternal age explained 42.3% of peak flow variability in multigravidae. Conclusion: The PEF seemed to be influenced by the number of pregnancies. Changes were observed in relation to the body composition, as it was evidenced in correlation with the PEF in multigravidae women. Keywords: Pregnancy. Spirometry. Weight gain.
2010-04-01
... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Computing annual number of units eligible for substitution of tenant-based assistance or alternative uses. 290.21 Section 290.21 Housing and... Multifamily Projects § 290.21 Computing annual number of units eligible for substitution of tenant-based...
VFLOW2D - A Vorte-Based Code for Computing Flow Over Elastically Supported Tubes and Tube Arrays
Energy Technology Data Exchange (ETDEWEB)
WOLFE,WALTER P.; STRICKLAND,JAMES H.; HOMICZ,GREGORY F.; GOSSLER,ALBERT A.
2000-10-11
A numerical flow model is developed to simulate two-dimensional fluid flow past immersed, elastically supported tube arrays. This work is motivated by the objective of predicting forces and motion associated with both deep-water drilling and production risers in the oil industry. This work has other engineering applications including simulation of flow past tubular heat exchangers or submarine-towed sensor arrays and the flow about parachute ribbons. In the present work, a vortex method is used for solving the unsteady flow field. This method demonstrates inherent advantages over more conventional grid-based computational fluid dynamics. The vortex method is non-iterative, does not require artificial viscosity for stability, displays minimal numerical diffusion, can easily treat moving boundaries, and allows a greatly reduced computational domain since vorticity occupies only a small fraction of the fluid volume. A gridless approach is used in the flow sufficiently distant from surfaces. A Lagrangian remap scheme is used near surfaces to calculate diffusion and convection of vorticity. A fast multipole technique is utilized for efficient calculation of velocity from the vorticity field. The ability of the method to correctly predict lift and drag forces on simple stationary geometries over a broad range of Reynolds numbers is presented.
Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady
2008-02-01
We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald
Leahy, P.P.
1982-01-01
The Trescott computer program for modeling groundwater flow in three dimensions has been modified to (1) treat aquifer and confining bed pinchouts more realistically and (2) reduce the computer memory requirements needed for the input data. Using the original program, simulation of aquifer systems with nonrectangular external boundaries may result in a large number of nodes that are not involved in the numerical solution of the problem, but require computer storage. (USGS)
Computer program for the analysis of the cross flow in a radial inflow turbine scroll
Hamed, A.; Abdallah, S.; Tabakoff, W.
1977-01-01
A computer program was used to solve the governing of the potential flow in the cross sectional planes of a radial inflow turbine scroll. A list of the main program, the subroutines, and typical output example are included.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Ye [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thornber, Ben [The Univ. of Sydney, Sydney, NSW (Australia)
2016-04-12
Here, the implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology and wind tunnel experiments.
RICHTER, DAVID; IACCARINO, GIANLUCA; SHAQFEH, ERIC S. G.
2010-01-01
The results from a numerical investigation of inertial viscoelastic flow past a circular cylinder are presented which illustrate the significant effect that dilute concentrations of polymer additives have on complex flows. In particular, effects
Mason, M. L.; Putnam, L. E.
1979-01-01
The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.
FLATT - a computer programme for calculating flow and temperature transients in nuclear fuels
International Nuclear Information System (INIS)
Venkat Raj, V.; Koranne, S.M.
1976-01-01
FLATT is a computer code written in Fortran language for BESM-6 computer. The code calculates the flow transients in the coolant circuit of a nuclear reactor, caused by pump failure, and the consequent temperature transients in the fuel, clad, and the coolant. In addition any desired flow transient can be fed into the programme and the resulting temperature transients can be calculated. A case study is also presented. (author)
Energy Technology Data Exchange (ETDEWEB)
Joshua J. Cogliati; Abderrafi M. Ougouag
2006-10-01
A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.
Affecting the Flow of a Proof by Creating Presence--A Case Study in Number Theory
Gabel, Mika; Dreyfus, Tommy
2017-01-01
The notion of flow of a proof encapsulates mathematical, didactical, and contextual aspects of proof presentation. A proof may have different flows, depending on the lecturer's choices regarding its presentation. Adopting Perelman's New Rhetoric (PNR) as a theoretical framework, we designed methods to assess aspects of the flow of a proof. We…
Computations of incompressible fluid flow around a long square ...
Indian Academy of Sciences (India)
DEEPAK KUMAR
The steady-flow regime is observed up to Re = 121 for G = 0.5, and beyond this Re, time-periodic regime is observed. The shift to a time-periodic .... variations of wake dynamics and turbulence characteristics .... ponents of momentum (Eqs. 2 and 3) and the energy ... constructed by making use of Ansys workbench. More.
Computation of the flow in shallow river bends
Kalkwijk, J.P.T.; De Vriend, H.J.
1980-01-01
The mathematical model presented describes the flow in rivers of which: i the depth is small compared with the width, ii the width is small compared with the radius of curvature, iii the horizontal length scale of the bottom variations is of the order of magnitude of the width. Within these limits,
Multiscale analysis and computation for flows in heterogeneous media
Energy Technology Data Exchange (ETDEWEB)
Efendiev, Yalchin [Texas A & M Univ., College Station, TX (United States); Hou, T. Y. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Durlofsky, L. J. [Stanford Univ., CA (United States); Tchelepi, H. [Stanford Univ., CA (United States)
2016-08-04
Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.
Do flow principles of operations management apply to computing centres?
Abaunza, Felipe; Hameri, Ari-Pekka; Niemi, Tapio
2014-01-01
By analysing large data-sets on jobs processed in major computing centres, we study how operations management principles apply to these modern day processing plants. We show that Little’s Law on long-term performance averages holds to computing centres, i.e. work-in-progress equals throughput rate multiplied by process lead time. Contrary to traditional manufacturing principles, the law of variation does not hold to computing centres, as the more variation in job lead times the better the throughput and utilisation of the system. We also show that as the utilisation of the system increases lead times and work-in-progress increase, which complies with traditional manufacturing. In comparison with current computing centre operations these results imply that better allocation of jobs could increase throughput and utilisation, while less computing resources are needed, thus increasing the overall efficiency of the centre. From a theoretical point of view, in a system with close to zero set-up times, as in the c...
Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models
Parke, F. I.
1981-01-01
Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.
International Nuclear Information System (INIS)
Premnath, Kannan N; Pattison, Martin J; Banerjee, Sanjoy
2013-01-01
Lattice Boltzmann method (LBM) is a kinetic based numerical scheme for the simulation of fluid flow. While the approach has attracted considerable attention during the last two decades, there is a need for systematic investigation of its applicability for complex canonical turbulent flow problems of engineering interest, where the nature of the numerical properties of the underlying scheme plays an important role for their accurate solution. In this paper, we discuss and evaluate a LBM based on a multiblock approach for efficient large eddy simulation of three-dimensional external flow past a circular cylinder in the transitional regime characterized by the presence of multiple scales. For enhanced numerical stability at higher Reynolds numbers, a multiple relaxation time formulation is considered. The effect of subgrid scales is represented by means of a Smagorinsky eddy-viscosity model, where the model coefficient is computed locally by means of a dynamic procedure, providing better representation of flow physics with reduced empiricism. Simulations are performed for a Reynolds number of 3900 based on the free stream velocity and cylinder diameter for which prior data is available for comparison. The presence of laminar boundary layer which separates into a pair of shear layers that evolve into turbulent wakes impose particular challenge for numerical methods for this condition. The relatively low numerical dissipation introduced by the inherently parallel and second-order accurate LBM is an important computational asset in this regard. Computations using five different grid levels, where the various blocks are suitably aligned to resolve multiscale flow features show that the structure of the recirculation region is well reproduced and the statistics of the mean flow and turbulent fluctuations are in satisfactory agreement with prior data. (paper)
Energy Technology Data Exchange (ETDEWEB)
Premnath, Kannan N [Department of Mechanical Engineering, University of Colorado Denver, 1200 Larimer Street, Denver, CO 80217 (United States); Pattison, Martin J [HyPerComp Inc., 2629 Townsgate Road, Suite 105, Westlake Village, CA 91361 (United States); Banerjee, Sanjoy, E-mail: kannan.premnath@ucdenver.edu, E-mail: kannan.np@gmail.com [Department of Chemical Engineering, City College of New York, City University of New York, New York, NY 10031 (United States)
2013-10-15
Lattice Boltzmann method (LBM) is a kinetic based numerical scheme for the simulation of fluid flow. While the approach has attracted considerable attention during the last two decades, there is a need for systematic investigation of its applicability for complex canonical turbulent flow problems of engineering interest, where the nature of the numerical properties of the underlying scheme plays an important role for their accurate solution. In this paper, we discuss and evaluate a LBM based on a multiblock approach for efficient large eddy simulation of three-dimensional external flow past a circular cylinder in the transitional regime characterized by the presence of multiple scales. For enhanced numerical stability at higher Reynolds numbers, a multiple relaxation time formulation is considered. The effect of subgrid scales is represented by means of a Smagorinsky eddy-viscosity model, where the model coefficient is computed locally by means of a dynamic procedure, providing better representation of flow physics with reduced empiricism. Simulations are performed for a Reynolds number of 3900 based on the free stream velocity and cylinder diameter for which prior data is available for comparison. The presence of laminar boundary layer which separates into a pair of shear layers that evolve into turbulent wakes impose particular challenge for numerical methods for this condition. The relatively low numerical dissipation introduced by the inherently parallel and second-order accurate LBM is an important computational asset in this regard. Computations using five different grid levels, where the various blocks are suitably aligned to resolve multiscale flow features show that the structure of the recirculation region is well reproduced and the statistics of the mean flow and turbulent fluctuations are in satisfactory agreement with prior data. (paper)
Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI
DEFF Research Database (Denmark)
Rispoli, Vinicius C; Nielsen, Jon; Nayak, Krishna S
2015-01-01
BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid dyn...
DEFF Research Database (Denmark)
Skovgaard, M.; Nielsen, Peter V.
In this paper it is investigated if it is possible to simulate and capture some of the low Reynolds number effects numerically using time averaged momentum equations and a low Reynolds number k-f model. The test case is the larninar to turbulent transitional flow over a backward facing step...
International Nuclear Information System (INIS)
Majumder, Abhik; Mehta, Balkrishna; Khandekar, Sameer
2013-01-01
Taylor bubble flow takes place when two immiscible fluids (liquid-liquid or gas-liquid) flow inside a tube of capillary dimensions within specific range of volume flow ratios. In the slug flows where gas and liquid are two different phases, liquid slugs are separated by elongated Taylor bubbles. This singular flow pattern is observed in many engineering mini-/micro-scale devices like pulsating heat pipes, gas-liquid-solid monolithic reactors, micro-two-phase heat exchangers, digital micro-fluidics, micro-scale mass transfer process, fuel cells, etc. The unique and complex flow characteristics require understanding on local, as well as global, spatio-temporal scales. In the present work, the axial stream-wise profile of the fluid and wall temperature for air-water (i) isolated single Taylor bubble and, (ii) a train of Taylor bubbles, in a horizontal square channel of size 3.3 mm x 3.3 mm x 350 mm, heated from the bottom (heated length = 175 mm), with the other three sides kept insulated, are reported at different gas volume flow ratios. The primary aim is to study the enhancement of heat transfer due to the Taylor bubble train flow, in comparison with thermally developing single-phase flows. Intrusion of a bubble in the liquid flow drastically changes the local temperature profiles. The axial distribution of time-averaged local Nusselt number (Nu z ) shows that Taylor bubble train regime increases the transport of heat up to 1.2-1.6 times more as compared with laminar single-phase liquid flow. In addition, for a given liquid flow Reynolds number, the heat transfer enhancement is a function of the geometrical parameters of the unit cell, i.e., the length of adjacent gas bubble and water plug. (authors)
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one
Energy Technology Data Exchange (ETDEWEB)
Ma, Wenyong [Wind Engineering Research Center, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043 (China); Liu, Qingkuan; Liu, Xiaobing [The Key Laboratory for Health Monitoring and Control of Large Structures, Hebei province, 050043 (China); Du, Xiaoqing, E-mail: ma@stdu.edu.cn, E-mail: dxq@shu.edu.cn [Department of Civil Engineering, Shanghai University, Shanghai, 200072 (China)
2017-08-15
The mechanism of large-amplitude aeroelastic vibrations of cylindrical bodies in the critical Reynolds number range are still unclear. This study concerns the aerodynamic forces acting on elliptical cylinders and the induced galloping instability resulting from skew flows (i.e., the direction of the flow is angled 0°–45° with respect to the central axis of the cylinder) for Reynolds numbers in the range of 37–235 k. The effects of the critical Reynolds number and the skew angle on the aerodynamic forces and the galloping instability are investigated with pressure wind tunnel tests. In all of the cases investigated in the present study, a sharp decrease in the lift coefficient with increasing angle of attack and a reduction in the drag coefficient at the critical Reynolds number could be responsible for the galloping instability. Variations in the torque coefficient leads to a torsional aerodynamic instability at the critical Reynolds number. Furthermore, the skew flow cause a critical flow state at lower Reynolds numbers. One possible reason for this behavior is that the longer effective cross section allows the flow to reattach. (paper)
Computational modeling for fluid flow and interfacial transport
Shyy, Wei
2006-01-01
Practical applications and examples highlight this treatment of computational modeling for handling complex flowfields. A reference for researchers and graduate students of many different backgrounds, it also functions as a text for learning essential computation elements.Drawing upon his own research, the author addresses both macroscopic and microscopic features. He begins his three-part treatment with a survey of the basic concepts of finite difference schemes for solving parabolic, elliptic, and hyperbolic partial differential equations. The second part concerns issues related to computati
The break-up of a viscous liquid drop in a high Reynolds number shear flow
Ng, Chin Hei; Aliseda, Alberto
2015-11-01
The break-up of a viscous liquid droplet in a sheared turbulent flow evolves in several steps, the most visually dominant of which is the formation of high aspect ratio ligaments. This feature takes them apart from the various break-up models based on the Hinze-Kolmogorov paradigm of eddy-spherical particle collisions. We investigate the development of ligaments in a high Reynolds number (up to 250,000) submerged round jet, within the high viscosity, near-unity density ratio regime. Unlike in H-K theory, applicable to the break-up of inviscid fluid particles, break-up of inertial-scale viscous droplets occurs through a sequence of eddy collisions and long-term deformation, as evidenced by measurements of the aspect ratio that fluctuates and increases progressively during the deformation stage, and results in non-binary break-up. Additionally, the ligament formation stretches a droplet to multiple times its original size, bringing the influence of integral-scale structures. High speed imaging has been statistically analyzed to inform and validate theoretical models for the break-up time and the break-up probability. In addition, a particle size scaling model has been developed and compared with the experimental measurements of the frozen-state particle size.
Quantum Flows for Secret Key Distribution in the Presence of the Photon Number Splitting Attack
Directory of Open Access Journals (Sweden)
Luis A. Lizama-Pérez
2014-06-01
Full Text Available Physical implementations of quantum key distribution (QKD protocols, like the Bennett-Brassard (BB84, are forced to use attenuated coherent quantum states, because the sources of single photon states are not functional yet for QKD applications. However, when using attenuated coherent states, the relatively high rate of multi-photonic pulses introduces vulnerabilities that can be exploited by the photon number splitting (PNS attack to brake the quantum key. Some QKD protocols have been developed to be resistant to the PNS attack, like the decoy method, but those define a single photonic gain in the quantum channel. To overcome this limitation, we have developed a new QKD protocol, called ack-QKD, which is resistant to the PNS attack. Even more, it uses attenuated quantum states, but defines two interleaved photonic quantum flows to detect the eavesdropper activity by means of the quantum photonic error gain (QPEG or the quantum bit error rate (QBER. The physical implementation of the ack-QKD is similar to the well-known BB84 protocol.
International Nuclear Information System (INIS)
Bae, Youngmin; Kim, Young In
2014-01-01
Highlights: • Turbulent flow in axisymmetric sudden expansion with a chamfer is studied numerically. • Reynolds number dependency of the local loss coefficient is investigated. • Extended correlation is proposed for estimation of the local loss coefficient. - Abstract: This paper reports the pressure losses in turbulent flows through axisymmetric sudden expansions having a slight chamfer on the edge. A parametric study is performed for dimensionless chamfer lengths of 0–0.5, expansion ratios of 2–6, and chamfer angles of 0–45° in a Reynolds number range of 1 × 10 5 –8 × 10 5 . The chamfer effect on the expansion losses and its dependence on the Reynolds number are analyzed in detail along with a discussion of the relevant flow features. On the basis of numerical results, an existing correlation of the local loss coefficient is also extended to take into account the effect of the Reynolds number additionally
MASS TRANSFER CONTROL OF A BACKWARD-FACING STEP FLOW BY LOCAL FORCING- EFFECT OF REYNOLDS NUMBER
Directory of Open Access Journals (Sweden)
Zouhaier MEHREZ
2011-01-01
Full Text Available The control of fluid mechanics and mass transfer in separated and reattaching flow over a backward-facing step by a local forcing, is studied using Large Eddy Simulation (LES.To control the flow, the local forcing is realized by a sinusoidal oscillating jet at the step edge. The Reynolds number is varied in the range 10000 ≤ Re≤ 50000 and the Schmidt number is fixed at 1.The found results show that the flow structure is modified and the local mass transfer is enhanced by the applied forcing. The observed changes depend on the Reynolds number and vary with the frequency and amplitude of the local forcing. For the all Reynolds numbers, the largest recirculation zone size reduction is obtained at the optimum forcing frequency St = 0.25. At this frequency the local mass transfer enhancement attains the maximum.
Energy Technology Data Exchange (ETDEWEB)
Cozin, Cristiane; Lueders, Ricardo; Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica
2008-07-01
In recent years, computer cluster has emerged as a real alternative to solution of problems which require high performance computing. Consequently, the development of new applications has been driven. Among them, flow simulation represents a real computational burden specially for large systems. This work presents a study of using parallel computing for numerical fluid flow simulation in pipelines. A mathematical flow model is numerically solved. In general, this procedure leads to a tridiagonal system of equations suitable to be solved by a parallel algorithm. In this work, this is accomplished by a parallel odd-oven reduction method found in the literature which is implemented on Fortran programming language. A computational platform composed by twelve processors was used. Many measures of CPU times for different tridiagonal system sizes and number of processors were obtained, highlighting the communication time between processors as an important issue to be considered when evaluating the performance of parallel applications. (author)
Computer Simulations of Coronary Blood Flow Through a Constriction
2014-03-01
for clinical translation. Journal of the American College of Cardiology . 59(15): 1337–1349. Leimgruber, P., Roubin, G., Hollman, J., Cotsonis, G...the artery and increase blood flow. Generally a stent, or a mesh wire tube, is permanently inserted in order to scaffold open the artery wall...central regions of the channel, so the magnitude of the velocity has to be higher in the open area of the channel, overshooting the experimental results
Data-flow oriented visual programming libraries for scientific computing
Maubach, J.M.L.; Drenth, W.D.; Sloot, P.M.A.
2002-01-01
The growing release of scientific computational software does not seem to aid the implementation of complex numerical algorithms. Released libraries lack a common standard interface with regard to for instance finite element, difference or volume discretizations. And, libraries written in standard
Fully consistent CFD methods for incompressible flow computations
DEFF Research Database (Denmark)
Kolmogorov, Dmitry; Shen, Wen Zhong; Sørensen, Niels N.
2014-01-01
Nowadays collocated grid based CFD methods are one of the most e_cient tools for computations of the ows past wind turbines. To ensure the robustness of the methods they require special attention to the well-known problem of pressure-velocity coupling. Many commercial codes to ensure the pressure...
Secondary Flow Patterns of Liquid Ejector with Computational Analysis
Energy Technology Data Exchange (ETDEWEB)
Kwon, Kwisung; Yun, Jinwon; Yu, Sangseok [Chungnam National University, Daejeon (Korea, Republic of); Sohn, Inseok [COAVIS, Sejong (Korea, Republic of); Seo, Yongkyo [Korea Automotive Technology Institute, Cheonan (Korea, Republic of)
2015-02-15
An ejector is a type of non-powered pump that is used to supply a secondary flow via the ejection of a primary flow. It is utilized in many industrial fields, and is used for fueling the vehicle because of less failures and simple structure. Since most of ejectors in industry are gas-to-gas and liquid to gas ejector, many research activities have been reported in optimization of gas ejector. On the other hand, the liquid ejector is also applied in many industry but few research has been reported. The liquid ejector occurs cavitation, and it causes damage of parts. Cavitation has bees observed at the nozzle throat at the specified pressure. In this study, a two-dimensional axisymmetric simulation of a liquid-liquid ejector was carried out using five different parameters. The angle of the nozzle plays an important role in the cavitation of a liquid ejector, and the performance characteristics of the flow ratio showed that an angle of 35° was the most advantageous. The simulation results showed that the performance of the liquid ejector and the cavitation effect have to be considered simultaneously.
Free surface flow with moving rigid bodies. Part 1. Computational flow model
International Nuclear Information System (INIS)
Gubanov, O.I.; Mironova, L.A.; Kocabiyik, S.
2005-01-01
This paper was motivated by the study of Hirt and Sicilian, where the 'differential form' of the governing equations for the inviscid fluid flow (FAVOR equations) were obtained. We utilize mainly generalized differentiation to extend the Reynolds transport theorem over a control volume containing fluid interface for deriving the 'integral form' of governing equations for the incompressible viscous flow problems. This is done following the work by Farassat and the use of generalized function theory made this derivation straightforward, systematic and rigorous. The resulting equations are discretized by a finite-volume method using a staggered grid, after making use of the coarse-scale approximation. The resulting governing equations are valid for a class of flows including free surface flows with arbitrarily moving bodies and are consistent with Hirt and Sicilian's formulation in the inviscid fluid flow case. (author)
Microscopic and low Reynolds number flows between two intersecting permeable walls
Egashira, R.; Fujikawa, T.; Yaguchi, H.; Fujikawa, S.
2018-06-01
Two-dimensional Navier–Stokes equations are solved in an analytical way to clarify characteristics of low-Re flows in a microscopic channel consisting of two intersecting permeable walls, the intersection of which is supposed to be a sink or a source. Such flows are, therefore, considered to be an extension of the so-called Jeffery–Hamel flow to the permeable wall case. A set of nonlinear forth-order ordinary differential equations are obtained, and their solutions are sought for the small permeable velocity compared with the main flow one by a perturbation method. The solutions contain the solutions found in the past, such as the flow between two parallel permeable walls studied by Berman and the Jeffery–Hamel flow between the impermeable walls as special cases. Velocity distribution and friction loss in pressure along the main stream are represented in the explicit manner and compared with those of the Jeffery–Hamel flow. Numerical examples show that the wall permeability has a great influence on the friction loss. Furthermore, it is shown that the convergent main flow accompanied with the fluid addition through the walls is inversely directed away from the origin due to the balance of the main flow and the permeable one, while the flow accompanied with fluid suction is just directed toward the origin regardless of conditions.
Space-marching gridless computation of steady supersonic/hypersonic flow
International Nuclear Information System (INIS)
Hui, W.H.; Hu, J.J.
2004-01-01
Most CFD work use Eulerian coordinates, which require generating a grid prior to flow filed computation. Despite three decades of research, grid generation is still a bottleneck of CFD, as it is time-consuming, tedious and requires specialized training. It will be shown in this paper that using the Unified Coordinates introduced by Hui et. al., there is no need for grid generation prior to flow computation; the grid is automatically generated while computing the flow. This greatly saves computing time. For steady supersonic/hypersonic flow, the Euler equations of gas dynamics are of hyperbolic type and a space-marching gridless computation along the streamlines - coordinate lines in the unified coordinates - is shown to be a complete success in that: (a) it is most robust, (b) it resolves both slip lines (also called contact lines) and shocks sharply, (c) its computing time is more than three orders of magnitude smaller than Eulerian computation and, (d) it by-passes the tedious and time-consuming grid generation stage which is needed in Eulerian computation. Three examples are given to justify these claims. (author)
A new approach in development of data flow control and investigation system for computer networks
International Nuclear Information System (INIS)
Frolov, I.; Vaguine, A.; Silin, A.
1992-01-01
This paper describes a new approach in development of data flow control and investigation system for computer networks. This approach was developed and applied in the Moscow Radiotechnical Institute for control and investigations of Institute computer network. It allowed us to solve our network current problems successfully. Description of our approach is represented below along with the most interesting results of our work. (author)
Simplified computational simulation of liquid metal behaviour in turbulent flow with heat transfer
International Nuclear Information System (INIS)
Costa, E.B. da.
1992-09-01
The present work selected the available bibliography equations and empirical relationships to the development of a computer code to obtain the turbulent velocity and temperature profiles in liquid metal tube flow with heat generation. The computer code is applied to a standard problem and the results are considered satisfactory, at least from the viewpoint of qualitative behaviour. (author). 50 refs, 21 figs, 3 tabs
A Line Search Multilevel Truncated Newton Algorithm for Computing the Optical Flow
Directory of Open Access Journals (Sweden)
Lluís Garrido
2015-06-01
Full Text Available We describe the implementation details and give the experimental results of three optimization algorithms for dense optical flow computation. In particular, using a line search strategy, we evaluate the performance of the unilevel truncated Newton method (LSTN, a multiresolution truncated Newton (MR/LSTN and a full multigrid truncated Newton (FMG/LSTN. We use three image sequences and four models of optical flow for performance evaluation. The FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational work than both the LSTN and MR/LSTN algorithms.
Computational simulation of flow and heat transfer in single-phase natural circulation loops
International Nuclear Information System (INIS)
Pinheiro, Larissa Cunha
2017-01-01
Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr_m), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)
Computational Simulation of the Flow Past an Airfoil for an Unmanned Aerial Vehicle
Directory of Open Access Journals (Sweden)
L. Velázquez-Araque
2013-08-01
Full Text Available This paper deals with the numerical simulation of the two-dimensional, incompressible, steady air flow past a NACA 2415 airfoil and four modifications of this one. The modification of this airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface. Therefore, five different locations along the cord line for this blowing outlet were analyzed. This analysis involved the aerodynamic performance which meant obtaining lift, drag and pitching moment coefficients curves as a function of the angle of attack for the situation where the engine of the aerial vehicle is turned off called the no blowing condition by means computational fluid dynamics. The RNG k-ε model is utilized to describe the turbulent flow process. The simulations were held at a Reynolds number of 105. Results allowed obtaining lift and drag forces and pitching moment coefficient and also the location of the separation and reattachment point in some cases for different angles of attack, from 0 to 16 degrees with the smallest increment of 4 degrees. Finally, numerical results were compared with results obtained from wind tunnel tests by means of an aerodynamic balance and also oil and smoke visualization techniques and found to be in very good agreement.
Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling
DEFF Research Database (Denmark)
Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig
2016-01-01
Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include...... the width of the channels in the gas distributor and the area in front of the parallel channels. The flow of the optimized design is found to have a flow uniformity index value of 0.978. The effects of deviations from the assumptions used in the modelling (isothermal and non-reacting flow) are evaluated...... and it is found that a temperature gradient along the parallel channels does not affect the flow uniformity, whereas a temperature difference between the channels does. The impact of the flow distribution on the maximum obtainable conversion during operation is also investigated and the obtainable overall...
Computer tomography of flows external to test models
Prikryl, I.; Vest, C. M.
1982-01-01
Computer tomographic techniques for reconstruction of three-dimensional aerodynamic density fields, from interferograms recorded from several different viewing directions were studied. Emphasis is on the case in which an opaque object such as a test model in a wind tunnel obscures significant regions of the interferograms (projection data). A method called the Iterative Convolution Method (ICM), existing methods in which the field is represented by a series expansions, and analysis of real experimental data in the form of aerodynamic interferograms are discussed.
3D CFD computations of trasitional flows using DES and a correlation based transition model
DEFF Research Database (Denmark)
Sørensen, Niels N.; Bechmann, Andreas; Zahle, Frederik
2011-01-01
a circular cylinder from Re = 10 to 1 × 106 reproducing the cylinder drag crisis. The computations show good quantitative and qualitative agreement with the behaviour seen in experiments. This case shows that the methodology performs smoothly from the laminar cases at low Re to the turbulent cases at high Re......The present article describes the application of the correlation based transition model of Menter et al. in combination with the Detached Eddy Simulation (DES) methodology to two cases with large degree of flow separation typically considered difficult to compute. Firstly, the flow is computed over...
Coronary Computed Tomography Angiography Derived Fractional Flow Reserve and Plaque Stress
DEFF Research Database (Denmark)
Nørgaard, Bjarne Linde; Leipsic, Jonathon; Koo, Bon-Kwon
2016-01-01
Fractional flow reserve (FFR) measured during invasive coronary angiography is an independent prognosticator in patients with coronary artery disease and the gold standard for decision making in coronary revascularization. The integration of computational fluid dynamics and quantitative anatomic...... and physiologic modeling now enables simulation of patient-specific hemodynamic parameters including blood velocity, pressure, pressure gradients, and FFR from standard acquired coronary computed tomography (CT) datasets. In this review article, we describe the potential impact on clinical practice...... and the science behind noninvasive coronary computed tomography (CT) angiography derived fractional flow reserve (FFRCT) as well as future applications of this technology in treatment planning and quantifying forces on atherosclerotic plaques....
Computational study of duct and pipe flows using the method of pseudocompressibility
Williams, Robert W.
1991-01-01
A viscous, three-dimensional, incompressible, Navier-Stokes Computational Fluid Dynamics code employing pseudocompressibility is used for the prediction of laminar primary and secondary flows in two 90-degree bends of constant cross section. Under study are a square cross section duct bend with 2.3 radius ratio and a round cross section pipe bend with 2.8 radius ratio. Sensitivity of predicted primary and secondary flow to inlet boundary conditions, grid resolution, and code convergence is investigated. Contour and velocity versus spanwise coordinate plots comparing prediction to experimental data flow components are shown at several streamwise stations before, within, and after the duct and pipe bends. Discussion includes secondary flow physics, computational method, computational requirements, grid dependence, and convergence rates.
Kato, Hiromasa; Taniguchi, Hideo; Matsuda, Kazunari; Funazaki, Ken-Ichi; Kato, Dai; Pallot, Guillaume
2011-12-01
High flow rate aeroengines typically employ axial flow compressors, where aerodynamic loss is predominantly due to secondary flow features such as tip leakage and corner vortices. In very high altitude missions, turbomachinery operates at low density ambient atmosphere, and the recent trend toward more compact engine core inevitably leads to the reduction of blade size, which in turn increases the relative height of the blade tip clearance. Low Reynolds number flowfield as a result of these two factors amplifies the relative importance of secondary flow effects. This paper focuses on the behavior of tip leakage flow, investigating by use of both experimental and numerical approaches. In order to understand the complex secondary flow behavior, cascade tests are usually conducted using intrusive probes to determine the loss. However relatively few experimental studies are published on tip leakage flows which take into account the interaction between a rotating blade row and its casing wall. Hence a new linear cascade facility has been designed with a moving belt casing in order to reproduce more realistic flowfield as encountered by a rotating compressor row. Numerical simulations were also performed to aid in the understanding of the complex flow features. The experimental results indicate a significant difference in the flowfield when the moving belt casing is present. The numerical simulations reveal that the leakage vortex is pulled by the shearing motion of the endwall toward the pressure side of the adjacent blade. The results highlight the importance of casing wall relative motion in analyzing leakage flow effects.
Advances in Computational Fluid-Structure Interaction and Flow Simulation Conference
Takizawa, Kenji
2016-01-01
This contributed volume celebrates the work of Tayfun E. Tezduyar on the occasion of his 60th birthday. The articles it contains were born out of the Advances in Computational Fluid-Structure Interaction and Flow Simulation (AFSI 2014) conference, also dedicated to Prof. Tezduyar and held at Waseda University in Tokyo, Japan on March 19-21, 2014. The contributing authors represent a group of international experts in the field who discuss recent trends and new directions in computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI. Researchers, practitioners, and advanced graduate students working on CFD, FSI, and related topics will find this collection to be a defi...
Piv Method and Numerical Computation for Prediction of Liquid Steel Flow Structure in Tundish
Directory of Open Access Journals (Sweden)
Cwudziński A.
2015-04-01
Full Text Available This paper presents the results of computer simulations and laboratory experiments carried out to describe the motion of steel flow in the tundish. The facility under investigation is a single-nozzle tundish designed for casting concast slabs. For the validation of the numerical model and verification of the hydrodynamic conditions occurring in the examined tundish furniture variants, obtained from the computer simulations, a physical model of the tundish was employed. State-of-the-art vector flow field analysis measuring systems developed by Lavision were used in the laboratory tests. Computer simulations of liquid steel flow were performed using the commercial program Ansys-Fluent¯. In order to obtain a complete hydrodynamic picture in the tundish furniture variants tested, the computer simulations were performed for both isothermal and non-isothermal conditions.
Loss of heterozygosity and copy number alterations in flow-sorted bulky cervical cancer.
Directory of Open Access Journals (Sweden)
Sabrina A H M van den Tillaart
Full Text Available Treatment choices for cervical cancer are primarily based on clinical FIGO stage and the post-operative evaluation of prognostic parameters including tumor diameter, parametrial and lymph node involvement, vaso-invasion, infiltration depth, and histological type. The aim of this study was to evaluate genomic changes in bulky cervical tumors and their relation to clinical parameters, using single nucleotide polymorphism (SNP-analysis. Flow-sorted tumor cells and patient-matched normal cells were extracted from 81 bulky cervical tumors. DNA-index (DI measurement and whole genome SNP-analysis were performed. Data were analyzed to detect copy number alterations (CNA and allelic balance state: balanced, imbalanced or pure LOH, and their relation to clinical parameters. The DI varied from 0.92-2.56. Pure LOH was found in ≥40% of samples on chromosome-arms 3p, 4p, 6p, 6q, and 11q, CN gains in >20% on 1q, 3q, 5p, 8q, and 20q, and losses on 2q, 3p, 4p, 11q, and 13q. Over 40% showed gain on 3q. The only significant differences were found between histological types (squamous, adeno and adenosquamous in the lesser allele intensity ratio (LAIR (p = 0.035 and in the CNA analysis (p = 0.011. More losses were found on chromosome-arm 2q (FDR = 0.004 in squamous tumors and more gains on 7p, 7q, and 9p in adenosquamous tumors (FDR = 0.006, FDR = 0.004, and FDR = 0.029. Whole genome analysis of bulky cervical cancer shows widespread changes in allelic balance and CN. The overall genetic changes and CNA on specific chromosome-arms differed between histological types. No relation was found with the clinical parameters that currently dictate treatment choice.
A user's manual of Tools for Error Estimation of Complex Number Matrix Computation (Ver.1.0)
International Nuclear Information System (INIS)
Ichihara, Kiyoshi.
1997-03-01
'Tools for Error Estimation of Complex Number Matrix Computation' is a subroutine library which aids the users in obtaining the error ranges of the complex number linear system's solutions or the Hermitian matrices' eigen values. This library contains routines for both sequential computers and parallel computers. The subroutines for linear system error estimation calulate norms of residual vectors, matrices's condition numbers, error bounds of solutions and so on. The error estimation subroutines for Hermitian matrix eigen values' derive the error ranges of the eigen values according to the Korn-Kato's formula. This user's manual contains a brief mathematical background of error analysis on linear algebra and usage of the subroutines. (author)
Lattice Boltzmann computation of creeping fluid flow in roll-coating applications
Rajan, Isac; Kesana, Balashanker; Perumal, D. Arumuga
2018-04-01
Lattice Boltzmann Method (LBM) has advanced as a class of Computational Fluid Dynamics (CFD) methods used to solve complex fluid systems and heat transfer problems. It has ever-increasingly attracted the interest of researchers in computational physics to solve challenging problems of industrial and academic importance. In this current study, LBM is applied to simulate the creeping fluid flow phenomena commonly encountered in manufacturing technologies. In particular, we apply this novel method to simulate the fluid flow phenomena associated with the "meniscus roll coating" application. This prevalent industrial problem encountered in polymer processing and thin film coating applications is modelled as standard lid-driven cavity problem to which creeping flow analysis is applied. This incompressible viscous flow problem is studied in various speed ratios, the ratio of upper to lower lid speed in two different configurations of lid movement - parallel and anti-parallel wall motion. The flow exhibits interesting patterns which will help in design of roll coaters.
Effects of Dimple Depth and Reynolds Number on the Flow and Heat Transfer in a Dimpled Channel
International Nuclear Information System (INIS)
Ahn, Joon; Lee, Young Ok; Lee, Joon Sik
2007-01-01
A Large Eddy Simulation (LES) has been conducted for the flow and heat transfer in a dimpled channel. Two dimple depths of 0.2 and 0.3 times of the dimple print diameter (= D) have been compared at the bulk Reynolds number of 20,000. Three Reynolds numbers of 5,000, 10,000 and 20,000 have been studied, while the dimple depth is kept as 0.2 D. With the deeper dimple, the flow reattachment occurs father downstream inside the dimple, so that the heat transfer is not as effectively enhanced as the case with shallow ones. At the low Reynolds number of 5,000, the Nusselt number ratio is as high as those for the higher Reynolds number, although the value of heat transfer coefficient decreases because of the weak shear layer vortices
A Computer Program for Flow-Log Analysis of Single Holes (FLASH)
Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.
2011-01-01
A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.
Computational physics of electric discharges in gas flows
Surzhikov, Sergey T
2012-01-01
Gas discharges are of interest for many processes in mechanics, manufacturing, materials science and aerophysics. To understand the physics behind the phenomena is of key importance for the effective use and development of gas discharge devices. This worktreats methods of computational modeling of electrodischarge processes and dynamics of partially ionized gases. These methods are necessary to tackleproblems of physical mechanics, physics of gas discharges and aerophysics.Particular attention is given to a solution of two-dimensional problems of physical mechanics of glow discharges.The use o
Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations
International Nuclear Information System (INIS)
Xu Kun; He Xiaoyi
2003-01-01
Both lattice Boltzmann method (LBM) and the gas-kinetic BGK scheme are based on the numerical discretization of the Boltzmann equation with collisional models, such as, the Bhatnagar-Gross-Krook (BGK) model. LBM tracks limited number of particles and the viscous flow behavior emerges automatically from the intrinsic particle stream and collisions process. On the other hand, the gas-kinetic BGK scheme is a finite volume scheme, where the time-dependent gas distribution function with continuous particle velocity space is constructed and used in the evaluation of the numerical fluxes across cell interfaces. Currently, LBM is mainly used for low Mach number, nearly incompressible flow simulation. For the gas-kinetic scheme, the application is focusing on the high speed compressible flows. In this paper, we are going to compare both schemes in the isothermal low-Mach number flow simulations. The methodology for developing both schemes will be clarified through the introduction of operator splitting Boltzmann model and operator averaging Boltzmann model. From the operator splitting Boltzmann model, the error rooted in many kinetic schemes, which are based on the decoupling of particle transport and collision, can be easily understood. As to the test case, we choose to use the 2D cavity flow since it is one of the most extensively studied cases. Detailed simulation results with different Reynolds numbers, as well as the benchmark solutions, are presented
Computing an operating parameter of a unified power flow controller
Wilson, David G.; Robinett, III, Rush D.
2017-12-26
A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
Computing an operating parameter of a unified power flow controller
Wilson, David G; Robinett, III, Rush D
2015-01-06
A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors
Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.
2014-12-01
Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.
Directory of Open Access Journals (Sweden)
K. S. Egorov
2015-01-01
Full Text Available The presented paper regards the influence of one of similarity criteria – the Prandtl number of gas (Pr - on the efficiency of the machine-less energetic separation device (Leontiev pipe, using numerical modeling in ANSYS software. This device, equally as Rank-Hilsch and Hartman-Schprenger pipes, is designed to separate one gas flow into two flows with different temperatures. One flow (supersonic streams out of the pipe with a temperature higher than initial and the other (subsonic flows out with a temperature lower than initial. This direction of energetic separation is true if the Prandtl number is less than 1 that corresponds to gases.The Prandtl number affects the efficiency of running Leontiev pipe indirectly both through a temperature difference on which a temperature recovery factor has an impact and through a thermal conductivity coefficient that shows the impact of heat transfer intensity between gas and solid wall.The Prandtl number range in the course of research was from 0.1 to 0.7. The Prandtl number value equal to 0.7 corresponds to the air or pure gases (for example, inert argon gas. The Prandtl number equal to 0.2 corresponds to the mixtures of inert gases such as helium-xenon.The numerical modeling completed for the supersonic flow with Mach number 2.0 shows that efficiency of the machine-less energetic separation device has been increased approximately 2 times with the Prandtl number decreasing from 0.7 to 0.2. Moreover, for the counter-flow scheme this effect is a little higher due to its larger heat efficiency in comparison with the straight-flow one.Also, the research shows that the main problem for the further increase of the Leontiev pipe efficiency is a small value of thermal conductivity coefficient, which requires an intensification of the heat exchange, especially in the supersonic flow. It can be obtained, for example, by using a system of oblique shock waves in the supersonic channel.
A scalable approach to modeling groundwater flow on massively parallel computers
International Nuclear Information System (INIS)
Ashby, S.F.; Falgout, R.D.; Tompson, A.F.B.
1995-12-01
We describe a fully scalable approach to the simulation of groundwater flow on a hierarchy of computing platforms, ranging from workstations to massively parallel computers. Specifically, we advocate the use of scalable conceptual models in which the subsurface model is defined independently of the computational grid on which the simulation takes place. We also describe a scalable multigrid algorithm for computing the groundwater flow velocities. We axe thus able to leverage both the engineer's time spent developing the conceptual model and the computing resources used in the numerical simulation. We have successfully employed this approach at the LLNL site, where we have run simulations ranging in size from just a few thousand spatial zones (on workstations) to more than eight million spatial zones (on the CRAY T3D)-all using the same conceptual model
International Nuclear Information System (INIS)
Tzanos, C.P.
1992-01-01
A higher-order differencing method was recently proposed for the convection-diffusion equation, which even with a coarse mesh gives oscillation-free solutions that are far more accurate than those of the upwind scheme. In this paper, the performance of this method is investigated in conjunction with the performance of different iterative solvers for the solution of the Navier-Stokes equations in the vorticity-streamfunction formulation for incompressible flow at high Reynolds numbers. Flow in a square cavity with a moving lid was chosen as a model problem. Solvers that performed well at low Re numbers either failed to converge or had a computationally prohibitive convergence rate at high Re numbers. The additive correction method of Settari and Aziz and an iterative incomplete lower and upper (ILU) solver were used in a multigrid approach that performed well in the whole range of Re numbers considered (from 1000 to 10,000) and for uniform as well as nonuniform grids. At high Re numbers, point or line Gauss-Seidel solvers converged with uniform grids, but failed to converge with nonuniform grids
Dmitriev, S. M.; Varentsov, A. V.; Dobrov, A. A.; Doronkov, D. V.; Pronin, A. N.; Sorokin, V. D.; Khrobostov, A. E.
2017-07-01
Results of experimental investigations of the local hydrodynamic and mass-exchange characteristics of a coolant flowing through the cells in the characteristic zones of a fuel assembly of a KLT-40S reactor plant downstream of a plate-type spacer grid by the method of diffusion of a gas tracer in the coolant flow with measurement of its velocity by a five-channel pneumometric probe are presented. An analysis of the concentration distribution of the tracer in the coolant flow downstream of a plate-type spacer grid in the fuel assembly of the KLT-40S reactor plant and its velocity field made it possible to obtain a detailed pattern of this flow and to determine its main mechanisms and features. Results of measurement of the hydraulic-resistance coefficient of a plate-type spacer grid depending on the Reynolds number are presented. On the basis of the experimental data obtained, recommendations for improvement of the method of calculating the flow rate of a coolant in the cells of the fissile core of a KLT-40S reactor were developed. The results of investigations of the local hydrodynamic and mass-exchange characteristics of the coolant flow in the fuel assembly of the KLT-40S reactor plant were accepted for estimating the thermal and technical reliability of the fissile cores of KLT-40S reactors and were included in the database for verification of computational hydrodynamics programs (CFD codes).
Flow Features of Three Side-by-side Circular Cylinders at Low Reynolds Number
Directory of Open Access Journals (Sweden)
Liu Junkao
2016-01-01
Full Text Available In order to study the fluctuation of kinetic parameter of cylinder matrix in incompressible stationary flow, the flow fluid around three side-by-side circular cylinders are simulated using Immersed Boundary–Lattice Boltzmann method (IB-LBM. Drag and lift force of the three cylinders are investigated as the interval between each cylinder varied from zero to five times of the cylinder diameter. Five flow patterns are defined according to the vortices structure in the downstream of the cylinders. Power spectrum analysis of lift force is developed to explain the vortex patterns. Through the research, we find the strength and phase of the gap flow play an important role in the vortex formatting process. The vortices shedding from different cylinders neutralize and combine in the near wake, contributing a lot to the variation of forces.
International Nuclear Information System (INIS)
Zou, Zhengping; Liu, Jingyuan; Zhang, Weihao; Wang, Peng
2016-01-01
Multi-dimensional coupling simulation is an effective approach for evaluating the flow and aero-thermal performance of shrouded turbines, which can balance the simulation accuracy and computing cost effectively. In this paper, 1D leakage models are proposed based on classical jet theories and dynamics equations, which can be used to evaluate most of the main features of shroud leakage flow, including the mass flow rate, radial and circumferential momentum, temperature and the jet width. Then, the 1D models are expanded to 2D distributions on the interface by using a multi-dimensional scaling method. Based on the models and multi-dimensional scaling, a multi-dimensional coupling simulation method for shrouded turbines is developed, in which, some boundary source and sink are set on the interface between the shroud and the main flow passage. To verify the precision, some simulations on the design point and off design points of a 1.5 stage turbine are conducted. It is indicated that the models and methods can give predictions with sufficient accuracy for most of the flow field features and will contribute to pursue deeper understanding and better design methods of shrouded axial turbines, which are the important devices in energy engineering. - Highlights: • Free and wall attached jet theories are used to model the leakage flow in shrouds. • Leakage flow rate is modeled by virtual labyrinth number and residual-energy factor. • A scaling method is applied to 1D model to obtain 2D distributions on interfaces. • A multi-dimensional coupling CFD method for shrouded turbines is proposed. • The proposed coupling method can give accurate predictions with low computing cost.
A staggered conservative scheme for every Froude number in rapidly varied shallow water flows
Stelling, G. S.; Duinmeijer, S. P. A.
2003-12-01
This paper proposes a numerical technique that in essence is based upon the classical staggered grids and implicit numerical integration schemes, but that can be applied to problems that include rapidly varied flows as well. Rapidly varied flows occur, for instance, in hydraulic jumps and bores. Inundation of dry land implies sudden flow transitions due to obstacles such as road banks. Near such transitions the grid resolution is often low compared to the gradients of the bathymetry. In combination with the local invalidity of the hydrostatic pressure assumption, conservation properties become crucial. The scheme described here, combines the efficiency of staggered grids with conservation properties so as to ensure accurate results for rapidly varied flows, as well as in expansions as in contractions. In flow expansions, a numerical approximation is applied that is consistent with the momentum principle. In flow contractions, a numerical approximation is applied that is consistent with the Bernoulli equation. Both approximations are consistent with the shallow water equations, so under sufficiently smooth conditions they converge to the same solution. The resulting method is very efficient for the simulation of large-scale inundations.
Wang, Wentao
2012-03-01
Both theoretical analysis and nonlinear 2D numerical simulations are used to study the concentration difference and Peclet number effect on the measurement error of electroosmotic mobility in microchannels. We propose a compact analytical model for this error as a function of normalized concentration difference and Peclet number in micro electroosmotic flow. The analytical predictions of the errors are consistent with the numerical simulations. © 2012 IEEE.
International Nuclear Information System (INIS)
Feng, Mei; Yang, Cungeng; Chen, Xiaojian; Xu, Shouping; Moraru, Ion; Lang, Jinyi; Schultz, Christopher; Li, X. Allen
2015-01-01
Purpose: To investigate CT number (CTN) changes in gross tumor volume (GTV) and organ at risk (OAR) according to daily diagnostic-quality CT acquired during CT-guided intensity modulated radiation therapy for head and neck cancer (HNC) patients. Methods and Materials: Computed tomography scans acquired using a CT-on-rails during daily CT-guided intensity modulated radiation therapy for 15 patients with stage II to IVa squamous cell carcinoma of the head and neck were analyzed. The GTV, parotid glands, spinal cord, and nonspecified tissue were generated on each selected daily CT. The changes in CTN distributions and the mean and mode values were collected. Pearson analysis was used to assess the correlation between the CTN change, organ volume reduction, and delivered radiation dose. Results: Volume and CTN changes for GTV and parotid glands can be observed during radiation therapy delivery for HNC. The mean (±SD) CTNs in GTV and ipsi- and contralateral parotid glands were reduced by 6 ± 10, 8 ± 7, and 11 ± 10 Hounsfield units, respectively, for all patients studied. The mean CTN changes in both spinal cord and nonspecified tissue were almost invisible (<2 Hounsfield units). For 2 patients studied, the absolute mean CTN changes in GTV and parotid glands were strongly correlated with the dose delivered (P<.001 and P<.05, respectively). For the correlation between CTN reductions and delivered isodose bins for parotid glands, the Pearson coefficient varied from −0.98 (P<.001) in regions with low-dose bins to 0.96 (P<.001) in high-dose bins and were patient specific. Conclusions: The CTN can be reduced in tumor and parotid glands during the course of radiation therapy for HNC. There was a fair correlation between CTN reduction and radiation doses for a subset of patients, whereas the correlation between CTN reductions and volume reductions in GTV and parotid glands were weak. More studies are needed to understand the mechanism for the radiation-induced CTN changes
International Nuclear Information System (INIS)
Ansanay-Alex, G.
2009-01-01
The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)
Traffic Flow Prediction Model for Large-Scale Road Network Based on Cloud Computing
Directory of Open Access Journals (Sweden)
Zhaosheng Yang
2014-01-01
Full Text Available To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface. The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.
Parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada
International Nuclear Information System (INIS)
Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.
2001-01-01
This paper presents the application of parallel computing techniques to large-scale modeling of fluid flow in the unsaturated zone (UZ) at Yucca Mountain, Nevada. In this study, parallel computing techniques, as implemented into the TOUGH2 code, are applied in large-scale numerical simulations on a distributed-memory parallel computer. The modeling study has been conducted using an over-one-million-cell three-dimensional numerical model, which incorporates a wide variety of field data for the highly heterogeneous fractured formation at Yucca Mountain. The objective of this study is to analyze the impact of various surface infiltration scenarios (under current and possible future climates) on flow through the UZ system, using various hydrogeological conceptual models with refined grids. The results indicate that the one-million-cell models produce better resolution results and reveal some flow patterns that cannot be obtained using coarse-grid modeling models
Susanto, Sandi; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi
2018-02-01
Cross-flow wind turbine is one of the alternative energy harvester for low wind speeds area. Several factors that influence the power coefficient of cross-flow wind turbine are the diameter ratio of blades and the number of blades. The aim of this study is to find out the influence of the number of blades and the diameter ratio on the performance of cross-flow wind turbine and to find out the best configuration between number of blades and diameter ratio of the turbine. The experimental test were conducted under several variation including diameter ratio between outer and inner diameter of the turbine and number of blades. The variation of turbine diameter ratio between inner and outer diameter consisted of 0.58, 0.63, 0.68 and 0.73 while the variations of the number of blades used was 16, 20 and 24. The experimental test were conducted under certain wind speed which are 3m/s until 4 m/s. The result showed that the configurations between 0.68 diameter ratio and 20 blade numbers is the best configurations that has power coefficient of 0.049 and moment coefficient of 0.185.
Petrenko, A.; Ofek, N.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.
2015-03-01
Realizing a working quantum computer requires overcoming the many challenges that come with coupling large numbers of qubits to perform logical operations. These include improving coherence times, achieving high gate fidelities, and correcting for the inevitable errors that will occur throughout the duration of an algorithm. While impressive progress has been made in all of these areas, the difficulty of combining these ingredients to demonstrate an error-protected logical qubit, comprised of many physical qubits, still remains formidable. With its large Hilbert space, superior coherence properties, and single dominant error channel (single photon loss), a superconducting 3D resonator acting as a resource for a quantum memory offers a hardware-efficient alternative to multi-qubit codes [Leghtas et.al. PRL 2013]. Here we build upon recent work on cat-state encoding [Vlastakis et.al. Science 2013] and photon-parity jumps [Sun et.al. 2014] by exploring the effects of sequential measurements on a cavity state. Employing a transmon qubit dispersively coupled to two superconducting resonators in a cQED architecture, we explore further the application of parity measurements to characterizing such a hybrid qubit/cat state architecture. In so doing, we demonstrate the promise of integrating cat states as central constituents of future quantum codes.
International Nuclear Information System (INIS)
Rahimi, A. B.
2003-01-01
Although there are many papers on the subject of heat transfer in an axisymmetric stagnation flow on a cylinder, the available knowledge is mainly for low Reynolds numbers and not much information exists for the same problem at large Reynolds numbers. In this work, the problem of heat transfer in an axisymmetric stagnation flow on a cylinder is solved at large Reynolds numbers using perturbation techniques. Starting from Navier-Stokes equations within a boundary layer approximation and using similarity transformations, the governing equations are obtained in the form of differential equations. The inverse of the Reynolds number is introduced as the perturbation parameter. This parameter appears in front of the highest-order terms and, as it tends to zero, reduces the order of the governing equations and produces singularities. In this paper, the flow field is divided into two regions; rapid changes in the region near wall and slow changes away from the wall. Thus, the flow is found to have dual-layer characteristics. Using inner and outer expansion produces uniform values of the relevant quantities
A parametric study of quasi-2D LES on Low-Reynolds-number transitional flows past an airfoil
Energy Technology Data Exchange (ETDEWEB)
Yuan, W.; Xu, H.; Khalid, M. [National Research Council (NRC), Inst. for Aerospace Research (IAR), Ottawa, Ontario (Canada)]. E-mail: Weixing.Yuan@nrc-cnrc.gc.ca
2004-07-01
Low-Reynolds-number aerodynamic performance of small sized air vehicles is an area of increasing interest. In this study, we investigate low-Reynolds-number flows past an SD7003 airfoil to understand substantial viscous features of laminar separation and transitional flow followed by the intractable behavior of reattachment. In order to satisfy the three-dimensional (3D) requirement of the code, a simple '3D wing' is constructed from a two-dimensional (2D) airfoil and only four grid points are used in the spanwise direction. A parametric study of quasi-2D LES on the low-Reynolds-number airfoil flows at Re=60000 is performed. Effects of grid resolution and sub-grid scale (SGS) models are investigated. Although three-dimensional effects cannot be accurately captured, the quasi-2D LES calculations do reveal some important flow characteristics such as leading edge laminar separation and vortex shedding from the primary laminar separation bubble on the low-Reynolds-number airfoil. (author)
A novel patient-specific model to compute coronary fractional flow reserve.
Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo
2014-09-01
The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%. Copyright © 2014. Published by Elsevier Ltd.
International Nuclear Information System (INIS)
Kawczynski, Charlie; Smolentsev, Sergey; Abdou, Mohamed
2016-01-01
Highlights: • A new induction-based magnetohydrodynamic code was developed using a finite difference method. • The code was benchmarked against purely hydrodynamic and MHD flows for low and finite magnetic Reynolds number. • Possible applications of the new code include liquid-metal MHD flows in the breeder blanket during unsteady events in the plasma. - Abstract: Most numerical analysis performed in the past for MHD flows in liquid-metal blankets were based on the assumption of low magnetic Reynolds number and involved numerical codes that utilized electric potential as the main electromagnetic variable. One limitation of this approach is that such codes cannot be applied to truly unsteady processes, for example, MHD flows of liquid-metal breeder/coolant during unsteady events in plasma, such as major plasma disruptions, edge-localized modes and vertical displacements, when changes in plasmas occur at millisecond timescales. Our newly developed code MOONS (Magnetohydrodynamic Object-Oriented Numerical Solver) uses the magnetic field as the main electromagnetic variable to relax the limitations of the low magnetic Reynolds number approximation for more realistic fusion reactor environments. The new code, written in Fortran, implements a 3D finite-difference method and is capable of simulating multi-material domains. The constrained transport method was implemented to evolve the magnetic field in time and assure that the magnetic field remains solenoidal within machine accuracy at every time step. Various verification tests have been performed including purely hydrodynamic flows and MHD flows at low and finite magnetic Reynolds numbers. Test results have demonstrated very good accuracy against known analytic solutions and other numerical data.
Energy Technology Data Exchange (ETDEWEB)
Kawczynski, Charlie; Smolentsev, Sergey, E-mail: sergey@fusion.ucla.edu; Abdou, Mohamed
2016-11-01
Highlights: • A new induction-based magnetohydrodynamic code was developed using a finite difference method. • The code was benchmarked against purely hydrodynamic and MHD flows for low and finite magnetic Reynolds number. • Possible applications of the new code include liquid-metal MHD flows in the breeder blanket during unsteady events in the plasma. - Abstract: Most numerical analysis performed in the past for MHD flows in liquid-metal blankets were based on the assumption of low magnetic Reynolds number and involved numerical codes that utilized electric potential as the main electromagnetic variable. One limitation of this approach is that such codes cannot be applied to truly unsteady processes, for example, MHD flows of liquid-metal breeder/coolant during unsteady events in plasma, such as major plasma disruptions, edge-localized modes and vertical displacements, when changes in plasmas occur at millisecond timescales. Our newly developed code MOONS (Magnetohydrodynamic Object-Oriented Numerical Solver) uses the magnetic field as the main electromagnetic variable to relax the limitations of the low magnetic Reynolds number approximation for more realistic fusion reactor environments. The new code, written in Fortran, implements a 3D finite-difference method and is capable of simulating multi-material domains. The constrained transport method was implemented to evolve the magnetic field in time and assure that the magnetic field remains solenoidal within machine accuracy at every time step. Various verification tests have been performed including purely hydrodynamic flows and MHD flows at low and finite magnetic Reynolds numbers. Test results have demonstrated very good accuracy against known analytic solutions and other numerical data.
Computational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow Conditions
2016-04-26
domain used in our thrombus formation simulations. Fig. 2 B shows the 3D geometry of the flow-chamber section consisting of two channels measuring 250 60...ArticleComputational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow ConditionsVijay Govindarajan,1 Vineet Rakesh,1 Jaques...understanding of thrombus formation as a physicochemical process that has evolved to protect the integrity of the human vasculature is critical to our ability to
Vectorization on the star computer of several numerical methods for a fluid flow problem
Lambiotte, J. J., Jr.; Howser, L. M.
1974-01-01
A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.
Fast Virtual Fractional Flow Reserve Based Upon Steady-State Computational Fluid Dynamics Analysis
Directory of Open Access Journals (Sweden)
Paul D. Morris, PhD
2017-08-01
Full Text Available Fractional flow reserve (FFR-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel “pseudotransient” analysis protocol for computing virtual fractional flow reserve (vFFR based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33% and more by microvascular physiology (59%. If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.
Francisco, E.; Pendás, A. Martín; Blanco, M. A.
2008-04-01
: 2.80 GHz Intel Pentium IV CPU Operating system: GNU/Linux RAM: 55 992 KB Word size: 32 bits Classification: 2.7 External routines: Netlib Nature of problem: Let us have an N-electron molecule and define an exhaustive partition of the physical space into m three-dimensional regions. The edf program computes the probabilities P(n,n,…,n)≡P({n}) of all possible allocations of n electrons to Ω, n electrons to Ω,…, and n electrons to Ω,{n} being integers. Solution method: Let us assume that the N-electron molecular wave function, Ψ(1,N), is a linear combination of M Slater determinants, Ψ(1,N)=∑rMCψ(1,N). Calling SΩrs the overlap matrix over the 3D region Ω between the (real) molecular spin-orbitals (MSO) in ψ(χ1r,…χNr) and the MSOs in ψ,(χ1s,…,χNs), edf finds all the P({n})'s by solving the linear system ∑{n}{∏kmtkn}P({n})=∑r,sMCCdet[∑kmtSΩrs], where t=1 and t,…,t are arbitrary real numbers. Restrictions: The number of {n} sets grows very fast with m and N, so that the dimension of the linear system (1) soon becomes very large. Moreover, the computer time required to obtain the determinants in the second member of Eq. (1) scales quadratically with M. These two facts limit the applicability of the method to relatively small molecules. Unusual features: Most of the real variables are of precision real*16. Running time: 0.030, 2.010, and 0.620 seconds for Test examples 1, 2, and 3, respectively. References: [1] A. Martín Pendás, E. Francisco, M.A. Blanco, Faraday Discuss. 135 (2007) 423-438. [2] A. Martín Pendás, E. Francisco, M.A. Blanco, J. Phys. Chem. A 111 (2007) 1084-1090. [3] A. Martín Pendás, E. Francisco, M.A. Blanco, Phys. Chem. Chem. Phys. 9 (2007) 1087-1092. [4] E. Francisco, A. Martín Pendás, M.A. Blanco, J. Chem. Phys. 126 (2007) 094102. [5] A. Martín Pendás, E. Francisco, M.A. Blanco, C. Gatti, Chemistry: A European Journal 113 (2007) 9362-9371.
Zhang, Yue; Zhu, Lianhua; Wang, Ruijie; Guo, Zhaoli
2018-05-01
Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002), 10.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.
Computation of hypersonic flows with finite rate condensation and evaporation of water
Perrell, Eric R.; Candler, Graham V.; Erickson, Wayne D.; Wieting, Alan R.
1993-01-01
A computer program for modelling 2D hypersonic flows of gases containing water vapor and liquid water droplets is presented. The effects of interphase mass, momentum and energy transfer are studied. Computations are compared with existing quasi-1D calculations on the nozzle of the NASA Langley Eight Foot High Temperature Tunnel, a hypersonic wind tunnel driven by combustion of natural gas in oxygen enriched air.
Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine
Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah
2015-12-01
In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.
Incompressible viscous flow computations for the pump components and the artificial heart
Kiris, Cetin
1992-01-01
A finite difference, three dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. Here, equations are solved in steadily rotating reference frames by using the steady state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two.
Energy conserving numerical methods for the computation of complex vortical flows
Allaneau, Yves
One of the original goals of this thesis was to develop numerical tools to help with the design of micro air vehicles. Micro Air Vehicles (MAVs) are small flying devices of only a few inches in wing span. Some people consider that as their size becomes smaller and smaller, it would be increasingly more difficult to keep all the classical control surfaces such as the rudders, the ailerons and the usual propellers. Over the years, scientists took inspiration from nature. Birds, by flapping and deforming their wings, are capable of accurate attitude control and are able to generate propulsion. However, the biomimicry design has its own limitations and it is difficult to place a hummingbird in a wind tunnel to study precisely the motion of its wings. Our approach was to use numerical methods to tackle this challenging problem. In order to precisely evaluate the lift and drag generated by the wings, one needs to be able to capture with high fidelity the extremely complex vortical flow produced in the wake. This requires a numerical method that is stable yet not too dissipative, so that the vortices do not get diffused in an unphysical way. We solved this problem by developing a new Discontinuous Galerkin scheme that, in addition to conserving mass, momentum and total energy locally, also preserves kinetic energy globally. This property greatly improves the stability of the simulations, especially in the special case p=0 when the approximation polynomials are taken to be piecewise constant (we recover a finite volume scheme). In addition to needing an adequate numerical scheme, a high fidelity solution requires many degrees of freedom in the computations to represent the flow field. The size of the smallest eddies in the flow is given by the Kolmogoroff scale. Capturing these eddies requires a mesh counting in the order of Re³ cells, where Re is the Reynolds number of the flow. We show that under-resolving the system, to a certain extent, is acceptable. However our
Eulerian short-time statistics of turbulent flow at large Reynolds number
Brouwers, J.J.H.
2004-01-01
An asymptotic analysis is presented of the short-time behavior of second-order temporal velocity structure functions and Eulerian acceleration correlations in a frame that moves with the local mean velocity of the turbulent flow field. Expressions in closed-form are derived which cover the viscous
Nusselt number for turbulent flow of liquid metal in circular ducts
International Nuclear Information System (INIS)
Fernandez y Fernandez, E.; Carajilescov, P.
1982-07-01
The forced convection heat transfer in turbulent flow of liquid metals in ducts, is analyzed. An analogy between moment and heat at wall surface, is developed for determining one heat transfer coeficient in friction of friction coeficient. (E.G.) [pt
Simultaneous fluid-flow, heat-transfer and solid-stress computation in a single computer code
Energy Technology Data Exchange (ETDEWEB)
Spalding, D B [Concentration Heat and Momentum Ltd, London (United Kingdom)
1998-12-31
Computer simulation of flow- and thermally-induced stresses in mechanical-equipment assemblies has, in the past, required the use of two distinct software packages, one to determine the forces and the temperatures, and the other to compute the resultant stresses. The present paper describes how a single computer program can perform both tasks at the same time. The technique relies on the similarity of the equations governing velocity distributions in fluids to those governing displacements in solids. The same SIMPLE-like algorithm is used for solving both. Applications to 1-, 2- and 3-dimensional situations are presented. It is further suggested that Solid-Fluid-Thermal, ie SFT analysis may come to replace CFD on the one hand and the analysis of stresses in solids on the other, by performing the functions of both. (author) 7 refs.
Simultaneous fluid-flow, heat-transfer and solid-stress computation in a single computer code
Energy Technology Data Exchange (ETDEWEB)
Spalding, D.B. [Concentration Heat and Momentum Ltd, London (United Kingdom)
1997-12-31
Computer simulation of flow- and thermally-induced stresses in mechanical-equipment assemblies has, in the past, required the use of two distinct software packages, one to determine the forces and the temperatures, and the other to compute the resultant stresses. The present paper describes how a single computer program can perform both tasks at the same time. The technique relies on the similarity of the equations governing velocity distributions in fluids to those governing displacements in solids. The same SIMPLE-like algorithm is used for solving both. Applications to 1-, 2- and 3-dimensional situations are presented. It is further suggested that Solid-Fluid-Thermal, ie SFT analysis may come to replace CFD on the one hand and the analysis of stresses in solids on the other, by performing the functions of both. (author) 7 refs.
International Nuclear Information System (INIS)
Rodriguez Lorite, M.; Martin Lopez-Suevos, C.
1996-01-01
Activities performed in most companies are based on the flow of information between their different departments and personnel. Most of this information is on paper (delivery notes, invoices, reports, etc). The percentage of information transmitted electronically (electronic transactions, spread sheets, files from word processors, etc) is usually low. The implementation of systems to control and speed up this work flow is the aim of work flow management systems. This article presents a prototype for applying work flow management systems to a specific area: the basic life cycle of a purchase order in a nuclear power plant, which requires the involvement of various computer applications: purchase order management, warehouse management, accounting, etc. Once implemented, work flow management systems allow optimisation of the execution of different tasks included in the managed life cycles and provide parameters to, if necessary, control work cycles, allowing their temporary or definitive modification. (Author)
Computational Study of pH-sensitive Hydrogel-based Microfluidic Flow Controllers
Kurnia, Jundika C.; Birgersson, Erik; Mujumdar, Arun S.
2011-01-01
This computational study investigates the sensing and actuating behavior of a pH-sensitive hydrogel-based microfluidic flow controller. This hydrogel-based flow controller has inherent advantage in its unique stimuli-sensitive properties, removing the need for an external power supply. The predicted swelling behavior the hydrogel is validated with steady-state and transient experiments. We then demonstrate how the model is implemented to study the sensing and actuating behavior of hydrogels for different microfluidic flow channel/hydrogel configurations: e.g., for flow in a T-junction with single and multiple hydrogels. In short, the results suggest that the response of the hydrogel-based flow controller is slow. Therefore, two strategies to improve the response rate of the hydrogels are proposed and demonstrated. Finally, we highlight that the model can be extended to include other stimuli-responsive hydrogels such as thermo-, electric-, and glucose-sensitive hydrogels. PMID:24956303
Experimental and Computational Analysis of Unidirectional Flow Through Stirling Engine Heater Head
Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Demko, Rikako
2006-01-01
A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long-duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multi-dimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. In the absence of transient pressure drop data for the zero mean oscillating multi-dimensional flows present in the Technology Demonstration Convertors on test at NASA Glenn Research Center, unidirectional flow pressure drop test data is used to compare against 2D and 3D computational solutions. This study focuses on tracking pressure drop and mass flow rate data for unidirectional flow though a Stirling heater head using a commercial CFD code (CFD-ACE). The commercial CFD code uses a porous-media model which is dependent on permeability and the inertial coefficient present in the linear and nonlinear terms of the Darcy-Forchheimer equation. Permeability and inertial coefficient were calculated from unidirectional flow test data. CFD simulations of the unidirectional flow test were validated using the porous-media model input parameters which increased simulation accuracy by 14 percent on average.
Energy Technology Data Exchange (ETDEWEB)
Cardenas, Camilo [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany); Convenio Andres Bello, Instituto Internacional de Investigaciones Educativas para la Integracion, La Paz (Bolivia); Denev, Jordan A.; Bockhorn, Henning [Karlsruhe Institute of Technology, Engler-Bunte-Institute, Combustion Division, Karlsruhe (Germany); Suntz, Rainer [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany)
2012-10-15
Investigation of the mixing process is one of the main issues in chemical engineering and combustion and the configuration of a jet into a cross-flow (JCF) is often employed for this purpose. Experimental data are gained for the symmetry plane in a JCF-arrangement of an air flow using a combination of particle image velocimetry (PIV) with laser-induced fluorescence (LIF). The experimental data with thoroughly measured boundary conditions are complemented with direct numerical simulations, which are based on idealized boundary conditions. Two similar cases are studied with a fixed jet-to-cross-flow velocity ratio of 3.5 and variable cross-flow Reynolds numbers equal to 4,120 and 8,240; in both cases the jet issues from the pipe at laminar conditions. This leads to a laminar-to-turbulent transition, which depends on the Reynolds number and occurs quicker for the case with higher Reynolds number in both experiments and simulations as well. It was found that the Reynolds number only slightly affects the jet trajectory, which in the case with the higher Reynolds number is slightly deeper. It is attributed to the changed boundary layer shape of the cross-flow. Leeward streamlines bend toward the jet and are responsible for the strong entrainment of cross-flow fluid into the jet. Velocity components are compared for the two Reynolds numbers at the leeward side at positions where strongest entrainment is present and a pressure minimum near the jet trajectory is found. The numerical simulations showed that entrainment is higher for the case with the higher Reynolds number. The latter is attributed to the earlier transition in this case. Fluid entrainment of the jet in cross-flow is more than twice stronger than for a similar flow of a jet issuing into a co-flowing stream. This comparison is made along the trajectory of the two jets at a distance of 5.5 jet diameters downstream and is based on the results from the direct numerical simulations and recently published
Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate
Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.
2017-03-01
The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.
Directory of Open Access Journals (Sweden)
Ivana Stiperski
2017-01-01
Full Text Available In this article, we present an overview of the HyIV-CNRS-SecORo (Hydralab IV-CNRS-Secondary Orography and Rotors Experiments laboratory experiments carried out in the CNRM (Centre National de Recherches Météorologiques large stratified water flume. The experiments were designed to systematically study the influence of double obstacles on stably stratified flow. The experimental set-up consists of a two-layer flow in the water tank, with a lower neutral and an upper stable layer separated by a sharp density discontinuity. This type of layering over terrain is known to be conducive to a variety of possible responses in the atmosphere, from hydraulic jumps to lee waves and highly turbulent rotors. In each experiment, obstacles were towed through the tank at a constant speed. The towing speed and the size of the tank allowed high Reynolds-number flow similar to the atmosphere. Here, we present the experimental design, together with an overview of laboratory experiments conducted and their results. We develop a regime diagram for flow over single and double obstacles and examine the parameter space where the secondary obstacle has the largest influence on the flow. Trapped lee waves, rotors, hydraulic jumps, lee-wave interference and flushing of the valley atmosphere are successfully reproduced in the stratified water tank. Obstacle height and ridge separation distance are shown to control lee-wave interference. Results, however, differ partially from previous findings on the flow over double ridges reported in the literature due to the presence of nonlinearities and possible differences in the boundary layer structure. The secondary obstacle also influences the transition between different flow regimes and makes trapped lee waves possible for higher Froude numbers than expected for an isolated obstacle.
Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry
2018-05-01
Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.
High performance parallel computing of flows in complex geometries: II. Applications
International Nuclear Information System (INIS)
Gourdain, N; Gicquel, L; Staffelbach, G; Vermorel, O; Duchaine, F; Boussuge, J-F; Poinsot, T
2009-01-01
Present regulations in terms of pollutant emissions, noise and economical constraints, require new approaches and designs in the fields of energy supply and transportation. It is now well established that the next breakthrough will come from a better understanding of unsteady flow effects and by considering the entire system and not only isolated components. However, these aspects are still not well taken into account by the numerical approaches or understood whatever the design stage considered. The main challenge is essentially due to the computational requirements inferred by such complex systems if it is to be simulated by use of supercomputers. This paper shows how new challenges can be addressed by using parallel computing platforms for distinct elements of a more complex systems as encountered in aeronautical applications. Based on numerical simulations performed with modern aerodynamic and reactive flow solvers, this work underlines the interest of high-performance computing for solving flow in complex industrial configurations such as aircrafts, combustion chambers and turbomachines. Performance indicators related to parallel computing efficiency are presented, showing that establishing fair criterions is a difficult task for complex industrial applications. Examples of numerical simulations performed in industrial systems are also described with a particular interest for the computational time and the potential design improvements obtained with high-fidelity and multi-physics computing methods. These simulations use either unsteady Reynolds-averaged Navier-Stokes methods or large eddy simulation and deal with turbulent unsteady flows, such as coupled flow phenomena (thermo-acoustic instabilities, buffet, etc). Some examples of the difficulties with grid generation and data analysis are also presented when dealing with these complex industrial applications.
Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.
1996-01-01
This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.
Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth
2017-11-01
We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.
Pontone, Gianluca; Muscogiuri, Giuseppe; Andreini, Daniele; Guaricci, Andrea I; Guglielmo, Marco; Mushtaq, Saima; Baggiano, Andrea; Conte, Edoardo; Beltrama, Virginia; Annoni, Andrea; Formenti, Alberto; Mancini, Elisabetta; Rabbat, Mark G; Pepi, Mauro
2016-12-01
The increased number of patients with coronary artery disease (CAD) in developed countries is of great clinical relevance and involves a large burden of the healthcare system. The management of these patients is focused on relieving symptoms and improving clinical outcomes. Therefore the ideal test would provide the correct diagnosis and actionable information. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography (ICA), but their diagnostic yield remains low with limited accuracy when compared to obstructive CAD at the time of ICA or invasive fractional flow reserve (FFR). Invasive FFR is considered the gold standard for the evaluation of functionally relevant CAD. Therefore, an urgent need for non-invasive techniques that evaluate both the functional and morphological severity of CAD is growing. Coronary computed tomography angiography (CCTA) has emerged as a unique non-invasive technique providing coronary artery anatomic imaging. More recently, the evaluation of FFR with CCTA (FFR CT ) has demonstrated high diagnostic performance compared to invasive FFR. Additionally, stress myocardial computed tomography perfusion (CTP) represents a novel tool for the diagnosis of ischemia with high diagnostic accuracy. Compared to nuclear imaging and cardiac magnetic resonance imaging, both FFR CT and stress-CTP, allow us to integrate the anatomical evaluation of coronary arteries with the functional relevance of coronary artery lesions having the potential to revolutionize the diagnostic paradigm of suspected CAD. FFR CT and stress-CTP could be assimilated in diagnostic pathways of patients with stable CAD and will likely result in a decrease of invasive diagnostic procedures and costs. The current review evaluates the technical aspects and clinical experience of FFR CT and stress-CTP in the evaluation of functionally relevant CAD discussing the strengths and weaknesses of each approach.
Computational investigations of blunt body drag-reduction spikes in hypersonic flows
International Nuclear Information System (INIS)
Kamran, N.; Zahir, S.; Khan, M.A.
2003-01-01
Drag is an important parameter in the designing of high-speed vehicles. Such vehicles include hypervelocity projectiles, reentry modules, and hypersonic aircrafts. Therefore, there exists an active or passive technique to reduce drag due to the high pressures at nosetip region of the vehicle. Drag can be reduced by attaching a forward facing spike on the nose of the vehicle. The present study reviews and deals with the CFD analysis made on a standard blunt body to reduce aerodynamic drag due to the attachment of forward facing spikes for High-Speed vehicles. Different spike lengths have been examined to study the forebody flowfield. The investigation concludes that spikes are an effective way to reduce the aerodynamic drag due to reduced dynamic pressure on the nose caused by the separated flow on the spikes. With the accomplishment of confidence on computational data, study was extended in hypersonic Mach range with a drag prediction accuracy of ± 10%. In the present work, viscous fluid dynamics studies were performed for a complete freestream Mach number range of 5.0, 6.0, 7.0 and 8.0 for different spike lengths and zero degree angle of attack. (author)
Directory of Open Access Journals (Sweden)
Kiao Inthavong
2009-01-01
Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.
LES of Supersonic Turbulent Channel Flow at Mach Numbers 1.5 and 3
Raghunath, Sriram; Brereton, Giles
2009-11-01
LES of compressible, turbulent, body-force driven, isothermal-wall channel flows at Reτ of 190 and 395 at moderate supersonic speeds (Mach 1.5 and 3) are presented. Simulations are fully resolved in the wall-normal direction without the need for wall-layer models. SGS models for incompressible flows, with appropriate extensions for compressibility, are tested a priori/ with DNS results and used in LES. Convergence of the simulations is found to be sensitive to the initial conditions and to the choice of model (wall-normal damping) in the laminar sublayer. The Nicoud--Ducros wall adapting SGS model, coupled with a standard SGS heat flux model, is found to yield results in good agreement with DNS.
Experimental and Numerical Study for Flow across a Cube at various Reynolds numbers
Khan, Majid Hassan; Agrawal, Amit; Sharma, Atul
2017-11-01
Cube is an archetypal three dimensional bluff body and flow around a rigidly suspended cube is one of the least studied. The present work explains the flow behaviour in the wake of a cube. Lattice Boltzmann Method (LBM) simulations are used for Re = 84 to 780 and Particle Image Velocimetry (PIV) measurements are reported for Re = 550 to 55000. Mean and rms velocities at different axial locations are examined. Double peaks for rms velocity profiles at different axial locations in the wake is observed. Recirculation length increases at lower Re and then decreases at higher Re with a critical Re between 500 and 1000. An inverse relationship is found for the coefficient of drag and recirculation length in the steady range. Wake behaviour becomes non-dependent after Re = 1620. Using the nature of recirculation bubbles in the near wake, four flow regimes are established utilizing the LBM results and the categorization extends to the information at higher Re obtained using PIV. Drag coefficients are obtained using modified wake survey method and compared with established correlations for a cube and a sphere. Numerical results explain the relationship between side-forces at lower Re.
Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly
International Nuclear Information System (INIS)
Andrey Ioilev; Maskhud Samigulin; Vasily Ustinenko; Simon Lo; Adrian Tentner
2005-01-01
Full text of publication follows: The goal of this project is to develop an advanced Computational Fluid Dynamics (CFD) computer code (CFD-BWR) that allows the detailed analysis of the two-phase flow and heat transfer phenomena in a Boiling Water Reactor (BWR) fuel bundle under various operating conditions. This code will include more fundamental physical models than the current generation of sub-channel codes and advanced numerical algorithms for improved computational accuracy, robustness, and speed. It is highly desirable to understand the detailed two-phase flow phenomena inside a BWR fuel bundle. These phenomena include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for the analysis of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is still too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Recent progress in Computational Fluid Dynamics (CFD), coupled with the rapidly increasing computational power of massively parallel computers, shows promising potential for the fine-mesh, detailed simulation of fuel assembly two-phase flow phenomena. However, the phenomenological models available in the commercial CFD programs are not as advanced as those currently being used in the sub-channel codes used in the nuclear industry. In particular, there are no models currently available which are able to reliably predict the nature of the flow regimes, and use the appropriate sub-models for those flow regimes. The CFD-BWR code is being developed as a customized module built on the foundation of the commercial CFD Code STAR-CD which provides general two-phase flow modeling capabilities. The paper describes the model development strategy which has been adopted by the development team for the
Mesh Generation and Adaption for High Reynolds Number RANS Computations, Phase I
National Aeronautics and Space Administration — This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models....
Mesh Generation and Adaption for High Reynolds Number RANS Computations, Phase II
National Aeronautics and Space Administration — This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models....
Excitation of high numbers harmonics by flows of oscillators in a periodic potential
International Nuclear Information System (INIS)
Buts, V.A.; Marekha, V.I.; Tolstoluzhsky, A.P.
2005-01-01
It is shown that the maximum of radiation spectrum of nonrelativistic oscillators, which move into a periodically inhomogeneous potential, can be in the region of high numbers harmonics. Spectrum of such oscillators radiation becomes similar to the radiation spectrum of relativistic oscillators. The equations, describing the non-linear self-consistent theory of excitations, of high numbers harmonics by ensemble of oscillators are formulated and its numerical analysis is conducted. The numerical analysis has confirmed the capability of radiation of high numbers of harmonics. Such peculiarity of radiation allows t expect of creation of nonrelativistic FEL
Mahmoudzadeh, Javid; Wlodarczyk, Marta; Cassel, Kevin
2017-11-01
Development of excessive intimal hyperplasia (IH) in the cephalic vein of renal failure patients who receive chronic hemodialysis treatment results in vascular access failure and multiple treatment complications. Specifically, cephalic arch stenosis (CAS) is known to exacerbate hypertensive blood pressure, thrombosis, and subsequent cardiovascular incidents that would necessitate costly interventional procedures with low success rates. It has been hypothesized that excessive blood flow rate post access maturation which strongly violates the venous homeostasis is the main hemodynamic factor that orchestrates the onset and development of CAS. In this article, a computational framework based on a strong coupling of computational fluid dynamics (CFD) and shape optimization is proposed that aims to identify the effective blood flow rate on a patient-specific basis that avoids the onset of CAS while providing the adequate blood flow rate required to facilitate hemodialysis. This effective flow rate can be achieved through implementation of Miller's surgical banding method after the maturation of the arteriovenous fistula and is rooted in the relaxation of wall stresses back to a homeostatic target value. The results are indicative that this optimized hemodialysis blood flow rate is, in fact, a subject-specific value that can be assessed post vascular access maturation and prior to the initiation of chronic hemodialysis treatment as a mitigative action against CAS-related access failure. This computational technology can be employed for individualized dialysis treatment.
Actuator Line/Navier-Stokes Computations for Flows past the Yawed MEXICO Rotor
DEFF Research Database (Denmark)
Shen, Wen Zhong; Sørensen, Jens Nørkær; Yang, H.
2011-01-01
In the paper the Actuator Line/Navier-Stokes model has been used to simulate flows past the yawed MEXICO rotor. The computed loads as well as the velocity field behind the yawed rotor are compared to detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project...
A constructive logic for services and information flow in computer networks
Borghuis, V.A.J.; Feijs, L.M.G.
2000-01-01
In this paper we introduce a typed -calculus in which computer networks can be formalized and directed at situations where the services available on the network are stationary, while the information can flow freely. For this calculus, an analogue of the ‘propositions-as-types ’interpretation of
Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory
Westera, Wim
2018-01-01
This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing…
Computer Self-Efficacy, Competitive Anxiety and Flow State: Escaping from Firing Online Game
Hong, Jon-Chao; Pei-Yu, Chiu; Shih, Hsiao-Feng; Lin, Pei-Shin; Hong, Jon-Chao
2012-01-01
Flow state in game playing affected by computer self-efficacy and game competitive anxiety was studied. In order to examine the effect of those constructs with high competition, this study select "Escaping from firing online game" which require college students to escape from fire and rescue people and eliminate the fire damage along the way of…
Study of Material Flow of End-of-Life Computer Equipment (e-wastes ...
African Journals Online (AJOL)
In this study, a material flow model for the analysis of e-waste generation from computer equipment in Kaduna and Abuja in Nigeria has been developed and compared with that of Lagos which has been studied earlier. Data used to develop the models are the sales data from major distributors of electronics in the study ...
A Developmental Scale of Mental Computation with Part-Whole Numbers
Callingham, Rosemary; Watson, Jane
2004-01-01
In this article, data from a study of the mental computation competence of students in grades 3 to 10 are presented. Students responded to mental computation items, presented orally, that included operations applied to fractions, decimals and percents. The data were analysed using Rasch modelling techniques, and a six-level hierarchy of part-whole…
Semantic Characterisations of Second-Order Computability over the Real Numbers
DEFF Research Database (Denmark)
Korovina, Margarita V.; Kudinov, Oleg V.
2001-01-01
We propose semantic characterisations of second-order computability over the reals based on σ-definability theory. Notions of computability for operators and real-valued functionals defined on the class of continuous functions are introduced via domain theory. We consider the reals with and without...
International Nuclear Information System (INIS)
Gori, Fabio; Petracci, Ivano; Angelino, Matteo
2014-01-01
Highlights: • Flow with Negligible Disturbances, or first type, with length L ND = L 1 . • Flow with Small Disturbances, or second type, with length L SD . • Total length, L ND + L SD = L 2 , is in agreement with average Undisturbed flow, L U . • Flow with Coherent Vortices, or third type, with length L CV . • Total length, L ND + L SD + L CV = L 3 , is in agreement with average Potential core, L P . - Abstract: The paper is aimed at investigating the influence of the Reynolds number on the instant flow evolution of a rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2,200, where the Reynolds number, Re, is defined according to the hydraulic diameter, D, of a rectangular slot of height H, equal to about D = 2H. The Particle Image Velocimetry (PIV) technique allows obtaining the instant PIV visualizations on the central symmetry section of the rectangular jet. The visual inspection of the instant frames with one and two vortices, except for Re = 35,300 where only one vortex images are detected, shows that after the jet exit is present the Flow with Constant Instant Height, with a length L CIH which increases with the decrease of the Reynolds number, from a ratio L CIH /H equal to L CIH /H = 0.9 at Re = 35,300 to L CIH /H = 4.0 at Re = 2,200. The instant PIV measurements, carried out at several distances from the jet exit, show that the variations of the ratio U/U ‾ 0 of the centerline instant velocity, U, to the exit average velocity, U ‾ 0 , remain below ±4% for a length L CIV , defining the Flow with Constant Instant Velocity on the centerline. The ratio L CIV /H increases from L CIV /H = 1.1 at Re = 35,300 to L CIV /H = 4.1 at Re = 2,200 and is quite similar to L CIH /H. The instant PIV measurements of the centerline turbulence intensity, Tu, show that its variations remain below ±4% for a length L CIT , defining the Flow with Constant Instant Turbulence on the centerline. The ratio L CIT /H is equal to L CIV /H
Performance Limiting Flow Processes in High-State Loading High-Mach Number Compressors
National Research Council Canada - National Science Library
Tan, Choon S
2008-01-01
In high-stage loading high-Mach number (HLM) compressors, counter-rotating pairs of discrete vortices are shed at the trailing edge of the upstream blade row at a frequency corresponding to the downstream rotor blade passing frequency...
Computational Flow Modeling of a Simplified Integrated Tractor-Trailer Geometry
International Nuclear Information System (INIS)
Salari, K.; McWherter-Payne, M.
2003-01-01
For several years, Sandia National Laboratories and Lawrence Livermore National Laboratory have been part of a consortium funded by the Department of Energy to improve fuel efficiency of heavy vehicles such as Class 8 trucks through aerodynamic drag reduction. The objective of this work is to demonstrate the feasibility of using the steady Reynolds-Averaged Navier-Stokes (RANS) approach to predict the flow field around heavy vehicles, with special emphasis on the base region of the trailer, and to compute the aerodynamic forces. In particular, Sandia's computational fluid dynamics code, SACCARA, was used to simulate the flow on a simplified model of a tractor-trailer vehicle. The results are presented and compared with NASA Ames experimental data to assess the predictive capability of RANS to model the flow field and predict the aerodynamic forces
Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD.
Xu, Liang; Yang, Ming; Ye, Lin; Dong, Zhaopeng
2015-01-01
Hemocompatibility is highly affected by the flow field in Left Ventricular Assistant Devices (LVAD). An asymmetric inflow and outflow channel arrangement with a 45° intersection angle with respect to the blood chamber is proposed to approximate the vascular structure of the aorta and left atrium on the left ventricle. The structure is expected to develop uninterruptible vortex flow state which is similar to the flow state in human left ventricle. The Computational Fluid Dynamics (CFD) asymmetric model is simulated using ANSYS workbench. To validate the velocity field calculated by CFD, a Particle Image Velocimetry (PIV) experiment is conducted. The CFD results show that the proposed blood chamber could generate a shifting vortex flow that would be redirected to the aorta during ejection to form a persistent recirculating flow state, which is similar to the echocardiographic flow state in left ventricle. Both the PIV and the CFD results show the development of a persistent vortex during the pulsatile period. Comparison of the qualitative flow pattern and quantitative probed velocity histories in a pulsatile period shows a good agreement between the CFD and PIV data. The goal of developing persistent quasi intra-ventricle vortex flow state in LVAD is realized.
Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model
Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.
2017-11-01
Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.
MEDUSA - An overset grid flow solver for network-based parallel computer systems
Smith, Merritt H.; Pallis, Jani M.
1993-01-01
Continuing improvement in processing speed has made it feasible to solve the Reynolds-Averaged Navier-Stokes equations for simple three-dimensional flows on advanced workstations. Combining multiple workstations into a network-based heterogeneous parallel computer allows the application of programming principles learned on MIMD (Multiple Instruction Multiple Data) distributed memory parallel computers to the solution of larger problems. An overset-grid flow solution code has been developed which uses a cluster of workstations as a network-based parallel computer. Inter-process communication is provided by the Parallel Virtual Machine (PVM) software. Solution speed equivalent to one-third of a Cray-YMP processor has been achieved from a cluster of nine commonly used engineering workstation processors. Load imbalance and communication overhead are the principal impediments to parallel efficiency in this application.
MININR: a geochemical computer program for inclusion in water flow models - an application study
Energy Technology Data Exchange (ETDEWEB)
Felmy, A.R.; Reisenauer, A.E.; Zachara, J.M.; Gee, G.W.
1984-02-01
MININR is a reduced form of the computer program MINTEQ which calculates equilibrium precipitation/dissolution of solid phases, aqueous speciation, adsorption, and gas phase equilibrium. The user-oriented features in MINTEQ were removed to reduce the size and increase the computational speed. MININR closely resembles the MINEQL computer program developed by Westall (1976). The main differences between MININR and MINEQL involve modifications to accept an initial starting mass of solid and necessary changes for linking with a water flow model. MININR in combination with a simple water flow model which considers only dilution was applied to a laboratory column packed with retorted oil shale and percolated with distilled water. Experimental and preliminary model simulation results are presented for the constituents K/sup +/, Na/sup +/, SO/sub 4//sup 2 -/, Mg/sup 2 +/, Ca/sup 2 +/, CO/sub 3//sup 2 -/ and pH.
A Scientific Calculator for Exact Real Number Computation Based on LRT, GMP and FC++
Directory of Open Access Journals (Sweden)
J. A. Hernández
2012-03-01
Full Text Available Language for Redundant Test (LRT is a programming language for exact real number computation. Its lazy evaluation mechanism (also called call-by-need and its infinite list requirement, make the language appropriate to be implemented in a functional programming language such as Haskell. However, a direction translation of the operational semantics of LRT into Haskell as well as the algorithms to implement basic operations (addition subtraction, multiplication, division and trigonometric functions (sin, cosine, tangent, etc. makes the resulting scientific calculator time consuming and so inefficient. In this paper, we present an alternative implementation of the scientific calculator using FC++ and GMP. FC++ is a functional C++ library while GMP is a GNU multiple presicion library. We show that a direct translation of LRT in FC++ results in a faster scientific calculator than the one presented in Haskell.El lenguaje de verificación redundante (LRT, por sus siglas en inglés es un lenguaje de programación para el cómputo con números reales exactos. Su método de evaluación lazy (o mejor conocido como llamada por necesidad y el manejo de listas infinitas requerido, hace que el lenguaje sea apropiado para su implementación en un lenguaje funcional como Haskell. Sin embargo, la implementación directa de la semántica operacional de LRT en Haskell así como los algoritmos para funciones básicas (suma, resta, multiplicación y división y funciones trigonométricas (seno, coseno, tangente, etc hace que la calculadora científica resultante sea ineficiente. En este artículo, presentamos una implementación alternativa de la calculadora científica usando FC++ y GMP. FC++ es una librería que utiliza el paradigma Funcional en C++ mientras que GMP es una librería GNU de múltiple precisión. En el artículo mostramos que la implementación directa de LRT en FC++ resulta en una librería más eficiente que la implementada en Haskell.
Semantic Characterisations of Second-Order Computability over the Real Numbers
DEFF Research Database (Denmark)
Korovina, Margarita V.; Kudinov, Oleg V.
2001-01-01
equality and prove theorems which connect computable operators and real-valued functionals with validity of finite σ-formulas. This research was supported in part by the RFBR (grants N 99-01-00485, N 00-01-00810) and by the Siberian Division of RAS (a grant for young researchers, 2000)......We propose semantic characterisations of second-order computability over the reals based on σ-definability theory. Notions of computability for operators and real-valued functionals defined on the class of continuous functions are introduced via domain theory. We consider the reals with and without...
Using Computer-Generated Random Numbers to Calculate the Lifetime of a Comet.
Danesh, Iraj
1991-01-01
An educational technique to calculate the lifetime of a comet using software-generated random numbers is introduced to undergraduate physiques and astronomy students. Discussed are the generation and eligibility of the required random numbers, background literature related to the problem, and the solution to the problem using random numbers.…
NUMERICAL INVESTIGATION OF TWO ELEMENT CAMBER MORPHING AIRFOIL IN LOW REYNOLDS NUMBER FLOWS
Directory of Open Access Journals (Sweden)
RAJESH SENTHIL KUMAR T.
2017-07-01
Full Text Available Aerodynamic performance of a two-element camber morphing airfoil was investigated at low Reynolds number using the transient SST model in ANSYS FLUENT 14.0 and eN method in XFLR5. The two-element camber morphing concept was employed to morph the baseline airfoil into another airfoil by altering the orientation of mean-line at 35% of the chord to achieve better aerodynamic efficiency. NACA 0012 was selected as baseline airfoil. NACA 23012 was chosen as the test case as it has the camber-line similar to that of the morphed airfoil and as it has the same thickness as that of the baseline airfoil. The simulations were carried out at chord based Reynolds numbers of 2.5×105 and 3.9×105. The aerodynamic force coefficients, aerodynamic efficiency and the location of the transition point of laminar separation bubble over these airfoils were studied for various angles of attack. It was found that the aerodynamic efficiency of the morphed airfoil was 12% higher than that of the target airfoil at 4° angle of attack for Reynolds number of 3.9×105 and 54% rise in aerodynamic performance was noted as Reynolds number was varied from 2.5×105 to 3.9×105. The morphed airfoil exhibited the nature of low Reynolds number airfoil.
Bender, Jason D.
Understanding hypersonic aerodynamics is important for the design of next-generation aerospace vehicles for space exploration, national security, and other applications. Ground-level experimental studies of hypersonic flows are difficult and expensive; thus, computational science plays a crucial role in this field. Computational fluid dynamics (CFD) simulations of extremely high-speed flows require models of chemical and thermal nonequilibrium processes, such as dissociation of diatomic molecules and vibrational energy relaxation. Current models are outdated and inadequate for advanced applications. We describe a multiscale computational study of gas-phase thermochemical processes in hypersonic flows, starting at the atomic scale and building systematically up to the continuum scale. The project was part of a larger effort centered on collaborations between aerospace scientists and computational chemists. We discuss the construction of potential energy surfaces for the N4, N2O2, and O4 systems, focusing especially on the multi-dimensional fitting problem. A new local fitting method named L-IMLS-G2 is presented and compared with a global fitting method. Then, we describe the theory of the quasiclassical trajectory (QCT) approach for modeling molecular collisions. We explain how we implemented the approach in a new parallel code for high-performance computing platforms. Results from billions of QCT simulations of high-energy N2 + N2, N2 + N, and N2 + O2 collisions are reported and analyzed. Reaction rate constants are calculated and sets of reactive trajectories are characterized at both thermal equilibrium and nonequilibrium conditions. The data shed light on fundamental mechanisms of dissociation and exchange reactions -- and their coupling to internal energy transfer processes -- in thermal environments typical of hypersonic flows. We discuss how the outcomes of this investigation and other related studies lay a rigorous foundation for new macroscopic models for