WorldWideScience

Sample records for number emission factors

  1. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization.

    Science.gov (United States)

    Domínguez-Sáez, Aida; Viana, Mar; Barrios, Carmen C; Rubio, Jose R; Amato, Fulvio; Pujadas, Manuel; Querol, Xavier

    2012-10-16

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source apportionment by Positive Matrix Factorization (PMF) was carried out to interpret the real-world driving conditions. Three emission patterns were identified: (F1) cruise conditions, with medium-high speeds, contributing in this circuit with 60% of total particle number and a particle size distribution dominated by particles >52 nm and around 60 nm; (F2) transient conditions, stop-and-go conditions at medium-high speed, contributing with 25% of the particle number and mainly emitting particles in the nucleation mode; and (F3) creep-idle conditions, representing traffic congestion and frequent idling periods, contributing with 14% to the total particle number and with particles in the nucleation mode (emissions depending on particle size and driving conditions. Differences between real-world emission patterns and regulatory cycles (NEDC) are also presented, which evidence that detecting particle number emissions real-world driving conditions.

  2. Continental anthropogenic primary particle number emissions

    Science.gov (United States)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  3. Continental anthropogenic primary particle number emissions

    Directory of Open Access Journals (Sweden)

    P. Paasonen

    2016-06-01

    Full Text Available Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa, coke production (Russia and China, and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response

  4. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-01-01

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed. PMID:29425174

  5. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Directory of Open Access Journals (Sweden)

    Barouch Giechaskiel

    2018-02-01

    Full Text Available Particulate matter (PM, and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG, or Liquefied Natural Gas (LNG. Urban, rural and motorway (highway emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS. Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  6. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory.

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-02-09

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  7. Aerosol and NOx emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes

    Directory of Open Access Journals (Sweden)

    D. Imhof

    2006-01-01

    Full Text Available Measurements of aerosol particle number size distributions (18–700 nm, mass concentrations (PM2.5 and PM10 and NOx were performed in the Plabutsch tunnel, Austria, and in the Kingsway tunnel, United Kingdom. These two tunnels show different characteristics regarding the roadway gradient, the composition of the vehicle fleet and the traffic frequency. The submicron particle size distributions contained a soot mode in the diameter range D=80–100 nm and a nucleation mode in the range of D=20–40 nm. In the Kingsway tunnel with a significantly lower particle number and volume concentration level than in the Plabutsch tunnel, a clear diurnal variation of nucleation and soot mode particles correlated to the traffic density was observed. In the Plabutsch tunnel, soot mode particles also revealed a diurnal variation, whereas no substantial variation was found for the nucleation mode particles. During the night a higher number concentration of nucleation mode particles were measured than soot mode particles and vice versa during the day. In this tunnel with very high soot emissions during daytime due to the heavy-duty vehicle (HDV share of 18% and another 40% of diesel driven light-duty vehicles (LDV semivolatile species condense on the pre-existing soot surface area rather than forming new particles by homogeneous nucleation. With the low concentration of soot mode particles in the Kingsway tunnel, also the nucleation mode particles exhibit a diurnal variation. From the measured parameters real-world traffic emission factors were estimated for the whole vehicle fleet as well as differentiated into the two categories LDV and HDV. In the particle size range D=18–700 nm, each vehicle of the mixed fleet emits (1.50±0.08×1014 particles km-1 (Plabutsch and (1.26±0.10×1014 particles km-1 (Kingsway, while particle volume emission factors of 0.209±0.008 cm3 km-1 and 0.036±0.004 cm3 km-1, respectively, were obtained. PM1 emission factors of 104±4 mg

  8. A laboratory comparison of emission factors, number size distributions and morphology of ultrafine particles from eleven different household cookstove-fuel systems

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes all data used to generate figures in the manuscript and supporting information for the publication entitled "Emission factors, number size...

  9. Estimation of vehicular emissions using dynamic emission factors: A case study of Delhi, India

    Science.gov (United States)

    Mishra, Dhirendra; Goyal, P.

    2014-12-01

    The estimation of vehicular emissions depends mainly on the values of emission factors, which are used for the development of a comprehensive emission inventory of vehicles. In this study the variations of emission factors as well as the emission rates have been studied in Delhi. The implementation of compressed natural gas (CNG), in the diesel and petrol, public vehicles in the year 2001 has changed the complete air quality scenario of Delhi. The dynamic emission factors of criteria pollutants viz. carbon monoxide (CO), nitrogen oxide (NOx) and particulate matter (PM10) for all types of vehicles have been developed after, which are based on the several factors such as regulated emission limits, number of vehicle deterioration, vehicle increment, vehicle age etc. These emission factors are found to be decreased continuously throughout the study years 2003-2012. The International Vehicle Emissions (IVE) model is used to estimate the emissions of criteria pollutants by utilizing a dataset available from field observations at different traffic intersections in Delhi. Thus the vehicular emissions, based on dynamic emission factors have been estimated for the years 2003-2012, which are found to be comparable with the monitored concentrations at different locations in Delhi. It is noticed that the total emissions of CO, NOx, and PM10 are increased by 45.63%, 68.88% and 17.92%, respectively up to the year 2012 and the emissions of NOx and PM10 are grown continuously with an annual average growth rate of 5.4% and 1.7% respectively.

  10. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization

    NARCIS (Netherlands)

    Domínguez-Sáez, A.; Viana, M.; Barrios, C.C.; Rubio, J.R.; Amato, F.; Pujadas, M.; Querol, X.

    2012-01-01

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source

  11. Particle number emissions of gasoline hybrid electric vehicles; Partikelanzahl-Emission bei Hybridfahrzeugen mit Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Scott [Horiba Instruments Inc., Ann Arbor, MI (United States)

    2012-04-15

    Hybrid Electric Vehicles (HEV) are commonly reputed to be environmentally friendly. Different studies show that this assumption raises some questions in terms of particle number emissions. Against the background that upcoming emission standards will not only limit particle matter emissions but also particle number emissions for gasoline engines, the exhaust behaviour of downsized gasoline engines used in HEV should be investigated more extensively. A Horiba study compares the particle number emissions of a gasoline vehicle to those of a gasoline powered HEV. (orig.)

  12. Measurements of air pollution emission factors for marine transportation in SECA

    Directory of Open Access Journals (Sweden)

    B. Alföldy

    2013-07-01

    Full Text Available The chemical composition of the plumes of seagoing ships was measured during a two week long measurement campaign in the port of Rotterdam, Hoek van Holland The Netherlands, in September 2009. Altogether, 497 ships were monitored and a statistical evaluation of emission factors (g kg−1 fuel was provided. The concerned main atmospheric components were SO2, NO2, NOx and the aerosol particle number. In addition, the elemental and water-soluble ionic composition of the emitted particulate matter was determined. Emission factors were expressed as a function of ship type, power and crankshaft rotational speed. The average SO2 emission factor was found to be roughly half of what is allowed in sulphur emission control areas (16 vs. 30 g kg−1 fuel, and exceedances of this limit were rarely registered. A significant linear relationship was observed between the SO2 and particle number emission factors. The intercept of the regression line, 4.8 × 1015 (kg fuel−1, gives the average number of particles formed during the burning of 1 kg zero sulphur content fuel, while the slope, 2 × 1018, provides the average number of particles formed with 1 kg sulphur burnt with the fuel. Water-soluble ionic composition analysis of the aerosol samples from the plumes showed that ~144 g of particulate sulphate was emitted from 1 kg sulphur burnt with the fuel. The mass median diameter of sulphate particles estimated from the measurements was ~42 nm.

  13. Emission factors of Austrian industry production and international comparison. Final report

    International Nuclear Information System (INIS)

    Turi, K.

    1997-05-01

    During the last few years a number of measures have been implemented in the Austrian industries to reduce air pollution and energy use. Therefore specific emissions in the various sectors were changed considerably during this period. The aim of this research project was to better characterize air pollutant emissions of the Austrian industry. Emission data as measured by the Austrian industry was compared with published emission factors from international literature. The results show that the emission factors of the Austrian industry are generally lower than literature emission factors. This is because on the one hand many older data from the literature do not reflect current state of the knowledge, and on the other hand because emission reduction measures and new technologies were introduced in the Austrian industry. (author)

  14. Air Emissions Factors and Quantification

    Science.gov (United States)

    Emissions factors are used in developing air emissions inventories for air quality management decisions and in developing emissions control strategies. This area provides technical information on and support for the use of emissions factors.

  15. A method for measuring particle number emissions from vehicles driving on the road.

    Science.gov (United States)

    Shi, J P; Harrison, R M; Evans, D E; Alam, A; Barnes, C; Carter, G

    2002-01-01

    Earlier research has demonstrated that the conditions of dilution of engine exhaust gases profoundly influence the size distribution and total number of particles emitted. Since real world dilution conditions are variable and therefore difficult to simulate, this research has sought to develop and validate a method for measuring particle number emissions from vehicles driving past on a road. This has been achieved successfully using carbon dioxide as a tracer of exhaust gas dilution. By subsequent adjustment of data to a constant dilution factor, it is possible to compare emissions from different vehicles using different technologies and fuels based upon real world emission data. Whilst further optimisation of the technique, especially in terms of matching the instrument response times is desirable, the measurements offer useful insights into emissions from gasoline and diesel vehicles, and the substantial proportion of particles emitted in the 3-7 nanometre size range.

  16. Real world vehicle fleet emission factors: Seasonal and diurnal variations in traffic related air pollutants

    Science.gov (United States)

    Wang, Jonathan M.; Jeong, Cheol-Heon; Zimmerman, Naomi; Healy, Robert M.; Evans, Greg J.

    2018-07-01

    Temporal variations of vehicle emissions are affected by various compounding factors in the real world. The focus of this study is to determine the effects of ambient conditions and post-tailpipe changes on traffic emissions measured in the near-road region. Emission factors allowed for the isolation of the traffic signal and accounted for effects of local meteorology and dilution. Five month-long measurement campaigns were conducted at an urban near-road site that exhibited a broad range of ambient conditions with temperatures ranging between -18 and +30 °C. Particle number emission factors were 2.0× higher in the winter relative to the summer, which was attributed to changes in particles post-tailpipe. Conversely, toluene emissions were 2.5× higher in the summer relative to the winter, attributed to changes in fuel composition. Diurnal trends of emission factors showed substantial increases in emissions during the morning rush hour for black carbon (1.9×), particle number (2.4×), and particle-bound polycyclic aromatic hydrocarbons (3.0×), affected by fleet make-up. In contrast, particle number emission factors were highest midday with mean values 3.7× higher than at night. This midday increase was attributed to particle formation or growth from local traffic emissions and showed different wind direction dependence than regional events.

  17. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  18. Particulate Matter Emission Factors for Biomass Combustion

    Directory of Open Access Journals (Sweden)

    Simone Simões Amaral

    2016-10-01

    Full Text Available Emission factor is a relative measure and can be used to estimate emissions from multiple sources of air pollution. For this reason, data from literature on particulate matter emission factors from different types of biomass were evaluated in this paper. Initially, the main sources of particles were described, as well as relevant concepts associated with particle measurements. In addition, articles about particle emissions were classified and described in relation to the sampling environment (open or closed and type of burned biomass (agricultural, garden, forest, and dung. Based on this analysis, a set of emission factors was presented and discussed. Important observations were made about the main emission sources of particulate matter. Combustion of compacted biomass resulted in lower particulate emission factors. PM2.5 emissions were predominant in the burning of forest biomass. Emission factors were more elevated in laboratory burning, followed by burns in the field, residences and combustors.

  19. Ammonia emission factors for UK agriculture

    Science.gov (United States)

    Misselbrook, T. H.; Van Der Weerden, T. J.; Pain, B. F.; Jarvis, S. C.; Chambers, B. J.; Smith, K. A.; Phillips, V. R.; Demmers, T. G. M.

    Ammonia (NH 3) emission inventories are required for modelling atmospheric NH 3 transport and estimating downwind deposition. A recent inventory for UK agriculture, estimating emission as 197 kt NH 3-N yr -1, was constructed using 1993 statistical and census data for the UK. This paper describes the derivation of the UK-based emission factors used in the calculation of that emission for a range of livestock classes, farm practices and fertiliser applications to agricultural land. Some emission factors have been updated where more recent information has become available. Some of the largest emission factors derived for each farming practice include 16.9 g NH 3-N dairy cow -1 d -1 for grazing, 148.8 g NH 3-N liveweight unit -1 yr -1 for housed broilers and 4.8 g NH 3-N m -2 d -1 for storage of solid pig and poultry waste as manure heaps. Emissions for land spreading of all livestock waste were 59% of the total ammoniacal nitrogen (TAN) applied as a high dry matter content slurry and 76% of TAN applied as farm yard manure. An updated estimate of emission from UK agriculture, using updated emission factors together with 1997 statistical and census data, is presented, giving a total of 226 kt NH 3-N per year.

  20. Novel method for on-road emission factor measurements using a plume capture trailer.

    Science.gov (United States)

    Morawska, L; Ristovski, Z D; Johnson, G R; Jayaratne, E R; Mengersen, K

    2007-01-15

    The method outlined provides for emission factor measurements to be made for unmodified vehicles driving under real world conditions at minimal cost. The method consists of a plume capture trailer towed behind a test vehicle. The trailer collects a sample of the naturally diluted plume in a 200 L conductive bag and this is delivered immediately to a mobile laboratory for subsequent analysis of particulate and gaseous emissions. The method offers low test turnaround times with the potential to complete much larger numbers of emission factor measurements than have been possible using dynamometer testing. Samples can be collected at distances up to 3 m from the exhaust pipe allowing investigation of early dilution processes. Particle size distribution measurements, as well as particle number and mass emission factor measurements, based on naturally diluted plumes are presented. A dilution profile relating the plume dilution ratio to distance from the vehicle tail pipe for a diesel passenger vehicle is also presented. Such profiles are an essential input for new mechanistic roadway air quality models.

  1. Health effects of soy-biodiesel emissions: mutagenicity-emission factors.

    Science.gov (United States)

    Mutlu, Esra; Warren, Sarah H; Matthews, Peggy P; King, Charly; Walsh, Leon; Kligerman, Andrew D; Schmid, Judith E; Janek, Daniel; Kooter, Ingeborg M; Linak, William P; Gilmour, M Ian; DeMarini, David M

    2015-01-01

    Soy biodiesel is the predominant biodiesel fuel used in the USA, but only a few, frequently conflicting studies have examined the potential health effects of its emissions. We combusted petroleum diesel (B0) and fuels with increasing percentages of soy methyl esters (B20, B50 and B100) and determined the mutagenicity-emission factors expressed as revertants/megajoule of thermal energy consumed (rev/MJ(th)). We combusted each fuel in replicate in a small (4.3-kW) diesel engine without emission controls at a constant load, extracted organics from the particles with dichloromethane, determined the percentage of extractable organic material (EOM), and evaluated these extracts for mutagenicity in 16 strains/S9 combinations of Salmonella. Mutagenic potencies of the EOM did not differ significantly between replicate experiments for B0 and B100 but did for B20 and B50. B0 had the highest rev/MJ(th), and those of B20 and B100 were 50% and ∼85% lower, respectively, in strains that detect mutagenicity due to polycyclic aromatic hydrocarbons (PAHs), nitroarenes, aromatic amines or oxidative mutagens. For all strains, the rev/MJ(th) decreased with increasing biodiesel in the fuel. The emission factor for the 16 EPA Priority PAHs correlated strongly (r(2 )= 0.69) with the mutagenicity-emission factor in strain TA100 + S9, which detects PAHs. Under a constant load, soy-biodiesel emissions were 50-85% less mutagenic than those of petroleum diesel. Without additional emission controls, petroleum and biodiesel fuels had mutagenicity-emission factors between those of large utility-scale combustors (e.g. natural gas, coal, or oil) and inefficient open-burning (e.g. residential wood fireplaces).

  2. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  3. Particle and VOC emission factor measurements for anthropogenic sources in West Africa

    Directory of Open Access Journals (Sweden)

    S. Keita

    2018-06-01

    Full Text Available A number of campaigns have been carried out to establish the emission factors of pollutants from fuel combustion in West Africa, as part of work package 2 (Air Pollution and Health of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa FP7 program. Emission sources considered here include wood (hevea and iroko and charcoal burning, charcoal making, open trash burning, and vehicle emissions, including trucks, cars, buses and two-wheeled vehicles. Emission factors of total particulate matter (TPM, elemental carbon (EC, primary organic carbon (OC and volatile organic compounds (VOCs have been established. In addition, emission factor measurements were performed in combustion chambers in order to reproduce field burning conditions for a tropical hardwood (hevea, and obtain particulate emission factors by size (PM0.25, PM1, PM2.5 and PM10. Particle samples were collected on quartz fiber filters and analyzed using gravimetric method for TPM and thermal methods for EC and OC. The emission factors of 58 VOC species were determined using offline sampling on a sorbent tube. Emission factor results for two species of tropical hardwood burning of EC, OC and TPM are 0.98 ± 0.46 g kg−1 of fuel burned (g kg−1, 11.05 ± 4.55 and 41.12 ± 24.62 g kg−1, respectively. For traffic sources, the highest emission factors among particulate species are found for the two-wheeled vehicles with two-stroke engines (2.74 g kg−1 fuel for EC, 65.11 g kg−1 fuel for OC and 496 g kg−1 fuel for TPM. The largest VOC emissions are observed for two-stroke two-wheeled vehicles, which are up to 3 times higher than emissions from light-duty and heavy-duty vehicles. Isoprene and monoterpenes, which are usually associated with biogenic emissions, are present in almost all anthropogenic sources investigated during this work and could be as significant as aromatic emissions in wood burning (1 g kg−1 fuel. EC is

  4. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase

  5. Real-world emission factors of fine and ultrafine aerosol particles for different traffic situations in Switzerland.

    Science.gov (United States)

    Imhof, David; Weingartner, Ernest; Ordónez, Carlos; Gehrig, Robert; Hill, Matz; Buchmann, Brigitte; Baltensperger, Urs

    2005-11-01

    Extended field measurements of particle number (size distribution of particle diameters, D, in the range between 18 nm and 10 microm), surface area concentrations, and PM1 and PM10 mass concentrations were performed in Switzerland to determine traffic emissions using a comprehensive set of instruments. Measurements took place at roads with representative traffic regimes: at the kerbside of a motorway (120 km h(-1)), a highway (80-100 km h(-1)), and in an urban area with stop-and-go traffic (0-50 km h(-1)) regulated by light signals. Mean diurnal variations showed that the highest pollutant concentrations were during the morning rush hours, especially of the number density in the nanoparticle size range (D real-life" emission factors were derived using NOx concentrations to calculate dilution factors. Particle number and volume emission factors of different size ranges (18-50 nm, 18-100 nm, and 18-300 nm) were derived for the total vehicle fleet and separated into a light-duty (LDV) and a heavy-duty vehicle (HDV) contribution. The total particle number emissions per vehicle were found to be about 11.7-13.5 x 10(14) particles km(-1) for constant speed (80-120 km h(-1) and 3.9 x 10(14) particles km(-1) for urban driving conditions. LDVs showed higher emission factors at constant high speed than under urban disturbed traffic flow. In contrast, HDVs emitted more air pollutants during deceleration and acceleration processes in stop-and-go traffic than with constant speed of about 80 km h(-1). On average, one HDV emits a 10-30 times higher amount of particulate air pollutants (in terms of both number and volume) than one LDV.

  6. AP-42 Emissions Factors (WebFIRE)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Emissions factors have long been the fundamental tool in developing national, regional, state, and local emissions inventories for air quality management decisions...

  7. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    Science.gov (United States)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds

  8. Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fioroni, Gina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fatouraie, Mohammad [Robert Bosch LLC; Frommherz, Mario [Robert Bosch LLC; Mosburger, Michael [Robert Bosch LLC; Chapman, Elana [General Motors LLC; Li, Sharon [General Motors LLC

    2018-04-03

    Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulate emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work. Two risk safeguard fuels (RSG), representing the properties of worst case market fuels in Europe and China, were also included. The particle number concentration of the solid particulates was measured in the engine-out exhaust flow at steady state engine operations with load and speed sweeps, and semi-transient load steps. The test results showed a factor of 6 PN emission difference among all certification fuels tested. Combined with detailed fuel analyses, this study evaluated important factors (such as oxygenates, carbon chain length and thermo-physical properties) that cause PN emissions which were not included in PMI index. A linear regression was performed to develop a PN predictive model which showed improved fitting quality than using PMI.

  9. Vehicle emission factors of solid nanoparticles in the laboratory and on the road using Portable Emission Measurement Systems (PEMS

    Directory of Open Access Journals (Sweden)

    Barouch eGiechaskiel

    2015-12-01

    Full Text Available Emission inventories are used to quantify sources and identify trends in the emissions of air pollutants. They use vehicle-specific emission factors that are typically determined in the laboratory, through remote-sensing, vehicle chasing experiments and, more recently, on-board Portable Emission Measurement Systems (PEMS. Although PEMS is widely applied to measure gaseous pollutants, their application to Solid Particle Number (SPN emissions is new. In this paper, we discuss the current status of determining SPN emission factors both on the chassis dynamometer and on-road using PEMS-SPN. First, we determine the influence of the measurement equipment, ambient temperature, driving style and cycle characteristics, and the extra mass of the PEMS equipment on the SPN emissions. Afterward, we present the SPN emissions under type-approval conditions as well as on the road of two heavy-duty diesel vehicles equipped with Diesel Particulate Filter (DPF (one Euro VI, two light-duty diesel vehicles equipped with DPF, one light-duty vehicle equipped with a Port Fuel Injection engine (PFI, and seven Gasoline Direct Injection (GDI passenger cars (two Euro 6. We find that cold-start and strong accelerations tend to substantially increase SPN emissions. The two heavy-duty vehicles showed emissions around 2×10^13 p/km (Euro V truck and 6×10^10 p/km (Euro VI truck, respectively. One of the DPF-equipped light-duty vehicles showed emissions of 8×10^11 p/km, while the other one had one order of magnitude lower emissions. The PFI car had SPN emissions slightly higher than 1×10^12 p/km. The emissions of GDI cars spanned approximately from 8×10^11 p/km to 8×10^12 p/km. For the cars without DPF, the SPN emissions remained within a factor of two of the laboratory results. This factor was on average around 0.8 for the Euro 6 and 1.6 for the Euro 5 GDIs. The DPF equipped vehicles showed a difference of almost one order of magnitude between laboratory and on-road tests

  10. How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions

    Science.gov (United States)

    Fachinger, Friederike; Drewnick, Frank; Gieré, Reto; Borrmann, Stephan

    2017-06-01

    For a common household wood stove and a pellet stove we investigated the dependence of emission factors for various gaseous and particulate pollutants on burning phase, burning condition, and fuel. Ideal and non-ideal burning conditions (dried wood, under- and overload, small logs, logs with bark, excess air) were used. We tested 11 hardwood species (apple, ash, bangkirai, birch, beech, cherry, hickory, oak, olive, plum, sugar maple), 4 softwood species (Douglas fir, pine, spruce, spruce/fir), treated softwood, beech and oak wood briquettes, paper briquettes, brown coal, wood chips, and herbaceous species (miscanthus, Chinese silver grass) as fuel. Particle composition (black carbon, non-refractory, and some semi-refractory species) was measured continuously. Repeatability was shown to be better for the pellet stove than for the wood stove. It was shown that the user has a strong influence on wood stove emission behavior both by selection of the fuel and of the burning conditions: Combustion efficiency was found to be low at both very low and very high burn rates, and influenced particle properties such as particle number, mass, and organic content in a complex way. No marked differences were found for the emissions from different wood species. For non-woody fuels, much higher emission factors could be observed (up to five-fold increase). Strongest enhancement of emission factors was found for burning of small or dried logs (up to six-fold), and usage of excess air (two- to three-fold). Real world pellet stove emissions can be expected to be much closer to laboratory-derived emission factors than wood stove emissions, due to lower dependence on user operation.

  11. Size-resolved particle emission factors for individual ships

    Science.gov (United States)

    Jonsson, Åsa M.; Westerlund, Jonathan; Hallquist, Mattias

    2011-07-01

    In these experiments size-resolved emission factors for particle number (EFPN) and mass (EFPM) have been determined for 734 individual ship passages for real-world dilution. The method used is an extractive sampling method of the passing ship plumes where particle number/mass and CO2 were measured with high time resolution (1 Hz). The measurements were conducted on a small island located in the entrance to the port of Gothenburg (N57.6849, E11.838), the largest harbor in Scandinavia. This is an emission control area (ECA) and in close vicinity to populated areas. The average EFPN and EFPM were 2.55 ± 0.11 × 1016 (kg fuel)-1 and 2050 ± 110 mg (kg fuel)-1, respectively. The determined EF for ships with multiple passages showed a great reproducibility. Size-resolved EFPN were peaking at small particle sizes ˜35 nm. Smaller particle sizes and hence less mass were observed by a gas turbine equipped ship compared to diesel engine equipped ships. On average 36 to 46% of the emitted particles by number were non-volatile and 24% by mass (EFPN 1.16 ± 0.19 × 1016 [kg fuel]-1 and EFPM 488 ± 73 mg [kg fuel]-1, respectively). This study shows a great potential to gain large data-sets regarding ship emission determining parameters that can improve current dispersion modeling for health assessments on local and regional scales. The global contributions of total and non-volatile particle mass from shipping using this extensive data-set from an ECA were estimated to be at least 0.80 Tgy-1 and 0.19 Tgy-1.

  12. Revised emission factors for gas engines including start/stop emissions

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Boll Illerup, J.; Birr-Petersen, K.

    2008-06-15

    Liberalisation of the electricity market has led to Danish gas engine plants increasingly converting to the spot and regulating power markets. In order to offer regulating power, plants need to be able to start and stop the engines at the plants quickly. The liberalisation causes a considerable change of operation practice of the engines e.g. less full load operation hours /year. The project provides an inventory determining the scale of the emissions during the start and stop sequence as well as proposals for engine modifications aimed at reducing start/stop emissions. This report includes calculation of emission factors as well as an inventory of total emissions and reduction potentials. (au)

  13. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China.

    Science.gov (United States)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-11-10

    Xinjiang's agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991-2014. The agriculture belonged to the "low emissions and high efficiency" agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas.

  14. NOx and SO2 emission factors for Serbian lignite Kolubara

    Directory of Open Access Journals (Sweden)

    Jovanović Vladimir V.

    2012-01-01

    Full Text Available Emission factors are widely accepted tool for estimation of various pollutants emissions in USA and EU. Validity of emission factors is strongly related to experimental data on which they are based. This paper is a result of an effort to establish reliable NOx and SO2 emission factors for Serbian coals. The results of NOx and SO2 emissions estimations based on USA and EU emission factors from thermal power plants Nikola Tesla Obrenovac A and B utilizing the Serbian lignite Kolubara are compared with experimental data obtained during almost one decade (2000-2008 of emissions measurements. Experimental data are provided from regular annual emissions measurement along with operational parameters of the boiler and coal (lignite Kolubara ultimate and proximate analysis. Significant deviations of estimated from experimental data were observed for NOx, while the results for SO2 were satisfactory. Afterwards, the estimated and experimental data were plotted and linear regression between them established. Single parameter optimization was performed targeting the ideal slope of the regression line. Results of this optimization provided original NOx and SO2 emission factors for Kolubara lignite.

  15. Empirical Study of Decomposition of CO2 Emission Factors in China

    Directory of Open Access Journals (Sweden)

    Yadong Ning

    2013-01-01

    Full Text Available China’s CO2 emissions increase has attracted world’s attention. It is of great importance to analyze China’s CO2 emission factors to restrain the CO2 rapid growing. The CO2 emissions of industrial and residential consumption sectors in China during 1980–2010 were calculated in this paper. The expanded decomposition model of CO2 emissions was set up by adopting factor-separating method based on the basic principle of the Kaya identities. The results showed that CO2 emissions of industrial and residential consumption sectors increase year after year, and the scale effect of GDP is the most important factor affecting CO2 emissions of industrial sector. Decreasing the specific gravity of secondary industry and energy intensity is more effective than decreasing the primary industry and tertiary industry. The emissions reduction effect of structure factor is better than the efficiency factor. For residential consumption sector, CO2 emissions increase rapidly year after year, and the economy factor (the increase of wealthy degree or income is the most important factor. In order to slow down the growth of CO2 emissions, it is an important way to change the economic growth mode, and the structure factor will become a crucial factor.

  16. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China

    Science.gov (United States)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-01-01

    Xinjiang’s agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991–2014. The agriculture belonged to the “low emissions and high efficiency” agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas. PMID:27830739

  17. Field emission characteristics of a small number of carbon fiber emitters

    Directory of Open Access Journals (Sweden)

    Wilkin W. Tang

    2016-09-01

    Full Text Available This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.

  18. Development of database of real-world diesel vehicle emission factors for China.

    Science.gov (United States)

    Shen, Xianbao; Yao, Zhiliang; Zhang, Qiang; Wagner, David Vance; Huo, Hong; Zhang, Yingzhi; Zheng, Bo; He, Kebin

    2015-05-01

    A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China, NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT (Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5 (Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent, which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-based models will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models. Copyright © 2015. Published by Elsevier B.V.

  19. Characterization of emission factors related to source activity for trichloroethylene degreasing and chrome plating processes.

    Science.gov (United States)

    Wadden, R A; Hawkins, J L; Scheff, P A; Franke, J E

    1991-09-01

    A study at an automotive parts fabrication plant evaluated four metal surface treatment processes during production conditions. The evaluation provides examples of how to estimate process emission factors from activity and air concentration data. The processes were open tank and enclosed tank degreasing with trichloroethylene (TCE), chromium conversion coating, and chromium electroplating. Area concentrations of TCE and chromium (Cr) were monitored for 1-hr periods at three distances from each process. Source activities at each process were recorded during each sampling interval. Emission rates were determined by applying appropriate mass balance models to the concentration patterns around each source. The emission factors obtained from regression analysis of the emission rate and activity data were 16.9 g TCE/basket of parts for the open-top degreaser; 1.0 g TCE/1000 parts for the enclosed degreaser; 1.48-1.64 mg Cr/1000 parts processed in the hot CrO3/HNO3 tank for the chrome conversion coating; and 5.35-9.17 mg Cr/rack of parts for chrome electroplating. The factors were also used to determine the efficiency of collection for the local exhaust systems serving each process. Although the number of observations were limited, these factors may be useful for providing initial estimates of emissions from similar processes in other settings.

  20. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Science.gov (United States)

    Spracklen, D. V.; Carslaw, K. S.; Merikanto, J.; Mann, G. W.; Reddington, C. L.; Pickering, S.; Ogren, J. A.; Andrews, E.; Baltensperger, U.; Weingartner, E.; Boy, M.; Kulmala, M.; Laakso, L.; Lihavainen, H.; Kivekäs, N.; Komppula, M.; Mihalopoulos, N.; Kouvarakis, G.; Jennings, S. G.; O'Dowd, C.; Birmili, W.; Wiedensohler, A.; Weller, R.; Gras, J.; Laj, P.; Sellegri, K.; Bonn, B.; Krejci, R.; Laaksonen, A.; Hamed, A.; Minikin, A.; Harrison, R. M.; Talbot, R.; Sun, J.

    2010-05-01

    We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm-3 in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm-3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=-88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=-25%). Simulated CN concentrations in the continental BL were also biased low (NMB=-74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation

  1. Determining the Number of Factors in P-Technique Factor Analysis

    Science.gov (United States)

    Lo, Lawrence L.; Molenaar, Peter C. M.; Rovine, Michael

    2017-01-01

    Determining the number of factors is a critical first step in exploratory factor analysis. Although various criteria and methods for determining the number of factors have been evaluated in the usual between-subjects R-technique factor analysis, there is still question of how these methods perform in within-subjects P-technique factor analysis. A…

  2. Greenhouse gas emission factors of purchased electricity from interconnected grids

    International Nuclear Information System (INIS)

    Ji, Ling; Liang, Sai; Qu, Shen; Zhang, Yanxia; Xu, Ming; Jia, Xiaoping; Jia, Yingtao; Niu, Dongxiao; Yuan, Jiahai; Hou, Yong; Wang, Haikun; Chiu, Anthony S.F.; Hu, Xiaojun

    2016-01-01

    Highlights: • A new accounting framework is proposed for GHG emission factors of power grids. • Three cases are used to demonstrate the proposed framework. • Comparisons with previous system boundaries approve the necessity. - Abstract: Electricity trade among power grids leads to difficulties in measuring greenhouse gas (GHG) emission factors of purchased electricity. Traditional methods assume either electricity purchased from a grid is entirely produced locally (Boundary I) or imported electricity is entirely produced by the exporting grid (Boundary II) (in fact a blend of electricity produced by many grids). Both methods ignore the fact that electricity can be indirectly traded between grids. Failing to capture such indirect electricity trade can underestimate or overestimate GHG emissions of purchased electricity in interconnected grid networks, potentially leading to incorrectly accounting for the effects of emission reduction policies involving purchased electricity. We propose a “Boundary III” framework to account for emissions both directly and indirectly caused by purchased electricity in interconnected gird networks. We use three case studies on a national grid network, an Eurasian Continent grid network, and North Europe grid network to demonstrate the proposed Boundary III emission factors. We found that the difference on GHG emissions of purchased electricity estimated using different emission factors can be considerably large. We suggest to standardize the choice of different emission factors based on how interconnected the local grid is with other grids.

  3. Emission factor development for the malt beverage, wine, and distilled spirits industries

    Energy Technology Data Exchange (ETDEWEB)

    Lapp, T.; Shrager, B. [Midwest Research Institute, Cary, NC (United States); Safriet, D. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1996-12-31

    Midwest Research Institute is currently developing emission factors for inclusion in AP-42 Chapter 9, Food and Agricultural Industries. Three of the sections cover the production of malt beverages, wine, and distilled spirits. The malt beverage segment focuses on the development of ethanol emission factors for filling operations, which were recently identified as the large source of brewery ethanol emissions. The discussion includes a description of the production process and emissions factors for breweries, a history of emission factories for breweries, a description of emission testing conducted at two large breweries, and a presentation of some of the emission factors for malt beverage production. The wine industry segment focuses on emissions from the fermentation stage for red and white wines, the pomace screen and pomace press for red wines, and bottling of white wine. Emission factors are presented for ethanol emissions from each of these sources as well as other VOC emissions from the fermentation process. A discussion of the wine production process is presented. A discussion of the emission sources and available emission factors is presented for the distilled spirits industry segment. Factors are presented for the fermentation and aging stages. A process description is presented for the production of Bourbon whisky.

  4. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 - Emission factors and emission inventory for decentralised CHP production

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, M.

    2010-06-15

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity < 25MWe have been estimated based on project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines combusting residual oil and reciprocating engines combusting biomass producer gas based on wood. The emission factors for MSW incineration plants are much lower than the emission factors that were estimated for year 2000. The considerable reduction in the emission factors is a result of lower emission limit values in Danish legislation since 2006 that has lead to installation of new and improved flue gas cleaning systems in most MSW incineration plants. For CHP plants combusting wood or straw no major technical improvements have been implemented. The emission factors for natural gas fuelled reciprocating engines have been reduced since year 2000 as a result of technical improvements that have been carried out due to lower emission limit values in Danish legislation. The NO{sub x} emission factor for natural gas fuelled gas turbines has decreased 62 % since year 2000. This is a result of installation of low-NO{sub x} burners in almost all gas turbines that has been necessary to meet new emission limits in Danish legislation. The emission measurements programme included screening of the emissions of HCB, PCB, PCDD/-F and PBDD/-F. Compared to the Danish national emission decentralized CHP plants are major emission sources for CH{sub 4}, NO{sub x}, SO{sub 2}, heavy metals and HCB. (author)

  5. 40 CFR 91.113 - Requirement of certification-emission control information label and engine identification number.

    Science.gov (United States)

    2010-07-01

    ... control information label and engine identification number. 91.113 Section 91.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM... certification—emission control information label and engine identification number. (a) The engine manufacturer...

  6. Carbon dioxide emission factors for U.S. coal by origin and destination

    Science.gov (United States)

    Quick, J.C.

    2010-01-01

    This paper describes a method that uses published data to calculate locally robust CO2 emission factors for U.S. coal. The method is demonstrated by calculating CO2 emission factors by coal origin (223 counties, in 1999) and destination (479 power plants, in 2005). Locally robust CO2 emission factors should improve the accuracy and verification of greenhouse gas emission measurements from individual coal-fired power plants. Based largely on the county origin, average emission factors for U.S. lignite, subbituminous, bituminous, and anthracite coal produced during 1999 were 92.97,91.97,88.20, and 98.91 kg CO2/GJgross, respectively. However, greater variation is observed within these rank classes than between them, which limits the reliability of CO2 emission factors specified by coal rank. Emission factors calculated by destination (power plant) showed greater variation than those listed in the Emissions & Generation Resource Integrated Database (eGRID), which exhibit an unlikely uniformity that is inconsistent with the natural variation of CO2 emission factors for U.S. coal. ?? 2010 American Chemical Society.

  7. Temporal and spatial variation in recent vehicular emission inventories in China based on dynamic emission factors.

    Science.gov (United States)

    Cai, Hao; Xie, Shaodong

    2013-03-01

    The vehicular emission trend in China was tracked for the recent period 2006-2009 based on a database of dynamic emission factors of CO, nonmethane volatile organic compounds (NMVOC), NOx, PM10, CO2, CH4, and N2O for all categories of on-road motor vehicles in China, which was developed at the provincial level using the COPERT 4 model, to account for the effects of rapid advances in engine technologies, implementation of improved emission standards, emission deterioration due to mileage, and fuel quality improvement. Results show that growth rates of CO and NMVOC emissions slowed down, but NOx and PM10 emissions continued rising rapidly for the period 2006-2009. Moreover CO2, CH4, and N2O emissions in 2009 almost doubled compared to those in 2005. Characteristics of recent spatial distribution of emissions and emission contributions by vehicle category revealed that priority of vehicular emission control should be put on the eastern and southeastern coastal provinces and northern regions, and passenger cars and motorcycles require stricter control for the reduction of CO and NMVOC emissions, while effective reduction of NOx and PM10 emissions can be achieved by better control of heavy-duty vehicles, buses and coaches, and passenger cars. Explicit provincial-level Monte Carlo uncertainty analysis, which quantified for the first time the Chinese vehicular emission uncertainties associated with both COPERT-derived and domestically measured emission factors by vehicle technology, showed that CO, NMVOC, and NOx emissions for the period 2006-2009 were calculated with the least uncertainty, followed by PM10 and CO2, despite relatively larger uncertainties in N2O and CH4 emissions. The quantified low uncertainties of emissions revealed a necessity of applying vehicle technology- and vehicle age-specific dynamic emission factors for vehicular emission estimation, and these improved methodologies are applicable for routine update and forecast of China's on-road motor vehicle

  8. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles

    Science.gov (United States)

    L.-W. Anthony Chen; Hans Moosmuller; W. Patrick Arnott; Judith C. Chow; John G. Watson; Ronald A. Susott; Ronald E. Babbitt; Cyle E. Wold; Emily N. Lincoln; Wei Min Hao

    2007-01-01

    Combustion of wildland fuels represents a major source of particulate matter (PM) and light-absorbing elemental carbon (EC) on a national and global scale, but the emission factors and source profiles have not been well characterized with respect to different fuels and combustion phases. These uncertainties limit the accuracy of current emission inventories, smoke...

  9. Analysis of Passenger Car Emission Factors in RDE Tests

    Directory of Open Access Journals (Sweden)

    Pielecha Jacek

    2016-01-01

    Full Text Available The article presents a study on emission measurements in passenger cars in tests conducted under real traffic conditions – Real Driving Emissions using a Portable Emission Measurement System type of equipment. A special feature of the outlined RDE tests is that they were performed in Polish road conditions, and thus their parameters may differ from their counterparts adopted in most European Union countries. Based on the findings vehicle emission conformity factors were developed, characterized as the fractional increase (or decrease of traffic emissions during the homologation test or under normal operation conditions in relation to the emission limit standards (for chosen emission class of the vehicle. Conducted research and the calculated conformity factors allowed for the environmental impact assessment of the vehicles of various emission classes, while also allowing early actions to restrict the emissions of selected components in passenger vehicles. The methods and measures used can also be applied to other types of vehicles (e.g. heavy duty or off-road vehicles or vehicles powered by other fuels.

  10. Influence factors and forecast of carbon emission in China: structure adjustment for emission peak

    Science.gov (United States)

    Wang, B.; Cui, C. Q.; Li, Z. P.

    2018-02-01

    This paper introduced Principal Component Analysis and Multivariate Linear Regression Model to verify long-term balance relationships between Carbon Emissions and the impact factors. The integrated model of improved PCA and multivariate regression analysis model is attainable to figure out the pattern of carbon emission sources. Main empirical results indicate that among all selected variables, the role of energy consumption scale was largest. GDP and Population follow and also have significant impacts on carbon emission. Industrialization rate and fossil fuel proportion, which is the indicator of reflecting the economic structure and energy structure, have a higher importance than the factor of urbanization rate and the dweller consumption level of urban areas. In this way, some suggestions are put forward for government to achieve the peak of carbon emissions.

  11. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2010-05-01

    Full Text Available We synthesised observations of total particle number (CN concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT and 1000–10 000 cm−3 in the continental boundary layer (BL. Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46 but fail to explain the observed seasonal cycle (R2=0.1. The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88% unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%. Simulated CN concentrations in the continental BL were also biased low (NMB=−74% unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one or kinetic-type mechanism (J proportional to sulfuric acid to the power two with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3 than by increasing the number emission from primary anthropogenic sources (R2=0.18. The nucleation constants that resulted in best overall match between model and observed CN concentrations were

  12. A Comprehensive Examination of Heavy Vehicle Emissions Factors

    Science.gov (United States)

    2010-08-01

    This report summarizes the findings from reviewing the literature on several topics that are related to heavy vehicle emissions including engine and fuel types, vehicle technologies that can be used to reduce or mitigate vehicle emissions, the factor...

  13. Emission factors of the iron and steel sector for the emission reporting; Emissionsfaktoren zur Eisen- und Stahlindustrie fuer die Emissionsberichterstattung

    Energy Technology Data Exchange (ETDEWEB)

    Hensmann, Michael; Haardt, Sebastian; Ebert, Dominik [Betriebsforschungsinstitut VDEh-Institut fuer Angewandte Forschung GmbH, Duesseldorf (Germany)

    2012-10-15

    The German Umweltbundesamt (UBA) records emission factors of important groups of emitters of the iron- and steelmaking industry in a central database named ''Zentrales System Emissionen'' (ZSE) since 1990. This data is being used for calculations of emission inventories. The main purposes are the generation of forecasts, calculating emissions of other plants and the appraisal of potential measures for reduction of pollution. This makes it possible to identify and appraise future problems and measures. Because of steadily increasing requirements to data quality and quality assurance, it became necessary to update the ZSE with characteristical emission data in order to give a representative view of relevant stages in the iron- and steelmaking industry with respect to emissions. In 2008, the VDEh-Betriebsforschungsinstitut (BFI) was assigned to determine up-to-date emission factors for the following relevant stages in the iron- and steelmaking industry: - sintering plant - coking plant - blast furnace - steel making (differentiated between oxygen and electric steel making) - production of rolled steel Due to a wide diversity of data quality, a consecutive project to determine the corresponding uncertainty of the emission factors was integrated into the ongoing project. This is necessary to create reliable forecasts of emissions and to meet national and international duties of reporting. The project was supported by 18 companies of the German iron- and steelmaking industry. A total of 40 relevant sources of emissions were identified within the five stages of steelmaking and taken into consideration. The emission data for documenting organic and inorganic components of harmful gas, heavy metals and air borne dusts in the ZSE was taken from the reports of emissions 2008 of the supporting companies and made up for a total of 63 plants. Due to a wide variety of data quality the emissions of point sources and diffuse sources are treated separately. While

  14. Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    Science.gov (United States)

    Zhang, Fan; Chen, Yingjun; Tian, Chongguo; Lou, Diming; Li, Jun; Zhang, Gan; Matthias, Volker

    2016-05-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbour districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel-engine-powered offshore vessels in China (350, 600 and 1600 kW) were measured in this study. Concentrations, fuel-based and power-based emission factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emission factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low-engine-power vessel (HH) than for the two higher-engine-power vessels (XYH and DFH); for instance, HH had NOx EF (emission factor) of 25.8 g kWh-1 compared to 7.14 and 6.97 g kWh-1 of DFH, and XYH, and PM EF of 2.09 g kWh-1 compared to 0.14 and 0.04 g kWh-1 of DFH, and XYH. Average emission factors for all pollutants except sulfur dioxide in the low-engine-power engineering vessel (HH) were significantly higher than that of the previous studies (such as 30.2 g kg-1 fuel of CO EF compared to 2.17 to 19.5 g kg-1 fuel in previous studies, 115 g kg-1 fuel of NOx EF compared to 22.3 to 87 g kg-1 fuel in previous studies and 9.40 g kg-1 fuel of PM EF compared to 1.2 to 7.6 g kg-1 fuel in previous studies), while for the two higher-engine-power vessels (DFH and XYH), most of the average emission factors for pollutants were comparable to the results of the previous studies, engine type was

  15. Emissions of trace gases from Australian temperate forest fires: emission factors and dependence on modified combustion efficiency

    Science.gov (United States)

    Guérette, Elise-Andrée; Paton-Walsh, Clare; Desservettaz, Maximilien; Smith, Thomas E. L.; Volkova, Liubov; Weston, Christopher J.; Meyer, Carl P.

    2018-03-01

    We characterised trace gas emissions from Australian temperate forest fires through a mixture of open-path Fourier transform infrared (OP-FTIR) measurements and selective ion flow tube mass spectrometry (SIFT-MS) and White cell FTIR analysis of grab samples. We report emission factors for a total of 25 trace gas species measured in smoke from nine prescribed fires. We find significant dependence on modified combustion efficiency (MCE) for some species, although regional differences indicate that the use of MCE as a proxy may be limited. We also find that the fire-integrated MCE values derived from our in situ on-the-ground open-path measurements are not significantly different from those reported for airborne measurements of smoke from fires in the same ecosystem. We then compare our average emission factors to those measured for temperate forest fires elsewhere (North America) and for fires in another dominant Australian ecosystem (savanna) and find significant differences in both cases. Indeed, we find that although the emission factors of some species agree within 20 %, including those of hydrogen cyanide, ethene, methanol, formaldehyde and 1,3-butadiene, others, such as acetic acid, ethanol, monoterpenes, ammonia, acetonitrile and pyrrole, differ by a factor of 2 or more. This indicates that the use of ecosystem-specific emission factors is warranted for applications involving emissions from Australian forest fires.

  16. Improved Rice Residue Burning Emissions Estimates: Accounting for Practice-Specific Emission Factors in Air Pollution Assessments of Vietnam

    Science.gov (United States)

    Lasko, Kristofer; Vadrevu, Krishna

    2018-01-01

    In Southeast Asia and Vietnam, rice residues are routinely burned after the harvest to prepare fields for the next season. Specific to Vietnam, the two prevalent burning practices include: a). piling the residues after hand harvesting; b). burning the residues without piling, after machine harvesting. In this study, we synthesized field and laboratory studies from the literature on rice residue burning emission factors for Particulate Matter less than 2.5 microns (PM2.5). We found significant differences in the resulting burning-practice specific emission factors, with 16.9 grams per square kilogram (plus or minus 6.9) for pile burning and 8.8 grams per square kilogram (plus or minus 3.5) for non-pile burning. We calculated burning practice specific emissions based on rice area data, region-specific fuel-loading factors, combined emission factors, and estimates of burning from the literature. Our results for year 2015 estimate 180 gigagrams of PM2.5 result from the pile burning method and 130 gigagrams result from non-pile burning method, with the most-likely current emission scenario of 150 gigagrams PM2.5 emissions for Vietnam. For comparison purposes, we calculated emissions using generalized agricultural emission factors employed in global biomass burning studies. These results estimate 80 gigagrams PM2.5, which is only 44 percent of the pile burning-based estimates, suggesting underestimation in previous studies. We compare our emissions to an existing all-combustion sources inventory, results show emissions account for 14-18 percent of Vietnam's total PM2.5 depending on burning practice. Within the highly-urbanized and cloud-covered Hanoi Capital region (HCR), we use rice area from Sentinel-1A to derive spatially-explicit emissions and indirectly estimate residue burning dates. Results from HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) back-trajectory analysis stratified by season show autumn has most emission trajectories originating in

  17. Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis

    International Nuclear Information System (INIS)

    Wang, Qunwei; Chiu, Yung-Ho; Chiu, Ching-Ren

    2015-01-01

    Research on the driving factors behind carbon dioxide emission changes in China can inform better carbon emission reduction policies and help develop a low-carbon economy. As one of important methods, production-theoretical decomposition analysis (PDA) has been widely used to understand these driving factors. To avoid the infeasibility issue in solving the linear programming, this study proposed a modified PDA approach to decompose carbon dioxide emission changes into seven drivers. Using 2005–2010 data, the study found that economic development was the largest factor of increasing carbon dioxide emissions. The second factor was energy structure (reflecting potential carbon), and the third factor was low energy efficiency. Technological advances, energy intensity reductions, and carbon dioxide emission efficiency improvements were the negative driving factors reducing carbon dioxide emission growth rates. Carbon dioxide emissions and driving factors varied significantly across east, central and west China. - Highlights: • A modified PDA used to decompose carbon dioxide emission changes into seven drivers. • Two models were proposed to ameliorate the infeasible occasions. • Economic development was the largest factor of increasing CO_2 emissions in China.

  18. Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model

    Science.gov (United States)

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model–panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity. PMID:24353753

  19. Integral emission factors for methane determined using urban flux measurements and local-scale inverse models

    Science.gov (United States)

    Christen, Andreas; Johnson, Mark; Molodovskaya, Marina; Ketler, Rick; Nesic, Zoran; Crawford, Ben; Giometto, Marco; van der Laan, Mike

    2013-04-01

    The most important long-lived greenhouse gas (LLGHG) emitted during combustion of fuels is carbon dioxide (CO2), however also traces of the LLGHGs methane (CH4) and nitrous oxide (N2O) are released, the quantities of which depend largely on the conditions of the combustion process. Emission factors determine the mass of LLGHGs emitted per energy used (or kilometre driven for cars) and are key inputs for bottom-up emission modelling. Emission factors for CH4 are typically determined in the laboratory or on a test stand for a given combustion system using a small number of samples (vehicles, furnaces), yet associated with larger uncertainties when scaled to entire fleets. We propose an alternative, different approach - Can integrated emission factors be independently determined using direct micrometeorological flux measurements over an urban surface? If so, do emission factors determined from flux measurements (top-down) agree with up-scaled emission factors of relevant combustion systems (heating, vehicles) in the source area of the flux measurement? Direct flux measurements of CH4 were carried out between February and May, 2012 over a relatively densely populated, urban surface in Vancouver, Canada by means of eddy covariance (EC). The EC-system consisted of an ultrasonic anemometer (CSAT-3, Campbell Scientific Inc.) and two open-path infrared gas analyzers (Li7500 and Li7700, Licor Inc.) on a tower at 30m above the surface. The source area of the EC system is characterised by a relative homogeneous morphometry (5.3m average building height), but spatially and temporally varying emission sources, including two major intersecting arterial roads (70.000 cars drive through the 50% source area per day) and seasonal heating in predominantly single-family houses (natural gas). An inverse dispersion model (turbulent source area model), validated against large eddy simulations (LES) of the urban roughness sublayer, allows the determination of the spatial area that

  20. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, C.; Tagesson, T.

    2013-01-01

    controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4...... short-term control factors (temperature and water table). Our findings suggest the importance of multiyear studies with a continued focus on shoulder seasons in Arctic ecosystems....

  1. Factor Decomposition Analysis of Energy-Related CO2 Emissions in Tianjin, China

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-07-01

    Full Text Available Tianjin is the largest coastal city in northern China with rapid economic development and urbanization. Energy-related CO2 emissions from Tianjin’s production and household sectors during 1995–2012 were calculated according to the default carbon-emission coefficients provided by the Intergovernmental Panel on Climate Change. We decomposed the changes in CO2 emissions resulting from 12 causal factors based on the method of Logarithmic Mean Divisia Index. The examined factors were divided into four types of effects: energy intensity effect, structure effect, activity intensity effect, scale effect and the various influencing factors imposed differential impacts on CO2 emissions. The decomposition outcomes indicate that per capita GDP and population scale are the dominant positive driving factors behind the growth in CO2 emissions for all sectors, while the energy intensity of the production sector is the main contributor to dampen the CO2 emissions increment, and the contributions from industry structure and energy structure need further enhancement. The analysis results reveal the reasons for CO2 emission changes in Tianjin and provide a solid basis upon which policy makers may propose emission reduction measures and approaches for the implementation of sustainable development strategies.

  2. Development of real-world driving cycles and estimation of emission factors for in-use light-duty gasoline vehicles in urban areas.

    Science.gov (United States)

    Hwa, Mei-Yin; Yu, Tai-Yi

    2014-07-01

    This investigation adopts vehicle tracking manner to establish real-world driving patterns and estimates emission factors with dynamometers with 23 traffic-driving variables for 384 in-use light-duty passenger vehicles during non-rush hour. Adequate numbers of driving variables were decided with factor analysis and cluster analysis. The dynamometer tests were performed on FTP75 cycle and five local driving cycles derived from real-world speed profiles. Results presented that local driving cycles and FTP75 cycle were completely different in driving characteristic parameters of typical driving cycles and emission factors. The highest values of emission factor ratios of local driving cycle and FTP75 cycle for CO, NMHC, NO x , CH4, and CO2 were 1.38, 1.65, 1.58, 1.39, and 1.14, respectively.

  3. Temperature Dependence of Factors Controlling Isoprene Emissions

    Science.gov (United States)

    Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.

    2009-01-01

    We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.

  4. Pre-Harvest Sugarcane Burning: Determination of Emission Factors through Laboratory Measurements

    Directory of Open Access Journals (Sweden)

    João Andrade Carvalho

    2012-02-01

    Full Text Available Sugarcane is an important crop for the Brazilian economy and roughly 50% of its production is used to produce ethanol. However, the common practice of pre-harvest burning of sugarcane straw emits particulate material, greenhouse gases, and tropospheric ozone precursors to the atmosphere. Even with policies to eliminate the practice of pre-harvest sugarcane burning in the near future, there is still significant environmental damage. Thus, the generation of reliable inventories of emissions due to this activity is crucial in order to assess their environmental impact. Nevertheless, the official Brazilian emissions inventory does not presently include the contribution from pre-harvest sugarcane burning. In this context, this work aims to determine sugarcane straw burning emission factors for some trace gases and particulate material smaller than 2.5 μm in the laboratory. Excess mixing ratios for CO2, CO, NOX, UHC (unburned hydrocarbons, and PM2.5 were measured, allowing the estimation of their respective emission factors. Average estimated values for emission factors (g kg−1 of burned dry biomass were 1,303 ± 218 for CO2, 65 ± 14 for CO, 1.5 ± 0.4 for NOX, 16 ± 6 for UHC, and 2.6 ± 1.6 for PM2.5. These emission factors can be used to generate more realistic emission inventories and therefore improve the results of air quality models.

  5. Emission factors from residential combustion appliances burning Portuguese biomass fuels.

    Science.gov (United States)

    Fernandes, A P; Alves, C A; Gonçalves, C; Tarelho, L; Pio, C; Schimdl, C; Bauer, H

    2011-11-01

    Smoke from residential wood burning has been identified as a major contributor to air pollution, motivating detailed emission measurements under controlled conditions. A series of experiments were performed to compare the emission levels from two types of wood-stoves to those of fireplaces. Eight types of biomass were burned in the laboratory: wood from seven species of trees grown in the Portuguese forest (Pinus pinaster, Eucalyptus globulus, Quercus suber, Acacia longifolia, Quercus faginea, Olea europaea and Quercus ilex rotundifolia) and briquettes produced from forest biomass waste. Average emission factors were in the ranges 27.5-99.2 g CO kg(-1), 552-1660 g CO(2) kg(-1), 0.66-1.34 g NO kg(-1), and 0.82-4.94 g hydrocarbons kg(-1) of biomass burned (dry basis). Average particle emission factors varied between 1.12 and 20.06 g kg(-1) biomass burned (dry basis), with higher burn rates producing significantly less particle mass per kg wood burned than the low burn rates. Particle mass emission factors from wood-stoves were lower than those from the fireplace. The average emission factors for organic and elemental carbon were in the intervals 0.24-10.1 and 0.18-0.68 g kg(-1) biomass burned (dry basis), respectively. The elemental carbon content of particles emitted from the energy-efficient "chimney type" logwood stove was substantially higher than in the conventional cast iron stove and fireplace, whereas the opposite was observed for the organic carbon fraction. Pinus pinaster, the only softwood species among all, was the biofuel with the lowest emissions of particles, CO, NO and hydrocarbons.

  6. Real-time particle monitor calibration factors and PM2.5 emission factors for multiple indoor sources.

    Science.gov (United States)

    Dacunto, Philip J; Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Repace, James L; Ott, Wayne R; Hildemann, Lynn M

    2013-08-01

    Indoor sources can greatly contribute to personal exposure to particulate matter less than 2.5 μm in diameter (PM2.5). To accurately assess PM2.5 mass emission factors and concentrations, real-time particle monitors must be calibrated for individual sources. Sixty-six experiments were conducted with a common, real-time laser photometer (TSI SidePak™ Model AM510 Personal Aerosol Monitor) and a filter-based PM2.5 gravimetric sampler to quantify the monitor calibration factors (CFs), and to estimate emission factors for common indoor sources including cigarettes, incense, cooking, candles, and fireplaces. Calibration factors for these indoor sources were all significantly less than the factory-set CF of 1.0, ranging from 0.32 (cigarette smoke) to 0.70 (hamburger). Stick incense had a CF of 0.35, while fireplace emissions ranged from 0.44-0.47. Cooking source CFs ranged from 0.41 (fried bacon) to 0.65-0.70 (fried pork chops, salmon, and hamburger). The CFs of combined sources (e.g., cooking and cigarette emissions mixed) were linear combinations of the CFs of the component sources. The highest PM2.5 emission factors per time period were from burned foods and fireplaces (15-16 mg min(-1)), and the lowest from cooking foods such as pizza and ground beef (0.1-0.2 mg min(-1)).

  7. Development of cotton gin PM10 emission factors for EPA’s AP-42

    Science.gov (United States)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  8. Update on the development of cotton gin PM10 emission factors for EPA's AP-42

    Science.gov (United States)

    A cotton ginning industry-supported project was initiated in 2008 to update the U.S. Environmental Protection Agency’s (EPA) Compilation of Air Pollution Emission Factors (AP-42) to include PM10 emission factors. This study develops emission factors from the PM10 emission factor data collected from ...

  9. Determination numbers of ionized atoms from emission and absorption lines

    International Nuclear Information System (INIS)

    Alizadeh Azimi, A.; Shokouhi, N.

    2002-01-01

    Saha, M., (1920) estimated that salter chromosphere is not only due to radiation from neutral atoms, but from ionized atoms. The failure to observe these stellar lines in the laboratory was attributed to internal temperature and pressure about 10* E + 6 K 10* E-7 atm. In this research we found that emission lines of ionized atoms (like Cs) could be measured in laboratory condition, (about 10* E-3 atm and 2000 K) by using Graphite France Atomic Absorption with injection 124 u g C sel. We calculated the numbers of ionized atoms from Bottzman law. We also measured these numbers from area under the energy-time curve

  10. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines

    Science.gov (United States)

    Kecorius, Simonas; Madueño, Leizel; Vallar, Edgar; Alas, Honey; Betito, Grace; Birmili, Wolfram; Cambaliza, Maria Obiminda; Catipay, Grethyl; Gonzaga-Cayetano, Mylene; Galvez, Maria Cecilia; Lorenzo, Genie; Müller, Thomas; Simpas, James B.; Tamayo, Everlyn Gayle; Wiedensohler, Alfred

    2017-12-01

    studies reported such high number concentration of ultrafine refractory particles under ambient conditions. Inverse modeling of emission factors of refractory particle number size distributions revealed that diesel-fed public utility Jeepneys, commonly used for public transportation, are responsible for 94% of total roadside emitted refractory particle mass. The observed results showed that the majority of urban pollution in Metro Manila is dominated by carbonaceous aerosol. This suggests that PM10 or PM2.5 metrics do not fully describe possible health related effects in this kind of urban environments. Extremely high concentrations of ultrafine particles have been and will continue to induce adverse health related effects, because of their potential toxicity. We imply that in megacities, where the major fraction of particulates originates from the transport sector, PM10 or PM2.5 mass concentration should be complemented by legislative measurements of equivalent black carbon mass concentration.

  11. Time trend of polycyclic aromatic hydrocarbon emission factors from motor vehicles

    Science.gov (United States)

    Tao, Shu; Shen, Huizhong; Wang, Rong; Sun, Kang

    2010-05-01

    Motor vehicle is an important emission source of polycyclic aromatic hydrocarbons (PAHs) and this is particularly true in urban areas. Motor vehicle emission factors (EFs) for individual PAH compound reported in the literature varied for 4 to 5 orders of magnitude, leading to high uncertainty in emission estimation. In this study, the major factors affecting EFs were investigated and characterized by regression models. Based on the model developed, a motor vehicle PAH emission inventory at country level was developed. It was found that country and model year are the most important factors affecting EFs for PAHs. The influence of the two factors can be quantified by a single parameter of per capita gross domestic production (purchasing power parity), which was used as the independent variables of the regression models. The models developed using randomly selected 80% of measurements and tested with the remained data accounted for 28 to 48% of the variations in EFs for PAHs measured in 16 countries over 50 years. The regression coefficients of the EF prediction models were molecular weight dependent. Motor vehicle emission of PAHs from individual countries in the world in 1985, 1995, 2005, 2015, and 2025 were calculated and the global emission of total PAHs were 470, 390, and 430 Gg in 1985, 1995, and 2005 and will be 290 and 130 Gg in 2015 and 2025, respectively. The emission is currently passing its peak and will decrease due to significant decrease in China and other developing countries.

  12. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  13. Emission factors from road traffic from a tunnel study (Gubrist tunnel, Switzerland). Part 1 Concept and first results

    Energy Technology Data Exchange (ETDEWEB)

    Staehelin, Johannes; Brunner, Dominik; Baumle, Martin [Atmospheric Science, ETH-Hoenggerberg, Zuerich (Switzerland); Schlapfer, Kurt [Carbotech AG, Basel (Switzerland); Burgin, Toni; Meier, Markus [Amt fuer Technische Anlagen und Lufthygiene Kanton Zuerich ATAL, Zuerich (Switzerland); Steinemann, Urs [Ingenieurbuero Steinemann, Wollerau (Switzerland); Schneider, Stefan; Zahner, Christoph; Keiser, Stephan [Planungsbuero Jud AG, Zuerich (Switzerland); Stahel, Werner; Keller, Christian [Sem. for Statistics, ETH-Z, Zuerich (Switzerland)

    1995-06-22

    In the industrialized world a large part of the emission of the primary air pollutants (NO{sub x}, volatile organic compounds (VOC) and CO) originates from road traffic. Here we present the concept and first results of a tunnel study which took place from September 20th to September 26th, 1993, at the Gubrist tunnel (close to Zuerich, Switzerland) in which the emission factors of a large number of individual VOCs, total hydrocarbons (t-HC), CO, NO{sub x} and SO{sub 2} are determined. The first tentative results of the emission factors of NO{sub x}, CO, t-HC and 26 individual hydrocarbons (alkanes and aromatics in the volatility range from n-heptane to n-decane) for the average of all vehicles and the light duty vehicles at an average speed of 90 km/h are given

  14. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    Directory of Open Access Journals (Sweden)

    D. A. Thornhill

    2010-04-01

    Full Text Available The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO, nitrogen oxides (NOx, benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5, and black carbon (BC. These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx, 95–97% of each aromatic species, 72–85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel

  15. Estimating end-use emissions factors for policy analysis: the case of space cooling and heating.

    Science.gov (United States)

    Jacobsen, Grant D

    2014-06-17

    This paper provides the first estimates of end-use specific emissions factors, which are estimates of the amount of a pollutant that is emitted when a unit of electricity is generated to meet demand from a specific end-use. In particular, this paper provides estimates of emissions factors for space cooling and heating, which are two of the most significant end-uses. The analysis is based on a novel two-stage regression framework that estimates emissions factors that are specific to cooling or heating by exploiting variation in cooling and heating demand induced by weather variation. Heating is associated with similar or greater CO2 emissions factor than cooling in all regions. The difference is greatest in the Midwest and Northeast, where the estimated CO2 emissions factor for heating is more than 20% larger than the emissions factor for cooling. The minor differences in emissions factors in other regions, combined with the substantial difference in the demand pattern for cooling and heating, suggests that the use of overall regional emissions factors is reasonable for policy evaluations in certain locations. Accurately quantifying the emissions factors associated with different end-uses across regions will aid in designing improved energy and environmental policies.

  16. Influence of economic factors on future global emissions

    International Nuclear Information System (INIS)

    Duffey, R.B.; Poehnell, T.G.; Miller, A.I.; Tamm, J.A.

    2001-01-01

    The climate change debate is really about economics, and reducing greenhouse gas (GHG) emissions and climate change potential at a reasonable and acceptable cost for everyone. In this paper, we examine the major economic factors behind defining climate change policies that relate to reducing GHG emissions, and the value to be placed on CO 2 . We examine the impacts and the 'cost of carbon' based on the studies of GHG reduction strategies in the US and the European Union (EU). We show that a series of self-defeating assumptions have been used in the latest analyses regarding relative future energy and power costs, and hence future GHG emissions. We estimate: the 'natural value' of GHG emissions based on world economic factors, the value of electricity and energy based on world data, the cost advantage of using a given new technology, and the value of avoided GHG emissions in future global and national climate change projections. The use of electricity is shown to be key in aiding economic growth for the entire world. Using the latest Intergovernmental Panel on Climate Change (IPCC) 2000 climate change projections as a base, we reflect the impacts of differing energy prices on future global climate conditions and GHG reductions. We conduct a similar analysis for Canada using the latest 'Energy in Canada 2000' projections. We show how the use of advanced technology for the traditional production of electricity, and for hydrogen-based transportation fuels, can stabilize global emissions and assist in managing adverse climate change conditions without causing economic penalties. The method we develop is sufficiently general that it can be used for valuing the economic impact of the emission reductions for any technology. We estimate the embedded value and potential economic benefit of nuclear technology and electric contribution for both the world economy to 2100, and for the latest projections for Canada to 2020. (author)

  17. Averaged emission factors for the Hungarian car fleet

    Energy Technology Data Exchange (ETDEWEB)

    Haszpra, L. [Inst. for Atmospheric Physics, Budapest (Hungary); Szilagyi, I. [Central Research Inst. for Chemistry, Budapest (Hungary)

    1995-12-31

    The vehicular emission of non-methane hydrocarbon (NMHC) is one of the largest anthropogenic sources of NMHC in Hungary and in most of the industrialized countries. Non-methane hydrocarbon plays key role in the formation of photo-chemical air pollution, usually characterized by the ozone concentration, which seriously endangers the environment and human health. The ozone forming potential of the different NMHCs differs from each other significantly, while the NMHC composition of the car exhaust is influenced by the fuel and engine type, technical condition of the vehicle, vehicle speed and several other factors. In Hungary the majority of the cars are still of Eastern European origin. They represent the technological standard of the 70`s, although there are changes recently. Due to the long-term economical decline in Hungary the average age of the cars was about 9 years in 1990 and reached 10 years by 1993. The condition of the majority of the cars is poor. In addition, almost one third (31.2 %) of the cars are equipped with two-stroke engines which emit less NO{sub x} but much more hydrocarbon. The number of cars equipped with catalytic converter was negligible in 1990 and is slowly increasing only recently. As a consequence of these facts the traffic emission in Hungary may differ from that measured in or estimated for the Western European countries and the differences should be taken into account in the air pollution models. For the estimation of the average emission of the Hungarian car fleet a one-day roadway tunnel experiment was performed in the downtown of Budapest in summer, 1991. (orig.)

  18. Differentiation of nitrous oxide emission factors for agricultural soils

    International Nuclear Information System (INIS)

    Lesschen, Jan Peter; Velthof, Gerard L.; Vries, Wim de; Kros, Johannes

    2011-01-01

    Nitrous oxide (N 2 O) direct soil emissions from agriculture are often estimated using the default IPCC emission factor (EF) of 1%. However, a large variation in EFs exists due to differences in environment, crops and management. We developed an approach to determine N 2 O EFs that depend on N-input sources and environmental factors. The starting point of the method was a monitoring study in which an EF of 1% was found. The conditions of this experiment were set as the reference from which the effects of 16 sources of N input, three soil types, two land-use types and annual precipitation on the N 2 O EF were estimated. The derived EF inference scheme performed on average better than the default IPCC EF. The use of differentiated EFs, including different regional conditions, allows accounting for the effects of more mitigation measures and offers European countries a possibility to use a Tier 2 approach. - Highlights: → We developed an N 2 O emission factor inference scheme for agricultural soils. → This scheme accounts for different N-input sources and environmental conditions. → The derived EF inference scheme performed better than the default IPCC EF. → The use of differentiated EFs allows for better accounting of mitigation measures. - Emission factors for nitrous oxide from agricultural soils are derived as a function of N-input sources and environmental conditions on the basis of empirical information.

  19. Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy; Russell, Marion; Apte, Michael G.

    2010-06-01

    Imported drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. To support an investigation of those building materials by the Consumer Products Safety Commission (CPSC), Lawrence Berkeley National Laboratory (LBNL) measured chemical-specific emission factors for 30 samples of drywall materials. Emission factors are reported for 75 chemicals and 30 different drywall samples encompassing both domestic and imported stock and incorporating natural, synthetic, or mixed gypsum core material. CPSC supplied all drywall materials. First the drywall samples were isolated and conditioned in dedicated chambers, then they were transferred to small chambers where emission testing was performed. Four sampling and analysis methods were utilized to assess (1) volatile organic compounds, (2) low molecular weight carbonyls, (3) volatile sulfur compounds, and (4) reactive sulfur gases. LBNL developed a new method that combines the use of solid phase microextraction (SPME) with small emission chambers to measure the reactive sulfur gases, then extended that technique to measure the full suite of volatile sulfur compounds. The testing procedure and analysis methods are described in detail herein. Emission factors were measured under a single set of controlled environmental conditions. The results are compared graphically for each method and in detailed tables for use in estimating indoor exposure concentrations.

  20. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock.

    Science.gov (United States)

    Wolf, Julie; Asrar, Ghassem R; West, Tristram O

    2017-09-29

    Livestock play an important role in carbon cycling through consumption of biomass and emissions of methane. Recent research suggests that existing bottom-up inventories of livestock methane emissions in the US, such as those made using 2006 IPCC Tier 1 livestock emissions factors, are too low. This may be due to outdated information used to develop these emissions factors. In this study, we update information for cattle and swine by region, based on reported recent changes in animal body mass, feed quality and quantity, milk productivity, and management of animals and manure. We then use this updated information to calculate new livestock methane emissions factors for enteric fermentation in cattle, and for manure management in cattle and swine. Using the new emissions factors, we estimate global livestock emissions of 119.1 ± 18.2 Tg methane in 2011; this quantity is 11% greater than that obtained using the IPCC 2006 emissions factors, encompassing an 8.4% increase in enteric fermentation methane, a 36.7% increase in manure management methane, and notable variability among regions and sources. For example, revised manure management methane emissions for 2011 in the US increased by 71.8%. For years through 2013, we present (a) annual livestock methane emissions, (b) complete annual livestock carbon budgets, including carbon dioxide emissions, and (c) spatial distributions of livestock methane and other carbon fluxes, downscaled to 0.05 × 0.05 degree resolution. Our revised bottom-up estimates of global livestock methane emissions are comparable to recently reported top-down global estimates for recent years, and account for a significant part of the increase in annual methane emissions since 2007. Our results suggest that livestock methane emissions, while not the dominant overall source of global methane emissions, may be a major contributor to the observed annual emissions increases over the 2000s to 2010s. Differences at regional and local scales may help

  1. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Julie; Asrar, Ghassem R.; West, Tristram O.

    2017-09-29

    Background: Livestock play an important role in carbon cycling through consumption of biomass and emissions of methane. Recent research suggests that existing bottom-up inventories of livestock methane emissions in the US, such as those made using 2006 IPCC Tier 1 livestock emissions factors, are too low. This may be due to outdated information used to develop these emissions factors. In this study, we update information for cattle and swine by region, based on reported recent changes in animal body mass, feed quality and quantity, milk productivity, and management of animals and manure. We then use this updated information to calculate new livestock methane emissions factors for enteric fermentation in cattle, and for manure management in cattle and swine.

  2. Real-time black carbon emission factor measurements from light duty vehicles.

    Science.gov (United States)

    Forestieri, Sara D; Collier, Sonya; Kuwayama, Toshihiro; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D

    2013-11-19

    Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultralow emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥0.1 Hz were used to characterize how the emissions of the major particulate matter components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.

  3. Factors influencing CO2 emissions in China's power industry: Co-integration analysis

    International Nuclear Information System (INIS)

    Zhao, Xiaoli; Ma, Qian; Yang, Rui

    2013-01-01

    More than 40% of China's total CO 2 emissions originate from the power industry. The realization of energy saving and emission reduction within China's power industry is therefore crucial in order to achieve CO 2 emissions reduction in this country. This paper applies the autoregressive-distributed lag (ARDL) co-integration model to study the major factors which have influenced CO 2 emissions within China's power industry from 1980 to 2010. Results have shown that CO 2 emissions from China's power industry have been increasing rapidly. From 1980 to 2010, the average annual growth rate was 8.5%, and the average growth rate since 2002 has amounted to 10.5%. Secondly, the equipment utilization hour (as an indicator of the power demand) has the greatest influence on CO 2 emissions within China's power industry. In addition, the impact of the industrial added value of the power sector on CO 2 emissions is also positive from a short-term perspective. Thirdly, the Granger causality results imply that one of the important motivators behind China's technological progress, within the power industry, originates from the pressures created by a desire for CO 2 emissions reduction. Finally, this paper provides policy recommendations for energy saving and emission reduction for China's power industry. - Highlights: ► We study the major factors influencing China's power industry CO 2 emissions. ► The average annual growth rate of CO 2 emission from power industry is calculated. ► Installed capacity has the greatest influence on power industry CO 2 emission. ► The Granger causality between CO 2 emission and its effecting factors is analyzed

  4. Factorization of RSA-140 using the number field sieve

    NARCIS (Netherlands)

    S.H. Cavallar; B. Dodson; A.K. Lenstra (Arjen); P.C. Leyland; W.M. Lioen (Walter); P.L. Montgomery; B. Murphy; H.J.J. te Riele (Herman); P. Zimmermann

    1999-01-01

    textabstractOn February 2, 1999, we completed the factorization of the 140--digit number RSA--140 with the help of the Number Field Sieve factoring method (NFS). This is a new general factoring record. The previous record was established on April 10, 1996 by the factorization of the 130--digit

  5. The Particle Number Emission Characteristics of the Diesel Engine with a Catalytic Diesel Particle Filter

    Directory of Open Access Journals (Sweden)

    Li Jia Qiang

    2016-01-01

    Full Text Available Due to their adverse health effects and their abundance in urban areas, diesel exhaust ultrafine particles caused by the aftertreatment devices have been of great concern in the past years. An experiment of particles number emissions was carried out on a high-pressure, common rail diesel engine with catalytic diesel particle filter (CDPF to investigate the impact of CDPF on the number emission characteristics of particles. The results indicated that the conversion rates of CDPF is over 97%. The size distributions of particles are bimodal lognormal distributions downstream CDPF at 1400 r/min and 2300 r/min. CDPF has a lower conversion rates on the nucleation mode particles. The geometric number mean diameters of particles downstream CDPF is smaller than that upstream CDPF.

  6. Analysis of regional difference on impact factors of China’s energy – Related CO2 emissions

    International Nuclear Information System (INIS)

    Li, Huanan; Mu, Hailin; Zhang, Ming; Gui, Shusen

    2012-01-01

    With the intensification of global warming, the issue of carbon emissions causes more and more attention in recent years. In this paper, China’s 30 provincial-level administrative units are divided into five emission regions according to the annual average value of provincial CO 2 emissions per capita during 1990 and 2010. The regional differences in impact factors on CO 2 emissions are discussed using STIRPAT (stochastic impacts by regression on population, affluence, and technology) model. The results indicate that although GDP (Gross domestic product) per capita, industrial structure, population, urbanization and technology level have different impacts on CO 2 emissions in different emission regions, they are almost always the main factors in all emission regions. In most emission regions, urbanization and GDP per capita has a bigger impact on CO 2 emissions than other factors. Improving technology level produces a small reduction in CO 2 emissions in most emission regions, but it is still a primary way for CO 2 reduction in China. It’s noteworthy that industrial structure isn’t the main factor and improving technology level increases CO 2 emissions in high emission region. Different measures should be adopted for CO 2 reductions according to local conditions in different regions. -- Highlights: ► Regional differences of the impact factors on China’s CO 2 emissions are analyzed. ► Five macro factors like GDP per capita are almost always main influence factors in all regions. ► The impacts of different factors are different. ► Improving technology has no significant reduction on CO 2 emission in most regions. ► Policy on CO 2 reduction should be adapted to local conditions.

  7. Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF

    Directory of Open Access Journals (Sweden)

    M. H. Sowlat

    2016-04-01

    % (7.4–17.1, 2.1 % (1.5–2.5 %, and 1.1 % (0.2–6.3 %, respectively, overall accounting for about 15 % (15.2–19.8 % of PM number concentrations. As expected, PM number concentrations were dominated by factors with smaller mode diameters, such as traffic and nucleation. On the other hand, PM volume and mass concentrations in the study area were mostly affected by sources with larger mode diameters, including secondary aerosols and soil/road dust. Results from the present study can be used as input parameters in future epidemiological studies to link PM sources to adverse health effects as well as by policymakers to set targeted and more protective emission standards for PM.

  8. Robust random number generation using steady-state emission of gain-switched laser diodes

    International Nuclear Information System (INIS)

    Yuan, Z. L.; Lucamarini, M.; Dynes, J. F.; Fröhlich, B.; Plews, A.; Shields, A. J.

    2014-01-01

    We demonstrate robust, high-speed random number generation using interference of the steady-state emission of guaranteed random phases, obtained through gain-switching a semiconductor laser diode. Steady-state emission tolerates large temporal pulse misalignments and therefore significantly improves the interference quality. Using an 8-bit digitizer followed by a finite-impulse-response unbiasing algorithm, we achieve random number generation rates of 8 and 20 Gb/s, for laser repetition rates of 1 and 2.5 GHz, respectively, with a ±20% tolerance in the interferometer differential delay. We also report a generation rate of 80 Gb/s using partially phase-correlated short pulses. In relation to the field of quantum key distribution, our results confirm the gain-switched laser diode as a suitable light source, capable of providing phase-randomized coherent pulses at a clock rate of up to 2.5 GHz.

  9. Analysis on influence factors of China's CO2 emissions based on Path-STIRPAT model

    International Nuclear Information System (INIS)

    Li Huanan; Mu Hailin; Zhang Ming; Li Nan

    2011-01-01

    With the intensification of global warming and continued growth in energy consumption, China is facing increasing pressure to cut its CO 2 (carbon dioxide) emissions down. This paper discusses the driving forces influencing China's CO 2 emissions based on Path-STIRPAT model-a method combining Path analysis with STIRPAT (stochastic impacts by regression on population, affluence and technology) model. The analysis shows that GDP per capita (A), industrial structure (IS), population (P), urbanization level (R) and technology level (T) are the main factors influencing China's CO 2 emissions, which exert an influence interactively and collaboratively. The sequence of the size of factors' direct influence on China's CO 2 emission is A>T>P>R>IS, while that of factors' total influence is A>R>P>T>IS. One percent increase in A, IS, P, R and T leads to 0.44, 1.58, 1.31, 1.12 and -1.09 percentage change in CO 2 emission totally, where their direct contribution is 0.45, 0.07, 0.63, 0.08, 0.92, respectively. Improving T is the most important way for CO 2 reduction in China. - Highlights: → We analyze the driving forces influencing China's CO 2 emissions. → Five macro factors like per capita GDP are the main influencing factors. → These factors exert an influence interactively and collaboratively. → Different factors' direct and total influence on China's CO 2 emission is different. → Improving technology level is the most important way for CO 2 reduction in China.

  10. The Scale, Structure and Influencing Factors of Total Carbon Emissions from Households in 30 Provinces of China—Based on the Extended STIRPAT Model

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2018-05-01

    Full Text Available Household carbon emissions are important components of total carbon emissions. The consumer side of energy-saving emissions reduction is an essential factor in reducing carbon emissions. In this paper, the carbon emissions coefficient method and Consumer Lifestyle Approach (CLA were used to calculate the total carbon emissions of households in 30 provinces of China from 2006 to 2015, and based on the extended Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT model, the factors influencing the total carbon emissions of households were analyzed. The results indicated that, first, over the past ten years, the energy and products carbon emissions from China’s households have demonstrated a rapid growth trend and that regional distributions present obvious differences. Second, China’s energy carbon emissions due to household consumption primarily derived from the residents’ consumption of electricity and coal; China’s products household carbon emissions primarily derived from residents’ consumption of the high carbon emission categories: residences, food, transportation and communications. Third, in terms of influencing factors, the number of households in China plays a significant role in the total carbon emissions of China’s households. The ratio of children 0–14 years old and gender ratio (female = 100 are two factors that reflect the demographic structure, have significant effects on the total carbon emissions of China’s households, and are all positive. Gross Domestic Product (GDP per capita plays a role in boosting the total carbon emissions of China’s households. The effect of the carbon emission intensity on total household carbon emissions is positive. The industrial structure (the proportion of secondary industries’ added value to the regional GDP has curbed the growth of total carbon emissions from China’s household consumption. The results of this study provide data to support the

  11. Development of a life-cycle fugitive methane emissions model utilizing device level emissions and activity factors

    Science.gov (United States)

    Englander, J.; Brandt, A. R.

    2017-12-01

    There has been numerous studies in quantifying the scale of fugitive emissions from across the natural gas value chain. These studies have typically focused on either specific types of equipment (such as valves) or on a single part of the life-cycle of natural gas production (such as gathering stations).1,2 However it has been demonstrated that average emissions factors are not sufficient for representing leaks in the natural gas system.3 In this work, we develop a robust estimate of fugitive emissions rates by incorporating all publicly available studies done at the component up to the process level. From these known studies, we create a database of leaks with normalized nomenclature from which leak estimates can be drawn from actual leak observations. From this database, and parameterized by meta-data such as location, scale of study, or placement in the life-cycle, we construct stochastic emissions factors specific for each process unit. This will be an integrated tool as part of the Oil production greenhouse gas estimator (OPGEE) as well as the Fugitive Emissions Abatement Simulation Toolkit (FEAST) models to enhances their treatment of venting and fugitive emissions, and will be flexible to include user provided data and input parameters.4,51. Thoma, ED et al. Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions. J. Environ. Prot. 2017. 2. Marchese, AJ et al. Methane Emissions from United States Natural Gas Gathering and Processing. ES&T 2015. doi:10.1021/acs.est.5b02275 3. Brandt, AR et al. Methane Leaks from Natural Gas Systems Follow Extreme Distributions. ES&T 2016. doi:10.1021/acs.est.6b04303 4. El-Houjeiri, HM et al. An open-source LCA tool estimating greenhouse gas emissions from crude oil production using field characteristics. ES&T 2013. doi: 10.1021/es304570m 5. Kemp, CE et al. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source `Virtual Gas Field' Simulator. ES&T 2016. doi:10.1021/acs.est.5b

  12. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles

    Science.gov (United States)

    Abu-Allaban, Mahmoud; Gillies, John A.; Gertler, Alan W.; Clayton, Russ; Proffitt, David

    Intensive mass and chemical measurements were performed at roadside locations in Reno, Nevada, and Durham/Research Triangle Park), North Carolina to derive tailpipe, resuspended road dust, and brake-wear emission factors from in-use vehicles. Continuous particulate matter (PM) data were utilized to derive total emission factors while integrated PM data were used to attribute the calculated emission factors to different mechanisms using chemical mass balance receptor modeling and scanning electron microscopy techniques. Resuspended road dust and tailpipe emissions were found to be the dominant mechanisms that contribute significantly to the total PM 10 and PM 2.5 emission factors, respectively. Small contributions from brake-wear were observed at locations where strong braking occurs, but no tire-wear was seen at any sampling location. PM 10 emission rates from light-duty spark ignition (LDSI) vehicles ranged from 40 to 780 mg/km, 10 to 70 mg/km, and 0 to 80 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 10 emission rates from heavy-duty vehicles ranged from 230 to 7800 mg/km, 60 to 570 mg/km, and 0 to 610 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from LDSI vehicles ranged from 2 to 25 mg/km, 10 to 50 mg/km, and 0 to 5 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from heavy-duty vehicles ranged from 15 to 300 mg/km, 60 to 480 mg/km, and 0 to 15 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively.

  13. Diesel bus emissions measured in a tunnel study.

    Science.gov (United States)

    Jamriska, Milan; Morawska, Lidia; Thomas, Steven; He, Congrong

    2004-12-15

    The emission factors of a bus fleet consisting of approximately 300 diesel-powered buses were measured in a tunnel study under well-controlled conditions during a 2-d monitoring campaign in Brisbane. Particle number and mass concentration levels of submicrometer particles and PM2.5 were monitored by SMPS and DustTrak instruments at the tunnel's entrance and exit, respectively. Correlation between DustTrak and TEOM response to diesel emissions was assessed, and the DustTrak results were recalculated into TEOM equivalent data. The mean value of the number and mass emission factors was (3.11+/-2.41) x 10(14) particles km(-1) for submicrometer particles and 583+/-451 mg km(-1) for PM2.5 (DustTrak), respectively. TEOM PM2.5 equivalent emission factor was 267+/-207 mg km(-1). The results are in good agreement with the emission factors determined from steady-state dynamometer testing of 12 buses from the same Brisbane City bus fleet. The results indicate that when carefully designed, both approaches, the dynamometer and on-road studies, can provide comparable results, applicable for the assessment of the effect of traffic emissions on airborne particle pollution. A brief overview of emission factors determined from other on-road and dynamometer studies reported in the literature as well as with the regulatory values used for the vehicle emission inventory assessment is presented and compared with the results obtained in this study.

  14. Combustor exhaust-emissions and blowout-limits with diesel number 2 and Jet A fuels utilizing air-atomizing and pressure-atomizing nozzles

    Science.gov (United States)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.

  15. Evaluation of life-cycle air emission factors of freight transportation.

    Science.gov (United States)

    Facanha, Cristiano; Horvath, Arpad

    2007-10-15

    Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.

  16. Characterization of air pollutant concentrations, fleet emission factors, and dispersion near a North Carolina interstate freeway across two seasons

    Science.gov (United States)

    Saha, Provat K.; Khlystov, Andrey; Snyder, Michelle G.; Grieshop, Andrew P.

    2018-03-01

    We present field measurement data and modeling of multiple traffic-related air pollutants during two seasons at a site adjoining Interstate 40, near Durham, North Carolina. We analyze spatial-temporal and seasonal trends and fleet-average pollutant emission factors and use our data to evaluate a line source dispersion model. Month-long measurement campaigns were performed in summer 2015 and winter 2016. Data were collected at a fixed near-road site located within 10 m from the highway edge, an upwind background site and, under favorable meteorological conditions, along downwind perpendicular transects. Measurements included the size distribution, chemical composition, and volatility of submicron particles, black carbon (BC), nitrogen oxides (NOx), meteorological conditions and traffic activity data. Results show strong seasonal and diurnal differences in spatial distribution of traffic sourced pollutants. A strong signature of vehicle emissions was observed within 100-150 m from the highway edge with significantly higher concentrations during morning. Substantially higher concentrations and less-sharp near-road gradients were observed in winter for many species. Season-specific fleet-average fuel-based emission factors for NO, NOx, BC, and particle number (PN) were derived based on up- and down-wind roadside measurements. The campaign-average NOx and PN emission factors were 20% and 300% higher in winter than summer, respectively. These results suggest that the combined effect of higher emissions and their slower downwind dispersion in winter dictate the observed higher downwind concentrations and wider highway influence zone in winter for several species. Finally, measurements of traffic data, emission factors, and pollutant concentrations were integrated to evaluate a line source dispersion model (R-LINE). The dispersion model captured the general trends in the spatial and temporal patterns in near-road concentrations. However, there was a tendency for the model

  17. Life style factors and number of chronic diseases

    Directory of Open Access Journals (Sweden)

    Mustehsan, Huma

    2011-05-01

    Full Text Available BACKGROUND: People all around the world are more concerned with living a long and healthy life, rather than just living longer. Many studies have examined the effects of lifestyle on the risk of developing chronic diseases, but typically, they focus on only one specific behavior. Individuals often follow a lifestyle pattern which combines more than one behavior. This paper examines the combined effect of several lifestyle factors on the number of chronic diseases.OBJECTIVE: The goal of this study was to determine how different lifestyle factors influence the number of chronic diseases a person can have.METHODS: Data from the survey “Health and Well-being in the Transitions” (2000 were used. Dependent variable was number of chronic diseases which ranged from zero to five. Independent variables included the level of physical activity, variables based on food frequency questions, and other behavioral activities, adjusted for age and gender. Generalized linear model with Poisson distribution was used for analysis.RESULTS: The analysis showed that males have more diseases than females if other factors are controlled (B=0.182, p=0.001. Diseases increase by age (B=0.021, p=0.000. Those who used dairy products daily had smaller number of diseases (B= -0.145, p=0.012. Those who used vegetable oil 3-7 days a week had smaller number of diseases than those who use it 0-2 days a week (B= -0.224, p=0.058. Other food frequencies and ever smoking had no clear association with number of diseases.CONCLUSION: Increasing age and male gender are two factors which are associated with larger number of chronic diseases. Regular use of vegetable oil and dairy products seems to be important towards the path of a healthier life.

  18. [Perinatal factors affecting the detection of otoacoustic emissions in vaginally delivered, healthy newborns, during the first 48 hours of life].

    Science.gov (United States)

    Sequi-Canet, José M; Sala-Langa, María J; Collar Del Castillo, José I

    2014-01-01

    Most hospitals perform neonatal hearing screening because it is a very useful procedure. Otoacoustic emissions are an ideal technique for this screening. We analyse the possible influence on screening results of some perinatal factors. We collected retrospective data from 8,239 healthy newborns delivered vaginally at the maternity ward of our hospital. We compared multiple perinatal factors vs the results of otoacoustic emissions performed within the first 48 h of life, before discharge. A total of 6.4% of newborns had an abnormal response and failed the screening. Univariate and multivariate analysis showed a significant (P<.0001) positive relationship between breastfeeding and normal otoacoustic emissions (OR: 0.65). Another, less significant factor was female gender. The remaining variables, including origin, education or employment status of the mother, maternal smoking, dystocic delivery, presentation, need for resuscitation, preterm labour (34-36 weeks), weight, length and frequent maternal pathology, such as streptococcus detection, hypothyroidism, hypertension or diabetes, were not significant. Breastfeeding was the most important factor related to a normal response in otoacoustic emissions. It may improve final results and reduce the number of neonates who need to be rescheduled for a repeated test, as well as the associated anxiety and the possibility of losing patients during follow-up. These are major problems in neonatal hearing screening. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  19. Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation

    Science.gov (United States)

    Ensberg, J. J.; Hayes, P. L.; Jimenez, J. L.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Holloway, J. S.; Gordon, T. D.; Jathar, S.; Robinson, A. L.; Seinfeld, J. H.

    2014-03-01

    The underprediction of ambient secondary organic aerosol (SOA) levels by current atmospheric models in urban areas is well established, yet the cause of this underprediction remains elusive. Likewise, the relative contribution of emissions from gasoline- and diesel-fueled vehicles to the formation of SOA is generally unresolved. We investigate the source of these two discrepancies using data from the 2010 CalNex experiment carried out in the Los Angeles Basin (Ryerson et al., 2013). Specifically, we use gas-phase organic mass (GPOM) and CO emission factors in conjunction with measured enhancements in oxygenated organic aerosol (OOA) relative to CO to quantify the significant lack of closure between expected and observed organic aerosol concentrations attributable to fossil-fuel emissions. Two possible conclusions emerge from the analysis to yield consistency with the ambient data: (1) vehicular emissions are not a dominant source of anthropogenic fossil SOA in the Los Angeles Basin, or (2) the ambient SOA mass yields used to determine the SOA formation potential of vehicular emissions are substantially higher than those derived from laboratory chamber studies.

  20. Effects of cetane number on HCCI combustion efficiency and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, V.; Neill, W.S.; Guo, H.; Chippior, W.L. [National Research Council of Canada, Ottawa, ON (Canada); Fairbridge, C. [Natural Resources Canada, Ottawa, ON (Canada); Mitchell, K. [Shell Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    Homogeneous charge compression ignition (HCCI) is a form of internal combustion in which well-mixed fuel and oxidizer are compressed to the point of auto-ignition. This exothermic reaction releases chemical energy into a sensible form that can be transformed in an engine into work and heat. The effects of cetane number on HCCI combustion efficiency and emissions were examined in this presentation. The presentation discussed the experimental setup, fuels, experimental procedures, and results. The setup included an enhanced fuel injector/vaporizer consisting of an OEM gasoline port fuel injector, air blast for improved atomization, and heated section to improved vaporization. A minimally processed and low cetane number fuel derived from oil sands was used as the base fuel in the study. Two sets of experiments were devised and described to evaluate each test fuel. One set used controlled input conditions exhaust gas recirculation (EGR)-air-fuel ratio (AFR) while the other set employed controlled engine outputs (such as speed and load). Results were presented for hydroprocessing; cetane improver addition; blending with supercetane renewable diesel; and a comparison of fuels with similar cetane numbers. It was concluded that increasing the fuel cetane number shifted the AFR-EGR operating window for HCCI combustion towards higher AFT (leaner mixtures) and reduced the cyclic variations. tabs., figs.

  1. Direct nitrous oxide emissions in Mediterranean climate cropping systems : Emission factors based on a meta-analysis of available measurement data

    NARCIS (Netherlands)

    Cayuela, Maria L.; Aguilera, Eduardo; Sanz-Cobena, Alberto; Adams, Dean C.; Abalos, Diego; Barton, Louise; Ryals, Rebecca; Silver, Whendee L.; Alfaro, Marta A.; Pappa, Valentini A.; Smith, Pete; Garnier, Josette; Billen, Gilles; Bouwman, Lex; Bondeau, Alberte; Lassaletta, Luis

    2017-01-01

    Many recent reviews and meta-analyses of N2O emissions do not include data from Mediterranean studies. In this paper we present a meta-analysis of the N2O emissions from Mediterranean cropping systems, and propose a more robust and reliable regional emission factor (EF) for N2O, distinguishing the

  2. Emission factors from biomass burning in three types of appliances: fireplace, woodstove and pellet stove

    Science.gov (United States)

    Duarte, Márcio; Vicente, Estela; Calvo, Ana; Nunes, Teresa; Tarelho, Luis; Alves, Célia

    2014-05-01

    In the last years, the importance of biomass fuels has increased mainly for two reasons. One of them is the effort to control the emissions of greenhouse gases, and on the other hand, the increasing costs associated with fossil fuels. Besides that, biomass burning is now recognised as one of the major sources contributing to high concentrations of particulate matter, especially during winter time. Southern European countries have a lack of information regarding emission profiles from biomass burning. Because of that, in most source apportionment studies, the information used comes from northern and alpine countries, whose combustion appliances, fuels and habits are different from those in Mediterranean countries. Due to this lack of information, series of tests using different types of equipment, as well as fuels, were carried out in order to obtain emission profiles and emission factors that correspond to the reality in southern European countries. Tests involved three types of biomass appliances used in Portugal, a fireplace, a woodstove and a modern pellet stove. Emission factors (mg.kg-1 fuel, dry basis) for CO, THC and PM10 were obtained. CO emission factors ranged from 38, for pine on the woodstove, to 84 for eucalyptus in the fireplace. THC emissions were between 4 and 24, for pine in the woodstove and eucalyptus in the fireplace, respectively. PM10 emission factors were in the range from 3.99, for pine in the woodstove, to 17.3 for eucalyptus in the fireplace. On average, the emission factors obtained for the fireplace are 1.5 (CO) to 4 (THC) times higher than those of the woodstove. The fireplace has emission factors for CO, THC and PM10 10, 35 and 32 times, respectively, higher than the pellet stove.

  3. Real-world vehicle emission factors in Chinese metropolis city--Beijing.

    Science.gov (United States)

    Wang, Qi-dong; He, Ke-bin; Huo, Hong; Lents, James

    2005-01-01

    The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15 + EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15 + EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are - 0.42-2.99, -0.32-0.81 and -0.11-11 with FTP75 testing, 0.11-1.29, -0.77-0.64 and 0.47-10.50 with Beijing 1997 testing and 0.25-1.83, 0.09-0.75 and - 0.58-1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI + TWC vehicles' pollution emissionfactors decrease with different degree. The retrofit vehicle (Santana) will reduce 4.44%-58.44% CO, -4.95%-36.79% NOx, -32.32%-33.89% HC, and -9.39%-14.29% fuel consumption, and especially that the MPI + TWC vehicle will decrease CO by 82.48%-91.76%, NOx by 44.87%-92.79%, HC by 90.00%-93.89% and fuel consumption by 5.44%-10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.

  4. New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors

    Directory of Open Access Journals (Sweden)

    F. S. Zhang

    2011-10-01

    Full Text Available Nitrous oxide (N2O is a long-lived greenhouse gas with a large radiation intensity and it is emitted mainly from agricultural land. Accurate estimates of total direct N2O emissions from croplands on a country scale are important for global budgets of anthropogenic sources of N2O emissions and for the development of effective mitigation strategies. The objectives of this study were to re-estimate direct N2O emissions using localized emission factors and a database of measurements from Chinese croplands. We obtained N2O emission factors for paddy fields (0.41 ± 0.04% and uplands (1.05 ± 0.02% from a normalization process through cube root transformation of the original data. After comparing the results of normalization from the original values, Logarithmic and cube root transformations were used because the frequency of the original data was not normally distributed. Direct N2O emissions from Chinese croplands from 1980 to 2007 were estimated using IPCC (2006 guidelines combined with separate localized emission factors for paddy fields and upland areas. Direct N2O emissions from paddy fields showed little change, increasing by 10.5% with an annual rate of increase of 0.4% from 32.3 Gg N2O-N in 1980 to 35.7 Gg N2O-N in 2007. In contrast, emissions from uplands changed dramatically, increasing by 308% with an annual rate of 11% from 68.0 Gg N2O-N in 1980 to 278 Gg N2O-N in 2007. Total direct N2O emissions from Chinese croplands increased by 213% with an annual rate of 7.6% from 100 Gg N2O-N in 1980 to 313 Gg N2O-N in 2007, and were determined mainly by upland emissions (accounting for 67.8–88.6% of total emissions from 1980 to 2007. Synthetic N fertilizers played a major role in N2O emissions from agricultural land, and the magnitude of the contributions to total direct N2O emissions made by different amendments was synthetic N fertilizer > manure > straw, representing about 78, 15, and 6% of total direct N2O emissions, respectively, between

  5. A Study on Vehicle Emission Factor Correction Based on Fuel Consumption Measurement

    Science.gov (United States)

    Wang, Xiaoning; Li, Meng; Peng, Bo

    2018-01-01

    The objective of this study is to address the problem of obvious differences between the calculated and measured emissions of pollutants from motor vehicle by using the existing "Environmental Impact Assessment Specification of Highway Construction Projects". First, a field study collects the vehicle composition ratio, speed, slope, fuel consumption and other essential data. Considering practical applications, the emission factors corresponding to 40km/h and 110km/h and 120km/h velocity are introduced by data fitting. Then, the emission factors of motor vehicle are revised based on the measured fuel consumption, and the pollutant emission modified formula was calculated and compared with the standard recommendation formula. The results show the error between calculated and measured values are within 5%, which can better reflect the actual discharge of the motor vehicle.

  6. Greenhouse gas emission factor development for coal-fired power plants in Korea

    International Nuclear Information System (INIS)

    Jeon, Eui-Chan; Myeong, Soojeong; Sa, Jae-Whan; Kim, Jinsu; Jeong, Jae-Hak

    2010-01-01

    Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO 2 concentration from power plants was measured using GC-FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO 2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO 2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for sub-bituminous coal than the IPCC figures.

  7. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Shrestha, Ashish

    2009-01-01

    This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO 2 ) emissions in selected Asian countries during the 1980-2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO 2 emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO 2 emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO 2 emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO 2 emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO 2 emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.

  8. Spatial estimation of air PM2.5 emissions using activity data, local emission factors and land cover derived from satellite imagery

    Science.gov (United States)

    Gibe, Hezron P.; Cayetano, Mylene G.

    2017-09-01

    Exposure to particulate matter (PM) is a serious environmental problem in many urban areas on Earth. In the Philippines, most existing studies and emission inventories have mainly focused on point and mobile sources, while research involving human exposures to particulate pollutants is rare. This paper presents a method for estimating the amount of fine particulate (PM2.5) emissions in a test study site in the city of Cabanatuan, Nueva Ecija, in the Philippines, by utilizing local emission factors, regionally procured data, and land cover/land use (activity data) interpreted from satellite imagery. Geographic information system (GIS) software was used to map the estimated emissions in the study area. The present results suggest that vehicular emissions from motorcycles and tricycles, as well as fuels used by households (charcoal) and burning of agricultural waste, largely contribute to PM2.5 emissions in Cabanatuan. Overall, the method used in this study can be applied in other small urbanizing cities, as long as on-site specific activity, emission factor, and satellite-imaged land cover data are available.

  9. Emission factors for CH{sub 4}, NO{sub x}, particulates and black carbon for domestic shipping in Norway, revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Joergen Bremnes; Stenersen, Dag

    2010-11-15

    In this report new and updated emission factors for diesel, HFO and gas fuelled ships are presented and discussed as follows; NO{sub x} reduction factors from ships with NO{sub x} reduction measures; NO{sub x} emission factor from gas operated vessels; Methane emission factors for gas operated vessels; Updated emission factors for particulate emissions (PM) with a specific factor for the black carbon (BC) fraction of particulate emissions; A discussion on how low sulfur fuel will affect emissions of PM emissions and the BC fraction of PM is also included. (Author)

  10. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012

    International Nuclear Information System (INIS)

    Yang, Yayun; Zhao, Tao; Wang, Yanan; Shi, Zhaohui

    2015-01-01

    Carbon emissions related to population factors have aroused great attention around the world. A multitude of literature mainly focused on single demographic impacts on environmental issues at the national level, and comprehensive studies concerning population-related factors at a city level are rare. This paper employed STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model incorporating PLS (Partial least squares) regression method to examine the influence of population-related factors on carbon emissions in Beijing from 1984 to 2012. Empirically results manifest that urbanization is the paramount driver. Changes in population age structure have significantly positive impacts on carbon emissions, and shrinking young population, continuous expansion of working age population and aging population will keep on increasing environmental pressures. Meanwhile, shrinking household size and expanding floating population boost the discharge of carbon emissions. Besides, per capita consumption is an important contributor of carbon emissions, while industry energy intensity is the main inhibitory factor. Based upon these findings and the specific circumstances of Beijing, policies such as promoting clean and renewable energy, improving population quality and advocating low carbon lifestyles should be enhanced to achieve targeted emissions reductions. - Highlights: • We employed the STIRPAT model to identify population-related factors of carbon emissions in Beijing. • Urbanization is the paramount driver of carbon emissions. • Changes in population age structure exert significantly positive impacts on carbon emissions. • Shrinking household size, expanding floating population and improving consumption level increase carbon emissions. • Industry energy intensity decreases carbon emissions

  11. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yayun; Zhao, Tao; Wang, Yanan, E-mail: wyn3615@126.com; Shi, Zhaohui

    2015-11-15

    Carbon emissions related to population factors have aroused great attention around the world. A multitude of literature mainly focused on single demographic impacts on environmental issues at the national level, and comprehensive studies concerning population-related factors at a city level are rare. This paper employed STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model incorporating PLS (Partial least squares) regression method to examine the influence of population-related factors on carbon emissions in Beijing from 1984 to 2012. Empirically results manifest that urbanization is the paramount driver. Changes in population age structure have significantly positive impacts on carbon emissions, and shrinking young population, continuous expansion of working age population and aging population will keep on increasing environmental pressures. Meanwhile, shrinking household size and expanding floating population boost the discharge of carbon emissions. Besides, per capita consumption is an important contributor of carbon emissions, while industry energy intensity is the main inhibitory factor. Based upon these findings and the specific circumstances of Beijing, policies such as promoting clean and renewable energy, improving population quality and advocating low carbon lifestyles should be enhanced to achieve targeted emissions reductions. - Highlights: • We employed the STIRPAT model to identify population-related factors of carbon emissions in Beijing. • Urbanization is the paramount driver of carbon emissions. • Changes in population age structure exert significantly positive impacts on carbon emissions. • Shrinking household size, expanding floating population and improving consumption level increase carbon emissions. • Industry energy intensity decreases carbon emissions.

  12. CO2 emission factors for waste incineration: Influence from source separation of recyclable materials

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Astrup, Thomas

    2011-01-01

    variations between emission factors for different incinerators, but the background for these variations has not been thoroughly examined. One important reason may be variations in collection of recyclable materials as source separation alters the composition of the residual waste incinerated. The objective...... routed to incineration. Emission factors ranged from 27 to 40kg CO2/GJ. The results appeared most sensitive towards variations in waste composition and water content. Recycling rates and lower heating values could not be used as simple indicators of the resulting emission factors for residual household...... different studies and when using the values for environmental assessment purposes....

  13. 78 FR 64496 - Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty

    Science.gov (United States)

    2013-10-29

    ... Factors for Excess Emissions Penalty AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of annual adjustment factors for excess emissions penalty. SUMMARY: The Acid Rain Program under title IV of... excess tons emitted times $2,000 as adjusted by an annual adjustment factor, which must be published in...

  14. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock

    Science.gov (United States)

    Livestock play an important role in carbon cycling through consumption of biomass and emissions of methane. Recent research suggests that existing bottom-up inventories of livestock methane emissions in the U.S., such as those made using 2006 IPCC Tier 1 livestock emissions factors, are too low. Thi...

  15. Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou

    Science.gov (United States)

    Liu, Tengyu; Wang, Xinming; Wang, Boguang; Ding, Xiang; Deng, Wei; Lü, Sujun; Zhang, Yanli

    2014-05-01

    Ammonia (NH3) is the primary alkaline gas in the atmosphere that contributes to formation of secondary particles. Emission of NH3 from vehicles, particularly gasoline powered light duty vehicles equipped with three-way catalysts, is regarded as an important source apart from emissions from animal wastes and soils, yet measured emission factors for motor vehicles are still not available in China, where traffic-related emission has become an increasingly important source of air pollutants in urban areas. Here we present our tunnel tests for NH3 from motor vehicles under ‘real world conditions’ in an urban roadway tunnel in Guangzhou, a central city in the Pearl River Delta (PRD) region in south China. By attributing all NH3 emissions in the tunnel to light-duty gasoline vehicles, we obtained a fuel-based emission rate of 2.92 ± 0.18 g L-1 and a mileage-based emission factor of 229.5 ± 14.1 mg km-1. These emission factors were much higher than those measured in the United States while measured NO x emission factors (7.17 ± 0.60 g L-1 or 0.56 ± 0.05 g km-1) were contrastingly near or lower than those previously estimated by MOBILE/PART5 or COPERT IV models. Based on the NH3 emission factors from this study, on-road vehicles accounted for 8.1% of NH3 emissions in the PRD region in 2006 instead of 2.5% as estimated in a previous study using emission factors taken from the Emission Inventory Improvement Program (EIIP) in the United States.

  16. Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou

    International Nuclear Information System (INIS)

    Liu, Tengyu; Wang, Xinming; Ding, Xiang; Deng, Wei; Lü, Sujun; Zhang, Yanli; Wang, Boguang

    2014-01-01

    Ammonia (NH 3 ) is the primary alkaline gas in the atmosphere that contributes to formation of secondary particles. Emission of NH 3 from vehicles, particularly gasoline powered light duty vehicles equipped with three-way catalysts, is regarded as an important source apart from emissions from animal wastes and soils, yet measured emission factors for motor vehicles are still not available in China, where traffic-related emission has become an increasingly important source of air pollutants in urban areas. Here we present our tunnel tests for NH 3 from motor vehicles under ‘real world conditions’ in an urban roadway tunnel in Guangzhou, a central city in the Pearl River Delta (PRD) region in south China. By attributing all NH 3 emissions in the tunnel to light-duty gasoline vehicles, we obtained a fuel-based emission rate of 2.92 ± 0.18 g L −1 and a mileage-based emission factor of 229.5 ± 14.1 mg km −1 . These emission factors were much higher than those measured in the United States while measured NO x emission factors (7.17 ± 0.60 g L −1 or 0.56 ± 0.05 g km −1 ) were contrastingly near or lower than those previously estimated by MOBILE/PART5 or COPERT IV models. Based on the NH 3 emission factors from this study, on-road vehicles accounted for 8.1% of NH 3 emissions in the PRD region in 2006 instead of 2.5% as estimated in a previous study using emission factors taken from the Emission Inventory Improvement Program (EIIP) in the United States. (letter)

  17. On-road particulate emission measurement

    Science.gov (United States)

    Mazzoleni, Claudio

    Particulate matter (PM) suspended in the atmosphere has harmful health effects, contributes to visibility impairment, and affects atmospheric radiative transfer, thereby contributing to global change. Vehicles contribute substantially to the ambient PM concentration in urban areas, yet the fraction of ambient PM originating from vehicle emissions is poorly characterized because suitable measurement methods have not been available. This dissertation describes the development and the use of a new vehicle emission remote sensing system (VERSS) for the on-road measurement of PM emission factors for vehicles. The PM VERSS measures PM by ultraviolet backscattering and transmission. PM backscattering and transmission mass efficiencies have been calculated from Mie theory based on an homogeneous spherical model for gasoline particles and on a two-layers, spherical model for diesel particles. The VERSS was used in a large-scale study in Las Vegas, NV. A commercial gaseous VERSS was used for the measurement of gaseous emission factors (i.e., carbon monoxide, hydrocarbons, and nitrogen oxide). Speed and acceleration were also measured for each vehicle. A video image of each vehicle's rear license plate was acquired and license plate numbers were matched with the Clark County department of motor vehicle database to retrieve vehicle information such as model year, vehicle weight category and engine ignition type. PM VERSS has precisely estimated PM fleet average emission factors and clearly shown the dependence of PM emission factors on vehicle model year. Under mostly hot-stabilized operation, diesel vehicle PM emission factors are about 25 times higher than those of gasoline vehicles. Furthermore, the fleet frequency distributions of PM emission factors are highly skewed, meaning that most of the fleet emission factor is accounted for by a small portion of the fleet. The PM VERSS can measure PM emission factors for these high emitting vehicles on an individual basis. PM

  18. Nitrous oxide emission factors from N-fertilizer in sugarcane production in Brazil

    Science.gov (United States)

    Galdos, M. V.; Siqueira Neto, M.; Feigl, B. J.; Carvalho, J. L.; Cerri, C. E.; Cerri, C. C.

    2013-12-01

    The Brazilian sugarcane production is rapidly expanding due to the increase of global demand for ethanol. Concurrently the necessary inputs to culture, especially N-fertilizer, are growing, since N is one of the key element to maintain sugarcane productivity. However, it is known that N-fertilizer is responsible for the largest share of N2O emissions from agricultural soils. The Intergovernmental Panel on Climate Changes (IPCC) estimated that under favorable climatic conditions approximately 1% of the N-fertilizer applied can be emitted as N2O. Our goal was to estimate N2O emission factors from N-fertilizer used in the sugarcane ratoon for ethanol production. A field study was conducted at the Capuava Mill, located in southeastern Brazil. The experimental design was completely randomized, with four replications in a factorial scheme (2 x 2): two N sources (urea and ammonium nitrate), two application rates (80 and 120 kg ha-1), and a control treatment. N2O concentrations were determined by gas chromatography using a Shimadzu© GC-mini. N2O fluxes were calculated from linear regressions of concentration versus incubation time in the soil static chambers. The N2O emission factor of N-fertilizer was calculated according to the methodology described in the Guidelines for National Greenhouse Gas Inventories (IPCC). Comparatively, ammonium nitrate emitted 45 to 75% less N2O than urea application. There was no significant difference in N2O emission between the two applied rates of urea. Also the N2O emission factor of ammonium nitrate (0.3×0.2%) was lower than that of urea (1.1×0.4%). Our results indicated that on average the N fertilization of sugarcane plantation has an emission factor of 0.7×0.5% suggesting that N-fertilizer management can be used to reduce greenhouse gas emissions in order to improve the sustainability of bioethanol from sugarcane.

  19. Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles.

    Science.gov (United States)

    Brady, James M; Crisp, Timia A; Collier, Sonya; Kuwayama, Toshihiro; Forestieri, Sara D; Perraud, Véronique; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D; Bertram, Timothy H

    2014-10-07

    Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models.

  20. Trend Prediction and Decomposed Driving Factors of Carbon Emissions in Jiangsu Province during 2015–2020

    Directory of Open Access Journals (Sweden)

    Decai Tang

    2016-10-01

    Full Text Available According to the economic and energy consumption statistics in Jiangsu Province, we combined the GM (1, 1 grey model and polynomial regression to forecast carbon emissions. Historical and projected emissions were decomposed using the Logarithmic Mean Divisia Index (LMDI approach to assess the relative contribution of different factors to emission variability. The results showed that carbon emissions will continue to increase in Jiangsu province during 2015–2020 period and cumulative carbon emissions will increase by 39.5487 million tons within the forecast period. The growth of gross domestic product (GDP per capita plays the greatest positive role in driving carbon emission growth. Furthermore, the improvement of energy usage efficiency is the primary factor responsible for reducing carbon emissions. Factors of population, industry structure adjustment and the optimization of fuel mix also help to reduce carbon emissions. Based on the LMDI analysis, we provide some advice for policy-makers in Jiangsu and other provinces in China.

  1. Development of cotton gin PM10 emission factors for EPA’s AP-42-DUPLICATE DO NOT USE

    Science.gov (United States)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  2. The Hull Method for Selecting the Number of Common Factors

    Science.gov (United States)

    Lorenzo-Seva, Urbano; Timmerman, Marieke E.; Kiers, Henk A. L.

    2011-01-01

    A common problem in exploratory factor analysis is how many factors need to be extracted from a particular data set. We propose a new method for selecting the number of major common factors: the Hull method, which aims to find a model with an optimal balance between model fit and number of parameters. We examine the performance of the method in an…

  3. The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-07-01

    Full Text Available The rate of constitutive isoprenoid emissions from plants is driven by plant emission capacity under specified environmental conditions (ES, the emission factor and by responsiveness of the emissions to instantaneous variations in environment. In models of isoprenoid emission, ES has been often considered as intrinsic species-specific constant invariable in time and space. Here we analyze the variations in species-specific values of ES under field conditions focusing on abiotic stresses, past environmental conditions and developmental processes. The reviewed studies highlight strong stress-driven, adaptive (previous temperature and light environment and growth CO2 concentration and developmental (leaf age variations in ES values operating at medium to long time scales. These biological factors can alter species-specific ES values by more than an order of magnitude. While the majority of models based on early concepts still ignore these important sources of variation, recent models are including some of the medium- to long-term controls. However, conceptually different strategies are being used for incorporation of these longer-term controls with important practical implications for parameterization and application of these models. This analysis emphasizes the need to include more biological realism in the isoprenoid emission models and also highlights the gaps in knowledge that require further experimental work to reduce the model uncertainties associated with biological sources of variation.

  4. Accuracy of exhaust emission factor measurements on chassis dynamometer

    NARCIS (Netherlands)

    Joumard, R.; Laurikko, J.; Han, T.L.; Geivanidis, S.; Samaras, Z.; Merétei, T.; Devaux, P.; André, J.-M.; Cornelis, E.; Lacour, S.; Prati, M.V.; Vermeulen, R.; Zallinger, M.

    2009-01-01

    The influence of 20 parameters on the measurement of light-vehicle emission factors on chassis dynamometer based on driving patterns, vehicle-related parameters, vehicle sampling, and laboratory-related parameters, was studied. The results were based on literature synthesis, ≈ 2700 specific tests

  5. Emission Characteristics of Gas-Fired Boilers based on Category-Specific Emission Factor from Field Measurements in Beijing, China

    Science.gov (United States)

    Itahashi, S.; Yan, X.; Song, G.; Yan, J.; Xue, Y.

    2017-12-01

    Gas-fired boilers will become the main stationary sources of NOx in Beijing. However, the knowledge of gas-fired boilers in Beijing is limited. In the present study, the emission characteristics of NOx, SO2, and CO from gas-fired boilers in Beijing were established using category-specific emission factors (EFs) from field measurements. In order to obtain category-specific EFs, boilers were classified through influence analysis. Factors such as combustion mode, boiler type, and installed capacity were considered critical for establishing EFs because they play significant roles in pollutant formation. The EFs for NOx, CO, and SO2 ranged from 1.42-6.86 g m-3, 0.05-0.67 g m-3 and 0.03-0.48 g m-3. The emissions of NOx, SO2, and CO for gas-fired boilers in Beijing were 11121 t, 468 t, and 222 t in 2014, respectively. The emissions were spatially allocated into grid cells with a resolution of 1 km × 1 km, and the results indicated that top emitters were in central Beijing. The uncertainties were quantified using a Monte Carlo simulation. The results indicated high uncertainties in CO (-157% to 154%) and SO2 (-127% to 182%) emissions, and relatively low uncertainties (-34% to 34%) in NOx emission. Furthermore, approximately 61.2% and 96.8% of the monitored chamber combustion boilers (CCBs) met the standard limits for NOx and SO2, respectively. Concerning NOx, low-NOx burners and NOx emission control measures are urgently needed for implementing of stricter standards. Adopting terminal control measures is unnecessary for SO2, although its concentration occasionally exceeds standard limits, because reduction of its concentration can be achieved thorough control of the sulfur content of natural gas at a stable low level. Furthermore, the atmospheric combustion boilers (ACBs) should be substituted with CCBs, because ACBs have a higher emission despite lower gross installed capacity. The results of this study will enable in understanding and controlling emissions from gas

  6. Improving and disaggregating N_2O emission factors for ruminant excreta on temperate pasture soils

    International Nuclear Information System (INIS)

    Krol, D.J.; Carolan, R.; Minet, E.; McGeough, K.L.; Watson, C.J.; Forrestal, P.J.; Lanigan, G.J.; Richards, K.G.

    2016-01-01

    Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N_2O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N_2O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N_2O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatments were applied in spring, summer and autumn to three temperate grassland sites with varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N_2O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (− 0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N_2O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type. - Highlights: • N_2O emissions were measured from cattle excreta applied to pasture. • N_2O was universally higher from urine compared with dung. • N_2O was driven by rainfall, temperature and soil moisture deficit. • Emission

  7. Emission factors of greenhouse gases from layer and broiler barns in Cameroon

    Science.gov (United States)

    Ngwabie, N. Martin; Acobta, Ada N.; Manga, Veronica E.; VanderZaag, Andrew C.

    2018-03-01

    Limited information is available in the literature on greenhouse gas (GHG) quantification from livestock production systems in Africa. Therefore, this project was carried out to generate baseline emission factors of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) from broiler and layer barns with building design typical of Cameroon. Emissions were measured from two broiler barns during the entire production cycles and a layer barn for a limited period using flux chambers. Methane emission factors from the broiler barns with mud and cement floors were 0.96 ± 1.04 and 0.36 ± 0.17 mg bird-1 hr-1 respectively, and 0.76 ± 0.56 mg bird-1 hr-1 from the layer barn with cement floor. Nitrous oxide emission from the broiler barns with mud and cement floors were 12.94 ± 10.11 and 1.68 ± 1.02 mg bird-1 hr-1 respectively, and 0.21 ± 0.28 mg bird-1 hr-1 from the layer barn. Carbon dioxide emission factors from the broiler barns with mud and cement floors were 9327 ± 3508 and 25526 ± 6904 mg bird-1 hr-1 respectively, and 8942 ± 36756 mg bird-1 hr-1 from the layer barn. When scaled per livestock unit (LU), where 1 LU is 500 kg bird weight, CH4 emissions were 0.16 ± 0.17 and 0.06 ± 0.03 g LU-1 hr-1 from the broiler barns, and 0.19 ± 0.14 g LU-1 hr-1 from the layer barn. Nitrous oxide emissions were 2.16 ± 1.69 and 0.28 ± 0.17 g LU-1 hr-1 from the broiler barns, and 0.05 ± 0.07 g LU-1 hr-1 from the layer barn. Broilers reared in management systems with wood shavings on mud floor had relatively high CH4 and N2O emissions compared to broilers on wood shavings and cement floor, with the contrary observed for CO2. The emissions N2O were significantly higher from broiler barns compared to layer barns. Emissions were higher in the mornings compared to later periods of the day. Given the observed results, GHG emission mitigation strategies need to be customised for each building design and management system.

  8. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  9. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    International Nuclear Information System (INIS)

    Friedrich, Elena; Trois, Cristina

    2013-01-01

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO 2 e (glass) to −19 111 kg CO 2 e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO 2 e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard

  10. Quantification of variability and uncertainty in lawn and garden equipment NOx and total hydrocarbon emission factors.

    Science.gov (United States)

    Frey, H Christopher; Bammi, Sachin

    2002-04-01

    Variability refers to real differences in emissions among multiple emission sources at any given time or over time for any individual emission source. Variability in emissions can be attributed to variation in fuel or feedstock composition, ambient temperature, design, maintenance, or operation. Uncertainty refers to lack of knowledge regarding the true value of emissions. Sources of uncertainty include small sample sizes, bias or imprecision in measurements, nonrepresentativeness, or lack of data. Quantitative methods for characterizing both variability and uncertainty are demonstrated and applied to case studies of emission factors for lawn and garden (L&G) equipment engines. Variability was quantified using empirical and parametric distributions. Bootstrap simulation was used to characterize confidence intervals for the fitted distributions. The 95% confidence intervals for the mean grams per brake horsepower/hour (g/hp-hr) emission factors for two-stroke engine total hydrocarbon (THC) and NOx emissions were from -30 to +41% and from -45 to +75%, respectively. The confidence intervals for four-stroke engines were from -33 to +46% for THCs and from -27 to +35% for NOx. These quantitative measures of uncertainty convey information regarding the quality of the emission factors and serve as a basis for calculation of uncertainty in emission inventories (EIs).

  11. Variability in operation-based NO(x) emission factors with different test routes, and its effects on the real-driving emissions of light diesel vehicles.

    Science.gov (United States)

    Lee, Taewoo; Park, Junhong; Kwon, Sangil; Lee, Jongtae; Kim, Jeongsoo

    2013-09-01

    The objective of this study is to quantify the differences in NO(x) emissions between standard and non-standard driving and vehicle operating conditions, and to estimate by how much NO(x) emissions exceed the legislative emission limits under typical Korean road traffic conditions. Twelve Euro 3-5 light-duty diesel vehicles (LDDVs) manufactured in Korea were driven on a chassis dynamometer over the standard New European Driving Cycle (NEDC) and a representative Korean on-road driving cycle (KDC). NO(x) emissions, average speeds and accelerations were calculated for each 1-km trip segment, so called averaging windows. The results suggest that the NO(x) emissions of the tested vehicles are more susceptible to variations in the driving cycles than to those in the operating conditions. Even under comparable operating conditions, the NO(x) control capabilities of vehicles differ from each other, i.e., NO(x) control is weaker for the KDC than for the NEDC. The NO(x) emissions over the KDC for given vehicle operating conditions exceed those over the NEDC by more than a factor of 8. Consequently, on-road NO(x) emission factors are estimated here to exceed the Euro 5 emission limit by up to a factor of 8, 4 and 3 for typical Korean urban, rural, and motorway road traffic conditions, respectively. Our findings support the development of technical regulations for supplementary real-world emission tests for emission certification and the corresponding research actions taken by automotive industries. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. NOx emission calculations for bulk carriers by using engine power probabilities as weighting factors.

    Science.gov (United States)

    Cheng, Chih-Wen; Hua, Jian; Hwang, Daw-Shang

    2017-10-01

    An important marine pollution issue identified by the International Maritime Organization (IMO) is NO x emissions; however, the stipulated method for determining the NO x certification value does not reflect the actual high emission factors of slow-speed two-stroke diesel engines over long-term slow steaming. In this study, an accurate method is presented for calculating the NO x emission factors and total amount of NO x emissions by using the actual power probabilities of the diesel engines in four types of bulk carriers. The proposed method is suitable for all types and purposes of diesel engines, is not restricted to any operating modes, and is highly accurate. Moreover, it is recommended that the IMO-stipulated certification value calculation method be modified accordingly to genuinely reduce the amount of NO x emissions. The successful achievement of this level of reduction will help improve the air quality, especially in coastal and port areas, and the health of local residents. As per the IMO, the NO x emission certification value of marine diesel engines having a rated power over 130 kW must be obtained using specified weighting factor (WF)-based calculation. However, this calculation fails to represent the current actual situation. Effective emission reductions of 6.91% (at sea) and 31.9% (in ports) were achieved using a mathematical model of power probability functions. Thus, we strongly recommend amending the certification value of NO x Technical Code 2008 (NTC 2008) by removing the WF constraints, such that the NO x emissions of diesel engines is lower than the Tier-limits at any load level to obtain genuine NO x emission reductions.

  13. Transport sector CO{sub 2} emissions growth in Asia: Underlying factors and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Timilsina, Govinda R., E-mail: gtimilsina@worldbank.or [Development Research Group, World Bank, 1818H Street, NW, Washington, DC 20433 (United States); Shrestha, Ashish [Development Research Group, World Bank, 1818H Street, NW, Washington, DC 20433 (United States)

    2009-11-15

    This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO{sub 2}) emissions in selected Asian countries during the 1980-2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO{sub 2} emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO{sub 2} emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO{sub 2} emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO{sub 2} emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO{sub 2} emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.

  14. Transport sector CO{sub 2} emissions growth in Asia. Underlying factors and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Timilsina, Govinda R.; Shrestha, Ashish [Development Research Group, The World Bank, 1818H Street, NW, Washington, DC 20433 (United States)

    2009-11-15

    This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO{sub 2}) emissions in selected Asian countries during the 1980-2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO{sub 2} emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO{sub 2} emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO{sub 2} emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO{sub 2} emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO{sub 2} emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes. (author)

  15. The influencing factors of CO2 emission intensity of Chinese agriculture from 1997 to 2014.

    Science.gov (United States)

    Long, Xingle; Luo, Yusen; Wu, Chao; Zhang, Jijian

    2018-05-01

    In China, agriculture produces the greatest chemical oxygen demand (COD) emissions in wastewater and the most methane (CH 4 ) emissions. It is imperative that agricultural pollution in China be reduced. This study investigated the influencing factors of the CO 2 emission intensity of Chinese agriculture from 1997 to 2014. We analyzed the influencing factors of the CO 2 emission intensity through the first-stage least-square regression. We also analyzed determinants of innovation through the second-stage least-square regression. We found that innovation negatively affected the CO 2 emission intensity in the model of the nation. FDI positively affected innovation in China. It is important to enhance indigenous innovation for green agriculture through labor training and collaboration between agriculture and academia.

  16. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions

    Science.gov (United States)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi

    2016-02-01

    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  17. Improving and disaggregating N{sub 2}O emission factors for ruminant excreta on temperate pasture soils

    Energy Technology Data Exchange (ETDEWEB)

    Krol, D.J., E-mail: kroldj@tcd.ie [Teagasc, Crops, Land Use and Environment Programme, Johnstown Castle, Co., Wexford (Ireland); Carolan, R. [Agri-Food and Biosciences Institute (AFBI), Belfast BT9 5PX (Ireland); Minet, E. [Teagasc, Crops, Land Use and Environment Programme, Johnstown Castle, Co., Wexford (Ireland); McGeough, K.L.; Watson, C.J. [Agri-Food and Biosciences Institute (AFBI), Belfast BT9 5PX (Ireland); Forrestal, P.J. [Teagasc, Crops, Land Use and Environment Programme, Johnstown Castle, Co., Wexford (Ireland); Lanigan, G.J., E-mail: gary.lanigan@teagasc.ie [Teagasc, Crops, Land Use and Environment Programme, Johnstown Castle, Co., Wexford (Ireland); Richards, K.G. [Teagasc, Crops, Land Use and Environment Programme, Johnstown Castle, Co., Wexford (Ireland)

    2016-10-15

    Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N{sub 2}O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N{sub 2}O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N{sub 2}O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatments were applied in spring, summer and autumn to three temperate grassland sites with varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N{sub 2}O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (− 0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N{sub 2}O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type. - Highlights: • N{sub 2}O emissions were measured from cattle excreta applied to pasture. • N{sub 2}O was universally higher from urine compared with dung. • N{sub 2}O was driven by rainfall, temperature

  18. Emission factors of polybrominated diphenyl ethers (PBDEs) from plastics processing and recycling facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Shin-ichi; Hirai, Yasuhiro [National Institute for Environmental Studies, Tsukuba (Japan); Ota, Shizuko; Sudo, Kinichi [Ministry of Environment (Japan)

    2004-09-15

    With regard to polybrominated diphenyl ether (PBDE), there is few scientific knowledge on the emission patterns into the environment and exposure pathways to humans, and basic information is insufficient to consider what measures effective are. For the purpose of promoting risk reduction of target substances more effectively and efficiently, it is desirable to comprehend accurately the causal chain from the target substances utilization to the risk intake, and to evaluate the measures covering the whole applications of target substances. As the existing researches on the PBDE emission inventory, there are EU risk assessment report (European Chemical Bureau 2000, 2002, 2003), Danish EPA (1999), Palm et al.(2002) and Alcock et al. (2003). In addition, emissions of DecaBDE are published in TRI (Toxic Release Inventory) of US EPA. However, the primary information of the previous inventories is often the same and estimations based on the measured values are few. In light of the situation, PBDE emission concentrations from processing facilities of flame retardant plastics and recycling facilities of home electric appliances are measured in practice to presume material flow of PBDE and to estimate emission factors and inventories from each phase of life cycles. The validities of emission factors are examined in comparison to measured values of atmospheric depositions surroundings, which are close to sources.

  19. UK emissions of the greenhouse gas nitrous oxide

    Science.gov (United States)

    Skiba, U.; Jones, S. K.; Dragosits, U.; Drewer, J.; Fowler, D.; Rees, R. M.; Pappa, V. A.; Cardenas, L.; Chadwick, D.; Yamulki, S.; Manning, A. J.

    2012-01-01

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N2O in many countries and responsible for 75 per cent of UK N2O emissions. Microbial N2O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling. PMID:22451103

  20. N2O emission hotspots at different spatial scales and governing factors for small scale hotspots

    International Nuclear Information System (INIS)

    Heuvel, R.N. van den; Hefting, M.M.; Tan, N.C.G.; Jetten, M.S.M.; Verhoeven, J.T.A.

    2009-01-01

    Chronically nitrate-loaded riparian buffer zones show high N 2 O emissions. Often, a large part of the N 2 O is emitted from small surface areas, resulting in high spatial variability in these buffer zones. These small surface areas with high N 2 O emissions (hotspots) need to be investigated to generate knowledge on the factors governing N 2 O emissions. In this study the N 2 O emission variability was investigated at different spatial scales. Therefore N 2 O emissions from three 32 m 2 grids were determined in summer and winter. Spatial variation and total emission were determined on three different scales (0.3 m 2 , 0.018 m 2 and 0.0013 m 2 ) at plots with different levels of N 2 O emissions. Spatial variation was high at all scales determined and highest at the smallest scale. To test possible factors inducing small scale hotspots, soil samples were collected for slurry incubation to determine responses to increased electron donor/acceptor availability. Acetate addition did increase N 2 O production, but nitrate addition failed to increase total denitrification or net N 2 O production. N 2 O production was similar in all soil slurries, independent of their origin from high or low emission soils, indicating that environmental conditions (including physical factors like gas diffusion) rather than microbial community composition governed N 2 O emission rates

  1. Priority hazardous substances for the aquatic environment: critical evaluation of the emission factor method for the indirect estimate of the loads

    International Nuclear Information System (INIS)

    Azzellino, A.; Vismara, R.

    2005-01-01

    The European Water Framework Directive require to the EU Member States the knowledge of the priority hazardous pollutant contamination levels. Regional basin management plans (according to Italian laws D.Lgs 152/99 and to D.M. 367/03) generally include a review about the status of water contamination to respond to the Eu legislation prescriptions. However, since the actual monitoring activity of the water contamination is expensive and also extremely difficult in terms of analytical sensitivity, the most of these reviews has been prepared by using indirect emission coefficient estimates derived form literature. It is well known that such emission coefficients have been rarely proved fully reliable; moreover such an approach gives no information about the variability affecting the emission estimates. Aim of this work was to use the data contained into the emission EPER-INES database, european database which contains the IPPC Directive emission declarations, to define emission coefficients more reliable than literature coefficients. The presented results, even though based on a limited number of observations and referring the most only to heavy metals, confirm the scarce affidability of the emission factor method and show remarkable discrepancies (mostly under- but also over-estimations of about ten-fold) of these emission estimates from the actual emission data of the IPPC declarations. These results allow also to evaluate the not negligible variability that affects the definition of emission coefficients [it

  2. Influence of injector hole number on the performance and emissions of a DI diesel engine fueled with biodiesel–diesel fuel blends

    International Nuclear Information System (INIS)

    Sayin, Cenk; Gumus, Metin; Canakci, Mustafa

    2013-01-01

    In diesel engines, fuel atomization process strongly affects the combustion and emissions. Injector hole number (INHN) particular influence on the performance and emissions because both parameters take important influence on the spray parameters like droplet size and penetration length and thus on the combustion process. Therefore, the INHN effects on the performance and emissions of a diesel engine using biodiesel and its blends were experimentally investigated by running the engine at four different engine loads in terms of brake mean effective pressure (BMEP) (12.5, 25, 37.5 and, 50 kPa). The injector nozzle hole size and number included 340 × 2 (340 μm diameter holes with 2 holes in the nozzle), 240 × 4, 200 × 6, and 170 × 8. The results verified that the brake specific fuel consumption (BSFC), carbon dioxide (CO 2 ) and nitrogen oxides (NO x ) emission increased, smoke opacity (SO), hydrocarbon (HC) and carbon monoxide (CO) emissions reduced due to the fuel properties and combustion characteristics of biodiesel. However, the increased INHN caused a decrease in BSFC at the use of high percentage biodiesel–diesel blends (B50 and B100), SO and the emissions of CO, HC. The emissions of CO 2 and NO x increased. Compared to the original (ORG) INHN, changing the INHN caused an increase in BSFC values for diesel fuel and low percentage biodiesel–diesel blends (B5 and B20). -- Highlights: • We used biodiesel–diesel blends with the injectors having different parameters. • Injector parameters have influences on the exhaust emissions. • Specific fuel consumption can be affected with injector parameters. • Injectors with proper hole numbers and size can be used for biodiesel–diesel blends

  3. Deriving fuel-based emission factor thresholds to interpret heavy-duty vehicle roadside plume measurements.

    Science.gov (United States)

    Quiros, David C; Smith, Jeremy D; Ham, Walter A; Robertson, William H; Huai, Tao; Ayala, Alberto; Hu, Shaohua

    2018-04-13

    Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO 2 ), oxides of nitrogen (NO X ), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NO X /bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NO X /kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NO X threshold was derived from measurements where aftertreatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger

  4. Factors Affecting Mitigation of Methane Emission from Ruminants: Management Strategies

    Directory of Open Access Journals (Sweden)

    Afshar Mirzaei-Aghsaghali

    2015-06-01

    Full Text Available Nowadays, greenhouse gas emission which results in elevating global temperature is an important subject of worldwide ecological and environmental concern. Among greenhouse gases, methane is considered a potent greenhouse gas with 21 times more global warming potential than carbon dioxide. Worldwide, ruminant livestock produce about 80 million metric tons of methane each year, accounting for about 28% of global emissions from human related activities. Therefore it is impelling animal scientists to finding solutions to mitigate methane emission from ruminants. It seems that solutions can be discussed in four topics including: nutrition (feeding, biotechnology, microbiology and management strategies. We have already published the first review article on feeding strategies. In the current review, management strategies such as emphasizing on animals - type and individual variability, reducing livestock numbers, improving animal productivity and longevity as well as pasture management; that can be leads to decreasing methane production from ruminant animal production are discussed.

  5. A Global Outlook to the Carbon Dioxide Emissions in the World and Emission Factors of the Thermal Power Plants in Turkey

    International Nuclear Information System (INIS)

    Atimtay, Aysel T.

    2003-01-01

    World primary energy demand increases with increases in population and economic development. Within the last 25 yr, the total energy consumption has almost doubled. For the purpose of meeting this demand, fossil energy sources are used and various pollutants are generated. CO 2 is also one of these gases, which cannot be removed like other pollutants, and it causes greenhouse effect and climate change. Reducing the CO 2 emission is very important because of the environmental concerns and regulations, especially the Kyoto Protocol. This paper reviews the estimated world carbon emissions, Turkey's situation in electrical energy production, emission amounts estimated until the year 2020 and emission factors for dust, SO 2 , NO x and CO 2 . The estimated results show that CO 2 emissions from thermal power plants in Turkey will make about 0.66 % of the global CO 2 emissions in 2020

  6. Seasonal Variation and Ecosystem Dependence of Emission Factors for Selected Trace Gases and PM2.5 for Southern African Savanna Fires

    Science.gov (United States)

    Korontzi, S.; Ward, D. E.; Susott, R. A.; Yokelson, R. J.; Justice, C. O.; Hobbs, P. V.; Smithwick, E. A. H.; Hao, W. M.

    2003-01-01

    In this paper we present the first early dry season (early June-early August) emission factor measurements for carbon dioxide (CO2), carbon monoxide (CO), methane (Ca), nonmethane hydrocarbons (NMHC), and particulates with a diameter less than 2.5 microns (pM2.5) for southern African grassland and woodland fires. Seasonal emission factors for grassland fires correlate linearly with the proportion of green grass, used as a surrogate for the fuel moisture content, and are higher for products of incomplete combustion in the early part of the dry season compared with later in the dry season. Models of emission factors for NMHC and PM(sub 2.5) versus modified combustion efficiency (MCE) are statistically different in grassland compared with woodland ecosystems. We compare predictions based on the integration of emissions factors from this study, from the southern African Fire-Atmosphere Research Initiative 1992 (SAFARI-92), and from SAFARI-2000 with those based on the smaller set of ecosystem-specific emission factors to estimate the effects of using regional-average rather than ecosystem-specific emission factors. We also test the validity of using the SAFARI-92 models for emission factors versus MCE to predict the early dry season emission factors measured in this study. The comparison indicates that the largest discrepancies occur at the low end (0.907) and high end (0.972) of MCE values measured in this study. Finally, we combine our models of MCE versus proportion of green grass for grassland fires with emission factors versus MCE for selected oxygenated volatile organic compounds measured in the SAFARI-2000 campaign to derive the first seasonal emission factors for these compounds. The results of this study demonstrate that seasonal variations in savanna fire emissions are important and should be considered in modeling emissions at regional to continental scales.

  7. Forecasting Energy-Related CO2 Emissions Employing a Novel SSA-LSSVM Model: Considering Structural Factors in China

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2018-03-01

    Full Text Available Carbon dioxide (CO2 emissions forecasting is becoming more important due to increasing climatic problems, which contributes to developing scientific climate policies and making reasonable energy plans. Considering that the influential factors of CO2 emissions are multiplex and the relationships between factors and CO2 emissions are complex and non-linear, a novel CO2 forecasting model called SSA-LSSVM, which utilizes the Salp Swarm Algorithm (SSA to optimize the two parameters of the least squares support sector machine (LSSVM model, is proposed in this paper. The influential factors of CO2 emissions, including the gross domestic product (GDP, population, energy consumption, economic structure, energy structure, urbanization rate, and energy intensity, are regarded as the input variables of the SSA-LSSVM model. The proposed model is verified to show a better forecasting performance compared with the selected models, including the single LSSVM model, the LSSVM model optimized by the particle swarm optimization algorithm (PSO-LSSVM, and the back propagation (BP neural network model, on CO2 emissions in China from 2014 to 2016. The comparative analysis indicates the SSA-LSSVM model is greatly superior and has the potential to improve the accuracy and reliability of CO2 emissions forecasting. CO2 emissions in China from 2017 to 2020 are forecast combined with the 13th Five-Year Plan for social, economic and energy development. The comparison of CO2 emissions of China in 2020 shows that structural factors significantly affect CO2 emission forecasting results. The average annual growth of CO2 emissions slows down significantly due to a series of policies and actions taken by the Chinese government, which means China can keep the promise that greenhouse gas emissions will start to drop after 2030.

  8. Enteric Methane Emission from Pigs

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Theil, Peter Kappel; Knudsen, Knud Erik Bach

    2011-01-01

    per kg meat produced is increased (Fernández et al. 1983; Lekule et al. 1990). The present chapter will summarise our current knowledge concerning dietary and enteric fermentation that may influence the methane (CH4) emission in pigs. Enteric fermentation is the digestive process by which.......3 % of the worlds pig population. The main number of pigs is in Asia (59.6 %) where the main pig population stay in China (47.8 % of the worlds pig population). The objective of the chapter is therefore: To obtain a general overview of the pigs’ contribution to methane emission. Where is the pigs’ enteric gas...... produced and how is it measured. The variation in methane emission and factors affecting the emission. Possibility for reducing the enteric methane emission and the consequences....

  9. On-road assessment of light duty vehicles in Delhi city: Emission factors of CO, CO2 and NOX

    Science.gov (United States)

    Jaiprakash; Habib, Gazala

    2018-02-01

    This study presents the technology based emission factors of gaseous pollutants (CO, CO2, and NOX) measured during on-road operation of nine passenger cars of diesel, gasoline, and compressed natural gas (CNG). The emissions from two 3-wheelers, and three 2-wheelers were measured by putting the vehicles on jacks and operating them according to Modified Indian Driving Cycle (MIDC) at no load condition. The emission factors observed in the present work were significantly higher than values reported from dynamometer study by Automotive Research Association of India (ARAI). Low CO (0.34 ± 0.08 g km-1) and high NOX (1.0 ± 0.4 g km-1) emission factors were observed for diesel passenger cars, oppositely high CO (2.2 ± 2.6 g km-1) and low NOX (1.0 ± 1.6 g km-1) emission factors were seen for gasoline powered cars. The after-treatment technology in diesel vehicles was effective in CO reduction. While the use of turbocharger in diesel vehicles to generate high combustion temperature and pressure produces more NOx, probably which may not be effectively controlled by after-treatment device. The after-treatment devices in gasoline powered Post-2010, Post-2005 vehicles can be acclaimed for reduced CO emissions compared to Post-2000 vehicles. This work presents a limited data set of emission factors from on-road operations of light duty vehicles, this limitation can be improved by further measurements of emissions from similar vehicles.

  10. Urban Household Carbon Emission and Contributing Factors in the Yangtze River Delta, China

    Science.gov (United States)

    Xu, Xibao; Tan, Yan; Chen, Shuang; Yang, Guishan; Su, Weizhong

    2015-01-01

    Carbon reduction at the household level is an integral part of carbon mitigation. This study analyses the characteristics, effects, contributing factors and policies for urban household carbon emissions in the Yangtze River Delta of China. Primary data was collected through structured questionnaire surveys in three cities in the region – Nanjing, Ningbo, and Changzhou in 2011. The survey data was first used to estimate the magnitude of household carbon emissions in different urban contexts. It then examined how, and to what extent, each set of demographic, economic, behavioral/cognitive and spatial factors influence carbon emissions at the household level. The average of urban household carbon emissions in the region was estimated to be 5.96 tonnes CO2 in 2010. Energy consumption, daily commuting, garbage disposal and long-distance travel accounted for 51.2%, 21.3%, 16.0% and 11.5% of the total emission, respectively. Regulating rapidly growing car-holdings of urban households, stabilizing population growth, and transiting residents’ low-carbon awareness to household behavior in energy saving and other spheres of consumption in the context of rapid population aging and the growing middle income class are suggested as critical measures for carbon mitigation among urban households in the Yangtze River Delta. PMID:25884853

  11. Polynomial selection in number field sieve for integer factorization

    Directory of Open Access Journals (Sweden)

    Gireesh Pandey

    2016-09-01

    Full Text Available The general number field sieve (GNFS is the fastest algorithm for factoring large composite integers which is made up by two prime numbers. Polynomial selection is an important step of GNFS. The asymptotic runtime depends on choice of good polynomial pairs. In this paper, we present polynomial selection algorithm that will be modelled with size and root properties. The correlations between polynomial coefficient and number of relations have been explored with experimental findings.

  12. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City

    Science.gov (United States)

    Zavala, Miguel; Molina, Luisa T.; Yacovitch, Tara I.; Fortner, Edward C.; Roscioli, Joseph R.; Floerchinger, Cody; Herndon, Scott C.; Kolb, Charles E.; Knighton, Walter B.; Paramo, Victor Hugo; Zirath, Sergio; Mejía, José Antonio; Jazcilevich, Aron

    2017-12-01

    Diesel-powered vehicles are intensively used in urban areas for transporting goods and people but can substantially contribute to high emissions of black carbon (BC), organic carbon (OC), and other gaseous pollutants. Strategies aimed at controlling mobile emissions sources thus have the potential to improve air quality and help mitigate the impacts of air pollutants on climate, ecosystems, and human health. However, in developing countries there are limited data on the BC and OC emission characteristics of diesel-powered vehicles, and thus there are large uncertainties in the estimation of the emission contributions from these sources. We measured BC, OC, and other inorganic components of fine particulate matter (PM), as well as carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), ethane, acetylene, benzene, toluene, and C2-benzenes under real-world driving conditions for 20 diesel-powered vehicles encompassing multiple emission level technologies in Mexico City with the chasing technique using the Aerodyne mobile laboratory. Average BC emission factors ranged from 0.41-2.48 g kg-1 of fuel depending on vehicle type. The vehicles were also simultaneously measured using the cross-road remote sensing technique to obtain the emission factors of nitrogen oxide (NO), CO, total hydrocarbons, and fine PM, thus allowing for the intercomparison of the results from the two techniques. There is overall good agreement between the two techniques and both can identify high and low emitters, but substantial differences were found in some of the vehicles, probably due to the ability of the chasing technique to capture a larger diversity of driving conditions in comparison to the remote sensing technique. A comparison of the results with the US EPA MOVES2014b model showed that the model underestimates CO, OC, and selected VOC species, whereas there is better agreement for NOx and BC. Larger OC / BC ratios were found in comparison to ratios measured in California using

  13. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2017-12-01

    Full Text Available Diesel-powered vehicles are intensively used in urban areas for transporting goods and people but can substantially contribute to high emissions of black carbon (BC, organic carbon (OC, and other gaseous pollutants. Strategies aimed at controlling mobile emissions sources thus have the potential to improve air quality and help mitigate the impacts of air pollutants on climate, ecosystems, and human health. However, in developing countries there are limited data on the BC and OC emission characteristics of diesel-powered vehicles, and thus there are large uncertainties in the estimation of the emission contributions from these sources. We measured BC, OC, and other inorganic components of fine particulate matter (PM, as well as carbon monoxide (CO, nitrogen oxides (NOx, sulfur dioxide (SO2, ethane, acetylene, benzene, toluene, and C2-benzenes under real-world driving conditions for 20 diesel-powered vehicles encompassing multiple emission level technologies in Mexico City with the chasing technique using the Aerodyne mobile laboratory. Average BC emission factors ranged from 0.41–2.48 g kg−1 of fuel depending on vehicle type. The vehicles were also simultaneously measured using the cross-road remote sensing technique to obtain the emission factors of nitrogen oxide (NO, CO, total hydrocarbons, and fine PM, thus allowing for the intercomparison of the results from the two techniques. There is overall good agreement between the two techniques and both can identify high and low emitters, but substantial differences were found in some of the vehicles, probably due to the ability of the chasing technique to capture a larger diversity of driving conditions in comparison to the remote sensing technique. A comparison of the results with the US EPA MOVES2014b model showed that the model underestimates CO, OC, and selected VOC species, whereas there is better agreement for NOx and BC. Larger OC / BC ratios were found in comparison to ratios

  14. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    International Nuclear Information System (INIS)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-01-01

    Greenhouse gas (CO 2 , CH 4 and N 2 O, hereinafter GHG) and criteria air pollutant (CO, NO x , VOC, PM 10 , PM 2.5 and SO x , hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  15. Determination of OB/OD/SF Emission Factors Using Unmanned Aerial Systems

    Science.gov (United States)

    A presentation to the Demilitarization Symposium. This proposal will present the methods of tethered aerostat and unmanned aerial system for collection of plume samples and determination of emission factors form open burning, open detonation, and static firing for weapon demilita...

  16. Research on carbon emission driving factors of China’s provincial construction industry

    Science.gov (United States)

    Shang, Mei; Dong, Rui; Fu, Yujie; Hao, Wentao

    2018-03-01

    As a pillar industry of the national economy, the damage to the environment by construction industry can not be ignored. In the context of low carbon development, identifying the main driving factors for the carbon emission of the provincial construction industry are the key for the local government to formulate the development strategy for construction. In the paper, based on the Kaya factor decomposition method, the carbon intensity of the energy structure, energy intensity and the impact of the construction output on the carbon emission of provincial construction industry are studied, and relevant suggestions for low carbon development of provincial construction industry are proposed. The conclusion of this paper provides a theoretical basis for the early realization of low-carbon development in China’s provincial construction industry.

  17. Determination of OB Emission Factors Using an Unmanned Aerial System (“drone”) at ?Radford Army Ammunition Plant

    Science.gov (United States)

    A description of the emission sampling via UAV at the Radford Army Ammunition Plant including number of samples, waste composition, UAV flight data. No emissions data presented; only qualitative description.

  18. International inequalities in per capita CO2 emissions: a decomposition methodology by Kaya factors

    International Nuclear Information System (INIS)

    Duro, J.A.; Universitat de Barcelona; Padilla, E.

    2006-01-01

    In this paper, we provide a methodology for decomposing international inequalities in per capita CO 2 emissions into Kaya (multiplicative) factors and two interaction terms. We use the Theil index of inequality and show that this decomposition methodology can be extended for analyzing between- and within-group inequality components. We can thus analyze the factors behind inequalities in per capita CO 2 emissions across countries, between groups of countries and within groups of countries. The empirical illustration for international data suggests some points. Firstly, international inequality in per capita CO 2 emissions is mainly attributable to inequalities in per capita income levels, which helps to explain its recent reduction, while differences in carbon intensity of energy and energy intensity have made a less significant contribution. This result is strongly influenced by the performance of China and India. Secondly, the between-group inequality component, which is the biggest component, is also largely explained by the income factor. Thirdly, the within-group inequality component increased slightly during the period, something mainly due to the change in the income factor and the interaction terms in a few regions. (author)

  19. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mosher, D.; De Groot, J.S.

    1996-01-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single-exploded-wire discharges on Gamble-II suggest a common nonthermal-production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission. (author). 3 figs., 10 refs

  20. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mosher, D.; De Groot, J.S.

    1996-01-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single- exploded-wire discharges on Gamble-II suggest a common nonthermal- production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly- collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission

  1. Consideration of Real World Factors Influencing Greenhouse Gas Emissions in ALPHA

    Science.gov (United States)

    Discuss a variety of factors that influence the simulated fuel economy and GHG emissions that are often overlooked and updates made to ALPHA based on actual benchmarking data observed across a range of vehicles and transmissions. ALPHA model calibration is also examined, focusin...

  2. Analyzing impact factors of CO2 emissions using the STIRPAT model

    International Nuclear Information System (INIS)

    Fan Ying; Liu Lancui; Wu Gang; Wei Yiming

    2006-01-01

    Using the STIRPAT model, this paper analyzes the impact of population, affluence and technology on the total CO 2 emissions of countries at different income levels over the period 1975-2000. Our main results show at the global level that economic growth has the greatest impact on CO 2 emissions, and the proportion of the population between ages 15 and 64 has the least impact. The proportion of the population between 15 and 64 has a negative impact on the total CO 2 emissions of countries at the high income level, but the impact is positive at other income levels. This may illustrate the importance of the 'B' in the 'I = PABT'; that is to say that different behavior fashions can greatly influence environmental change. For low-income countries, the impact of GDP per capita on total CO 2 emissions is very great, and the impact of energy intensity in upper-middle income countries is very great. The impact of these factors on the total CO 2 emissions of countries at the high income level is relatively great. Therefore, these empirical results indicate that the impact of population, affluence and technology on CO 2 emissions varies at different levels of development. Thus, policy-makers should consider these matters fully when they construct their long-term strategies for CO 2 abatement

  3. An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China

    International Nuclear Information System (INIS)

    Wang, Zhaohua; Yin, Fangchao; Zhang, Yixiang; Zhang, Xian

    2012-01-01

    Highlights: ► We adapt STIRPAT model to regional context and conduct PLS regress analysis. ► Energy technology related patent is innovatively used to measure technical factors. ► Urbanization level has the greatest interpretative ability for CO 2 emissions. ► We do not find evidence of Environmental Kuznets Curve in Beijing. ► Beijing should focus more on tertiary industry and residential energy consumption. -- Abstract: In order to further study the realization of carbon intensity target, find the key influencing factors of CO 2 emissions, and explore the path of developing low-carbon economy, this paper empirically studied the influences of urbanization level, economic level, industry proportion, tertiary industry proportion, energy intensity and R and D output on CO 2 emissions in Beijing using improved STIRPAT (stochastic impacts by regression on population, affluence and technology) model. The model is examined using partial least square regression. Results show that urbanization level, economic level and industry proportion positively influence the CO 2 emissions, while tertiary industry proportion, energy intensity and R and D output negatively do. Urbanization level is the main driving factor of CO 2 emissions, and tertiary industry proportion is the main inhibiting factor. In addition, along with the growth of per capita GDP, the increase of CO 2 emissions does not follow the Environmental Kuznets Curve model. Based on these empirical findings and the specific circumstances of Beijing, we provide some policy recommendations on how to reduce carbon intensity. Beijing should pay more attention to tertiary industry and residential energy consumption for carbon emission reduction. It is necessary to establish a comprehensive evaluation index of social development. Investing more capital on carbon emission reduction science and technology, and promoting R and D output is also an efficient way to reduce CO 2 emissions.

  4. Estimation of N2O emission factors for soils depending on environmental conditions and crop management

    NARCIS (Netherlands)

    Lesschen, J.P.; Velthof, G.L.

    2009-01-01

    Nitrous oxide (N2O) contributes 8% to anthropogenic global warming, of which about one third are direct emissions of agricultural soils. These N2O emissions are often estimated using the default IPCC 2006 emission factor of 1% of the amount of N applied for mineral fertilizer, manure and crop

  5. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation.

    Science.gov (United States)

    Wang, Tianyang; Quiros, David C; Thiruvengadam, Arvind; Pradhan, Saroj; Hu, Shaohua; Huai, Tao; Lee, Eon S; Zhu, Yifang

    2017-06-20

    Particle emissions from heavy-duty vehicles (HDVs) have significant environmental and public health impacts. This study measured total particle number emission factors (PNEFs) from six newly certified HDVs powered by diesel and compressed natural gas totaling over 6800 miles of on-road operation in California. Distance-, fuel- and work-based PNEFs were calculated for each vehicle. Distance-based PNEFs of vehicles equipped with original equipment manufacturer (OEM) diesel particulate filters (DPFs) in this study have decreased by 355-3200 times compared to a previous retrofit DPF dynamometer study. Fuel-based PNEFs were consistent with previous studies measuring plume exhaust in the ambient air. Meanwhile, on-road PNEF shows route and technology dependence. For vehicles with OEM DPFs and Selective Catalytic Reduction Systems, PNEFs under highway driving (i.e., 3.34 × 10 12 to 2.29 × 10 13 particles/mile) were larger than those measured on urban and drayage routes (i.e., 5.06 × 10 11 to 1.31 × 10 13 particles/mile). This is likely because a significant amount of nucleation mode volatile particles were formed when the DPF outlet temperature reached a critical value, usually over 310 °C, which was commonly achieved when vehicle speed sustained over 45 mph. A model year 2013 diesel HDV produced approximately 10 times higher PNEFs during DPF active regeneration events than nonactive regeneration.

  6. Emissions, activity data, and emission factors of fluorinated greenhouse gases (F-Gases) in Germany 1995-2002

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Winfried [Oeko-Recherche, Buero fuer Umweltforschung und -beratung GmbH, Frankfurt am Main (Germany)

    2005-06-15

    Before the 1997 Kyoto Protocol on Climate Protection, the fluorinated greenhouse gases HFCs, PFCs, and SF6 (F-gases) aroused little public attention. Since then, the standards on surveying and reporting on national emissions have been rising constantly. Amongst others, the annual reporting to the UNFCCC secretariat makes detailed declarations on use and emissions of F-gases necessary, which have to be filled in specified formats for submission (Common Reporting Format = CRF). The scientific basis has been set out by the UNFCCC guidelines on reporting, in accordance with the instructions laid down in IPCC good practice guidance. Additionally, in Germany the Centralised System of Emissions (ZSE) shall provide a suitable tool to satisfy any quality needs of both activity data and emission factors. From 1995 onwards, activity data and emissions of each individual application sector shall be presented in a comprehensible and transparent way. Therefore, the way of data collection as well as the estimation methods applied must be well documented. Moreover, data has to be prepared for appropriate importation into ZSE. It is the objective of this study to provide the transparency demanded within 40 national application sectors of F-gases, for the period between 1995 and 2002. - Firstly, all the activity data as well as the emissions related to them are presented and commented. This applies to manufacturing of products, F-gases banked in operating systems, and decommissioning. - Secondly, the methodologies applied to calculate the emissions are described and all sources of information are revealed, e.g. literature, names of experts from the manufacturing industry, users, trade, and academia. - Thirdly, reliability and safety of data are discussed. - Fourthly, possible deviations from the IPCC default values are stated and given reasons for. Wherever this intensive reviewing of 40 sectors through eight years of reporting uncovers gaps or inconsistencies in previous reports

  7. A main factors affecting average number of teats in pigs

    Directory of Open Access Journals (Sweden)

    Emil Krupa

    2016-09-01

    Full Text Available The influence of factors (breed, year and season of farrowing, herd, parity order, sire of litter, total number of born piglets - TNB, number of piglets born alive - NBA, number of weaned piglets - NW, and linear and quadratic regression on the number of teats, found for all piglets in the litter till ten days after born, expressed as arithmetic mean for each litter as sum of all teats number of each piglet in appropriate litter divided by number of piglets in this litter at first litter (ANT1 and second and subsequent litters (ANT2+ were analysed. The coefficient of determination was 0.46 and 0.33 for ANT1 and ANT2+, respectively. The statistically high influence (P<0.001 on ANT1 and ANT2+ was determined for year and season of farrowing, herd, parity order (only for ANT2+ and sire of litter effects. Impact of breed was found only on ANT2+ (P<0.001. The rest of factors have negligible of no impact on traits. Based on the data available for analyses, obtained results will serve as a relevant set-up in developing the model for genetic evaluation for these traits.

  8. Influencing Factors of Companies’ Behavior for Mitigation: A Discussion within the Context of Emission Trading Scheme

    Directory of Open Access Journals (Sweden)

    Yidan Chen

    2018-02-01

    Full Text Available China built pilot carbon emission trading schemes in seven regions and established a national carbon trading market in electricity sector in December 2017. This study conducted a questionnaire survey of 570 companies in 29 regions nationwide and found that companies still need to improve mitigation measures regarding fossil fuel combustion, production technology, output adjustment and environmental management. By establishing regression models, influencing factors of carbon emission reduction are identified. Pilot emission trading policy has a significant impact on company emission reduction behaviors. Companies inside or outside the pilot region respond differently to the influencing factors. Companies inside emphasize more on energy price and mitigation potential, while enterprises outside pay more attention to investment and familiarity with technology and policy.

  9. A Factor Decomposition on China’s Carbon Emission from 1997 to 2012 Based on IPAT-LMDI Model

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-01-01

    Full Text Available We probe into the key factors that possess significant effects on China’s CO2 emissions during 1997–2012 on the basis of IPAT-LMDI model. Carbon dioxide emissions are specifically decomposed into CO2 emission intensity, energy structure, energy intensity, industrial structure, economic output, and population scale effects. Results indicate that the paramount driving factors that resulted in the growth of CO2 emissions are economic output, population scale, and energy structure. In contrast, energy intensity and industrial structure generally play an outstanding role in reducing emissions. This paper constructs a new weight assessment system by introducing “contribution value-significant factor-effect coefficient” to replace “contribution value-contribution rate” in the previous literature. According to the most significant positive effect and the most negative effect from the conclusion, we point out the effective policies that can not only accelerate the target of “China’s carbon emissions per unit of GDP could be cut down by 40–45% by 2020, from 2005 levels,” but also have crucial significance on the low-carbon economic development strategy of China.

  10. Evaluation of emission factors for light-duty gasoline vehicles based on chassis dynamometer and tunnel studies in Shanghai, China

    Science.gov (United States)

    Huang, Cheng; Tao, Shikang; Lou, Shengrong; Hu, Qingyao; Wang, Hongli; Wang, Qian; Li, Li; Wang, Hongyu; Liu, Jian'gang; Quan, Yifeng; Zhou, Lanlan

    2017-11-01

    CO, THC, NOx, and PM emission factors of 51 light-duty gasoline vehicles (LDGVs) spanning the emission standards from Euro 2 to Euro 5 were measured by a chassis dynamometer. High frequencies of high-emitting vehicles were observed in Euro 2 and Euro 3 LDGV fleet. 56% and 33% of high-emitting vehicles contributed 81%-92% and 82%-85% of the emissions in Euro 2 and Euro 3 test fleet, respectively. Malfunctions of catalytic convertors after high strength use are the main cause of the high emissions. Continuous monitoring of a gasoline vehicle dominated tunnel in Shanghai, China was conducted to evaluate the average emission factors of vehicles in real-world. The results indicated that the emission factors of LDGVs were considerably underestimated in EI guidebook in China. The overlook of high-emitting vehicles in older vehicle fleet is the main reason for this underestimation. Enhancing the supervision of high emission vehicles and strengthening the compliance tests of in-use vehicles are essential measures to control the emissions of in-use gasoline vehicles at the present stage in China.

  11. Emission Factors of Selected Organic Compounds from Domestic Hardwood Combustion

    Czech Academy of Sciences Publication Activity Database

    Hopan, F.; Šyc, Michal; Horák, J.; Dej, M.; Krpec, K.; Ocelka, T.; Tomšej, T.; Pekárek, Vladimír

    LVI, č. 3 (2009), s. 81-85 ISSN 1210-0471 R&D Projects: GA MŽP(CZ) SP/1A2/116/07; GA MŠk 2B08048 Institutional research plan: CEZ:AV0Z40720504 Keywords : wood * small sources * emission factors Subject RIV: DI - Air Pollution ; Quality http://transactions.fs.vsb.cz/2009-3/12hop.pdf

  12. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

    2013-04-15

    Highlights: ► An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ► A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ► These factors are compared internationally and their implications for South Africa and developing countries are discussed . ► Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from −145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement

  13. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles

    Science.gov (United States)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Feng, Qian; Chen, Yiran; Chen, Changhong; Tan, Piqiang; Yao, Di

    2013-10-01

    On-road emission measurements of gasoline- and diesel-fueled vehicles were conducted by a portable emission measurement system (PEMS) in Shanghai, China. Horiba OBS 2200 and TSI EEPS 3090 were employed to detect gaseous and ultrafine particle emissions during the tests. The driving-based emission factors of gaseous pollutants and particle mass and number were obtained on various road types. The average NOx emission factors of the diesel bus, diesel car, and gasoline car were 8.86, 0.68, and 0.17 g km-1, all of which were in excess of their emission limits. The particle number emission factors were 7.06 × 1014, 6.08 × 1014, and 1.57 × 1014 km-1, generally higher than the results for similar vehicle types reported in the previous studies. The size distributions of the particles emitted from the diesel vehicles were mainly concentrated in the accumulation mode, while those emitted from the gasoline car were mainly distributed in the nucleation mode. Both gaseous and particle emission rates exhibit significant correlations with the change in vehicle speed and power demand. The lowest emission rates for each vehicle type were produced during idling. The highest emission rates for each vehicle type were generally found in high-VSP bins. The particle number emission rates of the gasoline car show the strongest growth trend with increasing VSP and speed. The particle number emission for the gasoline car increased by 3 orders of magnitude from idling to the highest VSP and driving speed conditions. High engine power caused by aggressive driving or heavy loads is the main contributor to high emissions for these vehicles in real-world situations.

  14. Regulation of nitrous oxide emission associated with benthic invertebrates

    DEFF Research Database (Denmark)

    Stief, Peter; Schramm, Andreas

    2010-01-01

    1. A number of freshwater invertebrate species emit N2O, a greenhouse gas that is produced in their gut by denitrifying bacteria (direct N2O emission). Additionally, benthic invertebrate species may contribute to N2O emission from sediments by stimulating denitrification because of their bioirrig......1. A number of freshwater invertebrate species emit N2O, a greenhouse gas that is produced in their gut by denitrifying bacteria (direct N2O emission). Additionally, benthic invertebrate species may contribute to N2O emission from sediments by stimulating denitrification because...... of their bioirrigation behaviour (indirect N2O emission). 2. Two benthic invertebrate species were studied to determine (i) the dependence of direct N2O emission on the preferred diet of the animals, (ii) the regulation of direct N2O emission by seasonally changing factors, such as body size, temperature and NO3...... emitted by benthic invertebrates can be partially consumed in the sediment (E. danica), non-emitting species can still indirectly contribute to total N2O emission from sediment (S. lutaria)....

  15. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    Energy Technology Data Exchange (ETDEWEB)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  16. Analysis of Grid Emission Factors for the Electricity Sector in Caribbean Countries

    DEFF Research Database (Denmark)

    Hinostroza, Miriam L.; Desgain, Denis DR; Perez Martín, David

    by undertaking a study to calculate standardized grid emissionfactors (GEF) for sixteen independent nations or groups of countries in the Caribbean region as a basis to the further identification of mitigation activities such as CDM PoAs or any other market-related instrument to be approved by the UNFCCC......As part of their capacity development efforts to promote mitigation actions, the UNEP DTU Partnership, together with the UNFCCC Regional Collaborating Centre in the Caribbean, UNDP and OLADE, agreed to collaborate with Caribbean countries willing to update or establish their grid emission factors...... emission factor for countries with generation units with similar characteristics. Data on the power systems of the different countries have been collected from several centres and institutions, including the UNEP DTU Partnership, the Latin American Energy Organization (OLADE), the Caribbean Community...

  17. Quantification of vehicle fleet PM_1_0 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques

    International Nuclear Information System (INIS)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal

    2016-01-01

    Road tunnels act like large laboratories; they provide an excellent environment to quantify atmospheric particles emission factors from exhaust and non-exhaust sources due to their known boundary conditions. Current work compares the High Volume, Dichotomous Stacked Filter Unit and Partisol Air Sampler for coarse, PM_1_0 and PM_2_._5 particle concentration measurement and found that they do not differ significantly (p = 95%). PM_2_._5 fraction contributes 66% of PM_1_0 proportions and significantly influenced by traffic (turbulence) and meteorological conditions. Mass emission factors for PM_1_0 varies from 21.3 ± 1.9 to 28.8 ± 3.4 mg/vkm and composed of Motorcycle (0.0003–0.001 mg/vkm), Cars (26.1–33.4 mg/vkm), LDVs (2.4–3.0 mg/vkm), HDVs (2.2–2.8 mg/vkm) and Buses (0.1 mg/vkm). Based on Lawrence et al. (2013), source apportionment modelling, the PM_1_0 emission of brake wear (3.8–4.4 mg/vkm), petrol exhaust (3.9–4.5 mg/vkm), diesel exhaust (7.2–8.3 mg/vkm), re-suspension (9–10.4 mg/vkm), road surface wear (3.9–4.5 mg/vkm), and unexplained (7.2 mg/vkm) were also calculated. The current study determined that the combined non-exhaust fleet PM_1_0 emission factor (16.7–19.3 mg/vkm) are higher than the combined exhaust emission factor (11.1–12.8 mg/vkm). Thus, highlight the significance of non-exhaust emissions and the need for legislation and abatement strategies to reduce their contributions to ambient PM concentrations. - Highlights: • Calculations of exhaust/non-exhaust particulate emission factors using tunnel sampling and source apportionment techniques. • Non-exhaust emission dominates in the fine particle fraction, considered responsible for adverse human health impacts. • Emission factors for non-exhaust sources (e.g. tyre and brake) were calculated. • Fleet source PM_1_0 emission factor were also calculated, which can be used in dispersion modelling and health risk assessment. • Tukey mean

  18. Determining residential energy consumption-based CO2 emissions and examining the factors affecting the variation in Ankara, Turkey

    Science.gov (United States)

    Kus, Melike; Akan, Perihan; Aydinalp Koksal, Merih; Gullu, Gulen

    2017-11-01

    Energy demand of Turkey has been showing a remarkable increase in the last two decades due to rapid increase in population and changes in consumption trends. In parallel to the increase in energy demand, the CO2 emissions in Turkey are also increasing dramatically due to high usage of fossil fuels. CO2 emissions from the residential sector covers almost one fourth of the total sectoral emissions. In this study, CO2 emissions from the residential sector are estimated, and the factors affecting the emission levels are determined for the residential sector in Ankara, Turkey. In this study, detailed surveys are conducted to more than 400 households in Ankara. Using the information gathered from the surveys, the CO2 emissions associated with energy consumption of the households are calculated using the methodology outlined at IPCC. The statistical analyses are carried out using household income, dwelling characteristics, and household economic and demographic data to determine the factors causing the variation in emission levels among the households. The results of the study present that the main factors impacting the amount of total energy consumption and associated CO2 emissions are household income, dwelling construction year, age, education level of the household, and net footage of the dwelling.

  19. On-line Field Measurements of Speciated PM1 Emission Factors from Common South Asian Combustion Sources

    Science.gov (United States)

    DeCarlo, P. F.; Goetz, J. D.; Giordano, M.; Stockwell, C.; Maharjan, R.; Adhikari, S.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Jayarathne, T. S.; Stone, E. A.; Yokelson, R. J.

    2017-12-01

    Characterization of aerosol emissions from prevalent but under sampled combustion sources in South Asia was performed as part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) in April 2015. Targeted emission sources included cooking stoves with a variety of solid fuels, brick kilns, garbage burning, crop-residue burning, diesel irrigation pumps, and motorcycles. Real-time measurements of submicron non-refractory particulate mass concentration and composition were obtained using an Aerodyne mini Aerosol Mass Spectrometer (mAMS). Speciated PM1 mass emission factors were calculated for all particulate species (e.g. organics, sulfates, nitrates, chlorides, ammonium) and for each source type using the carbon mass balance approach. Size resolved emission factors were also acquired using a novel high duty cycle particle time-of-flight technique (ePTOF). Black carbon and brown carbon absorption emission factors and absorption Angström exponents were measured using filter loading and scattering corrected attenuation at 370 nm and 880 nm with a dual spot aethalometer (Magee Scientific AE-33). The results indicate that open garbage burning is a strong emitter of organic aerosol, black carbon, and internally mixed particle phase hydrogen chloride (HCl). Emissions of HCl were attributed to the presence chlorinated plastics. The primarily coal fired brick kilns were found to be large emitters of sulfate but large differences in the organic and light absorbing component of emissions were observed between the two kiln types investigated (technologically advanced vs. traditional). These results, among others, bring on-line and field-tested aerosol emission measurements to an area of atmoshperic research dominated by off-line or laboratory based measurements.

  20. Amyloid-β positron emission tomography imaging probes

    DEFF Research Database (Denmark)

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt

    2013-01-01

    , a number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate...

  1. Geographical Detector Model for Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Rina Wu

    2016-02-01

    Full Text Available Studying the influencing factors of carbon dioxide emissions is not only practically but also theoretically crucial for establishing regional carbon-reduction policies, developing low-carbon economy and solving the climate problems. Therefore, we used a geographical detector model which is consists of four parts, i.e., risk detector, factor detector, ecological detector and interaction detector to analyze the effect of these social economic factors, i.e., GDP, industrial structure, urbanization rate, economic growth rate, population and road density on the increase of energy consumption carbon dioxide emissions in industrial sector in Inner Mongolia northeast of China. Thus, combining with the result of four detectors, we found that GDP and population more influence than economic growth rate, industrial structure, urbanization rate and road density. The interactive effect of any two influencing factors enhances the increase of the carbon dioxide emissions. The findings of this research have significant policy implications for regions like Inner Mongolia.

  2. Explanatory factors of CO2 per capita emission inequality in the European Union

    International Nuclear Information System (INIS)

    Padilla, Emilio; Duro, Juan Antonio

    2013-01-01

    The design of European mitigation policies requires a detailed examination of the factors explaining the unequal emissions in the different countries. This research analyzes the evolution of inequality in CO 2 emissions per capita in the European Union (EU-27) in the period 1990–2009 and its explanatory factors. For this purpose, we decompose the Theil index of inequality into the contributions of the different Kaya factors. The decomposition is also applied to the inequality between and within groups of countries (North Europe, South Europe, and East Europe). The analysis shows an important reduction in inequality, to a large extent due to the smaller differences between groups and because of the lower contribution of the energy intensity factor. The importance of the GDP per capita factor increases and becomes the main explanatory factor. However, within the different groups of countries the carbonization index appears to be the most relevant factor in explaining inequalities. The policy implications of the results are discussed. - Highlights: • CO 2 inequality in EU-27 (Theil index) is decomposed into explanatory (Kaya) factors. • It decreases more between than within regions (North, South, East). • Energy intensity contribution falls and turns negative. GDP pc becomes main factor. • Carbonization makes most relevant contribution to inequality within groups. • Policy implications on feasibility of agreements and mitigation policy are discussed

  3. Measurements of air pollution emission factors for marine transportation in SECA

    NARCIS (Netherlands)

    Alföldy, B.; Lööv, J.; Lagler, F.; Mellqvist, J.; Berg, N.; Beecken, J.; Weststrate, J.H.; Duyzer, J.H.; Bencs, L.; Horemans, B.; Cavalli, F.; Putaud, J.P.; Janssens-Maenhout, G.; Csordas, A.P.; Grieken, R. van; Borowiak, A.; Hjorth, J.

    2013-01-01

    The chemical composition of the plumes of seagoing ships was measured during a two week long measure- ment campaign in the port of Rotterdam, Hoek van Holland The Netherlands, in September 2009. Altogether, 497 ships were monitored and a statistical evaluation of emission factors (g kg−1 fuel) was

  4. Development and review of Euro 5 passenger car emission factors based on experimental results over various driving cycles

    OpenAIRE

    Fontaras, Georgios; Franco, Vicente; Dilara, Panagiota; Martini, Giorgio; Manfredi, Urbano

    2014-01-01

    The mass emissions of CO2 and regulated pollutants (NOX, HC, CO, PM) of thirteen Euro 5 compliant passenger cars (seven gasoline, six Diesel) were measured on a chassis dynamometer. The vehicles were driven repeatedly over the European type-approval driving cycle (NEDC) and the more dynamic WMTC and CADC driving cycles. Distance-specific emission factors were derived for each pollutant and sub-cycle which were subsequently compared to the corresponding emission factors provided by the referen...

  5. Modelling nitrous oxide emissions from organic and conventional cereal-based cropping systems under different management, soil and climate factors

    DEFF Research Database (Denmark)

    Doltra, J; Olesen, Jørgen E; Báez, D

    2015-01-01

    Mitigation of greenhouse gas emissions from agriculture should be assessed across cropping systems and agroclimatic regions. In this study, we investigate the ability of the FASSET model to analyze differences in the magnitude of N2O emissions due to soil, climate and management factors in cereal...... on the seasonal soil N2O fluxes than the environmental factors. Overall, in its current version FASSET reproduced the effects of the different factors investigated on the cumulative seasonal soil N2O emissions but temporally it overestimated emissions from nitrification and denitrification on particular days when...... soil operations, ploughing or fertilization, took place. The errors associated with simulated daily soil N2O fluxes increased with the magnitude of the emissions. For resolving causes of differences in simulated and measured fluxes more intensive and temporally detailed measurements of N2O fluxes...

  6. Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method

    Directory of Open Access Journals (Sweden)

    Shichun Xu

    2017-09-01

    Full Text Available We decompose factors affecting China’s energy-related air pollutant (NOx, PM2.5, and SO2 emission changes into different effects using structural decomposition analysis (SDA. We find that, from 2005 to 2012, investment increased NOx, PM2.5, and SO2 emissions by 14.04, 7.82 and 15.59 Mt respectively, and consumption increased these emissions by 11.09, 7.98, and 12.09 Mt respectively. Export and import slightly increased the emissions on the whole, but the rate of the increase has slowed down, possibly reflecting the shift in China’s foreign trade structure. Energy intensity largely reduced NOx, PM2.5, and SO2 emissions by 12.49, 14.33 and 23.06 Mt respectively, followed by emission efficiency that reduces these emissions by 4.57, 9.08, and 17.25 Mt respectively. Input-output efficiency slightly reduces the emissions. At sectoral and sub-sectoral levels, consumption is a great driving factor in agriculture and commerce, whereas investment is a great driving factor in transport, construction, and some industrial subsectors such as iron and steel, nonferrous metals, building materials, coking, and power and heating supply. Energy intensity increases emissions in transport, chemical products and manufacturing, but decreases emissions in all other sectors and subsectors. Some policies arising from our study results are discussed.

  7. Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific

    International Nuclear Information System (INIS)

    Shrestha, Ram M.; Anandarajah, Gabrial; Liyanage, Migara H.

    2009-01-01

    This study analyzes the key factors behind the CO 2 emissions from the power sector in fifteen selected countries in Asia and the Pacific using the Log-Mean Divisia Index method of decomposition. The roles of changes in economic output, electricity intensity of the economy, fuel intensity of power generation and generation structure are examined in the evolution of CO 2 emission from the power sector of the selected countries during 1980-2004. The study shows that the economic growth was the dominant factor behind the increase in CO 2 emission in ten of the selected countries (i.e., Australia, China, India, Japan, Malaysia, Pakistan, South Korea, Singapore, Thailand and Vietnam, while the increasing electricity intensity of the economy was the main factor in three countries (Bangladesh, Indonesia and Philippines). Structural changes in power generation were found to be the main contributor to changes in the CO 2 emission in the case of Sri Lanka and New Zealand.

  8. Isoprene Emission Factors for Subtropical Street Trees for Regional Air Quality Modeling.

    Science.gov (United States)

    Dunn-Johnston, Kristina A; Kreuzwieser, Jürgen; Hirabayashi, Satoshi; Plant, Lyndal; Rennenberg, Heinz; Schmidt, Susanne

    2016-01-01

    Evaluating the environmental benefits and consequences of urban trees supports their sustainable management in cities. Models such as i-Tree Eco enable decision-making by quantifying effects associated with particular tree species. Of specific concern are emissions of biogenic volatile organic compounds, particularly isoprene, that contribute to the formation of photochemical smog and ground level ozone. Few studies have quantified these potential disservices of urban trees, and current models predominantly use emissions data from trees that differ from those in our target region of subtropical Australia. The present study aimed (i) to quantify isoprene emission rates of three tree species that together represent 16% of the inventoried street trees in the target region; (ii) to evaluate outputs of the i-Tree Eco model using species-specific versus currently used, generic isoprene emission rates; and (iii) to evaluate the findings in the context of regional air quality. Isoprene emission rates of (Myrtaceae) and (Proteaceae) were 2.61 and 2.06 µg g dry leaf weight h, respectively, whereas (Sapindaceae) was a nonisoprene emitter. We substituted the generic isoprene emission rates with these three empirical values in i-Tree Eco, resulting in a 182 kg yr (97%) reduction in isoprene emissions, totaling 6284 kg yr when extrapolated to the target region. From these results we conclude that care has to be taken when using generic isoprene emission factors for urban tree models. We recommend that emissions be quantified for commonly planted trees, allowing decision-makers to select tree species with the greatest overall benefit for the urban environment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Variability in Light-Duty Gasoline Vehicle Emission Factors from Trip-Based Real-World Measurements.

    Science.gov (United States)

    Liu, Bin; Frey, H Christopher

    2015-10-20

    Using data obtained with portable emissions measurements systems (PEMS) on multiple routes for 100 gasoline vehicles, including passenger cars (PCs), passenger trucks (PTs), and hybrid electric vehicles (HEVs), variability in tailpipe emission rates was evaluated. Tier 2 emission standards are shown to be effective in lowering NOx, CO, and HC emission rates. Although PTs are larger, heavier vehicles that consume more fuel and produce more CO2 emissions, they do not necessarily produce more emissions of regulated pollutants compared to PCs. HEVs have very low emission rates compared to tier 2 vehicles under real-world driving. Emission factors vary with cycle average speed and road type, reflecting the combined impact of traffic control and traffic congestion. Compared to the slowest average speed and most congested cycles, optimal emission rates could be 50% lower for CO2, as much as 70% lower for NOx, 40% lower for CO, and 50% lower for HC. There is very high correlation among vehicles when comparing driving cycles. This has implications for how many cycles are needed to conduct comparisons between vehicles, such as when comparing fuels or technologies. Concordance between empirical and predicted emission rates using the U.S. Environmental Protection Agency's MOVES model was also assessed.

  10. Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhangcai [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Dunn, Jennifer B. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Kwon, Hoyoung [Environment and Production Technology Division, International Food Policy Research Institute, 2033 K St. NW Washington DC 20006 USA; Mueller, Steffen [Energy Resources Center, University of Illinois at Chicago, 1309 South Halsted Street Chicago IL 60607 USA; Wander, Michelle M. [Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue Urbana IL 61801 USA

    2016-03-03

    Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels’ attractiveness and eligibility under a number of renewable fuel policies in the U.S. and abroad. Modeling was used to refine the spatial resolution and depth-extent of domestic estimates of SOC change for land (cropland, cropland pasture, grasslands, and forests) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow). In most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. Results of SOC change were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions for the biofuels considered. Total LUC GHG emissions (g CO2eq MJ-1) were 2.1–9.3 for corn, -0.7 for corn stover, -3.4–12.9 for switchgrass, and -20.1–-6.2 for Miscanthus; these varied with SOC modeling assumptions applied. Extending soil depth from 30 to 100cm affected spatially-explicit SOC change and overall LUC GHG emissions; however the influence on LUC GHG emissions estimates were less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -0.6–-7 for Miscanthus ethanol.

  11. International inequalities in per capita CO{sub 2} emissions: a decomposition methodology by Kaya factors

    Energy Technology Data Exchange (ETDEWEB)

    Duro, J.A. [Universitat Rovira i Virgili, Reus (Spain). Dept. d' Economia; Universitat de Barcelona (Spain). Inst. de Analisis Economico; Padilla, E. [Universitat de Barcelona (Spain). Dept. d' Economia Aplicada

    2006-03-15

    In this paper, we provide a methodology for decomposing international inequalities in per capita CO{sub 2} emissions into Kaya (multiplicative) factors and two interaction terms. We use the Theil index of inequality and show that this decomposition methodology can be extended for analyzing between- and within-group inequality components. We can thus analyze the factors behind inequalities in per capita CO{sub 2} emissions across countries, between groups of countries and within groups of countries. The empirical illustration for international data suggests some points. Firstly, international inequality in per capita CO{sub 2} emissions is mainly attributable to inequalities in per capita income levels, which helps to explain its recent reduction, while differences in carbon intensity of energy and energy intensity have made a less significant contribution. This result is strongly influenced by the performance of China and India. Secondly, the between-group inequality component, which is the biggest component, is also largely explained by the income factor. Thirdly, the within-group inequality component increased slightly during the period, something mainly due to the change in the income factor and the interaction terms in a few regions. (author)

  12. Data analysis in emission tomography using emission-count posteriors

    International Nuclear Information System (INIS)

    Sitek, Arkadiusz

    2012-01-01

    A novel approach to the analysis of emission tomography data using the posterior probability of the number of emissions per voxel (emission count) conditioned on acquired tomographic data is explored. The posterior is derived from the prior and the Poisson likelihood of the emission-count data by marginalizing voxel activities. Based on emission-count posteriors, examples of Bayesian analysis including estimation and classification tasks in emission tomography are provided. The application of the method to computer simulations of 2D tomography is demonstrated. In particular, the minimum-mean-square-error point estimator of the emission count is demonstrated. The process of finding this estimator can be considered as a tomographic image reconstruction technique since the estimates of the number of emissions per voxel divided by voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at most r-times the number of events in some other ROI is tested. The ROIs are specified by the user. The analysis described in this work provides new quantitative statistical measures that can be used in decision making in diagnostic imaging using emission tomography. (paper)

  13. Data analysis in emission tomography using emission-count posteriors

    Science.gov (United States)

    Sitek, Arkadiusz

    2012-11-01

    A novel approach to the analysis of emission tomography data using the posterior probability of the number of emissions per voxel (emission count) conditioned on acquired tomographic data is explored. The posterior is derived from the prior and the Poisson likelihood of the emission-count data by marginalizing voxel activities. Based on emission-count posteriors, examples of Bayesian analysis including estimation and classification tasks in emission tomography are provided. The application of the method to computer simulations of 2D tomography is demonstrated. In particular, the minimum-mean-square-error point estimator of the emission count is demonstrated. The process of finding this estimator can be considered as a tomographic image reconstruction technique since the estimates of the number of emissions per voxel divided by voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at most r-times the number of events in some other ROI is tested. The ROIs are specified by the user. The analysis described in this work provides new quantitative statistical measures that can be used in decision making in diagnostic imaging using emission tomography.

  14. A new method to compare vehicle emissions measured by remote sensing and laboratory testing: high-emitters and potential implications for emission inventories.

    Science.gov (United States)

    Smit, Robin; Bluett, Jeff

    2011-06-01

    A new method is presented which is designed to investigate whether laboratory test data used in the development of vehicle emission models adequately reflects emission distributions, and in particular the influence of high-emitting vehicles. The method includes the computation of a 'high-emitter' or 'emission distribution' correction factor for use in emission inventories. In order to make a valid comparison we control for a number of factors such as vehicle technology, measurement technique and driving conditions and use a variable called 'Pollution Index' (g/kg). Our investigation into one vehicle class has shown that laboratory and remote sensing data are substantially different for CO, HC and NO(x) emissions, both in terms of their distributions as well as in their mean and 99-percentile values. Given that the remote sensing data has larger mean values for these pollutants, the analysis suggests that high-emitting vehicles may not be adequately captured in the laboratory test data. The paper presents two different methods for the computation of weighted correction factors for use in emission inventories based on laboratory test data: one using mean values for six 'power bins' and one using multivariate regression functions. The computed correction factors are substantial leading to an increase for laboratory-based emission factors with a factor of 1.7-1.9 for CO, 1.3-1.6 for HC and 1.4-1.7 for NO(x) (actual value depending on the method). However, it also clear that there are points that require further examination before these correction factors should be applied. One important step will be to include a comparison with other types of validation studies such as tunnel studies and near-road air quality assessments to examine if these correction factors are confirmed. If so, we would recommend using the correction factors in emission inventories for motor vehicles. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. An empirical study on the institutional factors of energy conservation and emissions reduction: Evidence from listed companies in China

    International Nuclear Information System (INIS)

    Zhang, Zhaoguo; Jin, Xiaocui; Yang, Qingxiang; Zhang, Yi

    2013-01-01

    Corporate excessive energy consumption and emissions are negative externality problems, with the basic countermeasure of establishing a series of institutional programs to promote corporate energy conservation and emissions reduction. This paper analyzes the influence of institutional factors such as laws, tax policies, credit policies, government subsidies, media supervision and marketization degree on corporate energy conservation and emissions reduction from the institutional perspective. The data, from 84 listed Chinese chemical and steel companies from 2006 to 2010, was analyzed using both a fixed effect model and the generalized method of moments (GMM) model. The empirical results demonstrate that these institutional factors positively affect corporate energy conservation and emissions reduction. Specifically, four factors – tax policies, government subsidies, credit policies and media supervision – have a significant positive relationship with corporate energy conservation and emissions reduction; whereas laws and marketization degree exhibit no significant effects. The research findings are theoretically and practically significant to the Chinese government with regard to improving the institutional environment and promoting corporate energy conservation and emissions reduction. - Highlights: ► Theoretical analysis of the influence of institutional factors based on NIE. ► Empirical analysis of the influence of institutional factors on ECER by regression. ► Economic measures and public opinions have positive influence on ECER in China. ► Laws and the degree of marketization have weak influence on ECER in China

  16. Decomposition of factors determining the trend of CO{sub 2} emissions from car travel in Great Britain (1970-2000)

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae-Hyeong [The Korea Transport Institute (KOTI), 2311 Daehwa-dong, Ilsan-gu, Goyang-Shi, Gyeonggi-do, 411-701 (Korea, Republic of)

    2005-04-15

    Carbon dioxide (CO{sub 2}) is the most important of the greenhouse gases that are causing global warming. The transport sector currently accounts for more than one-quarter of CO{sub 2} emissions and more importantly its share in total emissions is increasing in most countries. This paper investigates the key factors in the change in CO{sub 2} emissions from car travel in Great Britain over the last 30 years. It attempts to disentangle determinants of growth in CO{sub 2} emissions from car travel, which has the largest share of emissions in road transport. The study is based on various decomposition analyses, starting from the IPAT identity. As summarised in the IPAT identity, the degree of the Impact of human activity on the environment is determined by changes in Population, Affluence (per-capita consumption) and Technology (environmental impact per quantity of consumption). In the case of CO{sub 2} emissions from car travel in Great Britain, the affluence (A) factor (car driving distance per person) was a dominant force for the growth of emissions over the last 30 years. Not only do people travel longer distances by cars than 30 years ago, but car occupancy rates have also decreased, contributing to the growth of car driving distance per person. Although technology (T) factors such as fuel efficiency and fuel substitution to diesel fuel partly cancelled out these growth effects of affluence factors, this contribution was relatively small. However, in the 1990s there emerged a different pattern in the trend. Of the affluence (A) factors, the growth rate of car trip distance per person weakened considerably. As for the technology (T) effect, the carbon intensity of car driving kept decreasing over this period. Therefore, although CO{sub 2} emissions from car travel (I) continued to increase, the growth rate became substantially lower than in the earlier periods. More detailed investigation into the determinants of both affluence (A) factors and technology (T

  17. Modelling site-specific N2O emission factors from Austrian agricultural soils for targeted mitigation measures (NitroAustria)

    Science.gov (United States)

    Amon, Barbara; Zechmeister-Boltenstern, Sophie; Kasper, Martina; Foldal, Cecilie; Schiefer, Jasmin; Kitzler, Barbara; Schwarzl, Bettina; Zethner, Gerhard; Anderl, Michael; Sedy, Katrin; Gaugitsch, Helmut; Dersch, Georg; Baumgarten, Andreas; Haas, Edwin; Kiese, Ralf

    2016-04-01

    Results from a previous project "FarmClim" highlight that the IPCC default emission factor is not able to reflect region specific N2O emissions from Austrian arable soils. The methodology is limited in identifying hot spots and hot moments of N2O emissions. When estimations are based on default emission factors no recommendations can be given on optimisation measures that would lead to a reduction of soil N2O emissions. The better the knowledge is about Nitrogen and Carbon budgets in Austrian agricultural managed soils the better the situation can be reflected in the Austrian GHG emission inventory calculations. Therefore national and regionally modelled emission factors should improve the evidence for national deviation from the IPCC default emission factors and reduce the uncertainties. The overall aim of NitroAustria is to identify the drivers for N2O emissions on a regional basis taking different soil types, climate, and agricultural management into account. We use the LandscapeDNDC model to update the N2O emission factors for N fertilizer and animal manure applied to soils. Key regions in Austria were selected and region specific N2O emissions calculated. The model runs at sub-daily time steps and uses data such as maximum and minimum air temperature, precipitation, radiation, and wind speed as meteorological drivers. Further input data are used to reflect agricultural management practices, e.g., planting/harvesting, tillage, fertilizer application, irrigation and information on soil and vegetation properties for site characterization and model initialization. While at site scale, arable management data (crop cultivation, rotations, timings etc.) is obtained by experimental data from field trials or observations, at regional scale such data need to be generated using region specific proxy data such as land use and management statistics, crop cultivations and yields, crop rotations, fertilizer sales, manure resulting from livestock units etc. The farming

  18. Surface-plasmon-induced modification on the spontaneous emission spectrum via subwavelength-confined anisotropic Purcell factor.

    Science.gov (United States)

    Gu, Ying; Wang, Luojia; Ren, Pan; Zhang, Junxiang; Zhang, Tiancai; Martin, Olivier J F; Gong, Qihuang

    2012-05-09

    The mechanism of using the anisotropic Purcell factor to control the spontaneous emission linewidths in a four-level atom is theoretically demonstrated; if the polarization angle bisector of the two dipole moments lies along the axis of large/small Purcell factor, destructive/constructive interference narrows/widens the fluorescence center spectral lines. Large anisotropy of the Purcell factor, confined in the subwavelength optical mode volume, leads to rapid spectral line narrowing of atom approaching a metallic nanowire, nanoscale line width pulsing following periodically varying decay rates near a periodic metallic nanostructure, and dramatic modification on the spontaneous emission spectrum near a custom-designed resonant plasmon nanostructure. The combined system opens a good perspective for applications in ultracompact active quantum devices.

  19. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    Science.gov (United States)

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from

  20. Magnetic Field Emission Comparison at Different Quality Factors with Series-Parallel Compensation Network for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    to the surroundings also increase with increase in the quality factor. In this paper, first analytical expressions are developed for comparing magnetic emissions at different quality factors. Theoretical and simulation (Comsol) results show comparatively lower increase for the magnetic field emissions to the linear...

  1. Magnetic field emission comparison at different quality factors with series-series compensation network for inductive power transfer to vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    Inductive power transfer is non-contact transfer of energy by means of magnetic fields. A higher secondary side quality factor at fixed input current ensures a linear increase in power transfer across the air gap. But also at the same time magnetic emissions to the surroundings increase. First...... of all in this paper an analytic expression for comparing the magnetic emissions at different quality factors is introduced. It is shown with help of simulations on Comsol that emissions have a lower increase as compared to linear increase in the power transferred with the quality factor as suggested...

  2. Study of greenhouse gases emission factor for nuclear power chain of China

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; Xie Jianlun; Xiu Binglin

    2001-01-01

    The Greenhouse Gases Emission Factor (GGEF) for nuclear power chain of China is calculated based on Life Cycle Analysis method and the definition of full energy chain. There is no greenhouse gases released directly from nuclear power plant. The greenhouse gases emission from nuclear power plant is mainly from coal-fired electricity supply to nuclear power plant for its normal operation and the production of construction materials those are used in the nuclear power plant. The total GGEF of nuclear power chain in China is 13.71 g-co 2 /kWh. It is necessary to regulate un-rational power source mix and to use the energy sources in rational way for reducing the greenhouse gas effect. Nuclear power for electricity generation is one of effective ways to reduce greenhouse gases emission and retard the greenhouse effect

  3. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters

    International Nuclear Information System (INIS)

    Zhang Lei; Wang Shuxiao; Wu Qingru; Meng Yang; Yang Hai; Wang Fengyang; Hao Jiming

    2012-01-01

    Non-ferrous metal smelting takes up a large proportion of the anthropogenic mercury emission inventory in China. Zinc, lead and copper smelting are three leading sources. Onsite measurements of mercury emissions were conducted for six smelters. The mercury emission factors were 0.09–2.98 g Hg/t metal produced. Acid plants with the double-conversion double-absorption process had mercury removal efficiency of over 99%. In the flue gas after acid plants, 45–88% was oxidized mercury which can be easily scavenged in the flue gas scrubber. 70–97% of the mercury was removed from the flue gas to the waste water and 1–17% to the sulfuric acid product. Totally 0.3–13.5% of the mercury in the metal concentrate was emitted to the atmosphere. Therefore, acid plants in non-ferrous metal smelters have significant co-benefit on mercury removal, and the mercury emission factors from Chinese non-ferrous metal smelters were probably overestimated in previous studies. - Highlights: ► Acid plants in smelters provide significant co-benefits for mercury removal (over 99%). ► Most of the mercury in metal concentrates for smelting ended up in waste water. ► Previously published emission factors for Chinese metal smelters were probably overestimated. - Acid plants in smelters have high mercury removal efficiency, and thus mercury emission factors for Chinese non-ferrous metal smelters were probably overestimated.

  4. Development of Hot Exhaust Emission Factors for Iranian-Made Euro-2 Certified Light-Duty Vehicles.

    Science.gov (United States)

    Banitalebi, Ehsan; Hosseini, Vahid

    2016-01-05

    Emission factors (EFs) are fundamental, necessary data for air pollution research and scenario implementation. With the vision of generating national EFs of the Iranian transportation system, a portable emission measurement system (PEMS) was used to develop the basic EFs for a statistically significant sample of Iranian gasoline-fueled privately owned light duty vehicles (LDVs) operated in Tehran. A smaller sample size of the same fleet was examined by chassis dynamometer (CD) bag emission measurement tests to quantify the systematic differences between the PEMS and CD methods. The selected fleet was tested over four different routes of uphill highways, flat highways, uphill urban streets, and flat urban streets. Real driving emissions (RDEs) and fuel consumption (FC) rates were calculated by weighted averaging of the results from each route. The activity of the fleet over each route type was assumed as a weighting factor. The activity data were obtained from a Tehran traffic model. The RDEs of the selected fleet were considerably higher than the certified emission levels of all vehicles. Differences between Tehran real driving cycles and the New European Driving Cycle (NEDC) was attributed to the lower loading of NEDC. A table of EFs based on RDEs was developed for the sample fleet.

  5. An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk; Kilicaslan, Ibrahim; Canakci, Mustafa; Ozsezen, Necati [Kocaeli Univ., Dept. of Mechanical Education, Izmit (Turkey)

    2005-06-01

    In this study, the effect of using higher-octane gasoline than that of engine requirement on the performance and exhaust emissions was experimentally studied. The test engine chosen has a fuel system with carburettor because 60% of the vehicles in Turkey are equipped with the carburettor. The engine, which required 91-RON (Research Octane Number) gasoline, was tested using 95-RON and 91-RON. Results show that using octane ratings higher than the requirement of an engine not only decreases engine performance but also increases exhaust emissions. (Author)

  6. Factors influencing pollutant gas emissions of VOC recuperative incinerators-Large-scale parametric study

    International Nuclear Information System (INIS)

    Salvador, S.; Commandre, J.-M.; Kara, Y.

    2006-01-01

    This work establishes quantitative links between the operation parameters-plus one geometrical parameter-and the gas pollutant emissions of a recuperative incinerator (RI) of volatile organic compounds (VOCs). Using experimental design methodology, and based on a large number of experiments carried out on a half-industrial-scale pilot unit, mathematical expressions are established to calculate each of the pollutant emissions from the value of all the operation and design parameters. The gas emissions concerned are total hydrocarbons, and CO and NO x emissions, while the control parameters are the flow rate of the treated air flow, the concentration of VOCs in the air flow, the preheating temperature of the flow, and the temperature at the exit of the combustion chamber. One design parameter-the aperture of the diaphragms-is also considered. We show that the constraining emissions are only that of CO and NO x . Polynomials to predict them with a high accuracy are established. The air preheating temperature has an effect on the natural gas consumption, but not on CO and NO x emissions. There is an optimal value for the aperture of the diaphragms, and this value is quantitatively established. If the concentration of VOCs in the air flow is high, CO and NO x emissions both decrease and a high rate of efficiency in VOC destruction is attained. This demonstrates that a pre-concentration of VOCs in the air flow prior to treatment by RI is recommended. (author)

  7. Development and review of Euro 5 passenger car emission factors based on experimental results over various driving cycles.

    Science.gov (United States)

    Fontaras, Georgios; Franco, Vicente; Dilara, Panagiota; Martini, Giorgio; Manfredi, Urbano

    2014-01-15

    The emissions of CO2 and regulated pollutants (NOx, HC, CO, PM) of thirteen Euro 5 compliant passenger cars (seven gasoline, six Diesel) were measured on a chassis dynamometer. The vehicles were driven repeatedly over the European type-approval driving cycle (NEDC) and the more dynamic WMTC and CADC driving cycles. Distance-specific emission factors were derived for each pollutant and sub-cycle, and these were subsequently compared to the corresponding emission factors provided by the reference European models used for vehicle emission inventory compilation (COPERT and HBEFA) and put in context with the applicable European emission limits. The measured emissions stayed below the legal emission limits when the type-approval cycle (NEDC) was used. Over the more dynamic cycles (considered more representative of real-world driving) the emissions were consistently higher but in most cases remained below the type-approval limit. The high NOx emissions of Diesel vehicles under real-world driving conditions remain the main cause for environmental concern regarding the emission profile of Euro 5 passenger cars. Measured emissions of NOx exceeded the type-approval limits (up to 5 times in extreme cases) and presented significantly increased average values (0.35 g/km for urban driving and 0.56 g/km for motorway driving). The comparison with the reference models showed good correlation in all cases, a positive finding considering the importance of these tools in emission monitoring and policy-making processes. © 2013. Published by Elsevier B.V. All rights reserved.

  8. Particulate emission factor: A case study of a palm oil mill boiler

    International Nuclear Information System (INIS)

    Chong, W.C.; Rashid, M.; Ramli, M.; Zainura, Z.N.; NorRuwaida, J.

    2010-01-01

    A study to investigate the particulate emission from a boiler of a palm oil mill plant equipped with a multi-cyclones particulate arrest or was performed and reported in this paper. The particulate emission concentration was measured at the outlet of a 8 mt/ hr capacity water-tube typed boiler of a palm oil mill plant processing 27mt/ hr of fresh fruit bunch (FFB). The particulate sample was collected iso-kinetically using the USEPA method 5 sampling train through a sampling port made at the duct of the exiting flue gas between the boiler and a multi-cyclones unit. Results showed that the particulate emission rates exiting the boiler varied from 0.09 to 0.60 g/s with an average of 0.29 + 0.18 g/ s. While the average particulate emission concentration exiting the boiler was 12.1 + 7.36 g/ Nm 3 (corrected to 7 % oxygen concentration), ranging from 3.62 to 25.3 g/ Nm 3 (at 7 % O 2 ) of the flue gas during the measurement. Based on the 27 mt/ hr FFB processed and the capacity of the boiler of 8mt steam/ hr, the calculated particulate emission factor was 39 g particulate/ mt FFB processed or 131 g particulate/ mt boiler capacity, respectively. In addition, based on the finding and in order to comply with the emission limits of 0.4 g/ Nm 3 , the collection efficiency of any given particulate emission pollution control system to consider for the mill will be from 87 to 98 %, which is not easily achievable with the existing multi-cyclones unit. A considerable amount of efforts are still needed pertaining to the particulate emission control problem in the industry. (author)

  9. Future Emissions from Railway Traffic

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.

    1998-01-01

    In investigation of the expected development in factors which influence railway energy consumption and emissions. Traffic factors such as train speed, load, an occupancy were considered. Tehcnical factors such an emissions factors, fleet composition and train weight were also considered. An estim......In investigation of the expected development in factors which influence railway energy consumption and emissions. Traffic factors such as train speed, load, an occupancy were considered. Tehcnical factors such an emissions factors, fleet composition and train weight were also considered...

  10. Driving factors of carbon dioxide emissions and the impact from Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, Nicole [Goettingen Univ. (Germany). Dept. of Economics; Martinez-Zarzoso, Inmaculada [Jaume I Univ. (Spain). International Economics Institute

    2009-08-15

    In the last two decades increasing attention has been paid to the relationship between environmental degradation and economic development. According to the Environmental Kuznets Curve (EKC) hypothesis this relationship may be described by an inverted-U curve. However, recent evidence rejects the EKC hypothesis for GHG emissions in a broad sense. In this paper we aim to investigate whether the EKC behavior for CO2 emissions could be proved on the behalf of institutional regulations. We analyze the driving factors of CO2 for developed and developing countries to test the theory of the EKC in the context of environmental regulations using a static and dynamic panel data model. We consider the Kyoto Protocol and the Clean Development Mechanism (CDM). The results from this study indicate that the Kyoto obligations have a reducing effect on CO2 emissions in developed and developing countries. (orig.)

  11. Update of emission factors for nitrous oxide from agricultural soils on the basis of measurements in the Netherlands

    NARCIS (Netherlands)

    Kuikman, P.J.; Hoek, van der K.W.; Smit, A.; Zwart, K.B.

    2006-01-01

    Emissions of nitrous oxide (N2O) in the Netherlands are reported to the UNFCCC on the basis of a country specific methodology. In this study we have identified and analysed the values for emission factors in measurement from in the Netherlands in the period 1993 – 2003. The overall averaged emission

  12. Decomposition of CO2 Emission Factors in Baoding

    Science.gov (United States)

    Li, Wei; Wang, xuyang; Zhang, Hongzhi

    2018-01-01

    Baoding, as one of the first “five provinces and eight cities” low carbon pilot cities, undertakes an important task and mission. The urgent task is to explore a peak route and emission reduction path suitable for Baoding’s own development, so as to provide reference for the construction of low-carbon pilot cities. At present, the carbon emissions of Baoding city and its subordinate districts and counties are not clear, and the carbon emissions, change trends and emission characteristics of various industries have not been systematically studied. This lead researcherscan not carry out further attribution analysis, the prediction of future emissions trends and put forward specific measures to reduce emissions are impossible.If the government can not accurately and comprehensively understand the problems faced in the construction and development of low-carbon cities, it is difficult to fundamentally put forward effective emission reduction policies and measures.

  13. [Investigation of emission characteristics for light duty vehicles with a portable emission measurement system].

    Science.gov (United States)

    Wang, Hai-Kun; Fu, Li-Xin; Zhou, Yu; Lin, Xin; Chen, Ai-Zhong; Ge, Wei-hu; Du, Xuan

    2008-10-01

    Emission from 7 typical light-duty vehicles under actual driving conditions was monitored using a portable emission measurement system to gather data for characterization of the real world vehicle emission in Shenzhen, including the effects of driving modes on vehicle emission, comparison of fuel consumption based emission factors (g x L(-1) with mileage based emission factors (g x km(-1)), and the average emission factors of the monitored vehicles. The acceleration and deceleration modes accounted for 66.7% of total travel time, 80.3% of traveling distance and 74.6%-79.2% of vehicle emission; the acceleration mode contributed more than other driving modes. The fuel based emission factors were less dependent on the driving speed; they may be utilized in building macro-scale vehicle emission inventory with smaller sensitivity to the vehicle driving conditions. The effect of vehicle technology on vehicle emission was significant; the emission factors of CO, HC and NO(x) of carbureted vehicles were 19.9-20.5, 5.6-26.1 and 1.8-2.0 times the more advanced vehicles of Euro II, respectively. Using the ECE + EUDC driving cycle would not produce the desired real-world emission rates of light duty vehicles in a typical Chinese city.

  14. Identification of factors most important for ammonia emission from fertilized soils for potato production using principal component analysis

    Science.gov (United States)

    Guodoong Liu; Yuncong Li; Kati W. Migliaccio; Ying Ouyang; Ashok K. Alva

    2011-01-01

    Ammonia (NH3) emissions from fertilized soils are a costly problem that is undermining agricultural and ecological sustainability worldwide. Ammonia emissions from crop production have been reliably documented in recent years. However, insufficient efforts have been made to determine the factors most influential in facilitating NH3 emissions. The goal of this study was...

  15. Evaluation of Parallel Analysis Methods for Determining the Number of Factors

    Science.gov (United States)

    Crawford, Aaron V.; Green, Samuel B.; Levy, Roy; Lo, Wen-Juo; Scott, Lietta; Svetina, Dubravka; Thompson, Marilyn S.

    2010-01-01

    Population and sample simulation approaches were used to compare the performance of parallel analysis using principal component analysis (PA-PCA) and parallel analysis using principal axis factoring (PA-PAF) to identify the number of underlying factors. Additionally, the accuracies of the mean eigenvalue and the 95th percentile eigenvalue criteria…

  16. Application of Chybeshev Polynomials in Factorizations of Balancing and Lucas-Balancing Numbers

    Directory of Open Access Journals (Sweden)

    Prasanta Kumar Ray

    2012-01-01

    Full Text Available In this paper, with the help of orthogonal polynomial especially Chybeshev polynomials of first and second kind, number theory and linear algebra intertwined to yield factorization of the balancing and Lucas-balancing numbers.

  17. Emission of particulate matter from a desktop three-dimensional (3D) printer

    Science.gov (United States)

    Yi, Jinghai; LeBouf, Ryan F.; Duling, Matthew G.; Nurkiewicz, Timothy; Chen, Bean T.; Schwegler-Berry, Diane; Virji, M. Abbas; Stefaniak, Aleksandr B.

    2016-01-01

    ABSTRACT Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m3 chamber and in a small room (32.7 m3) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color. PMID:27196745

  18. Emission of particulate matter from a desktop three-dimensional (3D) printer.

    Science.gov (United States)

    Yi, Jinghai; LeBouf, Ryan F; Duling, Matthew G; Nurkiewicz, Timothy; Chen, Bean T; Schwegler-Berry, Diane; Virji, M Abbas; Stefaniak, Aleksandr B

    2016-01-01

    Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m(3) chamber and in a small room (32.7 m(3)) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color.

  19. Record number (11 000) of interference fringes obtained by a 1 MV field-emission electron microscope

    International Nuclear Information System (INIS)

    Akashi, Tetsuya; Harada, Ken; Matsuda, Tsuyoshi; Kasai, Hiroto; Tonomura, Akira; Furutsu, Tadao; Moriya, Noboru; Yoshida, Takaho; Kawasaki, Takeshi; Kitazawa, Koichi; Koinuma, Hideomi

    2002-01-01

    An electron biprism for a 1 million-volt field-emission electron microscope was developed. This biprism is controlled similarly as a specimen holder so that it can be driven and rotated precisely and is tough against mechanical vibration and stray magnetic field. We recorded the maximum number of interference fringes by using this biprism in order to confirm the overall performance as a holography electron microscope, and obtained a world record of 11,000 interference fringes

  20. Success Factors of Biotechnology Industry Based on Triangular Fuzzy Number

    OpenAIRE

    Lei, Lei

    2013-01-01

    Based on the theory of competitive advantage and value chain, this paper establishes the indicator system, and develop the strategic framework using the fuzzy Delphi method. Then the triangular fuzzy number model is established using Fuzzy Analytic Hierarchy Process, and the key factors influencing biotechnology industry are extracted. The results show that in terms of weight, the key factors influencing the success of biotechnology industry are sequenced as follows: “open innovation capaci...

  1. Number distribution of leakage neutrons for single neutron emission event and one source emission event in multiplying medium for two variables - a GEANT4 study

    International Nuclear Information System (INIS)

    Roy, Arup Singha; Raman, Anand; Chaudhury, Probal; Thomas, Renju G.

    2018-01-01

    A quantitative knowledge about the neutron multiplying character of a neutron multiplying medium such as High enriched Uranium (HEU), Weapon Graded plutonium (WGPu) and similar special nuclear materials is essential for improving the probability of detection of these materials to check against illicit trafficking. The objective of this study is to gain a deeper insight in to the neutron and gamma multiplication behaviour of these materials. The leakage number distribution of neutron and gamma initiated by a source emission event (Spontaneous Fission) as well as single neutron emission event has been obtained in the course of this study. The computations for this study were carried out through GEANT4 simulation and also with the help of FREYA incorporated into it. This helped to carry out a detailed analysis of each history more realistically and obtain more reliable results

  2. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-06-01

    Full Text Available In models of plant volatile isoprenoid emissions, the instantaneous compound emission rate typically scales with the plant's emission potential under specified environmental conditions, also called as the emission factor, ES. In the most widely employed plant isoprenoid emission models, the algorithms developed by Guenther and colleagues (1991, 1993, instantaneous variation of the steady-state emission rate is described as the product of ES and light and temperature response functions. When these models are employed in the atmospheric chemistry modeling community, species-specific ES values and parameter values defining the instantaneous response curves are often taken as initially defined. In the current review, we argue that ES as a characteristic used in the models importantly depends on our understanding of which environmental factors affect isoprenoid emissions, and consequently need standardization during experimental ES determinations. In particular, there is now increasing consensus that in addition to variations in light and temperature, alterations in atmospheric and/or within-leaf CO2 concentrations may need to be included in the emission models. Furthermore, we demonstrate that for less volatile isoprenoids, mono- and sesquiterpenes, the emissions are often jointly controlled by the compound synthesis and volatility. Because of these combined biochemical and physico-chemical drivers, specification of ES as a constant value is incapable of describing instantaneous emissions within the sole assumptions of fluctuating light and temperature as used in the standard algorithms. The definition of ES also varies depending on the degree of aggregation of ES values in different parameterization schemes (leaf- vs. canopy- or region-scale, species vs. plant functional type levels and various

  3. Gaseous and particle emissions from an ethanol fumigated compression ignition engine

    International Nuclear Information System (INIS)

    Surawski, Nicholas C.; Ristovski, Zoran D.; Brown, Richard J.; Situ, Rong

    2012-01-01

    Highlights: ► Ethanol fumigation system fitted on a direct injection compression ignition engine. ► Ethanol substitutions up to 40% (by energy) were achieved. ► Gaseous and particle emissions were measured at intermediate speed. ► PM and NO emissions significantly reduced, whilst CO and HC increased. ► The number of particles emitted generally higher with ethanol fumigation. - Abstract: A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM 2.5 ) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10% to 40% (by energy). With ethanol fumigation, NO and PM 2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM 2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles

  4. Carbon emissions from tropical forest degradation caused by logging

    International Nuclear Information System (INIS)

    Pearson, Timothy R H; Brown, Sandra; Casarim, Felipe M

    2014-01-01

    The focus of land-use related efforts in developing countries to reduce carbon emissions has been on slowing deforestation, yet international agreements are to reduce emissions from both deforestation and forest degradation (REDD). The second ‘D’ is poorly understood and accounted for a number of technical and policy reasons. Here we introduce a complete accounting method for estimating emission factors from selective timber harvesting, a substantial form of forest degradation in many tropical developing countries. The method accounts separately for emissions from the extracted log, from incidental damage to the surrounding forest, and from logging infrastructure, and emissions are expressed as units of carbon per cubic meter of timber extracted to allow for simple application to timber harvesting statistics. We applied the method in six tropical countries (Belize, Bolivia, Brazil, Guyana, Indonesia, and Republic of Congo), resulting in total emission factors of 0.99−2.33 Mg C m −3 . In all cases, emissions were dominated by damage to surrounding vegetation and the infrastructure rather than the logs themselves, and total emissions represented about 3–15% of the biomass carbon stocks of the associated unlogged forests. We then combined the emission factors with country level logging statistics for nine key timber producing countries represented by our study areas to gain an understanding of the order of magnitude of emissions from degradation compared to those recently reported for deforestation in the same countries. For the nine countries included, emissions from logging were on average equivalent to about 12% of those from deforestation. For those nine countries with relatively low emissions from deforestation, emissions from logging were equivalent to half or more of those from deforestation, whereas for those countries with the highest emissions from deforestation, emissions from logging were equivalent to <10% of those from deforestation

  5. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Zhao, Shuhui; Zheng, Mei; Mu, Chao; Du, Ke

    2016-03-15

    Accurately quantifying black carbon (BC) emission factors (EFs) is a prerequisite for estimation of BC emission inventory. BC EFs determined by measuring BC at the roadside or chasing a vehicle on-road may introduce large uncertainty for low emission vehicles. In this study, BC concentrations were measured inside the tailpipe of gasoline vehicles with different engine sizes under different driving modes to determine the respective EFs. BC EFs ranged from 0.005-7.14 mg/kg-fuel under the speeds of 20-70 km/h, 0.05-28.95 mg/kg-fuel under the accelerations of 0.5-1.5m/s(2). Although the water vapor in the sampling stream could result in an average of 12% negative bias, the BC EFs are significantly lower than the published results obtained with roadside or chasing vehicle measurement. It is suggested to conduct measurement at the tailpipe of gasoline vehicles instead of in the atmosphere behind the vehicles to reduce the uncertainty from fluctuation in ambient BC concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells.

    Science.gov (United States)

    Le, M; Mothersill, C E; Seymour, C B; Ahmad, S B; Armstrong, A; Rainbow, A J; McNeill, F E

    2015-08-21

    The luminescence intensity of 340±5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to (90)Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1 x 10(4) cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8 x 10(3)±2.5 x 10(3) counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for (90)Y activities 14 to 703 μCi where a positive relationship between photoemission and (90)Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1 x 10(4) cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.

  7. Sunspot number recalibration: The ~1840–1920 anomaly in the observer normalization factors of the group sunspot number

    Directory of Open Access Journals (Sweden)

    Cliver Edward W.

    2017-01-01

    Full Text Available We analyze the normalization factors (k′-factors used to scale secondary observers to the Royal Greenwich Observatory (RGO reference series of the Hoyt & Schatten (1998a, 1998b group sunspot number (GSN. A time series of these k′-factors exhibits an anomaly from 1841 to 1920, viz., the average k′-factor for all observers who began reporting groups from 1841 to 1883 is 1.075 vs. 1.431 for those who began from 1884 to 1920, with a progressive rise, on average, during the latter period. The 1883–1884 break between the two subintervals occurs precisely at the point where Hoyt and Schatten began to use a complex daisy-chaining method to scale observers to RGO. The 1841–1920 anomaly implies, implausibly, that the average sunspot observer who began from 1841 to 1883 was nearly as proficient at counting groups as mid-20th century RGO (for which k′ = 1.0 by definition while observers beginning during the 1884–1920 period regressed in group counting capability relative to those from the earlier interval. Instead, as shown elsewhere and substantiated here, RGO group counts increased relative to those of other long-term observers from 1874 to ~1915. This apparent inhomogeneity in the RGO group count series is primarily responsible for the increase in k′-factors from 1884 to 1920 and the suppression, by 44% on average, of the Hoyt and Schatten GSN relative to the original Wolf sunspot number (WSN before ~1885. Correcting for the early “learning curve” in the RGO reference series and minimizing the use of daisy-chaining rectifies the anomalous behavior of the k′-factor series. The resultant GSN time series (designated GSN* is in reasonable agreement with the revised WSN (SN*; Clette & Lefèvre 2016 and the backbone-based group sunspot number (RGS; Svalgaard & Schatten 2016 but significantly higher than other recent reconstructions (Friedli, personal communication, 2016; Lockwood et al. 2014a, 2014b; Usoskin et al. 2016a. This result

  8. Evaluation of solid particle number and black carbon for very low particulate matter emissions standards in light-duty vehicles.

    Science.gov (United States)

    Chang, M-C Oliver; Shields, J Erin

    2017-06-01

    To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards. Solid particle number and black carbon were suggested in place of PM mass for the California LEV III 1-mg/mile FTP standard. Their equivalence, proportionality, and emission variability in comparison to PM mass, based on a large light-duty vehicle fleet examined, are dependent on engine

  9. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    Science.gov (United States)

    S. P. Urbanski

    2013-01-01

    In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF) are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate...

  10. Advancing national greenhouse gas inventories for agriculture in developing countries: improving activity data, emission factors and software technology

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Hartman, Melannie; Spencer, Shannon; Buendia, Leandro; Butterbach-Bahl, Klaus; Breidt, F Jay; Yagi, Kazuyuki; Nayamuth, Rasack; Wirth, Tom; Smith, Pete

    2013-01-01

    Developing countries face many challenges when constructing national inventories of greenhouse gas (GHG) emissions, such as lack of activity data, insufficient measurements for deriving country-specific emission factors, and a limited basis for assessing GHG mitigation options. Emissions from agricultural production are often significant sources in developing countries, particularly soil nitrous oxide, and livestock enteric and manure methane, in addition to wetland rice methane. Consequently, estimating GHG emissions from agriculture is an important part of constructing developing country inventories. While the challenges may seem insurmountable, there are ways forward such as: (a) efficiently using resources to compile activity data by combining censuses and surveys; (b) using a tiered approach to measure emissions at appropriately selected sites, coupled with modeling to derive country-specific emission factors; and (c) using advanced software systems to guide compilers through the inventory process. With a concerted effort by compilers and assistance through capacity-building efforts, developing country compilers could produce transparent, accurate, complete, consistent and comparable inventories, as recommended by the IPCC (Intergovernmental Panel on Climate Change). In turn, the resulting inventories would provide the foundation for robust GHG mitigation analyses and allow for the development of nationally appropriate mitigation actions and low emission development strategies. (letter)

  11. Factors affecting temporal H2S emission at construction and demolition (C&D) debris landfills.

    Science.gov (United States)

    Xu, Qiyong; Townsend, Timothy

    2014-02-01

    Odor problems associated with H2S emissions often result in odor complaints from nearby residents of C&D debris landfills, especially in the early morning. As part of a field study conducted on H2S removal ability using different cover materials, daily and seasonal H2S emissions through a soil cover layer were monitored at a C&D debris landfill to investigate factors affecting H2S emissions. H2S emission rates were not a constant, but varied seasonally, with an average emission rate of 4.67×10(-6)mgm(-2)s(-1). During a the 10-month field study, as the H2S concentration increased from 140ppm to about 3500ppm underneath the cover soil in the testing cell, H2S emissions ranged from zero to a maximum emission rate of 1.24×10(-5)mgm(-2)s(-1). Continuous emission monitoring indicated that H2S emissions even changed over time throughout the day, generally increasing from morning to afternoon, and were affected by soil moisture and temperature. Laboratory experiments were also conducted to investigate the effects of H2S concentration and cover soil moisture content on H2S emissions. The results showed that increased soil moisture reduced H2S emissions by retarding H2S migration through cover soil and dissolving H2S into soil water. The field study also indicated that due to atmospheric dispersion, high H2S emissions may not cause odor problems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Health Risk Management, China Medical University, Taichung, Taiwan (China); Lin, Kuo-Hsiung [Department of Environmental Engineering and Science, Fooyin University, Kaohsiung, Taiwan (China)

    2014-01-15

    Highlights: • Recycling of waste printed circuit boards is an important issue. • Pyrolysis is an emerging technology for PCB treatment. • Emission factors of VOCs are determined for PCB pyrolysis exhaust. • Iron-Al{sub 2}O{sub 3} catalyst was employed for the exhaust control. -- Abstract: The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and NOx, were 60–115, 0.4–4.0, 1.1–10, 30–95, and 0–0.7 mg/g, corresponding to temperatures ranging from 200 to 500 °C. When the pyrolysis temperature was lower than 300 °C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400 °C. When VOC exhaust was flowed through the bed of Fe-impregnated Al{sub 2}O{sub 3}, the emission of ozone precursor VOCs could be reduced by 70–80%.

  13. Ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2012-01-01

    The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the la......The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries...

  14. Decomposing the impact of alternative technology sets on future carbon emissions growth

    International Nuclear Information System (INIS)

    Fisher-Vanden, Karen; Schu, Kathryn; Sue Wing, Ian; Calvin, Katherine

    2012-01-01

    What are the drivers of future global carbon dioxide (CO 2 ) emissions growth and how would the availability of key energy supply technologies change their relative importance? In this paper, we apply a novel index number decomposition technique to the results of a multi-region, multi-sector computable general equilibrium model to quantify the influence of five factors on the growth of future carbon emissions: (1) growth in global economic activity; (2) shifts in the regional composition of gross world product; (3) shifts in the sectoral composition of regions' GDP; (4) changes in sectors' energy–output ratios; and (5) changes in the CO 2 intensity of energy sources. We elucidate how the relative importance of these factors changes in response to the imposition of a global carbon tax and alternative assumptions about the future availability of key energy supply technologies. Rising global economic activity and shifts in regional composition put upward pressure on emissions while changes in energy and emission intensity and the sectoral output mix have attenuating effects. A global emission tax that increases over time slows economic expansion and shifts the fuel mix, with the most pronounced impacts on China, India, and Russia. Limited availability of carbon capture and storage, nuclear, and hydroelectric generation all lead to upward shifts in the long-run marginal abatement cost curve, causing some countries to choose to pay the tax rather than abate. - Highlights: ► Index number decomposition is used to quantify the influence of five factors. ► The relative importance of these factors in response to alternative assumptions is measured. ► A global emission tax that increases over time slows economic expansion and shifts the fuel mix. ► Limited technology availability mean some countries to choose to pay the tax rather than abate.

  15. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    NARCIS (Netherlands)

    Ntziachristos, L.; Papadimitriou, G.; Ligterink, N.; Hausberger, S.

    2016-01-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro

  16. Effect of Fuels and Domestic Heating Appliance Types on Emission Factors of Selected Organic Pollutants

    Czech Academy of Sciences Publication Activity Database

    Šyc, Michal; Horák, J.; Hopan, F.; Krpec, K.; Tomšej, T.; Ocelka, T.; Pekárek, Vladimír

    2011-01-01

    Roč. 45, č. 21 (2011), s. 9427-9434 ISSN 0013-936X R&D Projects: GA MŽP(CZ) SP/1A2/116/07 Institutional research plan: CEZ:AV0Z40720504 Keywords : domestic combustion * PCDD/F * emission factors Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 5.228, year: 2011

  17. Number of negative lymph nodes as a prognostic factor in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Ma, Mingquan; Tang, Peng; Jiang, Hongjing; Gong, Lei; Duan, Xiaofeng; Shang, Xiaobin; Yu, Zhentao

    2017-10-01

    The aim of this study is to investigate the number of negative lymph nodes (NLNs) as a prognostic factor for survival in patients with resected esophageal squamous cell carcinoma. A total of 381 esophageal squamous cell carcinoma patients who had underwent surgical resection as the primary treatment was enrolled into this retrospective study. The impact of number of NLNs on patient's overall survival was assessed and compared with the factors among the current tumor-nodes-metastasis (TNM) staging system. The number of NLNs was closely related to the overall survival, and the 5-year survival rate was 45.4% for number of NLNs of >20 (142 cases) and 26.4% for NLNs ≤ 20 (239 cases) (P = 0.001). In multivariate survival analysis, the number of NLNs remained an independent prognostic factor (P = 0.002) as did the other current TNM factors. For subgroup analysis, the predictive value of number of NLNs was significant in patients with T3 or T4 disease (P = 0.001) and patients with N1 and N2-3 disease (P = 0.025, 0.043), but not in patients with T1 or T2 disease or patients with N0 disease. The number of NLNs, which represents the extent of lymphadenectomy for esophageal squamous cell carcinoma, could impact the overall survival of patients with resected esophageal squamous cell carcinoma, especially among those with nodal-positive disease and advanced T-stage tumor. © 2016 John Wiley & Sons Australia, Ltd.

  18. Wildland fire emissions, carbon, and climate: Emission factors

    Science.gov (United States)

    Shawn Urbanski

    2014-01-01

    While the vast majority of carbon emitted by wildland fires is released as CO2, CO, and CH4, wildland fire smoke is nonetheless a rich and complex mixture of gases and aerosols. Primary emissions include significant amounts of CH4 and aerosol (organic aerosol and black carbon), which are short-lived climate forcers. In addition to CO2 and short-lived climate forcers,...

  19. Projection of greenhouse gas emissions - 2005 to 2030

    International Nuclear Information System (INIS)

    Illerup, J.B.; Nielsen, Ole-Kenneth; Winther, Morten; Hjort Mikekkelsen, M.; Lyck, E.; Nielsen, Malene; Hoffmann, L.; Gyldenkaerne, S.; Thomsen, Marianne

    2007-01-01

    This report contains a description of models and background data for projection of CO 2 , CH 4 , N 2 O, HFCs, PFCs and SF 6 for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Authority. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (au)

  20. Projection of greenhouse gas emissions 2009 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Gyldenkaerne, S.; Lyck, E.; Plejdrup, M.; Hoffmann, L.; Thomsen, M.; Hjelgaard, K.; Fauser, P.

    2010-09-15

    This report contains a description of models, background data and projections of CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6} for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Agency. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (Author)

  1. Particle and gaseous emissions from individual diesel and CNG buses

    Directory of Open Access Journals (Sweden)

    Å. M. Hallquist

    2013-05-01

    Full Text Available In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz and CO2 with a non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz. The gaseous constituents (CO, HC and NO were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.. Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA3.1. The buses studied were diesel-fuelled Euro III–V and CNG-fuelled Enhanced Environmentally Friendly Vehicles (EEVs with different after-treatment, including selective catalytic reduction (SCR, exhaust gas recirculation (EGR and with and without diesel particulate filter (DPF. The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average a higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN were EFPN, DPF = 4.4 ± 3.5 × 1014, EFPN, no DPF = 2.1 ± 1.0 × 1015 and EFPN, CNG = 7.8 ± 5.7 ×1015 kg fuel−1. In the accelerating mode, size-resolved emission factors (EFs showed unimodal number size distributions with peak diameters of 70–90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode, bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm. Emission factors for NOx expressed as NO2 equivalents for the diesel buses were on average 27 ± 7 g (kg fuel−1 and for the CNG buses 41

  2. Dioxin emission factors for automobiles from tunnel air sampling in Northern Taiwan.

    Science.gov (United States)

    Chang, Moo Been; Chang, Shu Hao; Chen, Yuan Wu; Hsu, Hsuan Chien

    2004-06-05

    This study measured PCDD/F concentrations in tunnel air and vehicle exhaust. The ambient air samples were collected with air samplers (Tisch PS-1) complying with USEPA TO-9A. The results indicate that the tunnel air had a PCDD/F TEQ concentration about two times as high as that of outside air (47.3 and 57.1 fg-I-TEQ/m3 for tunnel air vs. 37.1 fg-I-TEQ/m3 and 23.3 fg-I-TEQ/m3 for outside air, respectively). This provides the direct evidence that PCDD/F compounds are emitted from the combustion processes in gasoline- and diesel-fueled engines. According to the tunnel study, the emission factors ranged from 5.83 to 59.2 pg I-TEQ/km for gasoline vehicles and 23.32 to 236.65 pg I-TEQ/km of diesel vehicles. This indicates that the dioxin emission factor in Taiwan is lower than that measured in USA, Norway and Germany. When the speed of the diesel vehicle was set at 40 km/h, the dioxin concentration emitted from diesel vehicle was 278 pg/m3 (6.27 pg-I-TEQ/m3) from tailpipe testing. However, when the diesel vehicle was idled, the dioxin concentration increased greatly to 4078 pg/m3 (41.9 pg-I-TEQ/m3). From the results of tunnel air sampling, the PCDD/Fs emission from automobiles in Taiwan was estimated as 3.69 g I-TEQ per year. Copryright 2003 Elsevier B.V.

  3. Daily dynamics of bacterial numbers, CO2 emissions from soil and relationships between their wavelike fluctuations and succession of the microbial community

    Science.gov (United States)

    Semenov, A. M.; Bubnov, I. A.; Semenov, V. M.; Semenova, E. V.; Zelenev, V. V.; Semenova, N. A.

    2013-08-01

    The daily dynamics of the number of copiotrophic and oligotrophic bacteria (in colony-forming units) and CO2 emissions from cultivated soils after short- and long-term disturbances were studied for 25-27 days in a microfield experiment. The relationship of the wavelike fluctuations of the bacterial number and CO2 emission with the succession of the soil microbial community was determined by the polymerase chain reaction method—denaturing gradient gel electrophoresis (PCR-DGGE). Short-term disturbances involved the application of organic or mineral fertilizers, pesticides, and plant residues to the soils of different plots. The long-term effect was a result of using biological and intensive farming systems for three years. The short-term disturbances resulted in increased peaks of the bacterial number, the significance of which was confirmed by harmonics analysis. The daily dynamics of the structure of the soil microbial community, which was studied for 27 days by the DGGE method, also had an oscillatory pattern. Statistical processing of the data (principal components analysis, harmonics and cross-correlation analyses) has revealed significant fluctuations in the structure of microbial communities coinciding with those of the bacterial populations. The structure of the microbial community changed within each peak of the dynamics of the bacterial number (but not from peak to peak), pointing to the cyclical character of the short-term succession. The long-term effects resulted in a less intense response of the microbiota—a lower rate of CO2 emission from the soil cultivated according to the organic farming system.

  4. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Role of management strategies and environmental factors in determining the emissions of biogenic volatile organic compounds from urban greenspaces.

    Science.gov (United States)

    Ren, Yuan; Ge, Ying; Gu, Baojing; Min, Yong; Tani, Akira; Chang, Jie

    2014-06-03

    Biogenic volatile organic compound (BVOC) emissions from urban greenspace have recently become a global concern. To identify key factors affecting the dynamics of urban BVOC emissions, we built an estimation model and utilized the city of Hangzhou in southeastern China as an example. A series of single-factor scenarios were first developed, and then nine multifactor scenarios using a combination of different single-factor scenarios were built to quantify the effects of environmental changes and urban management strategies on urban BVOC emissions. Results of our model simulations showed that (1) annual total BVOC emissions from the metropolitan area of Hangzhou were 4.7×10(8) g of C in 2010 and were predicted to be 1.2-3.2 Gg of C (1 Gg=10(9) g) in our various scenarios in 2050, (2) urban management played a more important role in determining future urban BVOC emissions than environmental changes, and (3) a high ecosystem service value (e.g., lowest BVOC/leaf mass ratio) could be achieved through positive coping in confronting environmental changes and adopting proactive urban management strategies on a local scale, that is, to moderately increase tree density while restricting excessive greenspace expansion and optimizing the species composition of existing and newly planted trees.

  6. Estimation of the emission factors of PAHs by traffic with the model of atmospheric dispersion and deposition from heavy traffic road.

    Science.gov (United States)

    Ozaki, N; Tokumitsu, H; Kojima, K; Kindaichi, T

    2007-01-01

    In order to consider the total atmospheric loadings of the PAHs (polycyclic aromatic hydrocarbons) from traffic activities, the emission factors of PAHs were estimated and from the obtained emission factors and vehicle transportation statistics, total atmospheric loadings were integrated and the loadings into the water body were estimated on a regional scale. The atmospheric concentration of PAHs was measured at the roadside of a road with heavy traffic in the Hiroshima area in Japan. The samplings were conducted in summer and winter. Atmospheric particulate matters (fine particle, 0.6-7 microm; coarse particle, over 7 microm) and their PAH concentration were measured. Also, four major emission sources (gasoline and diesel vehicle emissions, tire and asphalt debris) were assumed for vehicle transportation activities, the chemical mass balance method was applied and the source partitioning at the roadside was estimated. Furthermore, the dispersion of atmospheric particles from the vehicles was modelled and the emission factors of the sources were determined by the comparison to the chemical mass balance results. Based on emission factors derived from the modelling, an atmospheric dispersion model of nationwide scale (National Institute of Advanced Industrial Science and Technology - Atmospheric Dispersion Model for Exposure and Risk assessment) was applied, and the atmospheric concentration and loading to the ground were calculated for the Hiroshima Bay watershed area.

  7. LBA-ECO TG-10 Fire Emission Factors in Mato Grosso, Para, and Amazonas, Brazil: 2004

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides derived emission factors (EFs), reported in grams of compound emitted per kilogram of dry fuel (g/kg), for PM10 (particulate matter...

  8. Factors associated with number of duodenal samples obtained in suspected celiac disease.

    Science.gov (United States)

    Shamban, Leonid; Sorser, Serge; Naydin, Stan; Lebwohl, Benjamin; Shukr, Mousa; Wiemann, Charlotte; Yevsyukov, Daniel; Piper, Michael H; Warren, Bradley; Green, Peter H R

    2017-12-01

     Many people with celiac disease are undiagnosed and there is evidence that insufficient duodenal samples may contribute to underdiagnosis. The aims of this study were to investigate whether more samples leads to a greater likelihood of a diagnosis of celiac disease and to elucidate factors that influence the number of samples collected.  We identified patients from two community hospitals who were undergoing duodenal biopsy for indications (as identified by International Classification of Diseases code) compatible with possible celiac disease. Three cohorts were evaluated: no celiac disease (NCD, normal villi), celiac disease (villous atrophy, Marsh score 3), and possible celiac disease (PCD, Marsh score celiac disease had a median of 4 specimens collected. The percentage of patients diagnosed with celiac disease with one sample was 0.3 % compared with 12.8 % of those with six samples ( P  = 0.001). Patient factors that positively correlated with the number of samples collected were endoscopic features, demographic details, and indication ( P  = 0.001). Endoscopist factors that positively correlated with the number of samples collected were absence of a trainee, pediatric gastroenterologist, and outpatient setting ( P  celiac disease significantly increased with six samples. Multiple factors influenced whether adequate biopsies were taken. Adherence to guidelines may increase the diagnosis rate of celiac disease.

  9. How best management practices affect emissions in gas turbine power plants - an important factor to consider when strengthening emission standards.

    Science.gov (United States)

    Zeng, Jinghai; Xing, Min; Hou, Min; England, Glenn C; Yan, Jing

    2018-04-27

    The Beijing Municipal Environmental Protection Bureau (EPB) is considering strengthening the Emission Standard of Air Pollutants for Stationary Gas Turbines, originally published in 2011 (DB11/847-2011), with a focus on reducing nitrogen oxides (NOx) emissions. A feasibility study was conducted to evaluate the current operation of twelve (12) existing combined-cycle gas turbine power plants and the design of two (2) new plants in Beijing and their emission reduction potential, in comparison with a state-of-the-art power plant in California, United States. The study found that Best Management Practices (BMPs) could potentially improve the emission level of the power plants, and should be implemented to minimize emissions under current design characteristics. These BMPs include (1) more frequent tuning of turbine combustors; (2) onsite testing of natural gas characteristics in comparison to turbine manufacturer's specifics and tuning of turbine to natural gas quality; (3) onsite testing of aqueous ammonia to ensure adequate ammonia concentration in the mixed solution, and the purity of the solution; (4) more careful inspection of the heat recovery steam generator (HRSG), and the selective catalytic reduction (SCR) during operation and maintenance; (5) annual testing of the catalyst coupon on the SCR to ensure catalyst effectiveness; and (6) annual ammonia injection grid (AIG) tuning. The study found that without major modification to the plants, improving the management of the Beijing gas turbine power plants may potentially reduce the current hourly-average NOx emission level of 5-10 parts per million (ppm, ranges reflects plant variation) by up to 20%. The exact improvement associated with each BMP for each facility requires more detailed analysis, and requires engagement of turbine, HRSG, and SCR manufacturers. This potential improvement is an important factor to consider when strengthening the emission standard. However it is to be noted that with the continuous

  10. Multi-Year On-Road Emission Factor Trends of Two Heavy-Duty California Fleets

    Science.gov (United States)

    Haugen, M.; Bishop, G.

    2017-12-01

    New heavy-duty vehicle emission regulations have resulted in the development of advanced exhaust after-treatment systems that specifically target particulate matter (PM) and nitrogen oxides (NOx = NO + NO2). This has resulted in significant decreases in the emissions of these species. The University of Denver has collected three data sets of on-road gaseous (CO, HC, NO and NOx) and PM (particle mass, black carbon and particle number) emission measurements from heavy-duty vehicles (HDVs) in the spring of 2013, 2015 and 2017 at two different locations in California. One site is located at the Port of Los Angeles, CA (1,150 HDVs measured in 2017) and the other site is located at a weigh station in Northern California near Cottonwood, CA (780 HDVs measured in 2017). The On-Road Heavy-Duty Measurement Setup measures individual HDV's fuel specific emissions (DOI: 10.1021/acs.est.6b06172). Vehicles drive under a tent-like structure that encapsulates vehicle exhaust and 15 seconds of data collection is integrated to give fuel specific information. The measurements obtained from these campaigns contain real-world emissions affected by different driving modes, after-treatment systems and location. The Port of Los Angeles contributes a fleet that is fully equipped with diesel particulate filters (DPFs) as a result of the San Pedro Ports Clean Air Action Plan enforced since 2010 that allows only vehicles model year 2007 or newer on the premises. This fleet, although comprised with relatively new HDVs with lower PM emissions, has increased PM emissions as it has aged. Cottonwood's fleet contains vehicles with and without after-treatment systems, a result of a gradual turnover rate, and fleet PM has decreased at a slower rate than at the Port of Los Angeles. The decrease in PM emissions is a result of more HDVs being newer model years as well as older model years being retrofit with DPFs. The complimentary fleets, studied over multiple years, have given the University of Denver

  11. Particle Reduction Strategies - PAREST. Agricultural emissions. Sub-report

    International Nuclear Information System (INIS)

    Daemmgen, Ulrich; Haenel, Hans-Dieter; Roesemann, Claus; Hahne, Jochen; Eurich-Menden, Brigitte; Grimm, Ewald; Doehler, Helmut

    2013-01-01

    The German agricultural emission inventory is designed as an instrument of policy advice. The essential aim is to describe the emitting processes so that options for reducing emissions can be quantified. The German agricultural emission model GAS-EM uses in the field of NH 3 emissions from soils and plants in the EMEP / CORINAIR Guidebook (EMEP / CORINAIR, 2002) proposed methods. These differ in emission factors between several types of fertilizers and their application to acre or grassland in function of the average spring temperature. In the field of emissions from animal husbandry GAS-EM follows a material flow approach, where initially the energy and nutrient requirements for a given power (here are weight, weight gain, milk yield, number of piglets, etc. involved) the excretion of metabolizable carbon compounds and the N excretion can be calculated with feces and urine. Subsequently, for all animal species emissions of nitrogen species NH 3 , NO, N 2 O and N 2 from the grazing, indoor housing, storage and distribution of farm fertilizers calculated. [de

  12. Life Cycle Building Carbon Emissions Assessment and Driving Factors Decomposition Analysis Based on LMDI—A Case Study of Wuhan City in China

    Directory of Open Access Journals (Sweden)

    Yuanyuan Gong

    2015-12-01

    Full Text Available Carbon emissions calculation at the sub-provincial level has issues in limited data and non-unified measurements. This paper calculated the life cycle energy consumption and carbon emissions of the building industry in Wuhan, China. The findings showed that the proportion of carbon emissions in the construction operation phase was the largest, followed by the carbon emissions of the indirect energy consumption and the construction material preparation phase. With the purpose of analyzing the contributors of the construction carbon emissions, this paper conducted decomposition analysis using Logarithmic Mean Divisia Index (LMDI. The results indicated that the increasing buidling area was the major driver of energy consumption and carbon emissions increase, followed by the behavior factor. Population growth and urbanization, to some extent, increased the carbon emissions as well. On the contrary, energy efficiency was the main inhibitory factor for reducing the carbon emissions. Policy implications in terms of low-carbon construction development were highlighted.

  13. Uncertainty in particle number modal analysis during transient operation of compressed natural gas, diesel, and trap-equipped diesel transit buses.

    Science.gov (United States)

    Holmén, Britt A; Qu, Yingge

    2004-04-15

    The relationships between transient vehicle operation and ultrafine particle emissions are not well-known, especially for low-emission alternative bus technologies such as compressed natural gas (CNG) and diesel buses equipped with particulate filters/traps (TRAP). In this study, real-time particle number concentrations measured on a nominal 5 s average basis using an electrical low pressure impactor (ELPI) for these two bus technologies are compared to that of a baseline catalyst-equipped diesel bus operated on ultralow sulfur fuel (BASE) using dynamometer testing. Particle emissions were consistently 2 orders of magnitude lower for the CNG and TRAP compared to BASE on all driving cycles. Time-resolved total particle numbers were examined in terms of sampling factors identified as affecting the ability of ELPI to quantify the particulate matter number emissions for low-emitting vehicles such as CNG and TRAP as a function of vehicle driving mode. Key factors were instrument sensitivity and dilution ratio, alignment of particle and vehicle operating data, sampling train background particles, and cycle-to-cycle variability due to vehicle, engine, after-treatment, or driver behavior. In-cycle variability on the central business district (CBD) cycle was highest for the TRAP configuration, but this could not be attributed to the ELPI sensitivity issues observed for TRAP-IDLE measurements. Elevated TRAP emissions coincided with low exhaust temperature, suggesting on-road real-world particulate filter performance can be evaluated by monitoring exhaust temperature. Nonunique particle emission maps indicate that measures other than vehicle speed and acceleration are necessary to model disaggregated real-time particle emissions. Further testing on a wide variety of test cycles is needed to evaluate the relative importance of the time history of vehicle operation and the hysteresis of the sampling train/dilution tunnel on ultrafine particle emissions. Future studies should

  14. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O

    Directory of Open Access Journals (Sweden)

    K. Pilegaard

    2006-01-01

    Full Text Available Soil emissions of NO and N2O were measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE. The locations represent different forest types (coniferous/deciduous and different nitrogen loads. Geographically they range from Finland in the north to Italy in the south and from Hungary in the east to Scotland in the west. The highest NO emissions were observed from coniferous forests, whereas the lowest NO emissions were observed from deciduous forests. The NO emissions from coniferous forests were highly correlated with N-deposition. The site with the highest average annual emission (82 μg NO-N m−2 h−1 was a spruce forest in South-Germany (Höglwald receiving an annual N-deposition of 2.9 g m−2. NO emissions close to the detection limit were observed from a pine forest in Finland where the N-deposition was 0.2 g N m−2 a−1. No significant correlation between N2O emission and N-deposition was found. The highest average annual N2O emission (20 μg N2O-N m−2 h−1 was found in an oak forest in the Mátra mountains (Hungary receiving an annual N-deposition of 1.6 g m−2. N2O emission was significantly negatively correlated with the C/N ratio. The difference in N-oxide emissions from soils of coniferous and deciduous forests may partly be explained by differences in N-deposition rates and partly by differences in characteristics of the litter layer and soil. NO was mainly derived from nitrification whereas N2O was mainly derived from denitrification. In general, soil moisture is lower at coniferous sites (at least during spring time and the litter layer of coniferous forests is thick and well aerated favouring nitrification and thus release of NO. Conversely, the higher rates of denitrification in deciduous forests due to a compact and moist litter layer lead to N2O production and NO consumption in the soil. The two factors soil moisture and soil temperature are

  15. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M.

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E c , below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E c . These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production

  16. LBA-ECO TG-10 Fire Emission Factors in Mato Grosso, Para, and Amazonas, Brazil: 2004

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides derived emission factors (EFs), reported in grams of compound emitted per kilogram of dry fuel (g/kg), for PM10 (particulate matter up to 10...

  17. The international research progress of Ammonia(NH3) emissions and emissions reduction technology in farmland ecosystem

    Science.gov (United States)

    Yang, W. Z.; Jiao, Y.

    2017-03-01

    NH3 is the important factor leading to the grey haze, and one of the main causes of environmental problems of serious ecological imbalance, such as acid rain and air quality deterioration. The fertilizer excessive application of the current farmland results NH3 emissions intensity greatly. In order to clear the farmland NH3 emissions research status and achievements, the literature of farmland NH3 emission related were retrievaled by the SCI journals and Chinese science citation database. Some factors of NH3 emission were analyzed such as soil factors, climate factors and farmland management measures. The research progress was inductived on farmland NH3 emission reduction technology. The results will help to clarify farmland NH3 emissions research progress. The theoretical guidance was provided on the future of farmland NH3 emissions research.

  18. Revised (Mixed-Effects) Estimation for Forest Burning Emissions of Gases and Smoke, Fire/Emission Factor Typology, and Potential Remote Sensing Classification of Types for Ozone and Black-Carbon Simulation

    Science.gov (United States)

    Chatfield, Robert B.; Segal Rozenhaimer, M.

    2014-01-01

    We summarize recent progress (a) in correcting biomass burning emissions factors deduced from airborne sampling of forest fire plumes, (b) in understanding the variability in reactivity of the fresh plumes sampled in ARCTAS (2008), DC3 (2012), and SEAC4RS (2013) airborne missions, and (c) in a consequent search for remotely sensed quantities that help classify forest-fire plumes. Particle properties, chemical speciation, and smoke radiative properties are related and mutually informative, as pictures below suggest (slopes of lines of same color are similar). (a) Mixed-effects (random-effects) statistical modeling provides estimates of both emission factors and a reasonable description of carbon-burned simultaneously. Different fire plumes will have very different contributions to volatile organic carbon reactivity; this may help explain differences of free NOx(both gas- and particle-phase), and also of ozone production, that have been noted for forest-fire plumes in California. Our evaluations check or correct emission factors based on sequential measurements (e.g., the Normalized Ratio Enhancement and similar methods). We stress the dangers of methods relying on emission-ratios to CO. (b) This work confirms and extends many reports of great situational variability in emissions factors. VOCs vary in OH reactivity and NOx-binding. Reasons for variability are not only fuel composition, fuel condition, etc., but are confused somewhat by rapid transformation and mixing of emissions. We use "unmixing" (distinct from mixed-effects) statistics and compare briefly to approaches like neural nets. We focus on one particularly intense fire the notorious Yosemite Rim Fire of 2013. In some samples, NOx activity was not so suppressed by binding into nitrates as in other fires. While our fire-typing is evolving and subject to debate, the carbon-burned delta(CO2+CO) estimates that arise from mixed effects models, free of confusion by background-CO2 variation, should provide a

  19. Projection of greenhouse gas emissions 2010 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Nielsen, Malene; Hjorth Mikkelsen, M.; Albrektsen, R.; Gyldenkaerne, S.; Plejdrup, M.; Hoffmann, L.; Thomsen, M.; Hjelgaard, K.; Fauser, P.

    2011-09-15

    This report contains a description of models, background data and projections of CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6} for Denmark. The emissions are projected to 2030 using a scenario together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Agency. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of industrial plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (Author)

  20. Projection of greenhouse gas emissions 2007 to 2025

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Gyldenkaerne, S.; Lyck, E.; Plejdrup, M.; Hoffmann, L.; Thomsen, Marianne; Fauser, P.

    2009-02-15

    This report contains a description of models and background data for projection of CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6} for Denmark. The emissions are projected to 2025 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Agency. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (au)

  1. Projection of greenhouse gas emissions - 2005 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J.B.; Nielsen, Ole-Kenneth; Winther, Morten; Hjort Mikekkelsen, M.; Lyck, E.; Nielsen, Malene; Hoffmann, L.; Gyldenkaerne, S.; Thomsen, Marianne [DMU-AU, Dept. of Policy Analysis (Denmark)

    2007-01-15

    This report contains a description of models and background data for projection of CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6} for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Authority. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (au)

  2. Identification of the driving factors' influences on regional energy-related carbon emissions in China based on geographical detector method.

    Science.gov (United States)

    Zhang, Xinlin; Zhao, Yuan

    2018-04-01

    To investigate the influences of different factors on spatial heterogeneity of regional carbon emissions, we firstly studied the spatial-temporal dynamics of regional energy-related carbon emissions using global Moran's I and Getis-Ord Gi and applied geographical detector model to explain the spatial heterogeneity of regional carbon emissions. Some conclusions were drawn. Regional carbon emissions showed significant global and local spatial autocorrelation. The carbon emissions were greater in eastern and northern regions than in western and southern regions. Fixed assets investment and economic output had been the main contributing factors over the study period, and economic output had been decreasing its influence. Industrial structure's influence showed a decrease trend and became smaller in 2015. The results of the interaction detections in 2015 can be divided into two types: enhance and nonlinear, and enhance and bivariate. The interactive influences between technological level and fixed assets investment, economic output and technological level, population size and technological level, and economic output and economic development were greater than others. Some policy recommendations were proposed.

  3. Inventory of primary particulates emissions; Inventaire des emissions de particules primaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    CITEPA carried out a national inventory on particulate emissions. This report presents the results of this study for a great number of sectors and it covers a larger number of sources than the previous CITEPA inventories on particles and some other inventories carried out by International organisms (TNO, IIASA). In particular, at the present time, fugitive dust emissions for some sources are rarely taken into account in inventories because of poor knowledge and they are still the subject of researches in order to validate the emission results. (author)

  4. Estimating greenhouse gas emissions using emission factors from the Sugarcane Development Company, Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Amir Zahedi

    2018-05-01

    Full Text Available Background: Greenhouse gas (GHG emissions are increasing worldwide. They have harmful effects on human health, animals, and plants and play a major role in global warming and acid rain. Methods: This research investigated carbon dioxide (CO2 and CH4 emissions obtained from different parts of the Hakim Farabi, Dobal Khazaei, and Ramin factories which produce ethanol and yeast. Seasonal rates of CO2 at the soil surface at the studied sites were estimated from measurements made on location and at intervals with manual chambers. This study aimed to assess the production rate of GHG emissions (CH4, CO2 in the sugar production units of Hakim Farabi, Dobal Khazaei, and Ramin factories. Results: Mean concentrations of CO2 and CH4 emissions are respectively 279 500.207 and 3087.07 tons/ year from the Hakim Farabi agro-industry, 106 985.24 and 1.14 tons/year at the Dobal Khazaei ethanol producing factory, and 124 766.17 and 1.93 tons/year at the Ramin leavening producing factory. Conclusion: Sugar plant boilers and the burning of sugarcane contributed the most CO2 and CH4 emissions, respectively. Moreover, lime kilns and diesel generators showed the least carbon dioxide and methane emissions, respectively.

  5. Emissions of hydrocarbons from combustion of biofuels

    International Nuclear Information System (INIS)

    Olsson, Mona; Persson, Eva Marie.

    1991-10-01

    Evaluations and measurements of emissions of hydrocarbons from power plants with a capacity exceeding 1 MW using biofuels (wood fuels and peat) have been studied in order to identify and quantify the emissions of incompletely combusted hydrocarbons. The influence of the type of fuel and the combustion technology applied were also studied, using literature references. The report summarizes monitoring results from a number of plants using biofuels. The reported emissions from the different plants can not be compared as they are relatively few and the test results have been obtained under various conditions using different methods of testing and analysis. The methods used are often poorly documented in the studied reports. Few investigations of emissions of hydrocarbons from plants in the range of 1 to 10 MW have been carried out. The plant and the technology used are important factors determining the amount and type of emissions of hydrocarbons. Larger temporary emissions can occur during start up, operational disturbances or when using fuel of inhomogeneous quality. In order to minimize the emissions the combustion process must be efficiently controlled, and a fuel of a hohogeneous quality must be used. The report also summarizes sampling and analysis methods used for monitoring emissions of hydrocarbons. (29 refs., 17 figs.)

  6. Emission computed tomography

    International Nuclear Information System (INIS)

    Phelps, M.E.

    1977-01-01

    Although there are many common aspects to x-ray transmission and radionuclide emission (ECT) computerized tomography, there are added difficulties and a number of particular factors which form the basis of ECT. The relationship between the physical factors, system design, methodologic approach and assumptions of ECT is discussed. The instrumentation design and application strategies in ECT at this time are diverse and in a rapid stage of development. The approaches are divided into two major categories of Single Photon Counting (SPC) employing scanner and camera concepts with radionuclides of 99 /sup m/Tc, 201 Tl, 123 I etc., and Annihilation Coincidence Detection (ACD) of positron-emitting radionuclides. Six systems in the former and ten systems in the latter category, with examples of typical studies, illustrate the different approaches

  7. Differences in regional emissions in China's transport sector: Determinants and reduction strategies

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2016-01-01

    With recent surge in the number of vehicles, particularly private vehicles, the transport sector has significantly contributed to the increase in energy consumption and carbon dioxide emissions in China. Most of the existing researches utilized time series data to investigate the factors influencing transport sector's carbon dioxide emission at the national level while neglecting the level of regional differences. This paper adopts provincial panel data from 2000 to 2012 and panel data models to examine the key driving forces of carbon dioxide emissions in the transport sector at the regional level in China. The estimation results show that the impacts of urbanization on carbon dioxide emissions in the transport sector vary across regions and decline continuously from the western region to the eastern and central regions. Private vehicles are more important than cargo turnover in emission reduction because of its relatively inefficient and excessive growth. The role of energy efficiency improvement in mitigating carbon dioxide emissions in the three regions varies due to significant differences in research and development investment and management efficiency. Hence, in order to effectively achieve emission reduction, local governments should consider all these factors as well as regional heterogeneity in developing appropriate mitigation policies. - Highlights: • The factors of carbon dioxide emissions in China's transport sector were explored. • The impact of urbanization on carbon dioxide emissions varies across regions. • Private vehicles are more critical than cargo turnover in emission reduction. • The role of energy efficiency in the three regions is exactly the opposite.

  8. A decomposition analysis of the driving factors of CO_2 (Carbon dioxide) emissions from the power sector in the European Union countries

    International Nuclear Information System (INIS)

    Karmellos, M.; Kopidou, D.; Diakoulaki, D.

    2016-01-01

    The scope of this paper is to investigate the driving factors of CO_2 emissions from electricity generation in all European Union countries (EU-28) during the period 2000–2012. Particular emphasis is placed on the assessment of any potential association between the examined driving factors and major climate and energy policies implemented during the examined period. In addition, the analysis distinguishes two subperiods, namely 2000–2007 and 2007–2012 in order to detect the impact of the economic crisis on each distinct driving factor and, consequently, on the total level of CO_2 emissions from the power sector. The model developed to analyse the changes in CO_2 emissions from the power sector across EU-28, is based on LMDI-I method and takes into account five driving factors: level of activity, electricity intensity, electricity trade, efficiency of electricity generation and fuel mix. The obtained results show that in times of economic growth the main factor counterbalancing the activity effect was in most countries the decreasing electricity intensity, while the contribution of all other factors becomes apparent later, despite the economic crisis and in view of the Kyoto targets. - Highlights: • LMDI is used to identify driving forces of CO_2 emissions from EU's power sector. • Declining electricity intensity was the main restrictive factor before 2007. • Fuel shifts contributed to emissions fall mostly after 2007, despite the crisis. • Trade effect is notable and indicates growing carbon leakage in the power sector.

  9. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found

  10. U.S. broiler housing ammonia emissions inventory

    Science.gov (United States)

    Gates, R. S.; Casey, K. D.; Wheeler, E. F.; Xin, H.; Pescatore, A. J.

    Using recently published baseline ammonia emissions data for U.S. broiler chicken housing, we present a method of estimating their contribution to an annual ammonia budget that is different from that used by USEPA. Emission rate increases in a linear relationship with flock age from near zero at the start of the flock to a maximum at the end of the flock, 28-65 days later. Market weight of chickens raised for meat varies from "broilers" weighing about 2 kg to "roasters" weighing about 3 kg. Multiple flocks of birds are grown in a single house annually, with variable downtime to prepare the house between flocks. The method takes into account weight and number of chickens marketed. Uncertainty in baseline emissions estimates is used so that inventory estimates are provided with error estimates. The method also incorporates the condition of litter that birds are raised upon and the varying market weight of birds grown. Using 2003 USDA data on broiler production numbers, broiler housing is estimated to contribute 8.8-11.7 kT ammonia for new and built-up litter, respectively, in Kentucky and 240-324 kT ammonia for new and built-up litter, respectively, nationally. Results suggest that a 10% uncertainty in annual emission rate is expected for the market weight categories of broilers, heavy broilers, and roasters. A 27-47% reduction in annual housing emission rate is predicted if new rather than built-up litter were used for every flock. The estimating method can be adapted to other meat bird building emissions and future ammonia emission strategies, with suitable insertion of an age-dependent emission factor or slope into a predictive model equation. The method can be readily applied and is an alternative to that used by USEPA.

  11. Effects of aromatics, olefins and distillation temperatures (T50 & T90) on particle mass and number emissions from gasoline direct injection (GDI) vehicles

    International Nuclear Information System (INIS)

    Zhu, Rencheng; Hu, Jingnan; Bao, Xiaofeng; He, Liqiang; Zu, Lei

    2017-01-01

    Abstratct: Fuel quality is among the primary reasons for severe vehicle pollution. A limited understanding of the effects of gasoline properties on modern vehicle emissions is one obstacle for the establishment of stricter fuel standards in China. The goal of this study was to evaluate the effects of aromatic and olefin contents and T50 and T90 (defined as the 50%v and 90%v distillation temperatures) on tailpipe emissions from gasoline direct injection (GDI) vehicles compliant with China 4 standards. Both gaseous and particle emissions using different types of gasoline were measured. Changing aromatic and olefin contents had relatively small impacts on fuel consumption. Compared with olefins and T90, the regulated gaseous emissions were impacted more by aromatics and T50. Evident decreases of the particle mass (PM) and particle number (PN) emissions were noticed when the aromatic content and T90 decreased. Reducing the olefin content slightly decreased the PM emissions and increased the PN emissions. With decreasing T50, the PM emissions increased and the PN emissions slightly decreased. These results suggest that aromatic content and T90 should be decreased to reduce particle emissions from GDI vehicles. The information presented in this study provides some suggestions for how to improve gasoline quality in China. - Highlights: • Effect of aromatics, olefins, T50 and T90 on GDI vehicle emissions was investigated. • Aromatics and olefins had little impact on fuel consumption and CO 2 emissions. • Reducing the aromatic content and T90 significantly decreased PM and PN emissions. • Changing the olefin content and T50 had a minor impact on particle emissions. • Thresholds of aromatics and T90 should be tightened in future gasoline regulations.

  12. Time evolution and emission factors of aerosol particles from day and night time savannah fires

    Science.gov (United States)

    Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; Venter, Andrew; Jaars, Kerneels; Josipovic, Miroslav; van Zyl, Pieter; Kulmala, Markku; Laakso, Lauri

    2013-04-01

    number and size of particles larger than 100 nm; if this is not accounted for the current emission factors may underestimate the CCN-sized particle yield from savannah fires by a factor of two to three. Acknowledgements This research was supported by the Academy of Finland under the project Atmospheric monitoring capacity building in Southern Africa (project number 132640), by the Saastamoinen säätiö, by the North-West University and by the Academy of Finland Center of Excellence program (project number 1118615). References IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007. Pope, C. A., and Dockery, D. W.: Health effects of fine particulate air pollution: lines that connect, J Air Waste Manag. Assoc., 56, 709-742, 2006. Swap, R. J., Annegarn, H. J., Suttles, J. T., King, M. D., Platnick, S., Privette, J. L., and Scholes, R. J.: Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000), J. Geophys. Res., 108, 8465, doi:10.1029/2003JD003747, 2003. Vakkari, V., Beukes, J. P., Laakso, H., Mabaso, D., Pienaar, J. J., Kulmala, M., and Laakso, L.: Long-term observations of aerosol size distributions in semi-clean and polluted savannah in South Africa, Atmos. Chem. Phys. Discuss., 12, 24043-24093, doi:10.5194/acpd-12-24043-2012, 2012.

  13. A carbon emissions reduction index: Integrating the volume and allocation of regional emissions

    International Nuclear Information System (INIS)

    Chen, Jiandong; Cheng, Shulei; Song, Malin; Wu, Yinyin

    2016-01-01

    Highlights: • We build a carbon emissions reduction index (CERI). • The aim is to quantify the pressure on policymakers to reduce emissions. • Scale-related effects and carbon emissions allocations are included in the CERI. • Different standards of carbon emissions allocations are also considered. • We decompose the Gini coefficient to evaluate the effects of three factors. - Abstract: Given the acceleration of global warming and rising greenhouse gas emissions, all countries are facing the harsh reality of the need to reduce carbon emissions. In this study, we propose an index to quantify the pressure faced by policymakers to reduce such emissions, termed the carbon emissions reduction index. This index allows us to observe the effect of carbon emissions volume on the pressure faced by policymakers and study the impact of optimizing interregional carbon emissions on reducing this pressure. In addition, we account for several carbon emissions standards in constructing the index. We conclude that the variation in the index is likely to be attributable to carbon emissions volume, regional ranking, and population (population can also be replaced by GDP, resource endowment, or other factors). In addition, based on empirical data on the world’s largest emitter of carbon dioxide (China), this study analyzes the evolution of pressure to reduce emissions on a country’s policymakers. The results show that the growing volume and unsuitable allocation of carbon emissions from 1997 to 2012 imposed increasing pressure on the Chinese government in this regard. In addition, reductions in carbon emissions volume and regional ranking are primary factors that impact pressure on policymakers.

  14. Impact of Emissions from Commercial Shipping During TexAQS 2006

    Science.gov (United States)

    Williams, E.; Lerner, B.; Murphy, P.

    2007-12-01

    Commercial marine vessels range in size from small fishing boats (20-30 meters in length) to extremely large container ships (over 300 meters in length). These ships almost without exception use diesel engines for propulsion and auxiliary power generation. The larger ships, comprising bulk carriers, tankers and container carriers, utilize diesel engines that produce power in the 10 MW to 100 MW range. These engines typically consume heavy fuel oils which are high in sulfur content (1%-4.5% by weight). These engines are also extremely efficient, converting essentially all of the carbon in the fuel to CO2, but also emitting NOx, CO, SO2, VOCs, and PM. During TexAQS 2006 our measurements on board the NOAA research ship Ronald H. Brown allowed us to characterize the emissions from a large number of commercial marine vessels. The measurements provided the means to calculate mass-based emission factors for many of the compounds noted above. With the information broadcast by these vessels over the Automated Information System, we have unequivocally determined the emission factors for over 200 vessels both at dock and underway. Our data largely confirm published average emission factors, but also show significant variability especially with NOx. This talk will present those results and then use the data to show that emissions of NOx and SO2 from these vessels are not negligible in the Houston-Galveston region.

  15. [Emission factors and PM chemical composition study of biomass burning in the Yangtze River Delta region].

    Science.gov (United States)

    Tang, Xi-Bin; Huang, Cheng; Lou, Sheng-Rong; Qiao, Li-Ping; Wang, Hong-Li; Zhou, Min; Chen, Ming-hua; Chen, Chang-Hong; Wang, Qian; Li, Gui-Ling; Li, Li; Huang, Hai-Ying; Zhang, Gang-Feng

    2014-05-01

    The emission characteristics of five typical crops, including wheat straw, rice straw, oil rape straw, soybean straw and fuel wood, were investigated to explore the gas and particulates emission of typical biomass burning in Yangzi-River-Delta area. The straws were tested both by burning in stove and by burning in the farm with a self-developed measurement system as open burning sources. Both gas and fine particle pollutants were measured in this study as well as the chemical composition of fine particles. The results showed that the average emission factors of CO, NO, and PM2,5 in open farm burning were 28.7 g.kg -1, 1.2 g.kg-1 and 2.65 g kg-1 , respectively. Due to insufficient burning in the low oxygen level environment, the emission factors of stove burning were higher than those of open farm burning, which were 81.9 g kg-1, 2. 1 g.kg -1 and 8.5 gkg -1 , respectively. Oil rape straw had the highest emission factors in all tested straws samples. Carbonaceous matter, including organic carbon(OC) and element carbon(EC) , was the foremost component of PM2, 5from biomass burning. The average mass fractions of OC and EC were (38.92 +/- 13.93)% and (5.66 +/-1.54)% by open farm burning and (26.37 +/- 10. 14)% and (18.97 +/- 10.76)% by stove burning. Water soluble ions such as Cl-and K+ had a large contribution. The average mass fractions of CI- and K+ were (13.27 +/-6. 82)% and (12.41 +/- 3.02)% by open farm burning, and were (16.25 +/- 9.34)% and (13.62 +/- 7.91)% by stove burning. The K +/OC values of particles from wheat straw, rice straw, oil rape straw and soybean straw by open farm burning were 0. 30, 0. 52, 0. 49 and 0. 15, respectively, which can be used to evaluate the influence on the regional air quality in YRD area from biomass burning and provide direct evidence for source apportionment.

  16. Study on emission characteristics of hybrid bus under driving cycles in typical Chinese city

    Science.gov (United States)

    Xie, Yongdong; Xu, Guangju

    2017-09-01

    In this study, hybrid city bus was taken as the research object, through the vehicle drum test, the vehicle emissions of hybrid bus, the transient emissions of gas pollutants, as well as the particle size and number distribution were surveyed. The results of the studies are listed as follows: First, compared to traditional fuel bus, hybrid bus could reduce about 44% of the NOx emissions, 33% of the total hydrocarbon emissions, and 51% of the particles emissions. Furthermore, the distribution of particles number concentration of test vehicle became high in middle and low in both sides. More specifically, the particle number concentration was mainly concentrated in the range from 0.021 to 0.755μm, the maximum was 0.2μm, and particle size of particulate matter (PM) less than 1.2μm accounted for 95% of the total number concentration. Particulate mass concentration was increased with increment of particle size, and the maximum of particulate mass (PM) concentration was 6.2μm. On average, whether traditional fuel bus or hybrid bus, the particle size of particulate matter(PM) less than 2.5μm accounted for more than 98% in the particles emission. It is found that the particles are more likely to deposit to the lung, respiratory bronchioles and alveoli, causing respiratory and lung diseases. Therefore, how to control the PM emissions of hybrid bus is the key factor of the study.

  17. Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning

    International Nuclear Information System (INIS)

    Geng, Yong; Zhao, Hongyan; Liu, Zhu; Xue, Bing; Fujita, Tsuyoshi; Xi, Fengming

    2013-01-01

    In order to uncover driving forces for provincial CO 2 emission in China, a case study was undertaken to shed light on the CO 2 emission growth in such a region. Liaoning province was selected due to its typical features as one industrial province. The environmental input–output analysis and structure decomposing analysis have been conducted in order to provide a holistic picture on Liaoning's CO 2 emissions during 1997–2007. Research outcomes indicate that rapid increase of per capita consumption activities is the main driver for Liaoning to have a significant CO 2 emission growth, followed by consumption structure, production structure and population size. Energy intensity and energy structure partly offset the CO 2 emission increase. Electricity power and heat supply and construction sectors caused the most CO 2 emission, indicating that more specific mitigation policies for these two sectors should be prepared. From final demand point of view, it is clear that trade plays a leading role in regional CO 2 emission, followed by fixed capital investment and urban household consumption which become increasingly important over time. Consequently, in order to realize low carbon development, local governments should consider all these factors so that appropriate mitigation policies can be raised by considering the local realities. - Highlights: • Driving forces for Liaoning's CO 2 emission have been uncovered through the use of IO-SDA model. • Construction and electricity power/heat supply sectors have the highest embodied emissions. • Trade plays a key role on regional CO 2 emission in Chinese old industrial base. • Fixed capital investment and urban households generated more CO 2 emissions

  18. Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective

    International Nuclear Information System (INIS)

    Lin, Sue J.; Lu, I.J.; Lewis, Charles

    2006-01-01

    In this study we use Divisia index approach to identify key factors affecting CO 2 emission changes of industrial sectors in Taiwan. The changes of CO 2 emission are decomposed into emission coefficient, energy intensity, industrial structure and economic growth. Furthermore, comparisons with USA, Japan, Germany, the Netherlands and South Korea are made to have a better understanding of emission tendency in these countries and to help formulate our CO 2 reduction strategies for responding to the international calls for CO 2 cuts. The results show that economic growth and high energy intensity were two key factors for the rapid increase of industrial CO 2 emission in Taiwan, while adjustment of industrial structure was the main component for the decrease. Although economic development is important, Taiwan must keep pace with the international trends for CO 2 reduction. Among the most important strategies are continuous efforts to improve energy intensity, fuel mix toward lower carbon, setting targets for industrial CO 2 cuts, and advancing green technology through technology transfer. Also, the clean development mechanism (CDM) is expected to play an important role in the future

  19. First approach to exhaust emissions characterization of light vehicles in Montevideo, Uruguay.

    Science.gov (United States)

    D'Angelo, Mauro; González, Alice Elizabeth; Rezzano Tizze, Nicolás

    2018-03-15

    According to Act No. 17283 of November 28th, 2000, air quality protection is a general concern in Uruguay. Road transport is the main emitter of nitrogen oxides (NO x ), as the National Inventory of Air Emissions 2006 stated. Actually, it is responsible for the emissions of 59.8% of NO x and 28% of carbon monoxide (CO). The number of households owning a car in Uruguay increased from 29% in 2005 to 39% in 2013, enhancing the importance of characterizing the vehicular emissions of the national fleet. In this paper, a first approach for this characterization is presented. It was carried out on a sample of 11 light vehicles currently in use in Montevideo city, Uruguay. On-road emissions measurements of nitrogen monoxide (NO), carbon monoxide (CO) and carbon dioxide (CO 2 ) were carried out for calculating the emission factors. The fitness of the set of calculated emission factors values to different probability distributions was tested. When possible, the 95% confidence intervals were obtained for the mean emission factors (CO: 2.0g/km±0.3g/km; NO: 0.05g/km±0.01g/km). This procedure was useful to obtaining accurate confidence intervals from a relatively small sample size. Finally, the link between atmospheric emissions and some other parameters of the tested vehicles was studied using a multivariate statistical tool, highlighting the strong increase in carbon monoxide emissions observed for low vehicles speeds and fuel efficiencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Clearinghouse for Inventories and Emissions Factors

    Science.gov (United States)

    Emissions inventories, modeling, and monitoring are the basis for understanding, controlling and tracking stationary sources of air pollution. This technical site provides access to tools and data to support those efforts.

  1. Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate which Fires Produce Ozone

    Science.gov (United States)

    Chatfield, Robert B.; Andreae, Meinrat O.

    2016-01-01

    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(burn) = delta C(tot) added to the fire plume, where C(tot) approximately equals (CO2 = CO). Mixed-effects regression can estimate pre-fire background values of C(tot) (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta, epsilon lambda tau alpha-x(sub I)/C(sub burn))I,j. MERET and "consensus" require more than emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (b scant, b abs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to

  2. Nitrogen oxide emission calculation for post-Panamax container ships by using engine operation power probability as weighting factor: A slow-steaming case.

    Science.gov (United States)

    Cheng, Chih-Wen; Hua, Jian; Hwang, Daw-Shang

    2017-12-07

    In this study, the nitrogen oxide (NO x ) emission factors and total NO x emissions of two groups of post-Panamax container ships operating on a long-term slow-steaming basis along Euro-Asian routes were calculated using both the probability density function of engine power levels and the NO x emission function. The main engines of the five sister ships in Group I satisfied the Tier I emission limit stipulated in MARPOL (International Convention for the Prevention of Pollution from Ships) Annex VI, and those in Group II satisfied the Tier II limit. The calculated NO x emission factors of the Group I and Group II ships were 14.73 and 17.85 g/kWhr, respectively. The total NO x emissions of the Group II ships were determined to be 4.4% greater than those of the Group I ships. When the Tier II certification value was used to calculate the average total NO x emissions of Group II engines, the result was lower than the actual value by 21.9%. Although fuel consumption and carbon dioxide (CO 2 ) emissions were increased by 1.76% because of slow steaming, the NO x emissions were markedly reduced by 17.2%. The proposed method is more effective and accurate than the NO x Technical Code 2008. Furthermore, it can be more appropriately applied to determine the NO x emissions of international shipping inventory. The usage of operating power probability density function of diesel engines as the weighting factor and the NO x emission function obtained from test bed for calculating NO x emissions is more accurate and practical. The proposed method is suitable for all types and purposes of diesel engines, irrespective of their operating power level. The method can be used to effectively determine the NO x emissions of international shipping and inventory applications and should be considered in determining the carbon tax to be imposed in the future.

  3. Influence of natural and anthropogenic factors on the dynamics of CO2 emissions from chernozems soil

    Science.gov (United States)

    Syabruk, Olesia

    2017-04-01

    Twentieth century marked a significant expansion of agricultural production. Soil erosion caused by human activity, conversion of forests and grasslands to cropland, desertification, burning nutrient residues, drainage, excessive cultivation led to intense oxidation of soil carbon to the atmosphere and allocation of additional amounts of CO2. According to the UN Intergovernmental Panel on Climate Change, agriculture is one of the main sources of greenhouse gases emissions to the atmosphere. The thesis reveals main patterns of the impact of natural and anthropogenic factors on CO2 emissions in the chernozems typical and podzolized in a Left-bank Forest-Steppe of Ukraine, seasonal and annual dynamics. New provisions for conducting monitoring CO2 emissions from soil were developed by combining observations in natural and controlled conditions, which allows isolating the impact of hydrological, thermal and trophic factors. During the research, the methods for operational monitoring of emission of carbon losses were improved, using a portable infrared gas analyzer, which allows receiving information directly in the field. It was determined that the volumes of emission losses of carbon chernozems typical and podzolized Left-bank Forest-Steppe of Ukraine during the growing season are 480-910 kg/ha and can vary depending on the soil treatment ±( 4,0 - 6,0) % and fertilizer systems ± (3,8 - 7,1) %. The significant impact of long application of various fertilizer systems and soil treatment on the intensity of carbon dioxide emissions was investigated. It was found that most emission occurs in organic- mineral fertilizers systems with direct seeding. The seasonal dynamics of the potential capacity of the soil to produce CO2 were researched. Under identical conditions of humidity and temperature it has maximum in June and July and the gradual extinction of the autumn. It was determined that the intensity of the CO2 emission from the surface of chernozem fluctuates daily from

  4. Examination of Environmental Factors Influencing the Emission Rates of Semivolatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Sunwoo Lee

    2018-01-01

    Full Text Available Some types of semivolatile organic compounds (SVOCs that are emitted from plastics used in building materials and household appliances have been associated with health risks, even at low concentrations. It has been reported that di-2-ethylhexyl phthalate (DEHP—one of the most commonly used plasticizers—causes asthma and allergic symptoms in children at home. The amount of emitted DEHP, which is classified as a SVOC, can be measured using a microchamber by the thermal desorption test chamber method. To accurately measure the SVOC emission rates, the relation between SVOC and environmental factors should be clarified. Herein, we examined the effects of the temperature, relative humidity, concentration of airborne particles, and flow field in the microchamber on SVOC emission rates. The flow fields inside the microchamber were analyzed via computational fluid dynamics (CFD. The emission rate of SVOC released from PVC flooring increased under high temperatures and at high concentrations of airborne particles but did not depend on the relative humidity. From an evaluation performed using an index of air change efficiency, such as the air age and the coefficient of air change performance, we found that a fixed air exchange rate of 1.5 h−1 in the microchamber is desirable.

  5. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    Science.gov (United States)

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  6. Evaluation of mobile emissions contributions to Mexico City's emissions inventory using on-road and cross-road emission measurements and ambient data

    Science.gov (United States)

    Zavala, M.; Herndon, S. C.; Wood, E. C.; Onasch, T. B.; Knighton, W. B.; Marr, L. C.; Kolb, C. E.; Molina, L. T.

    2009-09-01

    Mobile emissions represent a significant fraction of the total anthropogenic emissions burden in the Mexico City Metropolitan Area (MCMA) and, therefore, it is crucial to use top-down techniques informed by on-road exhaust measurements to evaluate and improve traditional bottom-up official emissions inventory (EI) for the city. We present the measurements of on-road fleet-average emission factors obtained using the Aerodyne mobile laboratory in the MCMA in March 2006 as part of the MILAGRO/MCMA-2006 field campaign. A comparison of our on-road emission measurements with those obtained in 2003 using essentially the same measurement techniques and analysis methods indicates that, in the three year span, NO emission factors remain within the measured variability ranges whereas emission factors of aldehydes and aromatics species were reduced for all sampled driving conditions. We use a top-down fuel-based approach to evaluate the mobile emissions from the gasoline fleet estimated in the bottom-up official 2006 MCMA mobile sources. Within the range of measurement uncertainties, we found probable slight overpredictions of mean EI estimates on the order of 20-28% for CO and 14-20% for NO. However, we identify a probable EI discrepancy of VOC mobile emissions between 1.4 and 1.9; although estimated benzene and toluene mobile emissions in the inventory seem to be well within the uncertainties of the corresponding emissions estimates. Aldehydes mobile emissions in the inventory, however, seem to be underpredicted by factors of 3 for HCHO and 2 for CH3CHO. Our on-road measurement-based estimate of annual emissions of organic mass from PM1 particles suggests a severe underprediction (larger than a factor of 4) of PM2.5 mobile emissions in the inventory. Analyses of ambient CO, NOx and CO/NOx concentration trends in the MCMA indicate that the early morning ambient CO/NOx ratio has decreased at a rate of about 1.9 ppm/ppm/year over the last two decades due to reductions in CO

  7. 6.1 Greenhouse gas emissions and climate change

    International Nuclear Information System (INIS)

    2004-01-01

    In Austria, greenhouse gas emissions (GHG) have increased by about 10 % between 1990 and 2001. This means that already in 2001 the emissions reached the level projected with current measures for 2010. Thus Austria is far from complying with the 13 % reduction required under the Kyoto Protocol, meaning that GHG emissions will have to be reduce annually by 1.4 million tons of CO 2 -equivalents to fulfill its protocol obligation. It is shown that 2001 GHG emissions had increased by 9.6 % since the base year 1990, the main reason for this increase is the growing use of fossil fuels and the resulting increase in CO 2 emissions. The highest growth rates can be observed in the transport sector by almost half (+ 49 %). Basically, greenhouse gas emission trends depend on a number of factors, about two thirds of them are caused by energy production, so the most important parameters affecting GHG are the trends of energy consumption, the energy mix and the following factors: population growth, economic growth, outdoor temperature and the resulting heating requirements, improvement of energy efficiency, the proportion of renewable energy sources such as electricity generation in hydroelectric power stations (which influences the need for supplementary power production in thermal power plants), the mix of fossil fuels, for example in caloric power plants (natural gas combustion produces about 40 % less CO 2 per energy unit than coal combustion), the structure and price effects of energy market liberalization, which influence the use of various fuels in electricity production and the import of electricity, world market prices for energy, structural changes in the economy and in the behavior of consumers. Changes in important driving forces and in GHG emissions, sector emissions trends and Austrian, European and global emissions projections are provided. (nevyjel)

  8. Measurement of the effective atomic numbers of compounds with cerium near to the absorption edge

    International Nuclear Information System (INIS)

    Polat, Recep; Icelli, Orhan

    2010-01-01

    In order to measure atomic, molecular and electronic cross-section; the effective atomic number, density of electron and absorption jump factor, we have first measured μ t values of compounds which are determined by mixture rule using transmission method. In order to measure experimentally the effective atomic number within absorption jump factors of compounds with Ce, the X-ray source used Am-241 whose gamma rays were stopped at secondary source (Sm), thus producing Kα and Kβ X-ray emission. The most crucial finding in this study is that measurement of the effective atomic number is not appropriate near to the absorption edge and the effective atomic number is affected by near to the absorption edge. The results obtained have been compared with theoretical values.

  9. Laboratory characterization of PM emissions from combustion of wildland biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, SeyedEhsan; Urbanski, Shawn; Dixit, P.; Qi, L.; Burling, Ian R.; Yokelson, Robert; Johnson, Timothy J.; Shrivastava, ManishKumar B.; Jung, H.; Weise, David; Miller, J. Wayne; Cocker, David R.

    2013-09-09

    Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S. 17 fuel types during 77 controlled laboratory burns are presented. The fuels include SW 18 vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush, 19 manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland as 20 well as SE vegetation types: 1-year, 2-year rough, pocosin, chipped understory, 21 understory hardwood, and pine litter. The SW fuels burned at a higher Modified 22 Combustion Efficiency (MCE) than the SE fuels resulting in lower particulate matter 23 (PM) mass emission factor (EF). Particle size distributions for six fuels and particle 24 number emission or all fuels are reported. Excellent mass closure (slope = 1.00, r2=0.94) 25 between ions, metals, and carbon with total weight was obtained. Organic carbon 26 emission factors inversely correlated (= 0.72) with MCE, while elemental carbon (EC) 27 had little correlation with MCE (=0.10). The EC/total carbon (TC) ratio sharply 28 increased with MCE for MCEs exceeding 0.94. The average levoglucosan and total Poly 29 Aromatic Hydrocarbons (PAH) emissions factors ranged from 25-1272 mg/kg fuel and 30 1790-11300 μg/kg fuel, respectively. No correlation between MCE and emissions of 31 PAHs/levoglucosan was found. Additionally, PAH diagnostic ratios were observed to be 32 poor indicators of biomass burning. Large fuel-type and regional dependency was 33 observed in the emission rates of ammonium, nitrate, fluoride, chloride, sodium, and

  10. Unidirectional emission from circular dielectric microresonators with a point scatterer

    International Nuclear Information System (INIS)

    Dettmann, C. P.; Morozov, G. V.; Sieber, M.; Waalkens, H.

    2009-01-01

    Circular microresonators are micron-sized dielectric disks embedded in material of lower refractive index. They possess modes of extremely high Q-factors (low-lasing thresholds), which makes them ideal candidates for the realization of miniature laser sources. They have, however, the disadvantage of isotropic light emission caused by the rotational symmetry of the system. In order to obtain high directivity of the emission while retaining high Q-factors, we consider a microdisk with a pointlike scatterer placed off-center inside of the disk. We calculate the resulting resonant modes and show that some of them possess both of the desired characteristics. The emission is predominantly in the direction opposite to the scatterer. We show that classical ray optics is a useful guide to optimizing the design parameters of this system. We further find that exceptional points in the resonance spectrum influence how complex resonance wave numbers change if system parameters are varied.

  11. Greenhouse Gas Emissions from Brazilian Sugarcane Soils

    Science.gov (United States)

    Carmo, J.; Pitombo, L.; Cantarella, H.; Rosseto, R.; Andrade, C.; Martinelli, L.; Gava, G.; Vargas, V.; Sousa-Neto, E.; Zotelli, L.; Filoso, S.; Neto, A. E.

    2012-04-01

    Bioethanol from sugarcane is increasingly seen as a sustainable alternative energy source. Besides having high photosynthetic efficiency, sugarcane is a perennial tropical grass crop that can re-grow up to five or more years after being planted. Brazil is the largest producer of sugarcane in the world and management practices commonly used in the country lead to lower rates of inorganic N fertilizer application than sugarcane grown elsewhere, or in comparison to other feedstocks such as corn. Therefore, Brazilian sugarcane ethanol potentially promotes greenhouse gas savings. For that reason, several recent studies have attempted to assess emissions of greenhouse gases (GHG) during sugarcane production in the tropics. However, estimates have been mainly based on models due to a general lack of field data. In this study, we present data from in situ experiments on emission of three GHG (CO2, N2O, and CH4) in sugarcane fields in Brazil. Emissions are provided for sugarcane in different phases of the crop life cycle and under different management practices. Our results show that the use of nitrogen fertilizer in sugarcane crops resulted in an emission factor for N2O similar to those predicted by IPCC (1%), ranging from 0.59% in ratoon cane to 1.11% in plant cane. However, when vinasse was applied in addition to mineralN fertilizer, emissions of GHG increased in comparison to those from the use of mineral N fertilizer alone. Emissions increased significantly when experiments mimicked the accumulation of cane trash on the soil surface with 14 tons ha-1and 21 tons ha-1, which emission factor were 1.89% and 3.03%, respectively. This study is representative of Brazilian sugarcane systems under specific conditions for key factors affecting GHG emissions from soils. Nevertheless, the data provided will improve estimates of GHG from Brazilian sugarcane, and efforts to assess sugarcane ethanol sustainability and energy balance. Funding provided by the São Paulo Research

  12. Micropillars with a controlled number of site-controlled quantum dots

    Science.gov (United States)

    Kaganskiy, Arsenty; Gericke, Fabian; Heuser, Tobias; Heindel, Tobias; Porte, Xavier; Reitzenstein, Stephan

    2018-02-01

    We report on the realization of micropillars with site-controlled quantum dots (SCQDs) in the active layer. The SCQDs are grown via the buried stressor approach which allows for the positioned growth and device integration of a controllable number of QDs with high optical quality. This concept is very powerful as the number and the position of SCQDs in the cavity can be simultaneously controlled by the design of the buried-stressor. The fabricated micropillars exhibit a high degree of position control for the QDs above the buried stressor and Q-factors of up to 12 000 at an emission wavelength of around 930 nm. We experimentally analyze and numerically model the cavity Q-factor, the mode volume, the Purcell factor, and the photon-extraction efficiency as a function of the aperture diameter of the buried stressor. Exploiting these SCQD micropillars, we experimentally observe a Purcell enhancement in the single-QD regime with FP = 4.3 ± 0.3.

  13. Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry

    Directory of Open Access Journals (Sweden)

    Lin Boqiang

    2017-07-01

    Full Text Available China is facing huge pressure on CO2 emissions reduction. The heavy industry accounts for over 60% of China’s total energy consumption, and thus leads to a large number of energy-related carbon emissions. This paper adopts the Log Mean Divisia Index (LMDI method based on the extended Kaya identity to explore the influencing factors of CO2 emissions from China’s heavy industry; we calculate the trend of decoupling by presenting a theoretical framework for decoupling. The results show that labor productivity, energy intensity, and industry scale are the main factors affecting CO2 emissions in the heavy industry. The improvement of labor productivity is the main cause of the increase in CO2 emissions, while the decline in energy intensity leads to CO2 emissions reduction, and the industry scale has different effects in different periods. Results from the decoupling analysis show that efforts made on carbon emission reduction, to a certain extent, achieved the desired outcome but still need to be strengthened.

  14. A New GCD Algorithm for Quadratic Number Rings with Unique Factorization

    DEFF Research Database (Denmark)

    Agarwal, Saurabh; Frandsen, Gudmund Skovbjerg

    2006-01-01

    We present an algorithm to compute a greatest common divisor of two integers in a quadratic number ring that is a unique factorization domain. The algorithm uses bit operations in a ring of discriminant Δ. This appears to be the first gcd algorithm of complexity o(n 2) for any fixed non-Euclidean...

  15. Emission of hydrogen sulfide (H2S) at a waterfall in a sewer: study of main factors affecting H2S emission and modeling approaches.

    Science.gov (United States)

    Jung, Daniel; Hatrait, Laetitia; Gouello, Julien; Ponthieux, Arnaud; Parez, Vincent; Renner, Christophe

    2017-11-01

    Hydrogen sulfide (H 2 S) represents one of the main odorant gases emitted from sewer networks. A mathematical model can be a fast and low-cost tool for estimating its emission. This study investigates two approaches to modeling H 2 S gas transfer at a waterfall in a discharge manhole. The first approach is based on an adaptation of oxygen models for H 2 S emission at a waterfall and the second consists of a new model. An experimental set-up and a statistical data analysis allowed the main factors affecting H 2 S emission to be studied. A new model of the emission kinetics was developed using linear regression and taking into account H 2 S liquid concentration, waterfall height and fluid velocity at the outlet pipe of a rising main. Its prediction interval was estimated by the residual standard deviation (15.6%) up to a rate of 2.3 g H 2 S·h -1 . Finally, data coming from four sampling campaigns on sewer networks were used to perform simulations and compare predictions of all developed models.

  16. Ammonia emission factors from broiler litter in barns, in storage, and after land application.

    Science.gov (United States)

    Moore, Philip A; Miles, Dana; Burns, Robert; Pote, Dan; Berg, Kess; Choi, In Hag

    2011-01-01

    We measured NH₃ emissions from litter in broiler houses, during storage, and after land application and conducted a mass balance of N in poultry houses. Four state-of-the-art tunnel-ventilated broiler houses in northwest Arkansas were equipped with NH₃ sensors, anemometers, and data loggers to continuously record NH₃ concentrations and ventilation for 1 yr. Gaseous fluxes of NH₃, N₂O, CH₄, and CO₂ from litter were measured. Nitrogen (N) inputs and outputs were quantified. Ammonia emissions during storage and after land application were measured. Ammonia emissions during the flock averaged approximately 15.2 kg per day-house (equivalent to 28.3 g NH₃per bird marketed). Emissions between flocks equaled 9.09 g NH₃ per bird. Hence, in-house NH₃ emissions were 37.5 g NH₃ per bird, or 14.5 g kg(-1) bird marketed (50-d-old birds). The mass balance study showed N inputs for the year to the four houses totaled 71,340 kg N, with inputs from bedding, chicks, and feed equal to 303, 602, and 70,435 kg, respectively (equivalent to 0.60, 1.19, and 139.56 g N per bird). Nitrogen outputs totaled 70,396 kg N. Annual N output from birds marketed, NH₃ emissions, litter or cake, mortality, and NO₂ emissions was 39,485, 15,571, 14,464, 635, and 241 kg N, respectively (equivalent to 78.2, 30.8, 28.7, 1.3, and 0.5 g N per bird). The percent N recovery for the N mass balance study was 98.8%. Ammonia emissions from stacked litter during a 16-d storage period were 172 g Mg(-1) litter, which is equivalent to 0.18 g NH₃ per bird. Ammonia losses from poultry litter broadcast to pastures were 34 kg N ha (equivalent to 15% of total N applied or 7.91 g NH₃ per bird). When the litter was incorporated into the pasture using a new knifing technique, NH₃ losses were virtually zero. The total NH₃ emission factor for broilers measured in this study, which includes losses in-house, during storage, and after land application, was 45.6 g NH₃ per bird marketed. by the

  17. FTIR Emission spectroscopy of surfaces

    Science.gov (United States)

    Van Woerkom, P. C. M.

    A number of vibrational spectroscopic techniques are available For the study of surfaces, such as ATR, IR reflection-absorption, IR emission, etc. Infrared emission is hardly used, although interesting applications are possible now due to the high sensitivity of Fourier transform IR (FTIR) spectrometers. Two examples, where infrared emission measurements are very fruitful, will be given. One is the investigation of the curing behaviour of organic coatings, the other is the in situ study of heterogeneously catalyzed reactions. Undoubtedly, infrared emission measurements offer a number of specific advantages in some cases. Especially the less critical demands on the sample preparation are important.

  18. On the indiscriminate use of imported emission factors in environmental impact assessment: A case study in Chile

    International Nuclear Information System (INIS)

    Bernal, María Fernanda; Oyarzún, Jorge; Oyarzún, Ricardo

    2017-01-01

    Environmental Impact Assessment (EIA) aims to determine if the environmental effect of an activity or project complies with standards and regulations. A primary component of the environment to evaluate is air and the effect that various activities can have on its quality. To this end, emission factors (EFs), which are empirical coefficients or mathematical relationships, are normally used. The present research critically analyzes the implications and consequences of using imported EFs in environmental impact studies (EISs), taking as case of study the situation in Chile. Among the main results, the widespread use of EFs in EISs in the country and the lack of assessments of their actual applicability stand out. In addition, the official guidelines related to emissions estimation that are used for EIA in the country mostly include EFs derived elsewhere, without considering the recommendations or restrictions that the original sources indicate for their use. Finally, the broad use of default values defined for the Metropolitan Region in Central Chile, is highly questionable for a country that extends north-south along more than 35° of latitude, with wide variability in climate, traffic conditions, population, soil types, etc. Finally, it is very likely that situations similar to those observed in the present work occurs in other countries with young environmental impact assessment systems, and therefore, that the results herein presented should be of general interest and relevance. - Highlights: • Emission factors are widely used in environmental impact assessment in Chile. • There is a lack of a proper understanding of the limitations of EFs for EIA. • Imported emission factors use requires caution and full understanding. • Misuse of foreign EFs may have serious environmental and economic consequences.

  19. On the indiscriminate use of imported emission factors in environmental impact assessment: A case study in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, María Fernanda [Civil and Environmental Engineering, Universidad de La Serena (Chile); Oyarzún, Jorge [Department of Mining Engineering, Universidad de La Serena (Chile); Oyarzún, Ricardo, E-mail: royarzun@userena.cl [Department of Mining Engineering, Universidad de La Serena (Chile); Centro de Estudios Avanzados en Zonas Aridas, La Serena (Chile)

    2017-05-15

    Environmental Impact Assessment (EIA) aims to determine if the environmental effect of an activity or project complies with standards and regulations. A primary component of the environment to evaluate is air and the effect that various activities can have on its quality. To this end, emission factors (EFs), which are empirical coefficients or mathematical relationships, are normally used. The present research critically analyzes the implications and consequences of using imported EFs in environmental impact studies (EISs), taking as case of study the situation in Chile. Among the main results, the widespread use of EFs in EISs in the country and the lack of assessments of their actual applicability stand out. In addition, the official guidelines related to emissions estimation that are used for EIA in the country mostly include EFs derived elsewhere, without considering the recommendations or restrictions that the original sources indicate for their use. Finally, the broad use of default values defined for the Metropolitan Region in Central Chile, is highly questionable for a country that extends north-south along more than 35° of latitude, with wide variability in climate, traffic conditions, population, soil types, etc. Finally, it is very likely that situations similar to those observed in the present work occurs in other countries with young environmental impact assessment systems, and therefore, that the results herein presented should be of general interest and relevance. - Highlights: • Emission factors are widely used in environmental impact assessment in Chile. • There is a lack of a proper understanding of the limitations of EFs for EIA. • Imported emission factors use requires caution and full understanding. • Misuse of foreign EFs may have serious environmental and economic consequences.

  20. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    Science.gov (United States)

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  1. Cooking with Fire: The Mutagenicity- and PAH-Emission ...

    Science.gov (United States)

    Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. We evaluated two categories of solid-fuel cookstoves for 8 pollutant- and 4 mutagenicity-emission factors, correlated the mutagenicity-emission factors, and compared them to those of other combustion emissions. We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS); we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Other than NOx the emission factors per MJd correlated highly among each other (r2 ≥ 0.92); NOx correlated 0.58-0.76 with the other emission factors. Excluding NOx, the NDS and FDS reduced the emission factors on average 68 and 92%, respectively, relative to the TSF. Nonetheless, the mutagenicity-emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was intermediate to that of a large diesel bus engine and a small diesel generator. Both mutagenicity- and pollutant-emission factors may be informative for characterizing cookstove

  2. Factors that determine the emission of gaseous and particle pollutants for the combustion of fossil fuels

    International Nuclear Information System (INIS)

    Bobadilla Edgar; Gomez Elias; Ramirez Beatriz

    1997-01-01

    The effect of physical-chemical, kinetic, estequiometric factors and of the mixture conditions on the emissions of five main classes of pollutants produced by the combustion equipments is analyzed. The emissions of monoxide of carbon (CO) are ruled by temperature and the proportion air - fuel. The production of nitrogen oxides (NOx) is determined by operation conditions (mainly temperature) and the composition of the fuel. The oxides of sulfur (SOx) are highly influenced by the temperature; in general, the formation of SO2 is faster than the oxidation of SO3. The temperature and the degree of homogenization of the mixture are decisive in the formation of organic volatile compounds. The emission of soot and fine ashes depends basically on the temperature, ratio air - fuel and conditions of homogenization of the mixture

  3. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies

    Directory of Open Access Journals (Sweden)

    Hero Alfred

    2010-11-01

    Full Text Available Abstract Background Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP, the Indian Buffet Process (IBP, and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB analysis. Results Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV, Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD, closely related non-Bayesian approaches. Conclusions Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

  4. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies.

    Science.gov (United States)

    Chen, Bo; Chen, Minhua; Paisley, John; Zaas, Aimee; Woods, Christopher; Ginsburg, Geoffrey S; Hero, Alfred; Lucas, Joseph; Dunson, David; Carin, Lawrence

    2010-11-09

    Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

  5. Particulate Emissions and Biodiesel: A review

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2013-05-01

    Full Text Available Abstract The current mode of transport using fuel it cannot be characterized as harmless to human health or as sustainable. The whole process of extracting, processing and using of petroleum products can be seen as the raw material cycle in nature. This cycle also cause serious damage to the environment and human health. Many studies on air pollutant emissions with biodiesel have been carried out worldwide. Studies have shown that diesel-powered vehicles are the major contributors of PM emissions. PM particulates are especially important in regard to adverse health outcomes, such as increased cardiovascular, respiratory morbidity and mortality rates, due to their larger active surface and the higher likelihood of deposition in the alveolar region of the lungs. Hence, it is overwhelming argument that the use of biodiesel instead of diesel causes reduce of PM emissions. Of course, this reduction will become smaller with the reduction of biodiesel proportion in the blended fuel. The trend with which PM emissions of biodiesel will be reduced, is due to lower aromatic and sulfur compounds and higher cetane number for biodiesel, but the more important factor is the higher oxygen content.

  6. Fate factors and emission flux estimates for emerging contaminants in surface waters

    Directory of Open Access Journals (Sweden)

    Hoa T. Trinh

    2016-01-01

    Full Text Available Pharmaceuticals, personal care products, hormones, and wastewater products are emerging environmental concerns for manifold reasons, including the potential of some compounds found in these products for endocrine disruption at a very low chronic exposure level. The environmental occurrences and sources of these contaminants in the water, soil, sediment and biota in European nations and the United States are well documented. This work reports a screening-level emission and fate assessment of thirty compounds, listed in the National Reconnaissance of the United States Geological Survey (USGS, 1999–2000 as the most frequently detected organic wastewater contaminants in U.S. streams and rivers. Estimations of the surface water fate factors were based on Level II and Level III multimedia fugacity models for a 1000 km2 model environment, the size of a typical county in the eastern United States. The compounds are categorized into three groups based upon the sensitivity of their predicted surface water fate factors to uncertainties in their physicochemical property values and the landscape parameters. The environmental fate factors, mass distributions, and loss pathways of all of the compounds are strongly affected by their assumed modes of entry into the environment. It is observed that for thirteen of the thirty organic wastewater contaminants most commonly detected in surface waters, conventional treatment strategies may be ineffective for their removal from wastewater effluents. The surface water fate factors predicted by the fugacity models were used in conjunction with the surface water concentrations measured in the USGS reconnaissance to obtain emission flux estimates for the compounds into U.S. streams and rivers. These include estimated fluxes of 6.8 × 10−5 to 0.30 kg/h km2 for the biomarker coprostanol; 1.7 × 10−5 to 6.5 × 10−5 kg/h km2 for the insect repellent N,N-diethyltoluamide; and 4.3 × 10−6 to 3.1 × 10−5 kg/h km2 for

  7. International emissions trading

    DEFF Research Database (Denmark)

    Boom, Jan Tjeerd

    This thesis discusses the design and political acceptability of international emissions trading. It is shown that there are several designs options for emissions trading at the national level that have a different impact on output and thereby related factors such as employment and consumer prices....... The differences in impact of the design make that governments may prefer different designs of emissions trading in different situations. The thesis furthermore establishes that international emissions trading may lead to higher overall emissions, which may make it a less attractive instrument....

  8. Impact of the number of aspiration risk factors on mortality and recurrence in community-onset pneumonia

    Directory of Open Access Journals (Sweden)

    Noguchi S

    2017-12-01

    Full Text Available Shingo Noguchi,1 Kazuhiro Yatera,1 Tatsuji Kato,2 Yasuo Chojin,2 Yoshihisa Fujino,3 Kentaro Akata,1 Toshinori Kawanami,1 Noriho Sakamoto,4 Hiroshi Mukae4 1Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; 2Department of Respiratory Medicine, Tobata Kyoritsu Hospital, Kitakyushu, Japan; 3Department of Preventive Medicine and Community Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; 4Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan Introduction: The clinical significance of the number of aspiration risk factors in patients with pneumonia is unknown as yet. In the present study, we clarify the significance of the number of aspiration risk factors for mortality and recurrence in pneumonia patients.Methods: This study included 322 patients hospitalized with pneumonia between December 2014 and June 2016. We investigated associations between the number of aspiration risk factors present (orientation disturbance, bedridden, chronic cerebrovascular disease, dementia, sleeping medications and gastroesophageal disease and 30-day and 6-month mortality, and pneumonia recurrence within 30 days.Results: Patients were categorized by number of risk factors present into groups of 0–1, 2, 3, and 4 or more. Of a total of 322 patients, 93 (28.9% had 0–1 risk factors, 112 (34.8% had 2, 88 (27.3% had 3, and 29 (9.0% had 4 or more risk factors. The percentages of patients with recurrence of pneumonia were 13.0%, 33.0%, 43.2%, and 54.2% in the 0–1, 2, 3, and 4 or more risk factor groups, respectively. The percentages of patients with 30-day mortality were 2.2%, 5.4%, 11.4%, and 24.1%, and those of patients with 6-month mortality were 6.6%, 24.5%, 30.7%, and 50.0%, in the 0–1, 2, 3, and 4 or more risk factor groups, respectively.Conclusions: The number of

  9. Biomass Burning Emissions in the Cerrado of Brazil Computed with Remote Sensing Data and GIS

    Science.gov (United States)

    Guild, Liane S.; Brass, James A.; Chatfield, Robert B.; Hlavka, Christine A.; Riggan, Philip J.; Setzer, Alberto; Pereira, Joao A. Raposo; Peterson, David L. (Technical Monitor)

    1994-01-01

    Biomass burnin is a common force in much of the developing tropical world where it has wide-ranging environmental impacts. Fire is a component of tropical deforestation and is 0 p often used to clear broad expanses of land for shifting agriculture and cattle ranching. Frequent burning in the tropical savannas is a distinct problem from that of primary forest. In Brazil, most of the burning occurs in the cerrado which occupies approximately 1,800,000 km2, primarily on the great plateau in central Brazil. Wildland and agricultural fires are dramatic sources of regional air pollution in central Brazil. Biomass burning is an important source of a large number of trace gases including greenhouse gases and other chemically active species. Knowledge of trace gas emissions from biomass burning in Brazil is limited by a number of factors, most notably relative emission factors for gases from specific fire types/fuels and accurate estimates of temporal and spatial distribution and extent of fire activity. Estimates of trace gas emissions during September 1992 will be presented that incorporates a digital map of vegetation classes, pyrogenic emission factors calculated from ground and aircraft missions, and Instituto Nacional de Pesquisas Espaciais (INPE) fire products derived from Advanced Very High Resolution Radiometer (AVHRR) data. The regional emissions calculated from National Oceanographic and Atmospheric Administration (NOAA) AVHRR estimates of fire activity will provide an independent estimate for comparison with results obtained by the National Aeronautics and Space Administration (NASA) Transport and Atmospheric Chemistry Near the Equator - Atlantic (TRACE-A) experiments.

  10. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle

    Science.gov (United States)

    Aurell, J.; Mitchell, W.; Chirayath, V.; Jonsson, J.; Tabor, D.; Gullett, B.

    2017-10-01

    An emission sensor/sampler system was coupled to a National Aeronautics and Space Administration (NASA) hexacopter unmanned aerial vehicle (UAV) to characterize gases and particles in the plumes emitted from open burning of military ordnance. The UAV/sampler was tested at two field sites with test and sampling flights spanning over 16 h of flight time. The battery-operated UAV was remotely maneuvered into the plumes at distances from the pilot of over 600 m and at altitudes of up to 122 m above ground level. While the flight duration could be affected by sampler payload (3.2-4.6 kg) and meteorological conditions, the 57 sampling flights, ranging from 4 to 12 min, were typically terminated when the plume concentrations of CO2 were diluted to near ambient levels. Two sensor/sampler systems, termed ;Kolibri,; were variously configured to measure particulate matter, metals, chloride, perchlorate, volatile organic compounds, chlorinated dioxins/furans, and nitrogen-based organics for determination of emission factors. Gas sensors were selected based on their applicable concentration range, light weight, freedom from interferents, and response/recovery times. Samplers were designed, constructed, and operated based on U.S. Environmental Protection Agency (EPA) methods and quality control criteria. Results show agreement with published emission factors and good reproducibility (e.g., 26% relative standard deviation for PM2.5). The UAV/Kolibri represents a significant advance in multipollutant emission characterization capabilities for open area sources, safely and effectively making measurements heretofore deemed too hazardous for personnel or beyond the reach of land-based samplers.

  11. Study on Influencing Factors of Carbon Emissions from Energy Consumption of Shandong Province of China from 1995 to 2012

    Science.gov (United States)

    Song, Jiekun; Song, Qing; Zhang, Dong; Lu, Youyou; Luan, Long

    2014-01-01

    Carbon emissions from energy consumption of Shandong province from 1995 to 2012 are calculated. Three zero-residual decomposition models (LMDI, MRCI and Shapley value models) are introduced for decomposing carbon emissions. Based on the results, Kendall coordination coefficient method is employed for testing their compatibility, and an optimal weighted combination decomposition model is constructed for improving the objectivity of decomposition. STIRPAT model is applied to evaluate the impact of each factor on carbon emissions. The results show that, using 1995 as the base year, the cumulative effects of population, per capita GDP, energy consumption intensity, and energy consumption structure of Shandong province in 2012 are positive, while the cumulative effect of industrial structure is negative. Per capita GDP is the largest driver of the increasing carbon emissions and has a great impact on carbon emissions; energy consumption intensity is a weak driver and has certain impact on carbon emissions; population plays a weak driving role, but it has the most significant impact on carbon emissions; energy consumption structure is a weak driver of the increasing carbon emissions and has a weak impact on carbon emissions; industrial structure has played a weak inhibitory role, and its impact on carbon emissions is great. PMID:24977216

  12. Study on Influencing Factors of Carbon Emissions from Energy Consumption of Shandong Province of China from 1995 to 2012

    Directory of Open Access Journals (Sweden)

    Jiekun Song

    2014-01-01

    Full Text Available Carbon emissions from energy consumption of Shandong province from 1995 to 2012 are calculated. Three zero-residual decomposition models (LMDI, MRCI and Shapley value models are introduced for decomposing carbon emissions. Based on the results, Kendall coordination coefficient method is employed for testing their compatibility, and an optimal weighted combination decomposition model is constructed for improving the objectivity of decomposition. STIRPAT model is applied to evaluate the impact of each factor on carbon emissions. The results show that, using 1995 as the base year, the cumulative effects of population, per capita GDP, energy consumption intensity, and energy consumption structure of Shandong province in 2012 are positive, while the cumulative effect of industrial structure is negative. Per capita GDP is the largest driver of the increasing carbon emissions and has a great impact on carbon emissions; energy consumption intensity is a weak driver and has certain impact on carbon emissions; population plays a weak driving role, but it has the most significant impact on carbon emissions; energy consumption structure is a weak driver of the increasing carbon emissions and has a weak impact on carbon emissions; industrial structure has played a weak inhibitory role, and its impact on carbon emissions is great.

  13. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand

    International Nuclear Information System (INIS)

    Kelliher, F.M.; Cox, N.; Weerden, T.J. van der; Klein, C.A.M. de; Luo, J.; Cameron, K.C.; Di, H.J.; Giltrap, D.; Rys, G.

    2014-01-01

    Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N 2 O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p 12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain. -- Highlights: • Nitrous oxide emission factors (EFs) for pastoral soils measured in 185 field trials. • For lowland, the mean (±standard error) urea nitrogen fertiliser EF was 0.5 ± 0.1%. • For lowland, mean dairy cattle urine and dung EFs were 1.2 and 0.2%, respectively. • For lowland, mean sheep urine and dung EFs were 0.6 and 0.1%, respectively. • For pastoral soils in terrain with slopes >12°, mean EFs were significantly lower. -- From 185 field trials, mean nitrous oxide emission factors for pastoral soils were 0.1% for sheep dung up to 1.2% for dairy cattle urine, while that for urea fertiliser was 0.5%

  14. Assessing the difference. Greenhouse gas emissions of electricity generation chains

    International Nuclear Information System (INIS)

    Spadaro, J.V.; Langlois, L.; Hamilton, B.

    2000-01-01

    Greenhouse gases have to the potential to influence global climate change by interfering with the natural process of heat exchange between the earth's atmosphere and outer space. Reducing atmospheric GHG concentrations have become an international priority as evidenced by the signing of the Kyoto Protocol, which would reduce emissions from industrialized countries (Annex 1) by about 5% below 1990 levels during the commitment period 2008-12. There are a number of technical options that could be implemented in order to achieve the proposed reduction target. As for emissions related to electricity generation, perhaps the most important factor over the near term is the improvement in efficiency of using energy at all the stages of the fuel cycle, including fuel preparation and transportation, fuel-to-electricity conversion at the power plant and at the point of end-use (which has not been considered here). Strategies for reducing methane releases during fuel mining and during gas transmission are very relevant. Switching to less carbon intensive or low carbon fuels, such as gas, nuclear power and renewables, will play a major role in reducing emissions. These changes are technically feasible using present day knowledge and experience, require minimal changes in consumer lifestyle, and represent reasonable capital turnover (gas and nuclear for baseload generation and renewables in niche markets or for peak load applications). This article has presented information on GHG emission factors for different fuels using a Full Energy Chain approach, which attempts to quantify the environmental emissions from all stages of electricity generation, i.e. 'cradle-to-grave'. Fossil-fueled technologies have the highest emission factors, with coal typically twice as high as natural gas. Considering the large variations in fuel- to-electricity conversion technology, it can be said that GHG emission factors can be an order of magnitude higher than current solar PV systems and up to two

  15. Generalized Identities Involving Common Factors of Generalized Fibonacci, Jacobsthal and Jacobsthal-Lucas Numbers

    Directory of Open Access Journals (Sweden)

    Yashwant K. Panwar

    2013-08-01

    Full Text Available In this paper, we present generalized identities involving common factors of generalized Fibonacci, Jacobsthal and jacobsthal-Lucas numbers. Binet’s formula will employ to obtain the identities.

  16. Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Lee, C.; Kim, H.

    2010-01-01

    Considering the probabilistic distributions of fibers in ring-type steel fiber reinforced concrete, the orientation factor and the number of ring-type steel fibers crossing the failure plane were theoretically derived as a function of fiber geometry, specimen dimensions, and fiber volume fraction. A total number of 24 specimens were tested incorporating different fiber types, specimen geometry, and fiber volume fractions of 0.2% and 0.4%: 5 beams and 5 panels containing straight steel fibers; and 6 beams and 8 panels containing ring-type steel fibers. Measurements were made to assess the number of fibers at fractured surfaces of steel fiber reinforced concrete. The developed theoretical expressions reasonably predicted the orientation factor and the number of ring-type steel fibers at failure plane: the average and the standard deviation for the ratios of the test to theory were 1.03 and 0.26, respectively. Theoretical investigations and comparisons were made for the values of orientation factor and the number of fibers at failure plane for straight steel fibers and ring-type steel fibers.

  17. Evaluating Nitrogen Oxides and Ultrafine Particulate Matter Emission Features of Urban Bus Based on Real-World Driving Conditions in the Yangtze River Delta Area, China

    Directory of Open Access Journals (Sweden)

    Dengguo Liu

    2018-06-01

    Full Text Available A Portable Emission Measurement System was used in this study to evaluate the exhaust emission characteristics of nitrogen oxides (NOx, ultrafine particulate matter (PM, and ultrafine particulate number (PN from buses in the Yangtze River Delta, China. Results showed that NOx emission factor (unit: g·km−1 increased from 5.0 to 19.1, and PM emission factor (unit: g·km−1 increased from 0.001 to 0.189. A nonlinear model was established based on scientific statistical method, which showed that NOx and PM emission factors significantly decreased with speed increasing. The model also showed a “long tail effect” of NOx and PM emission factors beyond 30 km·h−1. Furthermore, hybrid bus exhausted less NOx, PM, and PN emissions compared to conventional bus in the acceleration condition. Exhaust rates of NOx, PM and PN emissions (unit: g·s−1 increased with speed increasing under steady state driving condition, while PN emissions commonly showed a unimodal distribution at the speed of 20 km·h−1.

  18. Iron Ore Industry Emissions as a Potential Ecological Risk Factor for Tropical Coastal Vegetation

    Science.gov (United States)

    Kuki, Kacilda N.; Oliva, Marco A.; Pereira, Eduardo G.

    2008-07-01

    In the coastal zone of the Espírito Santo state, Brazil, fragments of restinga, which form a natural ecosystem, share their space with an increasing number of iron ore industries. The iron ore dust and SO2 originating from the industry processing activities can interfere with the vegetation of the adjacent ecosystems at various levels. This study was undertaken in order to evaluate the effects of industry emissions on representative members of the restinga flora, by measuring physiological and phenological parameters. Foliar samples of Ipomoea pes caprae, Canavalia rosea, Sophora tomentosa, and Schinus terebinthifolius were collected at three increasing distances from an ore industry (1.0, 5.0, and 15.0 km), and were assessed for their dust deposition, chlorophyll, and Fe content. Phenological monitoring was focused on the formation of shoots, flowers, and fruits and was also performed throughout the course of a year. The results showed that the edaphic characteristics and the mineral constitutions of the plants were affected by industry emissions. In addition, the chlorophyll content of the four species increased with proximity to the industry. Phenological data revealed that the reproductive effort, as measured by fruit production, was affected by emissions and S. tomentosa was the most affected species. The use of an integrative approach that combines biochemical and ecological data indicates that the restinga flora is under stress due to industry emissions, which on a long-term basis may put the ecosystem at risk.

  19. L'Anse Warden Electric Company Boiler Number One Emission Test Report – March 2017

    Science.gov (United States)

    L’Anse Warden Electric Company (LWEC) submitted results from an emission test on the Boiler No. 1 stack. Stack air emission testing was conducted in March 2017, and the report became available in June 2017

  20. L'Anse Warden Electric Company Boiler Number One Emission Test Report – December 2016

    Science.gov (United States)

    L’Anse Warden Electric Company (LWEC) submitted results from an emission test on the Boiler No. 1 stack. Stack air emission testing was conducted in December 2016, and the report became available in January 2017

  1. L'Anse Warden Electric Company Boiler Number One Emission Test Report – July 2016

    Science.gov (United States)

    L’Anse Warden Electric Company (LWEC) submitted results from an emission test on the Boiler No. 1 stack. Stack air emission testing was conducted in July 2016, and the report became available in August 2016.

  2. L'Anse Warden Electric Company Boiler Number One Emission Test Report – June 2017

    Science.gov (United States)

    L’Anse Warden Electric Company (LWEC) submitted results from an emission test on the Boiler No. 1 stack. Stack air emission testing was conducted in March 2017, and the report became available in June 2017

  3. Development of net energy ratio and emission factor for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2014-01-01

    of this study was to evaluate the energy performance, reduce GHG and acid rain precursor emission, and use of biomass for different outputs based on demand. Finally, a sensitivity analysis and a comparative study ar conducted for expected technological improvements and factors that could increase the energy......, methanol and methane. Circulating fluidized bed gasifier and the gas technology institute (GTI) gasifier technologies are used for this quad-generation process. Two different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1...

  4. Studying the Impacts of Environmental Factors and Agricultural Management on Methane Emissions from Rice Paddies Using a Land Surface Model

    Science.gov (United States)

    Lin, T. S.; Gahlot, S.; Shu, S.; Jain, A. K.; Kheshgi, H. S.

    2017-12-01

    Continued growth in population is projected to drive increased future demand for rice and the methane emissions associated with its production. However, observational studies of methane emissions from rice have reported seemingly conflicting results and do not all support this projection. In this study we couple an ecophysiological process-based rice paddy module and a methane emission module with a land surface model, Integrated Science Assessment Model (ISAM), to study the impacts of various environmental factors and agricultural management practices on rice production and methane emissions from rice fields. This coupled modeling framework accounts for dynamic rice growth processes with adaptation of photosynthesis, rice-specific phenology, biomass accumulation, leaf area development and structures responses to water, temperature, light and nutrient stresses. The coupled model is calibrated and validated with observations from various rice cultivation fields. We find that the differing results of observational studies can be caused by the interactions of environmental factors, including climate, atmospheric CO2 concentration, and N deposition, and agricultural management practices, such as irrigation and N fertilizer applications, with rice production at spatial and temporal scales.

  5. The ABAG biogenic emissions inventory project

    Science.gov (United States)

    Carson-Henry, C. (Editor)

    1982-01-01

    The ability to identify the role of biogenic hydrocarbon emissions in contributing to overall ozone production in the Bay Area, and to identify the significance of that role, were investigated in a joint project of the Association of Bay Area Governments (ABAG) and NASA/Ames Research Center. Ozone, which is produced when nitrogen oxides and hydrocarbons combine in the presence of sunlight, is a primary factor in air quality planning. In investigating the role of biogenic emissions, this project employed a pre-existing land cover classification to define areal extent of land cover types. Emission factors were then derived for those cover types. The land cover data and emission factors were integrated into an existing geographic information system, where they were combined to form a Biogenic Hydrocarbon Emissions Inventory. The emissions inventory information was then integrated into an existing photochemical dispersion model.

  6. Characterization of road freight transportation and its impact on the national emission inventory in China

    Science.gov (United States)

    Yang, X. F.; Liu, H.; Man, H. Y.; He, K. B.

    2014-06-01

    Mobile source emission inventories serve as critical input for atmospheric chemical transport models, which are used to simulate air quality and understand the role of mobile source emissions. The significance of mobile sources is even more important in China because the country has the largest vehicle population in the world, and that population continues to grow rapidly. Estimating emissions from diesel trucks is a critical work in mobile source emission inventories due to the importance and difficulties associated with estimating emissions from diesel trucks. Although diesel trucks are major contributors of nitrogen oxide (NOx) and primary particulate matter smaller than 2.5 μm (PM2.5), there are still more obstacles on the existing estimation of diesel truck emissions compared with that of cars; long-range freight transportation activities are complicated, and much of the basic data remain unclear. Most of existing inventories were based on local registration number. However, according to our research, a large number of trucks are conducting long-distance inter-city or inter province transportation. Instead of the local registration number based approach, a road emission intensity-based (REIB) approach is introduced in this research. To provide efficient data for the REIB approach, 1060 questionnaire responses and approximately 1.7 million valid seconds of onboard GPS monitoring data were collected. Both the questionnaire answers and GPS monitoring results indicated that the driving conditions on different types of road have significant impacts on the emission levels of freight trucks. We present estimated emissions of NOx and primary PM2.5 from diesel freight trucks for China in 2011. Using the REIB approach, the activity level and distribution data are obtained from the questionnaire answers. Emission factors are calculated with the International Vehicle Emission (IVE) model that interpolated local on-board measurement results in China according to the GPS

  7. Spatiotemporal Characteristics, Determinants and Scenario Analysis of CO2 Emissions in China Using Provincial Panel Data.

    Science.gov (United States)

    Wang, Shaojian; Fang, Chuanglin; Li, Guangdong

    2015-01-01

    This paper empirically investigated the spatiotemporal variations, influencing factors and future emission trends of China's CO2 emissions based on a provincial panel data set. A series of panel econometric models were used taking the period 1995-2011 into consideration. The results indicated that CO2 emissions in China increased over time, and were characterized by noticeable regional discrepancies; in addition, CO2 emissions also exhibited properties of spatial dependence and convergence. Factors such as population scale, economic level and urbanization level exerted a positive influence on CO2 emissions. Conversely, energy intensity was identified as having a negative influence on CO2 emissions. In addition, the significance of the relationship between CO2 emissions and the four variables varied across the provinces based on their scale of economic development. Scenario simulations further showed that the scenario of middle economic growth, middle population increase, low urbanization growth, and high technology improvement (here referred to as Scenario BTU), constitutes the best development model for China to realize the future sustainable development. Based on these empirical findings, we also provide a number of policy recommendations with respect to the future mitigation of CO2 emissions.

  8. Real-world emissions of in-use off-road vehicles in Mexico.

    Science.gov (United States)

    Zavala, Miguel; Huertas, Jose Ignacio; Prato, Daniel; Jazcilevich, Aron; Aguilar, Andrés; Balam, Marco; Misra, Chandan; Molina, Luisa T

    2017-09-01

    Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO 2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20-60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off

  9. Key numbers: Energy

    International Nuclear Information System (INIS)

    1994-01-01

    The key numbers of energy give statistical data related to production, consumption, and to foreign trade of each energy in the World and in France. A chapter is dedicated to environment and brings quantitative elements on pollutant emissions connected to energy uses

  10. Airborne emission measurements of SO2, NOx and particles from individual ships using sniffer technique

    Science.gov (United States)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2013-12-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircrafts. The system has been adapted for fast response measurements at 1 Hz and the use of several of the instruments is unique. The uncertainty of the given data is about 20.3% for SO2 and 23.8% for NOx emission factors. Multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kgfuel-1, 66.6 ± 23.4 g kgfuel-1, and 1.8 ± 1.3 × 1016 particles kgfuel-1 for SO2, NOx and particle number respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 50 and 62 nm dependent on the distance to the source and the number size distribution is mono-modal. Concerning the sulfur fuel content 85% of the ships comply with the IMO limits. The sulfur emission has decreased compared to earlier measurements from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  11. Control of nitrous oxide emission from Chironomus plumosus larvae by nitrate and temperatur

    DEFF Research Database (Denmark)

    Stief, Peter; Polerecky, Lubos; Poulsen, Morten

    2010-01-01

    Aquatic invertebrates that ingest large numbers of bacteria produce substantial amounts of the greenhouse gas N2O because of incomplete denitrification in their anoxic gut. We investigated the influence of two key environmental factors, temperature and NO3- availability, on N2O emission from larv...

  12. Aerosol emissions factors from traditional biomass cookstoves in India: insights from field measurements

    Directory of Open Access Journals (Sweden)

    A. Pandey

    2017-11-01

    Full Text Available Residential solid biomass cookstoves are important sources of aerosol emissions in India. Cookstove emissions rates are largely based on laboratory experiments conducted using the standard water-boiling test, but real-world emissions are often higher owing to different stove designs, fuels, and cooking methods. Constraining mass emissions factors (EFs for prevalent cookstoves is important because they serve as inputs to bottom-up emissions inventories used to evaluate health and climate impacts. Real-world EFs were measured during winter 2015 for a traditional cookstove (chulha burning fuel wood, agricultural residue, and dung from different regions of India. Average (±95 % confidence interval EFs for fuel wood, agricultural residue, and dung were (1 PM2.5 mass: 10.5 (7.7–13.4 g kg−1, 11.1 (7.7–15.5 g kg−1, and 22.6 (14.9–32.9 g kg−1, respectively; (2 elemental carbon (EC: 0.9 (0.6–1.4 g kg−1, 1.6 (0.6–3.0 g kg−1, and 1.0 (0.4–2.0 g kg−1, respectively; and (3 organic carbon (OC: 4.9 (3.2–7.1 g kg−1, 7.0 (3.5–12.5 g kg−1, and 12.9 (4.2–15.01 g kg−1, respectively. The mean (±95 % confidence interval OC ∕ EC mass ratios were 6.5 (4.5–9.1, 7.6 (4.4–12.2, and 12.7 (6.5–23.3, respectively, with OC and EC quantified by the IMPROVE_A thermal-optical reflectance protocol. These real-world EFs are higher than those from previous laboratory-based measurements. Combustion conditions have larger effects on EFs than the fuel types. We also report the carbon mass fractions of our aerosol samples determined using the thermal-optical reflectance method. The mass fraction profiles are consistent between the three fuel categories but markedly different from those reported in past literature – including the source profiles for wood stove PM2.5 emissions developed as inputs to receptor modeling studies conducted by the Central Pollution Control Board of India. Thermally

  13. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2013-01-01

    Full Text Available An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5 emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC, organic carbon (OC, and 38 elements. The trace gas emissions were measured by an open-path Fourier transform infrared (OP-FTIR spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS, proton-transfer ion-trap mass spectrometry (PIT-MS, negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS, and gas chromatography with MS detection (GC-MS. 204 trace gas species (mostly non-methane organic compounds (NMOC were identified and quantified with the above instruments. Many of the 182 species quantified by the GC-MS have rarely, if ever, been measured in smoke before. An additional 153 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species.

    In a second, "field" phase of this program, airborne and ground-based measurements were made of the emissions from prescribed fires that were mostly located in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5 was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. The field measurements of emission factors (EF are useful both for modeling and to examine the representativeness of our lab fire EF. The lab EF/field EF ratio for

  14. Sensitivity Analysis of b-factor in Microwave Emission Model for Soil Moisture Retrieval: A Case Study for SMAP Mission

    Directory of Open Access Journals (Sweden)

    Dugwon Seo

    2010-05-01

    Full Text Available Sensitivity analysis is critically needed to better understand the microwave emission model for soil moisture retrieval using passive microwave remote sensing data. The vegetation b-factor along with vegetation water content and surface characteristics has significant impact in model prediction. This study evaluates the sensitivity of the b-factor, which is function of vegetation type. The analysis is carried out using Passive and Active L and S-band airborne sensor (PALS and measured field soil moisture from Southern Great Plains experiment (SGP99. The results show that the relative sensitivity of the b-factor is 86% in wet soil condition and 88% in high vegetated condition compared to the sensitivity of the soil moisture. Apparently, the b-factor is found to be more sensitive than the vegetation water content, surface roughness and surface temperature; therefore, the effect of the b-factor is fairly large to the microwave emission in certain conditions. Understanding the dependence of the b-factor on the soil and vegetation is important in studying the soil moisture retrieval algorithm, which can lead to potential improvements in model development for the Soil Moisture Active-Passive (SMAP mission.

  15. Physicochemical characterization of particulate emissions from a compression ignition engine employing two injection technologies and three fuels.

    Science.gov (United States)

    Surawski, N C; Miljevic, B; Ayoko, G A; Roberts, B A; Elbagir, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-07-01

    Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.

  16. Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Jayaratne, E.R.; Morawska, L.; Ayoko, G.A.; Lim, M.

    2005-01-01

    A comprehensive study of the particle and carbon dioxide emissions from a fleet of six dedicated liquefied petroleum gas (LPG) powered and five unleaded petrol (ULP) powered new Ford Falcon Forte passenger vehicles was carried out on a chassis dynamometer at four different vehicle speeds-0 (idle), 40, 60, 80 and 100 km h -1 . Emission factors and their relative values between the two fuel types together with a statistical significance for any difference were estimated for each parameter. In general, LPG was found to be a 'cleaner' fuel, although in most cases, the differences were not statistically significant owing to the large variations between emissions from different vehicles. The particle number emission factors ranged from 10 11 to 10 13 km -1 and was over 70% less with LPG compared to ULP. Corresponding differences in particle mass emission factor between the two fuels were small and ranged from the order of 10 μg km -1 at 40 to about 1000 μg km -1 at 100 km h -1 . The count median particle diameter (CMD) ranged from 20 to 35 nm and was larger with LPG than with ULP in all modes except the idle mode. Carbon dioxide emission factors ranged from about 300 to 400 g km -1 at 40 km h -1 , falling with increasing speed to about 200 g km -1 at 100 km h -1 . At all speeds, the values were 10% to 18% greater with ULP than with LPG

  17. Nanoparticle emissions from combustion engines

    CERN Document Server

    Merkisz, Jerzy

    2015-01-01

     This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected metho...

  18. Application of the emission inventory model TEAM: Uncertainties in dioxin emission estimates for central Europe

    NARCIS (Netherlands)

    Pulles, M.P.J.; Kok, H.; Quass, U.

    2006-01-01

    This study uses an improved emission inventory model to assess the uncertainties in emissions of dioxins and furans associated with both knowledge on the exact technologies and processes used, and with the uncertainties of both activity data and emission factors. The annual total emissions for the

  19. Particle number and particulate mass emissions of heavy duty vehicles in real operating conditions

    Directory of Open Access Journals (Sweden)

    Rymaniak Lukasz

    2017-01-01

    Full Text Available The article investigates the issue of PM emissions from HDV vehicles. The theoretical part discusses the problem of emission of this toxic compound in terms of particle structure taking into account the mass and dimensions of PM. Next, the methodology of the research and the results of the measurements performed under the conditions of actual operation were presented. The test drive routes were chosen in accordance with the operational purpose of the selected test vehicles. Two heavy vehicles were used for the study: a tractor with trailer and an eighteen meter long city bus. The test vehicles complied with the Euro V standard, with the second vehicle additionally complying with the EEV standard and being equipped with a DPF. The analysis of the research results was performed in the aspect of determining the operating time densities of vehicles and their drive systems as well as defining their emission characteristics and ecological indicators. PM and PN emissions were measured in the tests and particle size distribution was determined. It was shown that the exhaust gas after treatment system used in the city bus had a positive influence on the ecological indicators and had contributed to the reduction of PN emissions for heavier particles.

  20. Laboratory incubation experiments assessing the factor interactions affecting urine-derived nitrous oxide emissions from spatially and temporally variable upland pastures

    Science.gov (United States)

    Charteris, Alice; Loick, Nadine; Marsden, Karina; Chadwick, Dave; Whelan, Mick; Rao Ravella, Sreenivas; Mead, Andrew; Cardenas, Laura

    2017-04-01

    Urine patches deposited to soils by grazing animals represent hot-spots of nitrous oxide (N2O) emissions (Hargreaves et al., 2015), a powerful greenhouse gas (GHG) and precursor of ozone depletion in the stratosphere. Urine N2O emissions are produced via nitrification of ureolysis-derived ammonium (NH4+) and/or subsequent nitrite (NO2-) and nitrate (NO3-) denitrification (Kool et al., 2006). The dominant process and the N2O fluxes generated depend on interactions between urine characteristics (e.g. nitrogen [N] concentration and volume), soil characteristics (e.g. carbon [C] availability and pH) and preceding and prevailing environmental conditions (e.g. soil moisture and temperature; Bergstermann et al., 2011; Butterbach-Bahl et al., 2013; Dijkstra et al., 2013). The spatial and temporal variability of these interactions in grazing systems is potentially large and greatly increases the uncertainty associated with N2O emission estimates from such systems. In particular, the contribution of extensively managed upland agroecosystems, which occupy ca. 5.5 million hectares in the UK and provide the bulk of land for sheep farming (Pollott & Stone, 2004), to UK GHG emissions is poorly defined. Improving understanding of the interactions between the wide range of factors affecting urine-derived N2O production and emission from pasture soils and considering this in the context of the spatial and temporal variability of the grazing environment could therefore be extremely valuable in improving the accuracy of N2O emission estimates from such systems. The factorial laboratory incubation experiments presented have been designed to assess the interactive effects of factors such as urine N concentration, volume and soil moisture affecting soil N2O (and nitric oxide [NO], nitrogen gas [N2] and carbon dioxide [CO2]) production and emissions (García-Marco et al., 2014) using the state-of-the-art Denitrification Incubation System (DENIS). This work forms part of a wider project

  1. Coloured Letters and Numbers (CLaN): A reliable factor-analysis based synaesthesia questionnaire

    OpenAIRE

    Rothen Nicolas; Tsakanikos Elias; Meier Beat; Ward Jamie

    2013-01-01

    Synaesthesia is a heterogeneous phenomenon even when considering one particular sub type. The purpose of this study was to design a reliable and valid questionnaire for grapheme colour synaesthesia that captures this heterogeneity. By the means of a large sample of 628 synaesthetes and a factor analysis we created the Coloured Letters and Numbers (CLaN) questionnaire with 16 items loading on 4 different factors (i.e. localisation automaticity/attention deliberate use and longitudinal changes)...

  2. PARTICULATE MATTER CONCENTRATION AND EMISSION FACTOR IN THREE DIFFERENT LAYING HEN HOUSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2009-09-01

    Full Text Available The aim of this study was to evaluate PM10 concentration in three different laying hens houses (traditional battery cages with aerated open manure storage, aviary system and vertical tiered cages with manure belts with forced air drying and to evaluate particulate matter emission into atmosphere during one year of observation. Internal and external temperature and relative humidity, ventilation rate, PM10 concentration have been continuously monitored in order to evaluate particulate matter concentration changes during the day and the season and to define PM10 emission factors. PM10 concentration was corrected by gravimetric technique to lower measurements error. In the aviary system house, TSP and fine particulate matter (particles smaller than 2.5 micron concentration was measured. Average yearly PM10 concentration was remarkably higher in the aviary system house with 0.215 mg m-3 vs 108 mg m-3 for the ventilated belt house and vs 0.094 mg m-3 for the traditional battery cages house. In the Aviary system housing, TSP concentration was 0.444 mg m-3 and PM2.5 was 0.032 mg m-3, highlighting the existence of a severe working environment for men and animals. Recorded values for PM10 emission were 0.433 mg h-1 hen-1 for battery cages housing type, 0.081 mg h-1 hen-1 for ventilated belt cages house, values lower than those available in literature, while the aviary system housing type showed the highest PM10 emission (1.230 mg h-1 hen-1 with appreciable peaks during the morning, together with the increased animal activity and daily farmer operations, as feed administration, cleaning and droppings removal.

  3. Examining drivers of the emissions embodied in trade.

    Directory of Open Access Journals (Sweden)

    Leying Wu

    Full Text Available Emissions embodied in provincial trade (EEPT have important effects on provinces' responsibilities for carbon emission reductions. Based on a multi-regional input-output model, we calculated EEPT for China's 30 provinces in 2002, 2007 and 2010, and we attempted to determine the drivers of EEPT. The results showed that, during this period, the ratio of EEPT to production-based emissions increased over time, reaching 40.24% in 2010. In consideration of its important role in carbon emissions, we analyzed the factors attributable to EEPT through structure decomposition analysis. The decomposition results showed that final demand and carbon emission intensity were two major factors in EEPT, while the final demand in other provinces and the carbon emission intensity in the local province were major factors for Emissions embodied in provincial exports and the final demand in the local province and the carbon emission intensity in other provinces were major factors for Emissions embodied in provincial imports. Regarding the differences among the EEPT of different provinces, changes in the structure of trade were the primary reason.

  4. MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL ...

    Science.gov (United States)

    A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest, at scales ranging from local to national. Development of a new emission factor and inventory model for mobile source emissions. The model will be used by air pollution modelers within EPA, and at the State and local levels.

  5. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    Energy Technology Data Exchange (ETDEWEB)

    Yokelson, R. J.; Burling, I. R.; Gilman, J. B.; Warneke, C.; Stockwell, C. E.; de Gouw, J.; Akagi, S. K.; Urbanski, S. P.; Veres, P.; Roberts, J. M.; Kuster, W. C.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Hosseini, S.; Miller, J. W.; Cocker III, D. R.; Jung, H.; Weise, D. R.

    2013-01-01

    Vegetative fuels commonly consumed in prescribed fires were collected from five locations in the southeastern and southwestern U.S. and burned in a series of 77 fires at the U.S. Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. An additional 152 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. As phase II of this study, we conducted airborne and ground-based sampling of the emissions from real prescribed fires mostly in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These extensive field measurements of emission factors (EF) for temperate biomass burning are useful both for modeling and to examine the representativeness of our lab fire EF. The lab/field EF ratio for the pine understory fuels was not statistically different from one, on average. However, our lab EF for “smoldering compounds” emitted by burning the semi

  6. Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter.

    Science.gov (United States)

    Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto

    2014-05-20

    Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C).

  7. Challenges and Approaches for Developing Ultrafine Particle Emission Inventories for Motor Vehicle and Bus Fleets

    Directory of Open Access Journals (Sweden)

    Diane U. Keogh

    2011-03-01

    Full Text Available Motor vehicles in urban areas are the main source of ultrafine particles (diameters < 0.1 µm. Ultrafine particles are generally measured in terms of particle number because they have little mass and are prolific in terms of their numbers. These sized particles are of particular interest because of their ability to enter deep into the human respiratory system and contribute to negative health effects. Currently ultrafine particles are neither regularly monitored nor regulated by ambient air quality standards. Motor vehicle and bus fleet inventories, epidemiological studies and studies of the chemical composition of ultrafine particles are urgently needed to inform scientific debate and guide development of air quality standards and regulation to control this important pollution source. This article discusses some of the many challenges associated with modelling and quantifying ultrafine particle concentrations and emission rates for developing inventories and microscale modelling of motor vehicles and buses, including the challenge of understanding and quantifying secondary particle formation. Recommendations are made concerning the application of particle emission factors in developing ultrafine particle inventories for motor vehicle fleets. The article presents a précis of the first published inventory of ultrafine particles (particle number developed for the urban South-East Queensland motor vehicle and bus fleet in Australia, and comments on the applicability of the comprehensive set of average particle emission factors used in this inventory, for developing ultrafine particle (particle number and particle mass inventories in other developed countries.

  8. Non-relativistic Free–Free Emission due to the n -distribution of Electrons—Radiative Cooling and Thermally Averaged and Total Gaunt Factors

    Energy Technology Data Exchange (ETDEWEB)

    De Avillez, Miguel A. [Department of Mathematics, University of Évora, R. Romão Ramalho 59, 7000 Évora (Portugal); Breitschwerdt, Dieter, E-mail: mavillez@galaxy.lca.uevora.pt [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin (Germany)

    2017-09-01

    Tracking the thermal evolution of plasmas, characterized by an n -distribution, using numerical simulations, requires the determination of the emission spectra and of the radiative losses due to free–free emission from the corresponding temperature-averaged and total Gaunt factors. Detailed calculations of the latter are presented and associated with n -distributed electrons with the parameter n ranging from 1 (corresponding to the Maxwell–Boltzmann distribution) to 100. The temperature-averaged and total Gaunt factors with decreasing n tend toward those obtained with the Maxwell–Boltzmann distribution. Radiative losses due to free–free emission in a plasma evolving under collisional ionization equilibrium conditions and composed by H, He, C, N, O, Ne, Mg, Si, S, and Fe ions, are presented. These losses decrease with a decrease in the parameter n , reaching a minimum when n  = 1, and thus converge with the loss of thermal plasma. Tables of the thermal-averaged and total Gaunt factors calculated for n -distributions, and a wide range of electron and photon energies, are presented.

  9. Non-relativistic Free–Free Emission due to the n -distribution of Electrons—Radiative Cooling and Thermally Averaged and Total Gaunt Factors

    International Nuclear Information System (INIS)

    De Avillez, Miguel A.; Breitschwerdt, Dieter

    2017-01-01

    Tracking the thermal evolution of plasmas, characterized by an n -distribution, using numerical simulations, requires the determination of the emission spectra and of the radiative losses due to free–free emission from the corresponding temperature-averaged and total Gaunt factors. Detailed calculations of the latter are presented and associated with n -distributed electrons with the parameter n ranging from 1 (corresponding to the Maxwell–Boltzmann distribution) to 100. The temperature-averaged and total Gaunt factors with decreasing n tend toward those obtained with the Maxwell–Boltzmann distribution. Radiative losses due to free–free emission in a plasma evolving under collisional ionization equilibrium conditions and composed by H, He, C, N, O, Ne, Mg, Si, S, and Fe ions, are presented. These losses decrease with a decrease in the parameter n , reaching a minimum when n  = 1, and thus converge with the loss of thermal plasma. Tables of the thermal-averaged and total Gaunt factors calculated for n -distributions, and a wide range of electron and photon energies, are presented.

  10. Elemental composition of current automotive braking materials and derived air emission factors

    NARCIS (Netherlands)

    Hulskotte, J.H.J.; Roskam, G.D.; Denier van der Gon, H.A.C.

    2014-01-01

    Wear-related PM emissions are an important constituent of total PM emissions from road transport. Due to ongoing (further) exhaust emission reduction wear emissions may become the dominant PM source from road transport in the near future. The chemical composition of the wear emissions is crucial

  11. The spatial distribution of commuting CO2 emissions and the influential factors: A case study in Xi'an, China

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Liu

    2015-03-01

    Full Text Available As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case of Xi'an, this paper aims to explore the spatial distribution of commuting CO2 emissions and influencing factors in the new, urban industry zones and city centers considering Xi'an's transition from a monocentric to a polycentric city in the process of urbanization. Based on household survey data from 1501 respondents, there are obvious differences in commuting CO2 emissions between new industry zones and city centers: City centers feature lower household emissions of 2.86 kg CO2 per week, whereas new industry zones generally have higher household emissions of 3.20 kg CO2 per week. Contrary to previous research results, not all new industry zones have high levels of CO2 emissions; with the rapid development of various types of industries, even a minimum level of household emissions of 2.53 kg CO2 per week is possible. The uneven distribution of commuting CO2 emissions is not uniformly affected by spatial parameters such as job–housing balance, residential density, employment density, and land use diversity. Optimum combination of the spatial parameters and travel pattern along with corresponding transport infrastructure construction may be an appropriate path to reduction and control of emissions from commuting.

  12. Review and analysis of global agricultural N₂O emissions relevant to the UK.

    Science.gov (United States)

    Buckingham, S; Anthony, S; Bellamy, P H; Cardenas, L M; Higgins, S; McGeough, K; Topp, C F E

    2014-07-15

    As part of a UK government funded research project to update the UK N2O inventory methodology, a systematic review of published nitrous oxide (N2O) emission factors was carried out of non-UK research, for future comparison and synthesis with the UK measurement based evidence base. The aim of the study is to assess how the UK IPCC default emission factor for N2O emissions derived from synthetic or organic fertiliser inputs (EF1) compares to international values reported in published literature. The availability of data for comparing and/or refining the UK IPCC default value and the possibility of analysing sufficient auxiliary data to propose a Tier 2 EF1 reporting strategy is evaluated. The review demonstrated a lack of consistency in reporting error bounds for fertiliser-derived EFs and N2O flux data with 8% and 44% of publications reporting EF and N2O flux error bounds respectively. There was also poor description of environmental (climate and soil) and experimental design auxiliary data. This is likely to be due to differences in study objectives, however potential improvements to soil parameter reporting are proposed. The review demonstrates that emission factors for agricultural-derived N2O emissions ranged -0.34% to 37% showing high variation compared to the UK Tier 1 IPCC EF1 default values of 1.25% (IPCC 1996) and 1% (IPPC 2006). However, the majority (83%) of EFs reported for UK-relevant soils fell within the UK IPCC EF1 uncertainty range of 0.03% to 3%. Residual maximum likelihood (REML) analysis of the data collated in the review showed that the type and rate of fertiliser N applied and soil type were significant factors influencing EFs reported. Country of emission, the length of the measurement period, the number of splits, the crop type, pH and SOC did not have a significant impact on N2O emissions. A subset of publications where sufficient data was reported for meta-analysis to be conducted was identified. Meta-analysis of effect sizes of 41

  13. Black carbon, organic carbon, and co-pollutant emissions and energy efficiency from artisanal brick production in Mexico

    Science.gov (United States)

    Zavala, Miguel; Molina, Luisa T.; Maiz, Pablo; Monsivais, Israel; Chow, Judith C.; Watson, John G.; Munguia, Jose Luis; Cardenas, Beatriz; Fortner, Edward C.; Herndon, Scott C.; Roscioli, Joseph R.; Kolb, Charles E.; Knighton, Walter B.

    2018-04-01

    In many parts of the developing world and economies in transition, small-scale traditional brick kilns are a notorious source of urban air pollution. Many are both energy inefficient and burn highly polluting fuels that emit significant levels of black carbon (BC), organic carbon (OC) and other atmospheric pollutants into local communities, resulting in severe health and environmental impacts. However, only a very limited number of studies are available on the emission characteristics of brick kilns; thus, there is a need to characterize their gaseous and particulate matter (PM) emission factors to better assess their overall contribution to emissions inventories and to quantify their ecological, human health, and climate impacts. In this study, the fuel-, energy-, and brick-based emissions factors and time-based emission ratios of BC, OC, inorganic PM components, CO, SO2, CH4, NOx, and selected volatile organic compounds (VOCs) from three artisanal brick kilns with different designs in Mexico were quantified using the tracer ratio sampling technique. Simultaneous measurements of PM components, CO, and CO2 were also obtained using a sampling probe technique. Additional measurements included the internal temperature of the brick kilns, mechanical resistance of bricks produced, and characteristics of fuels employed. Average fuel-based BC emission factors ranged from 0.15 to 0.58 g (kg fuel)-1, whereas BC/OC mass ratios ranged from 0.9 to 5.2, depending on the kiln type. The results show that both techniques capture similar temporal profiles of the brick kiln emissions and produce comparable emission factors. A more integrated inter-comparison of the brick kilns' performances was obtained by simultaneously assessing emissions factors, energy efficiency, fuel consumption, and the quality of the bricks produced.

  14. Emission factors of modern wood-pellet heating units under typical heating conditions - Final report; Emissionsfaktoren moderner Pelletkessel unter typischen Heizbedingungen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Good, J.; Nussbaumer, T.

    2009-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on the results of measurements made concerning the emission factors of two modern wood-pellet heating units under typical heating conditions. Using simulations, typical operation in single-family homes and apartment blocks were examined. Emissions during the different phases of operation were examined. Systems with and without buffer storage were also examined. The minimum running times to be striven for are quoted which would lead to a reduction of emissions to an acceptable level. The characteristic operating modes for the two heating units and the results obtained for various emissions are presented and discussed.

  15. Greenhouse gas emission factor for coal power chain in China and the comparison with nuclear power chain

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; He Huimin

    1999-01-01

    The Greenhouse Gas Emission for coal power chain in China is analyzed in detail and comprehensively by using the Life Cycle Analysis method. The Greenhouse Gas Emission Factors (GGEF) in each link and for the total power chain are calculated. The total GGEF for coal power chain is 1302.3 gCO 2 /kWh, about 40 times more than that for nuclear power chain. And consequently greenhouse effect could not be aggravated further by nuclear power. The energy strategy for nuclear power development is one of reality ways to retard the greenhouse effect, put resources into rational use and protect environment

  16. Impact of some field factors on inhalation exposure levels to bitumen emissions during road paving operations.

    Science.gov (United States)

    Deygout, François; Auburtin, Guy

    2015-03-01

    Variability in occupational exposure levels to bitumen emissions has been observed during road paving operations. This is due to recurrent field factors impacting the level of exposure experienced by workers during paving. The present study was undertaken in order to quantify the impact of such factors. Pre-identified variables currently encountered in the field were monitored and recorded during paving surveys, and were conducted randomly covering current applications performed by road crews. Multivariate variance analysis and regressions were then used on computerized field data. The statistical investigations were limited due to the relatively small size of the study (36 data). Nevertheless, the particular use of the step-wise regression tool enabled the quantification of the impact of several predictors despite the existing collinearity between variables. The two bitumen organic fractions (particulates and volatiles) are associated with different field factors. The process conditions (machinery used and delivery temperature) have a significant impact on the production of airborne particulates and explain up to 44% of variability. This confirms the outcomes described by previous studies. The influence of the production factors is limited though, and should be complemented by studying factors involving the worker such as work style and the mix of tasks. The residual volatile compounds, being part of the bituminous binder and released during paving operations, control the volatile emissions; 73% of the encountered field variability is explained by the composition of the bitumen batch. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. The Fire INventory from NCAR (FINN: a high resolution global model to estimate the emissions from open burning

    Directory of Open Access Journals (Sweden)

    C. Wiedinmyer

    2011-07-01

    Full Text Available The Fire INventory from NCAR version 1.0 (FINNv1 provides daily, 1 km resolution, global estimates of the trace gas and particle emissions from open burning of biomass, which includes wildfire, agricultural fires, and prescribed burning and does not include biofuel use and trash burning. Emission factors used in the calculations have been updated with recent data, particularly for the non-methane organic compounds (NMOC. The resulting global annual NMOC emission estimates are as much as a factor of 5 greater than some prior estimates. Chemical speciation profiles, necessary to allocate the total NMOC emission estimates to lumped species for use by chemical transport models, are provided for three widely used chemical mechanisms: SAPRC99, GEOS-CHEM, and MOZART-4. Using these profiles, FINNv1 also provides global estimates of key organic compounds, including formaldehyde and methanol. Uncertainties in the emissions estimates arise from several of the method steps. The use of fire hot spots, assumed area burned, land cover maps, biomass consumption estimates, and emission factors all introduce error into the model estimates. The uncertainty in the FINNv1 emission estimates are about a factor of two; but, the global estimates agree reasonably well with other global inventories of biomass burning emissions for CO, CO2, and other species with less variable emission factors. FINNv1 emission estimates have been developed specifically for modeling atmospheric chemistry and air quality in a consistent framework at scales from local to global. The product is unique because of the high temporal and spatial resolution, global coverage, and the number of species estimated. FINNv1 can be used for both hindcast and forecast or near-real time model applications and the results are being critically evaluated with models and observations whenever possible.

  18. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    Science.gov (United States)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  19. Mathematical Relationship Between Particle Reynolds Number and Ripple Factor using Tapi River Data, India.

    Directory of Open Access Journals (Sweden)

    S. M. Yadav

    2011-02-01

    Full Text Available The computation of bed load allows for the fact that only part of the shear stress is used for transport of sediments and some of the shear stress is wasted in overcoming the resistance due to bed forms therefore the total shear stress developed in the open channel requires correction in the form of correction factor called ripple factor. Different methods have been followed for correcting the actual shear stress in order to compute the sediment load. Correction factors are based on particular characteristics grain size of particle. In the present paper the ripple factor has been obtained for non uniform bed material considering the various variables like discharge, hydraulic mean depth, flow velocity, bed slope, average diameter of particle etc. by collecting the field data of Tapi river for 15 years for a particular gauging station. The ripple factor is obtained using Meyer Peter and Muller formula, Einstein Formula, Kalinske’s formula, Du Boy’s formula, Shield’s formula, Bagnold’s formula, average of six formulae and multiple regression analysis. The variation of ripple factor with particle Reynolds Number is studied. The ripple factor obtained by different approaches are further analyzed using Origin software and carrying out multiple regression on the 15 years of data with more than 10 parameters, ripple factor by multiple regression has been obtained. These values are further analysed and giving statistical mean to the parameters a relationship of power form has been developed. The ripple factor increases with the increase in the value of Particle Reynolds number. The large deviation is observed in case of Kalinske’s approach when compare with other approaches

  20. Schemes of Superradiant Emission from Electron Beams and "Spin-Flip Emission of Radiation"

    CERN Document Server

    Gover, A

    2005-01-01

    A unified analysis for Superradiant emission from bunched electron beams in various kinds of radiation scheme is presented. Radiation schemes that can be described by the formulation include Pre-bunched FEL (PB-FEL), Coherent Synchrotron Radiation (CSR), Smith-Purcell Radiation, Cerenkov-Radiation, Transition-Radiation and more. The theory is based on mode excitation formulation - either discrete or continuous (the latter - in open structures). The discrete mode formulation permits simple evaluation of the spatially coherent power and spectral power of the source. These figures of merit of the radiation source are useful for characterizing and comparing the performance of different radiation schemes. When the bunched electron beam emits superradiantly, these parameters scale like the square of the number of electrons, orders of magnitude more than spontaneous emission. The formulation applies to emission from single electron bunches, periodically bunched beams, or emission from a finite number of bunches in a...

  1. Towards factor analysis exploration applied to positron emission tomography functional imaging for breast cancer characterization

    International Nuclear Information System (INIS)

    Rekik, W.; Ketata, I.; Sellami, L.; Ben slima, M.; Ben Hamida, A.; Chtourou, K.; Ruan, S.

    2011-01-01

    This paper aims to explore the factor analysis when applied to a dynamic sequence of medical images obtained using nuclear imaging modality, Positron Emission Tomography (PET). This latter modality allows obtaining information on physiological phenomena, through the examination of radiotracer evolution during time. Factor analysis of dynamic medical images sequence (FADMIS) estimates the underlying fundamental spatial distributions by factor images and the associated so-called fundamental functions (describing the signal variations) by factors. This method is based on an orthogonal analysis followed by an oblique analysis. The results of the FADMIS are physiological curves showing the evolution during time of radiotracer within homogeneous tissues distributions. This functional analysis of dynamic nuclear medical images is considered to be very efficient for cancer diagnostics. In fact, it could be applied for cancer characterization, vascularization as well as possible evaluation of response to therapy.

  2. Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater. Parameters and implications for emission factors

    International Nuclear Information System (INIS)

    Johansson, A.E.; Svenssom, B.H.; Kasimir Klemedtsson, Aa.; Klemedtsson, L.

    2003-01-01

    Static chamber measurements of N 2 O fluxes were taken during the 1998 and 1999 growth seasons in a Swedish constructed wetland receiving wastewater. The dominating plant species in different parts of the wetland were Lemna minor L., Typha latifolia L., Spirogyra sp. and Glyceria maxima (Hartm.) and Phalaris arundinacea (L.), respectively. There were large temporal and spatial variations in N 2 O fluxes, which ranged from consumption at -350 to emissions at 1791 μg N 2 O/m 2 /h. The largest positive flux occurred in October 1999 and the lowest in the middle of July 1999. The average N 2 O flux for the two years was 130 μg N 2 O/m 2 /h (SD = 220). No significant differences in N 2 O fluxes were found between the years, even though the two growing seasons differed considerably with respect to both air temperature and precipitation. 15% of the fluxes were negative, showing a consumption of N 2 O. Consumption occurred on a few occasions at most measurement sites and ranged from 1 - 350 μg N 2 O/m 2 /h. 13 - 43% of the variation in N 2 O fluxes was explained by multiple linear regression analysis including principal components. Emission factors were calculated according to IPCC methods from the N 2 O fluxes in the constructed wetland. The calculated emission factors were always lower (0.02 - 0.27%) compared to the default factor provided by the IPCC (0.75%). Thus, direct application of the IPCC default factor may lead to overestimation of N 2 O fluxes from constructed wastewater-treating wetlands

  3. Analyzing the Impacts of Alternated Number of Iterations in Multiple Imputation Method on Explanatory Factor Analysis

    Directory of Open Access Journals (Sweden)

    Duygu KOÇAK

    2017-11-01

    Full Text Available The study aims to identify the effects of iteration numbers used in multiple iteration method, one of the methods used to cope with missing values, on the results of factor analysis. With this aim, artificial datasets of different sample sizes were created. Missing values at random and missing values at complete random were created in various ratios by deleting data. For the data in random missing values, a second variable was iterated at ordinal scale level and datasets with different ratios of missing values were obtained based on the levels of this variable. The data were generated using “psych” program in R software, while “dplyr” program was used to create codes that would delete values according to predetermined conditions of missing value mechanism. Different datasets were generated by applying different iteration numbers. Explanatory factor analysis was conducted on the datasets completed and the factors and total explained variances are presented. These values were first evaluated based on the number of factors and total variance explained of the complete datasets. The results indicate that multiple iteration method yields a better performance in cases of missing values at random compared to datasets with missing values at complete random. Also, it was found that increasing the number of iterations in both missing value datasets decreases the difference in the results obtained from complete datasets.

  4. Monitoring organic loading to swimming pools by fluorescence excitation–emission matrix with parallel factor analysis (PARAFAC)

    DEFF Research Database (Denmark)

    Seredynska-Sobecka, Bozena; Stedmon, Colin; Boe-Hansen, Rasmus

    2011-01-01

    Fluorescence Excitation–Emission Matrix spectroscopy combined with parallel factor analysis was employed to monitor water quality and organic contamination in swimming pools. The fluorescence signal of the swimming pool organic matter was low but increased slightly through the day. The analysis...... revealed that the organic matter fluorescence was characterised by five different components, one of which was unique to swimming pool organic matter and one which was specific to organic contamination. The latter component had emission peaks at 420nm and was found to be a sensitive indicator of organic...... loading in swimming pool water. The fluorescence at 420nm gradually increased during opening hours and represented material accumulating through the day....

  5. Meta-analysis Number of Plants Drugs Used by Characteristics Socioeconomic Factors, Environmental and Geographic

    Directory of Open Access Journals (Sweden)

    Febiola Diah Pratiwi

    2017-09-01

    Full Text Available Ethnobotany is the study of public relations with the use of plants. Use of plants by people influenced by several factors, such as social, cultural, socioeconomic, and geographic. Most of the ethnicities in Indonesia has a high dependence on plants medicine for survival. However, the factors that influence the use of medicinal plants by people in Indonesia have not been studied, so that research is needed to optimize the use of medicinal plants to sustainability benefits. The purpose of this study is to analyze the number of species of plants medicine used by the influence of socio-economic, environmental, and geographic factors using principal component analysis and analyzing patterns of use of plants medicine. The results showed that the economy and infrastructure components (access to electricity, means of education, income level, health facilities, distance from the highway, remoteness, and the fastest time toward the road and the number of people graduating from elementary school affect the number of medicinal plant species used. Based on the results of the study of literature and field observations, the pattern of use of plants medicine in addition to be used as medicine, the plant is used for food, building materials, plant ornamental, ceremonial, wood, wicker and crafts, coloring agents, animal feed, ingredients aromatic, and pesticide. The usage patterns in each region or village has the distinction of which is influenced by the remoteness factor due to the differences in the social, economic, environmental, and geographic.  Keywords: ethnobotany, plants medicine, principal component analysis

  6. Socio-technological impact analysis using an energy IO approach to GHG emissions issues in South Korea

    International Nuclear Information System (INIS)

    Chung, Whan-Sam; Tohno, Susumu; Choi, Ki-Hong

    2011-01-01

    Highlights: → Using the Sato-Vartia index for the three periods of 1985-1995, 1995-2000, and 2000-2005, the changes in three factors affecting GHG emissions in South Korea were analyzed. → A total emission matrix including both direct and indirect GHG emissions showed plain shape; however, ripple effects were observed in some sectors. → This process is useful in measuring national energy policies. → Several limitations of the Divisia decomposition analysis were pointed out. -- Abstract: Through energy input-output (E-IO) analyses from 1985 to 2005, the changes in three factors affecting GHG emissions in South Korea were analyzed. Based on the E-IO results, the changes in the direct and total (embodied) GHG emissions from the pertinent sectors were decomposed into three factors-the energy consumption effect, the social effect, and the technological effect-using the Sato-Vartia index for the three periods of 1985-1995, 1995-2000, and 2000-2005. The decomposition analysis demonstrated that a total emission matrix including both direct and indirect GHG emissions showed an evolution pattern that was very similar to the changes in direct GHG emissions; however, ripple effects were observed in the case of emissions from sector number -59 (Synthetic resins, synthetic rubber-p). The results showed that national energy policies such as those pertaining to the diversification of energy sources, shifts in the energy consumption structure (social effect), and the transformation to a low-carbon energy economy (technology effect) were effective. Finally, several limitations of the Divisia decomposition analysis were pointed out.

  7. Simultaneous measurements of particle number size distributions at ground level and 260 m on a meteorological tower in urban Beijing, China

    Science.gov (United States)

    Du, Wei; Zhao, Jian; Wang, Yuying; Zhang, Yingjie; Wang, Qingqing; Xu, Weiqi; Chen, Chen; Han, Tingting; Zhang, Fang; Li, Zhanqing; Fu, Pingqing; Li, Jie; Wang, Zifa; Sun, Yele

    2017-06-01

    Despite extensive studies into the characterization of particle number size distributions at ground level, real-time measurements above the urban canopy in the megacity of Beijing have never been performed to date. Here we conducted the first simultaneous measurements of size-resolved particle number concentrations at ground level and 260 m in urban Beijing from 22 August to 30 September. Our results showed overall similar temporal variations in number size distributions between ground level and 260 m, yet periods with significant differences were also observed. Particularly, accumulation-mode particles were highly correlated (r2 = 0. 85) at the two heights, while Aitken-mode particles presented more differences. Detailed analysis suggests that the vertical differences in number concentrations strongly depended on particle size, and particles with a mobility diameter between 100 and 200 nm generally showed higher concentrations at higher altitudes. Particle growth rates and condensation sinks were also calculated, which were 3.2 and 3.6 nm h-1, and 2.8 × 10-2 and 2.9 × 10-2 s-1, at ground level and 260 m, respectively. By linking particle growth with aerosol composition, we found that organics appeared to play an important role in the early stage of the growth (09:00-12:00 LT) while sulfate was also important during the later period. Positive matrix factorization of size-resolved number concentrations identified three common sources at ground level and 260 m, including a factor associated with new particle formation and growth events (NPEs), and two secondary factors that represent photochemical processing and regional transport. Cooking emission was found to have a large contribution to small particles and showed much higher concentration at ground level than 260 m in the evening. These results imply that investigation of NPEs at ground level in megacities needs to consider the influences of local cooking emissions. The impacts of regional emission controls on

  8. Understanding NOx emission trends in China based on OMI observations

    Science.gov (United States)

    Wang, Y.; Ga, D.; Smeltzer, C. D.; Yi, R.; Liu, Z.

    2012-12-01

    We analyze OMI observations of NO2 columns over China from 2005 to 2010. Simulations using a regional 3-D chemical transport model (REAM) are used to derive the top-down anthropogenic NOx emissions. The Kendall method is then applied to derive the emission trend. The emission trend is affected by the economic slowdown in 2009. After removing the effect of one year abnormal data, the overall emission trend is 4.35±1.42% per year, which is slower than the linear-regression trend of 5.8-10.8% per year reported for previous years. We find large regional, seasonal, and urban-rural variations in emission trend. The annual emission trends of Northeast China, Central China Plain, Yangtze River Delta and Pearl River Delta are 44.98±1.39%, 5.24±1.63%, 3.31±1.02% and -4.02±1.87%, respectively. The annual emission trends of four megacities, Beijing, Shanghai, Guangzhou and Shenzhen are 0.7±0.27%, -0.75±0.31%, -4.08±1.21% and -6.22±2.85%,, considerably lower than the regional averages. These results appear to suggest that a number of factors, including migration of high-emission industries, vehicle emission regulations, emission control measures of thermal power plants, increased hydro-power usage, have reduced or reversed the increasing trend of NOx emissions in more economically developed megacities and southern coastal regions.

  9. CH4 emissions from enteric fermentation in Austria

    International Nuclear Information System (INIS)

    Gebetsroither, E.; Orthofer, R.; Strebl, F.

    2002-07-01

    This report contains the results of an inventory for methane (CH 4 ) emissions from agricultural enteric fermentation in Austria for the period 1980-2001. Emissions were calculated according to IPCC guidelines. The detailed IPCC 'Tier 2' methodology was applied for cattle (which contribute the vast majority of emissions). The 'Tier 2' methodology relies on specific emission factors that are calculated from the energy intake for different cattle farming practices. The less detailed 'Tier 1' methodology was applied for all other animal categories. Emissions from organic and conventional farming practices were calculated separately. Results indicate that CH 4 emissions from manure management have increased from 1980 to a peak in 1984-1985, and since then have steadily declined. CH 4 emissions were about 169.300 t/yr in 'Kyoto' base year 1990 and have since declined by about 11 % to about 150.000 t/yr in 2001. Almost all emissions (95 % in 1990 and 94 % in 2001) are caused by cattle farming. The contribution of 'dairy cattle' to all emissions from cattle was 49 % in 1990, and has declined to 43 % in 2001. The overall reduction was caused mainly by a decrease in the total numbers of animals. However, in the case of dairy cows the reduction of animals is partly counterbalanced by an increase in emissions per animal (because of the increasing gross energy intake and milk production of milk cattle since 1990). Uncertainties of emissions were estimated with a 'Monte Carlo' simulation. Assuming a normal probability distribution, the calculated standard deviation is 4 %. This indicates there is a 95 % probability that CH 4 emissions are between ± 2 standard deviations, i.e. between 153.000 t and 178.000 t in the year 1990 and between 138.000 t and 162.000 t in the year 2001. (author)

  10. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs

    CSIR Research Space (South Africa)

    Wooster, MJ

    2011-01-01

    Full Text Available Biomass burning emissions factors are vital to quantifying trace gases releases from vegetation fires. Here the authors evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP), South Africa using ground-based open...

  11. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs

    Directory of Open Access Journals (Sweden)

    M. J. Wooster

    2011-11-01

    Full Text Available Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP, South Africa using ground-based open path Fourier transform infrared (FTIR spectroscopy and an IR source separated by 150–250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol−1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O, flaming (CO2 and smoldering (CO, CH4, NH3 processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE, allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority

  12. Analysis of the Prandtl Number Impact on the Temperature Recovery Factor Value

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2017-01-01

    Full Text Available The article analyses a design procedure for the gas-dynamic energy separation device and shows that its performance efficiency is mainly dependent on the temperature recovery factor values r.As a result of the performed analysis it was found, that the r values depend on a wide range of parameters, namely Mach and Reynolds number values, gas flow type, axial pressure gradient presence and its magnitude, surface relief, etc. At the same time Prandtl number is the parameter, which has the greatest effect on the r value.A review of correlations available in publications to calculate r values is conducted for Prandtl number values equal to or less than 1 (which is consistent almost with all pure gases and their mixtures and the obtained calculation results are compared with analytical expressions and available experimental data (for laminar and turbulent air flows, turbulent helium and hydrogen-argon mixture flow.It is shown that for laminar boundary layer the correlation of square root of Prandtl number is in good agreement with the experimental and analytical data.For turbulent flows the most widely known correlations were studied, and it was found, that for Prandtl number values equal to or less than 1 all of them lead to errors of at least 10 % and more.A new correlation for r calculation with respect to Prandtl number is proposed with maximum error of 1,5 % for Prandtl number values equal to or less than 1.

  13. Development of South African vehicle emission factors

    CSIR Research Space (South Africa)

    Forbes, P

    2009-10-01

    Full Text Available for each pollutant, which have been derived from monitoring campaigns in Europe and the USA. In this study, direct exhaust emission monitoring was performed on 58 diesel and 78 petrol passenger vehicles in both idling and accelerated modes. South African...

  14. Airborne emission measurements of SO2 , NOx and particles from individual ships using a sniffer technique

    Science.gov (United States)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2014-07-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircraft. The system has been adapted for fast response measurements at 1 Hz, and the use of several of the instruments is unique. The uncertainty of the given data is about 20% for SO2 and 24% for NOx emission factors. The mean values with one standard deviation for multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kg-1 fuel , 66.6 ± 23.4 g kg-1 fuel and 1.8 ± 1.3 1016 particles kg-1 fuel for SO2, NOx and particle number, respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 45 and 54 nm dependent on the distance to the source, and the number size distribution is monomodal. Concerning the sulfur fuel content, around 85% of the monitored ships comply with the International Maritime Organization (IMO) limits. The reduction of the sulfur emission control area (SECA) limit from 1.5 to 1% in 2010 appears to have contributed to reduction of sulfur emissions that were measured in earlier studies from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  15. Emission of greenhouse gases from Danish agriculture

    International Nuclear Information System (INIS)

    Olesen, J.E.; Petersen, S.O.; Fenhann, J.V.; Andersen, J.M.; Jacobsen, B.H.

    2001-01-01

    The basis for inventories of methane and nitrous oxide emissions from Danish agriculture has been reviewed and re-evaluated. This has resulted in revised estimates for most of the sources. The revised estimates predict a decline in emissions of methane and nitrous oxide from Danish agriculture from 14.1 Mt CO 2 equivalents in 1990 to 10.6 Mt CO 2 equivalents in 2010. The new estimates give lower emission of methane (4% for 1990 and 15% for 2010), and almost unchanged emissions for nitrous oxide (1% smaller for 1990 and 3% higher for 2010) compared with previous estimates. Since nitrous oxide is a more potent greenhouse gas than methane, the revised estimates are almost identical to the old ones for 2010 when expressed as CO 2 equivalents. The old and the revised estimates give a decline in emissions in CO 2 equivalents from 1990 to 2010 of 23 and 24% respectively. For 1999 the estimated emissions of methane constituted 29% of the total emission of CO 2 equivalents in the form of methane and nitrous oxide. The contribution of nitrous oxide derived from nitrogen turnover in the field was almost 47% of the emission. All emission sources are estimated as the product of an activity and an emission factor. The estimates are associated with uncertainties in both the activities and the emission factors. The uncertainty in the activity data is rather small for most of the items, but probably somewhat larger for N fixation, grazing, and cultivation of organic soils and N leaching. The largest uncertainty is associated with the amount of crop residues, which also constitutes one of the largest contributions to the total greenhouse gas emissions. Emission factors for methane are relatively certain, whereas there are large uncertainties associated with the emission factors for nitrous oxide. This is partly due to the fact that the emission factors are based on emission data representing many different climatic conditions, soil types and crops. The large uncertainty in the

  16. Perspectives on greenhouse gas emission estimates based on Australian wastewater treatment plant operating data.

    Science.gov (United States)

    de Haas, D W; Pepperell, C; Foley, J

    2014-01-01

    Primary operating data were collected from forty-six wastewater treatment plants (WWTPs) located across three states within Australia. The size range of plants was indicatively from 500 to 900,000 person equivalents. Direct and indirect greenhouse gas emissions were calculated using a mass balance approach and default emission factors, based on Australia's National Greenhouse Energy Reporting (NGER) scheme and IPCC guidelines. A Monte Carlo-type combined uncertainty analysis was applied to the some of the key emission factors in order to study sensitivity. The results suggest that Scope 2 (indirect emissions due to electrical power purchased from the grid) dominate the emissions profile for most of the plants (indicatively half to three quarters of the average estimated total emissions). This is only offset for the relatively small number of plants (in this study) that have significant on-site power generation from biogas, or where the water utility purchases grid electricity generated from renewable sources. For plants with anaerobic digestion, inventory data issues around theoretical biogas generation, capture and measurement were sometimes encountered that can skew reportable emissions using the NGER methodology. Typically, nitrous oxide (N(2)O) emissions dominated the Scope 1 (direct) emissions. However, N(2)O still only accounted for approximately 10 to 37% of total emissions. This conservative estimate is based on the 'default' NGER steady-state emission factor, which amounts to 1% of nitrogen removed through biological nitrification-denitrification processing in the plant (or indicatively 0.7 to 0.8% of plant influent total nitrogen). Current research suggests that true N(2)O emissions may be much lower and certainly not steady-state. The results of this study help to place in context research work that is focused on direct emissions from WWTPs (including N(2)O, methane and carbon dioxide of non-biogenic origin). For example, whereas non-biogenic CO(2

  17. Enabling Future Large Searches for Exoplanet Auroral Emission with the EPIC Correlator Architecture

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-05-01

    Extrasolar planets are expected to emit strong ``auroral'' emission at radio frequencies generated by the interaction of the host star's stellar winds with the planet's magnetosphere through electron-cyclotron maser emission. This transient emission lasts a few seconds to days and is almost fully circularly polarized. Detecting this emission in exoplanets is a critical probe of their magnetospheres and thus their interior compositions and habitability. The intensity and detectability of the emission depends on the suitability of many factors to the observing parameters such as the strength of the stellar wind power, the planetary magnetosphere cross-section, the highly beamed and coherent nature of electron-cyclotron emission, and narrow ranges of the planet's orbital phase. Large areas of sky must be surveyed continuously to high sensitivity to detect auroral emission. Next-generation radio telescopes with wide fields of view, large collecting areas and high efficiency are needed for these searches. This poses challenges to traditional correlator architectures whose computational cost scales as the square of the number of antennas. I will present a novel radio aperture synthesis imaging architecture - E-field Parallel Imaging Correlator (EPIC) - whose all-sky and full Stokes imaging capabilities will not only address the aforementioned factors preventing detection but also solve the computational challenges posed by large arrays. Compared to traditional imaging, EPIC is inherently fast and thus presents the unique advantage of probing transient timescales ranging orders of magnitude from tens of microseconds to days at no additional cost.

  18. Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater. Parameters and implications for emission factors

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, A.E.; Svenssom, B.H. [Linkoeing Univ. (Sweden). Dept. of Water and Environmental Studies; Kasimir Klemedtsson, Aa. [Trollhaettan/Uddevalla Univ. College, Trollhaettan (Sweden). Dept. of Informatics and Mathematics; Klemedtsson, L. [Goeteborg Univ. (Sweden). Botanical Inst.

    2003-07-01

    Static chamber measurements of N{sub 2}O fluxes were taken during the 1998 and 1999 growth seasons in a Swedish constructed wetland receiving wastewater. The dominating plant species in different parts of the wetland were Lemna minor L., Typha latifolia L., Spirogyra sp. and Glyceria maxima (Hartm.) and Phalaris arundinacea (L.), respectively. There were large temporal and spatial variations in N{sub 2}O fluxes, which ranged from consumption at -350 to emissions at 1791 {mu}g N{sub 2}O/m{sup 2}/h. The largest positive flux occurred in October 1999 and the lowest in the middle of July 1999. The average N{sub 2}O flux for the two years was 130 {mu}g N{sub 2}O/m{sup 2}/h (SD = 220). No significant differences in N{sub 2}O fluxes were found between the years, even though the two growing seasons differed considerably with respect to both air temperature and precipitation. 15% of the fluxes were negative, showing a consumption of N{sub 2}O. Consumption occurred on a few occasions at most measurement sites and ranged from 1 - 350 {mu}g N{sub 2}O/m{sup 2}/h. 13 - 43% of the variation in N{sub 2}O fluxes was explained by multiple linear regression analysis including principal components. Emission factors were calculated according to IPCC methods from the N{sub 2}O fluxes in the constructed wetland. The calculated emission factors were always lower (0.02 - 0.27%) compared to the default factor provided by the IPCC (0.75%). Thus, direct application of the IPCC default factor may lead to overestimation of N{sub 2}O fluxes from constructed wastewater-treating wetlands.

  19. The future(s) of emission allowances

    International Nuclear Information System (INIS)

    Rosenzweig, K.M.; Villarreal, J.A.

    1993-01-01

    The Clean Air Act Amendments of 1990 (CAAA) established a sulfur dioxide emission allowance system to be implemented by the US Environmental Protection Agency (EPA). Under the two-phase implementation of the program, electric utilities responsible for approximately 70 percent of SO 2 emissions in the United States will be issued emission allowances, each representing authorization to emit one ton of sulfur dioxide during a specified calendar year or a later year. Allowances will be issued to utilities with electric-generating units affected by the CAAA limits, as well as to certain entities which may choose to opt-in to the program. Each utility or other emission source must hold a number of allowances at least equal to its total SO 2 emissions during any given year. Unused allowances may be sold, traded, or held in inventory for use against SO 2 emissions in future years. Anyone can buy and hold allowances, including affected utilities, non-utility companies, SO 2 allowances brokers and dealers, environmental groups, and individuals. During Phase I of the program, allowances equivalent to approximately 6.4 million tons of SO 2 emissions will be allocated annually to a group of 110 large, high-SO 2 -emitting power plants. In Phase II, virtually all power-generating utilities (representing approximately 99.4 percent of total US utility emissions) will be subject to the program. The number of allowances issued will increase to approximately 8.9 million a year, with certain special allocations raising the actual number issued to 9.48 million between the years 2000 to 2009, and 8.95 million yearly thereafter. Thus, the CAAA goal of annual emissions of 9 million tons should be achieved by 2010, when virtually all US emission sources will be participating in the program

  20. Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States.

    Science.gov (United States)

    Lamb, Brian K; Edburg, Steven L; Ferrara, Thomas W; Howard, Touché; Harrison, Matthew R; Kolb, Charles E; Townsend-Small, Amy; Dyck, Wesley; Possolo, Antonio; Whetstone, James R

    2015-04-21

    Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.

  1. Modeling greenhouse gas emissions from dairy farms.

    Science.gov (United States)

    Rotz, C Alan

    2017-11-15

    Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article

  2. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  3. Modification of spontaneous emission from nanodiamond colour centres on a structured surface

    International Nuclear Information System (INIS)

    Inam, F A; Gaebel, T; Bradac, C; Withford, M J; Rabeau, J R; Steel, M J; Stewart, L; Dawes, J M

    2011-01-01

    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for the development of efficient single-photon sources having high collection efficiency. A number of groups have achieved an enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. In this paper, we characterize in detail the spontaneous emission rates of nitrogen-vacancy centres at various locations on a structured substrate. We found a factor of 1.5 average enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observed changes in the lifetime distribution. We present a model for explaining these observations and associate the lifetime properties with dipole orientation and polarization effects.

  4. Modification of spontaneous emission from nanodiamond colour centres on a structured surface

    Energy Technology Data Exchange (ETDEWEB)

    Inam, F A; Gaebel, T; Bradac, C; Withford, M J; Rabeau, J R; Steel, M J [Centre for Quantum Science and Technology, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Stewart, L; Dawes, J M, E-mail: james.rabeau@mq.edu.au, E-mail: michael.steel@mq.edu.au [MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia)

    2011-07-15

    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for the development of efficient single-photon sources having high collection efficiency. A number of groups have achieved an enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. In this paper, we characterize in detail the spontaneous emission rates of nitrogen-vacancy centres at various locations on a structured substrate. We found a factor of 1.5 average enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observed changes in the lifetime distribution. We present a model for explaining these observations and associate the lifetime properties with dipole orientation and polarization effects.

  5. How organizational and global factors condition the effects of energy efficiency on CO_2 emission rebounds among the world's power plants

    International Nuclear Information System (INIS)

    Grant, Don; Jorgenson, Andrew K.; Longhofer, Wesley

    2016-01-01

    The United Nations Intergovernmental Panel on Climate Change (IPCC), the International Energy Agency (IEA), and several nations suggest that energy efficiency is an effective strategy for reducing energy consumption and associated greenhouse gas emissions. Skeptics contend that because efficiency lowers the price of energy and energy services, it may actually increase demand for them, causing total emissions to rise. While both sides of this debate have researched the magnitude of these so-called rebound effects among end-use consumers, researchers have paid less attention to the conditions under which direct rebounds cause CO_2 emissions to rise among industrial producers. In particular, researchers have yet to explore how organizational and global factors might condition the effects of efficiency on emissions among power plants, the world's most concentrated sources of anthropogenic greenhouse gases. Here we use a unique dataset containing nearly every fossil-fuel power plant in the world to determine whether the impact of efficiency on emissions varies by plants' age, size, and location in global economic and normative systems. Findings reveal that each of these factors has a significant interaction with efficiency and thus shapes environmentally destructive rebound effects. - Highlights: •Skeptics charge that energy efficiency may actually cause CO_2 emissions to rise. •Few have examined whether such rebound effects occur among power plants. •Little also known about whether plants' organizational and global characteristics condition rebounds. •Conduct first analysis of rebound effects among the world's power plants. •Rebounds found to depend on plants' age, size, and location in international economic and normative systems.

  6. Life cycle impact assessment of home energy management systems (HEMS) using dynamic emissions factors for electricity in Finland

    International Nuclear Information System (INIS)

    Louis, Jean-Nicolas; Pongrácz, Eva

    2017-01-01

    Decarbonising the European economy is a long-term goal in which the residential sector will play a significant role. Smart buildings for energy management are one means of decarbonisation, by reducing energy consumption and related emissions. This study investigated the environmental impacts of smart house automation using life cycle impact assessment. The ReCiPe method was selected for use, in combination with dynamic emissions factors for electricity in Finland. The results indicated that a high level of technology deployment may be counter-effective, due to high electricity consumption by the sensor network, automation system and computing devices. The results also indicated that number of inhabitants per household directly affected the environmental impacts of home automation. A single-person household saw its environmental impacts increase by 15%, while those of a five-person household increased by 3% in the worst-case scenario. The manufacturing phase contributed the major share of environmental impacts, exceeding the use phase in multiple categories. These findings indicate that finding the sweet spot in which technology can promote decarbonisation will be crucial to achieving the goal of a low‑carbon economy. - Highlights: •HEMS did not reduce the overall environmental impact of households. •Environmental impacts of HEMS are greater for single inhabitant households. •Energy efficiency of sensing devices must drastically increase to promote decarbonisation. •The highest life cycle environmental impacts of electronics are during the manufacturing phase. •Raising awareness is a critical part in decreasing the environmental impact of households.

  7. Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach

    International Nuclear Information System (INIS)

    Fernández González, P.; Landajo, M.; Presno, M.J.

    2014-01-01

    Aggregate CO 2 emitted to the atmosphere from a given region could be determined by monitoring several distinctive components. In this paper we propose five decomposition factors: population, production per capita, fuel mix, carbonization and energy intensity. The latter is commonly used as a proxy for energy efficiency. The problem arises when defining this concept, as there is little consensus among authors on how to measure energy intensity (using either physical or monetary activity indicators). In this paper we analyse several measurement possibilities, presenting and developing a number of approaches based on the LMDI (logarithmic-mean Divisia index) methodology, to decompose changes in aggregate CO 2 emissions. The resulting methodologies are so-called MB (monetary based), IR (intensity refactorization) and AR (activity revaluation) approaches. Then, we apply these methodologies to analyse changes in carbon dioxide emissions in the EU (European Union) power sector, both as a whole and at country level. Our findings show the strong impact of changes in the energy mix factor on aggregate CO 2 emission levels, although a number of differences among countries are detected which lead to specific environmental recommendations. - Highlights: • New Divisia-based decomposition analysis removing price influence is presented. • We apply refined methodologies to decompose changes in CO 2 emissions in the EU (European Union). • Changes in fuel mix appear as the main driving force in CO 2 emissions reduction. • GDPpc growth becomes a direct contributor to emissions drop, especially in Western EU. • Innovation and technical change: less helpful tools when eliminating the price effect

  8. Seasonal trends of biogenic terpene emissions.

    Science.gov (United States)

    Helmig, Detlev; Daly, Ryan Woodfin; Milford, Jana; Guenther, Alex

    2013-09-01

    Biogenic volatile organic compound (BVOC) emissions from six coniferous tree species, i.e. Pinus ponderosa (Ponderosa Pine), Picea pungens (Blue Spruce), Pseudotsuga menziesii (Rocky Mountain Douglas Fir) and Pinus longaeva (Bristlecone Pine), as well as from two deciduous species, Quercus gambelii (Gamble Oak) and Betula occidentalis (Western River Birch) were studied over a full annual growing cycle. Monoterpene (MT) and sesquiterpene (SQT) emissions rates were quantified in a total of 1236 individual branch enclosure samples. MT dominated coniferous emissions, producing greater than 95% of BVOC emissions. MT and SQT demonstrated short-term emission dependence with temperature. Two oxygenated MT, 1,8-cineol and piperitone, were both light and temperature dependent. Basal emission rates (BER, normalized to 1000μmolm(-2)s(-1) and 30°C) were generally higher in spring and summer than in winter; MT seasonal BER from the coniferous trees maximized between 1.5 and 6.0μgg(-1)h(-1), while seasonal lows were near 0.1μgg(-1)h(-1). The fractional contribution of individual MT to total emissions was found to fluctuate with season. SQT BER measured from the coniferous trees ranged from emissions modeling, was not found to exhibit discernible growth season trends. A seasonal correction factor proposed by others in previous work to account for a sinusoidal shaped emission pattern was applied to the data. Varying levels of agreement were found between the data and model results for the different plant species seasonal data sets using this correction. Consequently, the analyses on this extensive data set suggest that it is not feasible to apply a universal seasonal correction factor across different vegetation species. A modeling exercise comparing two case scenarios, (1) without and (2) with consideration of the seasonal changes in emission factors illustrated large deviations when emission factors are applied for other seasons than those in which they were experimentally

  9. A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections

    Science.gov (United States)

    Goel, Anju; Kumar, Prashant

    2014-11-01

    Signalised traffic intersections (TIs) are considered as pollution hot-spots in urban areas, but the knowledge of fundamental drivers governing emission, dispersion and exposure to vehicle-emitted nanoparticles (represented by particle number concentration, PNC) at TIs is yet to be established. A number of following key factors, which are important for developing an emission and exposure framework for nanoparticles at TIs, are critically evaluated as a part of this review article. In particular, (i) how do traffic- and wind-flow features affect emission and dispersion of nanoparticles? (ii) What levels of PNCs can be typically expected under diverse signal- and traffic-conditions? (iii) How does the traffic driving condition affect the particle number (PN) emissions and the particle number emission factors (PNEF)? (iv) What is the relative importance of particle transformation processes in affecting the PNCs? (v) What are important considerations for the dispersion modelling of nanoparticles? (vi) What is extent of exposure at TIs with respect to other locations in urban settings? (vii) What are the gaps in current knowledge on this topic where the future research should focus? We found that the accurate consideration of dynamic traffic flow features at TIs is essential for reliable estimates of PN emissions. Wind flow features at TIs are generally complex to generalise. Only a few field studies have monitored PNCs at TIs until now, reporting over an order of magnitude larger peak PNCs (0.7-5.4 × 105 cm-3) compared with average PNCs at typical roadsides (˜0.3 × 105 cm-3). The PN emission and thus the PNEFs can be up to an order of magnitude higher during acceleration compared with steady speed conditions. The time scale analysis suggests nucleation as the fastest transformation process, followed by dilution, deposition, coagulation and condensation. Consideration of appropriate flow features, PNEFs and transformation processes emerged as important parameters for

  10. Estimating national exhaust emissions from railway vehicles in Turkey

    International Nuclear Information System (INIS)

    Dincer, Faruk; Elbir, Tolga

    2007-01-01

    The estimated exhaust emissions from railway vehicles in Turkey were presented. The emissions of nitrogen oxides (NO x ), hydrocarbon compounds (HC), carbon monoxide (CO), particulate matter (PM), sulfur dioxide (SO 2 ) and carbon dioxide (CO 2 ) from the diesel locomotives and railcars were calculated using the railway traffic data recorded by Turkish State Railways (TSR) for the period of 2000-2005. EPA emission factors were used for different vehicle types and operation modes such as shunting and line-hauling. Total emissions from railway vehicles in Turkey were estimated as 384 t y - 1 for HC, 1016 t y - 1 for CO, 6799 t y - 1 for NO X , 256 t y - 1 for PM, 357 t y - 1 for SO 2 and 383 537 t y - 1 for CO 2 for the year 2005. The distribution of emissions with respect to type of railway vehicles shows that the mainline locomotives contribute ∝ 91% to the total emissions. The increases of 22%, 39% and 49% in the current numbers of mainline locomotives, shunting locomotives and diesel railcars, respectively corresponding to the full capacity of railway network in Turkey will increase the annual emissions to 431 t y - 1 for HC, 1121 t y - 1 for CO, 7399 t y - 1 for NO X , 342 t y - 1 for PM, 552 t y - 1 for SO 2 and 420 256 t y - 1 for CO 2 . Total railway emissions constitute 0.15%, 0.08% and 4.21% of total Turkish traffic emissions for HC, CO and NO X , respectively. (author)

  11. Assessment of atmospheric mercury emissions in Finland

    Science.gov (United States)

    Mukherjee; Melanen; Ekqvist; Verta

    2000-10-02

    This paper is part of the study of atmospheric emissions of heavy metals conducted by the Finnish Environment Institute in collaboration with the Technical Research Centre of Finland (VTT) under the umbrella of the Finnish Ministry of the Environment. The scope of our study is limited solely to anthropogenic mercury that is emitted directly to the atmosphere. This article addresses emission factors and trends of atmospheric mercury emissions during the 1990s and is based mainly on the database of the Finnish Environmental Administration. In addition, data based on the measurements taken by the VTT regarding emission factors have been used to estimate emissions of mercury from the incineration of waste. The study indicates that the total emission of mercury has decreased from 1140 kg in 1990 to 620 kg in 1997, while industrial and energy production have been on the increase simultaneously. The 45% emission reduction is due to improved gas cleaning equipment, process changes, automation, the installation of flue gas desulfurization process in coal-fired power plants and strict pollution control laws. In the past, some authors have estimated a higher mercury emission in Finland. In this study, it is also observed that there are no big changes in the quality of raw materials. Estimated emission factors can be of great help to management for estimating mercury emissions and also its risk assessment.

  12. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X. [Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), E-39005, Santander (Spain); Ramos, A. Asensio; Almeida, C. Ramos [Instituto de Astrofísica de Canarias, E-38205, La Laguna, Tenerife (Spain); Watson, M. G.; Blain, A. [Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Caccianiga, A.; Ballo, L. [INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy); Braito, V., E-mail: mateos@ifca.unican.es [INAF-Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy)

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  13. Modeling state-level soil carbon emission factors under various scenarios for direct land use change associated with United States biofuel feedstock production

    International Nuclear Information System (INIS)

    Kwon, Ho-Young; Mueller, Steffen; Dunn, Jennifer B.; Wander, Michelle M.

    2013-01-01

    Current estimates of life cycle greenhouse gas emissions of biofuels produced in the US can be improved by refining soil C emission factors (EF; C emissions per land area per year) for direct land use change associated with different biofuel feedstock scenarios. We developed a modeling framework to estimate these EFs at the state-level by utilizing remote sensing data, national statistics databases, and a surrogate model for CENTURY's soil organic C dynamics submodel (SCSOC). We estimated the forward change in soil C concentration within the 0–30 cm depth and computed the associated EFs for the 2011 to 2040 period for croplands, grasslands or pasture/hay, croplands/conservation reserve, and forests that were suited to produce any of four possible biofuel feedstock systems [corn (Zea Mays L)-corn, corn–corn with stover harvest, switchgrass (Panicum virgatum L), and miscanthus (Miscanthus × giganteus Greef et Deuter)]. Our results predict smaller losses or even modest gains in sequestration for corn based systems, particularly on existing croplands, than previous efforts and support assertions that production of perennial grasses will lead to negative emissions in most situations and that conversion of forest or established grasslands to biofuel production would likely produce net emissions. The proposed framework and use of the SCSOC provide transparency and relative simplicity that permit users to easily modify model inputs to inform biofuel feedstock production targets set forth by policy. -- Highlights: ► We model regionalized feedstock-specific United States soil C emission factors. ► We simulate soil C changes from direct land use change associated with biofuel feedstock production. ► Corn, corn-stover, and perennial grass biofuel feedstocks grown in croplands maintain soil C levels. ► Converting grasslands to bioenergy crops risks soil C loss. ► This modeling framework yields more refined soil C emissions than national-level emissions

  14. Trends in onroad transportation energy and emissions.

    Science.gov (United States)

    Frey, H Christopher

    2018-06-01

    trends are addressed with regard to technology, emissions controls, vehicle operations, emission measurements, impacts on exposure, and impacts on public health. Without specific policies to the contrary, fossil fuels are likely to continue to be the major source of on-road vehicle energy consumption. Fuel economy and emission standards are generally effective in achieving reductions per unit of vehicle activity. However, the number of vehicles and miles traveled will increase. Total energy use and emissions depend on factors such as fuels, technologies, land use, demographics, economics, road design, vehicle operation, societal values, and others that affect demand for transportation, mode choice, energy use, and emissions. Thus, there are many opportunities to influence future trends in vehicle energy use and emissions.

  15. Measuring Carbon Emissions of Pavement Construction in China

    Directory of Open Access Journals (Sweden)

    Youliang Huang

    2016-07-01

    Full Text Available While various methodologies for quantifying carbon emissions of pavement construction are developed worldwide, adopting and promoting the existing tools to China’s market is found fairly challenging due to institutional constraints. Therefore, the objectives of this study are to propose a methodology for measuring carbon emissions of pavement construction compatible with the fixed pricing systems prevalent in China; and develop an automatic tool for carbon estimations. The total carbon emissions are measured by aggregating emissions of energy consumption and materials used along with four stages, namely material manufacture, transportation, construction, and disposal. A set of composite carbon emission factors for energy and materials was calculated based on existing emission factors with the consideration of the boundaries concerned. The quantity of energy and materials used in pavement construction are obtained through bills of quantity and the fixed price system. The database of the emission factors for energy and materials was embedded into a C# based tool, and validated in a real case.

  16. On-road emissions of CO, CO2 and NOX from four wheeler and emission estimates for Delhi.

    Science.gov (United States)

    Jaiprakash; Habib, Gazala; Kumar, Anil; Sharma, Akash; Haider, Minza

    2017-03-01

    This study presents the emission factor of gaseous pollutants (CO, CO 2 , and NO X ) from on-road tailpipe measurement of 14 passenger cars of different types of fuel and vintage. The trolley equipped with stainless steel duct, vane probe velocity meter, flue gas analyzer, Nondispersive infra red (NDIR) CO 2 analyzer, temperature, and relative humidity (RH) sensors was connected to the vehicle using a towing system. Lower CO and higher NO X emissions were observed from new diesel cars (post 2010) compared to old cars (post 2005), which implied that new technological advancement in diesel fueled passenger cars to reduce CO emission is a successful venture, however, the use of turbo charger in diesel cars to achieve high temperature combustion might have resulted in increased NO X emissions. Based on the measured emission factors (g/kg), and fuel consumption (kg), the average and 95% confidence interval (CI) bound estimates of CO, CO 2 , and NO X from four wheeler (4W) in Delhi for the year 2012 were 15.7 (1.4-37.1) , 6234 (386-12,252) , and 30.4 (0.0-103) Gg/year, respectively. The contribution of diesel, gasoline and compressed natural gas (CNG) to total CO, CO 2 and NO X emissions were 7:84:9, 50:48:2 and 58:41:1 respectively. The present work indicated that the age and the maintenance of vehicle both are important factors in emission assessment therefore, more systematic repetitive measurements covering wide range of vehicles of different age groups, engine capacity, and maintenance level is needed for refining the emission factors with CI. Copyright © 2016. Published by Elsevier B.V.

  17. Estimation of the self-attenuation correction factor for gamma rays emission from nuclear materials

    International Nuclear Information System (INIS)

    Badawy, A.; El-Gammal, W.A.

    2001-01-01

    This work presents an investigation of the self-attenuation of gamma-rays emission from nuclear materials (NMs) for measuring the U-235 enrichment, U-235 mass content and isotopic composition of NMs by non-destructive assay technique [NDA]. The measurements then would not need the use of suitable NM Standards which may not be available in many situations. The self-attenuation correction factor (F) may be estimated by the use of the linear attenuation factor of the assayed sample, the geometrical configuration of the assay set-up and the position of the assayed sample relative to the detector. A developed mathematical analysis makes use of specific parameters which affect the estimation of the self-attenuation of the source-detector system which emits passive gamma-rays at certain prominent signatures

  18. Vehicle-based road dust emission measurement (III):. effect of speed, traffic volume, location, and season on PM 10 road dust emissions in the Treasure Valley, ID

    Science.gov (United States)

    Etyemezian, V.; Kuhns, H.; Gillies, J.; Chow, J.; Hendrickson, K.; McGown, M.; Pitchford, M.

    The testing re-entrained aerosol kinetic emissions from roads (TRAKER) road dust measurement system was used to survey more than 400 km of paved roads in southwestern Idaho during 3-week sampling campaigns in winter and summer, 2001. Each data point, consisting of a 1-s measurement of particle light scattering sampled behind the front tire, was associated with a link (section of road) in the traffic demand model network for the Treasure Valley, ID. Each link was in turn associated with a number of characteristics including posted speed limit, vehicle kilometers traveled (vkt), road class (local/residential, collector, arterial, and interstate), county, and land use (urban vs. rural). Overall, the TRAKER-based emission factors based on location, setting, season, and speed spanned a narrow range from 3.6 to 8.0 g/vkt. Emission factors were higher in winter compared to summer, higher in urban areas compared to rural, and lower for roads with fast travel speeds compared to slower roads. The inherent covariance between traffic volume and traffic speed obscured the assessment of the effect of traffic volume on emission potentials. Distance-based emission factors expressed in grams per kilometer traveled (g/vkt) for roads with low travel speeds (˜11 m/s residential roads) compared to those with high travel speeds (˜25 m/s interstates) were higher (5.2 vs. 3.0 g/vkt in summer and 5.9 vs. 4.9 g/vkt in winter). However, emission potentials which characterize the amount of suspendable material on a road were substantially higher on roads with low travel speeds (0.71 vs. 0.13 g/vkt/(m/s) in summer and 0.78 vs. 0.21 g/vkt/(m/s) in winter). This suggested that while high speed roads are much cleaner (factor of 5.4 in summer), on a vehicle kilometer traveled basis, emissions from high and low speed roads are of the same order. Emission inventories based on the TRAKER method, silt loadings obtained during the field study, and US EPA's AP-42 default values of silt loading were

  19. Multisite study of particle number concentrations in urban air.

    Science.gov (United States)

    Harrison, Roy M; Jones, Alan M

    2005-08-15

    Particle number concentration data are reported from a total of eight urban site locations in the United Kingdom. Of these, six are central urban background sites, while one is an urban street canyon (Marylebone Road) and another is influenced by both a motorway and a steelworks (Port Talbot). The concentrations are generally of a similar order to those reported in the literature, although higher than those in some of the other studies. Highest concentrations are at the Marylebone Road site and lowest are at the Port Talbot site. The central urban background locations lie somewhere between with concentrations typically around 20 000 cm(-3). A seasonal pattern affects all sites, with highest concentrations in the winter months and lowest concentrations in the summer. Data from all sites show a diurnal variation with a morning rush hour peak typical of an anthropogenic pollutant. When the dilution effects of windspeed are accounted for, the data show little directionality at the central urban background sites indicating the influence of sources from all directions as might be expected if the major source were road traffic. At the London Marylebone Road site there is high directionality driven by the air circulation in the street canyon, and at the Port Talbot site different diurnal patterns are seen for particle number count and PM10 influenced by emissions from road traffic (particle number count) and the steelworks (PM10) and local meteorological factors. Hourly particle number concentrations are generally only weakly correlated to NO(x) and PM10, with the former showing a slightly closer relationship. Correlations between daily average particle number count and PM10 were also weak. Episodes of high PM10 concentration in summer typically show low particle number concentrations consistent with transport of accumulation mode secondary aerosol, while winter episodes are frequently associated with high PM10 and particle number count arising from poor dispersion of

  20. An inventory of nitrous oxide emissions from agriculture in the UK using the IPCC methodology: emission estimate, uncertainty and sensitivity analysis

    Science.gov (United States)

    Brown, L.; Armstrong Brown, S.; Jarvis, S. C.; Syed, B.; Goulding, K. W. T.; Phillips, V. R.; Sneath, R. W.; Pain, B. F.

    Nitrous oxide emission from UK agriculture was estimated, using the IPCC default values of all emission factors and parameters, to be 87 Gg N 2O-N in both 1990 and 1995. This estimate was shown, however, to have an overall uncertainty of 62%. The largest component of the emission (54%) was from the direct (soil) sector. Two of the three emission factors applied within the soil sector, EF1 (direct emission from soil) and EF3 PRP (emission from pasture range and paddock) were amongst the most influential on the total estimate, producing a ±31 and +11% to -17% change in emissions, respectively, when varied through the IPCC range from the default value. The indirect sector (from leached N and deposited ammonia) contributed 29% of the total emission, and had the largest uncertainty (126%). The factors determining the fraction of N leached (Frac LEACH) and emissions from it (EF5), were the two most influential. These parameters are poorly specified and there is great potential to improve the emission estimate for this component. Use of mathematical models (NCYCLE and SUNDIAL) to predict Frac LEACH suggested that the IPCC default value for this parameter may be too high for most situations in the UK. Comparison with other UK-derived inventories suggests that the IPCC methodology may overestimate emission. Although the IPCC approach includes additional components to the other inventories (most notably emission from indirect sources), estimates for the common components (i.e. fertiliser and animals), and emission factors used, are higher than those of other inventories. Whilst it is recognised that the IPCC approach is generalised in order to allow widespread applicability, sufficient data are available to specify at least two of the most influential parameters, i.e. EF1 and Frac LEACH, more accurately, and so provide an improved estimate of nitrous oxide emissions from UK agriculture.

  1. Number-Theory in Nuclear-Physics in Number-Theory: Non-Primality Factorization As Fission VS. Primality As Fusion; Composites' Islands of INstability: Feshbach-Resonances?

    Science.gov (United States)

    Siegel, Edward

    2011-10-01

    Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility /factor-ization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 × 2]; (4+1)=(fusion)=5; (5 +1)=(fission)=6[=2 × 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 × 4 = 2 × 2 × 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 × 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16,... Could inter-digit Feshbach-resonances exist??? Applications to: quantum-information/computing non-Shore factorization, millennium-problem Riemann-hypotheses proof as Goodkin BEC intersection with graph-theory ``short-cut'' method: Rayleigh(1870)-Polya(1922)-``Anderson'' (1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics;... abound!!!

  2. An equivalence factor between CO2 avoided emissions and sequestration. Description and applications in forestry

    International Nuclear Information System (INIS)

    Costa, P.M.; Wilson, C.

    2000-01-01

    Concern about the issue of permanence and reversibility of the effects of carbon sequestration has led to the need to devise accounting methods that quantify the temporal value of storing carbon that has been actively sequestered or removed from the atmosphere, as compared to carbon stored as a result of activities taken to avoid emissions. This paper describes a method for accounting for the atmospheric effects of sequestration-based land-use projects in relation to the duration of carbon storage. Firstly, the time period over which sequestered carbon should be stored in order to counteract the radiative forcing effect of carbon emissions was calculated, based on the residence time and decay pattern of atmospheric CO2, its Absolute Global Warming Potential. This time period was called the equivalence time, and was calculated to be approximately 55 years. From this equivalence time, the effect of storage of 1 t CO2 for 1 year was derived, and found to be similar to preventing the effect of the emission of 0.0182 t CO2. Potential applications of this tonne.year figure, here called the equivalence factor, are then discussed in relation to the estimation of atmospheric benefits over time of sequestration-based land use projects. 15 refs

  3. A fuel-based approach to estimating motor vehicle exhaust emissions

    Science.gov (United States)

    Singer, Brett Craig

    Motor vehicles contribute significantly to air pollution problems; accurate motor vehicle emission inventories are therefore essential to air quality planning. Current travel-based inventory models use emission factors measured from potentially biased vehicle samples and predict fleet-average emissions which are often inconsistent with on-road measurements. This thesis presents a fuel-based inventory approach which uses emission factors derived from remote sensing or tunnel-based measurements of on-road vehicles. Vehicle activity is quantified by statewide monthly fuel sales data resolved to the air basin level. Development of the fuel-based approach includes (1) a method for estimating cold start emission factors, (2) an analysis showing that fuel-normalized emission factors are consistent over a range of positive vehicle loads and that most fuel use occurs during loaded-mode driving, (3) scaling factors relating infrared hydrocarbon measurements to total exhaust volatile organic compound (VOC) concentrations, and (4) an analysis showing that economic factors should be considered when selecting on-road sampling sites. The fuel-based approach was applied to estimate carbon monoxide (CO) emissions from warmed-up vehicles in the Los Angeles area in 1991, and CO and VOC exhaust emissions for Los Angeles in 1997. The fuel-based CO estimate for 1991 was higher by a factor of 2.3 +/- 0.5 than emissions predicted by California's MVEI 7F model. Fuel-based inventory estimates for 1997 were higher than those of California's updated MVEI 7G model by factors of 2.4 +/- 0.2 for CO and 3.5 +/- 0.6 for VOC. Fuel-based estimates indicate a 20% decrease in the mass of CO emitted, despite an 8% increase in fuel use between 1991 and 1997; official inventory models predict a 50% decrease in CO mass emissions during the same period. Cold start CO and VOC emission factors derived from parking garage measurements were lower than those predicted by the MVEI 7G model. Current inventories

  4. Working group report: methane emissions from biomass burning

    International Nuclear Information System (INIS)

    Delmas, R.A.; Ahuja, D.

    1993-01-01

    Biomass burning is a significant source of atmospheric methane. Like most other sources of methane, it has both natural and anthropogenic causes, although anthropogenic causes now predominate. Most of the estimates of methane emissions from biomass burning in the past have relied on a uniform emission factor for all types of burning. This results in the share of trace gas emissions for different types of burning being the same as the amounts of biomass burned in those types. The Working Group endorsed the extension of an approach followed for Africa by Delmas et al. (1991) to use different emission factors for different types of biomass burning to estimate national emissions of methane. This is really critical as emission factors present important variations. While the focus of discussions of the Working Group was on methane emissions from biomass burning, the Group endorsed the IPCC-OECD methodology of estimating all greenhouse related trace gases from biomass burning. Neither the IPCC-OECD nor the methodology suggested here applies to estimation of trace gas emissions from the processing of biomass to upgraded fuels. They must be estimated separately. The Group also discussed technical options for controlling methane emissions from biomass. 12 refs

  5. PM₂.₅ emissions from light-duty gasoline vehicles in Beijing, China.

    Science.gov (United States)

    Shen, Xianbao; Yao, Zhiliang; Huo, Hong; He, Kebin; Zhang, Yingzhi; Liu, Huan; Ye, Yu

    2014-07-15

    As stricter standards for diesel vehicles are implemented in China, and the use of diesel trucks is forbidden in urban areas, determining the contribution of light-duty gasoline vehicles (LDGVs) to on-road PM2.5 emissions in cities is important. Additionally, in terms of particle number and size, particulates emitted from LDGVs have a greater health impact than particulates emitted from diesel vehicles. In this work, we measured PM2.5 emissions from 20 LDGVs in Beijing, using an improved combined on-board emission measurement system. We compared these measurements with those reported in previous studies, and estimated the contribution of LDGVs to on-road PM2.5 emissions in Beijing. The results show that the PM2.5 emission factors for LDGVs, complying with European Emission Standards Euro-0 through Euro-4 were: 117.4 ± 142, 24.1 ± 20.4, 4.85 ± 7.86, 0.99 ± 1.32, 0.17 ± 0.15 mg/km, respectively. Our results show a significant decline in emissions with improving vehicle technology. However, this trend is not reflected in recent emission inventory studies. The daytime contributions of LDGVs to PM2.5 emissions on highways, arterials, residential roads, and within urban areas of Beijing were 44%, 62%, 57%, and 57%, respectively. The contribution of LDGVs to PM2.5 emissions varied both for different road types and for different times. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Mercury emission from crematories in Japan

    Directory of Open Access Journals (Sweden)

    M. Takaoka

    2010-04-01

    Full Text Available Anthropogenic sources of mercury emissions have a significant impact on global pollution. Therefore, finding uncharacterised sources and assessing the emissions from these sources are important. However, limited data are available worldwide on mercury emissions from crematories. In Japan, 99.9% of dead bodies are cremated, which is the highest percentage in the world, and more than 1600 crematories are in operation. We thus focused on emissions from crematories in Japan. The number of targeted facilities was seven, and we used continuous emission monitoring to measure the mercury concentrations and investigate mercury behaviour. The total mercury concentrations in stack gases were a few μg/Nm3 (normal cubic meters. Considering the time profile of mercury and its species in cremations, the findings confirmed that the mercury in stack gas originated from dental amalgam. The amount of mercury emissions was calculated using the total concentration and gas flow rate. Furthermore, the annual amount of mercury emission from crematories in Japan was estimated by using the total number of corpses. The emission amount was considerably lower than that estimated in the United Kingdom. From statistical analyses on population demographics and measurements, future total emissions from crematories were also predicted. As a result, the amount of mercury emitted by crematories will likely increase by 2.6-fold from 2007 to 2037.

  7. The Adaptation Law for emissions trading. Part 2. A level playing field for emissions trading?

    International Nuclear Information System (INIS)

    Simonetti, S.

    2010-01-01

    To supplement, clarify and simplify the regulations for emission trading, the Amendment Act emission trading II was submitted to the Dutch Lower Chamber end of 2009. This article discusses the pending bill and comments on a number of remarkable stipulations that may be important to the market parties. First a brief overview is provided of the basic principles of emission trading and the players in the CO2 market. [nl

  8. Methodology for reporting 2011 B.C. public sector greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    In order to reduce its greenhouse gas emissions, British Columbia promulgated legislation under which the public sector is expected to become carbon neutral starting in 2010 and provincial public sector organizations (PSOs) must report their emissions annually. The aim of this report is to present the emission factors and methodology for calculating and reporting PSO emissions used in 2011. Emission factors represent the amount of greenhouse gas emitted from a specific activity. This document provides emission factors for all in scope categories: stationary sources, indirect emissions, mobile sources and business travel; it also presents a sample calculation of greenhouse gas emissions. The government of British Columbia developed SMARTTool, a web-based program which calculates and reports emissions from stationary sources, indirect emissions and mobile sources. In addition the SMART Travel Emissions Calculator was created to report business travel greenhouse gas emissions through SMARTTool.

  9. Uncertainty in projected climate change arising from uncertain fossil-fuel emission factors

    Science.gov (United States)

    Quilcaille, Y.; Gasser, T.; Ciais, P.; Lecocq, F.; Janssens-Maenhout, G.; Mohr, S.

    2018-04-01

    Emission inventories are widely used by the climate community, but their uncertainties are rarely accounted for. In this study, we evaluate the uncertainty in projected climate change induced by uncertainties in fossil-fuel emissions, accounting for non-CO2 species co-emitted with the combustion of fossil-fuels and their use in industrial processes. Using consistent historical reconstructions and three contrasted future projections of fossil-fuel extraction from Mohr et al we calculate CO2 emissions and their uncertainties stemming from estimates of fuel carbon content, net calorific value and oxidation fraction. Our historical reconstructions of fossil-fuel CO2 emissions are consistent with other inventories in terms of average and range. The uncertainties sum up to a ±15% relative uncertainty in cumulative CO2 emissions by 2300. Uncertainties in the emissions of non-CO2 species associated with the use of fossil fuels are estimated using co-emission ratios varying with time. Using these inputs, we use the compact Earth system model OSCAR v2.2 and a Monte Carlo setup, in order to attribute the uncertainty in projected global surface temperature change (ΔT) to three sources of uncertainty, namely on the Earth system’s response, on fossil-fuel CO2 emission and on non-CO2 co-emissions. Under the three future fuel extraction scenarios, we simulate the median ΔT to be 1.9, 2.7 or 4.0 °C in 2300, with an associated 90% confidence interval of about 65%, 52% and 42%. We show that virtually all of the total uncertainty is attributable to the uncertainty in the future Earth system’s response to the anthropogenic perturbation. We conclude that the uncertainty in emission estimates can be neglected for global temperature projections in the face of the large uncertainty in the Earth system response to the forcing of emissions. We show that this result does not hold for all variables of the climate system, such as the atmospheric partial pressure of CO2 and the

  10. Greenhouse gas emission curves for advanced biofuel supply chains

    Science.gov (United States)

    Daioglou, Vassilis; Doelman, Jonathan C.; Stehfest, Elke; Müller, Christoph; Wicke, Birka; Faaij, Andre; van Vuuren, Detlef P.

    2017-12-01

    Most climate change mitigation scenarios that are consistent with the 1.5-2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr-1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr-1 for emission factors less than 60 kgCO2e GJBiofuel-1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity.

  11. Effects of After-Treatment Control Technologies on Heavy-Duty Diesel Truck Emissions

    Science.gov (United States)

    Preble, C.; Dallmann, T. R.; Kreisberg, N. M.; Hering, S. V.; Harley, R.; Kirchstetter, T.

    2015-12-01

    Diesel engines are major emitters of nitrogen oxides (NOx) and the black carbon (BC) fraction of particulate matter (PM). Diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have recently become standard on new heavy-duty diesel trucks (HDDT). There is concern that DPFs may increase ultrafine particle (UFP) and total particle number (PN) emissions while reducing PM mass emissions. Also, the deliberate catalytic oxidation of engine-out NO to NO2 in continuously regenerating DPFs may lead to increased tailpipe emission of NO2 and near-roadway concentrations that exceed the 1-hr national ambient air quality standard. Increased NO2 emissions can also promote formation of ozone and secondary PM. We report results from ongoing on-road studies of HDDT emissions at the Port of Oakland and the Caldecott Tunnel in California's San Francisco Bay Area. Emission factors (g pollutant per kg diesel) were linked via recorded license plates to each truck's engine model year and installed emission controls. At both sites, DPF use significantly increased the NO2/NOx emission ratio. DPFs also significantly increased NO2 emissions when installed as retrofits on older trucks with higher baseline NOx emissions. While SCR systems on new trucks effectively reduce total NOx emissions and mitigate these undesirable DPF-related NO2 emissions, they also lead to significant emission of N2O, a potent greenhouse gas. When expressed on a CO2-equivalent basis, the N2O emissions increase offsets the fuel economy gain (i.e., the CO2 emission reduction) associated with SCR use. At the Port, average NOx, BC and PN emission factors from new trucks equipped with DPF and SCR were 69 ± 15%, 92 ± 32% and 66 ± 35% lower, respectively, than modern trucks without these emission controls. In contrast, at the Tunnel, PN emissions from older trucks retrofit with DPFs were ~2 times greater than modern trucks without DPFs. The difference

  12. Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization

    Science.gov (United States)

    MacArt, Jonathan F.; Mueller, Michael E.

    2016-12-01

    Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.

  13. Agriculture and the greenhouse gas emissions: A literature review

    International Nuclear Information System (INIS)

    Kulmala, A.; Esala, M.

    2000-01-01

    Agriculture contributes to the greenhouse effect by increasing carbon dioxide, nitrous oxide and methane emissions. This literature review examines agricultural sources and sinks of greenhouse gases as well as factors affecting emissions. Options for mitigating emissions are presented as well the results of greenhouse gas emission measurements on Finnish agricultural soils. In addition, some basic information is given about Finnish agriculture, and the estimation of emissions using the IPCC Guidelines is described. Carbon dioxide sources include decomposition of soil organic matter, combustion and liming. The agricultural sector can mitigate CO 2 emissions by increasing carbon stocks in soils and vegetation, reducing fossil fuel consumption, and increasing the production of bioenergy. There is little opportunity to decrease the amount of liming in Finland. The main nitrous oxide sources are nitrification and denitrification. N 2 O emissions can be reduced by enhancing plants' ability to compete for soil nitrogen and by keeping the rate of emission processes as low and the duration of emissions as short as possible. Special attention should be paid to manure management because manure contains abundant nitrogen that can be lost as N 2 O. Improvements in the protein feeding of livestock could also reduce potential N 2 O emissions from manure. Methane is emitted, for example, in the course of enteric fermentation and the anaerobic decomposition of organic matter in manure. The emission of CH 4 from soils depends on the relative amounts of methane production and consumption. Cattle with high productivity emit less methane per unit of milk or meat than do animals with low productivity. The number of breeding animals could be reduced by improving animal reproduction efficiency. Methane emitted from manure should be utilized as an energy source, or the formation of it should be prevented by keeping manure under aerobic conditions

  14. Convergence of carbon dioxide emissions in different sectors in China

    International Nuclear Information System (INIS)

    Wang, Juan; Zhang, Kezhong

    2014-01-01

    In this paper, we analyze differences in per capita carbon dioxide emissions from 1996 to 2010 in six sectors across 28 provinces in China and examine the σ-convergence, stochastic convergence and β-convergence of these emissions. We also investigate the factors that impact the convergence of per capita carbon dioxide emissions in each sector. The results show that per capita carbon dioxide emissions in all sectors converged across provinces from 1996 to 2010. Factors that impact the convergence of per capita carbon dioxide emissions in each sector vary: GDP (gross domestic product) per capita, industrialization process and population density impact convergence in the Industry sector, while GDP per capita and population density impact convergence in the Transportation, Storage, Postal, and Telecommunications Services sector. Aside from GDP per capita and population density, trade openness also impacts convergence in the Wholesale, Retail, Trade, and Catering Service sector. Population density is the only factor that impacts convergence in the Residential Consumption sector. - Highlights: • Analyze differences in CO 2 emissions in six sectors among 28 provinces in China. • Examine the convergence of CO 2 emissions in six sectors. • Investigate factors impact on convergence of CO 2 emissions in each sector. • Factors impact on convergence of per capita CO 2 emissions in each sector vary

  15. Carbon Footprint Management of Road Freight Transport under the Carbon Emission Trading Mechanism

    Directory of Open Access Journals (Sweden)

    Jin Li

    2015-01-01

    Full Text Available Growing concern over environmental issues has considerably increased the number of regulations and legislation that aim to curb carbon emissions. Carbon emission trading mechanism, which is one of the most effective means, has been broadly adopted by several countries. This paper presents a road truck routing problem under the carbon emission trading mechanism. By introducing a calculation method of carbon emissions that considers the load and speed of the vehicle among other factors, a road truck routing optimizing model under the cap and trade mechanism based on the Travelling Salesman Problem (TSP is described. Compared with the classical TSP model that only considers the economic cost, this model suggests that the truck routing decision under the cap and trade mechanism is more effective in reducing carbon emissions. A modified tabu search algorithm is also proposed to obtain solutions within a reasonable amount of computation time. We theoretically and numerically examine the impacts of carbon trading, carbon cap, and carbon price on truck routing decision, carbon emissions, and total cost. From the results of numerical experiments, we derive interesting observations about how to control the total cost and reduce carbon emissions.

  16. Factors associated with self-reported number of teeth in a large national cohort of Thai adults

    Directory of Open Access Journals (Sweden)

    Yiengprugsawan Vasoontara

    2011-11-01

    Full Text Available Abstract Background Oral health in later life results from individual's lifelong accumulation of experiences at the personal, community and societal levels. There is little information relating the oral health outcomes to risk factors in Asian middle-income settings such as Thailand today. Methods Data derived from a cohort of 87,134 adults enrolled in Sukhothai Thammathirat Open University who completed self-administered questionnaires in 2005. Cohort members are aged between 15 and 87 years and resided throughout Thailand. This is a large study of self-reported number of teeth among Thai adults. Bivariate and multivariate logistic regressions were used to analyse factors associated with self-reported number of teeth. Results After adjusting for covariates, being female (OR = 1.28, older age (OR = 10.6, having low income (OR = 1.45, having lower education (OR = 1.33, and being a lifetime urban resident (OR = 1.37 were statistically associated (p Conclusions This study addresses the gap in knowledge on factors associated with self-reported number of teeth. The promotion of healthy childhoods and adult lifestyles are important public health interventions to increase tooth retention in middle and older age.

  17. Impact factors for Reggeon-gluon transition in N=4 SYM with large number of colours

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V.S., E-mail: fadin@inp.nsk.su [Budker Institute of Nuclear Physics of SD RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Fiore, R., E-mail: roberto.fiore@cs.infn.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, Arcavacata di Rende, I-87036 Cosenza (Italy)

    2014-06-27

    We calculate impact factors for Reggeon-gluon transition in supersymmetric Yang–Mills theory with four supercharges at large number of colours N{sub c}. In the next-to-leading order impact factors are not uniquely defined and must accord with BFKL kernels and energy scales. We obtain the impact factor corresponding to the kernel and the energy evolution parameter, which is invariant under Möbius transformation in momentum space, and show that it is also Möbius invariant up to terms taken into account in the BDS ansatz.

  18. Characterisation factors for life cycle impact assessment of sound emissions.

    Science.gov (United States)

    Cucurachi, S; Heijungs, R

    2014-01-15

    Noise is a serious stressor affecting the health of millions of citizens. It has been suggested that disturbance by noise is responsible for a substantial part of the damage to human health. However, no recommended approach to address noise impacts was proposed by the handbook for life cycle assessment (LCA) of the European Commission, nor are characterisation factors (CFs) and appropriate inventory data available in commonly used databases. This contribution provides CFs to allow for the quantification of noise impacts on human health in the LCA framework. Noise propagation standards and international reports on acoustics and noise impacts were used to define the model parameters. Spatial data was used to calculate spatially-defined CFs in the form of 10-by-10-km maps. The results of this analysis were combined with data from the literature to select input data for representative archetypal situations of emission (e.g. urban day with a frequency of 63 Hz, rural night at 8000 Hz, etc.). A total of 32 spatial and 216 archetypal CFs were produced to evaluate noise impacts at a European level (i.e. EU27). The possibility of a user-defined characterisation factor was added to support the possibility of portraying the situation of full availability of information, as well as a highly-localised impact analysis. A Monte Carlo-based quantitative global sensitivity analysis method was applied to evaluate the importance of the input factors in determining the variance of the output. The factors produced are ready to be implemented in the available LCA databases and software. The spatial approach and archetypal approach may be combined and selected according to the amount of information available and the life cycle under study. The framework proposed and used for calculations is flexible enough to be expanded to account for impacts on target subjects other than humans and to continents other than Europe. © 2013 Elsevier B.V. All rights reserved.

  19. A methodology for calculating transport emissions in cities with limited traffic data: Case study of diesel particulates and black carbon emissions in Murmansk.

    Science.gov (United States)

    Kholod, N; Evans, M; Gusev, E; Yu, S; Malyshev, V; Tretyakova, S; Barinov, A

    2016-03-15

    This paper presents a methodology for calculating exhaust emissions from on-road transport in cities with low-quality traffic data and outdated vehicle registries. The methodology consists of data collection approaches and emission calculation methods. For data collection, the paper suggests using video survey and parking lot survey methods developed for the International Vehicular Emissions model. Additional sources of information include data from the largest transportation companies, vehicle inspection stations, and official vehicle registries. The paper suggests using the European Computer Programme to Calculate Emissions from Road Transport (COPERT) 4 model to calculate emissions, especially in countries that implemented European emissions standards. If available, the local emission factors should be used instead of the default COPERT emission factors. The paper also suggests additional steps in the methodology to calculate emissions only from diesel vehicles. We applied this methodology to calculate black carbon emissions from diesel on-road vehicles in Murmansk, Russia. The results from Murmansk show that diesel vehicles emitted 11.7 tons of black carbon in 2014. The main factors determining the level of emissions are the structure of the vehicle fleet and the level of vehicle emission controls. Vehicles without controls emit about 55% of black carbon emissions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Decreased numbers of chemotactic factor receptors in chronic neutropenia with defective chemotaxis: spontaneous recovery from the neutrophil abnormalities during early childhood

    International Nuclear Information System (INIS)

    Yasui, K.; Yamazaki, M.; Miyagawa, Y.; Komiyama, A.; Akabane, T.

    1987-01-01

    Childhood chronic neutropenia with decreased numbers of chemotactic factor receptors as well as defective chemotaxis was first demonstrated in an 8-month-old girl. Chemotactic factor receptors on neutrophils were assayed using tritiated N-formyl-methionyl-leucyl-phenylalanine ( 3 H-FMLP). The patient's neutrophils had decreased numbers of the receptors: numbers of the receptors were 20,000 (less than 3 SD) as compared with those of control cells of 52,000 +/- 6000 (mean +/- SD) (n = 10). The neutropenia disappeared spontaneously by 28 months of age parallel with the improvement of chemotaxis and increase in numbers of chemotactic factor receptors. These results demonstrate a transient decrease of neutrophil chemotactic factor receptors as one of the pathophysiological bases of a transient defect of neutrophil chemotaxis in this disorder

  1. Estimating Emissions from Railway Traffic

    DEFF Research Database (Denmark)

    Jørgensen, Morten W.; Sorenson, Spencer C.

    1998-01-01

    Several parameters of importance for estimating emissions from railway traffic are discussed, and typical results presented. Typical emissions factors from diesel engines and electrical power generation are presented, and the effect of differences in national electrical generation sources...

  2. Improper disclosure: tobacco packaging and emission labelling regulations.

    Science.gov (United States)

    Hammond, D; White, C M

    2012-07-01

    Cigarette packets in many countries display emission numbers such as tar. These numbers may be misleading as they do not represent the amount of toxins delivered to human smokers. This study examined how consumers interpret and understand numerical and descriptive emission information. A discrete choice study was conducted among adult smokers (n = 312) and non-smokers (n = 291) in Ontario, Canada. Participants viewed groups of cigarette packets with emission labels from the European Union (EU), Canada and Australia. Participants completed ratings on perceived tar delivery, health risks, and usefulness and understandability of the information. Participants were significantly more likely to believe that Canadian and EU packets with lower emission numbers would have lower tar delivery (92.2% and 89.9%, respectively) and lower health risks (89.5% and 82.9%, respectively) than packets with higher numbers. Approximately 74% of participants rated the numerical Canadian label as providing the most useful information; however, 62% also rated this label as most difficult to understand. Most participants rated the descriptive Australian label as easiest to understand. Labels featuring quantitative emission values are associated with false beliefs regarding lower tar delivery and health risks. Descriptive statements about emissions are easier to understand and associated with more accurate beliefs. Copyright © 2012 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  3. Russia's black carbon emissions: focus on diesel sources

    Directory of Open Access Journals (Sweden)

    N. Kholod

    2016-09-01

    Full Text Available Black carbon (BC is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder. Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  4. Particulate emissions from residential wood combustion

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    Residential wood combustion (RWC) in fireplaces and conventional appliances is the main contributor to fine particulate matter (PM2.5) emissions in Denmark and Portugal representing more than 30% of the total emissions [1;2]. Such estimations are uncertain concerning the wood consumption...... and official emission factors, not taking into account actual burning conditions in dwellings [3]. There is limited knowledge on the real-life performance and spatial distribution of existing appliance types. Few studies have been targeting to understand the influence of fuel operation habits on PM2...... the available estimations for Denmark and Portugal, suggesting a methodology to increase the accuracy of activity data and emission factors. This work is based on new studies carried out to quantify the PM2.5 emissions in daily life through field experiments in Danish dwellings and by considering typical...

  5. Effect of Population Structure Change on Carbon Emission in China

    Directory of Open Access Journals (Sweden)

    Wen Guo

    2016-03-01

    Full Text Available This paper expanded the Logarithmic Mean Divisia Index (LMDI model through the introduction of urbanization, residents’ consumption, and other factors, and decomposed carbon emission changes in China into carbon emission factor effect, energy intensity effect, consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect, and then explored contribution rates and action mechanisms of the above six factors on change in carbon emissions in China. Then, the effect of population structure change on carbon emission was analyzed by taking 2003–2012 as a sample period, and combining this with the panel data of 30 provinces in China. Results showed that in 2003–2012, total carbon emission increased by 4.2117 billion tons in China. The consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect promoted the increase in carbon emissions, and their contribution ratios were 27.44%, 12.700%, 74.96%, and 5.90%, respectively. However, the influence of carbon emission factor effect (−2.54% and energy intensity effect (−18.46% on carbon emissions were negative. Population urbanization has become the main population factor which affects carbon emission in China. The “Eastern aggregation” phenomenon caused the population scale effect in the eastern area to be significantly higher than in the central and western regions, but the contribution rate of its energy intensity effect (−11.10 million tons was significantly smaller than in the central (−21.61 million tons and western regions (−13.29 million tons, and the carbon emission factor effect in the central area (−3.33 million tons was significantly higher than that in the eastern (−2.00 million tons and western regions (−1.08 million tons. During the sample period, the change in population age structure, population education structure, and population occupation structure

  6. Primary sources of selected POPs: regional and global scale emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M

    2004-03-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale.

  7. Primary sources of selected POPs: regional and global scale emission inventories

    International Nuclear Information System (INIS)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M.

    2004-01-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale

  8. Metal toxicity characterization factors for marine ecosystems: considering the importance of the estuary for freshwater emissions

    DEFF Research Database (Denmark)

    Dong, Yan; Rosenbaum, Ralph K.; Hauschild, Michael Zwicky

    2017-01-01

    The study develops site-dependent characterization factors (CFs) for marine ecotoxicity of metals emitted to freshwater, taking their passage of the estuary into account. To serve life cycle assessment (LCA) studies where emission location is often unknown, site-generic marine CFs were developed...... with an estuary removal process to calculate FF. BF and EF were taken from Dong et al. Environ Sci Technol 50:269–278 (2016). Site-generic marine CFs were derived from site-dependent marine CFs. Different averaging principles were tested, and the approach representing estuary discharge rate was identified...... between both methods. Accounting for estuary removal particularly influences marine ecotoxicity CFs for emission to freshwater of metals that have a strong tendency to complex-bind to particles. It indicates the importance of including estuary in the characterization modelling when dealing with those...

  9. Energy economics. CO{sub 2} emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yiming [Beijing Institute of Technology (China). Center for Energy and Environmental Policy Research; Liu, Lancui [Ministry of Environmental Protection of the People' s Republic of China, Beijing (China). Center for Climate and Environmental Policy; Wu, Gang; Zou, Lele [Chinese Academy of Sciences, Beijing (China). Inst. of Policy and Management

    2011-07-01

    ''Energy Economics: CO{sub 2} Emissions in China'' presents a collection of the researches on China's CO{sub 2} emissions as studied by the Center for Energy and Environmental Policy Research (CEEP). Based on the analysis of factors related to global climate change and CO{sub 2} emissions, it discusses China's CO{sub 2} emissions originating from various sectors, diverse impact factors, as well as proposed policies for reducing carbon emissions. Featuring empirical research and policy analysis on focused and critical issues involving different stages of CO{sub 2} emissions in China, the book provides scientific supports for researchers and policy makers in dealing with global climate change. (orig.)

  10. Building Numbers from Primes

    Science.gov (United States)

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  11. Two showy traits, scent emission and pigmentation, are finely coregulated by the MYB transcription factor PH4 in petunia flowers.

    Science.gov (United States)

    Cna'ani, Alon; Spitzer-Rimon, Ben; Ravid, Jasmin; Farhi, Moran; Masci, Tania; Aravena-Calvo, Javiera; Ovadis, Marianna; Vainstein, Alexander

    2015-11-01

    The mechanism underlying the emission of phenylpropanoid volatiles is poorly understood. Here, we reveal the involvement of PH4, a petunia MYB-R2R3 transcription factor previously studied for its role in vacuolar acidification, in floral volatile emission. We used the virus-induced gene silencing (VIGS) approach to knock down PH4 expression in petunia, measured volatile emission and internal pool sizes by GC-MS, and analyzed transcript abundances of scent-related phenylpropanoid genes in flowers. Silencing of PH4 resulted in a marked decrease in floral phenylpropanoid volatile emission, with a concurrent increase in internal pool levels. Expression of scent-related phenylpropanoid genes was not affected. To identify putative scent-related targets of PH4, we silenced PH5, a tonoplast-localized H(+) -ATPase that maintains vacuolar pH homeostasis. Suppression of PH5 did not yield the reduced-emission phenotype, suggesting that PH4 does not operate in the context of floral scent through regulation of vacuolar pH. We conclude that PH4 is a key floral regulator that integrates volatile production and emission processes and interconnects two essential floral traits - color and scent. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Effects of fresh lubricant oils on particle emissions emitted by a modern gasoline direct injection passenger car.

    Science.gov (United States)

    Pirjola, Liisa; Karjalainen, Panu; Heikkilä, Juha; Saari, Sampo; Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Kulmala, Kari; Keskinen, Jorma; Rönkkö, Topi

    2015-03-17

    Particle emissions from a modern turbocharged gasoline direct injection passenger car equipped with a three-way catalyst and an exhaust gas recirculation system were studied while the vehicle was running on low-sulfur gasoline and, consecutively, with five different lubrication oils. Exhaust particle number concentration, size distribution, and volatility were determined both at laboratory and on-road conditions. The results indicated that the choice of lubricant affected particle emissions both during the cold start and warm driving cycles. However, the contribution of engine oil depended on driving conditions being higher during acceleration and steady state driving than during deceleration. The highest emission factors were found with two oils that had the highest metal content. The results indicate that a 10% decrease in the Zn content of engine oils is linked with an 11-13% decrease to the nonvolatile particle number emissions in steady driving conditions and a 5% decrease over the New European Driving Cycle. The effect of lubricant on volatile particles was even higher, on the order of 20%.

  13. Measurements of VOC/SVOC emission factors from burning incenses in an environmental test chamber: influence of temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Manoukian, A; Buiron, D; Temime-Roussel, B; Wortham, H; Quivet, E

    2016-04-01

    This study investigates the influence of three environmental indoor parameters (i.e., temperature, relative humidity, and air exchange rate) on the emission of 13 volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) during incense burning. Experiments have been carried out using an environmental test chamber. Statistical results from a classical two-level full factorial design highlight the predominant effect of ventilation on emission factors. The higher the ventilation, the higher the emission factor. Moreover, thanks to these results, an estimation of the concentration range for the compounds under study can be calculated and allows a quick look of indoor pollution induced by incense combustion. Carcinogenic substances (i.e., benzene, benzo(a)pyrene, and formaldehyde) produced from the incense combustion would be predicted in typical living indoors conditions to reach instantaneous concentration levels close to or higher than air quality exposure threshold values.

  14. Aviation and climate change : aircraft emissions expected to grow, but technological and operational improvements and government policies can help control emissions

    Science.gov (United States)

    2009-06-01

    A number of policy options to address aircraft emissions are available to governments and can be part of broader policies to address emissions from many sources including aircraft. Market-based measures can establish a price for emissions and provide...

  15. Ammonia emissions from a naturally and a mechanically ventilated broiler house in Brazil

    Directory of Open Access Journals (Sweden)

    Luciano B. Mendes

    2014-11-01

    Full Text Available This study was conducted with the aim of monitoring NH3 emissions from a mechanically and a naturally ventilated broiler house (MVB and NVB, respectively and calculate their ammonia emission factors (fNH3. Bird stocking density was 13.5 and 11.1 birds m-2 for the MVB and NVB, respectively. The marketing age was 43 days and bedding consisted of dried coffee husks in its first time of use. Ventilation rates were calculated with the metabolic carbon dioxide mass balance method. Values of fNH3 were 0.32 ± 0.10 and 0.27 ± 0.07 g bird-1 d-1 for the MVB and NVB, respectively, and are in agreement to what was presented in other studies performed under similar conditions. The fNH3 estimated on yearly basis was 58 g bird-place-1 year-1. It was concluded that the different types of ventilation system between the studied broiler barns did not significantly affect emissions in the modeling process. The results obtained help providing reliable methodology for the determination of a solid database on NH3 emission factors for tropical conditions that can be used for future inventories, when performed in a sufficient number of barns that is representative for the Brazilian scenario.

  16. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    Science.gov (United States)

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 77 FR 58219 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Science.gov (United States)

    2012-09-19

    ... for public health and the environment by reducing emissions of hexavalent chromium (a known human... alternatives to PFOS-based WAFS had been successfully used in the hard and decorative chrome source categories... the number of people exposed to risks greater than 1-in-1 million due to emissions of hexavalent...

  18. Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Christoffer; Nordin, Anders; Oehman, Marcus; Bostroem, Dan [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry; Westerholm, Roger [Stockholm Univ., Arrhenius Laboratory (Sweden). Analytical Chemistry

    2005-02-01

    This work was a part of the Swedish national research program concerning emissions and air quality with the sub-programme concerning biomass, health and environment - BHM. The main objective of the work was to systematically determine the quantities and characteristics of gaseous and particulate emissions from combustion in residential wood log and biomass fuel pellet appliances and report emission factors for the most important emission components. The specific focus was on present commercial wood and pellet stoves as well as to illustrate the potentials for future technology development. The work was divided in different subprojects; 1) a literature review of health effects of ambient wood smoke, 2) design and evaluation of an emission dilution sampling set-up, 3) a study of the effects of combustion conditions on the emission formation and characteristics and illustrate the potential for emission minimization during pellets combustion, 4) a study of the inorganic characteristics of particulate matter during combustion of different pelletized woody raw materials and finally 5) an extensive experimental characterization and quantification of gaseous and particulate emissions from residential wood log and pellet stoves. From the initial literature search, nine relevant health studies were identified, all focused on effects of short-term exposure. Substantial quantitative information was only found for acute asthma in relation to PM10. In comparison with the general estimations for ambient PM and adverse health effects, the relative risks were even stronger in the studies where residential wood combustion was considered as a major PM source. However, the importance of other particle properties than mass concentration, like chemical composition, particle size and number concentration remain to be elucidated. A whole flow dilution sampling set-up for residential biomass fired appliances was designed, constructed and evaluated concerning the effects of sampling

  19. Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Christoffer; Nordin, Anders; Oehman, Marcus; Bostroem, Dan [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry; Westerholm, Roger [Stockholm Univ., Arrhenius Laboratory (Sweden). Analytical Chemistry

    2005-02-01

    This work was a part of the Swedish national research program concerning emissions and air quality with the sub-programme concerning biomass, health and environment - BHM. The main objective of the work was to systematically determine the quantities and characteristics of gaseous and particulate emissions from combustion in residential wood log and biomass fuel pellet appliances and report emission factors for the most important emission components. The specific focus was on present commercial wood and pellet stoves as well as to illustrate the potentials for future technology development. The work was divided in different subprojects; 1) a literature review of health effects of ambient wood smoke, 2) design and evaluation of an emission dilution sampling set-up, 3) a study of the effects of combustion conditions on the emission formation and characteristics and illustrate the potential for emission minimization during pellets combustion, 4) a study of the inorganic characteristics of particulate matter during combustion of different pelletized woody raw materials and finally 5) an extensive experimental characterization and quantification of gaseous and particulate emissions from residential wood log and pellet stoves. From the initial literature search, nine relevant health studies were identified, all focused on effects of short-term exposure. Substantial quantitative information was only found for acute asthma in relation to PM10. In comparison with the general estimations for ambient PM and adverse health effects, the relative risks were even stronger in the studies where residential wood combustion was considered as a major PM source. However, the importance of other particle properties than mass concentration, like chemical composition, particle size and number concentration remain to be elucidated. A whole flow dilution sampling set-up for residential biomass fired appliances was designed, constructed and evaluated concerning the effects of sampling

  20. Diffuse γ-ray emission from galactic pulsars

    International Nuclear Information System (INIS)

    Calore, F.; Di Mauro, M.; Donato, F.

    2014-01-01

    Millisecond pulsars (MSPs) are old fast-spinning neutron stars that represent the second most abundant source population discovered by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi). As guaranteed γ-ray emitters, they might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT (i.e., the Isotropic Diffuse γ-Ray Background (IDGRB)), which is believed to arise from the superposition of several components of galactic and extragalactic origin. Additionally, γ-ray sources also contribute to the anisotropy of the IDGRB measured on small scales by Fermi-LAT. In this manuscript we aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. To this end, we model the MSPs' spatial distribution in the Galaxy and the γ-ray emission parameters by considering observational constraints coming from the Australia Telescope National Facility pulsar catalog and the Second Fermi-LAT Catalog of γ-ray pulsars. By simulating a large number of MSP populations through a Monte Carlo simulation, we compute the average diffuse emission and the anisotropy 1σ upper limit. We find that the emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10° in latitude. The 1σ upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30°. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude γ-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes (e.g., blazars, misaligned active galactic nuclei, or star-forming galaxies). Nevertheless, because MSPs are more concentrated toward the

  1. IMPROVING THE MODEL OF EMISSION FROM SPINNING DUST: EFFECTS OF GRAIN WOBBLING AND TRANSIENT SPIN-UP

    International Nuclear Information System (INIS)

    Hoang, Thiem; Lazarian, A.; Draine, B. T.

    2010-01-01

    Observations continue to support the interpretation of the anomalous microwave foreground as electric dipole radiation from spinning dust grains as proposed by Draine and Lazarian. In this paper, we present a refinement of the original model by improving the treatment of a number of physical effects. First, we consider a disk-like grain rotating with angular velocity at an arbitrary angle with respect to the grain symmetry axis (i.e., grain wobbling) and derive the rotational damping and excitation coefficients arising from infrared emission, plasma-grain interactions, and electric dipole emission. The angular velocity distribution and the electric dipole emission spectrum for disk-like grains is calculated using the Langevin equation, for cases both with and without fast internal relaxation. Our results show that for fast internal relaxation, the peak emissivity of spinning dust, compared to earlier studies, increases by a factor of ∼2 for the warm neutral medium (WNM), the warm ionized medium (WIM), the cold neutral medium (CNM), and the photodissociation region, and by a factor ∼4 for reflection nebulae. The frequency at the emission peak also increases by factors ∼1.4 to ∼2 for these media. Without internal relaxation, the increase of emissivity is comparable, but the emission spectrum is more extended to higher frequency. The increased emission results from the non-sphericity of grain shape and from the anisotropy in damping and excitation along directions parallel and perpendicular to the grain symmetry axis. Second, we provide a detailed numerical study including transient spin-up of grains by single-ion collisions. The range of grain size in which single-ion collisions are important is identified. The impulses broaden the emission spectrum and increase the peak emissivity for the CNM, WNM, and WIM, although the increases are not as large as those due to the grain wobbling. In addition, we present an improved treatment of rotational excitation and

  2. Emissions inventories and options for control. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Swart, R.J.; Van Amstel, A.R.; Van den Born, G.J.; Kroeze, C.

    1995-10-01

    This report is the final summary report of the project `Social causes of the greenhouse effect, emissions inventories and options for control`. The objectives of the project, that started in 1990, were to support the development of a comprehensive Dutch climate policy and to identify gaps in the knowledge about sources of greenhouse gases. The four phases of the project are summarized. In the first phase, a first national inventory of greenhouse gas emissions was made, capturing carbon dioxide (CO{sub 2}), chlorofluorocarbons (CFCs), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and the ozone precursors carbon monoxide (CO), nitrogen oxides (NO{sub x} ) and volatile organic compounds (VOC). In the second phase, the acquired expertise was used to support the development of Guidelines for National Emissions Inventories by the joint OECD/IPCC programme through workshop organization and participation in the international planning group. In the third phase, a detailed analysis was performed of the sources of methane, its current and future emissions and the options for control. Finally, a similar analysis was performed for nitrous oxide. In these studies, it was found that policies not specifically aiming at mitigating climate change, would help to control the emissions of the non-CO{sub 2} greenhouse gases. While for methane, national emissions would even decrease because of measures in the livestock management and waste disposal sectors, for nitrous oxide the reductions in agricultural emissions would be outweighed by increases, especially in the transportation sector. The project shows that the application of more detailed information leads to differences with the Guidelines, both because of the limited number of source categories in the Guidelines and because of different, locally specific emissions factors. 4 figs., 2 tabs., 14 refs.

  3. Enhanced single-photon emission from a diamond–silver aperture

    KAUST Repository

    Choy, Jennifer T.

    2011-10-09

    Solid-state quantum emitters, such as the nitrogen-vacancy centre in diamond, are robust systems for practical realizations of various quantum information processing protocols2-5 and nanoscale magnetometry schemes6,7 at room temperature. Such applications benefit from the high emission efficiency and flux of single photons, which can be achieved by engineering the electromagnetic environment of the emitter. One attractive approach is based on plasmonic resonators8-13, in which sub-wavelength confinement of optical fields can strongly modify the spontaneous emission of a suitably embedded dipole despite having only modest quality factors. Meanwhile, the scalability of solid-state quantum systems critically depends on the ability to control such emitterg-cavity interaction in a number of devices arranged in parallel. Here, we demonstrate a method to enhance the radiative emission rate of single nitrogen-vacancy centres in ordered arrays of plasmonic apertures that promises greater scalability over the previously demonstrated bottom-up approaches for the realization of on-chip quantum networks. © 2011 Macmillan Publishers Limited. All rights reserved.

  4. Enhanced single-photon emission from a diamond–silver aperture

    KAUST Repository

    Choy, Jennifer T.; Hausmann, Birgit J. M.; Babinec, Thomas M.; Bulu, Irfan; Khan, Mughees; Maletinsky, Patrick; Yacoby, Amir; Lončar, Marko

    2011-01-01

    Solid-state quantum emitters, such as the nitrogen-vacancy centre in diamond, are robust systems for practical realizations of various quantum information processing protocols2-5 and nanoscale magnetometry schemes6,7 at room temperature. Such applications benefit from the high emission efficiency and flux of single photons, which can be achieved by engineering the electromagnetic environment of the emitter. One attractive approach is based on plasmonic resonators8-13, in which sub-wavelength confinement of optical fields can strongly modify the spontaneous emission of a suitably embedded dipole despite having only modest quality factors. Meanwhile, the scalability of solid-state quantum systems critically depends on the ability to control such emitterg-cavity interaction in a number of devices arranged in parallel. Here, we demonstrate a method to enhance the radiative emission rate of single nitrogen-vacancy centres in ordered arrays of plasmonic apertures that promises greater scalability over the previously demonstrated bottom-up approaches for the realization of on-chip quantum networks. © 2011 Macmillan Publishers Limited. All rights reserved.

  5. Factors associated with numbers of remaining teeth among type 2 diabetes: a cross-sectional study.

    Science.gov (United States)

    Huang, Jui-Chu; Peng, Yun-Shing; Fan, Jun-Yu; Jane, Sui-Whi; Tu, Liang-Tse; Chang, Chang-Cheng; Chen, Mei-Yen

    2013-07-01

    To explore the factors associated with the numbers of remaining teeth among type 2 diabetes community residents. Promoting oral health is an important nursing role for patients with diabetes, especially in disadvantaged areas. However, limited research has been carried out on the relationship between numbers of remaining teeth, diabetes-related biomarkers and personal oral hygiene among diabetic rural residents. A cross-sectional, descriptive design with a simple random sample was used. This study was part of a longitudinal cohort study of health promotion for preventing diabetic foot among rural community diabetic residents. It was carried out in 18 western coastal and inland districts of Chiayi County in central Taiwan. In total, 703 participants were enrolled in this study. The findings indicated that a high percentage of the participants (26%) had no remaining natural teeth. Nearly three quarters (74%) had fewer than 20 natural teeth. After controlling for the potential confounding factors, multivariate analysis demonstrated that the factors determining numbers of remaining teeth were age (p teeth were less tooth-brushing with dental floss, abnormal ankle brachial pressure and poor glycemic control. This study highlights the importance of nursing intervention in oral hygiene for patients with type 2 diabetes. It is necessary to initiate oral health promotion activities when diabetes is first diagnosed, especially for older diabetic residents of rural or coastal areas who are poorly educated. © 2013 John Wiley & Sons Ltd.

  6. Global assesment of PCDD/F emissions from the Spanish cement sector. Effect of conventional/alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fabrellas, B.; Larrazabal, D.; Martinez, M.A.; Sanz, P.; Ruiz, M.L. [CIEMAT, Madrid (Spain); Abad, E.; Rivera, J. [IIQAB-CSIC, Barcelona (Spain)

    2004-09-15

    This paper presents the results of the survey on polychlorinated dibenzodioxin and dibenzofuran (PCDD/F) emissions to the air in cement manufacture sector carried out in Spain over the period 2000-2003. It includes 89 samples from 41 furnaces, which represents 69.5% of coverage. It constitutes the subsequent stage of the monitoring program presented previously, enlarging number of facilities assessed as well as considering plants operating with both conventional and waste-derived fuels. The purpose of this survey was to quantify the total emission of dioxins from cement manufacture sector, to study the effect of using waste-derived materials as alternative fuels on total PCDD/F emission and to calculate experimental emission factors. Finally, specific emission profiles were obtained for installations using both conventional fossil and residue-derived fuels and compared in order to establish the influence of fuel composition on PCDD/F releases.

  7. Gaseous and particulate emissions from rural vehicles in China

    Science.gov (United States)

    Yao, Zhiliang; Huo, Hong; Zhang, Qiang; Streets, David G.; He, Kebin

    2011-06-01

    Rural vehicles (RVs) could contribute significantly to air pollutant emissions throughout Asia due to their considerable population, extensive usage, and high emission rates, but their emissions have not been measured before and have become a major concern for the accuracy of regional and global emission inventories. In this study, we measured CO, HC, NO x and PM emissions of RVs using a combined on-board emission measurement system on real roads in China. We also compared the emission levels of the twenty RVs to those of nineteen Euro II light-duty diesel trucks (LDDTs) that we measured for previous studies. The results show that one-cylinder RVs have lower distance-based emission factors compared to LDDTs because of their smaller weight and engine power, but they have significantly higher fuel-based PM emission factors than LDDTs. Four-cylinder RVs have equivalent emission levels to LDDTs. Based on the emission factors and the activity data obtained, we estimate that the total emissions of RVs in China in 2006 were 1049 Gg of CO, 332 Gg of HC, 933 Gg of NO x, and 54 Gg of PM, contributing over 40% to national on-road diesel CO, NO x, and PM emissions. As RVs are a significant contributor to national emissions, further research work is needed to improve the accuracy of inventories at all levels, and the government should strengthen the management of RVs to facilitate both policy making and research work.

  8. An inventory of potential PCDD and PCDF emission sources in the mainland of China

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun; Xiaoyan, Tang [Peking Univ., Beijing (China); Peng, Hao [Central Univ. for Nationalities, Beijing (China)

    2004-09-15

    Polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofurans (PCDF) are widespread environmental pollutants. A number of countries have developed national inventories of PCDD/F emission, such as USA, EU Nations and Japan. However, due to the lack of PCDD/F data measured in China and the uncertain nature of the documentation available on emission factors, the report on inventories of dioxin emission is absent. With the municipal population growth, economic development and living-standard improvement, China faces many severe environment issues including potential problems related to PCDD/F. The country is aware of potential dioxin sources such as: incineration, iron and steel industry, chemical industry, fires, coal power plant, foundries, PCB in capacitors and transformers, sintering, traffic emission. In 2001, China signed the Stockholm Convention on Persistent Organic Pollutants in Stockholm. Therefore, there is a need for information regarding dioxin emission from these sources for taking actions to reduce and/or eliminate the release of dioxins in China, and reduce human exposure. In this study, we identify those potential PCDD/F emission sources and work out the first inventory on PCDD/F emission into the environment in China.

  9. Reducing ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2011-01-01

    The NEC directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the largest reductions since 1990...

  10. HCB, PCB, PCDD and PCDF emissions from ships

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, David

    2004-10-01

    Since current estimates of hexachlorobenzene (HCB), polychlorinated biphenyls (PCB), dioxins (PCDD), and furans (PCDF) from ships are based on a relatively limited and old data set, an update of these emission factors has been outlined as a target towards improved emission inventories. Consequently and as an assignment from the Swedish Environmental Protection Agency, the Swedish Environmental Research Institute has undertaken a comprehensive study focusing on these emissions from three different ships during December 2003 to March 2004. Analyses were performed on 12 exhaust samples, 3 fuel oil samples and 3 lubricating oil samples from a representative selection of diesel engine models, fuel types and during different 'real-world' operating conditions. The measured emissions correspond reasonably well with previous measurements. The data suggests however that previous PCDD/PCDF emission factors are probably too high. As expected the greatest emissions were observed during main engine start-up periods and for engines using heavier fuel oils. Total emissions for 2002, using the revised emission factors, have been calculated based on Swedish sold marine fuels and also for geographical areas of national importance. In terms of their toxic equivalence (WHO-TEQ), the PCDD/PCDF emissions from ships using Swedish fuels are small (0.37 - 0.85 g TEQ) in comparison to recent estimates for the national total (ca. 45 g TEQ). Emissions from other land-based diesel engines (road vehicles, off-road machinery, military vehicles and locomotives) are estimated to contribute a further 0.18-0.42 g TEQ. Similarly HCB and PCB emissions from these sources are small compared to 1995 national emission inventories.

  11. Association of market, organizational and financial factors with the number, and types of capital expenditures.

    Science.gov (United States)

    McCue, Michael J

    2011-01-01

    Prior literature provides only a descriptive view of the types and numbers of capital expenditures made by hospitals. This study conducted an empirical analysis to assess simultaneously what market, organizational, and financial factors relate to the number of capital projects as well as the specific types: medical equipment, expansion, and maintenance projects. Sampling California hospital capital expenditure data from 2002 to 2007, this study aggregated the number of capital projects by each type of capital investment decision: medical equipment, expansion, and maintenance/renovation per hospital. Using ordinary least squares regression, this study evaluated the association of these factors with these types of capital investment projects. This study found that hospitals capturing a greater share of the market, maintaining high levels of liquidity, and operating with more than 350 beds invested in a greater number of capital projects per hospital as well as medical equipment and expansionary projects per hospital. Within the state of California, the demand for health care services within a hospital market as well as cash and investment reserves were key drivers in the hospital CEOs and boards' decision to increase their capital purchases. The types of purchases included capital outlays related to medical equipment, such as CT scanners, MRIs, and surgical systems, and revenue-generating expansionary projects, such as new bed towers, hospitals wings, operating and emergency rooms, and replacement hospitals from 2002 to 2007.

  12. Monte Carlo calculation of correction factors for radionuclide neutron source emission rate measurement by manganese bath method

    International Nuclear Information System (INIS)

    Li Chunjuan; Liu Yi'na; Zhang Weihua; Wang Zhiqiang

    2014-01-01

    The manganese bath method for measuring the neutron emission rate of radionuclide sources requires corrections to be made for emitted neutrons which are not captured by manganese nuclei. The Monte Carlo particle transport code MCNP was used to simulate the manganese bath system of the standards for the measurement of neutron source intensity. The correction factors were calculated and the reliability of the model was demonstrated through the key comparison for the radionuclide neutron source emission rate measurements organized by BIPM. The uncertainties in the calculated values were evaluated by considering the sensitivities to the solution density, the density of the radioactive material, the positioning of the source, the radius of the bath, and the interaction cross-sections. A new method for the evaluation of the uncertainties in Monte Carlo calculation was given. (authors)

  13. Aspects related to 'emission trading'

    International Nuclear Information System (INIS)

    Tutuianu, Ovidiu

    1999-01-01

    The paper presents the aspects of international GHG (greenhouse gases) emission trading, such as: quality of GHG emission data, possible partners, monitoring activity, market mechanisms and difficulties. The following conclusions are drown: - debates on international trade with GHG emissions are currently in a very early stage; - actions are possible and feasible, particularly after Kyoto Conference, as versatile mechanism (besides the Joint Implementation Projects) which have in view the lowering of the global emission costs in different zones of the planet; - difficulties concerning monitoring, reporting and verification, practically preclude implementing a system of emission trading covering all the GHG, all the sources and reservoirs; - an international viable system of emission trading could initiate with a limited number of participants and consideration of only emission categories easy to be confined and surveyed; - existence of a national market and corresponding institutions for monitoring which could booster an international system development

  14. Controlling factors of nitrous oxide (N2O) emissions at the field-scale in an agricultural slope

    Science.gov (United States)

    Vilain, Guillaume; Garnier, Josette; Tallec, Gaëlle; Tournebize, Julien; Cellier, Pierre; Flipo, Nicolas

    2010-05-01

    Agricultural practices widely contribute to the atmospheric nitrous oxide (N2O) concentration increase and are the major source of N2O which account for 24% of the global annual emission (IPCC, 2007). Soil nitrification and denitrification are the microbial processes responsible for the production of N2O, which also depends on soil characteristics and management. Besides their control by various factors, such as climate, soil conditions and management (content of NO3- and NH4+, soil water content, presence of degradable organic material…), the role of topography is less known although it can play an important role on N2O emissions (Izaurralde et al., 2004). Due to the scarcity of data on N2O direct vs. indirect emission rate from agriculture in the Seine Basin (Garnier et al., 2009), one of the objectives of the study conducted here was to determine the N2O emission rates of the various land use representative for the Seine Basin, in order to better assess the direct N2O emissions, and to explore controlling factor such as meteorology, topography, soil properties and crop successions. The main objective of this study was at the same time to characterize N2O fluxes variability along a transect from an agricultural plateau to a river and to analyze the influence of landscape position on these emissions. We conducted this study in the Orgeval catchment (Seine basin, France; between 48°47' and 48°55' N, and 03°00' and 03°55' E) from May 2008 to August 2009 on two agricultural fields cropped with wheat, barley, oats, corn. N2O fluxes were monitored from weekly to bimonthly using static manual chambers placed along the chosen transect in five different landscape positions from the plateau to the River. This study has shown that soil moisture (expressed as Water Filled Pore Space) and NO3- soil concentrations explained most of the N2O flux variability during the sampling period. Most of N2O was emitted directly after N fertilization application during a relatively

  15. Impacts of the EU emissions trading scheme on the industrial competitiveness in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Graichen, Verena; Schumacher, Katja; Matthes, Felix C.; Mohr, Lennart [Oeko Institut e.V., Berlin (Germany); Duscha, Vicky; Schleich, Joachim [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Diekmann, Jochen [DIW, Berlin (Germany)

    2008-09-15

    The authors of the contribution under consideration present a discussion of methods, and provide empirical results for the analysis of effects of the EU Emissions Trading Scheme on product costs and subsequent impacts on international competitiveness. The discussion shows that the combination of intensity of trade indicators and value at stake indicators reveals meaningful results that allow assessing the potential for distortion in competitiveness by the EU Emissions Trading Schemes. The analysis of trade intensities and value at stake showed that a small number of sectors may in fact be exposed to distortions in competitiveness due to both high trade intensity and high value at stake. For Germany, these include 'basic iron and steel', 'fertilizers and nitrogen compounds', 'paper and paperboard', 'aluminium and aluminium products' and 'other basic inorganic chemicals'. A number of other sectors reveal a high intensity of trade but low value at stake which implies that the increase in product costs due to the EU Emissions Trading Scheme is relatively small and negative effects on competitiveness may not be likely. For the sectors that reveal high values at stake and high trade intensities, market positions are likely to change under the EU Emissions Trading system due to increased production costs and high exposure to international competition. When deciding on which sectors are highly exposed to possible distortions in competitiveness and which measures should be implemented to address competitiveness and leakage it should be kept in mind that CO{sub 2} costs are only one of multiple factors affecting companies' production and investment decisions. Other factors that may deserve detailed investigation include product differentiation and market segmentation within a sector (including specialty products), close cooperation with domestic/European partners and intrafirm trade, differences across countries in the

  16. Effect of Non-Stationary Combustion Phases on Emission Factors of Selected Pollutants and PCDD/F from Domestic Combustion

    Czech Academy of Sciences Publication Activity Database

    Šyc, Michal; Horák, J.; Krpec, K.; Hopan, F.; Ocelka, T.; Stáňa, M.

    LVI, č. 2 (2010), s. 183-187 ISSN 1210-0471 R&D Projects: GA MŽP(CZ) SP/1A2/116/07; GA MŠk 2B08048 Institutional research plan: CEZ:AV0Z40720504 Keywords : combustion * emission factors * pollutants Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://transactions.fs.vsb.cz/2010-2/1798.pdf

  17. Environmental data book 2011. Estimated emission factors for fuels, electricity, heat and transport in Sweden; Miljoefaktaboken 2011. Uppskattade emissionsfaktorer foer braenslen, el, vaerme och transporter

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Martinsson, Fredrik; Hagberg, Linus; Oeman, Andreas; Hoeglund, Jonas; Palm, David

    2011-04-15

    The environmental data book summarizes current and general emission factors for most fuels and sources of Swedish electricity and heat and to power vehicles. Emission data are compiled for wood fuels, energy crops, bio-oils, waste fuels, fossil fuels and peat, biofuels, wind power, hydro power, nuclear power and solar power

  18. Ammonia emission inventory for the state of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

    2003-12-17

    Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal

  19. The fractioning factor and the number of theorical plates in isotopic enrichment columns determined simultaneously

    International Nuclear Information System (INIS)

    Ducatti, Carlos

    1997-01-01

    Using an analytical approach and an analytical graphical method, it was determined simultaneously the fractioning factor and the number of theoretical plates in isotopic enrichment columns during the conditions of dinamical isotopic equilibrium. (author). 5 refs., 2 figs., 2 tabs

  20. Odour emissions from poultry litter - A review litter properties, odour formation and odorant emissions from porous materials.

    Science.gov (United States)

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2016-07-15

    Odour emissions from meat chicken sheds can at times cause odour impacts on surrounding communities. Litter is seen as the primary source of this odour. Formation and emission of odour from meat chicken litter during the grow-out period are influenced by various factors such as litter conditions, the environment, microbial activity, properties of the odorous gases and management practices. Odour emissions vary spatially and temporally. This variability has made it challenging to understand how specific litter conditions contribute to odour emissions from the litter and production sheds. Existing knowledge on odorants, odour formation mechanisms and emission processes that contribute to odour emissions from litter are reviewed. Litter moisture content and water thermodynamics (i.e. water activity, Aw) are also examined as factors that contribute to microbial odour formation, physical litter conditions and the exchange of individual odorant gases at the air-water interface. Substantial opportunities exist for future research on litter conditions and litter formation mechanisms and how these contribute to odour emissions. Closing this knowledge gap will improve management strategies that intercept and interfere with odour formation and emission processes leading to an overall reduction in the potential to cause community impacts. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Apte, Michael G.; Black, Douglas R.; Hotchi, Toshifumi; Lucas, Donald; Lunden, Melissa M.; Mirer, Anna G.; Spears, Michael; Sullivan, Douglas P.

    2009-12-01

    The effect of liquefied natural gas on pollutant emissions was evaluated experimentally with used and new appliances in the laboratory and with appliances installed in residences, targeting information gaps from previous studies. Burner selection targeted available technologies that are projected to comprise the majority of installed appliances over the next decade. Experiments were conducted on 13 cooktop sets, 12 ovens, 5 broiler burners, 5 storage water heaters, 4 forced air furnaces, 1 wall furnace, and 6 tankless water heaters. Air-free concentrations and fuel-based emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, and the number of (predominantly ultrafine) particles over complete burns?including transient effects (device warm-up and intermittent firing of burners) following ignition--and during more stable end-of-burn conditions. Formaldehyde was measured over multi-burn cycles. The baseline fuel was Northern California line gas with Wobbe number (a measure of fuel energy delivery rate) of 1320-1340; test fuels had Wobbe numbers of roughly 1390 and 1420, and in some cases 1360. No ignition or operational problems were observed during test fuel use. Baseline emissions varied widely across and within burner groups and with burner operational mode. Statistically significant emissions changes were observed for some pollutants on some burners.

  2. Overflow system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  3. Unloading system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  4. Danish emission inventory for particular matter (PM)

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Winther, M; Illerup, J B; Hjort Mikkelsen, M

    2003-11-01

    The first Danish emission inventory that was reported in 2002 was a provisional-estimate based on data presently available. This report documents methodology, emission factors and references used for an improved Danish emission inventory for particulate matter. Further results of the improved emission inventory for the year 2000 are shown. The particulate matter emission inventory includes TSP, PM,, and PM, The report covers emission inventories for transport and stationary combustion. An appendix covering emissions from agriculture is also included. For the transport sector, both exhaust and non-exhaust emission such as tyre and break wear and road abrasion are included. (au)

  5. A general class of preconditioners for statistical iterative reconstruction of emission computed tomography

    International Nuclear Information System (INIS)

    Chinn, G.; Huang, S.C.

    1997-01-01

    A major drawback of statistical iterative image reconstruction for emission computed tomography is its high computational cost. The ill-posed nature of tomography leads to slow convergence for standard gradient-based iterative approaches such as the steepest descent or the conjugate gradient algorithm. In this paper new theory and methods for a class of preconditioners are developed for accelerating the convergence rate of iterative reconstruction. To demonstrate the potential of this class of preconditioners, a preconditioned conjugate gradient (PCG) iterative algorithm for weighted least squares reconstruction (WLS) was formulated for emission tomography. Using simulated positron emission tomography (PET) data of the Hoffman brain phantom, it was shown that the convergence rate of the PCG can reduce the number of iterations of the standard conjugate gradient algorithm by a factor of 2--8 times depending on the convergence criterion

  6. Initial scoping of GHG emissions trading potential in Alberta : CABREE discussion paper

    International Nuclear Information System (INIS)

    Armstrong, R.

    2002-03-01

    The past five years have seen the emergence of the concept of emissions trading for greenhouse gases, which would make possible a reduction of the costs required to meet emissions targets agreed upon under the Kyoto Protocol. Emissions trading potential and initial scoping in Alberta is examined in this document, with a special emphasis placed on greenhouse gases. The design of a system, encompassing the theory underlying the mechanism, the current developments, issues of importance in this context, as well as the potential for inclusion of other sectors in Alberta were also discussed. For the purpose of this document, emissions trading was defined as one party reducing its emissions levels then transferring the ownership of that reduction to another party who can then purchase this reduction to assist in meeting its own emissions target. Emission trading can be divided into two basic types called Cap and Trade, and Baseline and Credit. Market creation and behaviour, and regulatory behaviour are factors that can render a trading system more feasible. It is important to analyze the goals before designing the specifics of the system. The incorporation of the various sectors of the economy of Alberta would be affected by their unique features. The greatest promise for emissions trading in Alberta is shown by the energy sector. The percentage of emissions covered, the number of participants, the economic effectiveness are all criteria that affect the performance of any system. figs

  7. Global time trends in PAH emissions from motor vehicles

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu; Wang, Rong; Wang, Bin; Shen, Guofeng; Li, Wei; Su, Shenshen; Huang, Ye; Wang, Xilong; Liu, Wenxin; Li, Bengang; Sun, Kang

    2011-04-01

    Emission from motor vehicles is the most important source of polycyclic aromatic hydrocarbons (PAHs) in urban areas. Emission factors of individual PAHs for motor vehicles reported in the literature varied 4 to 5 orders of magnitude, leading to high uncertainty in emission inventory. In this study, key factors affecting emission factors of PAHs (EF PAH) for motor vehicles were evaluated quantitatively based on thousands of EF PAH measured in 16 countries for over 50 years. The result was used to develop a global emission inventory of PAHs from motor vehicles. It was found that country and vehicle model year are the most important factors affecting EF PAH, which can be quantified using a monovariate regression model with per capita gross domestic production (purchasing power parity) as a sole independent variable. On average, 29% of variation in log-transformed EF PAH could be explained by the model, which was equivalent to 90% reduction in overall uncertainty on arithmetic scale. The model was used to predict EF PAH and subsequently PAH emissions from motor vehicles for various countries in the world during a period from 1971 to 2030. It was estimated that the global emission reached its peak value of approximate 101 Gg in 1978 and decreased afterwards due to emission control in developed countries. The annual emission picked up again since 1990 owing to accelerated energy consumption in China and other developing countries. With more and more rigid control measures taken in the developing world, global emission of PAHs is currently passing its second peak. It was predicted that the emission would decrease from 77 Gg in 2010 to 42 Gg in 2030.

  8. Biochemical failure after radical prostatectomy in intermediate-risk group men increases with the number of risk factors

    Directory of Open Access Journals (Sweden)

    Nobuki Furubayashi

    2017-01-01

    Conclusion: The number of intermediate risk factors is significantly associated with the PSA failure-free survival rate after radical prostatectomy in the intermediate-risk group. Patients classified into the intermediate-risk group based on all three intermediate risk factors are less likely to achieve a complete cure through surgery alone.

  9. LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector

    International Nuclear Information System (INIS)

    Jeong, Kyonghwa; Kim, Suyi

    2013-01-01

    In this article, we decomposed Korean industrial manufacturing greenhouse gas (GHG) emissions using the log mean Divisia index (LMDI) method, both multiplicatively and additively. Changes in industrial CO 2 emissions from 1991 to 2009 may be studied by quantifying the contributions from changes in five different factors: overall industrial activity (activity effect), industrial activity mix (structure effect), sectoral energy intensity (intensity effect), sectoral energy mix (energy-mix effect) and CO 2 emission factors (emission-factor effect). The results indicate that the structure effect and intensity effect played roles in reducing GHG emissions, and the structure effect played a bigger role than the intensity effect. The energy-mix effect increased GHG emissions, and the emission-factor effect decreased GHG emissions. The time series analysis indicates that the GHG emission pattern was changed before and after the International Monetary Fund (IMF) regime in Korea. The structure effect and the intensity effect had contributed more in emission reductions after rather than before the IMF regime in Korea. The structure effect and intensity effect have been stimulated since the high oil price period after 2001. - Highlights: • We decomposed greenhouse gas emissions of Korea's manufacturing industry using LMDI. • The structure effect and intensity effect play a role in reducing GHG emissions. • The role of structure effect was bigger than intensity effect. • The energy-mix effect increased and the emission-factor effect decreased GHG emissions. • The GHG emission pattern has been changed before and after IMF regime in Korea

  10. Validation of farm-scale methane emissions using nocturnal boundary layer budgets

    Directory of Open Access Journals (Sweden)

    J. Stieger

    2015-12-01

    Full Text Available This study provides the first experimental validation of Swiss agricultural methane emission estimates at the farm scale. We measured CH4 concentrations at a Swiss farmstead during two intensive field campaigns in August 2011 and July 2012 to (1 quantify the source strength of livestock methane emissions using a tethered balloon system and (2 to validate inventory emission estimates via nocturnal boundary layer (NBL budgets. Field measurements were performed at a distance of 150 m from the nearest farm buildings with a tethered balloon system in combination with gradient measurements at eight heights on a 10 m tower to better resolve the near-surface concentrations. Vertical profiles of air temperature, relative humidity, CH4 concentration, wind speed, and wind direction showed that the NBL was strongly influenced by local transport processes and by the valley wind system. Methane concentrations showed a pronounced time course, with highest concentrations in the second half of the night. NBL budget flux estimates were obtained via a time–space kriging approach. Main uncertainties of NBL budget flux estimates were associated with nonstationary atmospheric conditions and the estimate of the inversion height zi (top of volume integration. The mean NBL budget fluxes of 1.60 ± 0.31 μg CH4 m-2 s-1 (1.40 ± 0.50 and 1.66 ± 0.20 μg CH4 m-2 s-1 in 2011 and 2012 respectively were in good agreement with local inventory estimates based on current livestock number and default emission factors, with 1.29 ± 0.47 and 1.74 ± 0.63 μg CH4 m-2 s-1 for 2011 and 2012 respectively. This indicates that emission factors used for the national inventory reports are adequate, and we conclude that the NBL budget approach is a useful tool to validate emission inventory estimates.

  11. Validation of farm-scale methane emissions using nocturnal boundary layer budgets

    Science.gov (United States)

    Stieger, J.; Bamberger, I.; Buchmann, N.; Eugster, W.

    2015-12-01

    This study provides the first experimental validation of Swiss agricultural methane emission estimates at the farm scale. We measured CH4 concentrations at a Swiss farmstead during two intensive field campaigns in August 2011 and July 2012 to (1) quantify the source strength of livestock methane emissions using a tethered balloon system and (2) to validate inventory emission estimates via nocturnal boundary layer (NBL) budgets. Field measurements were performed at a distance of 150 m from the nearest farm buildings with a tethered balloon system in combination with gradient measurements at eight heights on a 10 m tower to better resolve the near-surface concentrations. Vertical profiles of air temperature, relative humidity, CH4 concentration, wind speed, and wind direction showed that the NBL was strongly influenced by local transport processes and by the valley wind system. Methane concentrations showed a pronounced time course, with highest concentrations in the second half of the night. NBL budget flux estimates were obtained via a time-space kriging approach. Main uncertainties of NBL budget flux estimates were associated with nonstationary atmospheric conditions and the estimate of the inversion height zi (top of volume integration). The mean NBL budget fluxes of 1.60 ± 0.31 μg CH4 m-2 s-1 (1.40 ± 0.50 and 1.66 ± 0.20 μg CH4 m-2 s-1 in 2011 and 2012 respectively) were in good agreement with local inventory estimates based on current livestock number and default emission factors, with 1.29 ± 0.47 and 1.74 ± 0.63 μg CH4 m-2 s-1 for 2011 and 2012 respectively. This indicates that emission factors used for the national inventory reports are adequate, and we conclude that the NBL budget approach is a useful tool to validate emission inventory estimates.

  12. Top-down Constraints on Emissions: Example for Oil and Gas Operations

    Science.gov (United States)

    Petron, G.; Sweeney, C.; Karion, A.; Brewer, A.; Hardesty, R.; Banta, R. M.; Frost, G. J.; Trainer, M.; Miller, B. R.; Conley, S. A.; Kofler, J.; Newberger, T.; Higgs, J. A.; Wolter, S.; Guenther, D.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Montzka, S. A.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Helmig, D.; Hueber, J.; Rella, C.; Jacobson, G. A.; Wolfe, D. E.; Bruhwiler, L.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    In many countries, human-caused emissions of the two major long lived greenhouse gases, carbon dioxide and methane, are primarily linked to the use of fossil fuels (coal, oil and natural gas). Fugitive emissions of natural gas (mainly CH4) from the oil and gas exploration and production sector may also be an important contributor to natural gas life cycle/greenhouse gas footprint. Fuel use statistics have traditionally been used in combination with fuel and process specific emission factors to estimate CO2 emissions from fossil-fuel-based energy systems (power plants, motor vehicles…). Fugitive emissions of CH4, in contrast, are much harder to quantify. Fugitive emission levels may vary substantially from one oil and gas producing basin to another and may not scale with common activity data, such as production numbers. In the USA, recent efforts by the industry, States and the US Environmental Protection Agency have focused on developing new bottom-up inventory methodologies to assess methane and volatile organic compounds emissions from oil and gas producing basins. The underlying assumptions behind these inventories are multiple and result de facto in large uncertainties. Independent atmospheric-based estimates of emissions provide another valuable piece of information that can be used to evaluate inventories. Over the past year, the NOAA Earth System Research Laboratory has used its expertise in high quality GHG and wind measurements to evaluate regional emissions of methane from two oil and gas basins in the Rocky Mountain region. Results from these two campaigns will be discussed and compared with available inventories.

  13. Emission rates of regulated pollutants from on-road heavy-duty diesel vehicles

    Science.gov (United States)

    Shah, Sandip D.; Johnson, Kent C.; Wayne Miller, J.; Cocker, David R.

    Emissions from heavy-duty diesel (HDD) vehicles are affected by many factors. Changes in engine technology, operating mode, fuel properties, vehicle speed and ambient conditions can have significant effects on emission rates of regulated species. This paper presents the results of on-road emissions testing of 11 HDD vehicles (model years 1996-2000) over the ARB Four Phase driving schedule and the urban dynamometer driving schedule (UDDS). Emission rates were found to be highly dependent on vehicle operating mode. Per mile NO x emission rates for vehicle operation at low speeds, in simulated congested traffic, were three times higher per mile emissions then while cruising on the freeway. Comparisons of NO x emission factors to EMFAC baseline emission factors were within 5-40% for vehicles of various model years tested over the UDDS. A comparison of NO x emission factors for a weighted average of the ARB four phase driving schedule yielded values within 17-57% of EMFAC values. Generally, particulate matter (PM) emission rates were lower than EMFAC values.

  14. Emission of greenhouse gases from waste incineration in Korea.

    Science.gov (United States)

    Hwang, Kum-Lok; Choi, Sang-Min; Kim, Moon-Kyung; Heo, Jong-Bae; Zoh, Kyung-Duk

    2017-07-01

    Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NO x ) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO 2 ton -1 , 88 ± 36 g CH 4 ton -1 , and 69 ± 16 g N 2 O ton -1 , while those for CSW incineration were 22.56 g CH 4 ton -1 and 259.76 g N 2 O ton -1 , and for SW incineration emission factors were 2959 kg CO 2 ton -1 , 43.44 g CH 4 ton -1 and 401.21 g N 2 O ton -1 , respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO 2 -eq yr -1 for A facility and 11,082 ton CO 2 -eq yr -1 for B facility, while those of IPCC default values were 13,167 ton CO 2- eq yr -1 for A facility and 32,916 ton CO 2- eq yr -1 , indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO 2 -eq yr -1 , while those of SW for D to I facilities was 28,830 ton CO 2 -eq yr -1 . The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and

  15. Greenhouse gas emissions from nitrogen fertilizer use in China

    International Nuclear Information System (INIS)

    Kahrl, Fredrich; Li, Yunju; Su, Yufang; Tennigkeit, Timm; Wilkes, Andreas; Xu, Jianchu

    2010-01-01

    The use of synthetic nitrogen (N) fertilizers is an important driver of energy use and greenhouse gas (GHG) emissions in China. This paper develops a GHG emission factor for synthetic N fertilizer application in China. Using this emission factor, we estimate the scale of GHG emissions from synthetic nitrogen fertilizer use in Chinese agriculture and explore the potential for GHG emission reductions from efficiency improvements in N fertilizer production and use. The paper concludes with a discussion on costs and financing for a large-scale fertilizer efficiency improvement program in China, and how a GHG mitigation framework might contribute to program design.

  16. How does number of risk factors affect prognosis in young patients with ischemic stroke?

    Science.gov (United States)

    Putaala, Jukka; Haapaniemi, Elena; Kaste, Markku; Tatlisumak, Turgut

    2012-02-01

    We aimed to explore clinical features of young patients with ischemic stroke with no traditional vascular risk factors and to assess the impact of risk factor counts on outcomes. We included 990 patients aged 15 to 49 years with first-ever ischemic stroke followed for a mean of 9.0 ± 3.8 years (survivors). Risk factors were categorized as well-documented and less well-documented. Outcome measures were unfavorable functional outcome (3-month modified Rankin Scale 2-6); recurrent ischemic stroke; myocardial infarction or other arterial noncerebrovascular event; and death from any cause. Compared with those with at least 1 well-documented risk factor, the 127 (12.8%) patients without risk factors were younger (median age, 37 versus 44 years; Pischemic strokes (4.7% versus 13.6%; log rank P=0.014), noncerebrovascular arterial events (0% versus 6.1%; P=0.008), and lower long-term mortality (3.4% versus 14.3%; P=0.003) than did those with at least 1 risk factor. Adjusted for demographics and stroke etiology, the number of well-documented risk factors was associated with higher risk for noncerebrovascular events. Increasing count of less well-documented risk factors was, in turn, independently associated with higher long-term mortality. In young adults with first-ever ischemic stroke, risk factor counts added independent prognostic information regarding noncerebrovascular events and mortality.

  17. The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine

    International Nuclear Information System (INIS)

    Rashedul, H.K.; Masjuki, H.H.; Kalam, M.A.; Ashraful, A.M.; Ashrafur Rahman, S.M.; Shahir, S.A.

    2014-01-01

    Highlights: • Fuel additives significantly improve the quality of biodiesel and its blends. • Fuel additives used to enhance biodiesel properties. • Fuel saving from optimized vehicle performance and economy with the use of additives. • Emission reduction from fuel system cleanliness and combustion optimization. - Abstract: With growing concern over greenhouse gases there is increasing emphasis on reducing CO 2 emissions. Despite engine efficiency improvements plus increased dieselization of the fleet, increasing vehicle numbers results in increasing CO 2 emissions. To reserve this trend the fuel source must be changed to renewable fuels which are CO 2 neutral. As a renewable, sustainable and alternative fuel for compression ignition engines, biodiesel is widely accepted as comparable fuel to diesel in diesel engines. This is due to several factors like decreasing the dependence on imported petroleum, reducing global warming, increasing lubricity, and reducing substantially the exhaust emissions from diesel engine. However, there is a major disadvantage in the use of biodiesel as it has lower heating value, higher density and higher viscosity, higher fuel consumption and higher NO X emission, which limits its application. Here fuel additives become essential and indispensable tools not only to minimize these drawbacks but also generate specified products to meet the regional and international standards. Fuel additives can contribute towards fuel economy and emission reduction either directly or indirectly. Their use enable vehicle performance to be maintained at, or near, optimum over the lifetime of the vehicle. A variety of additives are used in automotive biodiesel fuel to meet specification limits and to enhance quality. For example, metal based additives, oxygenated additives, antioxidants, cetane number improvers, lubricity improvers and cold flow improvers are used to meet specifications and quality. This article is a literature review of the effect

  18. Emission factors and thermal efficiencies of cooking biofuels from five countries

    International Nuclear Information System (INIS)

    Gupta, S.; Saksena, S.; Shankar, V.R.; Joshi, V.

    1998-01-01

    The aim of the study was to compare the environmental and thermal performance of cooking biofuels from five countries. The standard water boiling test was used to determine thermal parameters. The fuels were burnt in a metal stove in a test chamber in accordance with standard protocol. Low-flow air samplers were used for particulate matter measurements, both TSP and RSP. Later, benzo(a)pyrene was determined using the high performance liquid chromatography (HPLC) technique after extraction from particulate samples in benzene. CO was measured using an electronic datalogger and HCHO using a passive sampler. The ventilation conditions during the experiments were manipulated by using different combinations of doors, windows and fans to ensure minimum stratification of pollutants in the chamber. The indirect method of deriving emission factors was used. Levels of most of the pollutants measured was found to be higher than that reported by previous studies, especially that of benzo(a)pyrene. (author)

  19. Projection of SO{sub 2}, NO{sub X}, NH{sub 3} and particle emissions - 2010-2030

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, O -K; Plejdrup, M; Winther, M; Hjorth Mikkelsen, M; Albrektsen, R; Nielsen, M; Fauser, P; Hoffmann, L; Hjelgaard, K; Gyldenkaerne, S

    2012-01-15

    This report contains a description of models and background data for projection of SO{sub 2}, NO{sub x}, NH{sub 3}, NMVOC, TSP, PM{sub 10} and PM{sub 25} for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Agency. The emission factors refer either to international guidelines or are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (Author)

  20. Evaluation of Related Risk Factors in Number of Musculoskeletal Disorders Among Carpet Weavers in Iran

    Directory of Open Access Journals (Sweden)

    Nasim Karimi

    2016-12-01

    Conclusion: According to the results of this study, it can be concluded that occupational factors are associated with the number of MSDs developing among carpet weavers. Thus, using standard tools and decreasing hours of work per day can reduce frequency of MSDs among carpet weavers.

  1. Heavy metal emissions for Danish road transport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.; Slentoe, E.

    2010-04-15

    This report presents new heavy metal emission factors for cars, vans, trucks, buses, mopeds and motorcycles for each of the emission sources fuel consumption, engine oil, tyre wear, brake wear and road abrasion. The emission components covered are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn), all of them relevant for emission reporting to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long Range Transboundary Pollutants) convention. The report also presents a new Danish inventory for the year 2007. The following emissions in total TSP (in brackets) are calculated for the year 2007: As (8 kg), Cd (48 kg), Cr (197 kg), Cu (51 779 kg), Hg (28 kg), Ni (158 kg), Pb (6 989 kg), Se (33 kg) and Zn (28 556 kg). Per vehicle type cars are the most important source of emission for all heavy metal species, followed by vans, trucks, buses and 2-wheelers. By using the detailed emission factors and inventory calculation methods established in the present project, estimates of heavy metal emissions can be made for other years than 2007. (author)

  2. Pollutant emissions of commercial and industrial wood furnaces; determination of emissions and emission reducing techniques

    International Nuclear Information System (INIS)

    Baumbach, G.; Angerer, M.

    1993-01-01

    Approximately 382.000 t of wood waste from production processes are fired in Baden-Wuerttemberg per year in 4345 furnaces with capacities of less than 1 MW (field of application of the ''1 BImSchV''). This corresponds to an energy consumption of 5600 TJ. The firings with a totally installed capacity of 594 MW are operated mainly by joiners, carpenters, in sawmills and furniture factories. Certainly there are typical differences between the diverse branches concerning the characteristics of the firings such as capacity, kind of firing, of fuel supply and heat generation. Because of lacking established emission factors, at present time the emissions of these furnaces cannot be calculated. Therefore field measurements are carried out at a representative selection of the registered installations. The emissions are measured in consideration of the usual ways of operation and the commonly used fuels. Supplementarily the compound of the emitted hydrocarbons and their dependence on completeness of the combustion as well as the compound and the grain size distribution of the particle emissions are investigated. (orig.) [de

  3. [Emission characteristics of PM10 from coal-fired industrial boiler].

    Science.gov (United States)

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.

  4. Virtual CO2 Emission Flows in the Global Electricity Trade Network.

    Science.gov (United States)

    Qu, Shen; Li, Yun; Liang, Sai; Yuan, Jiahai; Xu, Ming

    2018-05-14

    Quantifying greenhouse gas emissions due to electricity consumption is crucial for climate mitigation in the electric power sector. Current practices primarily use production-based emission factors to quantify emissions for electricity consumption, assuming production and consumption of electricity take place within the same region. The increasingly intensified cross-border electricity trade complicates the accounting for emissions of electricity consumption. This study employs a network approach to account for the flows in the whole electricity trade network to estimate CO 2 emissions of electricity consumption for 137 major countries/regions in 2014. Results show that in some countries, especially those in Europe and Southern Africa, the impacts of electricity trade on the estimation of emission factors and embodied emissions are significant. The changes made to emission factors by considering intergrid electricity trade can have significant implications for emission accounting and climate mitigation when multiplied by total electricity consumption of the corresponding countries/regions.

  5. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    Science.gov (United States)

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  6. 40 CFR 205.3 - Number and gender.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Number and gender. 205.3 Section 205.3... EQUIPMENT NOISE EMISSION CONTROLS General Provisions § 205.3 Number and gender. As used in this part, words in the -singular shall be deemed to import -the plural, and words in the masculine -gender shall be...

  7. Simulation of Energy Consumption and Emissions from Rail Traffic

    DEFF Research Database (Denmark)

    Lindgreen, Erik Bjørn Grønning; Sorenson, Spencer C

    . The calculation procedure is evaluated with respect to resolution of operation conditions, and then evaluated by comparison with experimental data for a variety of passenger and goods trains. The results indicate that the energy consumption from modeling approach is valid to better that 10% for known operating...... characteristics. Emissions are calculated from the energy consumption using average fuel based emissions factors and electrical production emissions factors....

  8. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

    2006-08-15

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  9. Effects of preprocessing method on TVOC emission of car mat

    Science.gov (United States)

    Wang, Min; Jia, Li

    2013-02-01

    The effects of the mat preprocessing method on total volatile organic compounds (TVOC) emission of car mat are studied in this paper. An appropriate TVOC emission period for car mat is suggested. The emission factors for total volatile organic compounds from three kinds of new car mats are discussed. The car mats are preprocessed by washing, baking and ventilation. When car mats are preprocessed by washing, the TVOC emission for all samples tested are lower than that preprocessed in other methods. The TVOC emission is in stable situation for a minimum of 4 days. The TVOC emitted from some samples may exceed 2500μg/kg. But the TVOC emitted from washed Polyamide (PA) and wool mat is less than 2500μg/kg. The emission factors of total volatile organic compounds (TVOC) are experimentally investigated in the case of different preprocessing methods. The air temperature in environment chamber and the water temperature for washing are important factors influencing on emission of car mats.

  10. Criteria and air-toxic emissions from in-use automobiles in the National Low-Emission Vehicle program.

    Science.gov (United States)

    Baldauf, Rich W; Gabele, Pete; Crews, William; Snow, Richard; Cook, J Rich

    2005-09-01

    The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.

  11. Emission of greenhouse gases from controlled incineration of cattle manure.

    Science.gov (United States)

    Oshita, Kazuyuki; Sun, Xiucui; Taniguchi, Miki; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujiwara, Taku

    2012-01-01

    Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions (N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and air ratio on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800 degrees C at a low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800-850 degrees C and air ratio of 1.4) were determined to be 1.9-6.0% g-N2O-N/g-N and 0.0046-0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published values between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure.

  12. Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials

    International Nuclear Information System (INIS)

    Berntsen, T.K.; Fuglestvedt, J.S.; Joshi, M.M.; Shine, K.P.; Hauglustaine, D.A.; Li, L.

    2005-01-01

    The response of climate to ozone perturbations caused by regional emissions of NO x or CO has been studied through a sequence of model simulations. Changes C and OH concentrations due to emission perturbations in Europe and southeast Asia have been calculated with two global 3-D chemical tracer models(CTMs; LMDzINCA and Oslo-CTM2). The radiative transfer codes of three general circulation models (GCMs; ECHAM4, UREAD and LMD) have been used to calculate the radiative forcing of the O 3 perturbations, and for a subset of the cases full GCM simulations have been performed with ECHAM4 and UREAD. The results have been aggregated to a global number in two ways: first, through integrating the global-mean radiative forcing of a sustained step change in emissions, and second through a modified concept (SGWP*) which includes possible differences in the climate sensitivity of O 3 , CH 4 and CO 2 changes. In terms of change in global tropospheric O 3 burden the two CTMs differ by less than 30%. Both CTMs show a higher north/south gradient in the sensitivity to changes in NO x emission than for CO. We are not able to conclude whether real O 3 perturbations in general have a different climate sensitivity from CO 2 . However, in both GCMs high-latitude emission perturbations lead to climate perturbations with higher (10-30%) climate sensitivities. The calculated SGWP*, for a 100 yr time horizon, are negative for three of the four CTM/GCM combinations for European emissions (-9.6 to +6.9), while for the Asian emissions the SGWP* (H=100) is always positive (+2.9 to +25) indicating a warming. For CO the SGWP* values (3.8 and 4.4 for European and Asian emissions respectively, with only the Oslo-CTM2/ECHAM4 model combination) are less regionally dependent. Our results support the view that for NO x , regionally different weighting factors for the emissions are necessary. For CO the results are more robust and one global number may be acceptable

  13. Contact Us About Clearinghouse for Inventories and Emissions Factors

    Science.gov (United States)

    Emissions inventories, modeling, and monitoring are the basis for understanding, controlling and tracking stationary sources of air pollution. This technical site provides access to tools and data to support those efforts.

  14. Implementation of Portable Emissions Measurement Systems (PEMS) for the Real-driving Emissions (RDE) Regulation in Europe.

    Science.gov (United States)

    Giechaskiel, Barouch; Vlachos, Theodoros; Riccobono, Francesco; Forni, Fausto; Colombo, Rinaldo; Montigny, Francois; Le-Lijour, Philippe; Carriero, Massimo; Bonnel, Pierre; Weiss, Martin

    2016-12-04

    Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their official emission values and reference fuel consumption. However, on the road, ambient and driving conditions can vary over a wide range, sometimes causing emissions to be higher than those measured in the laboratory. For this reason, the European Commission has developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS) to verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. This paper presents the newly-adopted RDE test procedure, differentiating six steps: 1) vehicle selection, 2) vehicle preparation, 3) trip design, 4) trip execution, 5) trip verification, and 6) calculation of emissions. Of these steps, vehicle preparation and trip execution are described in greater detail. Examples of trip verification and the calculations of emissions are given.

  15. Strategies for enhanced deammonification performance and reduced nitrous oxide emissions.

    Science.gov (United States)

    Leix, Carmen; Drewes, Jörg E; Ye, Liu; Koch, Konrad

    2017-07-01

    Deammonification's performance and associated nitrous oxide emissions (N 2 O) depend on operational conditions. While studies have investigated factors for high performances and low emissions separately, this study investigated optimizing deammonification performance while simultaneously reducing N 2 O emissions. Using a design of experiment (DoE) method, two models were developed for the prediction of the nitrogen removal rate and N 2 O emissions during single-stage deammonification considering three operational factors (i.e., pH value, feeding and aeration strategy). The emission factor varied between 0.7±0.5% and 4.1±1.2% at different DoE-conditions. The nitrogen removal rate was predicted to be maximized at settings of pH 7.46, intermittent feeding and aeration. Conversely, emissions were predicted to be minimized at the design edges at pH 7.80, single feeding, and continuous aeration. Results suggested a weak positive correlation between the nitrogen removal rate and N 2 O emissions, thus, a single optimizing operational set-point for maximized performance and minimized emissions did not exist. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine.

    Science.gov (United States)

    Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée

    2017-11-01

    Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The impact of slurry application technique on nitrous oxide emission from agricultural soils

    NARCIS (Netherlands)

    Velthof, G.L.; Mosquera, J.

    2011-01-01

    Direct nitrous oxide (N2O) emissions from fertilized soils are generally estimated using emission factors. However, the emission factors for N2O emission of applied slurry are not well quantified. The effect of slurry application technique on N2O emission was quantified in field experiments in the

  18. Comparative use of different emission measurement approaches to determine methane emissions from a biogas plant

    DEFF Research Database (Denmark)

    Reinelt, Torsten; Delre, Antonio; Westerkamp, Tanja

    2017-01-01

    (corresponding to a methane loss of 0.6 and 2.1%) from team to team, depending on the number of measured emission points, operational state during the measurements and the measurement method applied. Taking the operational conditions into account, the deviation between different approaches and teams could......A sustainable anaerobic biowaste treatment has to mitigate methane emissions from the entire biogas production chain, but the exact quantification of these emissions remains a challenge. This study presents a comparative measurement campaign carried out with on-site and ground-based remote sensing...... measurement approaches conducted by six measuring teams at a Swedish biowaste treatment plant. The measured emissions showed high variations, amongst others caused by different periods of measurement performance in connection with varying operational states of the plant. The overall methane emissions measured...

  19. Comparison of exhaust emission on the basis of Real Driving Emissions measurements and simulations

    Directory of Open Access Journals (Sweden)

    Nowak Mateusz

    2017-01-01

    Full Text Available Designing of modern transport systems involves the need to meet a large number of requirements. The influence of designed road infrastructure on the environment is very wide and important. The most valid aspect in this case is the reduction of emissions of harmful compounds by increasing the fluency of vehicles flow and building collision free road intersections. But it should be started from establishing the initial emission level of harmful compounds. This paper presents a methodology for determining exhaust emissions from vehicles moving on the national road no. 50 in area of Zyrardow. Modern measuring tools such as the PEMS and the microscopic road simulation software, using the application to determine exhaust emissions, were used for this purpose.

  20. Assessment on the leakage hazard of landfill leachate using three-dimensional excitation-emission fluorescence and parallel factor analysis method.

    Science.gov (United States)

    Pan, Hongwei; Lei, Hongjun; Liu, Xin; Wei, Huaibin; Liu, Shufang

    2017-09-01

    A large number of simple and informal landfills exist in developing countries, which pose as tremendous soil and groundwater pollution threats. Early warning and monitoring of landfill leachate pollution status is of great importance. However, there is a shortage of affordable and effective tools and methods. In this study, a soil column experiment was performed to simulate the pollution status of leachate using three-dimensional excitation-emission fluorescence (3D-EEMF) and parallel factor analysis (PARAFAC) models. Sum of squared residuals (SSR) and principal component analysis (PCA) were used to determine the optimal components for PARAFAC. A one-way analysis of variance showed that the component scores of the soil column leachate were significant influenced by landfill leachate (plandfill to that of natural soil could be used to evaluate the leakage status of landfill leachate. Furthermore, a hazard index (HI) and a hazard evaluation standard were established. A case study of Kaifeng landfill indicated a low hazard (level 5) by the use of HI. In summation, HI is presented as a tool to evaluate landfill pollution status and for the guidance of municipal solid waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.