WorldWideScience

Sample records for nucleus caudalis neurons

  1. Dietary grape seed polyphenols repress neuron and glia activation in trigeminal ganglion and trigeminal nucleus caudalis

    Directory of Open Access Journals (Sweden)

    Durham Paul L

    2010-12-01

    Full Text Available Abstract Background Inflammation and pain associated with temporomandibular joint disorder, a chronic disease that affects 15% of the adult population, involves activation of trigeminal ganglion nerves and development of peripheral and central sensitization. Natural products represent an underutilized resource in the pursuit of safe and effective ways to treat chronic inflammatory diseases. The goal of this study was to investigate effects of grape seed extract on neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis in response to persistent temporomandibular joint inflammation. Sprague Dawley rats were pretreated with 200 mg/kg/d MegaNatural-BP grape seed extract for 14 days prior to bilateral injections of complete Freund's adjuvant into the temporomandibular joint capsule. Results In response to grape seed extract, basal expression of mitogen-activated protein kinase phosphatase 1 was elevated in neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis, and expression of the glutamate aspartate transporter was increased in spinal glia. Rats on a normal diet injected with adjuvant exhibited greater basal levels of phosphorylated-p38 in trigeminal ganglia neurons and spinal neurons and microglia. Similarly, immunoreactive levels of OX-42 in microglia and glial fibrillary acidic protein in astrocytes were greatly increased in response to adjuvant. However, adjuvant-stimulated levels of phosphorylated-p38, OX-42, and glial fibrillary acidic protein were significantly repressed in extract treated animals. Furthermore, grape seed extract suppressed basal expression of the neuropeptide calcitonin gene-related peptide in spinal neurons. Conclusions Results from our study provide evidence that grape seed extract may be beneficial as a natural therapeutic option for temporomandibular joint disorders by suppressing development of peripheral and central sensitization.

  2. PACAP-38 but not VIP induces release of CGRP from trigeminal nucleus caudalis via a receptor distinct from the PAC1 receptor

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Baun, Michael; Amrutkar, Dipak V

    2014-01-01

    nucleus caudalis (TNC) was quantified by EIA. Regulation of NOS-enzymes caused by VIP and PACAP was investigated in dura mater, TG and TNC by measuring the conversion of L-[3H]arginine to L-[3H]citrulline. Co-expression of PACAP, neuronal nitric oxide synthase (nNOS) and CGRP was explored...

  3. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats.

    Directory of Open Access Journals (Sweden)

    Khaled Abdallah

    Full Text Available Several lines of evidence suggest that the hypothalamus is involved in trigeminal pain processing. However, the organization of descending hypothalamic projections to the spinal trigeminal nucleus caudalis (Sp5C remains poorly understood. Microinjections of the retrograde tracer, fluorogold (FG, into the Sp5C, in rats, reveal that five hypothalamic nuclei project to the Sp5C: the paraventricular nucleus, the lateral hypothalamic area, the perifornical hypothalamic area, the A11 nucleus and the retrochiasmatic area. Descending hypothalamic projections to the Sp5C are bilateral, except those from the paraventricular nucleus which exhibit a clear ipsilateral predominance. Moreover, the density of retrogradely FG-labeled neurons in the hypothalamus varies according to the dorso-ventral localization of the Sp5C injection site. There are much more labeled neurons after injections into the ventrolateral part of the Sp5C (where ophthalmic afferents project than after injections into its dorsomedial or intermediate parts (where mandibular and maxillary afferents, respectively, project. These results demonstrate that the organization of descending hypothalamic projections to the spinal dorsal horn and Sp5C are different. Whereas the former are ipsilateral, the latter are bilateral. Moreover, hypothalamic projections to the Sp5C display somatotopy, suggesting that these projections are preferentially involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in rats. Therefore, our results suggest that the control of trigeminal and spinal dorsal horn processing of nociceptive information by hypothalamic neurons is different and raise the question of the role of bilateral, rather than unilateral, hypothalamic control.

  4. ERK-GluR1 phosphorylation in trigeminal spinal subnucleus caudalis neurons is involved in pain associated with dry tongue.

    Science.gov (United States)

    Nakaya, Yuka; Tsuboi, Yoshiyuki; Okada-Ogawa, Akiko; Shinoda, Masamichi; Kubo, Asako; Chen, Jui Yen; Noma, Noboru; Batbold, Dulguun; Imamura, Yoshiki; Sessle, Barry J; Iwata, Koichi

    2016-01-01

    Dry mouth is known to cause severe pain in the intraoral structures, and many dry mouth patients have been suffering from intraoral pain. In development of an appropriate treatment, it is crucial to study the mechanisms underlying intraoral pain associated with dry mouth, yet the detailed mechanisms are not fully understood. To evaluate the mechanisms underlying pain related to dry mouth, the dry-tongue rat model was developed. Hence, the mechanical or heat nocifensive reflex, the phosphorylated extracellular signal-regulated kinase and phosphorylated GluR1-IR immunohistochemistries, and the single neuronal activity were examined in the trigeminal spinal subnucleus caudalis of dry-tongue rats. The head-withdrawal reflex threshold to mechanical, but not heat, stimulation of the tongue was significantly decreased on day 7 after tongue drying. The mechanical, but not heat, responses of trigeminal spinal subnucleus caudalis nociceptive neurons were significantly enhanced in dry-tongue rats compared to sham rats on day 7. The number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells was also significantly increased in the trigeminal spinal subnucleus caudalis following noxious stimulation of the tongue in dry-tongue rats compared to sham rats on day 7. The decrement of the mechanical head-withdrawal reflex threshold (HWT) was reversed during intracisternal administration of the mitogen-activated protein kinase kinase 1 inhibitor, PD98059. The trigeminal spinal subnucleus caudalis neuronal activities and the number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells following noxious mechanical stimulation of dried tongue were also significantly decreased following intracisternal administration of PD98059 compared to vehicle-administrated rats. Increased number of the phosphorylated GluR1-IR cells was observed in the trigeminal spinal subnucleus caudalis of dry-tongue rats, and the number of phosphorylated GluR1-IR cells

  5. CGRP infusion in unanesthetized rats increases expression of c-Fos in the nucleus tractus solitarius and caudal ventrolateral medulla, but not in the trigeminal nucleus caudalis

    DEFF Research Database (Denmark)

    Bhatt, Deepak K; Ramachandran, Roshni; Christensen, Sarah Louise Tangsgaard

    2015-01-01

    caudalis (TNC) was isolated at different time points after CGRP infusion. The level of c-Fos mRNA and protein expression in TNC were analyzed by qPCR and immunohistochemistry. c-Fos-stained nuclei were also counted in the nucleus tractus solitarius (NTS) and caudal ventrolateral medulla (CVLM), integrative...

  6. CILOSTAZOL INDUCES C-FOS EXPRESSION IN THE TRIGEMINAL NUCLEUS CAUDALIS AND BEHAVIOURAL CHANGES SUGGESTIVE OF HEADACHE WITH MIGRAINE-LIKE MANIFESTATIONS IN RATS

    DEFF Research Database (Denmark)

    Christensen, S. L. T.; Petersen, S.; Sorensen, D. B.

    2016-01-01

    in rats. Also, we tested the response to sumatriptan in order to evaluate the predictive properties of the model. Methods: The effect of cilostazol (125 mg/kg p.o.) was evaluated on a range of spontaneous behavioural parameters, light sensitivity and mechanical sensitivity thresholds. To assess headache...... specificity we evaluated the c-fos expression in the trigeminal nucleus caudalis. All experiments were done in female Sprague Dawley rats and the oestrous cycle was included in the analyses. Results: We found that cilostazol increased the light sensitivity and grooming behaviour of the rats and decreased......: The altered behaviours are suggestive of headache with migraine features, but not specific. The c-fos response in the trigeminal nucleus caudalis implies that the rats had pain originating from the head. The lack of response to sumatriptan disqualifies the model as predictive, but confirms the translation...

  7. Cilostazol induces C-fos expression in the trigeminal nucleus caudalis and behavioural changes suggestive of headache with the migraine-like feature photophobia in female rats

    DEFF Research Database (Denmark)

    Christensen, S L; Petersen, Steffen; Sørensen, Dorte B

    2018-01-01

    -like behaviours and c-fos expression in rats. In order to evaluate the predictive validity of the model, we examined the response to the migraine specific drug sumatriptan. Methods The effect of cilostazol (125 mg/kg p.o.) in female Sprague Dawley rats was evaluated on a range of spontaneous behavioural...... parameters, light sensitivity and mechanical sensitivity thresholds. We also measured c-fos expression in the trigeminal nucleus caudalis. Results Cilostazol increased light sensitivity and grooming behaviour. These manifestations were not inhibited by sumatriptan. Cilostazol also induced c-fos expression...... in the trigeminal nucleus caudalis. Furthermore, trigeminal - but not hind paw hyperalgesia was observed. Conclusion The altered behaviours are suggestive of cilostazol induced headache with migraine-like features, but not specific. The presence of head specific hyperalgesia and the c-fos response in the trigeminal...

  8. Autoradiographic localization of substance P receptors in the rat and bovine spinal cord and the rat and cat spinal trigeminal nucleus pars caudalis and the effects of neonatal capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    Mantyh, P.W.; Hunt, S.P. (Medical Research Council Centre, Cambridge (UK). Medical School, MRC Neurochemical Pharmacology Unit)

    1985-04-22

    Substance P (SP) is a putative neurotransmitter in the central nervous system. In the present report the authors have used autoradiographic receptor binding techniques to investigate the distribution of SP receptor binding sites in the rat and bovine spinal cord and in the rat and cat spinal trigeminal nucleus pars caudalis. Although some quantitative differences were evident, all species appeared to have a similar distribution of SP receptor binding sites in both the spinal cord and in the spinal trigeminal nucleus pars caudalis. In the spinal cord the heaviest concentration of SP receptors is located in lamina X, while moderate to heavy concentrations were found in laminae I, II and V-IX. Very low concentrations of SP receptors were present in laminae III and IV. Examination of the cat and rat spinal trigeminal nucleus pars caudalis revealed a moderate density of SP receptor binding sites in laminae I and II, very low concentrations in laminae III and IV, and low to moderate concentrations in lamina V. Rats treated neonatally with capsaicin showed a small (11%) but significant (P < 0.02) increase in the levels of SP receptor binding sites in laminae I and II of the cervical and lumbar spinal cord while in all other laminae the levels remained unchanged.

  9. The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats.

    Science.gov (United States)

    Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam

    2016-04-01

    It is widely accepted that the spinal trigeminal nuclear complex, especially the subnucleus caudalis (Vc), receives input from orofacial structures. The neuropeptides orexin-A and -B are expressed in multiple neuronal systems. Orexin signaling has been implicated in pain-modulating system as well as learning and memory processes. Orexin 1 receptor (OX1R) has been reported in trigeminal nucleus caudalis. However, its roles in trigeminal pain modulation have not been elucidated so far. This study was designed to investigate the role of Vc OX1R in the modulation of orofacial pain as well as pain-induced learning and memory deficits. Orofacial pain was induced by subcutaneous injection of capsaicin in the right upper lip of the rats. OX1R agonist (orexin-A) and antagonist (SB-334867-A) were microinjected into Vc prior capsaicin administration. After recording nociceptive times, learning and memory was investigated using Morris water maze (MWM) test. The results indicated that, orexin-A (150 pM/rat) significantly reduced the nociceptive times, while SB334867-A (80 nM/rat) exaggerated nociceptive behavior in response to capsaicin injection. In MWM test, capsaicin-treated rats showed a significant learning and memory impairment. Moreover, SB-334867-A (80 nM/rat) significantly exaggerated learning and memory impairment in capsaicin-treated rats. However, administration of orexin-A (100 pM/rat) prevented learning and memory deficits. Taken together, these results indicate that Vc OX1R was at least in part involved in orofacial pain transmission and orexin-A has also a beneficial inhibitory effect on orofacial pain-induced deficits in abilities of spatial learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Topical dura mater application of CFA induces enhanced expression of c-fos and glutamate in rat trigeminal nucleus caudalis: attenuated by KYNA derivate (SZR72).

    Science.gov (United States)

    Lukács, M; Warfvinge, K; Tajti, J; Fülöp, F; Toldi, J; Vécsei, L; Edvinsson, L

    2017-12-01

    Migraine is a debilitating neurological disorder where trigeminovascular activation plays a key role. We have previously reported that local application of Complete Freund's Adjuvant (CFA) onto the dura mater caused activation in rat trigeminal ganglion (TG) which was abolished by a systemic administration of kynurenic acid (KYNA) derivate (SZR72). Here, we hypothesize that this activation may extend to the trigeminal complex in the brainstem and is attenuated by treatment with SZR72. Activation in the trigeminal nucleus caudalis (TNC) and the trigeminal tract (Sp5) was achieved by application of CFA onto the dural parietal surface. SZR72 was given intraperitoneally (i.p.), one dose prior CFA deposition and repeatedly daily for 7 days. Immunohistochemical studies were performed for mapping glutamate, c-fos, PACAP, substance P, IL-6, IL-1β and TNFα in the TNC/Sp5 and other regions of the brainstem and at the C 1 -C 2 regions of the spinal cord. We found that CFA increased c-fos and glutamate immunoreactivity in TNC and C 1 -C 2 neurons. This effect was mitigated by SZR72. PACAP positive fibers were detected in the fasciculus cuneatus and gracilis. Substance P, TNFα, IL-6 and IL-1β immunopositivity were detected in fibers of Sp5 and neither of these molecules showed any change in immunoreactivity following CFA administration. This is the first study demonstrating that dural application of CFA increases the expression of c-fos and glutamate in TNC neurons. Treatment with the KYNA analogue prevented this expression.

  11. Qualitative analysis neurons in the adult human dentate nucleus

    Directory of Open Access Journals (Sweden)

    Marić Dušica

    2012-01-01

    Full Text Available Although many relevant findings regarding to the morphology and cytoarchitectural development of the dentate nucleus have been presented so far, very little qualitative information has been collected on neuronal morphology in the adult human dentate nucleus. The neurons were labelled by Golgi staining from thirty human cerebella, obtained from medico-legal forensic autopsies of adult human bodies and free of significant brain pathology. The human dentate neurons were qualitatively analyzed and these cells were classified into two main classes: the small and the large multipolar neurons. Considering the shape of the cell body, number of the primary dendrites, shape of the dendritic tree and their position within the dentate nucleus, three subclasses of the large multipolar neurons have been recognized. The classification of neurons from the human dentate nucleus has been qualitatively confirmed in fetuses and premature infants. This study represents the first qualitative analysis and classification of the large multipolar neurons in the dentate nucleus of the adult human.

  12. Peripheral axotomy of the rat mandibular trigeminal nerve leads to an increase in VIP and decrease of other primary afferent neuropeptides in the spinal trigeminal nucleus.

    Science.gov (United States)

    Atkinson, M E; Shehab, S A

    1986-12-01

    In the vasoactive intestinal polypeptide (VIP)-rich lumbosacral spinal cord, VIP increases at the expense of other neuropeptides after primary sensory nerve axotomy. This study was undertaken to ascertain whether similar changes occur in peripherally axotomised cranial sensory nerves. VIP immunoreactivity increased in the terminal region of the mandibular nerve in the trigeminal nucleus caudalis following unilateral section of the sensory root of the mandibular trigeminal nerve at the foramen orale. Other primary afferent neuropeptides (substance P, cholecystokinin and somatostatin) were depleted and fluoride-resistant acid phosphatase activity was abolished in the same circumscribed areas of the nucleus caudalis. The rise in VIP and depletion of other markers began 4 days postoperatively and was maximal by 10 days, these levels remaining unchanged up to 1 year postoperatively. VIP-immunoreactive cell bodies were absent from trigeminal ganglia from the unoperated side but small and medium cells stained intensely in the ganglia of the operated side after axotomy. These observations indicate that increase of VIP in sensory nerve terminals is a general phenomenon occurring in both cranial and spinal sensory terminal areas. The intense VIP immunoreactivity in axotomised trigeminal ganglia suggests that the increased levels of VIP in the nucleus caudalis are of peripheral origin, indicating a change in expression of neuropeptides within primary afferent neurons following peripheral axotomy.

  13. Cochlear nucleus neuron analysis in individuals with presbycusis.

    Science.gov (United States)

    Hinojosa, Raul; Nelson, Erik G

    2011-12-01

    The aim of this study was to analyze the cochlear nucleus neuron population in individuals with normal hearing and presbycusis. Retrospective study of archival human temporal bone and brain stem tissues. Using strict inclusion criteria, the temporal bones and cochlear nuclei from six normal hearing individuals and four individuals with presbycusis were selected for analysis. The spiral ganglion cell population, the cochlear nucleus neuron population, and the cell body size of the neurons were quantified in these cases. A relationship was not observed between age and the spiral ganglion cell population in the normal hearing group. Presbycusis subjects exhibited a reduced spiral ganglion cell population. The mean cochlear nucleus neuron population was observed to be significantly higher in the presbycusis group (mean ± standard deviation: 114,170 ± 10,570) compared to the normal hearing group (91,470 ± 9,510) (P = .019). This difference was predominantly the result of greater multipolar and granule cell neuron populations. Only the fusiform neuron type exhibited a significantly different mean cell body cross-sectional area between the normal hearing group (242 ± 27) and the presbycusis group (300 ± 37) (P = .033). This investigation is the first time, to our knowledge, that the populations of the eight neuron types in the cochlear nucleus have been quantified in both normal hearing individuals and individuals with presbycusis. The data support the concept that presbycusis is not an effect of aging alone but instead may be a condition that predisposes one to hearing loss with advancing age and is characterized by a congenitally elevated cochlear nucleus neuron population. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. Activation of Glycine and Extrasynaptic GABAA Receptors by Taurine on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Han, Seong Kyu

    2013-01-01

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC) with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM) showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM) and almost completely blocked by strychnine (2 μM), suggesting that taurine-mediated responses are via glycine receptor (GlyR) activation. In addition, taurine (1 mM) activated extrasynaptic GABAA receptor (GABAAR)-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABAARs on the SG neurons. PMID:24379976

  15. Activation of Glycine and Extrasynaptic GABAA Receptors by Taurine on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hoang Nguyen

    2013-01-01

    Full Text Available The substantia gelatinosa (SG of the trigeminal subnucleus caudalis (Vc has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM and almost completely blocked by strychnine (2 μM, suggesting that taurine-mediated responses are via glycine receptor (GlyR activation. In addition, taurine (1 mM activated extrasynaptic GABAA receptor (GABAAR-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABAARs on the SG neurons.

  16. Neuronal plasticity in the hedgehog supraoptic nucleus during hibernation.

    Science.gov (United States)

    Sanchez-Toscano, F; Caminero, A A; Machin, C; Abella, G

    1989-01-01

    The purpose of the present study was to identify processes of plasticity in the receptive field of neurosecretory neurons of the supraoptic nucleus during hibernation in the hedgehog, in order to correlate them with the increased neurosecretory activity observed in this nucleus during this annual period. Using the Rapid Golgi method, a quantitative study was conducted in the receptive field of bipolar and multipolar neurons (the main components of the nucleus). Results indicate a generalized increase in the following characteristics: (1) number of dendritic spines per millimeter along the dendritic shafts; (2) degree of branching in the dendritic field; and (3) dendritic density around the neuronal soma. These data demonstrate modification of the dendritic field in the supraoptic nucleus during hibernation, a change undoubtedly related to functional conditions. Since the observed changes affect structures such as dendritic spines which are directly related to the arrival of neural afferences, the discussion is centered on the types of stimuli which may be responsible for the observed processes.

  17. Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis, upper cervical cord, NTS and Pa5 following capsaicin injection into masticatory and swallowing-related muscles in rats.

    Science.gov (United States)

    Tsujimura, Takanori; Shinoda, Masamichi; Honda, Kuniya; Hitomi, Suzuro; Kiyomoto, Masaaki; Matsuura, Shingo; Katagiri, Ayano; Tsuji, Kojun; Inoue, Makoto; Shiga, Yoshi; Iwata, Koichi

    2011-10-12

    Many phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells are expressed in the trigeminal spinal subnucleus caudalis (Vc), upper cervical spinal cord (C1-C2), nucleus tractus solitarii (NTS) and paratrigeminal nucleus (Pa5) after capsaicin injection into the whisker pad (WP), masseter muscle (MM), digastric muscle (DM) or sternohyoideus muscle (SM). The pERK-IR cells also showed NeuN immunoreactivity, indicating that ERK phosphorylation occurs in neurons. The pERK-IR cells were significantly reduced after intrathecal injection of MEK 1/2 inhibitor PD98059. The pERK-IR cells expressed bilaterally in the Vc and C1-C2 after capsaicin injection into the unilateral DM or SM, whereas unilaterally in the Vc and C1-C2 after unilateral WP or MM injection. After capsaicin injection into the WP or MM, the pERK-IR cell expression in the Vc was restricted rostrocaudally within a narrow area. However, the distribution of pERK-IR cells was more wide spread without a clear peak in the Vc and C1-C2 after capsaicin injection into the DM or SM. In the NTS, the unimodal pERK-IR cell expression peaked at 0-720μm rostral from the obex following capsaicin injection into WP, MM, DM or SM. In the ipsilateral Pa5, many pERK-IR cells were observed following capsaicin injection into the SM. The number of swallows elicited by distilled water administration was significantly smaller after capsaicin injection into the WP, MM or DM but not SM compared to that of vehicle-injected rats. Various noxious inputs due to the masticatory or swallowing-related muscle inflammation may be differentially involved in muscle pain and swallowing reflex activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Involvement of ERK phosphorylation of trigeminal spinal subnucleus caudalis neurons in thermal hypersensitivity in rats with infraorbital nerve injury.

    Directory of Open Access Journals (Sweden)

    Ikuko Suzuki

    Full Text Available To evaluate the involvement of the mitogen-activated protein kinase (MAPK cascade in orofacial neuropathic pain mechanisms, this study assessed nocifensive behavior evoked by mechanical or thermal stimulation of the whisker pad skin, phosphorylation of extracellular signal-regulated kinase (ERK in trigeminal spinal subnucleus caudalis (Vc neurons, and Vc neuronal responses to mechanical or thermal stimulation of the whisker pad skin in rats with the chronic constriction nerve injury of the infraorbital nerve (ION-CCI. The mechanical and thermal nocifensive behavior was significantly enhanced on the side ipsilateral to the ION-CCI compared to the contralateral whisker pad or sham rats. ION-CCI rats had an increased number of phosphorylated ERK immunoreactive (pERK-IR cells which also manifested NeuN-IR but not GFAP-IR and Iba1-IR, and were significantly more in ION-CCI rats compared with sham rats following noxious but not non-noxious mechanical stimulation. After intrathecal administration of the MEK1 inhibitor PD98059 in ION-CCI rats, the number of pERK-IR cells after noxious stimulation and the enhanced thermal nocifensive behavior but not the mechanical nocifensive behavior were significantly reduced in ION-CCI rats. The enhanced background activities, afterdischarges and responses of wide dynamic range neurons to noxious mechanical and thermal stimulation in ION-CCI rats were significantly depressed following i.t. administration of PD98059, whereas responses to non-noxious mechanical and thermal stimulation were not altered. The present findings suggest that pERK-IR neurons in the Vc play a pivotal role in the development of thermal hypersensitivity in the face following trigeminal nerve injury.

  19. Isolation and culture of adult mouse vestibular nucleus neurons

    Science.gov (United States)

    Him, Aydın; Altuntaş, Serap; Öztürk, Gürkan; Erdoğan, Ender; Cengiz, Nureddin

    2017-12-19

    Background/aim: Isolated cell cultures are widely used to study neuronal properties due to their advantages. Although embryonic animals are preferred for culturing, their morphological or electrophysiological properties may not reflect adult neurons, which may be important in neurodegenerative diseases. This paper aims to develop a method for preparing isolated cell cultures of medial vestibular nucleus (MVN) from adult mice and describe its morphological and electrophysiological properties.Materials and methods: Vestibular nucleus neurons were mechanically and enzymatically isolated and cultured using a defined medium with known growth factors. Cell survival was measured with propidium iodide, and electrophysiological properties were investigated with current-clamp recording.Results: Vestibular neurons grew neurites in cultures, gaining adult-like morphological properties, and stayed viable for 3 days in culture. Adding bovine calf serum, nerve growth factor, or insulin-like growth factor into the culture medium enhanced neuronal viability. Current-clamp recording of the cultured neurons revealed tonic and phasic-type neurons with similar input resistance, resting membrane potential, action potential amplitude, and duration. Conclusion: Vestibular neurons from adult mice can be cultured, and regenerate axons in a medium containing appropriate growth factors. Culturing adult vestibular neurons provides a new method to study age-related pathologies of the vestibular system.

  20. Neurons from the adult human dentate nucleus: neural networks in the neuron classification.

    Science.gov (United States)

    Grbatinić, Ivan; Marić, Dušica L; Milošević, Nebojša T

    2015-04-07

    Topological (central vs. border neuron type) and morphological classification of adult human dentate nucleus neurons according to their quantified histomorphological properties using neural networks on real and virtual neuron samples. In the real sample 53.1% and 14.1% of central and border neurons, respectively, are classified correctly with total of 32.8% of misclassified neurons. The most important result present 62.2% of misclassified neurons in border neurons group which is even greater than number of correctly classified neurons (37.8%) in that group, showing obvious failure of network to classify neurons correctly based on computational parameters used in our study. On the virtual sample 97.3% of misclassified neurons in border neurons group which is much greater than number of correctly classified neurons (2.7%) in that group, again confirms obvious failure of network to classify neurons correctly. Statistical analysis shows that there is no statistically significant difference in between central and border neurons for each measured parameter (p>0.05). Total of 96.74% neurons are morphologically classified correctly by neural networks and each one belongs to one of the four histomorphological types: (a) neurons with small soma and short dendrites, (b) neurons with small soma and long dendrites, (c) neuron with large soma and short dendrites, (d) neurons with large soma and long dendrites. Statistical analysis supports these results (pneurons can be classified in four neuron types according to their quantitative histomorphological properties. These neuron types consist of two neuron sets, small and large ones with respect to their perykarions with subtypes differing in dendrite length i.e. neurons with short vs. long dendrites. Besides confirmation of neuron classification on small and large ones, already shown in literature, we found two new subtypes i.e. neurons with small soma and long dendrites and with large soma and short dendrites. These neurons are

  1. Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake.

    Science.gov (United States)

    Ryan, Philip J; Ross, Silvano I; Campos, Carlos A; Derkach, Victor A; Palmiter, Richard D

    2017-12-01

    Brain regions that regulate fluid satiation are not well characterized, yet are essential for understanding fluid homeostasis. We found that oxytocin-receptor-expressing neurons in the parabrachial nucleus of mice (Oxtr PBN neurons) are key regulators of fluid satiation. Chemogenetic activation of Oxtr PBN neurons robustly suppressed noncaloric fluid intake, but did not decrease food intake after fasting or salt intake following salt depletion; inactivation increased saline intake after dehydration and hypertonic saline injection. Under physiological conditions, Oxtr PBN neurons were activated by fluid satiation and hypertonic saline injection. Oxtr PBN neurons were directly innervated by oxytocin neurons in the paraventricular hypothalamus (Oxt PVH  neurons), which mildly attenuated fluid intake. Activation of neurons in the nucleus of the solitary tract substantially suppressed fluid intake and activated Oxtr PBN neurons. Our results suggest that Oxtr PBN neurons act as a key node in the fluid satiation neurocircuitry, which acts to decrease water and/or saline intake to prevent or attenuate hypervolemia and hypernatremia.

  2. Sirt3 confers protection against acrolein-induced oxidative stress in cochlear nucleus neurons.

    Science.gov (United States)

    Qu, Juan; Wu, Yong-Xiang; Zhang, Ting; Qiu, Yang; Ding, Zhong-Jia; Zha, Ding-Jun

    2018-03-01

    Acrolein is a ubiquitous dietary and environmental pollutant, which can also be generated endogenously during cellular stress. However, the molecular mechanisms underlying acrolein-induced neurotoxicity, especially in ototoxicity conditions, have not been fully determined. In this study, we investigated the mechanisms on acrolein-induced toxicity in primary cultured cochlear nucleus neurons with focus on Sirt3, a mitochondrial deacetylase. We found that acrolein treatment induced neuronal injury and programmed cell death (PCD) in a dose dependent manner in cochlear nucleus neurons, which was accompanied by increased intracellular reactive oxygen species (ROS) generation and lipid peroxidation. Acrolein exposure also significantly reduced the mitochondrial membrane potential (MMP) levels, promoted cytochrome c release and decreased mitochondrial ATP production. In addition, increased ER tracker fluorescence and activation of ER stress factors were observed after acrolein treatment, and the ER stress inhibitors were shown to attenuate acrolein-induced toxicity in cochlear nucleus neurons. The results of western blot and RT-PCR showed that acrolein markedly decreased the expression of Sirt3 at both mRNA and protein levels, and reduced the activity of downstream mitochondrial enzymes. Furthermore, overexpression of Sirt3 by lentivirus transfection partially prevented acrolein-induced neuronal injury in cochlear nucleus neurons. These results demonstrated that acrolein induces mitochondrial dysfunction and ER stress in cochlear nucleus neurons, and Sirt3 acts as an endogenous protective factor in acrolein-induced ototoxicity. Copyright © 2017. Published by Elsevier Ltd.

  3. GHRELIN ACTIVATES HYPOPHYSIOTROPIC CORTICOTROPIN-RELEASING FACTOR NEURONS INDEPENDENTLY OF THE ARCUATE NUCLEUS

    Science.gov (United States)

    Cabral, Agustina; Portiansky, Enrique; Sánchez-Jaramillo, Edith; Zigman, Jeffrey M.; Perello, Mario

    2016-01-01

    Previous work has established that the hormone ghrelin engages the hypothalamic-pituitary-adrenal neuroendocrine axis via activation of corticotropin-releasing factor (CRF) neurons of the hypothalamic paraventricular nucleus (PVN). The neuronal circuitry that mediates this effect of ghrelin is currently unknown. Here, we show that ghrelin-induced activation of PVN CRF neurons involved inhibition of γ-aminobutyric acid (GABA) inputs, likely via ghrelin binding sites that were localized at GABAergic terminals within the PVN. While ghrelin activated PVN CRF neurons in the presence of neuropeptide Y (NPY) receptor antagonists or in arcuate nucleus (ARC)-ablated mice, it failed to do it so in mice with ghrelin receptor expression limited to ARC agouti gene related protein (AgRP)/NPY neurons. These data support the notion that ghrelin activates PVN CRF neurons via inhibition of local GABAergic tone, in an ARC-independent manner. Furthermore, these data suggest that the neuronal circuits mediating ghrelin’s orexigenic action vs. its role as a stress signal are anatomically dissociated. PMID:26874559

  4. Distinct subsets of nucleus basalis neurons exhibit similar sensitivity to excitotoxicity

    NARCIS (Netherlands)

    Harkany, Tibor; Varga, Csaba; Grosche, Jens; Mulder, Jan; Luiten, Paul G.M.; Hortobágyi, Tibor; Penke, Botond; Härtig, Wolfgang

    2002-01-01

    Excitotoxic lesions in the magnocellular nucleus basalis (MBN) lead to a significant damage of cholinergic neurons concomitant with increased amyloid precursor protein (APP) expression in the cerebral cortex. However, the sensitivity of non-cholinergic neurons to excitotoxicity, and changes of APP

  5. Neuronal Entropy-Rate Feature of Entopeduncular Nucleus in Rat Model of Parkinson's Disease.

    Science.gov (United States)

    Darbin, Olivier; Jin, Xingxing; Von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K; Alam, Mesbah

    2016-03-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25 Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.

  6. From synapse to nucleus and back again--communication over distance within neurons.

    Science.gov (United States)

    Fainzilber, Mike; Budnik, Vivian; Segal, Rosalind A; Kreutz, Michael R

    2011-11-09

    How do neurons integrate intracellular communication from synapse to nucleus and back? Here we briefly summarize aspects of this topic covered by a symposium at Neuroscience 2011. A rich repertoire of signaling mechanisms link both dendritic terminals and axon tips with neuronal soma and nucleus, using motor-dependent transport machineries to traverse the long intracellular distances along neuronal processes. Activation mechanisms at terminals include localized translation of dendritic or axonal RNA, proteolytic cleavage of receptors or second messengers, and differential phosphorylation of signaling moieties. Signaling complexes may be transported in endosomes, or as non-endosomal complexes associated with importins and dynein. Anterograde transport of RNA granules from the soma to neuronal processes, coupled with retrograde transport of proteins translated locally at terminals or within processes, may fuel ongoing bidirectional communication between soma and synapse to modulate synaptic plasticity as well as neuronal growth and survival decisions.

  7. Evidence for a persistent sodium conductance in neurons from the nucleus prepositus hypoglossi

    DEFF Research Database (Denmark)

    Rekling, J C; Laursen, A M

    1989-01-01

    Intracellular recordings were made from 39 neurons in a slice preparation of the prepositus hypoglossi nucleus from guinea pigs. Morphological characteristics were confirmed by dying neurons with Lucifer yellow. The neurons were spontaneously active, firing in the range of 8-50 spikes/s. Spike...

  8. [Local GABA-ergic modulation of serotonergic neuron activity in the nucleus raphe magnus].

    Science.gov (United States)

    Iniushkin, A N; Merkulova, N A; Orlova, A O; Iniushkina, E M

    2009-07-01

    In voltage-clamp experimental on slices of the rat brainstem the effects of 5-HT and GABA on serotonergic neurons of nucleus raphe magnus were investigated. Local applications of 5-HT induced an increase in IPCSs frequency and amplitude in 45% of serotonergic cells. The effect suppressed by the blocker of fast sodium channels tetradotoxin. Antagonist of GABA receptor gabazine blocked IPSCs in neurons both sensitive and non-sensitive to 5-HT action. Applications of GABA induced a membrane current (I(GABA)), which was completely blocked by gabazine. The data suggest self-control of the activity of serotonergic neurons in nucleus raphe magnus by negative feedback loop via local GABAergic interneurons.

  9. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.

    Science.gov (United States)

    Krashes, Michael J; Shah, Bhavik P; Madara, Joseph C; Olson, David P; Strochlic, David E; Garfield, Alastair S; Vong, Linh; Pei, Hongjuan; Watabe-Uchida, Mitsuko; Uchida, Naoshige; Liberles, Stephen D; Lowell, Bradford B

    2014-03-13

    Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.

  10. Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus.

    Science.gov (United States)

    Sieger, Tomáš; Serranová, Tereza; Růžička, Filip; Vostatek, Pavel; Wild, Jiří; Štastná, Daniela; Bonnet, Cecilia; Novák, Daniel; Růžička, Evžen; Urgošík, Dušan; Jech, Robert

    2015-03-10

    Both animal studies and studies using deep brain stimulation in humans have demonstrated the involvement of the subthalamic nucleus (STN) in motivational and emotional processes; however, participation of this nucleus in processing human emotion has not been investigated directly at the single-neuron level. We analyzed the relationship between the neuronal firing from intraoperative microrecordings from the STN during affective picture presentation in patients with Parkinson's disease (PD) and the affective ratings of emotional valence and arousal performed subsequently. We observed that 17% of neurons responded to emotional valence and arousal of visual stimuli according to individual ratings. The activity of some neurons was related to emotional valence, whereas different neurons responded to arousal. In addition, 14% of neurons responded to visual stimuli. Our results suggest the existence of neurons involved in processing or transmission of visual and emotional information in the human STN, and provide evidence of separate processing of the affective dimensions of valence and arousal at the level of single neurons as well.

  11. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Science.gov (United States)

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  12. Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats.

    Science.gov (United States)

    Brailoiu, G Cristina; Deliu, Elena; Tica, Andrei A; Rabinowitz, Joseph E; Tilley, Douglas G; Benamar, Khalid; Koch, Walter J; Brailoiu, Eugen

    2013-09-01

    Nesfatin-1, a peptide whose receptor is yet to be identified, has been involved in the modulation of feeding, stress, and metabolic responses. More recently, increasing evidence supports a modulatory role for nesfatin-1 in autonomic and cardiovascular activity. This study was undertaken to test if the expression of nesfatin-1 in the nucleus ambiguus, a key site for parasympathetic cardiac control, may be correlated with a functional role. As we have previously demonstrated that nesfatin-1 elicits Ca²⁺ signaling in hypothalamic neurons, we first assessed the effect of this peptide on cytosolic Ca²⁺ in cardiac pre-ganglionic neurons of nucleus ambiguus. We provide evidence that nesfatin-1 increases cytosolic Ca²⁺ concentration via a Gi/o-coupled mechanism. The nesfatin-1-induced Ca²⁺ rise is critically dependent on Ca²⁺ influx via P/Q-type voltage-activated Ca²⁺ channels. Repeated administration of nesfatin-1 leads to tachyphylaxis. Furthermore, nesfatin-1 produces a dose-dependent depolarization of cardiac vagal neurons via a Gi/o-coupled mechanism. In vivo studies, using telemetric and tail-cuff monitoring of heart rate and blood pressure, indicate that microinjection of nesfatin-1 into the nucleus ambiguus produces bradycardia not accompanied by a change in blood pressure in conscious rats. Taken together, our results identify for the first time that nesfatin-1 decreases heart rate by activating cardiac vagal neurons of nucleus ambiguus. Our results indicate that nesfatin-1, one of the most potent feeding peptides, increases cytosolic Ca²⁺ by promoting Ca²⁺ influx via P/Q channels and depolarizes nucleus ambiguus neurons; both effects are Gi/o-mediated. In vivo studies indicate that microinjection of nesfatin-1 into nucleus ambiguus produces bradycardia in conscious rats. This is the first report that nesfatin-1 increases the parasympathetic cardiac tone. © 2013 International Society for Neurochemistry.

  13. Distinctive features of Phox2b-expressing neurons in the rat reticular formation dorsal to the trigeminal motor nucleus.

    Science.gov (United States)

    Nagoya, Kouta; Nakamura, Shiro; Ikeda, Keiko; Onimaru, Hiroshi; Yoshida, Atsushi; Nakayama, Kiyomi; Mochizuki, Ayako; Kiyomoto, Masaaki; Sato, Fumihiko; Kawakami, Kiyoshi; Takahashi, Koji; Inoue, Tomio

    2017-09-01

    Phox2b encodes a paired-like homeodomain-containing transcription factor essential for development of the autonomic nervous system. Phox2b-expressing (Phox2b + ) neurons are present in the reticular formation dorsal to the trigeminal motor nucleus (RdV) as well as the nucleus of the solitary tract and parafacial respiratory group. However, the nature of Phox2b + RdV neurons is still unclear. We investigated the physiological and morphological properties of Phox2b + RdV neurons using postnatal day 2-7 transgenic rats expressing yellow fluorescent protein under the control of Phox2b. Almost all of Phox2b + RdV neurons were glutamatergic, whereas Phox2b-negative (Phox2b - ) RdV neurons consisted of a few glutamatergic, many GABAergic, and many glycinergic neurons. The majority (48/56) of Phox2b + neurons showed low-frequency firing (LF), while most of Phox2b - neurons (35/42) exhibited high-frequency firing (HF) in response to intracellularly injected currents. All, but one, Phox2b + neurons (55/56) did not fire spontaneously, whereas three-fourths of the Phox2b - neurons (31/42) were spontaneously active. K + channel and persistent Na + current blockers affected the firing of LF and HF neurons. The majority of Phox2b + (35/46) and half of the Phox2b - neurons (19/40) did not respond to stimulations of the mesencephalic trigeminal nucleus, the trigeminal tract, and the principal sensory trigeminal nucleus. Biocytin labeling revealed that about half of the Phox2b + (5/12) and Phox2b - RdV neurons (5/10) send their axons to the trigeminal motor nucleus. These results suggest that Phox2b + RdV neurons have distinct neurotransmitter phenotypes and firing properties from Phox2b - RdV neurons and might play important roles in feeding-related functions including suckling and possibly mastication. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Integrity of Cerebellar Fastigial Nucleus Intrinsic Neurons Is Critical for the Global Ischemic Preconditioning

    Directory of Open Access Journals (Sweden)

    Eugene V. Golanov

    2017-09-01

    Full Text Available Excitation of intrinsic neurons of cerebellar fastigial nucleus (FN renders brain tolerant to local and global ischemia. This effect reaches a maximum 72 h after the stimulation and lasts over 10 days. Comparable neuroprotection is observed following sublethal global brain ischemia, a phenomenon known as preconditioning. We hypothesized that FN may participate in the mechanisms of ischemic preconditioning as a part of the intrinsic neuroprotective mechanism. To explore potential significance of FN neurons in brain ischemic tolerance we lesioned intrinsic FN neurons with excitotoxin ibotenic acid five days before exposure to 20 min four-vessel occlusion (4-VO global ischemia while analyzing neuronal damage in Cornu Ammoni area 1 (CA1 hippocampal area one week later. In FN-lesioned animals, loss of CA1 cells was higher by 22% compared to control (phosphate buffered saline (PBS-injected animals. Moreover, lesion of FN neurons increased morbidity following global ischemia by 50%. Ablation of FN neurons also reversed salvaging effects of five-minute ischemic preconditioning on CA1 neurons and morbidity, while ablation of cerebellar dentate nucleus neurons did not change effect of ischemic preconditioning. We conclude that FN is an important part of intrinsic neuroprotective system, which participates in ischemic preconditioning and may participate in naturally occurring neuroprotection, such as “diving response”.

  15. Urotensin II promotes vagal-mediated bradycardia by activating cardiac-projecting parasympathetic neurons of nucleus ambiguus.

    Science.gov (United States)

    Brailoiu, Gabriela Cristina; Deliu, Elena; Rabinowitz, Joseph E; Tilley, Douglas G; Koch, Walter J; Brailoiu, Eugen

    2014-05-01

    Urotensin II (U-II) is a cyclic undecapeptide that regulates cardiovascular function at central and peripheral sites. The functional role of U-II nucleus ambiguus, a key site controlling cardiac tone, has not been established, despite the identification of U-II and its receptor at this level. We report here that U-II produces an increase in cytosolic Ca(2+) concentration in retrogradely labeled cardiac vagal neurons of nucleus ambiguus via two pathways: (i) Ca(2+) release from the endoplasmic reticulum via inositol 1,4,5-trisphosphate receptor; and (ii) Ca(2+) influx through P/Q-type Ca(2+) channels. In addition, U-II depolarizes cultured cardiac parasympathetic neurons. Microinjection of increasing concentrations of U-II into nucleus ambiguus elicits dose-dependent bradycardia in conscious rats, indicating the in vivo activation of the cholinergic pathway controlling the heart rate. Both the in vitro and in vivo effects were abolished by the urotensin receptor antagonist, urantide. Our findings suggest that, in addition, to the previously reported increase in sympathetic outflow, U-II activates cardiac vagal neurons of nucleus ambiguus, which may contribute to cardioprotection. © 2014 International Society for Neurochemistry.

  16. Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster.

    Science.gov (United States)

    Li, Cheng-Shu; Lu, Da-Peng; Cho, Young K

    2015-06-01

    The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway. Copyright © 2015 the American Physiological Society.

  17. Estradiol target neurons in the hypothalamic arcuate nucleus and lateral ventromedial nucleus of young adult, reproductively senescent, and monosodium glutamate-lesioned female golden hamsters

    International Nuclear Information System (INIS)

    Blaha, G.C.; Lamperti, A.A.

    1983-01-01

    Histoautoradiographic methods were used to assess estrogen target neurons in the hypothalamic arcuate nucleus (ARC) and ventromedial nucleus, lateral portion (LVM), comparing young adult and aged female golden hamsters. A subgroup of young adult females had ARC lesions induced by monosodium glutamate at neonatal day 8. All were ovariectomized to remove endogenous estrogens. Controls were given nonradioactive estradiol. After 3 H-estradiol ( 3 H-E2) was injected intravenously, hypothalami were removed, frozen, and processed for histoautoradiography. In the ARC and LVM the ratio of 3 H-E2 labelled neurons to total neurons counted was significantly lower in the older animals. Young females with ARC lesions had very few 3 H-E2 labelled neurons remaining in the ARC but had a normal complement in the LVM. Although 3 H-E2 labelled ARC neurons were notably decreased in old females, those ARC neurons that were labelled in the old had virtually the same frequency distribution of the labelling index as in the young, suggesting no change in the average estrogen uptake per target cell

  18. Development of on-off spiking in superior paraolivary nucleus neurons of the mouse

    Science.gov (United States)

    Felix, Richard A.; Vonderschen, Katrin; Berrebi, Albert S.

    2013-01-01

    The superior paraolivary nucleus (SPON) is a prominent cell group in the auditory brain stem that has been increasingly implicated in representing temporal sound structure. Although SPON neurons selectively respond to acoustic signals important for sound periodicity, the underlying physiological specializations enabling these responses are poorly understood. We used in vitro and in vivo recordings to investigate how SPON neurons develop intrinsic cellular properties that make them well suited for encoding temporal sound features. In addition to their hallmark rebound spiking at the stimulus offset, SPON neurons were characterized by spiking patterns termed onset, adapting, and burst in response to depolarizing stimuli in vitro. Cells with burst spiking had some morphological differences compared with other SPON neurons and were localized to the dorsolateral region of the nucleus. Both membrane and spiking properties underwent strong developmental regulation, becoming more temporally precise with age for both onset and offset spiking. Single-unit recordings obtained in young mice demonstrated that SPON neurons respond with temporally precise onset spiking upon tone stimulation in vivo, in addition to the typical offset spiking. Taken together, the results of the present study demonstrate that SPON neurons develop sharp on-off spiking, which may confer sensitivity to sound amplitude modulations or abrupt sound transients. These findings are consistent with the proposed involvement of the SPON in the processing of temporal sound structure, relevant for encoding communication cues. PMID:23515791

  19. Activity of vasopressinergic neurones of the human supraoptic nucleus is age- and sex-dependent

    NARCIS (Netherlands)

    Ishunina, T. A.; Salehi, A.; Hofman, M. A.; Swaab, D. F.

    1999-01-01

    In the human hypothalamus, arginine-vasopressin (AVP) is produced for a major part by the neurones of the supraoptic nucleus (SON). Since plasma AVP levels in men were reported to be higher than those of women and we did not find a sex difference in the neurone number, a higher vasopressinergic

  20. Anxiogenic drug administration and elevated plus-maze exposure in rats activate populations of relaxin-3 neurons in the nucleus incertus and serotonergic neurons in the dorsal raphe nucleus.

    Science.gov (United States)

    Lawther, A J; Clissold, M L; Ma, S; Kent, S; Lowry, C A; Gundlach, A L; Hale, M W

    2015-09-10

    Anxiety is a complex and adaptive emotional state controlled by a distributed and interconnected network of brain regions, and disruption of these networks is thought to give rise to the behavioral symptoms associated with anxiety disorders in humans. The dorsal raphe nucleus (DR), which contains the majority of forebrain-projecting serotonergic neurons, is implicated in the control of anxiety states and anxiety-related behavior via neuromodulatory effects on these networks. Relaxin-3 is the native neuropeptide ligand for the Gi/o-protein-coupled receptor, RXFP3, and is primarily expressed in the nucleus incertus (NI), a tegmental region immediately caudal to the DR. RXFP3 activation has been shown to modulate anxiety-related behavior in rodents, and RXFP3 mRNA is expressed in the DR. In this study, we examined the response of relaxin-3-containing neurons in the NI and serotonergic neurons in the DR following pharmacologically induced anxiety and exposure to an aversive environment. We administered the anxiogenic drug FG-7142 or vehicle to adult male Wistar rats and, 30 min later, exposed them to either the elevated plus-maze or home cage control conditions. Immunohistochemical detection of c-Fos was used to determine activation of serotonergic neurons in the DR and relaxin-3 neurons in the NI, measured 2h following drug injection. Analysis revealed that FG-7142 administration and exposure to the elevated plus-maze are both associated with an increase in c-Fos expression in relaxin-3-containing neurons in the NI and in serotonergic neurons in dorsal and ventrolateral regions of the DR. These data are consistent with the hypothesis that relaxin-3 systems in the NI and serotonin systems in the DR interact to form part of a network involved in the control of anxiety-related behavior. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Neurons within the trigeminal mesencephalic nucleus encode for the kinematic parameters of the whisker pad macrovibrissae.

    Science.gov (United States)

    Mameli, Ombretta; Caria, Marcello A; Biagi, Francesca; Zedda, Marco; Farina, Vittorio

    2017-05-01

    It has been recently shown in rats that spontaneous movements of whisker pad macrovibrissae elicited evoked responses in the trigeminal mesencephalic nucleus (Me5). In the present study, electrophysiological and neuroanatomical experiments were performed in anesthetized rats to evaluate whether, besides the whisker displacement per se, the Me5 neurons are also involved in encoding the kinematic properties of macrovibrissae movements, and also whether, as reported for the trigeminal ganglion, even within the Me5 nucleus exists a neuroanatomical representation of the whisker pad macrovibrissae. Extracellular electrical activity of single Me5 neurons was recorded before, during, and after mechanical deflection of the ipsilateral whisker pad macrovibrissae in different directions, and with different velocities and amplitudes. In several groups of animals, single or multiple injections of the tracer Dil were performed into the whisker pad of one side, in close proximity to the vibrissae follicles, in order to label the peripheral terminals of the Me5 neurons innervating the macrovibrissae (whisking-neurons), and therefore, the respective perikaria within the nucleus. Results showed that: (1) the whisker pad macrovibrissae were represented in the medial-caudal part of the Me5 nucleus by a single cluster of cells whose number seemed to match that of the macrovibrissae; (2) macrovibrissae mechanical deflection elicited significant responses in the Me5 whisking-neurons, which were related to the direction, amplitude, and frequency of the applied deflection. The specific functional role of Me5 neurons involved in encoding proprioceptive information arising from the macrovibrissae movements is discussed within the framework of the whole trigeminal nuclei activities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch (Taeniopygia guttata.

    Directory of Open Access Journals (Sweden)

    Dennis eEckmeier

    2013-09-01

    Full Text Available The retinal image changes that occur during locomotion, the optic flow, carry information about self-motion and the three-dimensional structure of the environment. Especially fast moving animals with only little binocular vision depend on these depth cues for manoeuvring. They actively control their gaze to facilitate perception of depth based on cues in the optic flow. In the visual system of birds, nucleus rotundus neurons were originally found to respond to object motion but not to background motion. However, when background and object were both moving, responses increase the more the direction and velocity of object and background motion on the retina differed. These properties may play a role in representing depth cues in the optic flow. We therefore investigated how neurons in nucleus rotundus respond to optic flow that contains depth cues. We presented simplified and naturalistic optic flow on a panoramic LED display while recording from single neurons in nucleus rotundus of anaesthetized zebra finches. Unlike most studies on motion vision in birds, our stimuli included depth information.We found extensive responses of motion selective neurons in nucleus rotundus to optic flow stimuli. Simplified stimuli revealed preferences for optic flow reflecting translational or rotational self-motion. Naturalistic optic flow stimuli elicited complex response modulations, but the presence of objects was signalled by only few neurons. The neurons that did respond to objects in the optic flow, however, show interesting properties.

  3. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats

    Science.gov (United States)

    Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi

    2009-01-01

    In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and γ-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABAA receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABAA receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin–NTS, lingual muscle–NTS and lingual muscle–Pa5–NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures. PMID:19124539

  4. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats.

    Science.gov (United States)

    Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi

    2009-02-15

    In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and gamma-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABA(A) receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABA(A) receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin-NTS, lingual muscle-NTS and lingual muscle-Pa5-NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures.

  5. Estradiol upregulates progesterone receptor and orphanin FQ colocalization in arcuate nucleus neurons and opioid receptor-like receptor-1 expression in proopiomelanocortin neurons that project to the medial preoptic nucleus in the female rat

    Science.gov (United States)

    Sanathara, Nayna M.; Moreas, Justine; Mahavongtrakul, Matthew; Sinchak, Kevin

    2014-01-01

    Background Ovarian steroids regulate sexual receptivity in the female rat by acting on neurons that converge on proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). Estradiol rapidly activates these neurons to release β-endorphin that activates MPN μ-opioid receptors (MOP) to inhibit lordosis. Lordosis is facilitated by the subsequent action of progesterone that deactivates the estradiol-induced MPN MOP activation. Orphanin FQ (OFQ/N; aka nociceptin) infusions into the ARH, like progesterone, deactivate MPN MOP and facilitate lordosis in estradiol-primed rats. OFQ/N reduces the activity of ARH β-endorphin neurons through post- and presynaptic mechanisms via its cognate receptor, ORL-1. Methods We tested the hypotheses that progesterone receptors (PR) are expressed in ARH OFQ/N neurons by immunohistochemistry and ORL-1 is expressed in POMC neurons that project to the MPN by combining Fluoro-Gold injection into the MPN and double-label fluorescent in situ hybridization (FISH). We also hypothesized that estradiol increases coexpression of PR-OFQ/N and ORL-1-POMC in ARH neurons of ovariectomized rats. Results The number of PR and OFQ/N immunopositive ARH neurons was increased as was their colocalization by estradiol treatment. FISH for ORL-1 and POMC mRNA revealed a subpopulation of ARH neurons that was triple-labeled indicating these neurons project to the MPN and coexpress ORL-1 and POMC mRNA. Estradiol was shown to upregulate ORL-1 and POMC expression in MPN-projecting ARH neurons. Conclusion Estradiol upregulates the ARH OFQ/N-ORL-1 system projecting to the MPN that regulates lordosis. PMID:24821192

  6. Chronic tooth pulp inflammation induces persistent expression of phosphorylated ERK (pERK) and phosphorylated p38 (pp38) in trigeminal subnucleus caudalis

    Science.gov (United States)

    Worsley, M.A.; Allen, C.E.; Billinton, A.; King, A.E.; Boissonade, F.M.

    2014-01-01

    Background Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase are transiently phosphorylated (activated) in the spinal cord and trigeminal nucleus by acute noxious stimuli. Acute stimulation of dental pulp induces short-lived ERK activation in trigeminal subnucleus caudalis (Vc), and p38 inhibition attenuates short-term sensitization in Vc induced by acute pulpal stimulation. We have developed a model to study central changes following chronic inflammation of dental pulp that induces long-term sensitization. Here, we examine the effects of chronic inflammation and acute stimulation on the expression of phosphorylated ERK (pERK), phosphorylated p38 (pp38) and Fos in Vc. Results Chronic inflammation alone induced bilateral expression of pERK and pp38 in Vc, but did not induce Fos expression. Stimulation of both non-inflamed and inflamed pulps significantly increased pERK and pp38 bilaterally; expression was greatest in inflamed, stimulated animals, and was similar following 10-min and 60-min stimulation. Stimulation for 60 min, but not 10 min, induced Fos in ipsilateral Vc; Fos expression was significantly greater in inflamed, stimulated animals. pERK was present in both neurons and astrocytes; pp38 was present in neurons and other non-neuronal, non-astrocytic cell types. Conclusions This study provides the first demonstration that chronic inflammation of tooth pulp induces persistent bilateral activation of ERK and p38 within Vc, and that this activation is further increased by acute stimulation. This altered activity in intracellular signaling is likely to be linked to the sensitization that is seen in our animal model and in patients with pulpitis. Our data indicate that pERK and pp38 are more accurate markers of central change than Fos expression. In our model, localization of pERK and pp38 within specific cell types differs from that seen following acute stimulation. This may indicate specific roles for different cell types in

  7. Growth and atrophy of neurons labeled at their birth in a song nucleus of the zebra finch

    International Nuclear Information System (INIS)

    Konishi, M.; Akutagawa, E.

    1990-01-01

    The robust nucleus of the archistriatum (RA) is one of the forebrain nuclei that control song production in birds. In the zebra finch (Poephila guttata), this nucleus contains more and larger neurons in the male than in the female. A single injection of tritiated thymidine into the egg on the 6th or 7th day of incubation resulted in labeling of many RA neurons with tritium. The size of tritium-labeled neurons and the tissue volume containing them did not differ between the sexes at 15 days after hatching. In the adult brain, tritium-labeled neurons and the tissue volume containing them were much larger in the male than in the female. Also, tritium-labeled RA neurons were large in females which received an implant of estrogen immediately after hatching. The gender differences in the neuron size and nuclear volume of the zebra finch RA are, therefore, due not to the replacement of old neurons by new ones during development but to the growth and atrophy of neurons born before hatching. Similarly, the masculinizing effects of estrogen on the female RA are due not to neuronal replacement but to the prevention of atrophy and promotion of growth in preexisting neurons

  8. Clonidine, an α2 receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus

    OpenAIRE

    Philbin, Kerry E.; Bateman, Ryan J.; Mendelowitz, David

    2010-01-01

    In hypertension there is an autonomic imbalance in which sympathetic activity dominates over parasympathetic control. Parasympathetic activity to the heart originates from cardiac vagal neurons located in the nucleus ambiguus. Pre-sympathetic neurons that project to sympathetic neurons in the spinal cord are located in the ventral brainstem in close proximity to cardiac vagal neurons, and many of these pre-sympathetic neurons are catecholaminergic. In addition to their projection to the spina...

  9. Hearing in action; auditory properties of neurones in the red nucleus of alert primates

    Directory of Open Access Journals (Sweden)

    Jonathan Murray Lovell

    2014-05-01

    Full Text Available The response of neurones in the Red Nucleus pars magnocellularis (RNm to both tone bursts and electrical stimulation were observed in three cynomolgus monkeys (Macaca fascicularis, in a series of studies primarily designed to characterise the influence of the dopaminergic ventral midbrain on auditory processing. Compared to its role in motor behaviour, little is known about the sensory response properties of neurons in the red nucleus; particularly those concerning the auditory modality. Sites in the RN were recognised by observing electrically evoked body movements characteristic for this deep brain structure. In this study we applied brief monopolar electrical stimulation to 118 deep brain sites at a maximum intensity of 200 µA, thus evoking minimal body movements. Auditory sensitivity of RN neurons was analysed more thoroughly at 15 sites, with the majority exhibiting broad tuning curves and phase locking up to 1.03 kHz. Since the RN appears to receive inputs from a very early stage of the ascending auditory system, our results suggest that sounds can modify the motor control exerted by this brain nucleus. At selected locations, we also tested for the presence of functional connections between the RN and the auditory cortex by inserting additional microelectrodes into the auditory cortex and investigating how action potentials and local field potentials were affected by electrical stimulation of the RN.

  10. Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH).

    Science.gov (United States)

    Shimazu, Takashi; Minokoshi, Yasuhiko

    2017-05-01

    The ventromedial hypothalamic nucleus (VMH) regulates glucose production in the liver as well as glucose uptake and utilization in peripheral tissues, including skeletal muscle and brown adipose tissue, via efferent sympathetic innervation and neuroendocrine mechanisms. The action of leptin on VMH neurons also increases glucose uptake in specific peripheral tissues through the sympathetic nervous system, with improved insulin sensitivity. On the other hand, subsets of VMH neurons, such as those that express steroidogenic factor 1 (SF1), sense changes in the ambient glucose concentration and are characterized as glucose-excited (GE) and glucose-inhibited (GI) neurons whose action potential frequency increases and decreases, respectively, as glucose levels rise. However, how these glucose-sensing (GE and GI) neurons in the VMH contribute to systemic glucoregulation remains poorly understood. In this review, we provide historical background and discuss recent advances related to glucoregulation by VMH neurons. In particular, the article describes the role of GE neurons in the control of peripheral glucose utilization and insulin sensitivity, which depend on mitochondrial uncoupling protein 2 of the neurons, as well as that of GI neurons in the control of hepatic glucose production through hypoglycemia-induced counterregulatory mechanisms.

  11. Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii

    Science.gov (United States)

    Boychuk, Carie R.; Gyarmati, Peter; Xu, Hong

    2015-01-01

    Changes in blood glucose concentration alter autonomic function in a manner consistent with altered neural activity in brain regions controlling digestive processes, including neurons in the brain stem nucleus tractus solitarii (NTS), which process viscerosensory information. With whole cell or on-cell patch-clamp recordings, responses to elevating glucose concentration from 2.5 to 15 mM were assessed in identified GABAergic NTS neurons in slices from transgenic mice that express EGFP in a subset of GABA neurons. Single-cell real-time RT-PCR was also performed to detect glutamic acid decarboxylase (GAD67) in recorded neurons. In most identified GABA neurons (73%), elevating glucose concentration from 2.5 to 15 mM resulted in either increased (40%) or decreased (33%) neuronal excitability, reflected by altered membrane potential and/or action potential firing. Effects on membrane potential were maintained when action potentials or fast synaptic inputs were blocked, suggesting direct glucose sensing by GABA neurons. Glucose-inhibited GABA neurons were found predominantly in the lateral NTS, whereas glucose-excited cells were mainly in the medial NTS, suggesting regional segregation of responses. Responses were prevented in the presence of glucosamine, a glucokinase (GCK) inhibitor. Depolarizing responses were prevented when KATP channel activity was blocked with tolbutamide. Whereas effects on synaptic input to identified GABAergic neurons were variable in GABA neurons, elevating glucose increased glutamate release subsequent to stimulation of tractus solitarius in unlabeled, unidentified neurons. These results indicate that GABAergic NTS neurons act as GCK-dependent glucose sensors in the vagal complex, providing a means of modulating central autonomic signals when glucose is elevated. PMID:26084907

  12. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus

    Science.gov (United States)

    Affleck, V.S.; Coote, J.H.; Pyner, S.

    2012-01-01

    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine – BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold – FG or cholera toxin B subunit – CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS–PVN pathways. PMID:22698695

  13. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  14. Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus.

    Science.gov (United States)

    Campos, Carlos A; Bowen, Anna J; Han, Sung; Wisse, Brent E; Palmiter, Richard D; Schwartz, Michael W

    2017-07-01

    Anorexia is a common manifestation of chronic diseases, including cancer. Here we investigate the contribution to cancer anorexia made by calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) that transmit anorexic signals. We show that CGRP PBN neurons are activated in mice implanted with Lewis lung carcinoma cells. Inactivation of CGRP PBN neurons before tumor implantation prevents anorexia and loss of lean mass, and their inhibition after symptom onset reverses anorexia. CGRP PBN neurons are also activated in Apc min/+ mice, which develop intestinal cancer and lose weight despite the absence of reduced food intake. Inactivation of CGRP PBN neurons in Apc min/+ mice permits hyperphagia that counteracts weight loss, revealing a role for these neurons in a 'nonanorexic' cancer model. We also demonstrate that inactivation of CGRP PBN neurons prevents lethargy, anxiety and malaise associated with cancer. These findings establish CGRP PBN neurons as key mediators of cancer-induced appetite suppression and associated behavioral changes.

  15. Leptin activates oxytocin neurons of the hypothalamic paraventricular nucleus in both control and diet-induced obese rodents.

    Directory of Open Access Journals (Sweden)

    Mario Perello

    Full Text Available The adipocyte-derived hormone leptin acts in the brain to reduce body weight and fat mass. Recent studies suggest that parvocellular oxytocin (OXT neurons of the hypothalamic paraventricular nucleus (PVN can mediate body weight reduction through inhibition of food intake and increased energy expenditure. However, the role of OXT neurons of the PVN as a primary target of leptin has not been investigated. Here, we studied the potential role of OXT neurons of the PVN in leptin-mediated effects on body weight regulation in fasted rats. We demonstrated that intracerebroventricular (ICV leptin activates STAT3 phosphorylation in OXT neurons of the PVN, showed that this occurs in a subpopulation of OXT neurons that innervate the nucleus of the solitary tract (NTS, and provided further evidence suggesting a role of OXT to mediate leptin's actions on body weight. In addition, our results indicated that OXT neurons are responsive to ICV leptin and mediate leptin effects on body weight in diet induced obese (DIO rats, which are resistant to the anorectic effects of the hormone. Thus, we conclude that leptin targets a specific subpopulation of parvocellular OXT neurons of the PVN, and that this action may be important for leptin's ability to reduce body weight in both control and obese rats.

  16. The Edinger-Westphal nucleus of the juvenile rat contains transient- and repetitive-firing neurons

    DEFF Research Database (Denmark)

    Laursen, M; Rekling, J C

    2006-01-01

    Classically, the Edinger-Westphal nucleus is described as containing neurons controlling accommodation and pupillary constriction via projections to the ciliary ganglion. However, in several species including rat, some Edinger-Westphal neurons have ascending or descending CNS projections suggesting...... an immunohistochemical procedure directed at the peptide Urocortin, which is expressed in Edinger-Westphal neurons. Passive and active membrane responses were investigated and two different neuron types were identified. One type had a transient firing response to 400 ms depolarizing current pulses and one type had...... threshold Ca(2+) spikes were seen and these were blocked by nickel(II) chloride hexahydrate, suggesting that they are mediated via low voltage-activated Ca(2+) channels. Some biocytin-labeled neurons had axons or axonal collaterals projecting laterally or dorsally, suggesting possible non-ocular targets...

  17. Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions.

    Science.gov (United States)

    Reyes, Beverly A S; Van Bockstaele, Elisabeth J

    2006-10-30

    The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex microspheres were injected into the PGi and the CNA, respectively, of the same rat. Thirty-micron thick tissue sections through the lower brainstem and forebrain were collected. Every fourth section through the NTS region was processed for immunocytochemical detection of tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Retrogradely labeled neurons from the PGi or CNA were distributed throughout the rostro-caudal segments of the NTS. However, the majority of neurons containing both retrograde tracers were distributed within the caudal third of the NTS. Cell counts revealed that approximately 27% of neurons projecting to the CNA in the NTS sent collateralized projections to the PGi while approximately 16% of neurons projecting to the PGi sent collateralized projections to the CNA. Interestingly, more than half of the PGi and CNA-projecting neurons in the NTS expressed TH immunoreactivity. These data indicate that catecholaminergic neurons in the NTS are poised to simultaneously coordinate activities in limbic and medullary autonomic brain regions.

  18. Changes in Appetitive Associative Strength Modulates Nucleus Accumbens, But Not Orbitofrontal Cortex Neuronal Ensemble Excitability.

    Science.gov (United States)

    Ziminski, Joseph J; Hessler, Sabine; Margetts-Smith, Gabriella; Sieburg, Meike C; Crombag, Hans S; Koya, Eisuke

    2017-03-22

    Cues that predict the availability of food rewards influence motivational states and elicit food-seeking behaviors. If a cue no longer predicts food availability, then animals may adapt accordingly by inhibiting food-seeking responses. Sparsely activated sets of neurons, coined "neuronal ensembles," have been shown to encode the strength of reward-cue associations. Although alterations in intrinsic excitability have been shown to underlie many learning and memory processes, little is known about these properties specifically on cue-activated neuronal ensembles. We examined the activation patterns of cue-activated orbitofrontal cortex (OFC) and nucleus accumbens (NAc) shell ensembles using wild-type and Fos-GFP mice, which express green fluorescent protein (GFP) in activated neurons, after appetitive conditioning with sucrose and extinction learning. We also investigated the neuronal excitability of recently activated, GFP+ neurons in these brain areas using whole-cell electrophysiology in brain slices. Exposure to a sucrose cue elicited activation of neurons in both the NAc shell and OFC. In the NAc shell, but not the OFC, these activated GFP+ neurons were more excitable than surrounding GFP- neurons. After extinction, the number of neurons activated in both areas was reduced and activated ensembles in neither area exhibited altered excitability. These data suggest that learning-induced alterations in the intrinsic excitability of neuronal ensembles is regulated dynamically across different brain areas. Furthermore, we show that changes in associative strength modulate the excitability profile of activated ensembles in the NAc shell. SIGNIFICANCE STATEMENT Sparsely distributed sets of neurons called "neuronal ensembles" encode learned associations about food and cues predictive of its availability. Widespread changes in neuronal excitability have been observed in limbic brain areas after associative learning, but little is known about the excitability changes that

  19. Clonidine, an alpha2-receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Philbin, Kerry E; Bateman, Ryan J; Mendelowitz, David

    2010-08-06

    In hypertension, there is an autonomic imbalance in which sympathetic activity dominates over parasympathetic control. Parasympathetic activity to the heart originates from cardiac vagal neurons located in the nucleus ambiguus. Presympathetic neurons that project to sympathetic neurons in the spinal cord are located in the ventral brainstem in close proximity to cardiac vagal neurons, and many of these presympathetic neurons are catecholaminergic. In addition to their projection to the spinal cord, many of these presympathetic neurons have axon collaterals that arborize into neighboring cardiorespiratory locations and likely release norepinephrine onto nearby neurons. Activation of alpha(2)-adrenergic receptors in the central nervous system evokes a diverse range of physiological effects, including reducing blood pressure. This study tests whether clonidine, an alpha(2)-adrenergic receptor agonist, alters excitatory glutamatergic, and/or inhibitory GABAergic or glycinergic synaptic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Cardiac vagal neurons were identified in an in vitro brainstem slice preparation, and synaptic events were recording using whole cell voltage clamp methodologies. Clonidine significantly inhibited GABAergic neurotransmission but had no effect on glycinergic or glutamatergic pathways to cardiac vagal neurons. This diminished inhibitory GABAergic neurotransmission to cardiac vagal neurons would increase parasympathetic activity to the heart, decreasing heart rate and blood pressure. The results presented here provide a cellular substrate for the clinical use of clonidine as a treatment for hypertension as well as a role in alleviating posttraumatic stress disorder by evoking an increase in parasympathetic cardiac vagal activity, and a decrease in heart rate and blood pressure. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Exposure to an open-field arena increases c-Fos expression in a subpopulation of neurons in the dorsal raphe nucleus, including neurons projecting to the basolateral amygdaloid complex

    DEFF Research Database (Denmark)

    Hale, M.W.; Hay-Schmidt, A.; Mikkelsen, J.D.

    2008-01-01

    Serotonergic systems in the dorsal raphe nucleus are thought to play an important role in the regulation of anxiety states. To investigate responses of neurons in the dorsal raphe nucleus to a mild anxiety-related stimulus, we exposed rats to an open-field, under low-light or high-light conditions....... Treatment effects on c-Fos expression in serotonergic and non-serotonergic cells in the midbrain raphe nuclei were determined 2 h following open-field exposure or home cage control (CO) conditions. Rats tested under both light conditions responded with increases in c-Fos expression in serotonergic neurons...... within subdivisions of the midbrain raphe nuclei compared with CO rats. However, the total numbers of serotonergic neurons involved were small suggesting that exposure to the open-field may affect a subpopulation of serotonergic neurons. To determine if exposure to the open-field activates a subset...

  1. Paraventricular nucleus of the human hypothalamus in primary hypertension: Activation of corticotropin-releasing hormone neurons

    NARCIS (Netherlands)

    Goncharuk, Valeri D.; van Heerikhuize, Joop; Swaab, Dick F.; Buijs, Ruud M.

    2002-01-01

    By using quantitative immunohistochemical and in situ hybridization techniques, we studied corticotropin-releasing hormone (CRH)-producing neurons of the hypothalamic paraventricular nucleus (PVN) in patients who suffered from primary hypertension and died due to acute cardiac failure. The control

  2. Age-related changes in functional postsynaptic nAChR subunits in neurons of the laterodorsal tegmental nucleus, a nucleus important in drug addiction

    DEFF Research Database (Denmark)

    Christensen, Mark Holm; Kohlmeier, Kristi Anne

    2016-01-01

    the laterodorsal tegmentum (LDT), a nucleus importantly involved in drug addiction associated behaviours, across two periods of ontogeny in which nicotine-mediated excitatory responses were shown to depend on age. To this end, whole-cell patch-clamp recordings in mouse brain slices from identified LDT neurons...

  3. Decreased number of oxytocin neurons in the paraventricular nucleus of the human hypothalamus in AIDS

    NARCIS (Netherlands)

    Purba, J. S.; Hofman, M. A.; Portegies, P.; Troost, D.; Swaab, D. F.

    1993-01-01

    The number of immunocytochemically identified vasopressin (AVP) and oxytocin (OXT) neurons was determined morphometrically in the paraventricular nucleus of the hypothalamus of 20 acquired immunodeficiency syndrome (AIDS) patients and 10 controls. The AIDS group consisted of 14 homosexual males (age

  4. Evidence for role of acid-sensing ion channels in nucleus ambiguus neurons: essential differences in anesthetized versus awake rats.

    Science.gov (United States)

    Brailoiu, G Cristina; Deliu, Elena; Altmann, Joseph B; Chitravanshi, Vineet; Brailoiu, Eugen

    2014-08-01

    Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca(2+) concentration by promoting Ca(2+) influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats.

  5. Purinergic receptors are involved in tooth-pulp evoked nocifensive behavior and brainstem neuronal activity

    Directory of Open Access Journals (Sweden)

    Sessle Barry J

    2010-09-01

    Full Text Available Abstract Background To evaluate whether P2X receptors are involved in responses to noxious pulp stimulation, the P2X3 and P2X2/3 receptor agonist α,β-methyleneATP (α,β-meATP was applied to the molar tooth pulp and nocifensive behavior and extracellular-signal regulated kinase (ERK phosphorylation in trigeminal spinal subnucleus caudalis (Vc, trigeminal spinal subnucleus interpolaris (Vi, upper cervical spinal cord (C1/C2 and paratrigeminal nucleus (Pa5 neurons were analyzed in rats. Results Genioglossus (GG muscle activity was evoked by pulpal application of 100 mM α,β-meATP and was significantly larger than GG activity following vehicle (phosphate-buffered saline PBS application (p 1, P2X3 and, P2X2/3 antagonist. A large number of pERK-LI cells were expressed in the Vc, Vi/Vc, C1/C2 and Pa5 at 5 min following pulpal application of 100 mM α,β-meATP compared to PBS application to the pulp (p Conclusions The present findings suggest that activation of P2X3 and P2X2/3 receptors in the tooth pulp is sufficient to elicit nociceptive behavioral responses and trigeminal brainstem neuronal activity.

  6. Spatiotemporal profiles of receptive fields of neurons in the lateral posterior nucleus of the cat LP-pulvinar complex.

    Science.gov (United States)

    Piché, Marilyse; Thomas, Sébastien; Casanova, Christian

    2015-10-01

    The pulvinar is the largest extrageniculate thalamic visual nucleus in mammals. It establishes reciprocal connections with virtually all visual cortexes and likely plays a role in transthalamic cortico-cortical communication. In cats, the lateral posterior nucleus (LP) of the LP-pulvinar complex can be subdivided in two subregions, the lateral (LPl) and medial (LPm) parts, which receive a predominant input from the striate cortex and the superior colliculus, respectively. Here, we revisit the receptive field structure of LPl and LPm cells in anesthetized cats by determining their first-order spatiotemporal profiles through reverse correlation analysis following sparse noise stimulation. Our data reveal the existence of previously unidentified receptive field profiles in the LP nucleus both in space and time domains. While some cells responded to only one stimulus polarity, the majority of neurons had receptive fields comprised of bright and dark responsive subfields. For these neurons, dark subfields' size was larger than that of bright subfields. A variety of receptive field spatial organization types were identified, ranging from totally overlapped to segregated bright and dark subfields. In the time domain, a large spectrum of activity overlap was found, from cells with temporally coinciding subfield activity to neurons with distinct, time-dissociated subfield peak activity windows. We also found LP neurons with space-time inseparable receptive fields and neurons with multiple activity periods. Finally, a substantial degree of homology was found between LPl and LPm first-order receptive field spatiotemporal profiles, suggesting a high integration of cortical and subcortical inputs within the LP-pulvinar complex. Copyright © 2015 the American Physiological Society.

  7. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  8. Hypocretin-1 (orexin A) prevents the effects of hypoxia/hypercapnia and enhances the GABAergic pathway from the lateral paragigantocellular nucleus to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Dergacheva, O; Philbin, K; Bateman, R; Mendelowitz, D

    2011-02-23

    Hypocretins (orexins) are hypothalamic neuropeptides that play a crucial role in regulating sleep/wake states and autonomic functions including parasympathetic cardiac activity. We have recently demonstrated stimulation of the lateral paragigantocellular nucleus (LPGi), the nucleus which is thought to play a role in rapid eye movement (REM) sleep control, activates an inhibitory pathway to preganglionic cardiac vagal neurons in the nucleus ambiguus (NA). In this study we test the hypothesis that hypocretin-1 modulates the inhibitory neurotransmission to cardiac vagal neurons evoked by stimulation of the LPGi using whole-cell patch-clamp recordings in an in vitro brain slice preparation from rats. Activation of hypocretin-1 receptors produced a dose-dependent and long-term facilitation of GABAergic postsynaptic currents evoked by electrical stimulation of the LPGi. Hypoxia/hypercapnia diminished LPGi-evoked GABAergic current in cardiac vagal neurons and this inhibition by hypoxia/hypercapnia was prevented by pre-application of hypocretin-1. The action of hypocretin-1 was blocked by the hypocretin-1 receptor antagonist SB-334867. Facilitation of LPGi-evoked GABAergic current in cardiac vagal neurons under both normal condition and during hypoxia/hypercapnia could be the mechanism by which hypocretin-1 affects parasympathetic cardiac function and heart rate during REM sleep. Furthermore, our findings indicate a new potential mechanism that might be involved in the cardiac arrhythmias, bradycardia, and sudden cardiac death that can occur during sleep. Copyright © 2011. Published by Elsevier Ltd.

  9. The effects of acute morphine treatment on the incorporation of [3H]L-lysine by normal and regenerating facial nucleus neurons

    International Nuclear Information System (INIS)

    Sinatra, R.S.; Ford, D.H.; Rhines, R.K.

    1979-01-01

    The effect of morphine on the incorporation of [ 3 H]L-lysine into proteins of facial nucleus neurons was examined by light microscopic radioautography. Silver grains present within various compartments of normal and regenerating (3-, 7-. 14- and 21 days post-axotomy) neurons from saline-treated Wistar rats were compared with the amount present in similar cells from animals receiving 40 mg/kg morphine sulfate i.v. At 14- and 21-days post-axotomy, regenerating neurons were larger and the grain count in the emulsion over these cells was greater than that observed in normal (unoperated) neurons. In normal facial neurons, the accumulation of lysine into the nucleus and nucleolus was significantly lower 60 min after morphine adminstration. However, morphine's inhibition of lysine incorporation was even more pronounced in regenerating neurons. In these cells, nuclear lysine uptake was depressed at 3 and 7 days, while maximum inhibition of cytoplasmic incorporation occurred at 14-days post-axotomy. Morphine adminstration decreased nucleolar lysine incorporation at all survival intervals. (Auth.)

  10. Nucleus Ambiguus Cholinergic Neurons Activated by Acupuncture: Relation to Enkephalin

    Science.gov (United States)

    Guo, Zhi-Ling; Li, Min; Longhurst, John C.

    2012-01-01

    Acupuncture regulates autonomic function. Our previous studies have shown that electroacupuncture (EA) at the Jianshi–Neiguan acupoints (P5–P6, underlying the median nerve) inhibits central sympathetic outflow and attenuates excitatory cardiovascular reflexes, in part, through an opioid mechanism. It is unknown if EA at these acupoints influences the parasympathetic system. Thus, using c-Fos expression, we examined activation of nucleus ambiguus (NAmb) neurons by EA, their relation to cholinergic (preganglionic parasympathetic) neurons and those containing enkephalin. To enhance detection of cell bodies containing enkephalin, colchicine (90–100 μg/kg) was administered into the subarachnoid space of cats 30 hr prior to EA or sham-operated controls for EA. Following bilateral barodenervation and cervical vagotomy, either EA for 30 min at P5–P6 acupoints or control stimulation (needle placement at P5–P6 without stimulation) was applied. While perikarya containing enkephalin were observed in some medullary nuclei (e.g., râphe), only enkephalin-containing neuronal processes were found in the NAmb. Compared to controls (n=4), more c-Fos immunoreactivity, located principally in close proximity to fibers containing enkephalin was noted in the NAmb of EA-treated cats (n=5; P<0.01). Moreover, neurons double-labeled with c-Fos and choline acetyltransferase in the NAmb were identified in EA-treated, but not the control animals. These data demonstrate for the first time that EA activates preganglionic parasympathetic neurons in the NAmb. Because of their close proximity, these EA-activated neurons likely interact with nerve fibers containing enkephalin. These results suggest that EA at the P5–P6 acupoints has the potential to influence parasympathetic outflow and cardiovascular function, likely through an enkephalinergic mechanism. PMID:22306033

  11. Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus.

    Directory of Open Access Journals (Sweden)

    Matías A Goldin

    2017-08-01

    Full Text Available Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the "breaking" of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which

  12. Morphology, classification, and distribution of the projection neurons in the dorsal lateral geniculate nucleus of the rat.

    Directory of Open Access Journals (Sweden)

    Changying Ling

    Full Text Available The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60-340 µm(2. Labeled projection neurons supported 7-55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0 × 10(4 µm(2. Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short "tufted" appendages arise mainly from the distal branches of dendrites; "spine-like" appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and "grape-like" appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.

  13. VGLUT1 or VGLUT2 mRNA-positive neurons in spinal trigeminal nucleus provide collateral projections to both the thalamus and the parabrachial nucleus in rats.

    Science.gov (United States)

    Zhang, Chun-Kui; Li, Zhi-Hong; Qiao, Yu; Zhang, Ting; Lu, Ya-Cheng; Chen, Tao; Dong, Yu-Lin; Li, Yun-Qing; Li, Jin-Lian

    2018-04-12

    The trigemino-thalamic (T-T) and trigemino-parabrachial (T-P) pathways are strongly implicated in the sensory-discriminative and affective/emotional aspects of orofacial pain, respectively. These T-T and T-P projection fibers originate from the spinal trigeminal nucleus (Vsp). We previously determined that many vesicular glutamate transporter (VGLUT1 and/or VGLUT2) mRNA-positive neurons were distributed in the Vsp of the adult rat, and most of these neurons sent their axons to the thalamus or cerebellum. However, whether VGLUT1 or VGLUT2 mRNA-positive projection neurons exist that send their axons to both the thalamus and the parabrachial nucleus (PBN) has not been reported. Thus, in the present study, dual retrograde tract tracing was used in combination with fluorescence in situ hybridization (FISH) for VGLUT1 or VGLUT2 mRNA to identify the existence of VGLUT1 or VGLUT2 mRNA neurons that send collateral projections to both the thalamus and the PBN. Neurons in the Vsp that send collateral projections to both the thalamus and the PBN were mainly VGLUT2 mRNA-positive, with a proportion of 90.3%, 93.0% and 85.4% in the oral (Vo), interpolar (Vi) and caudal (Vc) subnucleus of the Vsp, respectively. Moreover, approximately 34.0% of the collateral projection neurons in the Vc showed Fos immunopositivity after injection of formalin into the lip, and parts of calcitonin gene-related peptide (CGRP)-immunopositive axonal varicosities were in direct contact with the Vc collateral projection neurons. These results indicate that most collateral projection neurons in the Vsp, particularly in the Vc, which express mainly VGLUT2, may relay orofacial nociceptive information directly to the thalamus and PBN via axon collaterals.

  14. Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording

    NARCIS (Netherlands)

    Schaap, J.; Bos, N. P.; de Jeu, M. T.; Geurtsen, A. M.; Meijer, J. H.; Pennartz, C. M.

    1999-01-01

    The suprachiasmatic nucleus is commonly considered to contain the main pacemaker of behavioral and hormonal circadian rhythms. Using whole-cell patch-clamp recordings, the membrane properties of suprachiasmatic nucleus neurons were investigated in order to get more insight in membrane physiological

  15. Nucleus Ruber of Actinopterygians.

    Science.gov (United States)

    Nakayama, Tomoya; Miyajima, Satoshi; Nishino, Hirotaka; Narita, Junya; Abe, Hideki; Yamamoto, Naoyuki

    2016-01-01

    Nucleus ruber is known as an important supraspinal center that controls forelimb movements in tetrapods, and the rubral homologue may serve similar functions in fishes (motor control of pectoral fin). However, two apparently different structures have been identified as 'nucleus ruber' in actinopterygians. One is nucleus ruber of Goldstein (1905) (NRg), and the other nucleus ruber of Nieuwenhuys and Pouwels (1983) (NRnp). It remains unclear whether one of these nuclei (or perhaps both) is homologous to tetrapod nucleus ruber. To resolve this issue from a phylogenetic point of view, we have investigated the distribution of tegmental neurons retrogradely labeled from the spinal cord in eight actinopterygian species. We also investigated the presence/absence of the two nuclei with Nissl- or Bodian-stained brain section series of an additional 28 actinopterygian species by comparing the morphological features of candidate rubral neurons with those of neurons revealed by the tracer studies. Based on these analyses, the NRg was identified in all actinopterygians investigated in the present study, while the NRnp appears to be absent in basal actinopterygians. The phylogenetic distribution pattern indicates that the NRg is the more likely homologue of nucleus ruber, and the NRnp may be a derived nucleus that emerged during the course of actinopterygian evolution. © 2016 S. Karger AG, Basel.

  16. Onuf's nucleus X

    DEFF Research Database (Denmark)

    Schrøder, H D

    1981-01-01

    in the length of the nucleus was observed. Based on the cytoarchitecture the nucleus could be divided in three parts, a cranial, a dorsomedial and a ventrolateral. All parts of the nucleus consisted of chromatin-rich medium-sized neurons, and apparent direct appositions between different cells bodies as well...

  17. Electrophysiological and morphological properties of neurons in the prepositus hypoglossi nucleus that express both ChAT and VGAT in a double-transgenic rat model.

    Science.gov (United States)

    Saito, Yasuhiko; Zhang, Yue; Yanagawa, Yuchio

    2015-04-01

    Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ-aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double-transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole-cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT-immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co-express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Galanin neurons in the intermediate nucleus (InM) of the human hypothalamus in relation to sex, age, and gender identity.

    Science.gov (United States)

    Garcia-Falgueras, Alicia; Ligtenberg, Lisette; Kruijver, Frank P M; Swaab, Dick F

    2011-10-15

    The intermediate nucleus (InM) in the preoptic area of the human brain, also known as the sexually dimorphic nucleus of the preoptic area (SDN-POA) and the interstitial nucleus of the anterior hypothalamus-1 (INAH-1) is explored here. We investigated its population of galanin-immunoreactive (Gal-Ir) neurons in relation to sex, age, and gender identity in the postmortem brain of 77 subjects. First we compared the InM volume and number of Gal-Ir neurons of 22 males and 22 females in the course of aging. In a second experiment, we compared for the first time the InM volume and the total and Gal-Ir neuron number in 43 subjects with different gender identities: 14 control males (M), 11 control females (F), 10 male-to-female (MtF) transsexual people, and 5 men who were castrated because of prostate cancer (CAS). In the first experiment we found a sex difference in the younger age group ( 45 years. In the second experiment the MtF transsexual group presented an intermediate value for the total InM neuron number and volume that did not seem different in males and females. Because the CAS group did not have total neuron numbers that were different from the intact males, the change in adult circulating testosterone levels does not seem to explain the intermediate values in the MtF group. Organizational and activational hormone effects on the InM are discussed. Copyright © 2011 Wiley-Liss, Inc.

  19. Reduced Slc6a15 in Nucleus Accumbens D2-Neurons Underlies Stress Susceptibility.

    Science.gov (United States)

    Chandra, Ramesh; Francis, T Chase; Nam, Hyungwoo; Riggs, Lace M; Engeln, Michel; Rudzinskas, Sarah; Konkalmatt, Prasad; Russo, Scott J; Turecki, Gustavo; Iniguez, Sergio D; Lobo, Mary Kay

    2017-07-05

    Previous research demonstrates that Slc6a15, a neutral amino acid transporter, is associated with depression susceptibility. However, no study examined Slc6a15 in the ventral striatum [nucleus accumbens (NAc)] in depression. Given our previous characterization of Slc6a15 as a striatal dopamine receptor 2 (D2)-neuron-enriched gene, we examined the role of Slc6a15 in NAc D2-neurons in mediating susceptibility to stress in male mice. First, we showed that Slc6a15 mRNA was reduced in NAc of mice susceptible to chronic social defeat stress (CSDS), a paradigm that produces behavioral and molecular adaptations that resemble clinical depression. Consistent with our preclinical data, we observed Slc6a15 mRNA reduction in NAc of individuals with major depressive disorder (MDD). The Slc6a15 reduction in NAc occurred selectively in D2-neurons. Next, we used Cre-inducible viruses combined with D2-Cre mice to reduce or overexpress Slc6a15 in NAc D2-neurons. Slc6a15 reduction in D2-neurons caused enhanced susceptibility to a subthreshold social defeat stress (SSDS) as observed by reduced social interaction, while a reduction in social interaction following CSDS was not observed when Slc6a15 expression in D2-neurons was restored. Finally, since both D2-medium spiny neurons (MSNs) and D2-expressing choline acetyltransferase (ChAT) interneurons express Slc6a15, we examined Slc6a15 protein in these interneurons after CSDS. Slc6a15 protein was unaltered in ChAT interneurons. Consistent with this, reducing Slc5a15 selectively in NAc D2-MSNs, using A2A-Cre mice that express Cre selectively in D2-MSNs, caused enhanced susceptibility to SSDS. Collectively, our data demonstrate that reduced Slc6a15 in NAc occurs in MDD individuals and that Slc6a15 reduction in NAc D2-neurons underlies stress susceptibility. SIGNIFICANCE STATEMENT Our study demonstrates a role for reduced Slc6a15, a neutral amino acid transporter, in nucleus accumbens (NAc) in depression and stress susceptibility. The

  20. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2017-03-01

    Full Text Available Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN.

  1. Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Sharp, Douglas B; Wang, Xin; Mendelowitz, David

    2014-07-29

    Dexmedetomidine, an α2 adrenergic agonist, is a useful sedative but can also cause significant bradycardia. This decrease in heart rate may be due to decreased central sympathetic output as well as increased parasympathetic output from brainstem cardiac vagal neurons. In this study, using whole cell voltage clamp methodology, the actions of dexmedetomidine on excitatory glutamatergic and inhibitory GABAergic and glycinergic neurotransmission to parasympathetic cardiac vagal neurons in the rat nucleus ambiguus was determined. The results indicate that dexmedetomidine decreases both GABAergic and glycinergic inhibitory input to cardiac vagal neurons, with no significant effect on excitatory input. These results provide a mechanism for dexmedetomidine induced bradycardia and has implications for the management of this potentially harmful side effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  3. Comparing Realistic Subthalamic Nucleus Neuron Models

    Science.gov (United States)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  4. Structural dynamics of the cell nucleus

    Science.gov (United States)

    Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832

  5. Development of chloride-mediated inhibition in neurons of the Anteroventral Cochlear Nucleus of Gerbil (Meriones unguiculatus).

    Czech Academy of Sciences Publication Activity Database

    Milenkovic, I.; Witte, M.; Tureček, Rostislav; Heinrich, M.; Reinert, T.; Rübsamen, R.

    2007-01-01

    Roč. 98, - (2007), s. 1634-1644 ISSN 0022-3077 R&D Projects: GA ČR GA309/03/1158; GA ČR GA309/06/1304 Institutional research plan: CEZ:AV0Z50390512 Keywords : Cochlear Nucleus * Neuron * Meriones unguiculatus Subject RIV: FH - Neurology Impact factor: 3.684, year: 2007

  6. Auditory information coding by modeled cochlear nucleus neurons.

    Science.gov (United States)

    Wang, Huan; Isik, Michael; Borst, Alexander; Hemmert, Werner

    2011-06-01

    In this paper we use information theory to quantify the information in the output spike trains of modeled cochlear nucleus globular bushy cells (GBCs). GBCs are part of the sound localization pathway. They are known for their precise temporal processing, and they code amplitude modulations with high fidelity. Here we investigated the information transmission for a natural sound, a recorded vowel. We conclude that the maximum information transmission rate for a single neuron was close to 1,050 bits/s, which corresponds to a value of approximately 5.8 bits per spike. For quasi-periodic signals like voiced speech, the transmitted information saturated as word duration increased. In general, approximately 80% of the available information from the spike trains was transmitted within about 20 ms. Transmitted information for speech signals concentrated around formant frequency regions. The efficiency of neural coding was above 60% up to the highest temporal resolution we investigated (20 μs). The increase in transmitted information to that precision indicates that these neurons are able to code information with extremely high fidelity, which is required for sound localization. On the other hand, only 20% of the information was captured when the temporal resolution was reduced to 4 ms. As the temporal resolution of most speech recognition systems is limited to less than 10 ms, this massive information loss might be one of the reasons which are responsible for the lack of noise robustness of these systems.

  7. Nucleus Accumbens Dopamine D2-Receptor Expressing Neurons Control Behavioral Flexibility in a Place Discrimination Task in the IntelliCage

    Science.gov (United States)

    Macpherson, Tom; Morita, Makiko; Wang, Yanyan; Sasaoka, Toshikuni; Sawa, Akira; Hikida, Takatoshi

    2016-01-01

    Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated…

  8. Effects of GABA microinjection into dorsal raphe nucleus on behavior and activity of lateral habenular neurons in mice.

    Science.gov (United States)

    Xiao, Jinyu; Song, Meiying; Li, Fengdan; Liu, Xiaofeng; Anwar, Alinur; Zhao, Hua

    2017-12-01

    The dorsal raphe nucleus (DRN) is a key site for 5-hydroxytryptamine (5-HT) synthesis and release. DRN dysfunction has been implicated in several stress-related disorders, including depression and anxiety. The lateral habenular nucleus (LHb) has been shown to inhibit the activity of DRN 5-HT neurons, and thus the LHb-DRN pathway plays an important role in the pathogenesis of depression. Although it is known that the LHb also receives the projection from the 5-HT neuron in the DRN, whether 5-HT neurons in the DRN can influence activity of the LHb in vivo and whether this effect is related to the induced behavioral changes have not been investigated. In the current study, we determined how injecting γ-aminobutyric acid (GABA) into the DRN to inhibit 5-HT neurons affected behavior and the changes in the activity of LHb neurons in mice. We found that GABA injection into the DRN induced depression-like behavior in mice, as indicated by increased immobility time, and decreased climbing time in the forced swimming test and the tail suspension test, decreased time spent in the center and total distance moved in the open field test. Using extracellular single unit recording, we showed that the firing rate of LHb neurons decreased after GABA microinjection into the DRN. Further, c-Fos expression in LHb neurons was inhibited. Together our results indicate that inhibition of DRN 5-HT neurons can cause decreased LHb activity and depression-like behavior in mice, however this depression-like behavior could be independent of the LHb activity. The observed decrease in LHb activity is probably due to the presence of a negative feedback loop between the DRN and the LHb, which may play a role in maintaining emotional homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A population of kisspeptin/neurokinin B neurons in the arcuate nucleus may be the central target of the male effect phenomenon in goats.

    Science.gov (United States)

    Sakamoto, Kohei; Wakabayashi, Yoshihiro; Yamamura, Takashi; Tanaka, Tomomi; Takeuchi, Yukari; Mori, Yuji; Okamura, Hiroaki

    2013-01-01

    Exposure of females to a male pheromone accelerates pulsatile gonadotropin-releasing hormone (GnRH) secretion in goats. Recent evidence has suggested that neurons in the arcuate nucleus (ARC) containing kisspeptin and neurokinin B (NKB) play a pivotal role in the control of GnRH secretion. Therefore, we hypothesized that these neurons may be the central target of the male pheromone. To test this hypothesis, we examined whether NKB signaling is involved in the pheromone action, and whether ARC kisspeptin/NKB neurons receive input from the medial nucleus of the amygdala (MeA)--the nucleus suggested to relay pheromone signals. Ovariectomized goats were implanted with a recording electrode aimed at a population of ARC kisspeptin/NKB neurons, and GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA) volleys, was measured. Pheromone exposure induced an MUA volley and luteinizing hormone (LH) pulse in control animals, whereas the MUA and LH responses to the pheromone were completely suppressed by the treatment with an NKB receptor antagonist. These results indicate that NKB signaling is a prerequisite for pheromone action. In ovariectomized goats, an anterograde tracer was injected into the MeA, and possible connections between the MeA and ARC kisspeptin/NKB neurons were examined. Histochemical observations demonstrated that a subset of ARC kisspeptin/NKB neurons receive efferent projections from the MeA. These results suggest that the male pheromone signal is conveyed via the MeA to ARC kisspeptin neurons, wherein the signal stimulates GnRH pulse generator activity through an NKB signaling-mediated mechanism in goats.

  10. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus.

    Science.gov (United States)

    Zhou, Li; Liu, Ming-Zhe; Li, Qing; Deng, Juan; Mu, Di; Sun, Yan-Gang

    2017-03-21

    Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN) of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability.

    Science.gov (United States)

    Fujita, Akie; Bonnavion, Patricia; Wilson, Miryam H; Mickelsen, Laura E; Bloit, Julien; de Lecea, Luis; Jackson, Alexander C

    2017-09-27

    Histaminergic (HA) neurons, found in the posterior hypothalamic tuberomammillary nucleus (TMN), extend fibers throughout the brain and exert modulatory influence over numerous physiological systems. Multiple lines of evidence suggest that the activity of HA neurons is important in the regulation of vigilance despite the lack of direct, causal evidence demonstrating its requirement for the maintenance of arousal during wakefulness. Given the strong correlation between HA neuron excitability and behavioral arousal, we investigated both the electrophysiological diversity of HA neurons in brain slices and the effect of their acute silencing in vivo in male mice. For this purpose, we first validated a transgenic mouse line expressing cre recombinase in histidine decarboxylase-expressing neurons ( Hdc -Cre) followed by a systematic census of the membrane properties of both HA and non-HA neurons in the ventral TMN (TMNv) region. Through unsupervised hierarchical cluster analysis, we found electrophysiological diversity both between TMNv HA and non-HA neurons, and among HA neurons. To directly determine the impact of acute cessation of HA neuron activity on sleep-wake states in awake and behaving mice, we examined the effects of optogenetic silencing of TMNv HA neurons in vivo We found that acute silencing of HA neurons during wakefulness promotes slow-wave sleep, but not rapid eye movement sleep, during a period of low sleep pressure. Together, these data suggest that the tonic firing of HA neurons is necessary for the maintenance of wakefulness, and their silencing not only impairs arousal but is sufficient to rapidly and selectively induce slow-wave sleep. SIGNIFICANCE STATEMENT The function of monoaminergic systems and circuits that regulate sleep and wakefulness is often disrupted as part of the pathophysiology of many neuropsychiatric disorders. One such circuit is the posterior hypothalamic histamine (HA) system, implicated in supporting wakefulness and higher brain

  12. Modulation of Hippocampal Theta Oscillations and Spatial Memory by Relaxin-3 Neurons of the Nucleus Incertus

    Science.gov (United States)

    Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.

    2009-01-01

    Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…

  13. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus

    Directory of Open Access Journals (Sweden)

    Aloysius Y.T. Low

    2018-02-01

    Full Text Available The deep cerebellar nuclei (DCN represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA. We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements.

  14. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus.

    Science.gov (United States)

    Low, Aloysius Y T; Thanawalla, Ayesha R; Yip, Alaric K K; Kim, Jinsook; Wong, Kelly L L; Tantra, Martesa; Augustine, George J; Chen, Albert I

    2018-02-27

    The deep cerebellar nuclei (DCN) represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA). We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Glucose concentrations modulate brain-derived neurotrophic factor responsiveness of neurones in the paraventricular nucleus of the hypothalamus.

    Science.gov (United States)

    McIsaac, W; Ferguson, A V

    2017-04-01

    The hypothalamic paraventricular nucleus (PVN) is critical for normal energy balance and has been shown to contain high levels of both brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase B mRNA. Microinjections of BDNF into the PVN increase energy expenditure, suggesting that BDNF plays an important role in energy homeostasis through direct actions in this nucleus. The present study aimed to examine the postsynaptic effects of BDNF on the membrane potential of PVN neurones, and also to determine whether extracellular glucose concentrations modulated these effects. We used hypothalamic PVN slices from male Sprague-Dawley rats to perform whole cell current-clamp recordings from PVN neurones. BDNF was bath applied at a concentration of 2 nmol L -1 and the effects on membrane potential determined. BDNF caused depolarisations in 54% of neurones (n=25; mean±SEM, 8.9±1.2 mV) and hyperpolarisations in 23% (n=11; -6.7±1.4 mV), whereas the remaining cells were unaffected. These effects were maintained in the presence of tetrodotoxin (n=9; 56% depolarised, 22% hyperpolarised, 22% nonresponders), or the GABA a antagonist bicuculline (n=12; 42% depolarised, 17% hyperpolarised, 41% nonresponders), supporting the conclusion that these effects on membrane potential were postsynaptic. Current-clamp recordings from PVN neurones next examined the effects of BDNF on these neurones at varying extracellular glucose concentrations. Larger proportions of PVN neurones hyperpolarised in response to BDNF as the glucose concentrations decreased [10 mmol L -1 glucose 23% (n=11) of neurones hyperpolarised, whereas, at 0.2 mmol L -1 glucose, 71% showed hyperpolarising effects (n=12)]. Our findings reveal that BDNF has direct GABA A independent effects on PVN neurones, which are modulated by local glucose concentrations. The latter observation further emphasises the critical importance of using physiologically relevant conditions in an investigation of the central

  16. Identification of different types of respiratory neurones in the dorsal brainstem nucleus tractus solitarius of the rat

    NARCIS (Netherlands)

    Subramanian, Hari H.; Chow, Chin Moi; Balnave, Ron J.

    2007-01-01

    In Nembutal anaesthetised, spontaneously breathing rats, stereotaxic mapping of the nucleus tractus solitarius (NTS) for respiratory neuronal activity was undertaken. Eight different types of respiratory cells were found between 0.25 and 1.5 mm lateral to midline, extending 0.5 mm caudal to 1.5 mm

  17. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?

    Science.gov (United States)

    Matamales, Miriam

    2012-12-19

    Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

  18. Anatomical evidence for direct fiber projections from the cerebellar nucleus interpositus to rubrospinal neurons. A quantitative EM study in the rat combining anterograde and retrograde intra-axonal tracing methods

    International Nuclear Information System (INIS)

    Dekker, J.J.

    1981-01-01

    A quantitative electron microscopic (EM) study combining the anterograde intra-axonal transport of radioactive amino acids and the retrograde intra-axonal transport of the enzyme horseradish peroxidase (HRP) was performed in the magnocellular red nucleus of the rat to obtain anatomical evidence as to whether there is a direct projection from the cerebellar nucleus interpositus to the cells in the red nucleus that give rise to the rubrospinal tract. Large asymmetrical synaptic terminals were radioactively labeled in the magnocellular red nucleus following injections of [ 3 H]leucine into the cerebellar nucleus interpositus. In these same animals, the postsynaptic target neurons were labeled with HRP granules after injection of this substance in the rubrospinal tract. A quantitative analysis showed that more than 85% of the large and giant neurons in the magnocellular red nucleus were labeled with HRP granules and also received synaptic contacts from radioactively-labeled terminals. Thus, it can be concluded that in the rat, afferents from the cerebellar nucleus interpositus establish asymmetrical synaptic contacts with large and giant rubrospinal neurons, thus confirming and extending the previous physiological evidence of such direct monosynaptic connections. (Auth.)

  19. Defining Subpopulations of Arcuate Nucleus GABA Neurons in Male, Female, and Prenatally Androgenized Female Mice.

    Science.gov (United States)

    Marshall, Christopher J; Desroziers, Elodie; McLennan, Timothy; Campbell, Rebecca E

    2017-01-01

    Arcuate nucleus (ARN) γ-aminobutyric acid (GABA) neurons are implicated in many critical homeostatic mechanisms, from food intake to fertility. To determine the functional relevance of ARN GABA neurons, it is essential to define the neurotransmitters co-expressed with and potentially co-released from ARN GABA neurons. The present study investigated the expression of markers of specific signaling molecules by ARN GABA neurons in brain sections from male, female, and, in some cases, prenatally androgen-treated (PNA) female, vesicular GABA transporter (VGaT)-ires-Cre/tdTomato reporter mice. Immunofluorescence for kisspeptin, β-endorphin, neuropeptide Y (NPY), tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS) was detected by confocal microscopy, and co-localization with tdTomato VGaT reporter expression throughout the ARN was quantified. GABA neurons rarely co-localized with kisspeptin (95%) co-localized with VGaT across groups. Both TH and nNOS labeling was co-localized with ∼10% of ARN GABA neurons. The proportion of TH neurons co-localized with VGaT was significantly greater in males than either control or PNA females, and the proportion of nNOS neurons co-localizing VGaT was higher in control and PNA females compared with males. These data highlight NPY as a significant subpopulation of ARN GABA neurons, demonstrate no significant impact of PNA on signal co-expression, and, for the first time, show sexually dimorphic co-expression patterns of TH and nNOS with ARN GABA neurons. © 2016 S. Karger AG, Basel.

  20. Orexinergic fibers are in contact with Kölliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat.

    Science.gov (United States)

    Yokota, Shigefumi; Oka, Tatsuro; Asano, Hirohiko; Yasui, Yukihiko

    2016-10-01

    The neural pathways underlying the respiratory variation dependent on vigilance states remain unsettled. In the present study, we examined the orexinergic innervation of Kölliker-Fuse nucleus (KFN) neurons sending their axons to the rostral ventral respiratory group (rVRG) and phrenic nucleus (PhN) as well as to the hypoglossal nucleus (HGN) by using a combined retrograde tracing and immunohistochemistry. After injection of cholera toxin B subunit (CTb) into the KFN, CTb-labeled neurons that are also immunoreactive for orexin (ORX) were found prominently in the perifornical and medial regions and additionally in the lateral region of the hypothalamic ORX field. After injection of fluorogold (FG) into the rVRG, PhN or HGN, we found an overlapping distribution of ORX-immunoreactive axon terminals and FG-labeled neurons in the KFN. Within the neuropil of the KFN, asymmetrical synaptic contacts were made between these terminals and neurons. We further demonstrated that many neurons labeled with FG injected into the rVRG, PhN, or HGN are immunoreactive for ORX receptor 2. Present data suggest that rVRG-, PhN- and HGN-projecting KFN neurons may be under the excitatory influence of the ORXergic neurons for the state-dependent regulation of respiration. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. TASK-2 Channels Contribute to pH Sensitivity of Retrotrapezoid Nucleus Chemoreceptor Neurons

    Science.gov (United States)

    Wang, Sheng; Benamer, Najate; Zanella, Sébastien; Kumar, Natasha N.; Shi, Yingtang; Bévengut, Michelle; Penton, David; Guyenet, Patrice G.; Lesage, Florian

    2013-01-01

    Phox2b-expressing glutamatergic neurons of the retrotrapezoid nucleus (RTN) display properties expected of central respiratory chemoreceptors; they are directly activated by CO2/H+ via an unidentified pH-sensitive background K+ channel and, in turn, facilitate brainstem networks that control breathing. Here, we used a knock-out mouse model to examine whether TASK-2 (K2P5), an alkaline-activated background K+ channel, contributes to RTN neuronal pH sensitivity. We made patch-clamp recordings in brainstem slices from RTN neurons that were identified by expression of GFP (directed by the Phox2b promoter) or β-galactosidase (from the gene trap used for TASK-2 knock-out). Whereas nearly all RTN cells from control mice were pH sensitive (95%, n = 58 of 61), only 56% of GFP-expressing RTN neurons from TASK-2−/− mice (n = 49 of 88) could be classified as pH sensitive (>30% reduction in firing rate from pH 7.0 to pH 7.8); the remaining cells were pH insensitive (44%). Moreover, none of the recorded RTN neurons from TASK-2−/− mice selected based on β-galactosidase activity (a subpopulation of GFP-expressing neurons) were pH sensitive. The alkaline-activated background K+ currents were reduced in amplitude in RTN neurons from TASK-2−/− mice that retained some pH sensitivity but were absent from pH-insensitive cells. Finally, using a working heart–brainstem preparation, we found diminished inhibition of phrenic burst amplitude by alkalization in TASK-2−/− mice, with apneic threshold shifted to higher pH levels. In conclusion, alkaline-activated TASK-2 channels contribute to pH sensitivity in RTN neurons, with effects on respiration in situ that are particularly prominent near apneic threshold. PMID:24107938

  2. GABAergic projections to the oculomotor nucleus in the goldfish (Carassius auratus

    Directory of Open Access Journals (Sweden)

    M. Angeles eLuque

    2011-02-01

    Full Text Available The mammalian oculomotor nucleus receives a strong -aminobutyric acid (GABAergic synaptic input, whereas such projections have rarely been reported in fish. In order to determine whether this synaptic organization is preserved across vertebrates, we investigated the GABAergic projections to the oculomotor nucleus in the goldfish by combining retrograde transport of biotin dextran amine, injected into the antidromically identified oculomotor nucleus, and GABA immunohistochemistry. The main source of GABAergic afferents to the oculomotor nucleus was the ipsilateral anterior octaval nucleus, with only a few, if any, GABAergic neurons being located in the contralateral tangential and descending nuclei of the octaval column. In mammals there is a nearly exclusive ipsilateral projection from vestibular neurons to the oculomotor nucleus via GABAergic inhibitory inputs; thus, the vestibulooculomotor GABAergic circuitry follows a plan that appears to be shared throughout the vertebrate phylogeny. The second major source of GABAergic projections was the rhombencephalic reticular formation, primarily from the medial area but, to a lesser extent, from the inferior area. A few GABAergic oculomotor projecting neurons were also observed in the ipsilateral nucleus of the medial longitudinal fasciculus. The GABAergic projections from neurons located in both the reticular formation surrounding the abducens nucleus and the nucleus of the medial reticular formation have primarily been related to the control of saccadic eye movements. Finally, all retrogradely labeled internuclear neurons of the abducens nucleus, and neurons in the cerebellum (close to the caudal lobe, were negative for GABA. These data suggest that the vestibuloocular and saccadic inhibitory GABAergic systems appear early in vertebrate phylogeny to modulate the firing properties of the oculomotor nucleus motoneurons.

  3. Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus

    Directory of Open Access Journals (Sweden)

    Zesemdorj Otgon-Uul

    2016-08-01

    Full Text Available Objective: The dorsomedial hypothalamus (DMH has been considered an orexigenic nucleus, since the DMH lesion reduced food intake and body weight and induced resistance to diet-induced obesity. The DMH expresses feeding regulatory neuropeptides and receptors including neuropeptide Y (NPY, cocaine- and amphetamine-regulated transcript (CART, cholecystokinin (CCK, leptin receptor, and melanocortin 3/4 receptors. However, the principal neurons generating the orexigenic function in the DMH remain to be defined. This study aimed to clarify the role of the DMH GABAergic neurons in feeding regulation by using optogenetics and electrophysiological techniques. Methods: We generated the mice expressing ChRFR-C167A, a bistable chimeric channelrhodopsin, selectively in GABAergic neurons of DMH via locally injected adeno-associated virus 2. Food intake after optogenetic activation of DMH GABAergic neurons was measured. Electrophysiological properties of DMH GABAergic neurons were measured using slice patch clamp. Results: Optogenetic activation of DMH GABAergic neurons promoted food intake. Leptin hyperpolarized and lowering glucose depolarized half of DMH GABAergic neurons, suggesting their orexigenic property. Optical activation of axonal terminals of DMH GABAergic neurons at the paraventricular nucleus of hypothalamus (PVN, where anorexigenic neurons are localized, increased inhibitory postsynaptic currents on PVN neurons and promoted food intake. Conclusion: DMH GABAergic neurons are regulated by metabolic signals leptin and glucose and, once activated, promote food intake via inhibitory synaptic transmission to PVN. Keywords: Dorsomedial hypothalamus, GABAergic neuron, Feeding, Leptin, Glucose, Optogenetics

  4. Rhythmic Firing of Pedunculopontine Tegmental Nucleus Neurons in Monkeys during Eye Movement Task.

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Okada

    Full Text Available The pedunculopontine tegmental nucleus (PPTN has been thought to be involved in the control of behavioral state. Projections to the entire thalamus and reciprocal connections with the basal ganglia nuclei suggest a potential role for the PPTN in the control of various rhythmic behaviors, including waking/sleeping and locomotion. Recently, rhythmic activity in the local field potentials was recorded from the PPTN of patients with Parkinson's disease who were treated with levodopa, suggesting that rhythmic firing is a feature of the functioning PPTN and might change with the behaving conditions even within waking. However, it remains unclear whether and how single PPTN neurons exhibit rhythmic firing patterns during various behaving conditions, including executing conditioned eye movement behaviors, seeking reward, or during resting. We previously recorded from PPTN neurons in healthy monkeys during visually guided saccade tasks and reported task-related changes in firing rate, and in this paper, we reanalyzed these data and focused on their firing patterns. A population of PPTN neurons demonstrated a regular firing pattern in that the coefficient of variation of interspike intervals was lower than what would be expected of theoretical random and irregular spike trains. Furthermore, a group of PPTN neurons exhibited a clear periodic single spike firing that changed with the context of the behavioral task. Many of these neurons exhibited a periodic firing pattern during highly active conditions, either the fixation condition during the saccade task or the free-viewing condition during the intertrial interval. We speculate that these task context-related changes in rhythmic firing of PPTN neurons might regulate the monkey's attentional and vigilance state to perform the task.

  5. Orexins excite ventrolateral geniculate nucleus neurons predominantly via OX2 receptors.

    Science.gov (United States)

    Chrobok, Lukasz; Palus, Katarzyna; Lewandowski, Marian Henryk

    2016-04-01

    Orexins/hypocretins are two neuropeptides that influence many behaviours, such as feeding, sleep or arousal. Orexin A/hypocretin-1 (OXA) and orexin B/hypocretin-2 (OXB) bind to two metabotropic receptors, named the OX1 and OX2 receptors. The lateral geniculate complex of the thalamus is one of the many targets of orexinergic fibres derived from the lateral hypothalamus, although the impact of orexins on the ventrolateral geniculate nucleus (VLG) is poorly understood. The VLG, an important relay station of the subcortical visual system, is implicated in visuomotor and/or circadian processes. Therefore, in this study we evaluated the effects of orexins on single VLG neurons using a patch-clamp technique in vitro. Surprisingly, orexins depolarised the majority of the recorded neurons regardless of their localisation in the borders of the VLG. In addition, data presented in this article show that neurons synthesising NO were also affected by OXA. Moreover, immunohistochemical staining of OXB revealed the moderate density of orexinergic fibbers in the VLG. Our study using specific orexin receptor antagonists suggests that the OX2 receptor has a dominant role in the observed effects of OXA. To our knowledge, this article is the first to show orexinergic modulation of the VLG. These findings strengthen the postulated link between orexins and the circadian system, and propose a new role of these neuropeptides in the modulation of visuomotor functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of VPAC1 activation in nucleus ambiguus neurons.

    Science.gov (United States)

    Gherghina, Florin Liviu; Tica, Andrei Adrian; Deliu, Elena; Abood, Mary E; Brailoiu, G Cristina; Brailoiu, Eugen

    2017-02-15

    The pituitary adenylyl cyclase-activating polypeptide (PACAP) and its G protein-coupled receptors, PAC1, VPAC1 and VPAC2 form a system involved in a variety of biological processes. Although some sympathetic stimulatory effects of this system have been reported, its central cardiovascular regulatory properties are poorly characterized. VPAC1 receptors are expressed in the nucleus ambiguus (nAmb), a key center controlling cardiac parasympathetic tone. In this study, we report that selective VPAC1 activation in rhodamine-labeled cardiac vagal preganglionic neurons of the rat nAmb produces inositol 1,4,5-trisphosphate receptor-mediated Ca 2+ mobilization, membrane depolarization and activation of P/Q-type Ca 2+ channels. In vivo, this pathway converges onto transient reduction in heart rate of conscious rats. Therefore we demonstrate a VPAC1-dependent mechanism in the central parasympathetic regulation of the heart rate, adding to the complexity of PACAP-mediated cardiovascular modulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effects of cevimeline on excitability of parasympathetic preganglionic neurons in the superior salivatory nucleus of rats.

    Science.gov (United States)

    Mitoh, Yoshihiro; Ueda, Hirotaka; Ichikawa, Hiroyuki; Fujita, Masako; Kobashi, Motoi; Matsuo, Ryuji

    2017-09-01

    The superior salivatory nucleus (SSN) contains parasympathetic preganglionic neurons innervating the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor (mAChR) agonist, is a sialogogue that possibly stimulates SSN neurons in addition to the salivary glands themselves because it can cross the blood-brain barrier (BBB). In the present study, we examined immunoreactivities for mAChR subtypes in SSN neurons retrogradely labeled with a fluorescent tracer in neonatal rats. Additionally, we examined the effects of cevimeline in labeled SSN neurons of brainstem slices using a whole-cell patch-clamp technique. Mainly M1 and M3 receptors were detected by immunohistochemical staining, with low-level detection of M4 and M5 receptors and absence of M2 receptors. Most (110 of 129) SSN neurons exhibited excitatory responses to application of cevimeline. In responding neurons, voltage-clamp recordings showed that 84% (101/120) of the neurons exhibited inward currents. In the neurons displaying inward currents, the effects of the mAChR antagonists were examined. A mixture of M1 and M3 receptor antagonists most effectively reduced the peak amplitude of inward currents, suggesting that the excitatory effects of cevimeline on SSN neurons were mainly mediated by M1 and M3 receptors. Current-clamp recordings showed that application of cevimeline induced membrane depolarization (9/9 neurons). These results suggest that most SSN neurons are excited by cevimeline via M1 and M3 muscarinic receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Two distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus and their cholinergic responsiveness.

    Science.gov (United States)

    Beatty, J A; Sylwestrak, E L; Cox, C L

    2009-08-04

    The lateral parafascicular nucleus (lPf) is a member of the intralaminar thalamic nuclei, a collection of nuclei that characteristically provides widespread projections to the neocortex and basal ganglia and is associated with arousal, sensory, and motor functions. Recently, lPf neurons have been shown to possess different characteristics than other cortical-projecting thalamic relay neurons. We performed whole cell recordings from lPf neurons using an in vitro rat slice preparation and found two distinct neuronal subtypes that were differentiated by distinct morphological and physiological characteristics: diffuse and bushy. Diffuse neurons, which had been previously described, were the predominant neuronal subtype (66%). These neurons had few, poorly-branching, extended dendrites, and rarely displayed burst-like action potential discharge, a ubiquitous feature of thalamocortical relay neurons. Interestingly, we discovered a smaller population of bushy neurons (34%) that shared similar morphological and physiological characteristics with thalamocortical relay neurons of primary sensory thalamic nuclei. In contrast to other thalamocortical relay neurons, activation of muscarinic cholinergic receptors produced a membrane hyperpolarization via activation of M(2) receptors in most lPf neurons (60%). In a minority of lPf neurons (33%), muscarinic agonists produced a membrane depolarization via activation of predominantly M(3) receptors. The muscarinic receptor-mediated actions were independent of lPf neuronal subtype (i.e. diffuse or bushy neurons); however the cholinergic actions were correlated with lPf neurons with different efferent targets. Retrogradely-labeled lPf neurons from frontal cortical fluorescent bead injections primarily consisted of bushy type lPf neurons (78%), but more importantly, all of these neurons were depolarized by muscarinic agonists. On the other hand, lPf neurons labeled by striatal injections were predominantly hyperpolarized by muscarinic

  9. Neurokinin B-producing projection neurons in the lateral stripe of the striatum and cell clusters of the accumbens nucleus in the rat.

    Science.gov (United States)

    Zhou, Ligang; Furuta, Takahiro; Kaneko, Takeshi

    2004-12-06

    Neurons producing preprotachykinin B (PPTB), the precursor of neurokinin B, constitute 5% of neurons in the dorsal striatum and project to the substantia innominata (SI) selectively. In the ventral striatum, PPTB-producing neurons are collected mainly in the lateral stripe of the striatum (LSS) and cell clusters of the accumbens nucleus (Acb). In the present study, we first examined the distribution of PPTB-immunoreactive neurons in rat ventral striatum and found that a large part of the PPTB-immunoreactive cell clusters was continuous to the LSS, but a smaller part was not. Thus, we divided the PPTB-immunoreactive cell clusters into the LSS-associated and non-LSS-associated ones. We next investigated the projection targets of the PPTB-producing ventral striatal neurons by combining immunofluorescence labeling and retrograde tracing. After injection of Fluoro-Gold into the basal component of the SI (SIb) and medial part of the interstitial nucleus of posterior limb of the anterior commissure, many PPTB-immunoreactive neurons were retrogradely labeled in the LSS-associated cell clusters and LSS, respectively. When the injection site included the ventral part of the sublenticular component of the SI(SIsl), retrogradely labeled neurons showed PPTB-immunoreactivity frequently in non-LSS-associated cell clusters. Furthermore, these PPTB-immunoreactive projections were confirmed by the double-fluorescence method after anterograde tracer injection into the ventral striatum containing the cell clusters. Since the dorsalmost part of the SIsl is known to receive strong inputs from PPTB-producing dorsal striatal neurons, the present results indicate that PPTB-producing ventral striatal neurons project to basal forebrain target regions in parallel with dorsal striatal neurons without significant convergence. 2004 Wiley-Liss, Inc.

  10. Effect of Electroacupuncture at ST36 on Gastric-Related Neurons in Spinal Dorsal Horn and Nucleus Tractus Solitarius

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    2013-01-01

    Full Text Available The aim of this study was to observe the effect of electroacupuncture (EA at the ST36 acupoint on the firing rate of gastric-related neurons in the spinal dorsal horn (SDH and nucleus tractus solitarius (NTS. There were different effects of gastric distention in SDH and NTS in 46 male Sprague-Dawley rats. In 10 excitatory neurons in SDH, most of the neurons were inhibited by homolateral EA. The firing rates decreased significantly (P<0.05 in 10 excitatory gastric-related neurons in NTS; the firing rates of 6 neurons were further excited by homolateral EA, with a significant increase of the firing rates (P<0.05; all inhibitory gastric-related neurons in NTS were excited by EA. The inhibition rate of homolateral EA was significantly increased in comparison with contralateral EA in gastric-related neurons of SDH (P<0.05. There was no significant difference between homolateral and contralateral EA in gastric-related neurons of NTS. EA at ST36 changes the firing rate of gastric-related neurons in SDH and NTS. However, there are some differences in responsive mode in these neurons. The existence of these differences could be one of the physiological foundations of diversity and complexity in EA effects.

  11. Glucose and insulin induce Ca2+ signaling in nesfatin-1 neurons in the hypothalamic paraventricular nucleus.

    Science.gov (United States)

    Gantulga, Darambazar; Maejima, Yuko; Nakata, Masanori; Yada, Toshihiko

    2012-04-20

    Nucleobindin-2 derived nesfatin-1 in the hypothalamic paraventricular nucleus (PVN) plays a role in inhibition of feeding. The neural pathways downstream of PVN nesfatin-1 have been extensively investigated. However, regulation of the PVN nesfatin-1 neurons remains unclear. Since starvation decreases and refeeding stimulates nesfatin-1 expression specifically in the PVN, this study aimed to clarify direct effects of meal-evoked metabolic factors, glucose and insulin, on PVN nesfatin-1 neurons. High glucose (10mM) and insulin (10(-13)M) increased cytosolic calcium concentration ([Ca(2+)](i)) in 55 of 331 (16.6%) and 32 of 249 (12.9%) PVN neurons, respectively. Post [Ca(2+)](i) measurement immunocytochemistry identified that 58.2% of glucose-responsive and 62.5% of insulin-responsive neurons were immunoreactive to nesfatin-1. Furthermore, a fraction of the glucose-responsive nesfatin-1 neurons also responded to insulin, and vice versa. Some of the neurons that responded to neither glucose nor insulin were recruited to [Ca(2+)](i) increases by glucose and insulin in combination. Our data demonstrate that glucose and insulin directly interact with and increase [Ca(2+)](i) in nesfatin-1 neurons in the PVN, and that the nesfatin-1 neuron is the primary target for them in the PVN. The results suggest that high glucose- and insulin-induced activation of PVN nesfatin-1 neurons serves as a mechanism through which meal ingestion stimulates nesfatin-1 neurons in the PVN and thereby produces satiety. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.

    Science.gov (United States)

    Beaumont, Eric; Campbell, Regenia P; Andresen, Michael C; Scofield, Stephanie; Singh, Krishna; Libbus, Imad; KenKnight, Bruce H; Snyder, Logan; Cantrell, Nathan

    2017-08-01

    Vagus nerve stimulation (VNS) currently treats patients with drug-resistant epilepsy, depression, and heart failure. The mild intensities used in chronic VNS suggest that primary visceral afferents and central nervous system activation are involved. Here, we measured the activity of neurons in the nucleus of the solitary tract (NTS) in anesthetized rats using clinically styled VNS. Our chief findings indicate that VNS at threshold bradycardic intensity activated NTS neuron discharge in one-third of NTS neurons. This VNS directly activated only myelinated vagal afferents projecting to second-order NTS neurons. Most VNS-induced activity in NTS, however, was unsynchronized to vagal stimuli. Thus, VNS activated unsynchronized activity in NTS neurons that were second order to vagal afferent C-fibers as well as higher-order NTS neurons only polysynaptically activated by the vagus. Overall, cardiovascular-sensitive and -insensitive NTS neurons were similarly activated by VNS: 3/4 neurons with monosynaptic vagal A-fiber afferents, 6/42 neurons with monosynaptic vagal C-fiber afferents, and 16/21 polysynaptic NTS neurons. Provocatively, vagal A-fibers indirectly activated C-fiber neurons during VNS. Elevated spontaneous spiking was quantitatively much higher than synchronized activity and extended well into the periods of nonstimulation. Surprisingly, many polysynaptic NTS neurons responded to half the bradycardic intensity used in clinical studies, indicating that a subset of myelinated vagal afferents is sufficient to evoke VNS indirect activation. Our study uncovered a myelinated vagal afferent drive that indirectly activates NTS neurons and thus central pathways beyond NTS and support reconsideration of brain contributions of vagal afferents underpinning of therapeutic impacts. NEW & NOTEWORTHY Acute vagus nerve stimulation elevated activity in neurons located in the medial nucleus of the solitary tract. Such stimuli directly activated only myelinated vagal afferents

  13. Lowering glucose level elevates [Ca2+]i in hypothalamic arcuate nucleus NPY neurons through P/Q-type Ca2+ channel activation and GSK3β inhibition

    Science.gov (United States)

    Chen, Yu; Zhou, Jun; Xie, Na; Huang, Chao; Zhang, Jun-qi; Hu, Zhuang-li; Ni, Lan; Jin, You; Wang, Fang; Chen, Jian-guo; Long, Li-hong

    2012-01-01

    Aim: To identify the mechanisms underlying the elevation of intracellular Ca2+ level ([Ca2+]i) induced by lowering extracellular glucose in rat hypothalamic arcuate nucleus NPY neurons. Methods: Primary cultures of hypothalamic arcuate nucleus (ARC) neurons were prepared from Sprague-Dawley rats. NPY neurons were identified with immunocytochemical method. [Ca2+]i was measured using fura-2 AM. Ca2+ current was recorded using whole-cell patch clamp recording. AMPK and GSK3β levels were measured using Western blot assay. Results: Lowering glucose level in the medium (from 10 to 1 mmol/L) induced a transient elevation of [Ca2+]i in ARC neurons, but not in hippocampal and cortical neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons depended on extracellular Ca2+, and was blocked by P/Q-type Ca2+channel blocker ω-agatoxin TK (100 nmol/L), but not by L-type Ca2+ channel blocker nifedipine (10 μmol/L) or N-type Ca2+channel blocker ω-conotoxin GVIA (300 nmol/L). Lowering glucose level increased the peak amplitude of high voltage-activated Ca2+ current in ARC neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons was blocked by the AMPK inhibitor compound C (20 μmol/L), and enhanced by the GSK3β inhibitor LiCl (10 mmol/L). Moreover, lowering glucose level induced the phosphorylation of AMPK and GSK3β, which was inhibited by compound C (20 μmol/L). Conclusion: Lowering glucose level enhances the activity of P/Q type Ca2+channels and elevates [Ca2+]i level in hypothalamic arcuate nucleus neurons via inhibition of GSK3β. PMID:22504905

  14. Collective behaviors of suprachiasm nucleus neurons under different light—dark cycles

    International Nuclear Information System (INIS)

    Gu Chang-Gui; Liu Zong-Hua; Zhang Xin-Hua

    2014-01-01

    The principal circadian clock in the suprachiasm nucleus (SCN) regulates the circadian rhythm of physiological and behavioral activities of mammals. Except for the normal function of the circadian rhythm, the ensemble of SCN neurons may show two collective behaviors, i.e., a free running period in the absence of a light—dark cycle and an entrainment ability to an external T cycle. Experiments show that both the free running periods and the entrainment ranges may vary from one species to another and can be seriously influenced by the coupling among the SCN neurons. We here review the recent progress on how the heterogeneous couplings influence these two collective behaviors. We will show that in the case of homogeneous coupling, the free running period increases monotonically while the entrainment range decreases monotonically with the increase of the coupling strength. While in the case of heterogenous coupling, the dispersion of the coupling strength plays a crucial role. It has been found that the free running period decreases with the increase of the dispersion while the entrainment ability is enhanced by the dispersion. These findings provide new insights into the mechanism of the circadian clock in the SCN. (topical review - statistical physics and complex systems)

  15. Ih equalizes membrane input resistance in a heterogeneous population of fusiform neurons in the dorsal cochlear nucleus.

    Directory of Open Access Journals (Sweden)

    Cesar Celis Ceballos

    2016-10-01

    Full Text Available In a neuronal population, several combinations of its ionic conductances are used to attain a specific firing phenotype. Some neurons present heterogeneity in their firing, generally produced by expression of a specific conductance, but how additional conductances vary along in order to homeostatically regulate membrane excitability is less known. Dorsal cochlear nucleus principal neurons, fusiform neurons, display heterogeneous spontaneous action potential activity and thus represent an appropriate model to study the role of different conductances in establishing firing heterogeneity. Particularly, fusiform neurons are divided into quiet, with no spontaneous firing, or active neurons, presenting spontaneous, regular firing. These modes are determined by the expression levels of an intrinsic membrane conductance, an inwardly rectifying potassium current (IKir. In this work, we tested whether other subthreshold conductances vary homeostatically to maintain membrane excitability constant across the two subtypes. We found that Ih expression covaries specifically with IKir in order to maintain membrane resistance constant. The impact of Ih on membrane resistance is dependent on the level of IKir expression, being much smaller in quiet neurons with bigger IKir, but Ih variations are not relevant for creating the quiet and active phenotypes. Finally, we demonstrate that the individual proportion of each conductance, and not their absolute conductance, is relevant for determining the neuronal firing mode. We conclude that in fusiform neurons the variations of their different subthreshold conductances are limited to specific conductances in order to create firing heterogeneity and maintain membrane homeostasis.

  16. Dynamic stereotypic responses of Basal Ganglia neurons to subthalamic nucleus high-frequency stimulation in the parkinsonian primate.

    Science.gov (United States)

    Moran, Anan; Stein, Edward; Tischler, Hadass; Belelovsky, Katya; Bar-Gad, Izhar

    2011-01-01

    Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is a well-established therapy for patients with severe Parkinson's disease (PD); however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia (BG) during high-frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro-stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, BG output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial effect of DBS in PD.

  17. Dynamic stereotypic responses of basal ganglia neurons to subthalamic nucleus high frequency stimulation in the parkinsonian primate

    Directory of Open Access Journals (Sweden)

    Anan eMoran

    2011-04-01

    Full Text Available Deep brain stimulation in the subthalamic nucleus (STN is a well-established therapy for patients with severe Parkinson‟s disease (PD; however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia during high frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, basal ganglia output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial

  18. Responses of Rostral Fastigial Nucleus Neurons of Conscious Cats to Rotations in Vertical Planes

    Science.gov (United States)

    Miller, D. M.; Cotter, L.A.; Gandhi, N. J.; Schor, R. H.; Huff, N. O.; Raj, S. G.; Shulman, J. A.; Yates, B. J.

    2008-01-01

    The rostral fastigial nucleus (RFN) of the cerebellum is thought to play an important role in postural control, and recent studies in conscious nonhuman primates suggest that this region also participates in the sensory processing required to compute body motion in space. The goal of the present study was to examine the dynamic and spatial responses to sinusoidal rotations in vertical planes of RFN neurons in conscious cats, and determine if they are similar to responses reported for monkeys. Approximately half of the RFN neurons examined were classified as graviceptive, since their firing was synchronized with stimulus position and the gain of their responses was relatively unaffected by the frequency of the tilts. The large majority (80%) of graviceptive RFN neurons were activated by pitch rotations. Most of the remaining RFN units exhibited responses to vertical oscillations that encoded stimulus velocity, and approximately 50% of these velocity units had a response vector orientation aligned near the plane of a single vertical semicircular canal. Unlike in primates, few feline RFN neurons had responses to vertical rotations that suggested integration of graviceptive (otolith) and velocity (vertical semicircular canal) signals. These data indicate that the physiological role of the RFN may differ between primates and lower mammals. The RFN in rats and cats in known to be involved in adjusting blood pressure and breathing during postural alterations in the transverse (pitch) plane. The relatively simple responses of many RFN neurons in cats are appropriate for triggering such compensatory autonomic responses. PMID:18571332

  19. Arcuate NPY neurons sense and integrate peripheral metabolic signals to control feeding.

    Science.gov (United States)

    Kohno, Daisuke; Yada, Toshihiko

    2012-12-01

    NPY neuron in the hypothalamic arcuate nucleus is a key feeding center. Studies have shown that NPY neuron in the arcuate nucleus has a role to induce food intake. The arcuate nucleus is structurally unique with lacking blood brain barrier. Peripheral energy signals including hormones and nutrition can reach the arcuate nucleus. In this review, we discuss sensing and integrating peripheral signals in NPY neurons. In the arcuate nucleus, ghrelin mainly activates NPY neurons. Leptin and insulin suppress the ghrelin-induced activation in 30-40% of the ghrelin-activated NPY neurons. Lowering glucose concentration activates 40% of NPY neurons. These results indicate that NPY neuron in the arcuate nucleus is a feeding center in which major peripheral energy signals are directly sensed and integrated. Furthermore, there are subpopulations of NPY neurons in regard to their responsiveness to peripheral signals. These findings suggest that NPY neuron in the arcuate nucleus is an essential feeding center to induce food intake in response to peripheral metabolic state. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. H2O2 INDUCES DELAYED HYPEREXCITABILITY IN NUCLEUS TRACTUS SOLITARII NEURONS

    Science.gov (United States)

    Ostrowski, Tim D.; Hasser, Eileen M.; Heesch, Cheryl M.; Kline, David D.

    2014-01-01

    Hydrogen peroxide (H2O2) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H2O2 is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H2O2 modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10 – 500 μM H2O2. However, 500 μM H2O2 modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance, hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H2O2 increased conductance of barium-sensitive potassium currents, and block of these currents ablated H2O2-induced changes in RMP, input resistance and AP discharge. Following washout of H2O2 AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H2O2 exposure. H2O2 effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H2O2 initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes. PMID:24397952

  1. Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders; Vrang, N.; Larsen, P.J.

    2003-01-01

    Hypothalamus, Circadian rhythm, Serotonin, Nucleus, Neuronal connections, Phaseolus vulgaris-leucoagglutinin (PHA-L), Cholera toxin (ChB)......Hypothalamus, Circadian rhythm, Serotonin, Nucleus, Neuronal connections, Phaseolus vulgaris-leucoagglutinin (PHA-L), Cholera toxin (ChB)...

  2. Functional and neurochemical characterization of angiotensin type 1A receptor-expressing neurons in the nucleus of the solitary tract of the mouse.

    Science.gov (United States)

    Carter, D A; Choong, Y-T; Connelly, A A; Bassi, J K; Hunter, N O; Thongsepee, N; Llewellyn-Smith, I J; Fong, A Y; McDougall, S J; Allen, A M

    2017-10-01

    Angiotensin II acts via two main receptors within the central nervous system, with the type 1A receptor (AT 1A R) most widely expressed in adult neurons. Activation of the AT 1 R in the nucleus of the solitary tract (NTS), the principal nucleus receiving central synapses of viscerosensory afferents, modulates cardiovascular reflexes. Expression of the AT 1 R occurs in high density within the NTS of most mammals, including humans, but the fundamental electrophysiological and neurochemical characteristics of the AT 1A R-expressing NTS neurons are not known. To address this, we have used a transgenic mouse, in which the AT 1A R promoter drives expression of green fluorescent protein (GFP). Approximately one-third of AT 1A R-expressing neurons express the catecholamine-synthetic enzyme tyrosine hydroxylase (TH), and a subpopulation of these stained for the transcription factor paired-like homeobox 2b (Phox2b). A third group, comprising approximately two-thirds of the AT 1A R-expressing NTS neurons, showed Phox2b immunoreactivity alone. A fourth group in the ventral subnucleus expressed neither TH nor Phox2b. In whole cell recordings from slices in vitro, AT 1A R-GFP neurons exhibited voltage-activated potassium currents, including the transient outward current and the M-type potassium current. In two different mouse strains, both AT 1A R-GFP neurons and TH-GFP neurons showed similar AT 1A R-mediated depolarizing responses to superfusion with angiotensin II. These data provide a comprehensive description of AT 1A R-expressing neurons in the NTS and increase our understanding of the complex actions of this neuropeptide in the modulation of viscerosensory processing. Copyright © 2017 the American Physiological Society.

  3. Glucose Induces Slow-Wave Sleep by Exciting the Sleep-Promoting Neurons in the Ventrolateral Preoptic Nucleus: A New Link between Sleep and Metabolism.

    Science.gov (United States)

    Varin, Christophe; Rancillac, Armelle; Geoffroy, Hélène; Arthaud, Sébastien; Fort, Patrice; Gallopin, Thierry

    2015-07-08

    Sleep-active neurons located in the ventrolateral preoptic nucleus (VLPO) play a crucial role in the induction and maintenance of slow-wave sleep (SWS). However, the cellular and molecular mechanisms responsible for their activation at sleep onset remain poorly understood. Here, we test the hypothesis that a rise in extracellular glucose concentration in the VLPO can promote sleep by increasing the activity of sleep-promoting VLPO neurons. We find that infusion of a glucose concentration into the VLPO of mice promotes SWS and increases the density of c-Fos-labeled neurons selectively in the VLPO. Moreover, we show in patch-clamp recordings from brain slices that VLPO neurons exhibiting properties of sleep-promoting neurons are selectively excited by glucose within physiological range. This glucose-induced excitation implies the catabolism of glucose, leading to a closure of ATP-sensitive potassium (KATP) channels. The extracellular glucose concentration monitors the gating of KATP channels of sleep-promoting neurons, highlighting that these neurons can adapt their excitability according to the extracellular energy status. Together, these results provide evidence that glucose may participate in the mechanisms of SWS promotion and/or consolidation. Although the brain circuitry underlying vigilance states is well described, the molecular mechanisms responsible for sleep onset remain largely unknown. Combining in vitro and in vivo experiments, we demonstrate that glucose likely contributes to sleep onset facilitation by increasing the excitability of sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO). We find here that these neurons integrate energetic signals such as ambient glucose directly to regulate vigilance states accordingly. Glucose-induced excitation of sleep-promoting VLPO neurons should therefore be involved in the drowsiness that one feels after a high-sugar meal. This novel mechanism regulating the activity of VLPO neurons reinforces the

  4. Neurogenetic and morphogenetic heterogeneity in the bed nucleus of the stria terminalis

    International Nuclear Information System (INIS)

    Bayer, S.A.

    1987-01-01

    Neurogenesis and morphogenesis in the rat bed nucleus of the stria terminalis (strial bed nucleus) were examined with [ 3 H]thymidine autoradiography. For neurogenesis, the experimental animals were the offspring of pregnant females given an injection of [ 3 H]thymidine on 2 consecutive gestational days. Nine groups of embryos were exposed to [ 3 H]thymidine on E13-E14, E14-E15,... E21-E22, respectively. On P60, the percentage of labeled cells and the proportion of cells originating during 24-hour periods were quantified at six anteroposterior levels in the strial bed nucleus. On the basis of neurogenetic gradients, the strial bed nucleus was divided into anterior and posterior parts. The anterior strial bed nucleus shows a caudal (older) to rostral (younger) neurogenetic gradient. Cells in the vicinity of the anterior commissural decussation are generated mainly between E13 and E16, cells just posterior to the nucleus accumbens mainly between E15 and E17. Within each rostrocaudal level, neurons originate in combined dorsal to ventral and medial to lateral neurogenetic gradients so that the oldest cells are located ventromedially and the youngest cells dorsolaterally. The most caudal level has some small neurons adjacent to the internal capsule that originate between E17 and E20. In the posterior strial bed nucleus, neurons extend ventromedially into the posterior preoptic area. Cells are generated simultaneously along the rostrocaudal plane in a modified lateral (older) to medial (younger) neurogenetic gradient. Ventrolateral neurons originate mainly between E13 and E16, dorsolateral neurons mainly between E15 and E16, and medial neurons mainly between E15 and E17. The youngest neurons are clumped into a medial core area just ventral to the fornix

  5. High and low frequency stimulation of the subthalamic nucleus induce prolonged changes in subthalamic and globus pallidus neurons

    Directory of Open Access Journals (Sweden)

    Hagar eLavian

    2013-12-01

    Full Text Available High frequency stimulation (HFS of the subthalamic nucleus (STN is widely used to treat the symptoms of Parkinson’s disease but the mechanism of this therapy is unclear. Using a rat brain slice preparation maintaining the connectivity between the STN and one of its target nuclei, the globus pallidus (GP, we investigated the effects of high and low frequency stimulation (HFS 100 Hz, LFS 10 Hz on activity of single neurons in the STN and GP. Both HFS and LFS caused changes in firing frequency and pattern of subthalamic and pallidal neurons. These changes were of synaptic origin, as they were abolished by glutamate and GABA antagonists. Both HFS and LFS also induced a long-lasting reduction in firing frequency in STN neurons possibly contending a direct causal link between HFS and the outcome DBS. In the GP both HFS and LFS induced either a long-lasting depression, or less frequently, a long-lasting excitation. Thus, in addition to the intrinsic activation of the stimulated neurons, long-lasting stimulation of the STN may trigger prolonged biochemical processes.

  6. Distinct roles of presynaptic dopamine receptors in the differential modulation of the intrinsic synapses of medium-spiny neurons in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Schmauss Claudia

    2007-01-01

    Full Text Available Abstract Background In both schizophrenia and addiction, pathological changes in dopamine release appear to induce alterations in the circuitry of the nucleus accumbens that affect coordinated thought and motivation. Dopamine acts principally on medium-spiny GABA neurons, which comprise 95% of accumbens neurons and give rise to the majority of inhibitory synapses in the nucleus. To examine dopamine action at single medium-spiny neuron synapses, we imaged Ca2+ levels in their presynaptic varicosities in the acute brain slice using two-photon microscopy. Results Presynaptic Ca2+ rises were differentially modulated by dopamine. The D1/D5 selective agonist SKF81297 was exclusively facilitatory. The D2/D3 selective agonist quinpirole was predominantly inhibitory, but in some instances it was facilitatory. Studies using D2 and D3 receptor knockout mice revealed that quinpirole inhibition was either D2 or D3 receptor-mediated, while facilitation was mainly D3 receptor-mediated. Subsets of varicosities responded to both D1 and D2 agonists, showing that there was significant co-expression of these receptor families in single medium-spiny neurons. Neighboring presynaptic varicosities showed strikingly heterogeneous responses to DA agonists, suggesting that DA receptors may be differentially trafficked to individual varicosities on the same medium-spiny neuron axon. Conclusion Dopamine receptors are present on the presynaptic varicosities of medium-spiny neurons, where they potently control GABAergic synaptic transmission. While there is significant coexpression of D1 and D2 family dopamine receptors in individual neurons, at the subcellular level, these receptors appear to be heterogeneously distributed, potentially explaining the considerable controversy regarding dopamine action in the striatum, and in particular the degree of dopamine receptor segregation on these neurons. Assuming that post-receptor signaling is restricted to the microdomains of

  7. Competitor suppresses neuronal representation of food reward in the nucleus accumbens/medial striatum of domestic chicks.

    Science.gov (United States)

    Amita, Hidetoshi; Matsushima, Toshiya

    2014-07-15

    To investigate the role of social contexts in controlling the neuronal representation of food reward, we recorded single neuron activity in the medial striatum/nucleus accumbens of domestic chicks and examined whether activities differed between two blocks with different contexts. Chicks were trained in an operant task to associate light-emitting diode color cues with three trial types that differed in the type of food reward: no reward (S-), a small reward/short-delay option (SS), and a large reward/long-delay alternative (LL). Amount and duration of reward were set such that both of SS and LL were chosen roughly equally. Neurons showing distinct cue-period activity in rewarding trials (SS and LL) were identified during an isolation block, and activity patterns were compared with those recorded from the same neuron during a subsequent pseudo-competition block in which another chick was allowed to forage in the same area, but was separated by a transparent window. In some neurons, cue-period activity was lower in the pseudo-competition block, and the difference was not ascribed to the number of repeated trials. Comparison at neuronal population level revealed statistically significant suppression in the pseudo-competition block in both SS and LL trials, suggesting that perceived competition generally suppressed the representation of cue-associated food reward. The delay- and reward-period activities, however, did not significantly different between blocks. These results demonstrate that visual perception of a competitive forager per se weakens the neuronal representation of predicted food reward. Possible functional links to impulse control are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Variable Action Potential Backpropagation during Tonic Firing and Low-Threshold Spike Bursts in Thalamocortical But Not Thalamic Reticular Nucleus Neurons.

    Science.gov (United States)

    Connelly, William M; Crunelli, Vincenzo; Errington, Adam C

    2017-05-24

    Backpropagating action potentials (bAPs) are indispensable in dendritic signaling. Conflicting Ca 2+ -imaging data and an absence of dendritic recording data means that the extent of backpropagation in thalamocortical (TC) and thalamic reticular nucleus (TRN) neurons remains unknown. Because TRN neurons signal electrically through dendrodendritic gap junctions and possibly via chemical dendritic GABAergic synapses, as well as classical axonal GABA release, this lack of knowledge is problematic. To address this issue, we made two-photon targeted patch-clamp recordings from rat TC and TRN neuron dendrites to measure bAPs directly. These recordings reveal that "tonic"' and low-threshold-spike (LTS) "burst" APs in both cell types are always recorded first at the soma before backpropagating into the dendrites while undergoing substantial distance-dependent dendritic amplitude attenuation. In TC neurons, bAP attenuation strength varies according to firing mode. During LTS bursts, somatic AP half-width increases progressively with increasing spike number, allowing late-burst spikes to propagate more efficiently into the dendritic tree compared with spikes occurring at burst onset. Tonic spikes have similar somatic half-widths to late burst spikes and undergo similar dendritic attenuation. In contrast, in TRN neurons, AP properties are unchanged between LTS bursts and tonic firing and, as a result, distance-dependent dendritic attenuation remains consistent across different firing modes. Therefore, unlike LTS-associated global electrical and calcium signals, the spatial influence of bAP signaling in TC and TRN neurons is more restricted, with potentially important behavioral-state-dependent consequences for synaptic integration and plasticity in thalamic neurons. SIGNIFICANCE STATEMENT In most neurons, action potentials (APs) initiate in the axosomatic region and propagate into the dendritic tree to provide a retrograde signal that conveys information about the level of

  9. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster.

    Science.gov (United States)

    Willett, Jaime A; Johnson, Ashlyn G; Vogel, Andrea R; Patisaul, Heather B; McGraw, Lisa A; Meitzen, John

    2018-04-01

    Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and

  10. Age-related changes in functional postsynaptic nicotinic acetylcholine receptor subunits in neurons of the laterodorsal tegmental nucleus, a nucleus important in drug addiction.

    Science.gov (United States)

    Christensen, Mark H; Kohlmeier, Kristi A

    2016-03-01

    The earlier an individual initiates cigarette smoking, the higher the likelihood of development of dependency to nicotine, the addictive ingredient in cigarettes. One possible mechanism underlying this higher addiction liability is an ontogenetically differential cellular response induced by nicotine in neurons mediating the reinforcing or euphoric effects of this drug, which could arise from age-related differences in the composition of nicotinic acetylcholine receptor (nAChR) subunits. In the current study, we examined whether the subunit composition of nAChRs differed between neurons within the laterodorsal tegmentum (LDT), a nucleus importantly involved in drug addiction associated behaviours, across two periods of ontogeny in which nicotine-mediated excitatory responses were shown to depend on age. To this end, whole-cell patch-clamp recordings in mouse brain slices from identified LDT neurons, in combination with nAChR subunit-specific receptor antagonists, were conducted. Comparison of the contribution of different nAChR subunits to acetylcholine (ACh)-induced inward currents indicated that the contributions of the β2 and/or β4 and α7 nAChR subunits alter across age. Taken together, we conclude that across a limited ontogenetic period, there is plasticity in the subunit composition of nAChRs in LDT neurons. In addition, our data indicate, for the first time, functional presence of α6 nAChR subunits in LDT neurons within the age ranges studied. Changes in subunit composition of nAChRs across ontogeny could contribute to the age-related differential excitability induced by nicotine. Differences in the subunit composition of nAChRs within the LDT would be expected to contribute to ontogenetic-dependent outflow from the LDT to target regions, which include reward-related circuitry. © 2014 Society for the Study of Addiction.

  11. The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease)

    NARCIS (Netherlands)

    Rub, U; Brunt, ER; Gierga, K; Schultz, C; Paulson, H; de Vos, RAI; Braak, H

    The nucleus raphe interpositus (RIP) plays an important role in the premotor network for saccades. Its omnipause neurons gate the activity of the burst neurons for vertical saccades lying within the rostral interstitial nucleus of the medial longitudinal fascicle and that for horizontal saccades

  12. Molecular phenotyping of transient postnatal tyrosine hydroxylase neurons in the rat bed nucleus of the stria terminalis.

    Science.gov (United States)

    Carter, David A

    2017-07-01

    The bed nucleus of the stria terminalis (BNST) is a complex integrative centre in the forebrain, composed of multiple sub-nuclei, each with discrete populations of neurons. Progress in understanding BNST function, both in the adult and during postnatal maturation, is dependent upon a more complete characterization of neuronal phenotypes in the BNST. The aim of the current study was to define the molecular phenotype of one postnatal BNST neuronal population, in order to identify molecular factors that may underlie both (protein marker-related) immaturity, and secondly, the transience of this phenotype. This BNST population was originally identified by high, but transient expression of the EGR1 transcription factor (TF) in postnatal rat lateral intermediate BNST (BNSTLI). The current results confirm a high level of Egr1 activation in postnatal day 10 (PN10) male BNSTLI that is lost at PN40, and now demonstrate a similar pattern of transient activation in female brains. Apparent cellular immaturity in this population, as indicated by low levels of the adult neuronal marker NeuN/RBFOX3, was found to be uncorrelated with both key neuronal regulator protein expression (SOX2 and REST), and also RBFOX2 protein levels. The BNSTLI neurons have a partial catecholaminergic phenotype (tyrosine hydroxylase-positive/dopa decarboxylase-negative; TH+ve/DDC-ve) that is lost at PN40. In contrast, the co-expressed neuropeptide, somatostatin, is maintained, albeit at lower levels, at PN40. The transcriptional basis of the transient and partial catecholaminergic phenotype was investigated by analysing TFs known to maintain adult dopaminergic (TH+ve/DDC+ve) neuronal phenotypes. The BNSTLI neurons were shown to lack forkhead TFs including FOXA1, FOXA2 and FOXO1. In addition, the BNSTLI neurons had low, primarily cytoplasmic, expression of NR4A2/NURR1, an orphan nuclear receptor that is critical for adult maintenance of midbrain dopamine neurons. These results detail the molecular features

  13. CART neurons in the arcuate nucleus and lateral hypothalamic area exert differential controls on energy homeostasis

    Directory of Open Access Journals (Sweden)

    Jackie Lau

    2018-01-01

    Full Text Available Objective: The cocaine- and amphetamine-regulated transcript (CART codes for a pivotal neuropeptide important in the control of appetite and energy homeostasis. However, limited understanding exists for the defined effector sites underlying CART function, as discrepant effects of central CART administration have been reported. Methods: By combining Cart-cre knock-in mice with a Cart adeno-associated viral vector designed using the flip-excision switch (AAV-FLEX technology, specific reintroduction or overexpression of CART selectively in CART neurons in the arcuate nucleus (Arc and lateral hypothalamic area (LHA, respectively, was achieved. The effects on energy homeostasis control were investigated. Results: Here we show that CART neuron-specific reintroduction of CART into the Arc and LHA leads to distinct effects on energy homeostasis control. Specifically, CART reintroduction into the Arc of otherwise CART-deficient Cartcre/cre mice markedly decreased fat mass and body weight, whereas CART reintroduction into the LHA caused significant fat mass gain and lean mass loss, but overall unaltered body weight. The reduced adiposity in ArcCART;Cartcre/cre mice was associated with an increase in both energy expenditure and physical activity, along with significantly decreased Npy mRNA levels in the Arc but with no change in food consumption. Distinctively, the elevated fat mass in LHACART;Cartcre/cre mice was accompanied by diminished insulin responsiveness and glucose tolerance, greater spontaneous food intake, and reduced energy expenditure, which is consistent with the observed decrease of brown adipose tissue temperature. This is also in line with significantly reduced tyrosine hydroxylase (Th and notably increased corticotropin-releasing hormone (Crh mRNA expressions in the paraventricular nucleus (PVN. Conclusions: Taken together, these results identify catabolic and anabolic effects of CART in the Arc and LHA, respectively, demonstrating for

  14. Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms

    NARCIS (Netherlands)

    Buijs, Frederik N.; Guzmán-Ruiz, Mara; León-Mercado, Luis; Basualdo, Mari Carmen; Escobar, Carolina; Kalsbeek, Andries; Buijs, Ruud M.

    2017-01-01

    The suprachiasmatic nucleus (SCN) is generally considered the master clock, independently driving all circadian rhythms. We recently demonstrated the SCN receives metabolic and cardiovascular feedback adeptly altering its neuronal activity. In the present study, we show that microcuts effectively

  15. Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata)

    International Nuclear Information System (INIS)

    Watson, J.T.; Adkins-Regan, E.; Whiting, P.; Lindstrom, J.M.; Podleski, T.R.

    1988-01-01

    We have localized nicotinic acetylcholine receptors in the zebra finch brain by using three 125I-labelled ligands: alpha bungarotoxin and two monoclonal antibodies to neuronal nicotinic receptors. Unfixed brains from intact adult male and female zebra finches were prepared for in vitro autoradiography. Low-resolution film autoradiograms and high-resolution emulsion autoradiograms were prepared for each of the three ligands. The major brain structures that bind all three of the ligands are hippocampus; hyperstriatum dorsalis; hyperstriatum ventralis; nucleus lentiformis mesencephali; nucleus pretectalis, some layers of the optic tectum; nucleus mesencephalicus lateralis; pars dorsalis; locus ceruleus; and all cranial motor nuclei except nucleus nervi hypoglossi. The major structures labelled only by [125I]-alpha bungarotoxin binding included hyperstriatum accessorium and the nuclei: preopticus medialis, medialis hypothalami posterioris, semilunaris, olivarius inferior, and the periventricular organ. Of the song control nuclei, nucleus magnocellularis of the anterior neostriatum; hyperstriatum ventralis, pars caudalis; nucleus intercollicularis; and nucleus hypoglossus were labelled. The binding patterns of the two antibodies were similar to one another but not identical. Both labelled nucleus spiriformis lateralis and nucleus geniculatus lateralis, pars ventralis especially heavily and also labelled the nucleus habenula medialis; nucleus subpretectalis; nucleus isthmi, pars magnocellularis; nucleus reticularis gigantocellularis; nucleus reticularis lateralis; nucleus tractus solitarii; nucleus vestibularis dorsolateralis; nucleus vestibularis lateralis; nucleus descendens nervi trigemini; and the deep cerebellar nuclei

  16. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats.

    Science.gov (United States)

    Fujiyama, Fumino; Nakano, Takashi; Matsuda, Wakoto; Furuta, Takahiro; Udagawa, Jun; Kaneko, Takeshi

    2016-12-01

    The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.

  17. 18F-FDG PET imaging on the neuronal network of Parkinson's disease patients following deep brain stimulation of bilateral subthalamic nucleus

    International Nuclear Information System (INIS)

    Zuo Chuantao; Huang Zhemin; Zhao Jun; Guan Yihui; Lin Xiangtong; Li Dianyou; Sun Bomin

    2007-01-01

    Objective: There is evidence that the cause and progression of Parkinson's disease (PD) may be attributed to subthalamic nucleus (STN) dysfunction and that external electrical stimulation of the STN may improve the underlying neuronal network. This study aimed at using 18 F-FDG PET to monitor the functional status of the neuronal network of advanced PD patients following deep brain stimulation (DBS) of bilateral STN. Methods: Five PD patients in advanced stage, rated according to unified PD rat- ing scale (UPDRS) motion score, underwent bilateral STN DBS implantation. Six months after the implantation, each patient was studied with 18 F-FDG PET scans under stimulation turned 'on' and 'off' conditions. Statistical parametric mapping 2 (SPM2) was applied for data analyses. Results: Bilateral STN DBS reduced glucose utilization in lentiform nucleus (globus pallidus), bilateral thalamus, cerebellum, as well as the distal parietal cortex. However, glucose utilization in midbrain and pons was increased. The PD-related pattern (PDRP) scores were significantly different during the 'on' status (2.12 ± 15.24) and 'off' status (4.93 ± 13.01), which corresponded to the clinical improvement of PD symptoms as PDRP scores decreased. Conclusion: 18 F-FDG PET may be useful in monitoring and mapping the metabolism of the neuronal network during bilateral STN DBS, thus supporting its therapeutic impact on PD patients. (authors)

  18. Development of GPCR modulation of GABAergic transmission in chicken nucleus laminaris neurons.

    Directory of Open Access Journals (Sweden)

    Zheng-Quan Tang

    Full Text Available Neurons in the nucleus laminaris (NL of birds act as coincidence detectors and encode interaural time difference to localize the sound source in the azimuth plane. GABAergic transmission in a number of CNS nuclei including the NL is subject to a dual modulation by presynaptic GABA(B receptors (GABA(BRs and metabotropic glutamate receptors (mGluRs. Here, using in vitro whole-cell patch clamp recordings from acute brain slices of the chick, we characterized the following important but unknown properties pertaining to such a dual modulation: (1 emergence of functional GABA synapses in NL neurons; (2 the temporal onset of neuromodulation mediated by GABA(BRs and mGluRs; and (3 the physiological conditions under which GABA(BRs and mGluRs are activated by endogenous transmitters. We found that (1 GABA(AR-mediated synaptic responses were observed in about half of the neurons at embryonic day 11 (E11; (2 GABA(BR-mediated modulation of the GABAergic transmission was detectable at E11, whereas the modulation by mGluRs did not emerge until E15; and (3 endogenous activity of GABA(BRs was induced by both low- (5 or 10 Hz and high-frequency (200 Hz stimulation of the GABAergic pathway, whereas endogenous activity of mGluRs was induced by high- (200 Hz but not low-frequency (5 or 10 Hz stimulation of the glutamatergic pathway. Furthermore, the endogenous activity of mGluRs was mediated by group II but not group III members. Therefore, autoreceptor-mediated modulation of GABAergic transmission emerges at the same time when the GABA synapses become functional. Heteroreceptor-mediated modulation appears at a later time and is receptor type dependent in vitro.

  19. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons.

    Science.gov (United States)

    Tong, Ling; Strong, Melissa K; Kaur, Tejbeer; Juiz, Jose M; Oesterle, Elizabeth C; Hume, Clifford; Warchol, Mark E; Palmiter, Richard D; Rubel, Edwin W

    2015-05-20

    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival. Copyright © 2015 the authors 0270-6474/15/357878-14$15.00/0.

  20. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus.

    Science.gov (United States)

    Suntsova, Natalia; Guzman-Marin, Ruben; Kumar, Sunil; Alam, Md Noor; Szymusiak, Ronald; McGinty, Dennis

    2007-02-14

    The perifornical-lateral hypothalamic area (PF/LH) contains neuronal groups playing an important role in control of waking and sleep. Among the brain regions that regulate behavioral states, one of the strongest sources of projections to the PF/LH is the median preoptic nucleus (MnPN) containing a sleep-active neuronal population. To evaluate the role of MnPN afferents in the control of PF/LH neuronal activity, we studied the responses of PF/LH cells to electrical stimulation or local chemical manipulation of the MnPN in freely moving rats. Single-pulse electrical stimulation evoked responses in 79% of recorded PF/LH neurons. No cells were activated antidromically. Direct and indirect transsynaptic effects depended on sleep-wake discharge pattern of PF/LH cells. The majority of arousal-related neurons, that is, cells discharging at maximal rates during active waking (AW) or during AW and rapid eye movement (REM) sleep, exhibited exclusively or initially inhibitory responses to stimulation. Sleep-related neurons, the cells with elevated discharge during non-REM and REM sleep or selectively active in REM sleep, exhibited exclusively or initially excitatory responses. Activation of the MnPN via microdialytic application of L-glutamate or bicuculline resulted in reduced discharge of arousal-related and in excitation of sleep-related PF/LH neurons. Deactivation of the MnPN with muscimol caused opposite effects. The results indicate that the MnPN contains subset(s) of neurons, which exert inhibitory control over arousal-related and excitatory control over sleep-related PF/LH neurons. We hypothesize that MnPN sleep-active neuronal group has both inhibitory and excitatory outputs that participate in the inhibitory control of arousal-promoting PF/LH mechanisms.

  1. Influence of age-related changes in nitric oxide synthase-expressing neurons in the rat supraoptic nucleus on inhibition of salivary secretion.

    Science.gov (United States)

    Tanaka, Takehiko; Tamada, Yoshitaka; Suwa, Fumihiko

    2008-02-01

    Age-related inhibition of salivary secretion has been demonstrated in rats, and the nitric oxide (NO) present in the supraoptic nucleus (SON) and the medial septal area has been reported to play an inhibitory role in the regulation of salivary secretion. In the present study, we investigated the age-related changes occurring in the NO synthase (NOS)-expressing neurons in the SON, which is related to the production of NO, and discussed the interrelation between the age-related changes in the NOS-expressing neurons and the age-related inhibition of salivary secretion. Nissl staining and reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry were performed for young adult and aged rats. Quantitative analysis was also performed using the Nissl-stained and NADPH-d-positive neurons. Although the numbers of the Nissl-stained neurons did not change, significant age-related increases were detected in cell number, cell size and reactive density of the NADPH-d-positive neurons. Therefore, the production of NO in the SON neurons increased with age. We concluded that the age-related increase in the NO in the SON might be a factor that contributes to the age-related inhibition of salivary secretion.

  2. Altered neuronal firing pattern of the basal ganglia nucleus plays a role in levodopa-induced dyskinesia in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Xiaoyu eLi

    2015-11-01

    Full Text Available Background: Levodopa therapy alleviates the symptoms of Parkinson's disease (PD, but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID. Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1±11.0 years; disease duration, 8.7±5.6 years were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr scores ranged from 2 to 4 and their UPDRS III scores were 28.5±5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7±1.6. Microelectrode recording was performed in the globus pallidus internus (GPi and subthalamic nucleus (STN during pallidotomy (n=12 or STN deep brain stimulation (DBS; bilateral, n=12; unilateral, n=6. The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs and the corresponding coefficient of variation (CV. Results: A total of 295 neurons were identified from the GPi (n=12 and STN (n=18. These included 26 (8.8% highly grouped discharge, 30 (10.2% low frequency firing, 78 (26.4% rapid tonic discharge, 103 (34.9% irregular activity, and 58 (19.7% tremor-related activity. There were significant differences between the two groups (P<0.05 for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID.

  3. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats.

    Science.gov (United States)

    Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A; Ulrich-Lai, Yvonne M; Herman, James P

    2015-01-01

    Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic (NA) neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. In this study, we tested the hypothesis that NTS NA A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n = 5; HPA study, n = 5] or vehicle [cardiovascular study, n = 6; HPA study, n = 4]. Rats were exposed to acute restraint stress followed by 14 d of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low-frequency to high-frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress.

  4. Morphine treatment enhances glutamatergic input onto neurons of the nucleus accumbens via both disinhibitory and stimulating effect.

    Science.gov (United States)

    Yuan, Kejing; Sheng, Huan; Song, Jiaojiao; Yang, Li; Cui, Dongyang; Ma, Qianqian; Zhang, Wen; Lai, Bin; Chen, Ming; Zheng, Ping

    2017-11-01

    Drug addiction is a chronic brain disorder characterized by the compulsive repeated use of drugs. The reinforcing effect of repeated use of drugs on reward plays an important role in morphine-induced addictive behaviors. The nucleus accumbens (NAc) is an important site where morphine treatment produces its reinforcing effect on reward. However, how morphine treatment produces its reinforcing effect on reward in the NAc remains to be clarified. In the present study, we studied the influence of morphine treatment on the effects of DA and observed whether morphine treatment could directly change glutamatergic synaptic transmission in the NAc. We also explored the functional significance of morphine-induced potentiation of glutamatergic synaptic transmission in the NAc at behavioral level. Our results show that (1) morphine treatment removes the inhibitory effect of DA on glutamatergic input onto NAc neurons; (2) morphine treatment potentiates glutamatergic input onto NAc neurons, especially the one from the basolateral amygdala (BLA) to the NAc; (3) blockade of glutamatergic synaptic transmission in the NAc or ablation of projection neurons from BLA to NAc significantly decreases morphine treatment-induced increase in locomotor activity. These results suggest that morphine treatment enhances glutamatergic input onto neurons of the NAc via both disinhibitory and stimulating effect and therefore increases locomotor activity. © 2016 Society for the Study of Addiction.

  5. Association of occlusal interference-induced masseter muscle hyperalgesia and P2X3 receptors in the trigeminal subnucleus caudalis and midbrain periaqueductal gray.

    Science.gov (United States)

    Sun, Shuzhen; Qi, Dong; Yang, Yingying; Ji, Ping; Kong, Jingjing; Wu, Qingting

    2016-03-02

    P2X3 receptor plays a role in nociception transmission of orofacial pain in temporomandibular disorder patients. A previous study found that P2X3 receptors in masseter muscle afferent neurons and the trigeminal ganglia were involved in masseter muscle pain induced by inflammation caused by chemical agents or eccentric muscle contraction. In this study, we attempted to investigate changes in P2X3 receptors in the trigeminal subnucleus caudalis (Vc) and midbrain periaqueductal gray (PAG) in relation to the hyperalgesia of masseter muscles induced by occlusal interference. Experimental occlusal interference by crown application was established in 30 rats and another 30 rats were treated as sham controls. On days 1, 3, 7, 14, and 28 after crown application, the mechanical pain threshold was examined by von-Frey filaments. The expression of the P2X3 receptor in Vc and PAG was investigated by immunohistochemistry and quantitative PCR. We found that mechanical pain threshold of bilateral masseter muscles decreased significantly after occlusal interference, which remained for the entire experimental period. The mRNA expression of the P2X3 receptor increased significantly and the number of P2X3R-positive neurons increased markedly in Vc and PAG accordingly. These results indicate that the upregulated expression of P2X3 receptors in Vc and PAG may contribute toward the development of orofacial pain induced by occlusal interference and P2X3 receptors in the PAG may play a key role in the supraspinal antiociception effect.

  6. Nutritional Programming of Accelerated Puberty in Heifers: Involvement of Pro-Opiomelanocortin Neurones in the Arcuate Nucleus.

    Science.gov (United States)

    Cardoso, R C; Alves, B R C; Sharpton, S M; Williams, G L; Amstalden, M

    2015-08-01

    The timing of puberty and subsequent fertility in female mammals are dependent on the integration of metabolic signals by the hypothalamus. Pro-opiomelanocortin (POMC) neurones in the arcuate nucleus (ARC) comprise a critical metabolic-sensing pathway controlling the reproductive neuroendocrine axis. α-Melanocyte-stimulating hormone (αMSH), a product of the POMC gene, has excitatory effects on gonadotrophin-releasing hormone (GnRH) neurones and fibres containing αMSH project to GnRH and kisspeptin neurones. Because kisspeptin is a potent stimulator of GnRH release, αMSH may also stimulate GnRH secretion indirectly via kisspeptin neurones. In the present work, we report studies conducted in young female cattle (heifers) aiming to determine whether increased nutrient intake during the juvenile period (4-8 months of age), a strategy previously shown to advance puberty, alters POMC and KISS1 mRNA expression, as well as αMSH close contacts on GnRH and kisspeptin neurones. In Experiment 1, POMC mRNA expression, detected by in situ hybridisation, was greater (P high-gain, HG; n = 6) compared to heifers that gained 0.5 kg/day (low-gain, LG; n = 5). The number of KISS1-expressing cells in the middle ARC was reduced (P < 0.05) in HG compared to LG heifers. In Experiment 2, double-immunofluorescence showed limited αMSH-positive close contacts on GnRH neurones, and the magnitude of these inputs was not influenced by nutritional status. Conversely, a large number of kisspeptin-immunoreactive cells in the ARC were observed in close proximity to αMSH-containing varicosities. Furthermore, HG heifers (n = 5) exhibited a greater (P < 0.05) percentage of kisspeptin neurones in direct apposition to αMSH fibres and an increased (P < 0.05) number of αMSH close contacts per kisspeptin cell compared to LG heifers (n = 6). These results indicate that the POMC-kisspeptin pathway may be important in mediating the nutritional acceleration of puberty in heifers.

  7. Acid-sensing ion channels contribute to chemosensitivity of breathing-related neurons of the nucleus of the solitary tract.

    Science.gov (United States)

    Huda, Rafiq; Pollema-Mays, Sarah L; Chang, Zheng; Alheid, George F; McCrimmon, Donald R; Martina, Marco

    2012-10-01

    Cellular mechanisms of central pH chemosensitivity remain largely unknown. The nucleus of the solitary tract (NTS) integrates peripheral afferents with central pathways controlling breathing; NTS neurons function as central chemosensors, but only limited information exists concerning the ionic mechanisms involved. Acid-sensing ion channels (ASICs) mediate chemosensitivity in nociceptive terminals, where pH values ∼6.5 are not uncommon in inflammation, but are also abundantly expressed throughout the brain where pHi s tightly regulated and their role is less clear. Here we test the hypothesis that ASICs are expressed in NTS neurons and contribute to intrinsic chemosensitivity and control of breathing. In electrophysiological recordings from acute rat NTS slices, ∼40% of NTS neurons responded to physiological acidification (pH 7.0) with a transient depolarization. This response was also present in dissociated neurons suggesting an intrinsic mechanism. In voltage clamp recordings in slices, a pH drop from 7.4 to 7.0 induced ASIC-like inward currents (blocked by 100 μM amiloride) in ∼40% of NTS neurons, while at pH ≤ 6.5 these currents were detected in all neurons tested; RT-PCR revealed expression of ASIC1 and, less abundantly, ASIC2 in the NTS. Anatomical analysis of dye-filled neurons showed that ASIC-dependent chemosensitive cells (cells responding to pH 7.0) cluster dorsally in the NTS. Using in vivo retrograde labelling from the ventral respiratory column, 90% (9/10) of the labelled neurons showed an ASIC-like response to pH 7.0, suggesting that ASIC currents contribute to control of breathing. Accordingly, amiloride injection into the NTS reduced phrenic nerve activity of anaesthetized rats with an elevated arterial P(CO(2)) .

  8. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure.

    Science.gov (United States)

    Pandit, Sudip; Jo, Ji Yoon; Lee, Sang Ung; Lee, Young Jae; Lee, So Yeong; Ryu, Pan Dong; Lee, Jung Un; Kim, Hyun-Woo; Jeon, Byeong Hwa; Park, Jin Bong

    2015-08-01

    γ-Aminobutyric acid (GABA) generates persistent tonic inhibitory currents (Itonic) and conventional inhibitory postsynaptic currents in the hypothalamic paraventricular nucleus (PVN) via activation of GABAA receptors (GABAARs). We investigated the pathophysiological significance of astroglial GABA uptake in the regulation of Itonic in the PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM). The Itonic of PVN-RVLM neurons were significantly reduced in heart failure (HF) compared with sham-operated (SHAM) rats. Reduced Itonic sensitivity to THIP argued for the decreased function of GABAAR δ subunits in HF, whereas similar Itonic sensitivity to benzodiazepines argued against the difference of γ2 subunit-containing GABAARs in SHAM and HF rats. HF Itonic attenuation was reversed by a nonselective GABA transporter (GAT) blocker (nipecotic acid, NPA) and a GAT-3 selective blocker, but not by a GAT-1 blocker, suggesting that astroglial GABA clearance increased in HF. Similar and minimal Itonic responses to bestrophin-1 blockade in SHAM and HF neurons further argued against a role for astroglial GABA release in HF Itonic attenuation. Finally, the NPA-induced inhibition of spontaneous firing was greater in HF than in SHAM PVN-RVLM neurons, whereas diazepam induced less inhibition of spontaneous firing in HF than in SHAM neurons. Overall, our results showed that combined with reduced GABAARs function, the enhanced astroglial GABA uptake-induced attenuation of Itonic in HF PVN-RVLM neurons explains the deficit in tonic GABAergic inhibition and increased sympathetic outflow from the PVN during heart failure. Copyright © 2015 the American Physiological Society.

  9. Organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis and upper cervical spinal cord associated with orofacial neuropathic pain.

    Science.gov (United States)

    Shibuta, Kazuo; Suzuki, Ikuko; Shinoda, Masamichi; Tsuboi, Yoshiyuki; Honda, Kuniya; Shimizu, Noriyoshi; Sessle, Barry J; Iwata, Koichi

    2012-04-27

    The aim of this study was to evaluate spatial organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1), and to clarify the involvement in mechanisms underlying orofacial secondary hyperalgesia following infraorbital nerve injury. We found that the head-withdrawal threshold to non-noxious mechanical stimulation of the maxillary whisker pad skin was significantly reduced in chronic constriction injury of the infraorbital nerve (ION-CCI) rats from day 1 to day 14 after ION-CCI. On day 3 after ION-CCI, mechanical allodynia was obvious in the orofacial skin areas innervated by the 1st and 3rd branches of the trigeminal nerve as well as the 2nd branch area. Hyperactive microglial cells in Vc and C1 were observed on days 3 and 7 after ION-CCI. On day 3 after ION-CCI, a large number of phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells were observed in Vc and C1. Many hyperactive microglial cells were also distributed over a wide area of Vc and C1 innervated by the trigeminal nerve. The intraperitoneal administration of minocycline significantly reduced the activation of microglial cells and the number of pERK-IR cells in Vc and C1, and also significantly attenuated the development of mechanical allodynia. Furthermore, enhanced background activity and mechanical evoked responses of Vc wide dynamic range neurons in ION-CCI rats were significantly reversed following minocycline administration. These findings suggest that activation of microglial cells over a wide area of Vc and C1 is involved in the enhancement of Vc and C1 neuronal excitability in the early period after ION-CCI, resulting in the neuropathic pain in orofacial areas innervated by the injured as well as uninjured nerves. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons.

    Science.gov (United States)

    Albéri, Lavinia; Lintas, Alessandra; Kretz, Robert; Schwaller, Beat; Villa, Alessandro E P

    2013-06-01

    The reticular thalamic nucleus (RTN) of the mouse is characterized by an overwhelming majority of GABAergic neurons receiving afferences from both the thalamus and the cerebral cortex and sending projections mainly on thalamocortical neurons. The RTN neurons express high levels of the "slow Ca(2+) buffer" parvalbumin (PV) and are characterized by low-threshold Ca(2+) currents, I(T). We performed extracellular recordings in ketamine/xylazine anesthetized mice in the rostromedial portion of the RTN. In the RTN of wild-type and PV knockout (PVKO) mice we distinguished four types of neurons characterized on the basis of their firing pattern: irregular firing (type I), medium bursting (type II), long bursting (type III), and tonically firing (type IV). Compared with wild-type mice, we observed in the PVKOs the medium bursting (type II) more frequently than the long bursting type and longer interspike intervals within the burst without affecting the number of spikes. This suggests that PV may affect the firing properties of RTN neurons via a mechanism associated with the kinetics of burst discharges. Ca(v)3.2 channels, which mediate the I(T) currents, were more localized to the somatic plasma membrane of RTN neurons in PVKO mice, whereas Ca(v)3.3 expression was similar in both genotypes. The immunoelectron microscopy analysis showed that Ca(v)3.2 channels were localized at active axosomatic synapses, thus suggesting that the differential localization of Ca(v)3.2 in the PVKOs may affect bursting dynamics. Cross-correlation analysis of simultaneously recorded neurons from the same electrode tip showed that about one-third of the cell pairs tended to fire synchronously in both genotypes, independent of PV expression. In summary, PV deficiency does not affect the functional connectivity between RTN neurons but affects the distribution of Ca(v)3.2 channels and the dynamics of burst discharges of RTN cells, which in turn regulate the activity in the thalamocortical circuit.

  11. In situ hybridization of nucleus basalis neurons shows increased β-amyloid mRNA in Alzheimer disease

    International Nuclear Information System (INIS)

    Cohen, M.L.; Golde, T.E.; Usiak, M.F.; Younkin, L.H.; Younkin, S.G.

    1988-01-01

    To determine which cells within the brain produce β-amyloid mRNA and to assess expression of the β-amyloid gene in Alzheimer disease, the authors analyzed brain tissue from Alzheimer and control patients by in situ hybridization. The results demonstrate that β-amyloid mRNA is produced by neurons in the nucleus basalis of Meynert and cerebral cortex and that nuclues basalis perikarya from Alzheimer patients consistently hybridize more β-amyloid probe than those from controls. These observations support the hypothesis that increased expression of the β-amyloid gene plays an important role in the deposition of amyloid in the brains of patients with Alzheimer disease

  12. Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.

    OpenAIRE

    Caminero, A A; Machín, C; Sanchez-Toscano, F

    1992-01-01

    A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connecti...

  13. Mechanisms contributing to cluster formation in the inferior olivary nucleus in brainstem slices from postnatal mice

    DEFF Research Database (Denmark)

    Kølvraa, Mathias; Müller, Felix C; Jahnsen, Henrik

    2014-01-01

    The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5-P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve as a synch......The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5-P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve...

  14. Endorphinic neurons are contacting the tuberoinfundibular dopaminergic neurons in the rat brain

    International Nuclear Information System (INIS)

    Morel, G.; Pelletier, G.

    1986-01-01

    The anatomical relationships between endorphinic neurons and dopaminergic neurons were evaluated in the rat hypothalamus using a combination of immunocytochemistry and autoradiography. In the arcuate nucleus, endorphinic endings were seen making contacts with dopaminergic cell bodies and dendrites. No synapsis could be observed at the sites of contacts. These results strongly suggest that the endorphinic neurons are directly acting on dopaminergic neurons to modify the release of dopamine into the pituitary portal system

  15. Preservation of the nucleus X-pelvic floor motosystem in amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Schrøder, H D; Reske-Nielsen, E

    1984-01-01

    to the neuropathological findings, and the observations are compared with previous neuropathological studies concerning Onuf's nucleus X as well with experimental studies including this nucleus. It is pointed out that structural and biochemical differences must exist between nucleus X neurons and other motoneurons....

  16. Nicotinic activation of laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-01-01

    Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA......). However, recent data suggest that neurons of the laterodorsal tegmental (LDT) nucleus, which sends cholinergic, GABAergic, and glutamatergic-containing projections to DA-containing neurons of the VTA, are critical to gating normal functioning of this nucleus. The actions of nicotine on LDT neurons...... are unknown. We addressed this issue by examining the effects of nicotine on identified cholinergic and non-cholinergic LDT neurons using whole-cell patch clamp and Ca(2+)-imaging methods in brain slices from mice (P12-P45). Nicotine applied by puffer pipette or bath superfusion elicited membrane...

  17. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  18. Nucleus accumbens neuronal maturation differences in young rats bred for low versus high voluntary running behaviour

    Science.gov (United States)

    Roberts, Michael D; Toedebusch, Ryan G; Wells, Kevin D; Company, Joseph M; Brown, Jacob D; Cruthirds, Clayton L; Heese, Alexander J; Zhu, Conan; Rottinghaus, George E; Childs, Thomas E; Booth, Frank W

    2014-01-01

    We compared the nucleus accumbens (NAc) transcriptomes of generation 8 (G8), 34-day-old rats selectively bred for low (LVR) versus high voluntary running (HVR) behaviours in rats that never ran (LVRnon-run and HVRnon-run), as well as in rats after 6 days of voluntary wheel running (LVRrun and HVRrun). In addition, the NAc transcriptome of wild-type Wistar rats was compared. The purpose of this transcriptomics approach was to generate testable hypotheses as to possible NAc features that may be contributing to running motivation differences between lines. Ingenuity Pathway Analysis and Gene Ontology analyses suggested that ‘cell cycle’-related transcripts and the running-induced plasticity of dopamine-related transcripts were lower in LVR versus HVR rats. From these data, a hypothesis was generated that LVR rats might have less NAc neuron maturation than HVR rats. Follow-up immunohistochemistry in G9–10 LVRnon-run rats suggested that the LVR line inherently possessed fewer mature medium spiny (Darpp-32-positive) neurons (P running wheel access in our G9–10 LVRs uniquely increased their Darpp-32-positive and Dcx-positive neuron densities. In summary, NAc cellularity differences and/or the lack of running-induced plasticity in dopamine signalling-related transcripts may contribute to low voluntary running motivation in LVR rats. PMID:24665095

  19. Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm.

    Science.gov (United States)

    Day, Jeremy J; Wheeler, Robert A; Roitman, Mitchell F; Carelli, Regina M

    2006-03-01

    Environmental stimuli predictive of appetitive events can elicit Pavlovian approach responses that enhance an organism's ability to track and secure natural rewards, but may also contribute to the compulsive nature of drug addiction. Here, we examined the activity of individual nucleus accumbens (NAc) neurons during an autoshaping paradigm. One conditioned stimulus (CS+, a retractable lever presented for 10 s) was immediately followed by the delivery of a 45-mg sucrose pellet to a food receptacle, while another stimulus (CS-, a separate retractable lever presented for 10 s) was never followed by sucrose. Approach responses directed at the CS+ and CS- were recorded as lever presses and had no experimental consequence. Rats (n = 9) selectively approached the CS+ on more than 80% of trials and were surgically prepared for electrophysiological recording. Of 76 NAc neurons, 57 cells (75%) exhibited increases and/or decreases in firing rate (i.e. termed 'phasically active') during the CS+ presentation and corresponding approach response. Forty-seven percent of phasically active cells (27 out of 57) were characterized by time-locked but transient increases in cell firing, while 53% (30 out of 57) showed a significant reduction in firing for the duration of the CS+. In contrast, the same excitatory subpopulation exhibited smaller increases in activity relative to CS- onset, while the inhibitory subpopulation showed no change in firing during the CS- period. The magnitude and prevalence of cue-related neural responses reported here indicates that the NAc encodes biologically significant, repetitive approach responses that may model the compulsive nature of drug addiction in humans.

  20. Frequent mild head injury promotes trigeminal sensitivity concomitant with microglial proliferation, astrocytosis, and increased neuropeptide levels in the trigeminal pain system.

    Science.gov (United States)

    Tyburski, Ashley L; Cheng, Lan; Assari, Soroush; Darvish, Kurosh; Elliott, Melanie B

    2017-12-01

    Frequent mild head injuries or concussion along with the presence of headache may contribute to the persistence of concussion symptoms. In this study, the acute effects of recovery between mild head injuries and the frequency of injuries on a headache behavior, trigeminal allodynia, was assessed using von Frey testing up to one week after injury, while histopathological changes in the trigeminal pain pathway were evaluated using western blot, ELISA and immunohistochemistry.  RESULTS: A decreased recovery time combined with an increased mild closed head injury (CHI) frequency results in reduced trigeminal allodynia thresholds compared to controls. The repetitive CHI group with the highest injury frequency showed the greatest reduction in trigeminal thresholds along with greatest increased levels of calcitonin gene-related peptide (CGRP) in the trigeminal nucleus caudalis. Repetitive CHI resulted in astrogliosis in the central trigeminal system, increased GFAP protein levels in the sensory barrel cortex, and an increased number of microglia cells in the trigeminal nucleus caudalis. Headache behavior in rats is dependent on the injury frequency and recovery interval between mild head injuries. A worsening of headache behavior after repetitive mild head injuries was concomitant with increases in CGRP levels, the presence of astrocytosis, and microglia proliferation in the central trigeminal pathway. Signaling between neurons and proliferating microglia in the trigeminal pain system may contribute to the initiation of acute headache after concussion or other traumatic brain injuries.

  1. Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat.

    Science.gov (United States)

    Bron, Romke; Yin, Lei; Russo, Domenico; Furness, John B

    2013-08-15

    There is ambiguity concerning the distribution of neurons that express the ghrelin receptor (GHSR) in the medulla oblongata. In the current study we used a sensitive nonradioactive method to investigate GHSR mRNA distribution by in situ hybridization. Strong expression of the GHSR gene was confirmed in neurons of the facial nucleus (FacN, 7), the dorsal vagal complex (DVC), and the semicompact (but not compact) nucleus ambiguus (AmbSC and AmbC). In addition, expression of GHSR was found in other regions, where it had not been described before. GHSR-positive neurons were observed in the gustatory rostral nucleus tractus solitarius and in areas involved in vestibulo-ocular processing (such as the medial vestibular nucleus and the nucleus abducens). GHSR expression was also noted in ventral areas associated with cardiorespiratory control, including the gigantocellular reticular nucleus, the lateral paragigantocellular nucleus, the rostral and caudal ventrolateral medulla, the (pre)-Bötzinger complex, and the rostral and caudal ventrolateral respiratory group. However, GHSR-positive neurons in ventrolateral areas did not express markers for cardiovascular presympathetic vasomotor neurons, respiratory propriobulbar rhythmogenic neurons, or sensory interneurons. GHSR-positive cells were intermingled with catecholamine neurons in the dorsal vagal complex but these populations did not overlap. Thus, the ghrelin receptor occurs in the medulla oblongata in 1) second-order sensory neurons processing gustatory, vestibulo-ocular, and visceral sensation; 2) cholinergic somatomotor neurons of the FacN and autonomic preganglionic neurons of the DMNX and AmbSC; 3) cardiovascular neurons in the DVC, Gi, and LPGi; 4) neurons of as yet unknown function in the ventrolateral medulla. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  2. GABA in nucleus tractus solitarius participates in electroacupuncture modulation of cardiopulmonary bradycardia reflex.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Guo, Zhi-Ling; Longhurst, John C

    2014-12-01

    Phenylbiguanide (PBG) stimulates cardiopulmonary receptors and cardiovascular reflex responses, including decreases in blood pressure and heart rate mediated by the brain stem parasympathetic cardiac neurons in the nucleus ambiguus and nucleus tractus solitarius (NTS). Electroacupuncture (EA) at P5-6 stimulates sensory fibers in the median nerve and modulates these reflex responses. Stimulation of median nerves reverses bradycardia through action of γ-aminobutyric acid (GABA) in the nucleus ambiguus, important in the regulation of heart rate. We do not know whether the NTS or the neurotransmitter mechanisms in this nucleus participate in these modulatory actions by acupuncture. We hypothesized that somatic nerve stimulation during EA (P5-6) modulates cardiopulmonary inhibitory responses through a GABAergic mechanism in the NTS. Anesthetized and ventilated cats were examined during either PBG or direct vagal afferent stimulation while 30 min of EA was applied at P5-6. Reflex heart rate and blood pressure responses and NTS-evoked discharge were recorded. EA reduced the PBG-induced depressor and bradycardia reflexes by 67% and 60%, respectively. Blockade of GABAA receptors in the NTS reversed EA modulation of bradycardia but not the depressor response. During EA, gabazine reversed the vagally evoked discharge activity of cardiovascular NTS neurons. EA modulated the vagal-evoked cardiovascular NTS cellular activity for 60 min. Immunohistochemistry using triple labeling showed GABA immunoreactive fibers juxtaposed to glutamatergic nucleus ambiguus-projecting NTS neurons in rats. These glutamatergic neurons expressed GABAA receptors. These findings suggest that EA inhibits PBG-evoked bradycardia and vagally evoked NTS activity through a GABAergic mechanism, likely involving glutamatergic nucleus ambiguus-projecting NTS neurons. Copyright © 2014 the American Physiological Society.

  3. Angiotensin Type-2 Receptors Influence the Activity of Vasopressin Neurons in the Paraventricular Nucleus of the Hypothalamus in Male Mice.

    Science.gov (United States)

    de Kloet, Annette D; Pitra, Soledad; Wang, Lei; Hiller, Helmut; Pioquinto, David J; Smith, Justin A; Sumners, Colin; Stern, Javier E; Krause, Eric G

    2016-08-01

    It is known that angiotensin-II acts at its type-1 receptor to stimulate vasopressin (AVP) secretion, which may contribute to angiotensin-II-induced hypertension. Less well known is the impact of angiotensin type-2 receptor (AT2R) activation on these processes. Studies conducted in a transgenic AT2R enhanced green fluorescent protein reporter mouse revealed that although AT2R are not themselves localized to AVP neurons within the paraventricular nucleus of the hypothalamus (PVN), they are localized to neurons that extend processes into the PVN. In the present set of studies, we set out to characterize the origin, phenotype, and function of nerve terminals within the PVN that arise from AT2R-enhanced green fluorescent protein-positive neurons and synapse onto AVP neurons. Initial experiments combined genetic and neuroanatomical techniques to determine that γ-aminobutyric acid (GABA)ergic neurons derived from the peri-PVN area containing AT2R make appositions onto AVP neurons within the PVN, thereby positioning AT2R to negatively regulate neuroendocrine secretion. Subsequent patch-clamp electrophysiological experiments revealed that selective activation of AT2R in the peri-PVN area using compound 21 facilitates inhibitory (ie, GABAergic) neurotransmission and leads to reduced activity of AVP neurons within the PVN. Final experiments determined the functional impact of AT2R activation by testing the effects of compound 21 on plasma AVP levels. Collectively, these experiments revealed that AT2R expressing neurons make GABAergic synapses onto AVP neurons that inhibit AVP neuronal activity and suppress baseline systemic AVP levels. These findings have direct implications in the targeting of AT2R for disorders of AVP secretion and also for the alleviation of high blood pressure.

  4. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system

    NARCIS (Netherlands)

    Buijs, R. M.; Hermes, M. H.; Kalsbeek, A.

    1998-01-01

    Vasopressin (VP) is one of the principal neurotransmitters of the suprachiasmatic nucleus (SCN). By means of anatomical, physiological and electrophysiological techniques we have demonstrated that VP containing pathways from the SCN serve to affect neuroendocrine and 'autonomic' neurons in the

  5. Secondhand tobacco smoke exposure differentially alters nucleus tractus solitarius neurons at two different ages in developing non-human primates

    International Nuclear Information System (INIS)

    Sekizawa, Shin-ichi; Joad, Jesse P.; Pinkerton, Kent E.; Bonham, Ann C.

    2010-01-01

    Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS

  6. [Effects of stimulation of dorso-medial area of nucleus facialis on respiration related units in ventro-lateral region of nucleus tractus solitaris in rabbits].

    Science.gov (United States)

    Gao, J X; Liu, L

    1990-10-01

    In urethane-anesthetized, vagotomized and paralyzed rabbits, effects of electrical stimulation of the dorso-medial area of the nucleus facialis (DMNF) on the respiration-related units (RRUs) in ventro-lateral region of nucleus tractus solitaris (VLNTS) were observed. The experimental results showed that during electrical stimulation of DMNF the majority of the inspiratory (I) neurons (64.4%) were increased in frequency and duration of discharge, some to a marked extent. During electrical stimulation of DMNF the expiratory neurons (35%) were decreased in their frequency and duration of discharge, some to a marked extent too. The responses of RRUs in ipsilateral and contralateral VLNTS to stimulation of DMNF was not statistically significant (P greater than 0.05). It is suggested that DMNF may have a facilitating effect on the inspiratory neurons and an inhibiting effect on the expiratory neurons in VLNTS.

  7. Laterodorsal nucleus of the thalamus: A processor of somatosensory inputs.

    Science.gov (United States)

    Bezdudnaya, Tatiana; Keller, Asaf

    2008-04-20

    The laterodorsal (LD) nucleus of the thalamus has been considered a "higher order" nucleus that provides inputs to limbic cortical areas. Although its functions are largely unknown, it is often considered to be involved in spatial learning and memory. Here we provide evidence that LD is part of a hitherto unknown pathway for processing somatosensory information. Juxtacellular and extracellular recordings from LD neurons reveal that they respond to vibrissa stimulation with short latency (median = 7 ms) and large magnitude responses (median = 1.2 spikes/stimulus). Most neurons (62%) had large receptive fields, responding to six and more individual vibrissae. Electrical stimulation of the trigeminal nucleus interpolaris (SpVi) evoked short latency responses (median = 3.8 ms) in vibrissa-responsive LD neurons. Labeling produced by anterograde and retrograde neuroanatomical tracers confirmed that LD neurons receive direct inputs from SpVi. Electrophysiological and neuroanatomical analyses revealed also that LD projects upon the cingulate and retrosplenial cortex, but has only sparse projections to the barrel cortex. These findings suggest that LD is part of a novel processing stream involved in spatial orientation and learning related to somatosensory cues. (c) 2008 Wiley-Liss, Inc.

  8. Overactivity of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus: Electrophysiological Findings in db/db Mice.

    Science.gov (United States)

    Gao, Hong; Molinas, Adrien J R; Miyata, Kayoko; Qiao, Xin; Zsombok, Andrea

    2017-11-15

    Preautonomic neurons in the paraventricular nucleus (PVN) of the hypothalamus play a large role in the regulation of hepatic functions via the autonomic nervous system. Activation of hepatic sympathetic nerves increases glucose and lipid metabolism and contributes to the elevated hepatic glucose production observed in the type 2 diabetic condition. This augmented sympathetic output could originate from altered activity of liver-related PVN neurons. Remarkably, despite the importance of the brain-liver pathway, the cellular properties of liver-related neurons are not known. In this study, we provide the first evidence of overall activity of liver-related PVN neurons. Liver-related PVN neurons were identified with a retrograde, trans-synaptic, viral tracer in male lean and db/db mice and whole-cell patch-clamp recordings were conducted. In db/db mice, the majority of liver-related PVN neurons fired spontaneously; whereas, in lean mice the majority of liver-related PVN neurons were silent, indicating that liver-related PVN neurons are more active in db/db mice. Persistent, tonic inhibition was identified in liver-related PVN neurons; although, the magnitude of tonic inhibitory control was not different between lean and db/db mice. In addition, our study revealed that the transient receptor potential vanilloid type 1-dependent increase of excitatory neurotransmission was reduced in liver-related PVN neurons of db/db mice. These findings demonstrate plasticity of liver-related PVN neurons and a shift toward excitation in a diabetic mouse model. Our study suggests altered autonomic circuits at the level of the PVN, which can contribute to autonomic dysfunction and dysregulation of neural control of hepatic functions including glucose metabolism. SIGNIFICANCE STATEMENT A growing body of evidence suggests the importance of the autonomic control in the regulation of hepatic metabolism, which plays a major role in the development and progression of type 2 diabetes mellitus

  9. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    Science.gov (United States)

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  10. Differential gene regulation of GHSR signaling pathway in the arcuate nucleus and NPY neurons by fasting, diet-induced obesity, and 17β-estradiol.

    Science.gov (United States)

    Yasrebi, Ali; Hsieh, Anna; Mamounis, Kyle J; Krumm, Elizabeth A; Yang, Jennifer A; Magby, Jason; Hu, Pu; Roepke, Troy A

    2016-02-15

    Ghrelin's receptor, growth hormone secretagogue receptor (GHSR), is highly expressed in the arcuate nucleus (ARC) and in neuropeptide Y (NPY) neurons. Fasting, diet-induced obesity (DIO), and 17β-estradiol (E2) influence ARC Ghsr expression. It is unknown if these effects occur in NPY neurons. Therefore, we examined the expression of Npy, Agrp, and GHSR signaling pathway genes after fasting, DIO, and E2 replacement in ARC and pools of NPY neurons. In males, fasting increased ARC Ghsr and NPY Foxo1 but decreased NPY Ucp2. In males, DIO decreased ARC and NPY Ghsr and Cpt1c. In fed females, E2 increased Agrp, Ghsr, Cpt1c, and Foxo1 in ARC. In NPY pools, E2 decreased Foxo1 in fed females but increased Foxo1 in fasted females. DIO in females suppressed Agrp and augmented Cpt1c in NPY neurons. In summary, genes involved in GHSR signaling are differentially regulated between the ARC and NPY neurons in a sex-dependent manner. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Differential gene regulation of GHSR signaling pathway in the arcuate nucleus and NPY neurons by fasting, diet-induced obesity, and 17β-estradiol

    Science.gov (United States)

    Yasrebi, Ali; Hsieh, Anna; Mamounis, Kyle J.; Krumm, Elizabeth A.; Yang, Jennifer A.; Magby, Jason; Hu, Pu; Roepke, Troy A.

    2015-01-01

    Ghrelin’s receptor, growth hormone secretagogue receptor (GHSR), is highly expressed in the arcuate nucleus (ARC) and in neuropeptide Y (NPY) neurons. Fasting, diet-induced obesity (DIO), and 17β-estradiol (E2) influence ARC Ghsr expression. It is unknown if these effects occur in NPY neurons. Therefore, we examined the expression of Npy, Agrp, and GHSR signaling pathway genes after fasting, DIO, and E2 replacement in ARC and pools of NPY neurons. In males, fasting increased ARC Ghsr and NPY Foxo1 but decreased NPY Ucp2. In males, DIO decreased ARC and NPY Ghsr and Cpt1c. In fed females, E2 increased Agrp, Ghsr, Cpt1c, and Foxo1 in ARC. In NPY pools, E2 decreased Foxo1 in fed females but increased Foxo1 in fasted females. DIO in females suppressed Agrp and augmented Cpt1c in NPY neurons. In summary, genes involved in GHSR signaling are differentially regulated between the ARC and NPY neurons in a sex-dependent manner. PMID:26577678

  12. The arcuate nucleus of the C57BL/6J mouse hindbrain is a displaced part of the inferior olive.

    Science.gov (United States)

    Fu, Yu Hong; Watson, Charles

    2012-01-01

    The arcuate nucleus is a prominent cell group in the human hindbrain, characterized by its position on the pial surface of the pyramid. It is considered to be a precerebellar nucleus and has been implicated in the pathology of several disorders of respiration. An arcuate nucleus has not been convincingly demonstrated in other mammals, but we have found a similarly positioned nucleus in the C57BL/6J mouse. The mouse arcuate nucleus consists of a variable group of neurons lying on the pial surface of the pyramid. The nucleus is continuous with the ventrolateral part of the principal nucleus of the inferior olive and both groups are calbindin positive. At first we thought that this mouse nucleus was homologous with the human arcuate nucleus, but we have discovered that the neurons of the human nucleus are calbindin negative, and are therefore not olivary in nature. We have compared the mouse arcuate neurons with those of the inferior olive in terms of molecular markers and cerebellar projection. The neurons of the arcuate nucleus and of the inferior olive share three major characteristics: they both contain neurons utilizing glutamate, serotonin or acetylcholine as neurotransmitters; they both project to the contralateral cerebellum, and they both express a number of genes not present in the major mossy fiber issuing precerebellar nuclei. Most importantly, both cell groups express calbindin in an area of the ventral hindbrain almost completely devoid of calbindin-positive cells. We conclude that the neurons of the hindbrain mouse arcuate nucleus are a displaced part of the inferior olive, possibly separated by the caudal growth of the pyramidal tract during development. The arcuate nucleus reported in the C57BL/6J mouse can therefore be regarded as a subgroup of the rostral inferior olive, closely allied with the ventral tier of the principal nucleus. Copyright © 2012 S. Karger AG, Basel.

  13. Effects of harmane (1-methyl-beta-carboline) on neurons in the nucleus accumbens of the rat.

    Science.gov (United States)

    Ergene, E; Schoener, E P

    1993-04-01

    Harmane, a beta-carboline alkaloid reported to exert locomotor and psychoactive effects, is found in certain plants and also has been shown to exist in the mammalian brain as an endogenous substance. In this study, the effects of locally perfused harmane were examined on spontaneous neuronal activity in the nucleus accumbens of urethane-anesthetized rats. Extracellular single-unit recording, coupled with push-pull perfusion, enabled the discrimination of specific, dose-related effects of harmane across a wide concentration range. At lower concentrations (10(-9)-10(-11) M), excitation prevailed, while at higher concentrations (10(-8)-10(-6) M) depression was most pronounced. These findings suggest a neuromodulatory role for harmane in the forebrain reward system.

  14. Expression of ankyrin repeat and suppressor of cytokine signaling box protein 4 (Asb-4) in proopiomelanocortin neurons of the arcuate nucleus of mice produces a hyperphagic, lean phenotype.

    Science.gov (United States)

    Li, Ji-Yao; Chai, Biao-Xin; Zhang, Weizhen; Wang, Hui; Mulholland, Michael W

    2010-01-01

    Ankyrin repeat and suppressor of cytokine signaling box-containing protein 4 (Asb-4) is specifically expressed in the energy homeostasis-related brain areas and colocalizes with proopiomelanocortin (POMC) neurons of the arcuate nucleus (ARC). Injection of insulin into the third ventricle of the rat brain increased Asb-4 mRNA expression in the paraventricular nucleus but not in the ARC of the hypothalamus, whereas injection of leptin (ip) increased Asb-4 expression in both mouse paraventricular nucleus and ARC. A transgenic mouse in which Myc-tagged Asb-4 is specifically expressed in POMC neurons of the ARC was made and used to study the effects of Asb-4 on ingestive behavior and metabolic rate. Animals with overexpression of Asb-4 in POMC neurons demonstrated an increase in food intake. However, POMC-Asb-4 transgenic animals gained significantly less weight from 6-30 wk of age. The POMC-Asb-4 mice had reduced fat mass and increased lean mass and lower levels of blood leptin. The transgenic animals were resistant to high-fat diet-induced obesity. Transgenic mice had significantly higher rates of oxygen consumption and carbon dioxide production than wild-type mice during both light and dark periods. The locomotive activity of transgenic mice was increased. The overexpression of Asb-4 in POMC neurons increased POMC mRNA expression in the ARC. The transgenic animals had no observed effect on peripheral glucose metabolism and the activity of the autonomic nervous system. These results indicate that Asb-4 is a key regulatory protein in the central nervous system, involved in the control of feeding behavior and metabolic rate.

  15. In vivo analysis of the role of metabotropic glutamate receptors in the afferent regulation of chick cochlear nucleus neurons.

    Science.gov (United States)

    Carzoli, Kathryn L; Hyson, Richard L

    2011-02-01

    Cochlea removal results in the death of approximately 20-30% of neurons in the chick nucleus magnocellularis (NM). One early event in NM neuronal degradation is the disruption of their ribosomes. This can be visualized in the first few hours following cochlea removal using Y10B, an antibody that recognizes ribosomal RNA. Previous studies using a brain slice preparation suggest that maintenance of ribosomal integrity in NM neurons requires metabotropic glutamate receptor (mGluR) activation. Isolating the brain slice in vitro, however, may eliminate other potential sources of trophic support and only allows for evaluation of the early changes that occur in NM neurons following deafferentation. Consequently, it is not known if mGluR activation is truly required for the maintenance of NM neurons in the intact system. The current experiments evaluated the importance of mGluRs in vivo. The effects of short-term receptor blockade were assessed through Y10B labeling and the effects of long-term blockade were assessed through stereological counting of NM neurons in Nissl-stained tissue. mGluR antagonists or vehicle were administered intracerebroventricularly following unilateral cochlea removal. Vehicle-treated subjects replicated the previously reported effects of cochlea removal, showing lighter Y10B labeling and fewer Nissl-stained NM neurons on the deafened side of the brain. Blockade of mGluRs prevented the rapid activity-dependent difference in Y10B labeling, and in some cases, had the reverse effect, yielding lighter labeling of NM neurons on the intact side of the brain. Similarly, mGluR blockade over longer survival periods resulted in a reduction in number of cells on both intact and deafferented sides of the brain, and in some cases, yielded a reverse effect of fewer neurons on the intact side versus deafened side. These data are consistent with in vitro findings and suggest that mGluR activation plays a vital role in the afferent maintenance of NM neurons

  16. Nucleus retroambiguus projections to the periaqueductal gray in the cat

    NARCIS (Netherlands)

    Klop, EM; Mouton, LJ; Holstege, G

    2002-01-01

    The nucleus retroambiguus (NRA) of the caudal medulla is a relay nucleus by which neurons of the mesencephalic periaqueductal gray (PAG) reach motoneurons of pharynx, larynx, soft palate, intercostal and abdominal muscles, and several muscles of the hindlimbs. These PAG-NRA-motoneuronal projections

  17. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    Science.gov (United States)

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the

  18. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    Science.gov (United States)

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  19. [The distribution of NADPH-diaphorase and neuronal no synthase in rat medulla oblongata nuclei].

    Science.gov (United States)

    Chertok, V M; Kotsuba, A E

    2013-01-01

    The distribution of nitroxide ergic neurons in the medulla oblongata nuclei in Wistar rats (n = 8) was studied histochemically (NADPH-diaphorase) and using immunohistochemistry with an antiserum against neuronal form of nitric oxide synthase (nNOS). NADPH-diaphorase activity was found in large and small neurons of the sensory, autonomic and motor nuclei. The latter were especially rich in the cells demonstrating the activity of the enzyme. Unlike NADPH-diaphorase, nNOS in the corresponding nuclei was always detected in the fewer number of neurons, predominantly of small sizes. The sensory nuclei (nucleus of solitary tract, reticular parvocellular and lateral nuclei, spinal nucleus of the trigeminal nerve) contained 1.5-3 times more nNOS neurons than in motor nuclei. In some nuclei (nucleus ambiguus, hypoglossal nerve nucleus), containing numerous NADPH-diaphorase-positive neurons, immunoreactive cells were particularly rare.

  20. Red nucleus and rubrospinal tract disorganization in the absence of Pou4f1

    Science.gov (United States)

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    The red nucleus (RN) is a neuronal population that plays an important role in forelimb motor control and locomotion. Histologically it is subdivided into two subpopulations, the parvocellular RN (pRN) located in the diencephalon and the magnocellular RN (mRN) in the mesencephalon. The RN integrates signals from motor cortex and cerebellum and projects to spinal cord interneurons and motor neurons through the rubrospinal tract (RST). Pou4f1 is a transcription factor highly expressed in this nucleus that has been related to its specification. Here we profoundly analyzed consequences of Pou4f1 loss-of-function in development, maturation and axonal projection of the RN. Surprisingly, RN neurons are specified and maintained in the mutant, no cell death was detected. Nevertheless, the nucleus appeared disorganized with a strong delay in radial migration and with a wider neuronal distribution; the neurons did not form a compacted population as they do in controls, Robo1 and Slit2 were miss-expressed. Cplx1 and Npas1, expressed in the RN, are transcription factors involved in neurotransmitter release, neuronal maturation and motor function processes among others. In our mutant mice, both transcription factors are lost, suggesting an abnormal maturation of the RN. The resulting altered nucleus occupied a wider territory. Finally, we examined RST development and found that the RN neurons were able to project to the spinal cord but their axons appeared defasciculated. These data suggest that Pou4f1 is necessary for the maturation of RN neurons but not for their specification and maintenance. PMID:25698939

  1. The Neuronal Transition Probability (NTP) Model for the Dynamic Progression of Non-REM Sleep EEG: The Role of the Suprachiasmatic Nucleus

    CERN Document Server

    Merica, H

    2011-01-01

    Little attention has gone into linking to its neuronal substrates the dynamic structure of non-rapid-eye-movement (NREM) sleep, defined as the pattern of time-course power in all frequency bands across an entire episode. Using the spectral power time-courses in the sleep electroencephalogram (EEG), we showed in the typical first episode, several moves towards-and-away from deep sleep, each having an identical pattern linking the major frequency bands beta, sigma and delta. The neuronal transition probability model (NTP) - in fitting the data well - successfully explained the pattern as resulting from stochastic transitions of the firing-rates of the thalamically-projecting brainstem-activating neurons, alternating between two steady dynamic-states (towards-and-away from deep sleep) each initiated by a so-far unidentified flip-flop. The aims here are to identify this flip-flop and to demonstrate that the model fits well all NREM episodes, not just the first. Using published data on suprachiasmatic nucleus (SCN...

  2. Bilateral LMAN lesions cancel differences in HVC neuronal recruitment induced by unilateral syringeal denervation. Lateral magnocellular nucleus of the anterior neostriatum.

    Science.gov (United States)

    Wilbrecht, L; Petersen, T; Nottebohm, F

    2002-12-01

    Twenty-six-day-old male zebra finches received (1) unilateral section of their tracheosyringeal nerve, (2) bilateral lesions of the lateral magnocellular nucleus of the anterior neostriatum (LMAN), and (3) both operations. All birds were kept with an adult, singing male as a tutor until day 65. Tracheo-syringeal nerve-cut birds were able to imitate this model, but LMAN-lesioned birds were not. Bromodeoxyuridine, a marker of cell division, was injected intramuscularly during post-hatching days 61-65 and all birds were killed at 91 days of age. The number of bromodeoxyuridine+ neurons in the high vocal center of the tracheosyringeal-cut birds was twice as high in the intact as in the nerve cut side. This asymmetry disappeared when nerve section was combined with bilateral LMAN lesions. The latter operation, by itself, had no effect on new neuron counts. We suggest that the single nerve cut produced a hemispheric asymmetry in learning, reflected in new neuron recruitment, which disappeared when LMAN lesions blocked learning.

  3. Inhibition of swallowing reflex following phosphorylation of extracellular signal-regulated kinase in nucleus tractus solitarii neurons in rats with masseter muscle nociception.

    Science.gov (United States)

    Tsujimura, Takanori; Kitagawa, Junichi; Ueda, Koichiro; Iwata, Koichi

    2009-02-06

    Pain is associated with swallowing abnormalities in dysphagic patients. Understanding neuronal mechanisms underlying the swallowing abnormalities associated with orofacial abnormal pain is crucial for developing new methods to treat dysphagic patients. However, how the orofacial abnormal pain is involved in the swallowing abnormalities is not known. In order to evaluate neuronal mechanisms of modulation of the swallows by masticatory muscle pain, here we first induced swallows by topical administration of distilled water to the pharyngolaryngeal region. The swallowing reflex was significantly inhibited after capsaicin (10, 30mM) injection into the masseter muscle compared to vehicle injection. Moreover the number of phosphorylated extracellular signal-regulated kinase-like immunoreactive (pERK-LI) neurons in the nucleus tractus solitarii (NTS) was significantly increased in the rats with capsaicin injection into the masseter muscle compared to that with vehicle injection. Rostro-caudal distribution of pERK-LI neurons in the NTS was peaked at the obex level. The capsaicin-induced inhibitory effect on swallowing reflex was reversed after intrathecal administration of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. The present findings suggest that phosphorylation of ERK in NTS neurons may be involved in capsaicin-induced inhibition of swallowing reflex.

  4. Intracellular Na(+) and metabolic modulation of Na/K pump and excitability in the rat suprachiasmatic nucleus neurons.

    Science.gov (United States)

    Wang, Yi-Chi; Yang, Jyh-Jeen; Huang, Rong-Chi

    2012-10-01

    Na/K pump activity and metabolic rate are both higher during the day in the suprachiasmatic nucleus (SCN) that houses the circadian clock. Here we investigated the role of intracellular Na(+) and energy metabolism in regulating Na/K pump activity and neuronal excitability. Removal of extracellular K(+) to block the Na/K pump excited SCN neurons to fire at higher rates and return to normal K(+) to reactivate the pump produced rebound hyperpolarization to inhibit firing. In the presence of tetrodotoxin to block the action potentials, both zero K(+)-induced depolarization and rebound hyperpolarization were blocked by the cardiac glycoside strophanthidin. Ratiometric Na(+) imaging with a Na(+)-sensitive fluorescent dye indicated saturating accumulation of intracellular Na(+) in response to pump blockade with zero K(+). The Na(+) ionophore monensin also induced Na(+) loading and hyperpolarized the membrane potential, with the hyperpolarizing effect of monensin abolished in zero Na(+) or by pump blockade. Conversely, Na(+) depletion with Na(+)-free pipette solution depolarized membrane potential but retained residual Na/K pump activity. Cyanide inhibition of oxidative phosphorylation blocked the Na/K pump to depolarize resting potential and increase spontaneous firing in most cells, and to raise intracellular Na(+) levels in all cells. Nonetheless, the Na/K pump was incompletely blocked by cyanide but completely blocked by iodoacetate to inhibit glycolysis, indicating the involvement of both oxidative phosphorylation and glycolysis in fueling the Na/K pump. Together, the results indicate the importance of intracellular Na(+) and energy metabolism in regulating Na/K pump activity as well as neuronal excitability in the SCN neurons.

  5. Tyrosine Hydroxylase (TH)- and Aromatic-L-Amino Acid Decarboxylase (AADC)-Immunoreactive Neurons of the Common Marmoset (Callithrix jacchus) Brain: An Immunohistochemical Analysis

    Science.gov (United States)

    Karasawa, Nobuyuki; Hayashi, Motoharu; Yamada, Keiki; Nagatsu, Ikuko; Iwasa, Mineo; Takeuchi, Terumi; Uematsu, Mitsutoshi; Watanabe, Kazuko; Onozuka, Minoru

    2007-01-01

    From the perspective of comparative morphology, the distribution of non-monoaminergic neurons in the common marmoset (Callithrix jacchus) was investigated using an immunohistochemical method with specific antibodies to tyrosine hydroxylase (TH) and aromatic-L-amino acid decarboxylase (AADC). TH-immunoreactive (IR) neurons (but not AADC-IR) neurons were observed in the olfactory tubercle, preoptic suprachiasmatic nucleus, periventricular hypothalamic nucleus, arcuate nucleus, paraventricular nucleus, periaqueductal gray matter, medial longitudinal fasciculus, substantia nigra, and nucleus solitaris. In contrast, AADC-IR (but not TH-IR), small, oval and spindle-shaped neurons were sparsely distributed in the following areas: the hypothalamus from the anterior nucleus to the lateral nucleus, the dorsomedial nucleus, the dorsomedial area of the medial mammillary nucleus and the arcuate nucleus; the midbrain, including the stria medullaris and substantia nigra; and the medulla oblongata, including the dorsal area of the nucleus solitaris and the medullary reticular nucleus. The distribution of AADC-IR neurons was not as extensive in the marmoset as it is in rats. However, these neurons were located in the marmoset, but not the rat substantia nigra. Furthermore, AADC-IR neurons that are present in the human striatum were absent in that of the marmoset. The present results indicate that the distribution of non-monoaminergic neurons in the brain of the common marmoset is unique and different from that in humans and rodents. PMID:17653300

  6. Distinct effect of orphanin FQ in nucleus raphe magnus and nucleus reticularis gigantocellularis on the rat tail flick reflex.

    Science.gov (United States)

    Yang, Z; Zhang, Y; Wu, G

    2001-06-22

    The aim of the present study is to investigate the effects of orphanin FQ (OFQ) microinjected into the nucleus raphe magnus (NRM) and the nucleus reticularis gigantocellularis (NGC) on pain modulation. The tail-flick latency (TFL) was used as a behavioral index of nociceptive responsiveness. The result showed microinjection of OFQ into the NRM significantly increased the TFL, whereas microinjection of OFQ into the NGC decreased the TFL, suggesting the analgesic effect of OFQ in the NRM and the hyperalgesic effect of OFQ in the NGC. As there are three classes of putative pain modulating neurons in the rostral ventromedial medulla (RVM), the hyperalgesic or analgesic effect of OFQ in the RVM might depend upon the different class of the neurons being acted.

  7. Ovarian hormone deprivation reduces oxytocin expression in Paraventricular Nucleus preautonomic neurons and correlates with baroreflex impairment in rats

    Directory of Open Access Journals (Sweden)

    Vitor Ulisses De Melo

    2016-10-01

    Full Text Available The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN. Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation.

  8. Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala

    Science.gov (United States)

    Adams, Thomas; Rosenkranz, J Amiel

    2016-01-01

    Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders. PMID:26677945

  9. Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala.

    Science.gov (United States)

    Adams, Thomas; Rosenkranz, J Amiel

    2016-06-01

    Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders.

  10. Serotonin projection patterns to the cochlear nucleus.

    Science.gov (United States)

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the

  11. Glycemic state regulates melanocortin, but not nesfatin-1, responsiveness of glucose-sensing neurons in the nucleus of the solitary tract.

    Science.gov (United States)

    Mimee, Andrea; Ferguson, Alastair V

    2015-04-15

    The nucleus of the solitary tract (NTS) is a medullary integrative center with critical roles in the coordinated control of energy homeostasis. Here, we used whole cell current-clamp recordings on rat NTS neurons in slice preparation to identify the presence of physiologically relevant glucose-sensing neurons. The majority of NTS neurons (n = 81) were found to be glucose-responsive, with 35% exhibiting a glucose-excited (GE) phenotype (mean absolute change in membrane potential: 9.5 ± 1.1 mV), and 21% exhibiting a glucose-inhibited (GI) response (mean: 6.3 ± 0.7 mV). Furthermore, we found glucose-responsive cells are preferentially influenced by the anorexigenic peptide α-melanocyte-stimulating hormone (α-MSH), but not nesfatin-1. Accordingly, alterations in glycemic state have profound effects on the responsiveness of NTS neurons to α-MSH, but not to nesfatin-1. Indeed, NTS neurons showed increasing responsiveness to α-MSH as extracellular glucose concentrations were decreased, and in hypoglycemic conditions, all NTS neurons were depolarized by α-MSH (mean 10.6 ± 3.2 mV; n = 8). Finally, decreasing levels of extracellular glucose correlated with a significant hyperpolarization of the baseline membrane potential of NTS neurons, highlighting the modulatory effect of glucose on the baseline excitability of cells in this region. Our findings reveal individual NTS cells are capable of integrating multiple sources of metabolically relevant inputs, highlight the rapid capacity for plasticity in medullary melanocortin circuits, and emphasize the critical importance of physiological recording conditions for electrophysiological studies pertaining to the central control of energy homeostasis. Copyright © 2015 the American Physiological Society.

  12. Acupuncture-like stimulation at auricular point Heart evokes cardiovascular inhibition via activating the cardiac-related neurons in the nucleus tractus solitarius.

    Science.gov (United States)

    Gao, Xin Yan; Li, Yan Hua; Liu, Kun; Rong, Pei Jing; Ben, Hui; Li, Liang; Zhu, Bing; Zhang, Shi Ping

    2011-06-23

    Fifty-eight male Sprague-Dawley rats used in the present study to investigate the role of baroreceptor sensitive neurons of the nucleus tractus solitarius (NTS) in the regulation of cardiovascular inhibition during acupuncture at the auricular point Heart, single unit recording was made in anesthetized Sprague-Dawley rats. A neuron was considered to be excited or inhibited by acupuncture stimulation if it displayed 15% more or less spikes s(-1), respectively. NTS neurons were classified into cardiac-related (CR) neurons and non-cardiac-related neurons based on whether their rhythmic discharges were synchronized with the R-waves and responding to sodium nitroprusside (NP; 20 μg/kg, i.v.) administration. Manual acupuncture was applied at the auricular point Heart and somatic acupuncture points ST36 and PC6. Acupuncture at auricular point Heart showed a more significant inhibitory effect on arterial pressure (-22.1±2.4mm Hg; Pheart rate (-12.7±1.7 bpm; PHeart also increased the level of response of CR neurons in the NTS (93.8%±26.0% increase in discharge rate; Pneurons evoked by auricular acupuncture, but had no effect on the same responses evoked by somatic acupuncture. Inactivation of the NTS with local anesthetics also decreased the cardiovascular inhibitory responses evoked by auricular acupuncture. Our results show that acupuncture at the auricular point Heart regulates cardiovascular function by activating baroreceptor sensitive neurons in the NTS in a similar manner as the baroreceptor reflex in cardiovascular inhibition. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus

    Science.gov (United States)

    Li, Meng-Ying; Wu, Zhen-Yu; Lu, Ya-Cheng; Yin, Jun-Bin; Wang, Jian; Zhang, Ting; Dong, Yu-Lin; Wang, Feng

    2014-01-01

    Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III. PMID:25386121

  14. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture

    Directory of Open Access Journals (Sweden)

    Troy Michael Herter

    2015-04-01

    Full Text Available Primary motor cortex (M1 and red nucleus (RN are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49 and M1 (n = 109 of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms changes of neural discharges in many RN (28 of 49, 57% and M1 (43 of 109, 39% neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.

  15. Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Giuseppe eGangarossa

    2013-02-01

    Full Text Available The nucleus accumbens (NAc is a critical brain region involved in many reward-related behaviors. The NAc comprises major compartments the core and the shell, which encompass several subterritories. GABAergic medium-sized spiny neurons (MSNs constitute the output neurons of the NAc core and shell. While the functional organization of the NAc core outputs resembles the one described for the dorsal striatum, a simple classification of the NAc shell neurons has been difficult to define due to the complexity of the compartmental segregation of cells. We used a variety of BAC transgenic mice expressing enhanced green fluorescence (EGFP or the Cre-recombinase (Cre under the control of the promoter of dopamine D1, D2, and D3 receptors and of adenosine A2a receptor to dissect the microanatomy of the NAc. Moreover, using various immunological markers we characterized in detail the distribution of MSNs in the mouse NAc. In addition, cell-type specific ERK phosphorylation in the NAc subterritories was analyzed following acute administration of SKF81297 (a D1R-like agonist, quinpirole (a D2R-like agonist, apomorphine (a non-selective DA receptor agonist, raclopride (a D2R-like antagonist, and psychostimulant drugs, including cocaine and d-amphetamine. Each drug generated a unique topography and cell-type specific activation of ERK in the NAc. Our results show the existence of marked differences in the receptor expression pattern and functional activation of MSNs within the shell subterritories. This study emphasizes the anatomical and functional heterogeneity of the NAc, which will have to be considered in its further study.

  16. Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.

    Science.gov (United States)

    Caminero, A A; Machín, C; Sanchez-Toscano, F

    1992-02-01

    A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences.

  17. Dispersion of the intrinsic neuronal periods affects the relationship of the entrainment range to the coupling strength in the suprachiasmatic nucleus

    Science.gov (United States)

    Gu, Changgui; Yang, Huijie; Wang, Man

    2017-11-01

    Living beings on the Earth are subjected to and entrained (synchronized) to the natural 24-h light-dark cycle. Interestingly, they can also be entrained to an external artificial cycle of non-24-h periods. The range of these periods is called the entrainment range and it differs among species. In mammals, the entrainment range is regulated by a main clock located in the suprachiasmatic nucleus (SCN) which is composed of 10 000 neurons in the brain. Previous works have found that the entrainment range depends on the cellular coupling strength in the SCN. In particular, the entrainment range decreases with the increase of the cellular coupling strength, provided that all the neuronal oscillators are identical. However, the SCN neurons differ in the intrinsic periods that follow a normal distribution in a range from 22 to 28 h. In the present study, taking the dispersion of the intrinsic neuronal periods into account, we examined the relationship between the entrainment range and the coupling strength. Results from numerical simulations and theoretical analyses both show that the relationship is altered to be paraboliclike if the intrinsic neuronal periods are nonidentical, and the maximal entrainment range is obtained with a suitable coupling strength. Our results shed light on the role of the cellular coupling in the entrainment ability of the SCN network.

  18. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    Science.gov (United States)

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  19. Reward and behavioral factors contributing to the tonic activity of monkey pedunculopontine tegmental nucleus neurons during saccade tasks

    Directory of Open Access Journals (Sweden)

    Ken-ichi Okada

    2016-11-01

    Full Text Available The pedunculopontine tegmental nucleus (PPTg in the brainstem plays a role in controlling reinforcement learning and executing conditioned behavior. We previously examined activity of PPTg neurons in monkeys during a reward-conditioned, visually guided saccade task, and reported that a population of these neurons exhibited tonic responses throughout the task period. These tonic responses might depend on prediction of the upcoming reward, successful execution of the task, or both. Here, we sought to further distinguish these factors and to investigate how each contributes to the tonic neuronal activity of the PPTg. In our normal visually guided saccade task, the monkey initially fixated on the central fixation target, then made saccades to the peripheral saccade target, and received a juice reward after the saccade target disappeared. Most of the tonic activity terminated shortly after the reward delivery, when the monkey broke fixation. To distinguish between reward and behavioral epochs, we then changed the task sequence for a block of trials, such that the saccade target remained visible after the reward delivery. Under these visible conditions, the monkeys tended to continue fixating on the saccade target even after the reward delivery. Therefore, the prediction of the upcoming reward and the end of an individual trial were separated in time. Regardless of the task conditions, half of the tonically active PPTg neurons terminated their activity around the time of the reward delivery, consistent with the view that PPTg neurons might send reward prediction signals until the time of reward delivery, which is essential for computing reward prediction error in reinforcement learning. On the other hand, the other half of the tonically active PPTg neurons changed their activity dependent on the task condition. In the normal condition, the tonic responses terminated around the time of the reward delivery, while in the visible condition, the activity

  20. Reward and Behavioral Factors Contributing to the Tonic Activity of Monkey Pedunculopontine Tegmental Nucleus Neurons during Saccade Tasks.

    Science.gov (United States)

    Okada, Ken-Ichi; Kobayashi, Yasushi

    2016-01-01

    The pedunculopontine tegmental nucleus (PPTg) in the brainstem plays a role in controlling reinforcement learning and executing conditioned behavior. We previously examined the activity of PPTg neurons in monkeys during a reward-conditioned, visually guided saccade task, and reported that a population of these neurons exhibited tonic responses throughout the task period. These tonic responses might depend on prediction of the upcoming reward, successful execution of the task, or both. Here, we sought to further distinguish these factors and to investigate how each contributes to the tonic neuronal activity of the PPTg. In our normal visually guided saccade task, the monkey initially fixated on the central fixation target (FT), then made saccades to the peripheral saccade target and received a juice reward after the saccade target disappeared. Most of the tonic activity terminated shortly after the reward delivery, when the monkey broke fixation. To distinguish between reward and behavioral epochs, we then changed the task sequence for a block of trials, such that the saccade target remained visible after the reward delivery. Under these visible conditions, the monkeys tended to continue fixating on the saccade target even after the reward delivery. Therefore, the prediction of the upcoming reward and the end of an individual trial were separated in time. Regardless of the task conditions, half of the tonically active PPTg neurons terminated their activity around the time of the reward delivery, consistent with the view that PPTg neurons might send reward prediction signals until the time of reward delivery, which is essential for computing reward prediction error in reinforcement learning. On the other hand, the other half of the tonically active PPTg neurons changed their activity dependent on the task condition. In the normal condition, the tonic responses terminated around the time of the reward delivery, while in the visible condition, the activity continued

  1. [Morphometric features of the structure of the central nucleus of the amygdala in men and women].

    Science.gov (United States)

    Antyukhov, A D

    2015-01-01

    To identify the interhemispheric asymmetry in the structure of the central nucleus of the amygdala in men and women. Morphometric features of the structure of neurons of the central nucleus amygdala complex were studied in histological sections of the brain of 6 men and 6 women (24 hemispheres), aged 19 to 55 years, with no lifetime diagnosis of mental or neurological disease. The value of the profile fields of neurons of the central nucleus amygdala complex in the left and right hemispheres of the brain were investigated. In women, the average value of neurons in the left hemisphere was somewhat greater than in the right hemisphere, while in men this value was greater in the right hemisphere. The interhemispheric morphometric differences were not significant regardless of gender. In addition, the quantity of relevant fields of neurons in the central nucleus of the amygdala in women was significantly larger than that of men in both hemispheres. The authors attempted to associate the results obtained in the study with emotional perception in men and women.

  2. Effect of morphine-induced antinociception is altered by AF64A-induced lesions on cholinergic neurons in rat nucleus raphe magnus.

    Science.gov (United States)

    Abe, Kenji; Ishida, Kota; Kato, Masatoshi; Shigenaga, Toshiro; Taguchi, Kyoji; Miyatake, Tadashi

    2002-11-01

    To examine the role of cholinergic neurons in the nucleus raphe magnus (NRM) in noxious heat stimulation and in the effects of morphine-induced antinociception by rats. After the cholinergic neuron selective toxin, AF64A, was microinjected into the NRM, we examined changes in the antinociceptive threshold and effects of morphine (5 mg/kg, ip) using the hot-plate (HP) and tail-flick (TF) tests. Systemic administration of morphine inhibited HP and TF responses in control rats. Microinjection of AF64A (2 nmol/site) into the NRM significantly decreased the threshold of HP response after 14 d, whereas the TF response was not affected. Morphine-induced antinociception was significantly attenuated in rats administered AF64A. Extracellular acetylcholine was attenuated after 14 d to below detectable levels in rats given AF64A. Naloxone (1 microg/site) microinjected into control rat NRM also antagonized the antinociceptive effect of systemic morphine. These findings suggest that cholinergic neuron activation in the NRM modulates the antinociceptive effect of morphine simultaneously with the opiate system.

  3. Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms

    Directory of Open Access Journals (Sweden)

    M.P. da Silva

    2014-02-01

    Full Text Available Physiological evidence indicates that the supraoptic nucleus (SON is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1 the intrinsic membrane properties of the MNCs themselves and 2 synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON.

  4. Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness.

    Directory of Open Access Journals (Sweden)

    Daisuke Kohno

    2016-11-01

    Full Text Available The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC: glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanism underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2 and taste type 1 receptor 3 (T1R3 and senses sweet tastes. T1R2 and T1R3 receptors are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10-5 M-10-2 M dose dependently increased [Ca2+]i in 12-16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentage of proopiomelanocortin (POMC neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular

  5. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness.

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca 2+ concentration ([Ca 2+ ] i ) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10 -5 -10 -2 M dose dependently increased [Ca 2+ ] i in 12-16% of ARC neurons. The sucralose-induced [Ca 2+ ] i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca 2+ ] i increase was inhibited under an extracellular Ca 2+ -free condition and in the presence of an L-type Ca 2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation

  6. A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture.

    Science.gov (United States)

    Pilati, Nadia; Barker, Matthew; Panteleimonitis, Sofoklis; Donga, Revers; Hamann, Martine

    2008-06-01

    The Golgi silver impregnation technique gives detailed information on neuronal morphology of the few neurons it labels, whereas the majority remain unstained. In contrast, the Nissl staining technique allows for consistent labeling of the whole neuronal population but gives very limited information on neuronal morphology. Most studies characterizing neuronal cell types in the context of their distribution within the tissue slice tend to use the Golgi silver impregnation technique for neuronal morphology followed by deimpregnation as a prerequisite for showing that neuron's histological location by subsequent Nissl staining. Here, we describe a rapid method combining Golgi silver impregnation with cresyl violet staining that provides a useful and simple approach to combining cellular morphology with cytoarchitecture without the need for deimpregnating the tissue. Our method allowed us to identify neurons of the facial nucleus and the supratrigeminal nucleus, as well as assessing cellular distribution within layers of the dorsal cochlear nucleus. With this method, we also have been able to directly compare morphological characteristics of neuronal somata at the dorsal cochlear nucleus when labeled with cresyl violet with those obtained with the Golgi method, and we found that cresyl violet-labeled cell bodies appear smaller at high cellular densities. Our observation suggests that cresyl violet staining is inadequate to quantify differences in soma sizes.

  7. Neuronal responses to tactile stimuli and tactile sensations evoked by microstimulation in the human thalamic principal somatic sensory nucleus (ventral caudal).

    Science.gov (United States)

    Schmid, Anne-Christine; Chien, Jui-Hong; Greenspan, Joel D; Garonzik, Ira; Weiss, Nirit; Ohara, Shinji; Lenz, Frederick Arthur

    2016-06-01

    The normal organization and plasticity of the cutaneous core of the thalamic principal somatosensory nucleus (ventral caudal, Vc) have been studied by single-neuron recordings and microstimulation in patients undergoing awake stereotactic operations for essential tremor (ET) without apparent somatic sensory abnormality and in patients with dystonia or chronic pain secondary to major nervous system injury. In patients with ET, most Vc neurons responded to one of the four stimuli, each of which optimally activates one mechanoreceptor type. Sensations evoked by microstimulation were similar to those evoked by the optimal stimulus only among rapidly adapting neurons. In patients with ET, Vc was highly segmented somatotopically, and vibration, movement, pressure, and sharp sensations were usually evoked by microstimulation at separate sites in Vc. In patients with conditions including spinal cord transection, amputation, or dystonia, RFs were mismatched with projected fields more commonly than in patients with ET. The representation of the border of the anesthetic area (e.g., stump) or of the dystonic limb was much larger than that of the same part of the body in patients with ET. This review describes the organization and reorganization of human Vc neuronal activity in nervous system injury and dystonia and then proposes basic mechanisms. Copyright © 2016 the American Physiological Society.

  8. Daily changes in synaptic innervation of VIP neurons in the rat suprachiasmatic nucleus: contribution of glutamatergic afferents.

    Science.gov (United States)

    Girardet, Clémence; Blanchard, Marie-Pierre; Ferracci, Géraldine; Lévêque, Christian; Moreno, Mathias; François-Bellan, Anne-Marie; Becquet, Denis; Bosler, Olivier

    2010-01-01

    The daily temporal organization of rhythmic functions in mammals, which requires synchronization of the circadian clock to the 24-h light-dark cycle, is believed to involve adjustments of the mutual phasing of the cellular oscillators that comprise the time-keeper within the suprachiasmatic nucleus of the hypothalamus (SCN). Following from a previous study showing that the SCN undergoes day/night rearrangements of its neuronal-glial network that may be crucial for intercellular phasing, we investigated the contribution of glutamatergic synapses, known to play major roles in SCN functioning, to such rhythmic plastic events. Neither expression levels of the vesicular glutamate transporters nor numbers of glutamatergic terminals showed nycthemeral variations in the SCN. However, using quantitative imaging after combined immunolabelling, the density of synapses on neurons expressing vasoactive intestinal peptide, known as targets of the retinal input, increased during the day and both glutamatergic and non-glutamatergic synapses contributed to the increase (+36%). This was not the case for synapses made on vasopressin-containing neurons, the other major source of SCN efferents in the non-retinorecipient region. Together with electron microscope observations showing no differences in the morphometric features of glutamatergic terminals during the day and night, these data show that the light synchronization process in the SCN involves a selective remodelling of synapses at sites of photic integration. They provide a further illustration of how the adult brain may rapidly and reversibly adapt its synaptic architecture to functional needs.

  9. Nucleus Accumbens Dopamine D1-Receptor-Expressing Neurons Control the Acquisition of Sign-Tracking to Conditioned Cues in Mice

    Directory of Open Access Journals (Sweden)

    Tom Macpherson

    2018-06-01

    Full Text Available Following repeated pairings, the reinforcing and motivational properties (incentive salience of a reward can be transferred onto an environmental stimulus which can then elicit conditioned responses, including Pavlovian approach behavior to the stimulus (a sign-tracking response. In rodents, acquisition of sign-tracking in autoshaping paradigms is sensitive to lesions and dopamine D1 receptor antagonism of the nucleus accumbens (NAc of the ventral striatum. However, currently, the possible roles of dorsal striatal subregions, as well as of the two major striatal neuron types, dopamine D1-/D2-expressing medium spiny neurons (MSNs, in controlling the development of conditioned responses is still unclear and warrants further study. Here, for the first time, we used a transgenic mouse line combined with striatal subregion-specific AAV virus injections to separately express tetanus toxin in D1-/D2- MSNs in the NAc, dorsomedial striatum, and dorsolateral striatum, to permanently block neurotransmission in these neurons during acquisition of an autoshaping task. Neurotransmission blocking of NAc D1-MSNs inhibited the acquisition of sign-tracking responses when the initial conditioned response for each conditioned stimulus presentation was examined, confirming our initial hypothesis. These findings suggest that activity in NAc D1-MSNs contributes to the attribution of incentive salience to conditioned stimuli.

  10. INCREASE IN DOPAMINE RELEASE FROM THE NUCLEUS-ACCUMBENS IN RESPONSE TO FEEDING - A MODEL TO STUDY INTERACTIONS BETWEEN DRUGS AND NATURALLY ACTIVATED DOPAMINERGIC-NEURONS IN THE RAT-BRAIN

    NARCIS (Netherlands)

    WESTERINK, BHC; TEISMAN, A; DEVRIES, JB

    The aim of the present study was to investigate the interactions between the in vivo release of dopamine and certain drugs, during conditions of increased dopaminergic activity. Dopaminergic neurons in the nucleus accumbens were activated by feeding hungry rats. 48-96 h after implantation of a

  11. Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.

    Science.gov (United States)

    Caminero, A A; Machín, C; Sanchez-Toscano, F

    1992-01-01

    A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences. Images Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:1452481

  12. A stereological study of the mediodorsal thalamic nucleus in Down syndrome

    DEFF Research Database (Denmark)

    Karlsen, A S; Korbo, S; Uylings, H B M

    2014-01-01

    The total number of neurons and glial cells in the mediodorsal thalamic (MDT) nucleus of four aged females with Down syndrome (DS; mean age 69years) was estimated and compared to six age- and sex-matched controls. The MDT nucleus was delineated on coronal sections, and cell numbers (large and small...

  13. Activation of Hypocretin-1/Orexin-A Neurons Projecting to the Bed Nucleus of the Stria Terminalis and Paraventricular Nucleus Is Critical for Reinstatement of Alcohol Seeking by Neuropeptide S.

    Science.gov (United States)

    Ubaldi, Massimo; Giordano, Antonio; Severi, Ilenia; Li, Hongwu; Kallupi, Marsida; de Guglielmo, Giordano; Ruggeri, Barbara; Stopponi, Serena; Ciccocioppo, Roberto; Cannella, Nazzareno

    2016-03-15

    Environmental conditioning is a major trigger for relapse in abstinent addicts. We showed that activation of the neuropeptide S (NPS) system exacerbates reinstatement vulnerability to cocaine and alcohol via stimulation of the hypocretin-1/orexin-A (Hcrt-1/Ox-A) system. Combining pharmacologic manipulations with immunohistochemistry techniques, we sought to determine how NPS and Hcrt-1/Ox-A systems interact to modulate reinstatement of alcohol seeking in rats. Intrahypothalamic injection of NPS facilitated discriminative cue-induced reinstatement of alcohol seeking. This effect was blocked by the selective Hcrt-1/Ox-A antagonist SB334867 microinjected into the hypothalamic paraventricular nucleus (PVN) or into the bed nucleus of the stria terminalis (BNST) but not into the ventral tegmental area or the locus coeruleus. Combining double labeling and confocal microscopy analyses, we found that NPS-containing axons are in close apposition to hypothalamic Hcrt-1/Ox-A positive neurons, a significant proportion of which express NPS receptors, suggesting a direct interaction between the two systems. Retrograde tracing experiments showed that intra-PVN or intra-BNST red fluorobead unilateral injection labeled bilaterally Hcrt-1/Ox-A somata, suggesting that NPS could recruit two distinct neuronal pathways. Confirming this assumption, intra-BNST or PVN Hcrt-1/Ox-A injection enhanced alcohol seeking similarly to hypothalamic NPS injection but to a lesser degree. Results suggest that the Hcrt-1/Ox-A neurocircuitry mediating the facilitation of cue-induced reinstatement by NPS involves structures critically involved in stress regulation such as the PVN and the BNST. These findings open to the tempting hypothesis of a role of the NPS system in modulating the interactions between stress and environmental conditioning factors in drug relapse. Copyright © 2016. Published by Elsevier Inc.

  14. The effect of GABA A receptor antagonist - bicucullin - administration on the number of multiform neurons in the brain parabrachial nucleus due to pain induction of adult male rats

    Directory of Open Access Journals (Sweden)

    Mahsa Kamali

    2015-10-01

    Full Text Available Background and Aim:  A lot of biological investigations are aimed to find pain decreasing or relieving substances that appear in various diseases. Parabrachial nucleus plays an important role in cognitive and emotional aspects of pain. The present study was designed to evaluate the inhibitory effect of bicuculine- as a GABA A receptor antagonist- on the number of multiform neurons in Parabrachial region of adult male rats in tonic pain model. Materials and Methods: This experimental study was carried out on 40 Wistar male rats. Based on the pain induction, the animals were divided into 8 groups (n=5. Bicuculine was administrated in doses of  50, 100, and 200 ng/rat.  Using stereotaxic method, Bicuculine was administrated to the rats` brain parabrachial area. The present study utilized Formalin test as a standard method for pain stimulations. Thereafter, Gimsa staining method was applied for histological determination of multiform cells. The obtained data was analyzed using statistical testsincluding Student-t and  one-way ANOVA. Results: Our data showed no significant changes in the number of multiform cells in Parabrachial nucleus between the animals administrated by bicuculine at the dose of 50   compared  with the controls (P>0.05. Nevertheless, the number of these cells was decreased significantly in the animals administrated by bicuculine at the doses of 100 and 200   when compared to the controls (p<0.05. Conclusion:  It was found that nociceptive stimulations cause changes in the number of multiform neurons in para- brachial nucleus. Nevertheless, higher dose administration of GABA A receptor antagonist has preventive effects on neuronal dysmorphogenesis at this brain area.

  15. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets.

    Science.gov (United States)

    Peris, Joanna; MacFadyen, Kaley; Smith, Justin A; de Kloet, Annette D; Wang, Lei; Krause, Eric G

    2017-04-01

    The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT-synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT-receptor (OTR) expressing neurons originating within the VTA, we delivered Cre-inducible adeno-associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre-recombinase driven by OTR gene expression. OTR-expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR-expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR-expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one-third of OTR-expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094-1108, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Prolonged Consumption of Sucrose in a Binge-Like Manner, Alters the Morphology of Medium Spiny Neurons in the Nucleus Accumbens Shell.

    Directory of Open Access Journals (Sweden)

    Paul M Klenowski

    2016-03-01

    Full Text Available The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks and long-term (12 weeks binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.

  17. Frequency-specific corticofugal modulation of the dorsal cochlear nucleus in mice.

    Science.gov (United States)

    Kong, Lingzhi; Xiong, Colin; Li, Liang; Yan, Jun

    2014-01-01

    The primary auditory cortex (AI) modulates the sound information processing in the lemniscal subcortical nuclei, including the anteroventral cochlear nucleus (AVCN), in a frequency-specific manner. The dorsal cochlear nucleus (DCN) is a non-lemniscal subcortical nucleus but it is tonotopically organized like the AVCN. However, it remains unclear how the AI modulates the sound information processing in the DCN. This study examined the impact of focal electrical stimulation of AI on the auditory responses of the DCN neurons in mice. We found that the electrical stimulation induced significant changes in the best frequency (BF) of DCN neurons. The changes in the BFs were highly specific to the BF differences between the stimulated AI neurons and the recorded DCN neurons. The DCN BFs shifted higher when the AI BFs were higher than the DCN BFs and the DCN BFs shifted lower when the AI BFs were lower than the DCN BFs. The DCN BFs showed no change when the AI and DCN BFs were similar. Moreover, the BF shifts were linearly correlated to the BF differences. Thus, our data suggest that corticofugal modulation of the DCN is also highly specific to frequency information, similar to the corticofugal modulation of the AVCN. The frequency-specificity of corticofugal modulation does not appear limited to the lemniscal ascending pathway.

  18. Spectral composition of concurrent noise affects neuronal sensitivity to interaural time differences of tones in the dorsal nucleus of the lateral lemniscus.

    Science.gov (United States)

    Siveke, Ida; Leibold, Christian; Grothe, Benedikt

    2007-11-01

    We are regularly exposed to several concurrent sounds, producing a mixture of binaural cues. The neuronal mechanisms underlying the localization of concurrent sounds are not well understood. The major binaural cues for localizing low-frequency sounds in the horizontal plane are interaural time differences (ITDs). Auditory brain stem neurons encode ITDs by firing maximally in response to "favorable" ITDs and weakly or not at all in response to "unfavorable" ITDs. We recorded from ITD-sensitive neurons in the dorsal nucleus of the lateral lemniscus (DNLL) while presenting pure tones at different ITDs embedded in noise. We found that increasing levels of concurrent white noise suppressed the maximal response rate to tones with favorable ITDs and slightly enhanced the response rate to tones with unfavorable ITDs. Nevertheless, most of the neurons maintained ITD sensitivity to tones even for noise intensities equal to that of the tone. Using concurrent noise with a spectral composition in which the neuron's excitatory frequencies are omitted reduced the maximal response similar to that obtained with concurrent white noise. This finding indicates that the decrease of the maximal rate is mediated by suppressive cross-frequency interactions, which we also observed during monaural stimulation with additional white noise. In contrast, the enhancement of the firing rate to tones at unfavorable ITD might be due to early binaural interactions (e.g., at the level of the superior olive). A simple simulation corroborates this interpretation. Taken together, these findings suggest that the spectral composition of a concurrent sound strongly influences the spatial processing of ITD-sensitive DNLL neurons.

  19. Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats

    Science.gov (United States)

    Gentet, Luc J; Ulrich, Daniel

    2003-01-01

    The thalamic reticular nucleus (nRT) is composed entirely of GABAergic inhibitory neurones that receive input from pyramidal cortical neurones and excitatory relay cells of the ventrobasal complex of the thalamus (VB). It plays a major role in the synchrony of thalamic networks, yet the synaptic connections it receives from VB cells have never been fully physiologically characterised. Here, whole-cell current-clamp recordings were obtained from 22 synaptically connected VB-nRT cell pairs in slices of juvenile (P14–20) rats. At 34–36 °C, single presynaptic APs evoked unitary EPSPs in nRT cells with a peak amplitude of 7.4 ± 1.5 mV (mean ± s.e.m.) and a decay time constant of 15.1 ± 0.9 ms. Only four out of 22 pairs showed transmission failures at a mean rate of 6.8 ± 1.1 %. An NMDA receptor (NMDAR)-mediated component was significant at rest and subsequent EPSPs in a train were depressed. Only one out of 14 pairs tested was reciprocally connected; the observed IPSPs in the VB cell had a peak amplitude of 0.8 mV and were completely abolished in the presence of 10 μm bicuculline. Thus, synaptic connections from VB cells to nRT neurones are mainly ‘drivers’, while a small subset of cells form closed disynaptic loops. PMID:12563005

  20. Production and survival of projection neurons in a forebrain vocal center of adult male canaries

    International Nuclear Information System (INIS)

    Kirn, J.R.; Alvarez-Buylla, A.; Nottebohm, F.

    1991-01-01

    Neurons are produced in the adult canary telencephalon. Many of these cells are incorporated into the high vocal center (nucleus HVC), which participates in the control of learned song. In the present work, 3H-thymidine and fluorogold were employed to follow the differentiation and survival of HVC neurons born in adulthood. We found that many HVC neurons born in September grow long axons to the robust nucleus of the archistriatum (nucleus RA) and thus become part of the efferent pathway for song control. Many of these new neurons have already established their connections with RA by 30 d after their birth. By 240 d, 75-80% of the September-born HVC neurons project to RA. Most of these new projection neurons survive at least 8 months. The longevity of HVC neurons born in September suggests that these cells remain part of the vocal control circuit long enough to participate in the yearly renewal of the song repertoire

  1. Facial injections of pruritogens and algogens excite partly overlapping populations of primary and second-order trigeminal neurons in mice.

    Science.gov (United States)

    Akiyama, T; Carstens, M Iodi; Carstens, E

    2010-11-01

    Intradermal cheek injection of pruitogens or algogens differentially elicits hindlimb scratching or forelimb wiping, suggesting that these behaviors distinguish between itch and pain. We studied whether pruritogens and algogens excite separate or overlapping populations of primary afferent and second-order trigeminal neurons in mice. Calcium imaging of primary sensory trigeminal ganglion (TG) cells showed that 15.4% responded to histamine, 5.8% to the protease-activated receptor (PAR)-2 agonist, 13.4% to allyl isothiocyanate (AITC), and 36.7% to capsaicin. AITC and/or capsaicin activated the vast majority of histamine- and PAR-2 agonist-sensitive TG cells. A chemical search strategy identified second-order neurons in trigeminal subnucleus caudalis (Vc) responsive to histamine, the PAR-2 agonist, or AITC. A minority of histamine or PAR-2 agonist-responsive Vc neurons responded to the other pruritogen, whereas a large majority of puritogen-responsive Vc neurons responded to capsaicin and/or AITC. A minority of AITC-responsive Vc neurons responded to pruritogens, whereas most responded to capsaicin. These data indicate that most primary and higher-order trigeminal sensory neurons are activated by both pruritic and algesic stimuli, although a minority exhibit selectivity. The results are discussed in terms of population codes for itch and pain that result in distinct behavioral responses of hindlimb scratching and forelimb wiping that are mediated at lumbar and cervical segmental levels, respectively.

  2. The lateral paragigantocellular nucleus modulates parasympathetic cardiac neurons: a mechanism for rapid eye movement sleep-dependent changes in heart rate.

    Science.gov (United States)

    Dergacheva, Olga; Wang, Xin; Lovett-Barr, Mary R; Jameson, Heather; Mendelowitz, David

    2010-08-01

    Rapid eye movement (REM) sleep is generally associated with a withdrawal of parasympathetic activity and heart rate increases; however, episodic vagally mediated heart rate decelerations also occur during REM sleep. This alternating pattern of autonomic activation provides a physiological basis for REM sleep-induced cardiac arrhythmias. Medullary neurons within the lateral paragigantocellular nucleus (LPGi) are thought to be active after REM sleep recovery and play a role in REM sleep control. In proximity to the LPGi are parasympathetic cardiac vagal neurons (CVNs) within the nucleus ambiguus (NA), which are critical for controlling heart rate. This study examined brain stem pathways that may mediate REM sleep-related reductions in parasympathetic cardiac activity. Electrical stimulation of the LPGi evoked inhibitory GABAergic postsynaptic currents in CVNs in an in vitro brain stem slice preparation in rats. Because brain stem cholinergic mechanisms are involved in REM sleep regulation, we also studied the role of nicotinic neurotransmission in modulation of GABAergic pathway from the LGPi to CVNs. Application of nicotine diminished the GABAergic responses evoked by electrical stimulation. This inhibitory effect of nicotine was prevented by the alpha7 nicotinic receptor antagonist alpha-bungarotoxin. Moreover, hypoxia/hypercapnia (H/H) diminished LPGi-evoked GABAergic current in CVNs, and this inhibitory effect was also prevented by alpha-bungarotoxin. In conclusion, stimulation of the LPGi evokes an inhibitory pathway to CVNs, which may constitute a mechanism for the reduced parasympathetic cardiac activity and increase in heart rate during REM sleep. Inhibition of this pathway by nicotinic receptor activation and H/H may play a role in REM sleep-related and apnea-associated bradyarrhythmias.

  3. Gastrointestinal-projecting neurones in the dorsal motor nucleus of the vagus exhibit direct and viscerotopically organized sensitivity to orexin

    Science.gov (United States)

    Grabauskas, Gintautas; Moises, Hylan C

    2003-01-01

    Orexin (hypocretin)-containing projections from lateral hypothalamus (LH) are thought to play an important role in the regulation of feeding behaviour and energy balance. In rodent studies, central administration of orexin peptides increases food intake, and orexin neurones in the LH are activated by hypoglycaemia during fasting. In addition, administration of orexins into the fourth ventricle or the dorsal motor nucleus of the vagus (DMV) has been shown to stimulate gastric acid secretion and motility, respectively, via vagal efferent pathways. In this study, whole-cell recordings were obtained from DMV neurones in rat brainstem slices to investigate the cellular mechanism(s) by which orexins produce their gastrostimulatory effects. To determine whether responsiveness to orexins might be differentially expressed among distinct populations of preganglionic vagal motor neurones, recordings were made from neurones whose projections to the gastrointestinal tract had been identified by retrograde labelling following apposition of the fluorescent tracer DiI to the gastric fundus, corpus or antrum/pylorus, the duodenum or caecum. Additionally, the responses of neurones to orexins were compared with those produced by oxytocin, which acts within the DMV to stimulate gastric acid secretion, but inhibits gastric motor function. Bath application of orexin-A or orexin-B (30–300 nm) produced a slow depolarization, accompanied by increased firing in 47 of 102 DMV neurones tested, including 70 % (30/43) of those that projected to the gastric fundus or corpus. In contrast, few DMV neurones that supplied the antrum/pylorus (3/13), duodenum (4/18) or caecum (1/13) were responsive to these peptides. The depolarizing responses were concentration dependent and persisted during synaptic isolation of neurones with TTX or Cd2+, indicating they resulted from activation of postsynaptic orexin receptors. They were also associated with a small increase in membrane resistance, and in voltage

  4. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Yang Yan

    2010-12-01

    Full Text Available Abstract Background Although the cerebellum is considered to be predominantly involved in fine motor control, emerging evidence documents its participation in language, impulsive behavior and higher cognitive functions. While the specific connections of the cerebellar deep nuclei (CDN that are responsible for these functions are still being worked out, their deficiency has been termed "cerebellar cognitive affective syndrome" - a syndrome that bears a striking similarity to many of the symptoms of Alzheimer's disease (AD. Using ectopic cell cycle events and DNA damage markers as indexes of cellular distress, we have explored the neuropathological involvement of the CDN in human AD. Results We examined the human cerebellar dentate nucleus in 22 AD cases and 19 controls for the presence of neuronal cell cycle events and DNA damage using immunohistochemistry and fluorescence in situ hybridization. Both techniques revealed several instances of highly significant correlations. By contrast, neither amyloid plaque nor neurofibrillary tangle pathology was detected in this region, consistent with previous reports of human cerebellar pathology. Five cases of early stage AD were examined and while cell cycle and DNA damage markers were well advanced in the hippocampus of all five, few indicators of either cell cycle events (1 case or a DNA damage response (1 case were found in CDN. This implies that CDN neurons are most likely affected later in the course of AD. Clinical-pathological correlations revealed that cases with moderate to high levels of cell cycle activity in their CDN are highly likely to show deficits in unorthodox cerebellar functions including speech, language and motor planning. Conclusion Our results reveal that the CDN neurons are under cellular stress in AD and suggest that some of the non-motor symptoms found in patients with AD may be partly cerebellar in origin.

  5. Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Liu Dongjuan

    2012-11-01

    Full Text Available Abstract Introduction Post-traumatic stress disorder (PTSD is an anxiety disorder that develops after exposure to a life-threatening traumatic experience. Meta-analyses of the brainstem showed that midsagittal area of the pons was significantly reduced in patients with PTSD, suggesting a potential apoptosis in dorsal raphe nucleus after single-prolonged stress (SPS. The aim of this study is to investigate whether SPS induces apoptosis in dorsal raphe nucleus in PTSD rats, which may be a possible mechanism of reduced volume of pons and density of gray matter. Methods In this study, rats were randomly divided into 1d, 7d and 14d groups after SPS along with the control group. The apoptosis rate was determined using annexin V-FITC/PI double-labeled flow cytometry (FCM. Levels of Cytochrome c (Cyt-C was examined by Western blotting. Expression of Cyt-C on mitochondria in the dorsal raphe nucleus neuron was determined by enzymohistochemistry under transmission electron microscopy (TEM. The change of thiamine monophosphatase (TMP levels was assessed by enzymohistochemistry under light microscope and TEM. Morphological changes of the ultrastructure of the dorsal raphe nucleus neuron were determined by TEM. Results Apoptotic morphological alterations were observed in dorsal raphe nucleus neuron for all SPS-stimulate groups of rats. The apoptosis rates were significantly increased in dorsal raphe nucleus neuron of SPS rats, along with increased release of cytochrome c from the mitochondria into the cytoplasm, increased expression of Cyt-C and TMP levels in the cytoplasm, which reached to the peak of increase 7 days of SPS. Conclusions The results indicate that SPS induced Cyt-C released from mitochondria into cytosol and apoptosis in dorsal raphe nucleus neuron of rats. Increased TMP in cytoplasm facilitated the clearance of apoptotic cells. We propose that this presents one of the mechanisms that lead to reduced volume of pons and gray matter associated

  6. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus? [v1; ref status: indexed, http://f1000r.es/TYJStu

    Directory of Open Access Journals (Sweden)

    Miriam Matamales

    2012-12-01

    Full Text Available Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

  7. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    Science.gov (United States)

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not

  8. Medial Olivocochlear Reflex Interneurons Are Located in the Posteroventral Cochlear Nucleus: A Kainic Acid Lesion Study in Guinea Pigs

    OpenAIRE

    De VENECIA, RONALD K.; LIBERMAN, M. CHARLES; GUINAN, JOHN J.; BROWN, M. CHRISTIAN

    2005-01-01

    The medial olivocochlear (MOC) reflex arc is probably a three-neuron pathway consisting of type I spiral ganglion neurons, reflex interneurons in the cochlear nucleus, and MOC neurons that project to the outer hair cells of the cochlea. We investigated the identity of MOC reflex interneurons in the cochlear nucleus by assaying their regional distribution using focal injections of kainic acid. Our reflex metric was the amount of change in the distortion product otoacoustic emission (at 2f1–f2)...

  9. Suprachiasmatic modulation of noradrenaline release in the ventrolateral preoptic nucleus.

    Science.gov (United States)

    Saint-Mleux, Benoît; Bayer, Laurence; Eggermann, Emmanuel; Jones, Barbara E; Mühlethaler, Michel; Serafin, Mauro

    2007-06-13

    As the major brain circadian pacemaker, the suprachiasmatic nucleus (SCN) is known to influence the timing of sleep and waking. We thus investigated here the effect of SCN stimulation on neurons of the ventrolateral preoptic nucleus (VLPO) thought to be involved in promoting sleep. Using an acute in vitro preparation of the rat anterior hypothalamus/preoptic area, we found that whereas single-pulse stimulations of the SCN evoked standard fast ionotropic IPSPs and EPSPs, train stimulations unexpectedly evoked a long-lasting inhibition (LLI). Such LLIs could also be evoked in VLPO neurons by pressure application of NMDA within the SCN, indicating the specific activation of SCN neurons. This LLI was shown to result from the presynaptic facilitation of noradrenaline release, because it was suppressed in presence of yohimbine, a selective antagonist of alpha2-adrenoreceptors. The LLI depended on the opening of a potassium conductance, because it was annulled at E(K) and could be reversed below E(K). These results show that the SCN can provide an LLI of the sleep-promoting VLPO neurons that could play a role in the circadian organization of the sleep-waking cycle.

  10. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus? [v1; ref status: indexed, http://f1000r.es/TYJStu

    OpenAIRE

    Miriam Matamales

    2012-01-01

    Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucle...

  11. Modulation of the arcuate nucleus-medial preoptic nucleus lordosis regulating circuit: a role for GABAB receptors

    Science.gov (United States)

    Sinchak, Kevin; Dewing, Phoebe; Ponce, Laura; Gomez, Liliana; Christensen, Amy; Berger, Max; Micevych, Paul

    2013-01-01

    Estradiol rapidly activates a microcircuit in the arcuate nucleus of the hypothalamus (ARH) that is needed for maximal female sexual receptivity. Membrane estrogen receptor-α complexes with and signals through the metabotropic glutamate receptor-1a stimulating NPY release within the ARH activating proopiomelanocortin (POMC) neurons. These POMC neurons project to the medial preoptic nucleus (MPN) and release β-endorphin. Estradiol treatment induces activation/internalization of MPN μ-opioid receptors (MOR) to inhibit lordosis. Estradiol membrane action modulates ARH gamma-aminobutyric acid receptor-B (GABAB) activity. We tested the hypothesis that ARH GABAB receptors mediate estradiol-induced MOR activation and facilitation of sexual receptivity. Double label immunohistochemistry revealed expression of GABAB receptors in NPY, ERα and POMC expressing ARH neurons. Approximately 70% of POMC neurons expressed GABAB receptors. Because estradiol initially activates an inhibitory circuit and maintains activation of this circuit, the effects of blocking GABAB receptors were evaluated before estradiol benzoate (EB) treatment and after at the time of lordosis testing. Bilateral infusions of the GABAB receptor antagonist, CGP52432, into the ARH prior to EB treatment of ovariectomized rats prevented estradiol-induced activation/internalization of MPN MOR, and the rats remained unreceptive. However, in EB treated rats, bilateral CGP52432 infusions 30 minutes before behavior testing attenuated MOR internalization and facilitated lordosis. These results indicated that GABAB receptors were located within the lordosis-regulating ARH microcircuit and are necessary for activation and maintenance of the estradiol inhibition of lordosis behavior. Although GABAB receptors positively influence estradiol signaling, they negatively regulate lordosis behavior since GABAB activity maintains the estradiol-induced inhibition. PMID:23756153

  12. ApoE epsilon4 genotype is accompanied by lower metabolic activity in nucleus basalis of Meynert neurons in Alzheimer patients and controls as indicated by the size of the Golgi apparatus

    NARCIS (Netherlands)

    Dubelaar, E. J. G.; Verwer, R. W. H.; Hofman, M. A.; van Heerikhuize, J. J.; Ravid, R.; Swaab, D. F.

    2004-01-01

    We previously found apolipoprotein (apoE) epsilon4-dependent lower metabolic activity in nucleus basalis of Meynert (NBM) neurons in Alzheimer disease (AD). In the present study we examined the metabolic activity in the NBM of 39 mentally intact control subjects with different APOE genotype. The

  13. Activation of Brainstem Pro-opiomelanocortin Neurons Produces Opioidergic Analgesia, Bradycardia and Bradypnoea.

    Science.gov (United States)

    Cerritelli, Serena; Hirschberg, Stefan; Hill, Rob; Balthasar, Nina; Pickering, Anthony E

    2016-01-01

    Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as β-endorphin, which has a key role in endogenous analgesia. The β-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, pneurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control.

  14. Role of neuronal activity in regulating the structure and function of auditory neurons

    International Nuclear Information System (INIS)

    Born, D.E.

    1986-01-01

    The role of afferent activity in maintaining neuronal structure and function was investigated in second order auditory neurons in nucleus magnocellularis (NM) of the chicken. The cochlea provides the major excitatory input to NM neurons via the eighth nerve. Removal of the cochlea causes dramatic changes in NM neurons. To determine if the elimination of neuronal activity is responsible for the changes in NM seen after cochlea removal, tetrodotoxin was used block action potentials in the cochlear ganglion cells. Tetrodotoxin injections into the perilymph reliably blocked neuronal activity in the cochlear nerve and NM. Far field recordings of sound-evoked potentials revealed that responses returned within 6 hours. Changes in amino acid incorporation in NM neurons were measured by giving intracardiac injections of 3 H-leucine and preparing tissue for autoradiographic demonstration of incorporated amino acid. Grain counts over individual neurons revealed that a single injection of tetrodotoxin produced a 40% decrease in grain density in ipsilateral NM neurons. It is concluded that neuronal activity plays an important contribution to the maintenance of the normal properties of NM neurons

  15. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs.

    Science.gov (United States)

    Roberts, Brandon L; Zhu, Mingyan; Zhao, Huan; Dillon, Crystal; Appleyard, Suzanne M

    2017-09-01

    Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT 3 Rs. Decreasing the glucose concentration also decreased both basal and 5-HT 3 R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT 3 R activity, and glucokinase. Copyright © 2017 the American Physiological Society.

  16. Targeted deletion of neurokinin-1 receptor expressing nucleus tractus solitarii neurons precludes somatosensory depression of arterial baroreceptor-heart rate reflex.

    Science.gov (United States)

    Potts, J T; Fong, A Y; Anguelov, P I; Lee, S; McGovern, D; Grias, I

    2007-03-30

    Neurokinin-1 receptor (NK1-R) expressing neurons are densely distributed throughout the nucleus tractus solitarii (NTS). However, their fundamental role in arterial baroreflex function remains debated. Previously, our group has shown that activation of contraction-sensitive somatic afferents evoke substance P (SP) release in the NTS and resets the arterial baroreflex via activation of a GABAergic NTS circuit. Based on these findings, we hypothesized that modulation of arterial baroreflex function by somatic afferents is mediated by NK1-R dependent inhibition of barosensitive NTS circuits. In the present study, SP-conjugated saporin toxin (SP-SAP) was used to ablate NK1-R expressing NTS neurons. Contraction-sensitive somatic afferents were activated by electrically-evoked muscle contraction and the arterial baroreceptor-heart rate reflex was assessed by constructing reflex curves using a decerebrate, arterially-perfused preparation. Baseline baroreflex sensitivity was significantly attenuated in SP-SAP-treated rats compared with control rats receiving either unconjugated SAP or vehicle. Muscle contraction significantly attenuated baroslope in SAP and vehicle-treated animals and shifted the baroreflex curves to higher systemic pressure. In contrast, somatic afferent stimulation failed to alter baroslope or shift the baroreflex curves in SP-SAP-treated animals. Moreover, when reflex sensitivity was partially restored in SP-SAP animals, somatic stimulation failed to attenuate baroreflex bradycardia. In contrast, SP-SAP and somatic stimulation failed to blunt the reflex bradycardia evoked by the peripheral chemoreflex. Immunohistochemistry revealed that pretreatment with SP-SAP significantly reduced the number of NK1-R expressing neurons in the caudal NTS, while sparing NK1-R expressing neurons rostral to the injection site. This was accompanied by a significant reduction in the number of glutamic acid decarboxylase (GAD67) expressing neurons at equivalent levels of the

  17. Golgi-type I and Golgi-type II neurons in the ventral anterior thalamic nucleus of the adult human: morphological features and quantitative analysis.

    Science.gov (United States)

    Al-Hussain Bani Hani, Saleh M; El-Dwairi, Qasim A; Bataineh, Ziad M; Al-Haidari, Mohammad S; Al-Alami, Jamil

    2008-05-01

    The morphological and quantitative features of neurons in the adult human ventral anterior thalamic nucleus were studied in Golgi preparations. Two neuronal types were found and their quantitative features were studied. Golgi-type I neurons were medium to large cells with dense dendritic trees and dendritic protrusions and short hair-like appendages. They have somatic mean diameter of 30.8 microm (+/-9.4, n = 85). They have an average 100.3 dendritic branches, 48.97 dendritic branching points, and 58.85 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 3.1 microm (+/-1, n = 80), 1.85 microm (+/-0.8, n = 145), and 1.5 microm (+/-0.4, n = 160), respectively. Golgi-type II neurons were small to medium cells with few sparsely branching dendrites and dendritic stalked appendages with or without terminal swellings. They have somatic mean diameters of 22.2 microm (+/-5.8, n = 120). They have an average 33.76 dendritic branches, 16.49 dendritic branching points, and 21.97 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 1.6 microm (+/-0.86, n = 70), 1.15 microm (+/-0.55, n = 118), and 1 microm (+/-0.70, n = 95), respectively. These quantitative data may form the basis for further quantitative studies involving aging or some degenerative diseases that may affect cell bodies and/or dendritic trees of the Golgi-type I and/or Golgi-type II thalamic neurons.

  18. The inhibition of the dorsal paragigantocellular reticular nucleus induces waking and the activation of all adrenergic and noradrenergic neurons: a combined pharmacological and functional neuroanatomical study.

    Science.gov (United States)

    Clément, Olivier; Valencia Garcia, Sara; Libourel, Paul-Antoine; Arthaud, Sébastien; Fort, Patrice; Luppi, Pierre-Hervé

    2014-01-01

    GABAergic neurons specifically active during paradoxical sleep (PS) localized in the dorsal paragigantocellular reticular nucleus (DPGi) are known to be responsible for the cessation of activity of the noradrenergic neurons of the locus coeruleus during PS. In the present study, we therefore sought to determine the role of the DPGi in PS onset and maintenance and in the inhibition of the LC noradrenergic neurons during this state. The effect of the inactivation of DPGi neurons on the sleep-waking cycle was examined in rats by microinjection of muscimol, a GABAA agonist, or clonidine, an alpha-2 adrenergic receptor agonist. Combining immunostaining of the different populations of wake-inducing neurons with that of c-FOS, we then determined whether muscimol inhibition of the DPGi specifically induces the activation of the noradrenergic neurons of the LC. Slow wave sleep and PS were abolished during 3 and 5 h after muscimol injection in the DPGi, respectively. The application of clonidine in the DPGi specifically induced a significant decrease in PS quantities and delayed PS appearance compared to NaCl. We further surprisingly found out that more than 75% of the noradrenergic and adrenergic neurons of all adrenergic and noradrenergic cell groups are activated after muscimol treatment in contrast to the other wake active systems significantly less activated. These results suggest that, in addition to its already know inhibition of LC noradrenergic neurons during PS, the DPGi might inhibit the activity of noradrenergic and adrenergic neurons from all groups during PS, but also to a minor extent during SWS and waking.

  19. The inhibition of the dorsal paragigantocellular reticular nucleus induces waking and the activation of all adrenergic and noradrenergic neurons: a combined pharmacological and functional neuroanatomical study.

    Directory of Open Access Journals (Sweden)

    Olivier Clément

    Full Text Available GABAergic neurons specifically active during paradoxical sleep (PS localized in the dorsal paragigantocellular reticular nucleus (DPGi are known to be responsible for the cessation of activity of the noradrenergic neurons of the locus coeruleus during PS. In the present study, we therefore sought to determine the role of the DPGi in PS onset and maintenance and in the inhibition of the LC noradrenergic neurons during this state. The effect of the inactivation of DPGi neurons on the sleep-waking cycle was examined in rats by microinjection of muscimol, a GABAA agonist, or clonidine, an alpha-2 adrenergic receptor agonist. Combining immunostaining of the different populations of wake-inducing neurons with that of c-FOS, we then determined whether muscimol inhibition of the DPGi specifically induces the activation of the noradrenergic neurons of the LC. Slow wave sleep and PS were abolished during 3 and 5 h after muscimol injection in the DPGi, respectively. The application of clonidine in the DPGi specifically induced a significant decrease in PS quantities and delayed PS appearance compared to NaCl. We further surprisingly found out that more than 75% of the noradrenergic and adrenergic neurons of all adrenergic and noradrenergic cell groups are activated after muscimol treatment in contrast to the other wake active systems significantly less activated. These results suggest that, in addition to its already know inhibition of LC noradrenergic neurons during PS, the DPGi might inhibit the activity of noradrenergic and adrenergic neurons from all groups during PS, but also to a minor extent during SWS and waking.

  20. Synaptic Circuit Organization of Motor Corticothalamic Neurons

    Science.gov (United States)

    Yamawaki, Naoki

    2015-01-01

    Corticothalamic (CT) neurons in layer 6 constitute a large but enigmatic class of cortical projection neurons. How they are integrated into intracortical and thalamo-cortico-thalamic circuits is incompletely understood, especially outside of sensory cortex. Here, we investigated CT circuits in mouse forelimb motor cortex (M1) using multiple circuit-analysis methods. Stimulating and recording from CT, intratelencephalic (IT), and pyramidal tract (PT) projection neurons, we found strong CT↔ CT and CT↔ IT connections; however, CT→IT connections were limited to IT neurons in layer 6, not 5B. There was strikingly little CT↔ PT excitatory connectivity. Disynaptic inhibition systematically accompanied excitation in these pathways, scaling with the amplitude of excitation according to both presynaptic (class-specific) and postsynaptic (cell-by-cell) factors. In particular, CT neurons evoked proportionally more inhibition relative to excitation (I/E ratio) than IT neurons. Furthermore, the amplitude of inhibition was tuned to match the amount of excitation at the level of individual neurons; in the extreme, neurons receiving no excitation received no inhibition either. Extending these studies to dissect the connectivity between cortex and thalamus, we found that M1-CT neurons and thalamocortical neurons in the ventrolateral (VL) nucleus were remarkably unconnected in either direction. Instead, VL axons in the cortex excited both IT and PT neurons, and CT axons in the thalamus excited other thalamic neurons, including those in the posterior nucleus, which additionally received PT excitation. These findings, which contrast in several ways with previous observations in sensory areas, illuminate the basic circuit organization of CT neurons within M1 and between M1 and thalamus. PMID:25653383

  1. Sexual behavior induction of c-Fos in the nucleus accumbens and amphetamine-stimulated locomotor activity are sensitized by previous sexual experience in female Syrian hamsters.

    Science.gov (United States)

    Bradley, K C; Meisel, R L

    2001-03-15

    Dopamine transmission in the nucleus accumbens can be activated by drugs, stress, or motivated behaviors, and repeated exposure to these stimuli can sensitize this dopamine response. The objectives of this study were to determine whether female sexual behavior activates nucleus accumbens neurons and whether past sexual experience cross-sensitizes neuronal responses in the nucleus accumbens to amphetamine. Using immunocytochemical labeling, c-Fos expression in different subregions (shell vs core at the rostral, middle, and caudal levels) of the nucleus accumbens was examined in female hamsters that had varying amounts of sexual experience. Female hamsters, given either 6 weeks of sexual experience or remaining sexually naive, were tested for sexual behavior by exposure to adult male hamsters. Previous sexual experience increased c-Fos labeling in the rostral and caudal levels but not in the middle levels of the nucleus accumbens. Testing for sexual behavior increased labeling in the core, but not the shell, of the nucleus accumbens. To validate that female sexual behavior can sensitize neurons in the mesolimbic dopamine pathway, the locomotor responses of sexually experienced and sexually naive females to an amphetamine injection were then compared. Amphetamine increased general locomotor activity in all females. However, sexually experienced animals responded sooner to amphetamine than did sexually naive animals. These data indicate that female sexual behavior can activate neurons in the nucleus accumbens and that sexual experience can cross-sensitize neuronal responses to amphetamine. In addition, these results provide additional evidence for functional differences between the shell and core of the nucleus accumbens and across its anteroposterior axis.

  2. Consistency and diversity of spike dynamics in the neurons of bed nucleus of stria terminalis of the rat: a dynamic clamp study.

    Directory of Open Access Journals (Sweden)

    Attila Szücs

    Full Text Available Neurons display a high degree of variability and diversity in the expression and regulation of their voltage-dependent ionic channels. Under low level of synaptic background a number of physiologically distinct cell types can be identified in most brain areas that display different responses to standard forms of intracellular current stimulation. Nevertheless, it is not well understood how biophysically different neurons process synaptic inputs in natural conditions, i.e., when experiencing intense synaptic bombardment in vivo. While distinct cell types might process synaptic inputs into different patterns of action potentials representing specific "motifs" of network activity, standard methods of electrophysiology are not well suited to resolve such questions. In the current paper we performed dynamic clamp experiments with simulated synaptic inputs that were presented to three types of neurons in the juxtacapsular bed nucleus of stria terminalis (jcBNST of the rat. Our analysis on the temporal structure of firing showed that the three types of jcBNST neurons did not produce qualitatively different spike responses under identical patterns of input. However, we observed consistent, cell type dependent variations in the fine structure of firing, at the level of single spikes. At the millisecond resolution structure of firing we found high degree of diversity across the entire spectrum of neurons irrespective of their type. Additionally, we identified a new cell type with intrinsic oscillatory properties that produced a rhythmic and regular firing under synaptic stimulation that distinguishes it from the previously described jcBNST cell types. Our findings suggest a sophisticated, cell type dependent regulation of spike dynamics of neurons when experiencing a complex synaptic background. The high degree of their dynamical diversity has implications to their cooperative dynamics and synchronization.

  3. Involvement of trigeminal transition zone and laminated subnucleus caudalis in masseter muscle hypersensitivity associated with tooth inflammation.

    Directory of Open Access Journals (Sweden)

    Kohei Shimizu

    Full Text Available A rat model of pulpitis/periapical periodontitis was used to study mechanisms underlying extraterritorial enhancement of masseter response associated with tooth inflammation. Periapical bone loss gradually increased and peaked at 6 weeks after complete Freund's adjuvant (CFA application to the upper molar tooth pulp (M1. On day 3, the number of Fos-immunoreactive (IR cells was significantly larger in M1 CFA rats compared with M1 vehicle (veh rats in the trigeminal subnucleus interpolaris/caudalis transition zone (Vi/Vc. The number of Fos-IR cells was significantly larger in M1 CFA and masseter (Mass capsaicin applied (M1 CFA/Mass cap rats compared with M1 veh/Mass veh rats in the contralateral Vc and Vi/Vc. The number of phosphorylated extracellular signal-regulated kinase (pERK-IR cells was significantly larger in M1 CFA/Mass cap and M1 veh/Mass cap rats compared to Mass-vehicle applied rats with M1 vehicle or CFA in the Vi/Vc. Pulpal CFA application caused significant increase in the number of Fos-IR cells in the Vi/Vc but not Vc on week 6. The number of pERK-IR cells was significantly lager in the rats with capsaicin application to the Mass compared to Mass-vehicle treated rats after pulpal CFA- or vehicle-application. However, capsaicin application to the Mass did not further affect the number of Fos-IR cells in the Vi/Vc in pulpal CFA-applied rats. The digastric electromyographic (d-EMG activity after Mass-capsaicin application was significantly increased on day 3 and lasted longer at 6 weeks after pulpal CFA application, and these increase and duration were significantly attenuated by i.t. PD98059, a MEK1 inhibitor. These findings suggest that Vi/Vc and Vc neuronal excitation is involved in the facilitation of extraterritorial hyperalgesia for Mass primed with periapical periodontitis or acute pulpal-inflammation. Furthermore, phosphorylation of ERK in the Vi/Vc and Vc play pivotal roles in masseter hyperalgesia after pulpitis or

  4. Lead intoxication induces noradrenaline depletion, motor nonmotor disabilities, and changes in the firing pattern of subthalamic nucleus neurons.

    Science.gov (United States)

    Sabbar, M; Delaville, C; De Deurwaerdère, P; Benazzouz, A; Lakhdar-Ghazal, N

    2012-05-17

    Lead intoxication has been suggested as a high risk factor for the development of Parkinson disease. However, its impact on motor and nonmotor functions and the mechanism by which it can be involved in the disease are still unclear. In the present study, we studied the effects of lead intoxication on the following: (1) locomotor activity using an open field actimeter and motor coordination using the rotarod test, (2) anxiety behavior using the elevated plus maze, (3) "depression-like" behavior using sucrose preference test, and (4) subthalamic nucleus (STN) neuronal activity using extracellular single unit recordings. Male Sprague-Dawley rats were treated once a day with lead acetate or sodium acetate (20 mg/kg/d i.p.) during 3 weeks. The tissue content of monoamines was used to determine alteration of these systems at the end of experiments. Results show that lead significantly reduced exploratory activity, locomotor activity and the time spent on the rotarod bar. Furthermore, lead induced anxiety but not "depressive-like" behavior. The electrophysiological results show that lead altered the discharge pattern of STN neurons with an increase in the number of bursting and irregular cells without affecting the firing rate. Moreover, lead intoxication resulted in a decrease of tissue noradrenaline content without any change in the levels of dopamine and serotonin. Together, these results show for the first time that lead intoxication resulted in motor and nonmotor behavioral changes paralleled by noradrenaline depletion and changes in the firing activity of STN neurons, providing evidence consistent with the induction of atypical parkinsonian-like deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Magnocellular Neurons and Posterior Pituitary Function.

    Science.gov (United States)

    Brown, Colin H

    2016-09-15

    The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  6. H2O2 augments cytosolic calcium in nucleus tractus solitarii neurons via multiple voltage-gated calcium channels.

    Science.gov (United States)

    Ostrowski, Tim D; Dantzler, Heather A; Polo-Parada, Luis; Kline, David D

    2017-05-01

    Reactive oxygen species (ROS) play a profound role in cardiorespiratory function under normal physiological conditions and disease states. ROS can influence neuronal activity by altering various ion channels and transporters. Within the nucleus tractus solitarii (nTS), a vital brainstem area for cardiorespiratory control, hydrogen peroxide (H 2 O 2 ) induces sustained hyperexcitability following an initial depression of neuronal activity. The mechanism(s) associated with the delayed hyperexcitability are unknown. Here we evaluate the effect(s) of H 2 O 2 on cytosolic Ca 2+ (via fura-2 imaging) and voltage-dependent calcium currents in dissociated rat nTS neurons. H 2 O 2 perfusion (200 µM; 1 min) induced a delayed, slow, and moderate increase (~27%) in intracellular Ca 2+ concentration ([Ca 2+ ] i ). The H 2 O 2 -mediated increase in [Ca 2+ ] i prevailed during thapsigargin, excluding the endoplasmic reticulum as a Ca 2+ source. The effect, however, was abolished by removal of extracellular Ca 2+ or the addition of cadmium to the bath solution, suggesting voltage-gated Ca 2+ channels (VGCCs) as targets for H 2 O 2 modulation. Recording of the total voltage-dependent Ca 2+ current confirmed H 2 O 2 enhanced Ca 2+ entry. Blocking VGCC L, N, and P/Q subtypes decreased the number of cells and their calcium currents that respond to H 2 O 2 The number of responder cells to H 2 O 2 also decreased in the presence of dithiothreitol, suggesting the actions of H 2 O 2 were dependent on sulfhydryl oxidation. In summary, here, we have shown that H 2 O 2 increases [Ca 2+ ] i and its Ca 2+ currents, which is dependent on multiple VGCCs likely by oxidation of sulfhydryl groups. These processes presumably contribute to the previously observed delayed hyperexcitability of nTS neurons in in vitro brainstem slices. Copyright © 2017 the American Physiological Society.

  7. Prolactin-sensitive neurons express estrogen receptor-α and depend on sex hormones for normal responsiveness to prolactin.

    Science.gov (United States)

    Furigo, Isadora C; Kim, Ki Woo; Nagaishi, Vanessa S; Ramos-Lobo, Angela M; de Alencar, Amanda; Pedroso, João A B; Metzger, Martin; Donato, Jose

    2014-05-30

    Estrogens and prolactin share important target tissues, including the gonads, brain, liver, kidneys and some types of cancer cells. Herein, we sought anatomical and functional evidence of possible crosstalk between prolactin and estrogens in the mouse brain. First, we determined the distribution of prolactin-responsive neurons that express the estrogen receptor α (ERα). A large number of prolactin-induced pSTAT5-immunoreactive neurons expressing ERα mRNA were observed in several brain areas, including the anteroventral periventricular nucleus, medial preoptic nucleus, arcuate nucleus of the hypothalamus, ventrolateral subdivision of the ventromedial nucleus of the hypothalamus (VMH), medial nucleus of the amygdala and nucleus of the solitary tract. However, although the medial preoptic area, periventricular nucleus of the hypothalamus, paraventricular nucleus of the hypothalamus, retrochiasmatic area, dorsomedial subdivision of the VMH, lateral hypothalamic area, dorsomedial nucleus of the hypothalamus and ventral premammillary nucleus contained significant numbers of prolactin-responsive neurons, these areas showed very few pSTAT5-immunoreactive cells expressing ERα mRNA. Second, we evaluated prolactin sensitivity in ovariectomized mice and observed that sex hormones are required for a normal responsiveness to prolactin as ovariectomized mice showed a lower number of prolactin-induced pSTAT5 immunoreactive neurons in all analyzed brain nuclei compared to gonad-intact females. In addition, we performed hypothalamic gene expression analyses to determine possible post-ovariectomy changes in components of prolactin signaling. We observed no significant changes in the mRNA expression of prolactin receptor, STAT5a or STAT5b. In summary, sex hormones exert a permissive role in maintaining the brain's prolactin sensitivity, most likely through post-transcriptional mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  9. Conditional Viral Tract Tracing Delineates the Projections of the Distinct Kisspeptin Neuron Populations to Gonadotropin-Releasing Hormone (GnRH) Neurons in the Mouse.

    Science.gov (United States)

    Yip, Siew Hoong; Boehm, Ulrich; Herbison, Allan E; Campbell, Rebecca E

    2015-07-01

    Kisspeptin neurons play an essential role in the regulation of fertility through direct regulation of the GnRH neurons. However, the relative contributions of the two functionally distinct kisspeptin neuron subpopulations to this critical regulation are not fully understood. Here we analyzed the specific projection patterns of kisspeptin neurons originating from either the rostral periventricular nucleus of the third ventricle (RP3V) or the arcuate nucleus (ARN) using a cell-specific, viral-mediated tract-tracing approach. We stereotaxically injected a Cre-dependent recombinant adenovirus encoding farnesylated enhanced green fluorescent protein into the ARN or RP3V of adult male and female mice expressing Cre recombinase in kisspeptin neurons. Fibers from ARN kisspeptin neurons projected widely; however, we did not find any evidence for direct contact with GnRH neuron somata or proximal dendrites in either sex. In contrast, we identified RP3V kisspeptin fibers in close contact with GnRH neuron somata and dendrites in both sexes. Fibers originating from both the RP3V and ARN were observed in close contact with distal GnRH neuron processes in the ARN and in the lateral and internal aspects of the median eminence. Furthermore, GnRH nerve terminals were found in close contact with the proximal dendrites of ARN kisspeptin neurons in the ARN, and ARN kisspeptin fibers were found contacting RP3V kisspeptin neurons in both sexes. Together these data delineate selective zones of kisspeptin neuron inputs to GnRH neurons and demonstrate complex interconnections between the distinct kisspeptin populations and GnRH neurons.

  10. [Responses of bat cochlear nucleus neurons to ultrasonic stimuli].

    Science.gov (United States)

    Vasil'ev, A G; Grigor'eva, T I

    1977-01-01

    The responses of cochlear nuclei single units in Vespertilionidae and Rhinolophidae were studied by means of ultrasound stimuli of different frequencies. Most neurons were found to have one or two complementary response areas with best frequencies equal to 1/2 and 1/3 of the highest one (which we regard as the basic best frequency). In Vespertilionidae which emit frequency-modulated signals some neurons have complementary areas with upper thresholds. The latency of responses do not correlate with the stimulus frequency. This suggests that there is no correlative reception of echosignals at this level of auditory system in bats.

  11. Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings.

    Science.gov (United States)

    Kummer, Kai K; El Rawas, Rana; Kress, Michaela; Saria, Alois; Zernig, Gerald

    2015-01-01

    Both cocaine and social interaction place preference conditioning lead to increased neuronal expression of the immediate early gene EGR1 in the nucleus accumbens, a central region of the reward pathway, suggesting that both drug and natural rewards may be processed in similar brain regions. In order to gain novel insights into the intrinsic in vitro electrical activity of the nucleus accumbens and adjacent brain regions and to explore the effects of reward conditioning on network activity, we performed multielectrode array recordings of spontaneous firing in acute brain slices of mice conditioned to either cocaine or social interaction place preference. Cocaine conditioning increased the spike frequency of neurons in the septal nuclei, whereas social interaction conditioning increased the spike frequency in the nucleus accumbens compared to saline control animals. In addition, social interaction conditioning decreased the amount of active neuron clusters in the nucleus accumbens. Our findings suggest that place preference conditioning for both drug and natural rewards may induce persistent changes in neuronal network activity in the nucleus accumbens and the septum that are still preserved in acute slice preparations. © 2015 S. Karger AG, Basel.

  12. Prolactin receptors in Rip-cre cells, but not in AgRP neurones, are involved in energy homeostasis.

    Science.gov (United States)

    Ladyman, S R; MacLeod, M A; Khant Aung, Z; Knowles, P; Phillipps, H R; Brown, R S E; Grattan, D R

    2017-10-01

    Among its many functions, prolactin has been implicated in energy homeostasis, particularly during pregnancy and lactation. The arcuate nucleus is a key site in the regulation of energy balance. The present study aimed to examine whether arcuate nucleus neuronal populations involved in energy homeostasis are prolactin responsive and whether they can mediate the effects of prolactin on energy homeostasis. To determine whether Agrp neurones or Rip-Cre neurones are prolactin responsive, transgenic mice expressing the reporter td-tomato in Agrp neurones (td-tomato/Agrp-Cre) or Rip-Cre neurones (td-tomato/Rip-Cre) were treated with prolactin and perfused 45 minutes later. Brains were processed for double-labelled immunohistochemistry for pSTAT5, a marker of prolactin-induced intracellular signalling, and td-tomato. In addition, Agrp-Cre mice and Rip-Cre mice were crossed with mice in which the prolactin receptor gene (Prlr) was flanked with LoxP sites (Prlr lox/lox mice). The Prlr lox/lox construct was designed such that Cre-mediated recombination resulted in deletion of the Prlr and expression of green fluorescent protein (GFP) in its place. In td-tomato/Rip-Cre mice, prolactin-induced pSTAT5 was co-localised with td-tomato, indicating that there is a subpopulation of Rip-Cre neurones in the arcuate nucleus that respond to prolactin. Furthermore, mice with a specific deletion of Prlr in Rip-Cre neurones had lower body weights, increased oxygen consumption, increased running wheel activity and numerous cells in the arcuate nucleus had positive GFP staining indicating deletion of Prlr from Rip-Cre neurones. By contrast, no co-localisation of td-tomato and pSTAT5 was observed in td-tomato/Agrp-Cre mice after prolactin treatment. Moreover, Prlr lox/lox /Agrp-Cre mice had no positive GFP staining in the arcuate nucleus and did not differ in body weight compared to littermate controls. Overall, these results indicate that Rip-Cre neurones in the arcuate nucleus are

  13. A Relationship between Reduced Nucleus Accumbens Shell and Enhanced Lateral Hypothalamic Orexin Neuronal Activation in Long-Term Fructose Bingeing Behavior

    Science.gov (United States)

    Rorabaugh, Jacki M.; Stratford, Jennifer M.; Zahniser, Nancy R.

    2014-01-01

    Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc) shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM) display signatures of hedonic feeding including bingeing and altered DA receptor (R) numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day) exposure to the IAM, rats given 8–12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR). This activation was negatively correlated with orexin (Orx) neuron activation in the lateral hypothalamus/perifornical area (LH/PeF), a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day) access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p.) equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  14. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior.

    Directory of Open Access Journals (Sweden)

    Jacki M Rorabaugh

    Full Text Available Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM display signatures of hedonic feeding including bingeing and altered DA receptor (R numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day exposure to the IAM, rats given 8-12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR. This activation was negatively correlated with orexin (Orx neuron activation in the lateral hypothalamus/perifornical area (LH/PeF, a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p. equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  15. Particle correlations in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Nagamiya, Sh.

    1981-01-01

    Particle correlations in proton-nucleus and nucleus-nucleus collisions at energies of 1-2 GeV/nucleon are investigated. The problems of measurement of the mean free path lambda of protons inside the nucleus and the interaction radius of nucleus-nucleus collisions is considered. The value of lambda has been determined in two-proton coincidence experiment in proton-nucleus interaction at 800 MeV. The observed value of lambda is slightly longer than the expected from free nucleon-nucleon collisions. Some preliminary results on proton emission beyond free nucleon-nucleon kinemaics are given

  16. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2016-12-17

    Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Current advances in orthodontic pain

    Science.gov (United States)

    Long, Hu; Wang, Yan; Jian, Fan; Liao, Li-Na; Yang, Xin; Lai, Wen-Li

    2016-01-01

    Orthodontic pain is an inflammatory pain that is initiated by orthodontic force-induced vascular occlusion followed by a cascade of inflammatory responses, including vascular changes, the recruitment of inflammatory and immune cells, and the release of neurogenic and pro-inflammatory mediators. Ultimately, endogenous analgesic mechanisms check the inflammatory response and the sensation of pain subsides. The orthodontic pain signal, once received by periodontal sensory endings, reaches the sensory cortex for pain perception through three-order neurons: the trigeminal neuron at the trigeminal ganglia, the trigeminal nucleus caudalis at the medulla oblongata and the ventroposterior nucleus at the thalamus. Many brain areas participate in the emotion, cognition and memory of orthodontic pain, including the insular cortex, amygdala, hippocampus, locus coeruleus and hypothalamus. A built-in analgesic neural pathway—periaqueductal grey and dorsal raphe—has an important role in alleviating orthodontic pain. Currently, several treatment modalities have been applied for the relief of orthodontic pain, including pharmacological, mechanical and behavioural approaches and low-level laser therapy. The effectiveness of nonsteroidal anti-inflammatory drugs for pain relief has been validated, but its effects on tooth movement are controversial. However, more studies are needed to verify the effectiveness of other modalities. Furthermore, gene therapy is a novel, viable and promising modality for alleviating orthodontic pain in the future. PMID:27341389

  18. Fluctuating Estrogen and Progesterone Receptor Expression in Brainstem Norepinephrine Neurons through the Rat Estrous Cycle

    NARCIS (Netherlands)

    Haywood, S.A.; Simonian, S.X.; Beek, van der E.M.; Bicknell, R.J.; Herbison, A.E.

    1999-01-01

    Norepinephrine (NE) neurons within the nucleus tractus solitarii (NTS; A2 neurons) and ventrolateral medulla (A1 neurons) represent gonadal steroid-dependent components of several neural networks regulating reproduction. Previous studies have shown that both A1 and A2 neurons express estrogen

  19. Localization of calcium-binding proteins and GABA transporter (GAT-1) messenger RNA in the human subthalamic nucleus

    International Nuclear Information System (INIS)

    Augood, S.J.; Waldvogel, H.J.; Muenkle, M.C.; Faull, R.L.M.; Emson, P.C.

    1999-01-01

    The distribution of messenger RNA encoding the human GAT-1 (a high-affinity GABA transporter) was investigated in the subthalamic nucleus of 10 neurologically normal human post mortem cases. Further, the distribution of messenger RNA and protein encoding the three neuronally expressed calcium-binding proteins (calbindin D28k, parvalbumin and calretinin) was similarly investigated using in situ hybridization and immunohistochemical techniques. Cellular sites of calbindin D28k, parvalbumin, calretinin and GAT-1 messenger RNA expression were localized using human-specific oligonucleotide probes radiolabelled with [ 35 S]dATP. Sites of protein localization were visualized using specific anti-calbindin D28k, anti-parvalbumin and anti-calretinin antisera. Examination of emulsion-coated tissue sections processed for in situ hybridization revealed an intense signal for GAT-1 messenger RNA within the human subthalamic nucleus, indeed the majority of Methylene Blue-counterstained cells were enriched in this transcript. Further, a marked heterogeneity was noted with regard to the expression of the messenger RNA's encoding the three calcium-binding proteins; this elliptical nucleus was highly enriched in parvalbumin messenger RNA-positive neurons and calretinin mRNA-positive cells but not calbindin messenger RNA-positive cells. Indeed, only an occasional calbindin messenger RNA-positive cell was detected within the mediolateral extent of the nucleus. In marked contrast, numerous parvalbumin messenger RNA-positive cells and calretinin messenger RNA-positive cells were detected and they were topographically distributed; parvalbumin messenger RNA-positive cells were highly enriched in the dorsal subthalamic nucleus extending mediolaterally; calretinin messenger RNA-positive cells were more enriched ventrally although some degree of overlap was apparent. Computer-assisted analysis of the average cross-sectional somatic area of parvalbumin, calretinin and GAT-1 messenger RNA

  20. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    Science.gov (United States)

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  1. A Neural Correlate of Predicted and Actual Reward-Value Information in Monkey Pedunculopontine Tegmental and Dorsal Raphe Nucleus during Saccade Tasks

    Science.gov (United States)

    Okada, Ken-ichi; Nakamura, Kae; Kobayashi, Yasushi

    2011-01-01

    Dopamine, acetylcholine, and serotonin, the main modulators of the central nervous system, have been proposed to play important roles in the execution of movement, control of several forms of attentional behavior, and reinforcement learning. While the response pattern of midbrain dopaminergic neurons and its specific role in reinforcement learning have been revealed, the role of the other neuromodulators remains rather elusive. Here, we review our recent studies using extracellular recording from neurons in the pedunculopontine tegmental nucleus, where many cholinergic neurons exist, and the dorsal raphe nucleus, where many serotonergic neurons exist, while monkeys performed eye movement tasks to obtain different reward values. The firing patterns of these neurons are often tonic throughout the task period, while dopaminergic neurons exhibited a phasic activity pattern to the task event. The different modulation patterns, together with the activity of dopaminergic neurons, reveal dynamic information processing between these different neuromodulator systems. PMID:22013541

  2. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals.

    Directory of Open Access Journals (Sweden)

    Yulin Dong

    Full Text Available It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG or FG/tetramethylrhodamine-dextran amine (TMR-DA were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA was injected into the caudal spinal trigeminal nucleus (Vc. The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt, dorsal and ventral medullary reticular formation (MdD, MdV, supratrigeminal nucleus (Vsup and parabrachial nucleus (PBN with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals.

  3. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential

    International Nuclear Information System (INIS)

    Davidovs'ka, O.Yi.; Denisov, V.Yu.; Nesterov, V.O.

    2010-01-01

    Various approaches for nucleus-nucleus interaction potential evaluation are discussed in details. It is shown that the antisymmetrization of nucleons belonging to different nuclei and the Pauli principle give the essential contribution into the nucleus-nucleus potential at distances, when nuclei are strongly overlapping, and lead to appearance of the repulsive core of nucleus nucleus interaction at small distances between nuclei.

  4. Coding of information about tactile stimuli by neurones of the cuneate nucleus.

    Science.gov (United States)

    Douglas, P R; Ferrington, D G; Rowe, M

    1978-12-01

    1. The responses of cuneate neurones to controlled tactile stimulation of the foot pads were examined in unanaesthetized, decerebrate cats. The neurones were divided into three functional classes; one sensitive to steady tactile stimuli, and two dynamically sensitive classes which could be readily differentiated by their responsiveness to cutaneous vibration. Each class appeared to receive an exclusive input from only one of the three known groups of tactile receptors associated with the foot pads, namely the Pacinian corpuscles, the Merkel endings and the intradermal, encapsulated endings known as Krause or Meissner corpuscles. 2. Cuneate neurones responsive to steady indentation of the skin displayed approximately linear or sigmoidal stimulus-response relations over indentation ranges up to approximately 1.5--2 mm. Response variability at a fixed stimulus intensity was relatively low and showed little systematic change over the full range of the stimulus-response curves. 3. One class of dynamically sensitive cuneate neurones responded to cutaneous vibration over a range of approximately 5-80 Hz with maximal responsiveness around 30 Hz. The other class, the Pacinian neurones, responded over a range of approximately 80- greater than 600 Hz with maximal responsiveness at 200-400 Hz. The thresholds and combined band width of vibratory sensitivity of these populations were comparable with known subjective thresholds and range of cutaneous vibratory sensibility. 4. Responses of cuneate neurones were phase-locked to the vibratory stimulus suggesting that information about vibration frequency could be coded by the patterns of impulse activity. Quantitative measures indicated that maximal phase-locking occurred in responses to vibration frequencies of 10-50 Hz with a progressive decline at higher frequencies. Above 400 Hz, impulse activity occurred almost randomly throughout the vibratory stimulus cycle and therefore carried little further signal of vibratory frequency

  5. Co-expression of GAD67 and choline acetyltransferase reveals a novel neuronal phenotype in the mouse medulla oblongata.

    Science.gov (United States)

    Gotts, Jittima; Atkinson, Lucy; Edwards, Ian J; Yanagawa, Yuchio; Deuchars, Susan A; Deuchars, Jim

    2015-12-01

    GABAergic and cholinergic systems play an important part in autonomic pathways. To determine the distribution of the enzymes responsible for the production of GABA and acetylcholine in areas involved in autonomic control in the mouse brainstem, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurones, combined with choline acetyl transferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurones were observed throughout the brainstem. A small number of cells contained both ChAT-IR and GAD67-GFP. Such double labelled cells were observed in the NTS (predominantly in the intermediate and central subnuclei), the area postrema, reticular formation and lateral paragigantocellular nucleus. All ChAT-IR neurones in the area postrema contained GAD67-GFP. Double labelled neurones were not observed in the dorsal vagal motor nucleus, nucleus ambiguus or hypoglossal nucleus. Double labelled ChAT-IR/GAD67-GFP cells in the NTS did not contain neuronal nitric oxide synthase (nNOS) immunoreactivity, whereas those in the reticular formation and lateral paragigantocellular nucleus did. The function of these small populations of double labelled cells is currently unknown, however their location suggests a potential role in integrating signals involved in oromotor behaviours. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Efferent connections of the parvalbumin-positive (PV1) nucleus in the lateral hypothalamus of rodents.

    Science.gov (United States)

    Celio, Marco R; Babalian, Alexandre; Ha, Quan Hue; Eichenberger, Simone; Clément, Laurence; Marti, Christiane; Saper, Clifford B

    2013-10-01

    A solitary cluster of parvalbumin-positive neurons--the PV1 nucleus--has been observed in the lateral hypothalamus of rodents. In the present study, we mapped the efferent connections of the PV1 nucleus using nonspecific antero- and retrograde tracers in rats, and chemoselective, Cre-dependent viral constructs in parvalbumin-Cre mice. In both species, the PV1 nucleus was found to project mainly to the periaqueductal grey matter (PAG), predominantly ipsilaterally. Indirectly in rats and directly in mice, a discrete, longitudinally oriented cylindrical column of terminal fields (PV1-CTF) was identified ventrolateral to the aqueduct on the edge of the PAG. The PV1-CTF is particularly dense in the rostral portion, which is located in the supraoculomotor nucleus (Su3). It is spatially interrupted over a short stretch at the level of the trochlear nucleus and abuts caudally on a second parvalbumin-positive (PV2) nucleus. The rostral and the caudal portions of the PV1-CTF consist of axonal endings, which stem from neurons scattered throughout the PV1 nucleus. Topographically, the longitudinal orientation of the PV1-CTF accords with that of the likewise longitudinally oriented functional modules of the PAG, but overlaps none of them. Minor terminal fields were identified in a crescentic column of the lateral PAG, as well as in the Edinger-Westphal, the lateral habenular, and the laterodorsal tegmental nuclei. So far, no obvious functions have been attributed to this small, circumscribed column ventrolateral to the aqueduct, the prime target of the PV1 nucleus. © 2013 Wiley Periodicals, Inc.

  7. The rostromedial tegmental nucleus is essential for non-rapid eye movement sleep.

    Directory of Open Access Journals (Sweden)

    Su-Rong Yang

    2018-04-01

    Full Text Available The rostromedial tegmental nucleus (RMTg, also called the GABAergic tail of the ventral tegmental area, projects to the midbrain dopaminergic system, dorsal raphe nucleus, locus coeruleus, and other regions. Whether the RMTg is involved in sleep-wake regulation is unknown. In the present study, pharmacogenetic activation of rat RMTg neurons promoted non-rapid eye movement (NREM sleep with increased slow-wave activity (SWA. Conversely, rats after neurotoxic lesions of 8 or 16 days showed decreased NREM sleep with reduced SWA at lights on. The reduced SWA persisted at least 25 days after lesions. Similarly, pharmacological and pharmacogenetic inactivation of rat RMTg neurons decreased NREM sleep. Electrophysiological experiments combined with optogenetics showed a direct inhibitory connection between the terminals of RMTg neurons and midbrain dopaminergic neurons. The bidirectional effects of the RMTg on the sleep-wake cycle were mimicked by the modulation of ventral tegmental area (VTA/substantia nigra compacta (SNc dopaminergic neuronal activity using a pharmacogenetic approach. Furthermore, during the 2-hour recovery period following 6-hour sleep deprivation, the amount of NREM sleep in both the lesion and control rats was significantly increased compared with baseline levels; however, only the control rats showed a significant increase in SWA compared with baseline levels. Collectively, our findings reveal an essential role of the RMTg in the promotion of NREM sleep and homeostatic regulation.

  8. Retrograde transport of [3H]-D-aspartate label by cochlear and vestibular efferent neurons

    International Nuclear Information System (INIS)

    Schwarz, D.W.; Schwarz, I.E.

    1988-01-01

    [ 3 H]-D-aspartic acid was injected into the inner ear of rats. After a six hour survival time, labeled cells were found at all locations known to contain efferent cochlear or vestibular neurons. Most labeled neurons were found in the ipsilateral lateral superior olivary nucleus (LSO), although both ventral nuclei of the trapezoid body (VTB), group E, and the caudal pontine reticular nucleus (CPR) just adjacent to the ascending limb of the facial nerve also contained labeled cells. Because not all efferent neurons in the rat could be previously shown to be cholinergic, aspartate and glutamate are efferent transmitter candidates

  9. Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis.

    Science.gov (United States)

    Sarruf, David A; Yu, Fang; Nguyen, Hong T; Williams, Diana L; Printz, Richard L; Niswender, Kevin D; Schwartz, Michael W

    2009-02-01

    In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-gamma agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARgamma is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARgamma distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spanning the hypothalamus, the ventral tegmental area, and the nucleus tractus solitarius. In several brain areas, nuclear PPARgamma immunoreactivity was detected in cells that costained for neuronal nuclei, a neuronal marker. In the hypothalamus, PPARgamma immunoreactivity was observed in a majority of neurons in the arcuate (including both agouti related protein and alpha-MSH containing cells) and ventromedial hypothalamic nuclei and was also present in the hypothalamic paraventricular nucleus, the lateral hypothalamic area, and tyrosine hydroxylase-containing neurons in the ventral tegmental area but was not expressed in the nucleus tractus solitarius. To validate and extend these histochemical findings, we generated mice with neuron-specific PPARgamma deletion using nestin cre-LoxP technology. Compared with littermate controls, neuron-specific PPARgamma knockout mice exhibited dramatic reductions of both hypothalamic PPARgamma mRNA levels and PPARgamma immunoreactivity but showed no differences in food intake or body weight over a 4-wk study period. We conclude that: 1) PPARgamma mRNA and protein are expressed in the hypothalamus, 2) neurons are the predominant source of PPARgamma in the central nervous system, although it is likely expressed by nonneuronal cell types as well, and 3) arcuate nucleus neurons that control energy homeostasis and glucose metabolism are among those in which PPARgamma is expressed.

  10. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  11. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-01-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. PMID:26630202

  12. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons

    OpenAIRE

    Chowdhury, Srikanta; Yamanaka, Akihiro

    2016-01-01

    Orexin/hypocretin neurons play a crucial role in the regulation of sleep/wakefulness, primarily in the maintenance of wakefulness. These neurons innervate wide areas of the brain and receive diverse synaptic inputs including those from serotonergic (5-HT) neurons in the raphe nucleus. Previously we showed that pharmacological application of 5-HT directly inhibited orexin neurons via 5-HT1A receptors. However, it was still unclear how 5-HT neurons regulated orexin neurons since 5-HT neurons co...

  13. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, F.; Townsend, L.W.

    1993-12-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies

  14. [Physiopathology of cAMP/PKA signaling in neurons].

    Science.gov (United States)

    Castro, Liliana; Yapo, Cedric; Vincent, Pierre

    2016-01-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases. © Société de Biologie, 2017.

  15. S36. DIFFERENTIAL ENCODING OF SENSITIZATION AND CROSS SENSITIZATION TO PSYCHOSTIMULANTS AND ANTIPSYCHOTICS IN NUCLEUS ACCUMBENS D1- AND D2- RECEPTOR EXPRESSING MEDIUM SPINY NEURONS

    Science.gov (United States)

    Amato, Davide; Heinsbroek, Jasper; Kalivas, Peter W

    2018-01-01

    Abstract Background Nearly half of all individuals diagnosed with schizophrenia abuse addictive substances such as cocaine. Currently, the neurobiological mechanisms in patients with schizophrenia that lead to cocaine abuse are unknown. A possible explanation for the co-morbidity between schizophrenia and addiction is that the rewarding properties of cocaine reverse the diminished motivational drive caused by chronic antipsychotic regimen. Moreover, chronic antipsychotic treatment can sensitize and amplify cocaine rewarding effects and exacerbate psychoses. Methods The rewarding properties of cocaine are attributed to the differential effects of dopamine on D1 and D2 receptor-expressing medium spiny neurons (MSNs) in the nucleus accumbens (NAc). Using in vivo Ca2+ miniature microscopic imaging, we characterize the role of D1 and D2 MSN in mono- and a cross- sensitization paradigms. D1- and D2-Cre mice were injected with a Cre dependent calcium indicator (gCaMP6f) and implanted with a gradient index (GRIN) lens above the nucleus accumbens and calcium activity was recorded using a head mounted miniature microscope. Cocaine sensitization was measured after a classic repeated cocaine regiment and antipsychotic and psychostimulant cross-sensitization was measured by a single cocaine injection after chronic pre-treatment with haloperidol. Results We found that both D1-MSN and D2-MSN populations are modulated by initial cocaine experience and further modulated during the expression of cocaine sensitization. A subpopulation of D1-MSN displayed initial activation, but reduced activity during the expression of sensitization. By contrast, the majority of D2-MSNs were suppressed by initial cocaine experience, but became active during the expression of sensitization. Furthermore, activity of D1- and D2-MSNs bidirectionally related with the observed behavioral responses to cocaine. Cross-sensitization following haloperidol treatment led to increased behavioral responses to

  16. IN VITRO EXAMINATION OF ONTOGENESIS OF DEVELOPING NEURONAL CELLS IN VAGAL NUCLEI IN MEDULLA OBLONGATA IN NEWBORNS

    Science.gov (United States)

    Islami, Hilmi; Shabani, Ragip; Bexheti, Sadi; Behluli, Ibrahim; Šukalo, Aziz; Raka, Denis; Koliqi, Rozafa; Haliti, Naim; Dauti, Hilmi; Krasniqi, Shaip; Disha, Mentor

    2008-01-01

    The development of neuron cells in vagal nerve nuclei in medulla oblongata was studied in vitro in live newborns and stillborns from different cases. Morphological changes were studied in respiratory nuclei of dorsal motor centre (DMNV) and nucleus tractus solitarius (NTS) in medulla oblongata. The material from medulla oblongata was fixated in 10μ buffered formalin solution. Fixated material was cut in series of 10μ thickness, with starting point from obex in ± 4 mm thickness. Special histochemical and histoenzymatic methods for central nervous system were used: cresyl echt violet coloring, tolyidin blue, Sevier-Munger modification and Grimelius coloring. In immature newborns (abortions and immature) in dorsal motor nucleus of the vagus (DMNV) population stages S1, S2, S3 are dominant. In neuron population in vagal sensory nuclei (NTS) stages S1, S2 are dominant. In more advanced stages of development of newborns (premature), in DMNV stages S3 and S4 are seen and in NTS stages S2 and S3 are dominant. In mature phase of newborns (maturity) in vagal nucleus DMNV stages S5 and S6 are dominant, while in sensory nucleus NTS stages S4 and S5 are dominant. These data suggest that neuron population in dorsal motor nucleus of the vagus (DMNV) are more advanced in neuronal maturity in comparison with sensory neuron population of vagal sensory nucleus NTS. This occurrence shows that phylogenetic development of motor complex is more advanced than the sensory one, which is expected to take new information’s from the extra uterine life after birth (extra uterine vagal phenotype) PMID:19125713

  17. Mechanisms of High Energy Hadron-Nucleus and Nucleus-Nucleus Collision Processes

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1994-01-01

    Mechanisms of high energy hadron-nucleus and nucleus-nucleus collision processes are depicted qualitatively, as prompted experimentally. In hadron-nucleus collisions the interaction of the incident hadron in intranuclear matter is localized in small cylindrical volume, with the radius as large as the strong interaction range is, centered on the hadron course in the nucleus. The nucleon emission is induced by the hadron in its passing through the nucleus; particles are produced via intermediate objects produced in 2 → 2 endoergic reactions of the hadron and its successors with downstream nucleons. In nucleus-nucleus collisions, the outcome of the reaction appears as the composition of statistically independent hadron-nucleus collision outcomes at various impact parameters. Observable effects supporting such mechanisms are discussed. 51 refs

  18. CRF1 receptor activation increases the response of neurons in the basolateral nucleus of the amygdala to afferent stimulation

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available The basolateral nucleus (BLA of the amygdala contributes to the consolidation of memories for emotional or stressful events. The nucleus contains a high density of CRF1 receptors that are activated by corticotropin-releasing factor (CRF. Modulation of the excitability of neurons in the BLA by CRF may regulate the immediate response to stressful events and the formation of associated memories. In the present study, CRF was found to increase the amplitude of field potentials recorded in the BLA following excitatory afferent stimulation, in vitro. The increase was mediated by CRF1 receptors, since it could be blocked by the selective, non-peptide antagonists, NBI30775 and NBI35583, but not by the CRF2-selective antagonist, astressin 2B. Furthermore, the CRF2-selective agonist, urocortin II had no effect on field potential amplitude. The increase induced by CRF was long-lasting, could not be reversed by subsequent administration of NBI35583, and required the activation of protein kinase C. This effect of CRF in the BLA may be important for increasing the salience of aversive stimuli under stressful conditions, and for enhancing the consolidation of associated memories. The results provide further justification for studying the efficacy of selective antagonists of the CRF1 receptor to reduce memory formation linked to emotional or traumatic events, and suggest that these compounds might be useful as prophylactic treatment for stress-related illness such as post-traumatic stress disorder.

  19. The M-current contributes to high threshold membrane potential oscillations in a cell type-specific way in the pedunculopontine nucleus of mice

    Directory of Open Access Journals (Sweden)

    Csilla eBordas

    2015-04-01

    Full Text Available The pedunculopontine nucleus is known as a cholinergic nucleus of the reticular activating system, participating in regulation of sleep and wakefulness. Besides cholinergic neurons, it consists of GABAergic and glutamatergic neurons as well. According to classical and recent studies, more subgroups of neurons were defined. Groups based on the neurotransmitter released by a neuron are not homogenous, but can be further subdivided.The PPN neurons do not only provide cholinergic and non-cholinergic inputs to several subcortical brain areas but they are also targets of cholinergic and other different neuromodulatory actions. Although cholinergic neuromodulation has been already investigated in the nucleus, one of its characteristic targets, the M-type potassium current has not been described yet.Using slice electrophysiology, we provide evidence in the present work that cholinergic neurons possess M-current, whereas GABAergic neurons lack it. The M-current contributes to certain functional differences of cholinergic and GABAergic neurons, as spike frequency adaptation, action potential firing frequency or the amplitude difference of medium afterhyperpolarizations. Furthermore, we showed that high threshold membrane potential oscillation with high power, around 20 Hz frequency is a functional property of almost all cholinergic cells, whereas GABAergic neurons have only low amplitude oscillations. Blockade of the M-current abolished the oscillatory activity at 20 Hz, and largely diminished it at other frequencies.Taken together, the M-current seems to be characteristic for PPN cholinergic neurons. It provides a possibility for modulating gamma band activity of these cells, thus contributing to neuromodulatory regulation of the reticular activating system.

  20. Selective cephalic upregulation of p-ERK, CamKII and p-CREB in response to glyceryl trinitrate infusion

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Pedersen, Sara Hougaard; Amrutkar, Dipak Vasantrao

    2018-01-01

    in the trigeminal and spinothalamic system after infusion of the migraine-provoking substance glyceryltrinitrate. Method A catheter was placed in the femoral vein of rats and one week later glyceryltrinitrate 4 µg/kg/min was infused for 20 min. Protein expression in the dura mater, trigeminal ganglion, nucleus...... glycerytrinitrate infusion ( P ... after glycerytrinitrate infusion with long-lasting expression of phosphorylated extracellular signal-regulated kinases observed in the nucleus caudalis. These activations were not observed at the spinal level....

  1. Electrophysiological Features of Neurons in the Mesencephalic Trigeminal Nuclei

    Directory of Open Access Journals (Sweden)

    Jun-Ling Xing

    2015-01-01

    Full Text Available Mesencephalic trigeminal nucleus (Mes V neurons represent an uncommon class of primary sensory neurons. Besides receiving somatosensory information, Mes V neurons are also involved in regulating multisensory information. The present review first describes the passive features as well as three important currents, followed by a distinct excitability classification and a description of the excitability transition of Mes V neurons. Furthermore, their resonance property, the existence of membrane oscillation and electrical coupling which may promote strong synchronization, as well as their function in controlling stretch reflex activity, are discussed.

  2. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    Science.gov (United States)

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  3. Estrogens modulate ventrolateral ventromedial hypothalamic glucose-inhibited neurons

    Directory of Open Access Journals (Sweden)

    Ammy M. Santiago

    2016-10-01

    Full Text Available Objective: Brain regulation of glucose homeostasis is sexually dimorphic; however, the impact sex hormones have on specific neuronal populations within the ventromedial hypothalamic nucleus (VMN, a metabolically sensitive brain region, has yet to be fully characterized. Glucose-excited (GE and -inhibited (GI neurons are located throughout the VMN and may play a critical role in glucose and energy homeostasis. Within the ventrolateral portion of the VMN (VL-VMN, glucose sensing neurons and estrogen receptor (ER distributions overlap. We therefore tested the hypothesis that VL-VMN glucose sensing neurons were sexually dimorphic and regulated by 17β-estradiol (17βE. Methods: Electrophysiological recordings of VL-VMN glucose sensing neurons in brain slices isolated from age- and weight-matched female and male mice were performed in the presence and absence of 17βE. Results: We found a new class of VL-VMN GI neurons whose response to low glucose was transient despite continued exposure to low glucose. Heretofore, we refer to these newly identified VL-VMN GI neurons as ‘adapting’ or AdGI neurons. We found a sexual dimorphic response to low glucose, with male nonadapting GI neurons, but not AdGI neurons, responding more robustly to low glucose than those from females. 17βE blunted the response of both nonadapting GI and AdGI neurons to low glucose in both males and females, which was mediated by activation of estrogen receptor β and inhibition of AMP-activated kinase. In contrast, 17βE had no impact on GE or non-glucose sensing neurons in either sex. Conclusion: These data suggest sex differences and estrogenic regulation of VMN hypothalamic glucose sensing may contribute to the sexual dimorphism in glucose homeostasis. Author Video: Author Video Watch what authors say about their articles Keywords: 17β-estradiol, AMP-activated kinase, Glucose excited neurons, Glucose inhibited neurons, Ventromedial hypothalamic nucleus, Sexual dimorphism

  4. Antiproton production in nucleon-nucleus and nucleus-nucleus collisions at the CERN-SPS

    International Nuclear Information System (INIS)

    Kadija, K.; Schmitz, N.; Seyboth, P.

    1996-01-01

    A model for antiproton production in nucleon-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon, based on the wounded nucleon model is developed. The predictions are compared to published nucleon-nucleus and sulphur-nucleus data. The results suggest the presence of similar antiproton production processes in nucleon-nucleus and nucleus-nucleus collisions near midrapidity. (orig.)

  5. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals.

    Science.gov (United States)

    Massari, V J; Dickerson, L W; Gray, A L; Lauenstein, J M; Blinder, K J; Newsome, J T; Rodak, D J; Fleming, T J; Gatti, P J; Gillis, R A

    1998-08-17

    Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by

  6. Nucleus-nucleus total reaction cross sections

    International Nuclear Information System (INIS)

    DeVries, R.M.; Peng, J.C.

    1980-01-01

    We compare sigma/sub R/(E) for nucleus-nucleus systems (obtained from existing direct measurements and derived from elastic scattering data) with nucleon-nucleon and nucleon-nucleus data. The energy dependence of sigma/sub R/(E) for nucleus-nucleus systems is found to be quite rapid; there appears to be no evidence for an energy independent, geometric sigma/sub R/. Simple parameter free microscopic calculations are able to quantitatively reproduce the data and thus, emphasize the dominance of nucleon-nucleon interactions in medium energy nucleus-nucleus collisions

  7. High plasma triglyceride levels strongly correlate with low kisspeptin in the arcuate nucleus of male rats

    DEFF Research Database (Denmark)

    Overgaard, A; Axel, A M; Lie, M E

    2015-01-01

    OBJECTIVE: It is well known that reproductive capacity is lower in obese individuals, but what mediators and signals are involved is unclear. Kisspeptin is a potent stimulator of GnRH release, and it has been suggested that kisspeptin neurons located in the arcuate nucleus transmit metabolic...... signals to the GnRH neurons. METHODS: In this study, we measured body weight and plasma concentrations of leptin, insulin, testosterone, and triglycerides after high fat diet exposure and correlated these parameters with the number of kisspeptin-immunoreactive neurons in the arcuate nucleus of male rats...... with increased fat in the diet. Kisspeptin-immunoreactive cells are not correlated with body weight, testosterone, leptin or insulin. However, we find that the number of kisspeptin-immunoreactive cells is strongly and negatively correlated with the level of plasma triglycerides (R2=0.49, p=0.004). CONCLUSION: We...

  8. mRNA expression profile of prostaglandin D2 receptors in rat trigeminovascular system, and effect of prostaglandins in rat migraine models

    DEFF Research Database (Denmark)

    Sekeroglu, A.; Jansen-Olesen, I.; Gupta, S.

    2015-01-01

    not changed in the trigeminal nucleus caudalis. Conclusions: PGD2 induced vasodilation of MMA is mainly mediated by activation of DP1 receptors. Furthermore, high expression of DP1 mRNA in TG and DRG suggest that PGD2 might play a role in migraine pathophysiology. However, infusion of PG mix in awake rats did...

  9. High-Frequency Stimulation of the Subthalamic Nucleus Activates Motor Cortex Pyramidal Tract Neurons by a Process Involving Local Glutamate, GABA and Dopamine Receptors in Hemi-Parkinsonian Rats.

    Science.gov (United States)

    Chuang, Chi-Fen; Wu, Chen-Wei; Weng, Ying; Hu, Pei-San; Yeh, Shin-Rung; Chang, Yen-Chung

    2018-04-30

    Deep brain stimulation (DBS) is widely used to treat advanced Parkinson’s disease (PD). Here, we investigated how DBS applied on the subthalamic nucleus (STN) influenced the neural activity in the motor cortex. Rats, which had the midbrain dopaminergic neurons partially depleted unilaterally, called the hemi-Parkinsonian rats, were used as a study model. c-Fos expression in the neurons was used as an indicator of neural activity. Application of high-frequency stimulation (HFS) upon the STN was used to mimic the DBS treatment. The motor cortices in the two hemispheres of hemi-Parkinsonian rats were found to contain unequal densities of c-Fos-positive (Fos+) cells, and STN-HFS rectified this bilateral imbalance. In addition, STN-HFS led to the intense c-Fos expression in a group of motor cortical neurons which exhibited biochemical and anatomical characteristics resembling those of the pyramidal tract (PT) neurons sending efferent projections to the STN. The number of PT neurons expressing high levels of c-Fos was significantly reduced by local application of the antagonists of non-N-methyl-D-aspartate (non-NMDA) glutamate receptors, gammaaminobutyric acid A (GABAA) receptors and dopamine receptors in the upper layers of the motor cortex. The results indicate that the coincident activations of synapses and dopamine receptors in the motor cortex during STN-HFS trigger the intense expression of c-Fos of the PT neurons. The implications of the results on the cellular mechanism underlying the therapeutic effects of STN-DBS on the movement disorders of PD are also discussed.

  10. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  11. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  12. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  13. Hypothalamic projections to the ventral medulla oblongata in the rat, with special reference to the nucleus raphe pallidus: a study using autoradiographic and HRP techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, Yasuhiko

    1985-10-07

    Hypothalamic descending projections to the medullary ventral surface were studied autoradiographically in the rat. A small amount of (/sup 3/H)leucine was injected unilaterally into various parts of the hypothalamus by air pressure. Abundant and characteristic terminal labelings were observed bilaterally in the nucleus raphe pallidus, the ventral surface to the pyramidal tract and the nucleus interfascicularis hypoglossi, after injections into the dorsal posterior hypothalamic area caudal to the paraventricular hypothalamic nucleus. Conspicuous, but less numerous labelings were observed in the nucleus raphe obscurus and the ipsilateral raphe magnus. After an injection of (/sup 3/H)leucine into the hypothalamus and injections of horseradish peroxidase (HRP) into the spinal cord in the same animal, silver grains were densely distributed around HRP-labeled neurons in the nucleus raphe pallidus including the nucleus interfascicularis hypoglossi. The present results suggest that the dorsal posterior hypothalamic area projects directly to the spinal-projecting neurons of the nucleus raphe pallidus. 53 refs.; 9 figs.

  14. Ultrastructure and synaptic organization of the spinal accessory nucleus of the rat.

    Science.gov (United States)

    Hayakawa, Tetsu; Takanaga, Akinori; Tanaka, Koichi; Maeda, Seishi; Seki, Makoto

    2002-06-01

    The accessory nucleus is composed of neurons in the medial column that innervate the sternocleidomastoid muscle, and neurons in the lateral column that innervate the trapezius muscle. We retrogradely labeled these neurons by injection of cholera toxin conjugated horseradish peroxidase into the sternomastoid (SM) or the clavotrapezius (CT) muscles, and investigated fine structure and synaptology of these neurons. Almost all SM and CT motoneurons had the appearance of alpha-motoneurons, i.e., large, oval or polygonal cells containing well-developed organelles, Nissl bodies, and a prominent spherical nucleus. More than 60% of the somatic membrane was covered with terminals. The SM motoneurons (34.4 x 52.2 microm, 1,363.1 microm(2) in a section) were slightly larger than the CT motoneurons (32.8 x 54.2 microm, 1,180.8 microm(2)). The average number of axosomatic terminals in a section was 52.2 for the SM, and 54.2 for the CT motoneurons. More than half of them (58.0%) contained pleomorphic vesicles and made symmetric synaptic contacts (Gray's type II) with the SM motoneurons, while 57.9% of them contained round vesicles and made asymmetric synaptic contacts (Gray's type I) with the CT motoneurons. A few C-terminals were present on the SM (3.5) and the CT (3.7) motoneurons. About 60% of the axodendritic terminals were Gray's type I in both the SM and the CT motoneurons. A few labeled small motoneurons were also found among the SM and the CT motoneurons. They were small (19.2 x 26.2 microm, 367.0 microm(2)), round cells containing poorly developed organelles with a few axosomatic terminals (9.3). Only 20% of the somatic membrane was covered with the terminals. Thus, these neurons were presumed to be gamma-motoneurons. These results indicate that the motoneurons in the medial and the lateral column of the accessory nucleus have different ultrastructural characteristics.

  15. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*

    Science.gov (United States)

    Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-01-01

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212

  16. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    International Nuclear Information System (INIS)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U.; Paulsen, Ragnhild E.

    2011-01-01

    Highlights: → NGFI-B and RXR translocate out of the nucleus after glutamate treatment. → Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. → Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  17. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Tomáš Sieger

    Full Text Available The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  18. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Science.gov (United States)

    Sieger, Tomáš; Bonnet, Cecilia; Serranová, Tereza; Wild, Jiří; Novák, Daniel; Růžička, Filip; Urgošík, Dušan; Růžička, Evžen; Gaymard, Bertrand; Jech, Robert

    2013-01-01

    The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  19. Some experimental results of the investigation of hadron-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Azimov, S.A.; Gulamov, K.G.; Chernov, G.M.

    1978-01-01

    Recent experimental data on the hadron-nucleus and nucleus-nucleus inelastic interactions are analyzed. A particular attention is paid to the description of the leading hadron spectra and of the spectra of nucleon recoils in hadron-nucleus interactions. Some of the results of the experimental studies of correlations between secondary particles are discussed. This discussion demonstrates that an analysis of the multiparticle phenomena is very promising regarding the discrimination between the different models for the hadron-nucleus and nucleus-nucleus interactions. It is pointed out that the actual mechanism of the hadron-nucleus and nucleus-nucleus interactions is a rather complex one and can be described comprehensively by none of the existing models

  20. Molecular basis of cellular localization of poly C binding protein 1 in neuronal cells

    International Nuclear Information System (INIS)

    Berry, Andrea M.; Flock, Kelly E.; Loh, Horace H.; Ko, Jane L.

    2006-01-01

    Poly C binding protein 1 (PCBP) is involved in the transcriptional regulation of neuronal mu-opioid receptor gene. In this study, we examined the molecular basis of PCBP cellular/nuclear localization in neuronal cells using EGFP fusion protein. PCBP, containing three KH domains and a variable domain, distributed in cytoplasm and nucleus with a preferential nuclear expression. Domain-deletional analyses suggested the requirement of variable and KH3 domains for strong PCBP nuclear expression. Within the nucleus, a low nucleolar PCBP expression was observed, and PCBP variable domain contributed to this restricted nucleolar expression. Furthermore, the punctate nuclear pattern of PCBP was correlated to its single-stranded (ss) DNA binding ability, with both requiring cooperativity of at least three sequential domains. Collectively, certain PCBP domains thus govern its nuclear distribution and transcriptional regulatory activity in the nucleus of neurons, whereas the low nucleolar expression implicates the disengagement of PCBP in the ribosomal RNA synthesis

  1. Coding of amplitude-modulated signals in the cochlear nucleus of a grass frog

    Science.gov (United States)

    Bibikov, N. G.

    2002-07-01

    To study the mechanisms that govern the coding of temporal features of complex sound signals, responses of single neurons located in the dorsal nucleus of the medulla oblongata (the cochlear nucleus) of a curarized grass frog ( Rana temporaria) to pure tone bursts and amplitude modulated tone bursts with a modulation frequency of 20 Hz and modulation depths of 10 and 80% were recorded. The carrier frequency was equal to the characteristic frequency of a neuron, the average signal level was 20 30 dB above the threshold, and the signal duration was equal to ten full modulation periods. Of the 133 neurons studied, 129 neurons responded to 80% modulated tone bursts by discharges that were phase-locked with the envelope waveform. At this modulation depth, the best phase locking was observed for neurons with the phasic type of response to tone bursts. For tonic neurons with low characteristic frequencies, along with the reproduction of the modulation, phase locking with the carrier frequency of the signal was observed. At 10% amplitude modulation, phasic neurons usually responded to only the onset of a tone burst. Almost all tonic units showed a tendency to reproduce the envelope, although the efficiency of the reproduction was low, and for half of these neurons, it was below the reliability limit. Some neurons exhibited a more efficient reproduction of the weak modulation. For almost half of the neurons, a reliable improvement was observed in the phase locking of the response during the tone burst presentation (from the first to the tenth modulation period). The cooperative histogram of a set of neurons responding to 10% modulated tone bursts within narrow ranges of frequencies and intensities retains the information on the dynamics of the envelope variation. The data are compared with the results obtained from the study of the responses to similar signals in the acoustic midbrain center of the same object and also with the psychophysical effect of a differential

  2. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats.

    Science.gov (United States)

    Wang, Xiaolu; Guo, Ruichen; Zhao, Wenjing

    2015-01-01

    The laryngeal chemoreflex (LCR) induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI) that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS), the vestibular nuclear complex (VNC), the loose formation of the nucleus ambiguus (AmbL), the rostral ventral respiratory group (RVRG), the ventrolateral reticular complex (VLR), the pre-Bötzinger complex (PrBöt), the Bötzinger complex (Böt), the spinal trigeminal nucleus (SP5), and the raphe obscurus nucleus (ROb) bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL) showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic), and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.

  3. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats.

    Directory of Open Access Journals (Sweden)

    Xiaolu Wang

    Full Text Available The laryngeal chemoreflex (LCR induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS, the vestibular nuclear complex (VNC, the loose formation of the nucleus ambiguus (AmbL, the rostral ventral respiratory group (RVRG, the ventrolateral reticular complex (VLR, the pre-Bötzinger complex (PrBöt, the Bötzinger complex (Böt, the spinal trigeminal nucleus (SP5, and the raphe obscurus nucleus (ROb bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic, and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.

  4. Rescue of axotomized rubrospinal neurons by brain-derived neurotrophic factor (BDNF) in the developing opossum, Didelphis virginiana.

    Science.gov (United States)

    Wang, X M; Terman, J R; Martin, G F

    1999-12-10

    Many rubrospinal neurons die in developing opossums when their axon is cut at thoracic levels of the spinal cord and in the present study we asked whether they can be rescued by brain-derived neurotrophic factor (BDNF). Bilateral injections of Fast Blue (FB) were made into the rostral lumbar cord to prelabel rubrospinal neurons and 5 days later the rubrospinal tract was cut unilaterally by hemisecting the thoracic cord. Immediately after hemisection, BDNF-soaked gelfoam was placed into the lesion cavity. Since pilot data indicated that one application of BDNF was not sufficient to produce a rescue effect, a second application was made 7 days later. Seven days after the second application the pups were killed by an overdose of anesthetic so that the red nucleus contralateral and ipsilateral to the lesion site could be examined for labeled neurons. The rubrospinal tract is almost entirely crossed, so the red nucleus contralateral to the lesion contained many axotomized neurons, whereas the red nucleus ipsilateral to it did not. Age-matched controls were subjected to the same procedures, but the gelfoam applied to the lesion site in the experimental animals was soaked only in the vehicle used to deliver BDNF. In all cases, labeled neurons were fewer in number in the red nucleus contralateral to the lesion than ipsilateral to it. It was of particular interest, however, that labeled neurons contralateral to the lesion were more numerous in the animals treated with BDNF than in the controls. We conclude that BDNF rescues at least some rubrospinal neurons from axotomy-induced cell death in developing opossums suggesting that loss of access to BDNF, and perhaps other neurotrophins, contributes to failure of rubrospinal neurons to survive axotomy.

  5. Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis.

    Science.gov (United States)

    Kielar, Catherine; Maddox, Lucy; Bible, Ellen; Pontikis, Charlie C; Macauley, Shannon L; Griffey, Megan A; Wong, Michael; Sands, Mark S; Cooper, Jonathan D

    2007-01-01

    Infantile neuronal ceroid lipofuscinosis (INCL) is caused by deficiency of the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). We have investigated the onset and progression of pathological changes in Ppt1 deficient mice (Ppt1-/-) and the development of their seizure phenotype. Surprisingly, cortical atrophy and neuron loss occurred only late in disease progression but were preceded by localized astrocytosis within individual thalamic nuclei and the progressive loss of thalamic neurons that relay different sensory modalities to the cortex. This thalamic neuron loss occurred first within the visual system and only subsequently in auditory and somatosensory relay nuclei or the inhibitory reticular thalamic nucleus. The loss of granule neurons and GABAergic interneurons followed in each corresponding cortical region, before the onset of seizure activity. These findings provide novel evidence for successive neuron loss within the thalamus and cortex in Ppt1-/- mice, revealing the thalamus as an important early focus of INCL pathogenesis.

  6. Medial olivocochlear reflex interneurons are located in the posteroventral cochlear nucleus: a kainic acid lesion study in guinea pigs.

    Science.gov (United States)

    de Venecia, Ronald K; Liberman, M Charles; Guinan, John J; Brown, M Christian

    2005-07-11

    The medial olivocochlear (MOC) reflex arc is probably a three-neuron pathway consisting of type I spiral ganglion neurons, reflex interneurons in the cochlear nucleus, and MOC neurons that project to the outer hair cells of the cochlea. We investigated the identity of MOC reflex interneurons in the cochlear nucleus by assaying their regional distribution using focal injections of kainic acid. Our reflex metric was the amount of change in the distortion product otoacoustic emission (at 2f(1)-f(2)) just after onset of the primary tones. This metric for MOC reflex strength has been shown to depend on an intact reflex pathway. Lesions involving the posteroventral cochlear nucleus (PVCN), but not the other subdivisions, produced long-term decreases in MOC reflex strength. The degree of cell loss within the dorsal part of the PVCN was a predictor of whether the lesion affected MOC reflex strength. We suggest that multipolar cells within the PVCN have the distribution and response characteristics appropriate to be the MOC reflex interneurons. (c) 2005 Wiley-Liss, Inc.

  7. Comparative histological study of the mammalian facial nucleus.

    Science.gov (United States)

    Furutani, Rui; Sugita, Shoei

    2008-04-01

    We performed comparative Nissl, Klüver-Barrera and Golgi staining studies of the mammalian facial nucleus to classify the morphologically distinct subdivisions and the neuronal types in the rat, rabbit, ferret, Japanese monkey (Macaca fuscata), pig, horse, Risso's dolphin (Grampus griseus), and bottlenose dolphin (Tursiops truncatus). The medial subnucleus was observed in all examined species; however, that of the Risso's and bottlenose dolphins was a poorly-developed structure comprised of scattered neurons. The medial subnuclei of terrestrial mammals were well-developed cytoarchitectonic structures, usually a rounded column comprised of densely clustered neurons. Intermediate and lateral subnuclei were found in all studied mammals, with differences in columnar shape and neuronal types from species to species. The dorsolateral subnucleus was detected in all mammals but the Japanese monkey, whose facial neurons converged into the intermediate subnucleus. The dorsolateral subnuclei of the two dolphin species studied were expanded subdivisions comprised of densely clustered cells. The ventromedial subnuclei of the ferret, pig, and horse were richly-developed columns comprised of large multipolar neurons. Pig and horse facial nuclei contained another ventral cluster, the ventrolateral subnucleus. The facial nuclei of the Japanese monkey and the bottlenose dolphin were similar in their ventral subnuclear organization. Our findings show species-specific subnuclear organization and distribution patterns of distinct types of neurons within morphological discrete subdivisions, reflecting functional differences.

  8. Induction of neuronal axon outgrowth by Shati/Nat8l by energy metabolism in mice cultured neurons.

    Science.gov (United States)

    Sumi, Kazuyuki; Uno, Kyosuke; Matsumura, Shohei; Miyamoto, Yoshiaki; Furukawa-Hibi, Yoko; Muramatsu, Shin-Ichi; Nabeshima, Toshitaka; Nitta, Atsumi

    2015-09-09

    A novel N-acetyltransferase, Shati/Nat8l, was identified in the nucleus accumbens of mice repeatedly treated with methamphetamine (METH). Shati/Nat8l has been reported to inhibit the pharmacological action induced by METH. Shati/Nat8l produces N-acetylaspartate from aspartate and acetyl-CoA. Previously, we reported that overexpression of Shati/Nat8l in nucleus accumbens attenuates the response to METH by N-acetylaspartylglutamate (which is derived from N-acetylaspartate)-mGluR3 signaling in the mice brain. In the present study, to clarify the type of cells that produce Shati/Nat8l, we carried out in-situ hybridization for the detection of Shati/Nat8l mRNA along with immunohistochemical studies using serial sections of mice brain. Shati/Nat8l mRNA was detected in neuronal cells, but not in astrocytes or microglia cells. Next, we investigated the function of Shati/Nat8l in the neuronal cells in mice brain; then, we used an adeno-associated virus vector containing Shati/Nat8l for transfection and overexpression of Shati/Nat8l protein into the primary cultured neurons to investigate the contribution toward the neuronal activity of Shati/Nat8l. Overexpression of Shati/Nat8l in the mice primary cultured neurons induced axonal growth, but not dendrite elongation at day 1.5 (DIV). This finding indicated that Shati/Nat8l contributes toward neuronal development. LY341495, a selective group II mGluRs antagonist, did not abolish this axonal growth, and N-acetylaspartylglutamate itself did not abolish axon outgrowth in the same cultured system. The cultured neurons overexpressing Shati/Nat8l contained high ATP, suggesting that axon outgrowth is dependent on energy metabolism. This study shows that Shati/Nat8l in the neuron may induce axon outgrowth by ATP synthesis and not through mGluR3 signaling.

  9. Heavy metals in locus ceruleus and motor neurons in motor neuron disease.

    Science.gov (United States)

    Pamphlett, Roger; Kum Jew, Stephen

    2013-12-12

    The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons.

  10. Heavy metals in locus ceruleus and motor neurons in motor neuron disease

    Science.gov (United States)

    2013-01-01

    Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons. PMID:24330485

  11. Reward Processing by the Dorsal Raphe Nucleus: 5-HT and Beyond

    Science.gov (United States)

    Luo, Minmin; Zhou, Jingfeng; Liu, Zhixiang

    2015-01-01

    The dorsal raphe nucleus (DRN) represents one of the most sensitive reward sites in the brain. However, the exact relationship between DRN neuronal activity and reward signaling has been elusive. In this review, we will summarize anatomical, pharmacological, optogenetics, and electrophysiological studies on the functions and circuit mechanisms of…

  12. Control of the Estradiol-Induced Prolactin Surge by the Suprachiasmatic Nucleus

    NARCIS (Netherlands)

    Palm, Inge F.; van der Beek, Eline M.; Swarts, Hans J. M.; van der Vliet, Jan; Wiegant, Victor M.; Buijs, Ruud M.; Kalsbeek, Andries

    2001-01-01

    In the present study we investigated how the suprachiasmatic nucleus (SCN) controls the E(2)-induced PRL surge in female rats. First, the role of vasopressin (VP), a SCN transmitter present in medial preoptic area (MPO) projections and rhythmically released by SCN neurons, as a circadian signal for

  13. Infundibular neurons of the human hypothalamus simultaneously reactive with antisera against endorphins, ACTH, MSH and beta-LPH.

    Science.gov (United States)

    Bugnon, C; Bloch, B; Lenys, D; Fellmann, D

    1979-06-27

    In man, discrete neurons of the infundibular (arcuate) nucleus contain compounds that can be stained with anti-endorphin (alpha and beta), anti-ACTH, anti-MSH (alpha and beta) and anti-beta-LPH immune sera (I.S.). In the fetus, certain neurons stain with anti-beta-endorphin or anti((17--39)ACTH starting from the 11th week of fetal life. At the ultrastructural level, these neurons contain elementary granules that are immunoreactive with anti-beta-endorphin. In the adult, neurons immunoreactive with anti-beta-endorphin are found in the infundibular nucleus. Their axonal fibers terminate around blood vessels in the neurovascular zone and in the pituitary stalk, or establish contacts with non-immunoreactive perikarya of the infundibular nucleus. These neurons can be stained with anti(17--39)ACTH and anti-beta-endorphin I.S. The most reactive are also stained moderately with anti-alpha-MSH, anti-beta-MSH, anti-beta-LPH, anti-alpha-endorphin, or anti(1--24)ACTH I.S. These results indicate that, in man, compound(s) identical with or immunologically related to endorphins, beta-LPH, ACTH and MSH are secreted by certain hypothalamic neurons. These agents probably originate from a common precursor molecula similar to the so-called pro-opiocortin.

  14. [Changes in ingestive behavior during growth affects the functional maturation of temporomandibular joint nociceptive neurons of rats].

    Science.gov (United States)

    Hiranuma, Maya

    2013-03-01

    Temporomandibular joint (TMJ) loading during development promotes its growth and maintains normal structure/function. Continuous change in diet consistency is related to development and maturation of the peripheral nervous system, including the nociceptive system. However, the functional modulation of TMJ-nociceptive neurons under different ingestive behavior is unclear. We fed growing rats a liquid diet to investigate the effects of low TMJ loading on the response properties of neurons in the trigeminal spinal tract subnucleus caudalis (Sp5C). Forty 2-week-old male rats were used. They were fed chow pellets (n = 20, C group) or a liquid diet (n = 20, LD group) soon after weaning. Firing activities of single sensory units in response to TMJ pressure stimuli were recorded at 4, 5, 7 and 9 weeks. In TMJ-nociceptive neurons, the firing threshold (FT) in the LD group was significantly lower than that in the C group at each recording age. The FT in the C group remained unchanged throughout the recording period, whereas that in the LD group was the highest at 4 weeks, and gradually decreased. On the other hand, the initial firing frequency (IFF) was significantly higher in the LD group than in the C group at each recording age. The IFF in the C group remained unchanged throughout the experimental period, whereas that in the LD group was at its lowest at 4 weeks, and gradually increased. Based on these findings, ingestive behavior that results from continuous changes in the physical consistency of the diet during growth may affect the functional maturation of TMJ-nociceptive neurons.

  15. Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling.

    Science.gov (United States)

    Christian, Catherine A; Huguenard, John R

    2013-12-10

    Emerging evidence indicates that diazepam-binding inhibitor (DBI) mediates an endogenous benzodiazepine-mimicking (endozepine) effect on synaptic inhibition in the thalamic reticular nucleus (nRT). Here we demonstrate that DBI peptide colocalizes with both astrocytic and neuronal markers in mouse nRT, and investigate the role of astrocytic function in endozepine modulation in this nucleus by testing the effects of the gliotoxin fluorocitrate (FC) on synaptic inhibition and endozepine signaling in the nRT using patch-clamp recordings. FC treatment reduced the effective inhibitory charge of GABAA receptor (GABAAR)-mediated spontaneous inhibitory postsynaptic currents in WT mice, indicating that astrocytes enhance GABAAR responses in the nRT. This effect was abolished by both a point mutation that inhibits classical benzodiazepine binding to GABAARs containing the α3 subunit (predominant in the nRT) and a chromosomal deletion that removes the Dbi gene. Thus, astrocytes are required for positive allosteric modulation via the α3 subunit benzodiazepine-binding site by DBI peptide family endozepines. Outside-out sniffer patches pulled from neurons in the adjacent ventrobasal nucleus, which does not contain endozepines, show a potentiated response to laser photostimulation of caged GABA when placed in the nRT. FC treatment blocked the nRT-dependent potentiation of this response, as did the benzodiazepine site antagonist flumazenil. When sniffer patches were placed in the ventrobasal nucleus, however, subsequent treatment with FC led to potentiation of the uncaged GABA response, suggesting nucleus-specific roles for thalamic astrocytes in regulating inhibition. Taken together, these results suggest that astrocytes are required for endozepine actions in the nRT, and as such can be positive modulators of synaptic inhibition.

  16. Maturation of kisspeptinergic neurons coincides with puberty onset in male rats

    DEFF Research Database (Denmark)

    Bentsen, Agnete H; Ansel, Laura; Simonneaux, Valerie

    2010-01-01

    receptor is the primary component in the initiation of puberty and where in the hypothalamus regulation of the kisspeptin/Kiss1R system occurs is unresolved. Using immunohistochemistry and in situ hybridization, we analyzed the level of Kiss1 mRNA and kisspeptin-immunoreactivity in the anteroventral...... periventricular nucleus (AVPV) and the arcuate nucleus of male rats along pubertal development. Neurons expressing Kiss1 mRNA were first detected at PND15, but increased significantly around puberty, and declined again in the adult rat. While virtually no immunoreactive cell bodies were detectable in the AVPV...... at any age, numerous kisspeptin-positive neurons in the arcuate nucleus were detected in the adult rat. Increasing doses of kisspeptin-54 given peripherally to male rats at PND15, 30, 45, and 60 evoked roughly similar effects, as revealed by the induction of c-Fos in the pituitary and secretion of LH...

  17. Synchronization of ;light-sensitive; Hindmarsh-Rose neurons

    Science.gov (United States)

    Castanedo-Guerra, Isaac; Steur, Erik; Nijmeijer, Henk

    2018-04-01

    The suprachiasmatic nucleus is a network of synchronized neurons whose electrical activity follows a 24 h cycle. The synchronization phenomenon (among these neurons) is not completely understood. In this work we study, via experiments and numerical simulations, the phenomenon in which the synchronization threshold changes under the influence of an external (bifurcation) parameter in coupled Hindmarsh-Rose neurons. This parameter ;shapes; the activity of the individual neurons the same way as some neurons in the brain react to light. We corroborate this experimental finding with numerical simulations by quantifying the amount of synchronization using Pearson's correlation coefficient. In order to address the local stability problem of the synchronous state, Floquet theory is applied in the case where the dynamic systems show continuous periodic solutions. These results show how the sufficient coupling strength for synchronization between these neurons is affected by an external cue (e.g. light).

  18. High energy nucleus-nucleus scattering and matter radius of unstable nucleus

    International Nuclear Information System (INIS)

    Sato, H.; Okuhara, Y.

    1985-07-01

    The interaction cross sections of high energy nucleus-nucleus scattering have been studied with the Glauber Model and Hartree-Fock like variational calculation for the nuclear structure. It is found that the experimental interaction cross sections of the light unstable nucleus-stable nucleus scatterings measured by INS-LBL collaboration are well reproduceable. (author)

  19. Neuronal specializations for the processing of interaural difference cues in the chick

    Directory of Open Access Journals (Sweden)

    Harunori eOhmori

    2014-05-01

    Full Text Available Sound information is encoded as a series of spikes of the auditory nerve fibers (ANFs, and then transmitted to the brainstem auditory nuclei. Features such as timing and level are extracted from ANFs activity and further processed as the interaural time difference (ITD and the interaural level difference (ILD, respectively. These two interaural difference cues are used for sound source localization by behaving animals. Both cues depend on the head size of animals and are extremely small, requiring specialized neural properties in order to process these cues with precision. Moreover, the sound level and timing cues are not processed independently from one another. Neurons in the nucleus angularis (NA are specialized for coding sound level information in birds and the ILD is processed in the posterior part of the dorsal lateral lemniscus nucleus (LLDp. Processing of ILD is affected by the phase difference of binaural sound. Temporal features of sound are encoded in the pathway starting in nucleus magnocellularis (NM, and ITD is processed in the nucleus laminaris (NL. In this pathway a variety of specializations are found in synapse morphology, neuronal excitability, distribution of ion channels and receptors along the tonotopic axis, which reduces spike timing fluctuation in the ANFs-NM synapse, and imparts precise and stable ITD processing to the NL. Moreover, the contrast of ITD processing in NL is enhanced over a wide range of sound level through the activity of GABAergic inhibitory systems from both the superior olivary nucleus (SON and local inhibitory neurons that follow monosynaptic to NM activity.

  20. Increased glutamic acid decarboxylase expression in the hypothalamic suprachiasmatic nucleus in depression

    NARCIS (Netherlands)

    Wu, Xueyan; Balesar, R.A.; Lu, Jing; Farajnia, Sahar; Zhu, Qiongbin; Huang, Manli; Bao, Ai-Min; Swaab, D.F.

    2017-01-01

    In depression, disrupted circadian rhythms reflect abnormalities in the central circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). Although many SCN neurons are said to be GABAergic, it was not yet known whether and how SCN GABA changes occur in the SCN in depression. We,

  1. Pallidotomy suppresses beta power in the subthalamic nucleus of Parkinson's disease patients

    NARCIS (Netherlands)

    Contarino, Maria Fiorella; Bour, Lo J.; Bot, Maarten; van den Munckhof, Pepijn; Speelman, Johannes D.; Schuurman, P. Richard; de Bie, Rob M. A.

    2011-01-01

    Parkinsonian patients, who have had a unilateral pallidotomy, may require bilateral deep brain stimulation of the subthalamic nucleus (STN), due to disease progression. The current model of the basal ganglia circuitry does not predict a direct effect of pallidotomy on the neuronal activity of the

  2. Not a single but multiple populations of GABAergic neurons control sleep.

    Science.gov (United States)

    Luppi, Pierre-Hervé; Peyron, Christelle; Fort, Patrice

    2017-04-01

    The role of gamma-amino butyric acid (GABA) in sleep induction and maintenance is well accepted since most insomnia treatments target GABAa receptors. However, the population(s) of GABAergic neurons involved in the beneficial effect of GABA on sleep remains to be identified. This is not an easy task since GABAergic neurons are widely distributed in all brain structures. A recently growing number of populations of GABAergic neurons have been involved in sleep control. We first review here possible candidates for inducing non-rapid eye movement (NREM) sleep including the GABAergic neurons of the ventrolateral preoptic area, the parafacial zone in the brainstem, the nucleus accumbens and the cortex. We also discuss the role of several populations of GABAergic neurons in rapid eye movement (REM) sleep control. Indeed, it is well accepted that muscle atonia occurring during REM sleep is due to a GABA/glycinergic hyperpolarization of motoneurons. Recent evidence strongly suggests that these neurons are located in the ventral medullary reticular formation. It has also recently been shown that neurons containing the neuropeptide melanin concentrating hormone and GABA located in the lateral hypothalamic area control REM sleep expression. Finally, a population of REM-off GABAergic neurons located in the ventrolateral periaqueductal gray has been shown to gate REM sleep by inhibiting glutamatergic neurons located in the sublaterodorsal tegmental nucleus. In summary, recent data clearly indicate that multiple populations of GABAergic neurons located throughout the brain from the cortex to the medulla oblongata control NREM and REM sleep. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.

    Science.gov (United States)

    Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-09-18

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Molecular characterization of the mouse superior lateral parabrachial nucleus through expression of the transcription factor Runx1.

    Directory of Open Access Journals (Sweden)

    Chrissandra J Zagami

    2010-11-01

    Full Text Available The ability to precisely identify separate neuronal populations is essential to the understanding of the development and function of different brain structures. This necessity is particularly evident in regions such as the brainstem, where the anatomy is quite complex and little is known about the identity, origin, and function of a number of distinct nuclei due to the lack of specific cellular markers. In this regard, the gene encoding the transcription factor Runx1 has emerged as a specific marker of restricted neuronal populations in the murine central and peripheral nervous systems. The aim of this study was to precisely characterize the expression of Runx1 in the developing and postnatal mouse brainstem.Anatomical and immunohistochemical studies were used to characterize mouse Runx1 expression in the brainstem. It is shown here that Runx1 is expressed in a restricted population of neurons located in the dorsolateral rostral hindbrain. These neurons define a structure that is ventromedial to the dorsal nucleus of the lateral lemniscus, dorsocaudal to the medial paralemniscal nucleus and rostral to the cerebellum. Runx1 expression in these cells is first observed at approximately gestational day 12.5, persists into the adult brain, and is lost in knockout mice lacking the transcription factor Atoh1, an important regulator of the development of neuronal lineages of the rhombic lip. Runx1-expressing neurons in the rostral hindbrain produce cholecystokinin and also co-express members of the Groucho/Transducin-like Enhancer of split protein family.Based on the anatomical and molecular characteristics of the Runx1-expressing cells in the rostral hindbrain, we propose that Runx1 expression in this region of the mouse brain defines the superior lateral parabrachial nucleus.

  5. Dissecting Cell-Type Composition and Activity-Dependent Transcriptional State in Mammalian Brains by Massively Parallel Single-Nucleus RNA-Seq.

    Science.gov (United States)

    Hu, Peng; Fabyanic, Emily; Kwon, Deborah Y; Tang, Sheng; Zhou, Zhaolan; Wu, Hao

    2017-12-07

    Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a high-throughput manner at low cost, but unbiased isolation of intact single cells from complex tissues such as adult mammalian brains is challenging. Here, we integrate sucrose-gradient-assisted purification of nuclei with droplet microfluidics to develop a highly scalable single-nucleus RNA-seq approach (sNucDrop-seq), which is free of enzymatic dissociation and nucleus sorting. By profiling ∼18,000 nuclei isolated from cortical tissues of adult mice, we demonstrate that sNucDrop-seq not only accurately reveals neuronal and non-neuronal subtype composition with high sensitivity but also enables in-depth analysis of transient transcriptional states driven by neuronal activity, at single-cell resolution, in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The neuronal structure of paramamillary nuclei in Bison bonasus: Nissl and Golgi pictures.

    Science.gov (United States)

    Robak, A; Szteyn, S; Równiak, M

    1998-01-01

    The studies were carried out on the hypothalamus of bison bonasus aged 2 and 3 months. Sections were made by means of Bagiński's technique and Nissl and Klüver-Barrera methods. Four types of neurons were distinguished in the paramamillary nuclei: nucleus supramamillaris (Sm) and nucleus tuberomammillaris pars posterior (Tmp). Type I, small and medium-size, triangular or fusiform cells, which have 2-3 slender, poorly ramified dendrites; typical leptodendritic neurons. Type II, medium size neurons with quadrangular or spindle-shaped perikaryons. Most of them have 3-4 thick dendritic trunks with ramifying relatively long dendrites. These cells show stalked-appearance and possess different appendages sparsely distributed. Type III is similar to type II, but is made of medium-size to large multipolar cells having quadrangular, triangular or fusiform perikaryons and relatively short dendrites. Type IV, small and medium-size, globular cells with 2 or 3 dendritic trunks, which dichotomously subdivide into quaternary dendrites. In all types of neurons, axons emerge from the perikaryon or initial portion of a dendritic trunk. Type I was found in both studied nuclei. Types II and III constitute mainly the nucleus tuberomamillaris pars posterior. Type IV preponderate in the nucleus supramamillaris. The characteristic feature of Tmp cells, in Nissl picture was irregular contour of their somas and clumps of rough Nisls granules, which appear to lie outside the perikaryons. In Sm there were also lightly stained small rounded cells having both small amount of the cytoplasm and tigroid matter.

  7. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  8. Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus

    Directory of Open Access Journals (Sweden)

    Chul-Kyu Park

    2015-01-01

    Full Text Available In the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ. Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified macrophage-derived mediator of inflammation resolution, is a potent analgesic for somatic inflammatory pain without noticeable side effects in mice and a potent endogenous inhibitor of transient receptor potential vanilloid 1 (TRPV1 in the somatic system. However, the molecular mechanisms underlying the analgesic actions of maresin 1 on TMJ pain are unclear in the trigeminal system. Here, by performing TMJ injection of a retrograde labeling tracer DiI (a fluorescent dye, I showed that maresin 1 potently inhibits capsaicin-induced TRPV1 currents and neuronal activity via Gαi-coupled G-protein coupled receptors in DiI-labeled trigeminal nociceptive neurons. Further, maresin 1 blocked TRPV1 agonist-evoked increases in spontaneous excitatory postsynaptic current frequency and abolished TMJ inflammation-induced synaptic plasticity in the trigeminal nucleus. These results demonstrate the potent actions of maresin 1 in regulating TRPV1 in the trigeminal system. Thus, maresin 1 may serve as a novel endogenous inhibitor for treating TMJ-inflammatory pain in the orofacial region.

  9. Cannabinoid Receptors Mediate Methamphetamine Induction of High Frequency Gamma Oscillations in the Nucleus Accumbens

    Science.gov (United States)

    Morra, Joshua T.; Glick, Stanley D.; Cheer, Joseph F.

    2012-01-01

    Patients suffering from amphetamine---induced psychosis display repetitive behaviors, partially alleviated by antipsychotics, which are reminiscent of rodent stereotypies. Due to recent evidence implicating endocannabinoid involvement in brain disorders, including psychosis, we studied the effects of endocannabinoid signaling on neuronal oscillations of rats exhibiting methamphetamine stereotypy. Neuronal network oscillations were recorded with multiple single electrode arrays aimed at the nucleus accumbens of freely moving rats. During the experiments, animals were dosed intravenously with the CB1 receptor antagonist rimonabant (0.3 mg/kg) or vehicle followed by an ascending dose regimen of methamphetamine (0.01, 0.1, 1, and 3 mg/kg; cumulative dosing). The effects of drug administration on stereotypy and local gamma oscillations were evaluated. Methamphetamine treatment significantly increased high frequency gamma oscillations (~ 80 Hz). Entrainment of a subpopulation of nucleus accumbens neurons to high frequency gamma was associated with stereotypy encoding in putative fast-spiking interneurons, but not in putative medium spiny neurons. The observed ability of methamphetamine to induce both stereotypy and high frequency gamma power was potently disrupted following CB1 receptor blockade. The present data suggest that CB1 receptor-dependent mechanisms are recruited by methamphetamine to modify striatal interneuron oscillations that accompany changes in psychomotor state, further supporting the link between endocannabinoids and schizophrenia spectrum disorders. PMID:22609048

  10. Mitosis in neurons: Roughex and APC/C maintain cell cycle exit to prevent cytokinetic and axonal defects in Drosophila photoreceptor neurons.

    Directory of Open Access Journals (Sweden)

    Robert Ruggiero

    Full Text Available The mechanisms of cell cycle exit by neurons remain poorly understood. Through genetic and developmental analysis of Drosophila eye development, we found that the cyclin-dependent kinase-inhibitor Roughex maintains G1 cell cycle exit during differentiation of the R8 class of photoreceptor neurons. The roughex mutant neurons re-enter the mitotic cell cycle and progress without executing cytokinesis, unlike non-neuronal cells in the roughex mutant that perform complete cell divisions. After mitosis, the binucleated R8 neurons usually transport one daughter nucleus away from the cell body into the developing axon towards the brain in a kinesin-dependent manner resembling anterograde axonal trafficking. Similar cell cycle and photoreceptor neuron defects occurred in mutants for components of the Anaphase Promoting Complex/Cyclosome. These findings indicate a neuron-specific defect in cytokinesis and demonstrate a critical role for mitotic cyclin downregulation both to maintain cell cycle exit during neuronal differentiation and to prevent axonal defects following failed cytokinesis.

  11. Topical dura mater application of CFA induces enhanced expression of c-fos and glutamate in rat trigeminal nucleus caudalis

    DEFF Research Database (Denmark)

    Lukács, M; Warfvinge, K; Tajti, J

    2017-01-01

    BACKGROUND: Migraine is a debilitating neurological disorder where trigeminovascular activation plays a key role. We have previously reported that local application of Complete Freund's Adjuvant (CFA) onto the dura mater caused activation in rat trigeminal ganglion (TG) which was abolished......) was achieved by application of CFA onto the dural parietal surface. SZR72 was given intraperitoneally (i.p.), one dose prior CFA deposition and repeatedly daily for 7 days. Immunohistochemical studies were performed for mapping glutamate, c-fos, PACAP, substance P, IL-6, IL-1β and TNFα in the TNC/Sp5 and other...... regions of the brainstem and at the C1-C2 regions of the spinal cord. RESULTS: We found that CFA increased c-fos and glutamate immunoreactivity in TNC and C1-C2 neurons. This effect was mitigated by SZR72. PACAP positive fibers were detected in the fasciculus cuneatus and gracilis. Substance P, TNFα, IL-6...

  12. Anatomical and electrophysiological characterization of presumed dopamine-containing neurons within the supramammillary region of the rat.

    Science.gov (United States)

    Shepard, P D; Mihailoff, G A; German, D C

    1988-03-01

    A combination of immunocytochemical, electrophysiological and pharmacological techniques were employed to study the properties of neurons within the supramammillary (SUM) complex of the rat. The SUM region contains a small, but dense, population of tyrosine hydroxylase immunoreactive neurons. Following injection of the orthograde neuroanatomical tracer, Phaseolus Vulgaris leucoagglutinin, into the SUM region, heavy terminal labeling was observed in the lateral septal nucleus, diagonal band of Broca and bed nucleus of the stria terminalis. The electrophysiological and pharmacological properties of antidromically-activated SUM neurons revealed evidence of two neuronal populations. Both groups of neurons exhibited long duration action potentials (greater than 2 msec) and slow conduction velocities (less than 0.5 m/sec). However, cells in one group were characterized by slow and erratic firing rates and insensitivity to dopamine (DA) autoreceptor agonists. Cells in the other group typically exhibited no spontaneous activity but could be induced to discharge by iontophoretic application of glutamate. These latter cells were sensitive to DA autoreceptor stimulation. Of the two populations of mammilloseptal SUM neurons, the silent population exhibited several properties similar to those of midbrain DA neurons.

  13. Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Feldman, J L

    1997-01-01

    Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 78: 2483-2492, 1997. The nucleus ambiguus contains vagal and glossopharyngeal motoneurons and preganglionic neurons involved in respiration, swallowing, vocalization......-stimulus orthodromic activation, using an electrode placed in the dorsomedial slice near the nucleus tractus solitarius, evoked single excitatory postsynaptic potentials (EPSPs) or short trains of EPSPs (500 ms to 1 s). However, tetanic stimulation (5 pulses, 10 Hz) induced voltage-dependent afterdepolarizations...

  14. Response properties of neighboring neurons in the auditory midbrain for pure-tone stimulation: a tetrode study.

    Science.gov (United States)

    Seshagiri, Chandran V; Delgutte, Bertrand

    2007-10-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives.

  15. Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations.

    Science.gov (United States)

    Padilla, Stephanie L; Reef, Daniel; Zeltser, Lori M

    2012-03-01

    Melanocortin signaling plays a central role in the regulation of phenotypes related to body weight and energy homeostasis. To specifically target and study the function of proopiomelanocortin (POMC) neurons, Pomc promoter elements have been utilized to generate reporter and Cre recombinase transgenic reagents. Across gestation, we find that Pomc is dynamically expressed in many sites in the developing mouse forebrain, midbrain, hindbrain, spinal cord, and retina. Although Pomc expression in most embryonic brain regions is transient, it is sufficient to direct Cre-mediated recombination of floxed alleles. We visualize the populations affected by this transgene by crossing Pomc-Cre mice to ROSA reporter strains and identify 62 sites of recombination throughout the adult brain, including several nuclei implicated in energy homeostasis regulation. To compare the relationship between acute Pomc promoter activity and Pomc-Cre-mediated recombination at the single cell level, we crossed Pomc-enhanced green fluorescent protein (eGFP) and Pomc-Cre;ROSA-tdTomato lines. We detect the highest concentration of Pomc-eGFP+ cells in the arcuate nucleus of the hypothalamus and dentate gyrus but also observe smaller populations of labeled cells in the nucleus of the solitary tract, periventricular zone of the third ventricle, and cerebellum. Consistent with the dynamic nature of Pomc expression in the embryo, the vast majority of neurons marked with the tdTomato reporter do not express eGFP in the adult. Thus, recombination in off-target sites could contribute to physiological phenotypes using Pomc-Cre transgenics. For example, we find that approximately 83% of the cells in the arcuate nucleus of the hypothalamus immunoreactive for leptin-induced phosphorylated signal transducer and activator of transcription 3 are marked with Pomc-Cre;ROSA-tdTomato; only 13% of these are eGFP+ POMC neurons.

  16. Interacting gluon model for hadron-nucleus and nucleus-nucleus collisions in the central rapidity region

    International Nuclear Information System (INIS)

    Fowler, G.N.; Navarra, F.S.; Plumer, M.; Lawrence Berkeley Laboratory, Nuclear Science Division, Berkeley, California 94720); Vourdas, A.; Weiner, R.M.

    1989-01-01

    The interacting gluon model developed to describe the inelasticity distribution in hadron-nucleon collisions has been generalized and applied to hadron-nucleus and nucleus-nucleus interactions. Leading particle spectra and energy distributions in hadron-nucleus and nucleus-nucleus collisions are calculated

  17. Afferent projections to the deep mesencephalic nucleus in the rat

    International Nuclear Information System (INIS)

    Veazey, R.B.; Severin, C.M.

    1982-01-01

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist

  18. Distinct kinetics of inhibitory currents in thalamocortical neurons that arise from dendritic or axonal origin.

    Directory of Open Access Journals (Sweden)

    Sunggu Yang

    Full Text Available Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN transfer visual information from retina to primary visual cortex. This information is modulated by inhibitory input arising from local interneurons and thalamic reticular nucleus (TRN neurons, leading to alterations of receptive field properties of thalamocortical neurons. Local GABAergic interneurons provide two distinct synaptic outputs: axonal (F1 terminals and dendritic (F2 terminals onto dLGN thalamocortical neurons. By contrast, TRN neurons provide only axonal output (F1 terminals onto dLGN thalamocortical neurons. It is unclear if GABAA receptor-mediated currents originating from F1 and F2 terminals have different characteristics. In the present study, we examined multiple characteristics (rise time, slope, halfwidth and decay τ of GABAA receptor-mediated miniature inhibitory postsynaptic synaptic currents (mIPSCs originating from F1 and F2 terminals. The mIPSCs arising from F2 terminals showed slower kinetics relative to those from F1 terminals. Such differential kinetics of GABAAR-mediated responses could be an important role in temporal coding of visual signals.

  19. Selective retrograde transport of D-aspartate in spinal interneurons anc cortical neurons of rats

    International Nuclear Information System (INIS)

    Rustioni, A.; Cuenod, M.

    1982-01-01

    Retrograde labeling of neuronal elements in the brain and spinal cord has been investigated by autoradiographic techniques following injections of D-[ 3 H]aspartate (asp), [ 3 H]γ-aminobutyric acid (GABA) or horseradish peroxidase (HRP) in the medulla and spinal cord of rats. Twenty-four hours after D-[ 3 H]asp injections focused upon the cuneate nucleus, autoradiographic labeling is present over fibers in the pyramidal tract, internal capsule and over layer V pyramids in the forelimb representation of the sensorimotor cortex. After [ 3 H]GABA injections in the same nucleus no labeling attributable to retrograde translocation can be detected in spinal segments, brain stem or cortex. Conversely, injections of 30% HRP in the cuneate nucleus label neurons in several brain stem nuclei, in spinal gray and in layer V of the sensorimotor cortex. D-[ 3 H]Asp injections focused on the dorsal horn at cervical segments label a fraction of perikarya of the substantia gelatinosa and a sparser population of larger neurons in laminae IV to VI for a distance of 3-5 segments above and below the injection point. No brain stem neuronal perikarya appear labeled following spinal injections of D-[ 3 H]asp although autoradiographic grains overlie pyramidal tract fibers on the side contralateral to the injection. (Auth.)

  20. Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys.

    Science.gov (United States)

    Ito, T; Inoue, K; Takada, M

    2015-12-03

    Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2017-04-01

    Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested ( n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function. NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not

  2. The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Park, Eunkyoung; Song, Inho; Jang, Dong Pyo; Kim, In Young

    2014-08-08

    The pedunculopontine nucleus (PPN) has recently been introduced as an alternative target to the subthalamic nucleus (STN) or globus pallidus internus (GPi) for the treatment of advanced Parkinson's disease with severe and medically intractable axial symptoms such as gait and postural impairment. However, it is little known about how electrical stimulation of the PPN affects control of neuronal activities between the PPN and basal ganglia. We examined how low frequency stimulation of the pedunculopontine tegmental nucleus (PPTg) affects control of neuronal activities between the PPN and basal ganglia in 6-OHDA lesioned rats. In order to identify the effect of low frequency stimulation on the PPTg, neuronal activity in both the STN and substantia nigra par reticulata (SNr) were recorded and subjected to quantitative analysis, including analysis of firing rates and firing patterns. In this study, we found that the firing rates of the STN and SNr were suppressed during low frequency stimulation of the PPTg. However, the firing pattern, in contrast to the firing rate, did not exhibit significant changes in either the STN or SNr of 6-OHDA lesioned rats during low frequency stimulation of the PPTg. In addition, we also found that the firing rate of STN and SNr neurons displaying burst and random pattern were decreased by low frequency stimulation of PPTg, while the neurons displaying regular pattern were not affected. These results indicate that low frequency stimulation of the PPTg affects neuronal activity in both the STN and SNr, and may represent electrophysiological efficacy of low frequency PPN stimulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    Directory of Open Access Journals (Sweden)

    Francisco J Urbano

    2014-10-01

    Full Text Available The pedunculopontine nucleus (PPN is a major component of the reticular activating system (RAS that regulates waking and REM sleep, states of high frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine pedunculopontine nucleus (PPN, intralaminar parafascicular nucleus (Pf, and pontine Subcoeruleus nucleus dorsalis (SubCD. Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that, 1 the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, 2 neuronal calcium sensor (NCS-1 protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, 3 leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and 4 following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high frequency activity related to waking and REM sleep by elements of the RAS.

  4. Morphometric analysis of the neuronal numbers and densities of the inferior olivary complex in the donkey (Equus asinus).

    Science.gov (United States)

    Alkafafy, Mohamed; Rashed, Reda; Attia, Hossam

    2011-07-01

    The morphometric interrelations between the compartments of the inferior olivary complex (IOC) in the donkey (Equus asinus) were ascertained by examining serial sections throughout the entire length of the IOC for both sides. Nissl-stained celloidin sections of four brainstems of donkeys were used. The IOC consisted of three major nuclei and four small cell groups. The total neuronal count in both sides of the IOC was 202,040±8480 cells. The medial accessory olivary nucleus (MAO) had the largest relative area (46%) and the highest number of neurons (90,800±7600). The dorsal accessory olivary nucleus (DAO) had the second largest relative area (33%), while the principal olivary nucleus (PO) had the lowest relative area (21%). However, the total neuron count in the PO was larger (60,840±1840) than DAO (50,360±4040). The average neuronal density was 2700±400 cells/mm(3). The numerical values of the current study of the IOC in the donkey were similar to those of other mammals. Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. Lesions of cholinergic pedunculopontine tegmental nucleus neurons fail to affect cocaine or heroin self-administration or conditioned place preference in rats.

    Directory of Open Access Journals (Sweden)

    Stephan Steidl

    Full Text Available Cholinergic input to the ventral tegmental area (VTA is known to contribute to reward. Although it is known that the pedunculopontine tegmental nucleus (PPTg provides an important source of excitatory input to the dopamine system, the specific role of PPTg cholinergic input to the VTA in cocaine reward has not been previously determined. We used a diphtheria toxin conjugated to urotensin-II (Dtx::UII, the endogenous ligand for urotensin-II receptors expressed by PPTg cholinergic but not glutamatergic or GABAergic cells, to lesion cholinergic PPTg neurons. Dtx::UII toxin infusion resulted in the loss of 95.78 (±0.65% of PPTg cholinergic cells but did not significantly alter either cocaine or heroin self-administration or the development of cocaine or heroin conditioned place preferences. Thus, cholinergic cells originating in PPTg do not appear to be critical for the rewarding effects of cocaine or of heroin.

  6. β adrenergic receptor modulation of neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Bateman, R J; Boychuk, C R; Philbin, K E; Mendelowitz, D

    2012-05-17

    β-adrenergic receptors are a class of G protein-coupled receptors that have essential roles in regulating heart rate, blood pressure, and other cardiorespiratory functions. Although the role of β adrenergic receptors in the peripheral nervous system is well characterized, very little is known about their role in the central nervous system despite being localized in many brain regions involved in autonomic activity and regulation. Since parasympathetic activity to the heart is dominated by cardiac vagal neurons (CVNs) originating in the nucleus ambiguus (NA), β adrenergic receptors localized in the NA represent a potential target for modulating cardiac vagal activity and heart rate. This study tests the hypothesis that activation of β adrenergic receptors alters the membrane properties and synaptic neurotransmission to CVNs. CVNs were identified in brainstem slices, and membrane properties and synaptic events were recorded using the whole-cell voltage-clamp technique. The nonselective β agonist isoproterenol significantly decreased inhibitory GABAergic and glycinergic as well as excitatory glutamatergic neurotransmission to CVNs. In addition, the β(1)-selective receptor agonist dobutamine, but not β(2) or β(3) receptor agonists, significantly decreased inhibitory GABAergic and glycinergic and excitatory glutamatergic neurotransmission to CVNs. These decreases in neurotransmission to CVNs persisted in the presence of tetrodotoxin (TTX). These results provide a mechanism by which activation of adrenergic receptors in the brainstem can alter parasympathetic activity to the heart. Likely physiological roles for this adrenergic receptor activation are coordination of parasympathetic-sympathetic activity and β receptor-mediated increases in heart rate upon arousal. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Neurons in the thalamic reticular nucleus are selective for diverse and complex visual features

    Directory of Open Access Journals (Sweden)

    Vishal eVaingankar

    2012-12-01

    Full Text Available All visual signals the cortex receives are influenced by the perigeniculate sector of the thalamic reticular nucleus, which receives input from relay cells in the lateral geniculate and provides feedback inhibition in return. Relay cells have been studied in quantitative depth; they behave in a roughly linear fashion and have receptive fields with a stereotyped centre-surround structure. We know far less about reticular neurons. Qualitative studies indicate they simply pool ascending input to generate nonselective gain control. Yet the perigeniculate is complicated; local cells are densely interconnected and fire lengthy bursts. Thus, we employed quantitative methods to explore the perigeniculate, using relay cells as controls. By adapting methods of spike-triggered averaging and covariance analysis for bursts, we identified both first and second order features that build reticular receptive fields. The shapes of these spatiotemporal subunits varied widely; no stereotyped pattern emerged. Companion experiments showed that the shape of the first but not second order features could be explained by the overlap of On and Off inputs to a given cell. Moreover, we assessed the predictive power of the receptive field and how much information each component subunit conveyed. Linear-nonlinear models including multiple subunits performed better than those made with just one; further each subunit encoded different visual information. Model performance for reticular cells was always lesser than for relay cells, however, indicating that reticular cells process inputs nonlinearly. All told, our results suggest that the perigeniculate encodes diverse visual features to selectively modulate activity transmitted downstream

  8. Neurons in the thalamic reticular nucleus are selective for diverse and complex visual features

    Science.gov (United States)

    Vaingankar, Vishal; Soto-Sanchez, Cristina; Wang, Xin; Sommer, Friedrich T.; Hirsch, Judith A.

    2012-01-01

    All visual signals the cortex receives are influenced by the perigeniculate sector (PGN) of the thalamic reticular nucleus, which receives input from relay cells in the lateral geniculate and provides feedback inhibition in return. Relay cells have been studied in quantitative depth; they behave in a roughly linear fashion and have receptive fields with a stereotyped center-surround structure. We know far less about reticular neurons. Qualitative studies indicate they simply pool ascending input to generate non-selective gain control. Yet the perigeniculate is complicated; local cells are densely interconnected and fire lengthy bursts. Thus, we employed quantitative methods to explore the perigeniculate using relay cells as controls. By adapting methods of spike-triggered averaging and covariance analysis for bursts, we identified both first and second order features that build reticular receptive fields. The shapes of these spatiotemporal subunits varied widely; no stereotyped pattern emerged. Companion experiments showed that the shape of the first but not second order features could be explained by the overlap of On and Off inputs to a given cell. Moreover, we assessed the predictive power of the receptive field and how much information each component subunit conveyed. Linear-non-linear (LN) models including multiple subunits performed better than those made with just one; further each subunit encoded different visual information. Model performance for reticular cells was always lesser than for relay cells, however, indicating that reticular cells process inputs non-linearly. All told, our results suggest that the perigeniculate encodes diverse visual features to selectively modulate activity transmitted downstream. PMID:23269915

  9. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    Science.gov (United States)

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Fine structural survey of the intermediate subnucleus of the nucleus tractus solitarii and its glossopharyngeal afferent terminals.

    Science.gov (United States)

    Hayakawa, Tetsu; Maeda, Seishi; Tanaka, Koichi; Seki, Makoto

    2005-10-01

    The intermediate subnucleus of the nucleus tractus solitarii (imNTS) receives somatosensory inputs from the soft palate and pharynx, and projects onto the nucleus ambiguus, thus serving as a relay nucleus for swallowing. The ultrastructure and synaptology of the rat imNTS, and its glossopharyngeal afferent terminals, have been examined with cholera toxin-conjugated horseradish peroxidase (CT-HRP) as an anterograde tracer. The imNTS contained oval or ellipsoid-shaped, small to medium-sized neurons (18.2 x 11.4 microm) with little cytoplasm, few cell organelles and an irregularly shaped nucleus. The cytoplasm often contained one or two nucleolus-like stigmoid bodies. The average number of axosomatic terminals was 1.8 per profile. About 83% of them contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), while about 17% contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). The neuropil contained small or large axodendritic terminals, and about 92% of them were Gray's type I. When CT-HRP was injected into the nodose ganglion, many labeled terminals were found in the imNTS. All anterogradely labeled terminals contacted dendrites but not somata. The labeled terminals were usually large (2.69+/-0.09 mum) and exclusively of Gray's type I. They often contacted more than two dendrites, were covered with glial processes, and formed synaptic glomeruli. A small unlabeled terminal occasionally made an asymmetric synaptic contact with a large labeled terminal. The large glossopharyngeal afferent terminals and the neurons containing stigmoid bodies characterized the imNTS neurons that received pharyngeal afferents.

  11. Autoradiographic localization of putative nicotinic receptors in the rat brain using 125I-neuronal bungarotoxin

    International Nuclear Information System (INIS)

    Schulz, D.W.; Loring, R.H.; Aizenman, E.; Zigmond, R.E.

    1991-01-01

    Neuronal bungarotoxin (NBT), a snake venom neurotoxin, selectively blocks nicotinic receptors in many peripheral and central neuronal preparations. alpha-Bungarotoxin (alpha BT), on the other hand, a second toxin isolated from the venom of the same snake, is an ineffective nicotinic antagonist in most vertebrate neuronal preparations studied thus far. To examine central nicotinic receptors recognized by NBT, we have characterized the binding of 125I-labeled NBT (125I-NBT) to rat brain membranes and have mapped the distribution of 125I-NBT binding in brain sections using quantitative light microscopic autoradiography. The binding of 125I-NBT was found to be saturable, of high affinity, and heterogeneously distributed in the brain. Pharmacological studies suggested that more than one population of sites is labeled by 125I-NBT. For example, one component of 125I-NBT binding was also recognized by alpha BT, while a second component, not recognized by alpha BT, was recognized by the nicotinic agonist nicotine. The highest densities of these alpha BT-insensitive, nicotine-sensitive sites were found in the fasciculus retroflexus, the lateral geniculate nucleus, the medial terminal nucleus of the accessory optic tract, and the olivary pretectal nucleus. alpha BT-sensitive NBT binding sites were found in highest density in the lateral geniculate nucleus, the subthalamic nucleus, the dorsal tegmental nucleus, and the medial mammillary nucleus (lateral part). The number of brain regions with a high density of 125I-NBT binding sites, blocked either by alpha BT or by nicotine, is low when compared with results obtained using other approaches to studying the central distribution of nicotinic receptors, such as labeling with 3H-nicotine or labeling with cDNA probes to mRNAs coding for putative receptor subunits

  12. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity.

    Science.gov (United States)

    Hasegawa, Emi; Maejima, Takashi; Yoshida, Takayuki; Masseck, Olivia A; Herlitze, Stefan; Yoshioka, Mitsuhiro; Sakurai, Takeshi; Mieda, Michihiro

    2017-04-25

    Narcolepsy is a sleep disorder caused by the loss of orexin (hypocretin)-producing neurons and marked by excessive daytime sleepiness and a sudden weakening of muscle tone, or cataplexy, often triggered by strong emotions. In a mouse model for narcolepsy, we previously demonstrated that serotonin neurons of the dorsal raphe nucleus (DRN) mediate the suppression of cataplexy-like episodes (CLEs) by orexin neurons. Using an optogenetic tool, in this paper we show that the acute activation of DRN serotonin neuron terminals in the amygdala, but not in nuclei involved in regulating rapid eye-movement sleep and atonia, suppressed CLEs. Not only did stimulating serotonin nerve terminals reduce amygdala activity, but the chemogenetic inhibition of the amygdala using designer receptors exclusively activated by designer drugs also drastically decreased CLEs, whereas chemogenetic activation increased them. Moreover, the optogenetic inhibition of serotonin nerve terminals in the amygdala blocked the anticataplectic effects of orexin signaling in DRN serotonin neurons. Taken together, the results suggest that DRN serotonin neurons, as a downstream target of orexin neurons, inhibit cataplexy by reducing the activity of amygdala as a center for emotional processing.

  13. UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness.

    Science.gov (United States)

    Toda, Chitoku; Kim, Jung Dae; Impellizzeri, Daniela; Cuzzocrea, Salvatore; Liu, Zhong-Wu; Diano, Sabrina

    2016-02-25

    The ventromedial nucleus of the hypothalamus (VMH) plays a critical role in regulating systemic glucose homeostasis. How neurons in this brain area adapt to the changing metabolic environment to regulate circulating glucose levels is ill defined. Here, we show that glucose load results in mitochondrial fission and reduced reactive oxygen species in VMH neurons mediated by dynamin-related peptide 1 (DRP1) under the control of uncoupling protein 2 (UCP2). Probed by genetic manipulations and chemical-genetic control of VMH neuronal circuitry, we unmasked that this mitochondrial adaptation determines the size of the pool of glucose-excited neurons in the VMH and that this process regulates systemic glucose homeostasis. Thus, our data unmasked a critical cellular biological process controlled by mitochondrial dynamics in VMH regulation of systemic glucose homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Diffractive ''semioptical'' model for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Musulmanbekov, Zh.Zh.

    1979-01-01

    Diffraction Glauber theory for nucleus-nucleus collisions is considered in approximation when the initial nucleus interacts as a whole with nucleons of the target nucleus. Such an approach, being intermediate between precise Glauber theory and its optical limit, essentially simplifies numerical calculations and gives a good agreement with experiments as well. (author)

  15. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation?

    Science.gov (United States)

    Parker, Lindsay M; Le, Sheng; Wearne, Travis A; Hardwick, Kate; Kumar, Natasha N; Robinson, Katherine J; McMullan, Simon; Goodchild, Ann K

    2017-06-15

    Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed. © 2017 Wiley Periodicals, Inc.

  16. Distribution of glycinergic neuronal somata in the rat spinal cord.

    Science.gov (United States)

    Hossaini, Mehdi; French, Pim J; Holstege, Jan C

    2007-04-20

    Glycine transporter 2 (GlyT2) mRNA is exclusively expressed in glycinergic neurons, and is presently considered a reliable marker for glycinergic neuronal somata. In this study, we have performed non-radioactive in situ hybridization to localize GlyT2 mRNA in fixed free-floating sections of cervical (C2 and C6), thoracic (T5), lumbar (L2 and L5) and sacral (S1) segments of the rat spinal cord. The results showed that in all segments the majority of the GlyT2 mRNA labeled (glycinergic) neuronal somata was present in the deep dorsal horn and the intermediate zone (laminae III-VIII), with around 50% (range 43.7-70.9%) in laminae VII&VIII. In contrast, the superficial dorsal horn, the motoneuronal cell groups and the area around the central canal contained only few glycinergic neuronal somata. The density (number of glycinergic neuronal somata per mm(2)) was also low in these areas, while the highest densities were found in laminae V to VIII. The lateral spinal nucleus and the lateral cervical nucleus also contained a limited number of glycinergic neurons. Our findings showed that the distribution pattern of the glycinergic neuronal somata is similar in all the examined segments. The few differences that were found in the relative laminar distribution between some of the segments, are most likely due to technical reasons. We therefore conclude that the observed distribution pattern of glycinergic neuronal somata is present throughout the spinal cord. Our findings further showed that the non-radioactive in situ hybridization technique for identifying GlyT2 mRNA in fixed free-floating sections is a highly efficient tool for identifying glycinergic neurons in the spinal cord.

  17. Functional Peptidomics: Combining Discovery-Based Mass Spectrometry and Neurophysiology to Explore Communication of Phase-Resetting Cues in the Rat Suprachiasmatic Nucleus

    Science.gov (United States)

    Atkins, Norman, Jr.

    2009-01-01

    Intercellular signaling is vital to communication within neuronal circuits. The suprachiasmatic nucleus (SCN), the master circadian clock of mammals, contains a dense collection of neurons that align their intrinsic rhythmicity with environmental stimulus and physiological state. While peptide physiology has been demonstrated as a contributor to…

  18. The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus

    Science.gov (United States)

    Ito, Tetsufumi; Oliver, Douglas L.

    2012-01-01

    The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB. PMID:22855671

  19. A Nuclear Attack on Traumatic Brain Injury: Sequestration of Cell Death in the Nucleus.

    Science.gov (United States)

    Tajiri, Naoki; De La Peña, Ike; Acosta, Sandra A; Kaneko, Yuji; Tamir, Sharon; Landesman, Yosef; Carlson, Robert; Shacham, Sharon; Borlongan, Cesar V

    2016-04-01

    Exportin 1 (XPO1/CRM1) plays prominent roles in the regulation of nuclear protein export. Selective inhibitors of nuclear export (SINE) are small orally bioavailable molecules that serve as drug-like inhibitors of XPO1, with potent anti-cancer properties. Traumatic brain injury (TBI) presents with a secondary cell death characterized by neuroinflammation that is putatively regulated by nuclear receptors. Here, we report that the SINE compounds (KPT-350 or KPT-335) sequestered TBI-induced neuroinflammation-related proteins (NF-(k)B, AKT, FOXP1) within the nucleus of cultured primary rat cortical neurons, which coincided with protection against TNF-α (20 ng/mL)-induced neurotoxicity as shown by at least 50% and 100% increments in preservation of cell viability and cellular enzymatic activity, respectively, compared to non-treated neuronal cells (P's nucleus as an efficacious treatment for TBI. © 2016 John Wiley & Sons Ltd.

  20. ERG voltage-gated K+ channels regulate excitability and discharge dynamics of the medial vestibular nucleus neurones.

    Science.gov (United States)

    Pessia, Mauro; Servettini, Ilenio; Panichi, Roberto; Guasti, Leonardo; Grassi, Silvarosa; Arcangeli, Annarosa; Wanke, Enzo; Pettorossi, Vito Enrico

    2008-10-15

    The discharge properties of the medial vestibular nucleus neurones (MVNn) critically depend on the activity of several ion channel types. In this study we show, immunohistochemically, that the voltage-gated K(+) channels ERG1A, ERG1B, ERG2 and ERG3 are highly expressed within the vestibular nuclei of P10 and P60 mice. The role played by these channels in the spike-generating mechanisms of the MVNn and in temporal information processing was investigated electrophysiologically from mouse brain slices, in vitro, by analysing the spontaneous discharge and the response to square-, ramp- and sinusoid-like intracellular DC current injections in extracellular and whole-cell patch-clamp studies. We show that more than half of the recorded MVNn were responsive to ERG channel block (WAY-123,398, E4031), displaying an increase in spontaneous activity and discharge irregularity. The response to step and ramp current injection was also modified by ERG block showing a reduction of first spike latency, enhancement of discharge rate and reduction of the slow spike-frequency adaptation process. ERG channels influence the interspike slope without affecting the spike shape. Moreover, in response to sinusoid-like current, ERG channel block caused frequency-dependent gain enhancement and phase-lead shift. Taken together, the data demonstrate that ERG channels control the excitability of MVNn, their discharge regularity and probably their resonance properties.

  1. Social condition and oxytocin neuron number in the hypothalamus of naked mole-rats (Heterocephalus glaber).

    Science.gov (United States)

    Mooney, S J; Holmes, M M

    2013-01-29

    The naked mole-rat is a subterranean colonial rodent. In each colony, which can grow to as many as 300 individuals, there is only one female and 1-3 males that are reproductive and socially dominant. The remaining animals are reproductively suppressed subordinates that contribute to colony survival through their cooperative behaviors. Oxytocin is a peptide hormone that has shown relatively widespread effects on prosocial behaviors in other species. We examined whether social status affects the number of oxytocin-immunoreactive neurons in the paraventricular nucleus and the supraoptic nucleus by comparing dominant breeding animals to subordinate non-breeding workers from intact colonies. We also examined these regions in subordinate animals that had been removed from their colony and paired with an opposite- or same-sex conspecific for 6 months. Stereological analyses indicated that subordinates had significantly more oxytocin neurons in the paraventricular nucleus than breeders. Animals in both opposite- and same-sex pairs showed a decreased oxytocin neuron number compared to subordinates suggesting that status differences may be due to social condition rather than the reproductive activity of the animal per se. The effects of social status appear to be region specific as no group differences were found for oxytocin neuron number in the supraoptic nucleus. Given that subordinate naked mole-rats are kept reproductively suppressed through antagonism by the queen, we speculate that status differences are due either to oxytocin's anxiolytic properties to combat the stress of this antagonism or to its ability to promote the prosocial behaviors of subordinates. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Connectivity from OR37 expressing olfactory sensory neurons to distinct cell types in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Andrea eBader

    2012-11-01

    Full Text Available Olfactory sensory neurons which express a member from the OR37 subfamily of odorant receptor genes are wired to the main olfactory bulb in a unique monoglomerular fashion; from these glomeruli an untypical connectivity into higher brain centers exists. In the present study we have investigated by DiI and transsynaptic tracing approaches how the connection pattern from these glomeruli into distinct hypothalamic nuclei is organized. The application of DiI onto the ventral domain of the bulb which harbors the OR37 glomeruli resulted in the labeling of fibers within the paraventricular and supraoptic nucleus of the hypothalamus; some of these fibers were covered with varicose-like structures. No DiI-labeled cell somata were detectable in these nuclei. The data indicate that projection neurons which originate in the OR37 region of the main olfactory bulb form direct connections into these nuclei. The cells that were labeled by the transsynaptic tracer WGA in these nuclei were further characterized. Their distribution pattern in the paraventricular nucleus was reminiscent of cells which produce distinct neuropeptides. Double labeling experiments confirmed that they contained vasopressin, but not the related neuropeptide oxytocin. Morphological analysis revealed that they comprise of magno- and parvocellular cells. A comparative investigation of the WGA-positive cells in the supraoptic nucleus demonstrated that these were vasopressin-positive, as well, whereas oxytocin-producing cells of this nucleus also contained no transsynaptic tracer. Together, the data demonstrate a connectivity from OR37 expressing sensory neurons to distinct hypothalamic neurons with the same neuropeptide content.

  3. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  4. Glucose-responsive neurons of the paraventricular thalamus control sucrose-seeking behavior.

    Science.gov (United States)

    Labouèbe, Gwenaël; Boutrel, Benjamin; Tarussio, David; Thorens, Bernard

    2016-08-01

    Feeding behavior is governed by homeostatic needs and motivational drive to obtain palatable foods. Here, we identify a population of glutamatergic neurons in the paraventricular thalamus of mice that express the glucose transporter Glut2 (encoded by Slc2a2) and project to the nucleus accumbens. These neurons are activated by hypoglycemia and, in freely moving mice, their activation by optogenetics or Slc2a2 inactivation increases motivated sucrose-seeking but not saccharin-seeking behavior. These neurons may control sugar overconsumption in obesity and diabetes.

  5. Chronic intermittent hypoxia impairs heart rate responses to AMPA and NMDA and induces loss of glutamate receptor neurons in nucleus ambiguous of F344 rats.

    Science.gov (United States)

    Yan, Binbin; Li, Lihua; Harden, Scott W; Gozal, David; Lin, Ying; Wead, William B; Wurster, Robert D; Cheng, Zixi Jack

    2009-02-01

    Chronic intermittent hypoxia (CIH), as occurs in sleep apnea, impairs baroreflex-mediated reductions in heart rate (HR) and enhances HR responses to electrical stimulation of vagal efferent. We tested the hypotheses that HR responses to activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the nucleus ambiguous (NA) are reduced in CIH-exposed rats and that this impairment is associated with degeneration of glutamate receptor (GluR)-immunoreactive NA neurons. Fischer 344 rats (3-4 mo) were exposed to room air (RA) or CIH for 35-50 days (n = 18/group). At the end of the exposures, AMPA (4 pmol, 20 nl) and NMDA (80 pmol, 20 nl) were microinjected into the same location of the left NA (-200 microm to +200 microm relative to caudal end of area postrema; n = 6/group), and HR and arterial blood pressure responses were measured. In addition, brain stem sections at the level of -800, -400, 0, +400, and +800 microm relative to obex were processed for AMPA and NMDA receptor immunohistochemistry. The number of NA neurons expressing AMPA receptors and NMDA receptors (NMDARs) was quantified. Compared with RA, we found that after CIH 1) HR responses to microinjection of AMPA into the left NA were reduced (RA -290 +/- 30 vs. CIH -227 +/- 15 beats/min, P neurons expressing GluRs contributes to impaired baroreflex control of HR in rats exposed to CIH.

  6. Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Fu, Liang-Wu; Longhurst, John C.

    2016-01-01

    The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism. PMID:27181844

  7. A combined Bodian-Nissl stain for improved network analysis in neuronal cell culture.

    Science.gov (United States)

    Hightower, M; Gross, G W

    1985-11-01

    Bodian and Nissl procedures were combined to stain dissociated mouse spinal cord cells cultured on coverslips. The Bodian technique stains fine neuronal processes in great detail as well as an intracellular fibrillar network concentrated around the nucleus and in proximal neurites. The Nissl stain clearly delimits neuronal cytoplasm in somata and in large dendrites. A combination of these techniques allows the simultaneous depiction of neuronal perikarya and all afferent and efferent processes. Costaining with little background staining by either procedure suggests high specificity for neurons. This procedure could be exploited for routine network analysis of cultured neurons.

  8. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    Science.gov (United States)

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  9. Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection

    Science.gov (United States)

    Bogacz, Rafal; Martin Moraud, Eduardo; Abdi, Azzedine; Magill, Peter J.; Baufreton, Jérôme

    2016-01-01

    The external globus pallidus (GPe) is a key nucleus within basal ganglia circuits that are thought to be involved in action selection. A class of computational models assumes that, during action selection, the basal ganglia compute for all actions available in a given context the probabilities that they should be selected. These models suggest that a network of GPe and subthalamic nucleus (STN) neurons computes the normalization term in Bayes’ equation. In order to perform such computation, the GPe needs to send feedback to the STN equal to a particular function of the activity of STN neurons. However, the complex form of this function makes it unlikely that individual GPe neurons, or even a single GPe cell type, could compute it. Here, we demonstrate how this function could be computed within a network containing two types of GABAergic GPe projection neuron, so-called ‘prototypic’ and ‘arkypallidal’ neurons, that have different response properties in vivo and distinct connections. We compare our model predictions with the experimentally-reported connectivity and input-output functions (f-I curves) of the two populations of GPe neurons. We show that, together, these dichotomous cell types fulfil the requirements necessary to compute the function needed for optimal action selection. We conclude that, by virtue of their distinct response properties and connectivities, a network of arkypallidal and prototypic GPe neurons comprises a neural substrate capable of supporting the computation of the posterior probabilities of actions. PMID:27389780

  10. A Neuron-Based Model of Sleep-Wake Cycles

    Science.gov (United States)

    Postnova, Svetlana; Peters, Achim; Braun, Hans

    2008-03-01

    In recent years it was discovered that a neuropeptide orexin/hypocretin plays a main role in sleep processes. This peptide is produced by the neurons in the lateral hypothalamus, which project to almost all brain areas. We present a computational model of sleep-wake cycles, which is based on the Hodgkin-Huxley type neurons and considers reciprocal glutaminergic projections between the lateral hypothalamus and the prefrontal cortex. Orexin is released as a neuromodulator and is required to keep the neurons firing, which corresponds to the wake state. When orexin is depleted the neurons are getting silent as observed in the sleep state. They can be reactivated by the circadian signal from the suprachiasmatic nucleus and/or external stimuli (alarm clock). Orexin projections to the thalamocortical neurons also can account for their transition from tonic firing activity during wakefulness to synchronized burst discharges during sleep.

  11. Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit.

    Science.gov (United States)

    Hachem-Delaunay, Sabira; Fournier, Marie-Line; Cohen, Candie; Bonneau, Nicolas; Cador, Martine; Baunez, Christelle; Le Moine, Catherine

    2015-08-01

    The subthalamic nucleus (STN) is a critical component of a complex network controlling motor, associative and limbic functions. High-frequency stimulation (HFS) of the STN is an effective therapy for motor symptoms in Parkinsonian patients and can also reduce their treatment-induced addictive behaviors. Preclinical studies have shown that STN HFS decreases motivation for cocaine while increasing that for food, highlighting its influence on rewarding and motivational circuits. However, the cellular substrates of these effects remain unknown. Our objectives were to characterize the cellular consequences of STN HFS with a special focus on limbic structures and to elucidate how STN HFS may interfere with acute cocaine effects in these brain areas. Male Long-Evans rats were subjected to STN HFS (130 Hz, 60 μs, 50-150 μA) for 30 min before an acute cocaine injection (15 mg/kg) and sacrificed 10 min following the injection. Neuronal reactivity was analyzed through the expression of two immediate early genes (Arc and c-Fos) to decipher cellular responses to STN HFS and cocaine. STN HFS only activated c-Fos in the globus pallidus and the basolateral amygdala, highlighting a possible role on emotional processes via the amygdala, with a limited effect by itself in other structures. Interestingly, and despite some differential effects on Arc and c-Fos expression, STN HFS diminished the c-Fos response induced by acute cocaine in the striatum. By preventing the cellular effect of cocaine in the striatum, STN HFS might thus decrease the reinforcing properties of the drug, which is in line with the inhibitory effect of STN HFS on the rewarding and reinforcing properties of cocaine. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Quantitative immuno-electron microscopic analysis of depolarization-induced expression of PGC-1alpha in cultured rat visual cortical neurons.

    Science.gov (United States)

    Meng, Hui; Liang, Huan Ling; Wong-Riley, Margaret

    2007-10-17

    Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC- 1alpha) is a coactivator of nuclear receptors and other transcription factors that regulate several metabolic processes, including mitochondrial biogenesis, energy homeostasis, respiration, and gluconeogenesis. PGC-1alpha plays a vital role in stimulating genes that are important to oxidative metabolism and other mitochondrial functions in brown adipose tissue and skeleton muscles, but the significance of PGC-1alpha in the brain remains elusive. The goal of our present study was to determine by means of quantitative immuno-electron microscopy the expression of PGC-1alpha in cultured rat visual cortical neurons under normal conditions as well as after depolarizing stimulation for varying periods of time. Our results showed that: (a) PGC-1alpha was normally located in both the nucleus and the cytoplasm. In the nucleus, PGC-1alpha was associated mainly with euchromatin rather than heterochromatin, consistent with active involvement in transcription. In the cytoplasm, it was associated mainly with free ribosomes. (b) Neuronal depolarization by KCl for 0.5 h induced a significant increase in PGC-1alpha labeling density in both the nucleus and the cytoplasm (Pneuronal activity by synthesizing more proteins in the cytoplasm and translocating them to the nucleus for gene activation. PGC-1alpha level in neurons is, therefore, tightly regulated by neuronal activity.

  13. Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes

    Science.gov (United States)

    Urbano, Francisco J.; Simpson, John I.; Llinás, Rodolfo R.

    2006-01-01

    The electrophysiological properties of rat inferior olive (IO) neurons in the dorsal cap of Kooy (DCK) and the adjacent ventrolateral outgrowth (VLO) were compared with those of IO neurons in the principal olive (PO). Whereas DCK/VLO neurons are involved in eye movement control via their climbing fiber projection to the cerebellar flocculus, PO neurons control limb and digit movements via their climbing fiber projection to the lateral cerebellar hemisphere. In vitro patch recordings from DCK/VLO neurons revealed that low threshold calcium currents, Ih currents, and subthreshold oscillations are lacking in this subset of IO neurons. The recordings of activity in DCK neurons obtained by using voltage-sensitive dye imaging showed that activity is not limited to a single neuron, but rather that clusters of DCK neurons can be active in unison. These electrophysiological results show that the DCK/VLO neurons have unique properties that set them apart from the neurons in the PO nucleus. This finding indicates that motor control, from the perspective of the olivocerebellar system, is fundamentally different for the oculomotor and the somatomotor systems. PMID:17050678

  14. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  15. Metabolism of Dopamine in Nucleus Accumbens Astrocytes Is Preserved in Aged Mice Exposed to MPTP

    Directory of Open Access Journals (Sweden)

    Brittany M. Winner

    2017-12-01

    Full Text Available Parkinson disease (PD is prevalent in elderly individuals and is characterized by selective degeneration of nigrostriatal dopamine (NSDA neurons. Interestingly, not all dopamine (DA neurons are affected equally by PD and aging, particularly mesolimbic (ML DA neurons. Here, effects of aging were examined on presynaptic DA synthesis, reuptake, metabolism and neurotoxicant susceptibility of NSDA and mesolimbic dopamine (MLDA neurons and astrocyte DA metabolism. There were no differences in phenotypic markers of DA synthesis, reuptake or metabolism in NSDA or MLDA neurons in aged mice, but MLDA neurons displayed lower DA stores. Astrocyte metabolism of DA to 3-methoxytyramine (3-MT in the striatum was decreased in aged mice, but was maintained in the nucleus accumbens. Despite diminished DA vesicular storage capacity in MLDA neurons, susceptibility to acute neurotoxicant exposure was similar in young and aged mice. These results reveal an age- and neurotoxicant-induced impairment of DA metabolic activity in astrocytes surrounding susceptible NSDA neurons as opposed to maintenance of DA metabolism in astrocytes surrounding resistant MLDA neurons, and suggest a possible therapeutic target for PD.

  16. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica (Brazil)

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  17. Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons.

    Science.gov (United States)

    Prouty, Eric W; Chandler, Daniel J; Waterhouse, Barry D

    2017-11-15

    Serotonin (5-HT)-containing neurons in the dorsal raphe (DR) nucleus project throughout the forebrain and are implicated in many physiological processes and neuropsychiatric disorders. Diversity among these neurons has been characterized in terms of their neurochemistry and anatomical organization, but a clear sense of whether these attributes align with specific brain functions or terminal fields is lacking. DR 5-HT neurons can co-express additional neuroactive substances, increasing the potential for individualized regulation of target circuits. The goal of this study was to link DR neurons to a specific functional role by characterizing cells according to both their neurotransmitter expression and efferent connectivity; specifically, cells projecting to the medial prefrontal cortex (mPFC), a region implicated in cognition, emotion, and responses to stress. Following retrograde tracer injection, brainstem sections from Sprague-Dawley rats were immunohistochemically stained for markers of serotonin, glutamate, GABA, and nitric oxide (NO). 98% of the mPFC-projecting serotonergic neurons co-expressed the marker for glutamate, while the markers for NO and GABA were observed in 60% and less than 1% of those neurons, respectively. To identify potential target-specific differences in co-transmitter expression, we also characterized DR neurons projecting to a visual sensory structure, the lateral geniculate nucleus (LGN). The proportion of serotonergic neurons co-expressing NO was greater amongst cells targeting the mPFC vs LGN (60% vs 22%). The established role of 5-HT in affective disorders and the emerging role of NO in stress signaling suggest that the impact of 5-HT/NO co-localization in DR neurons that regulate mPFC circuit function may be clinically relevant. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Model for nucleus-nucleus, hadron-nucleus and hadron-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.; Tuli, S.K.

    1986-07-01

    A model relating hadron-proton, hadron-nucleus and nucleus-nucleus multiplicity distributions is proposed and some interesting consequences are derived. The values of the parameters are the same for all the processes and are given by the QCD hypothesis of ''universal'' hadronic multiplicities which are found to be asymptotically independent of target and beam in hadronic and current induced reactions in particle physics. (author)

  19. Monosynaptic inputs from the nucleus tractus solitarii to the laryngeal motoneurons in the nucleus ambiguus of the rat.

    Science.gov (United States)

    Hayakawa, T; Takanaga, A; Maeda, S; Ito, H; Seki, M

    2000-11-01

    The cricothyroid (CT) and the posterior cricoarytenoid (PCA) muscles in the larynx are activated by the laryngeal motoneurons located within the nucleus ambiguus; these motoneurons receive the laryngeal sensory information from the nucleus tractus solitarii (NTS) during respiration and swallowing. We investigated whether the neurons in the NTS projected directly to the laryngeal motoneurons, and what is the synaptic organization of their nerve terminals on the laryngeal motoneurons using the electron microscope. When wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was injected into the NTS after cholera toxin subunit B-conjugated HRP (CT-HRP) was injected into the CT muscle or the PCA muscle, the anterogradely WGA-HRP-labeled terminals from the NTS were found to directly contact the retrogradely CT-HRP-labeled dendrites and soma of both the CT and the PCA motoneurons. The labeled NTS terminals comprised about 4% of the axosomatic terminals in a section through the CT motoneurons, and about 9% on both the small (PCA-A) and the large (PCA-B) PCA motoneurons. The number of labeled axosomatic terminals containing round vesicles and making asymmetric synaptic contacts (Gray's type I) was almost equal to that of the labeled terminals containing pleomorphic vesicles and making symmetric synaptic contacts (Gray's type II) on the CT motoneurons. The labeled axosomatic terminals were mostly Gray's type II on the PCA-A motoneurons, while the majority of them were Gray's type I on the PCA-B motoneurons. These results indicate that the laryngeal CT and PCA motoneurons receive a few direct excitatory and inhibitory inputs from the neurons in the NTS.

  20. Characterization of mitochondrial respiratory chain energetics in the vestibular nucleus complex.

    Science.gov (United States)

    Ashton, John C; Khalessi, Amirala; Kapoor, Mohit; Clarkson, Andrew; Sammut, Ivan A; Darlington, Cynthia L; Smith, Paul F

    2005-04-01

    Despite having very high neuronal firing rates, the VNC does not have unusually high mitochondrial activity in vitro. This study is the first in which functionally active mitochondria from the hindbrain have been isolated and characterized. Neurons in the vestibular nucleus complex (VNC) have exceptionally high spontaneous firing rates. Neuronal mitochondria generate adenosine triphosphate critical for maintaining the membrane potentials required for axon firing. We therefore hypothesized a high rate of mitochondrial activity in the VNC. To test this hypothesis, we compared mitochondrial activity in the VNC with mitochondrial activity from another area of the hindbrain, the cerebellum. Mitochondrial respiratory activity was assessed by measuring oxidative phosphorylation and mitochondrial respiratory enzyme complex activity. Assay results were not significantly different in the VNC compared to those obtained with the cerebellum or with rat brain mitochondria in previous studies.

  1. Chronic methamphetamine exposure significantly decreases microglia activation in the arcuate nucleus.

    Science.gov (United States)

    Lloyd, Steven A; Corkill, Beau; Bruster, Matthew C; Roberts, Rick L; Shanks, Ryan A

    2017-07-01

    Methamphetamine is a powerful psychostimulant drug and its use and abuse necessitates a better understanding of its neurobiobehavioral effects. The acute effects of binge dosing of methamphetamine on the neurons in the CNS are well studied. However, the long-term effects of chronic, low-dose methamphetamine are less well characterized, especially in other cell types and areas outside of the major dopamine pathways. Mice were administered 5mg/kg/day methamphetamine for ten days and brain tissue was analyzed using histochemistry and image analysis. Increased microglia activity in the striatum confirmed toxic effects of methamphetamine in this brain region using this dosing paradigm. A significant decrease in microglia activity in the arcuate nucleus of the hypothalamus was observed with no effect noted on dopamine neurons in the arcuate nucleus. Given the importance of this area in homeostatic and neuroendocrine regulation, the current study highlights the need to more fully understand the systemic effects of chronic, low-dose methamphetamine use. The novel finding of microglia downregulation after chronic methamphetamine could lead to advances in understanding neuroinflammatory responses towards addiction treatment and protection from psychostimulant-induced neurotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Multiregional Age-Associated Reduction of Brain Neuronal Reserve Without Association With Neurofibrillary Degeneration or β-Amyloidosis.

    Science.gov (United States)

    Wegiel, Jerzy; Flory, Michael; Kuchna, Izabela; Nowicki, Krzysztof; Yong Ma, Shuang; Wegiel, Jarek; Badmaev, Eulalia; Silverman, Wayne P; de Leon, Mony; Reisberg, Barry; Wisniewski, Thomas

    2017-06-01

    Increase in human life expectancy has resulted in the rapid growth of the elderly population with minimal or no intellectual deterioration. The aim of this stereological study of 10 structures and 5 subdivisions with and without neurofibrillary degeneration in the brains of 28 individuals 25-102-years-old was to establish the pattern of age-associated neurodegeneration and neuronal loss in the brains of nondemented adults and elderly. The study revealed the absence of significant neuronal loss in 7 regions and topographically selective reduction of neuronal reserve over 77 years in 8 brain structures including the entorhinal cortex (EC) (-33.3%), the second layer of the EC (-54%), cornu Ammonis sector 1 (CA1) (-28.5%), amygdala, (-45.8%), thalamus (-40.5%), caudate nucleus (-35%), Purkinje cells (-48.3%), and neurons in the dentate nucleus (40.1%). A similar rate of neuronal loss in adults and elderly, without signs of accelerating neuronal loss in agers or super-agers, appears to indicate age-associated brain remodeling with significant reduction of neuronal reserve in 8 brain regions. Multivariate analysis demonstrates the absence of a significant association between neuronal loss and the severity of neurofibrillary degeneration and β-amyloidosis, and a similar rate of age-associated neuronal loss in structures with and without neurofibrillary degeneration. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  3. Higgs-boson production in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider

  4. Higgs-Boson Production in Nucleus-Nucleus Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  5. Effect of cochlear nerve electrocautery on the adult cochlear nucleus.

    Science.gov (United States)

    Iseli, Claire E; Merwin, William H; Klatt-Cromwell, Cristine; Hutson, Kendall A; Ewend, Matthew G; Adunka, Oliver F; Fitzpatrick, Douglas C; Buchman, Craig A

    2015-04-01

    Electrocauterization and subsequent transection of the cochlear nerve induce greater injury to the cochlear nucleus than sharp transection alone. Some studies show that neurofibromatosis Type 2 (NF2) patients fit with auditory brainstem implants (ABIs) fail to achieve speech perception abilities similar to ABI recipients without NF2. Reasons for these differences remain speculative. One hypothesis posits poorer performance to surgically induced trauma to the cochlear nucleus from electrocautery. Sustained electrosurgical depolarization of the cochlear nerve may cause excitotoxic-induced postsynaptic nuclear injury. Equally plausible is that cautery in the vicinity of the cochlear nucleus induces necrosis. The cochlear nerve was transected in anesthetized adult gerbils sharply with or without bipolar electrocautery at varying intensities. Gerbils were perfused at 1, 3, 5, and 7 days postoperatively; their brainstem and cochleas were embedded in paraffin and sectioned at 10 μm. Alternate sections were stained with flourescent markers for neuronal injury or Nissl substance. In additional experiments, anterograde tracers were applied directly to a sectioned eighth nerve to verify that fluorescent-labeled profiles seen were terminating auditory nerve fibers. Cochlear nerve injury was observed from 72 hours postoperatively and was identical across cases regardless of surgical technique. Postsynaptic cochlear nucleus injury was not seen after distal transection of the nerve. By contrast, proximal transection was associated with trauma to the cochlear nucleus. Distal application of bipolar electrocautery seems safe for the cochlear nucleus. Application near the root entry zone must be used cautiously because this may compromise nuclear viability needed to support ABI stimulation.

  6. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  7. New results on nuclear multifragmentation in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies

    International Nuclear Information System (INIS)

    Besliu, Calin; Jipa, Alexandru; Iliescu, Bogdan; Felea, Daniel

    2002-01-01

    Some new aspects on the multifragmentation processes in nucleus-nucleus and nucleon-nucleus collisions at high energies are discussed in this work. Experimental data obtained in international collaborations (for example, MULTI Collaboration with KEK Tsukuba (Japan) and SKM 200 Collaboration with JINR Dubna (Russia)) are used to discuss new mechanisms in the target nucleus fragmentation. Correlations with stopping power, participant region size and energy density are included. Comparisons of the experimental results with the predictions of a phenomenological geometric model of intermediate mass fragment multiplicity, caloric curves and angular distributions are also presented. These results are used for global description of the multifragmentation processes in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies. The size of the participant region and the average intermediate mass fragments multiplicity are taken into consideration using the free space probability. A few correlations between the deposited energy in the participant region and stability state of the intermediate mass fragments are presented in this work. The importance of the collision geometry in the multifragmentation processes is stressed. The results suggest different time moments for the incident nucleus fragmentation and for the target nucleus fragmentation. The associated entropies are distinct. (authors)

  8. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    Science.gov (United States)

    Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and ne...

  9. Neurophysiological evidence for the presence of cannabinoid CB1 receptors in the laterodorsal tegmental nucleus

    DEFF Research Database (Denmark)

    Soni, Neeraj; Satpathy, Shankha; Kohlmeier, Kristi Anne

    2014-01-01

    Marijuana, which acts within the endocannabinoid (eCB) system as an agonist of the cannabinoid type 1 receptor (CB1R), exhibits addictive properties and has powerful actions on the state of arousal of an organism. The laterodorsal tegmental nucleus (LDT), as a component of the reticular activating...... the firing frequency and synaptic activity of neurons in this nucleus. Therefore, endogenous eCB transmission could play a role in processes involving the LDT, such as cortical activation and motivated behaviours and, further, behavioural actions of marijuana are probably mediated, in part, via cellular...

  10. Methamphetamine facilitates female sexual behavior and enhances neuronal activation in the medial amygdala and ventromedial nucleus of the hypothalamus.

    Science.gov (United States)

    Holder, Mary K; Hadjimarkou, Maria M; Zup, Susan L; Blutstein, Tamara; Benham, Rebecca S; McCarthy, Margaret M; Mong, Jessica A

    2010-02-01

    Methamphetamine (MA) abuse has reached epidemic proportions in the United States. Users of MA report dramatic increases in sexual drive that have been associated with increased engagement in risky sexual behavior leading to higher rates of sexually transmitted diseases and unplanned pregnancies. The ability of MA to enhance sexual drive in females is enigmatic since related psychostimulants like amphetamine and cocaine appear not to affect sexual drive in women, and in rodents models, amphetamine has been reported to be inhibitory to female sexual behavior. Examination of MA's effects on female sexual behavior in an animal model is lacking. Here, using a rodent model, we have demonstrated that MA enhanced female sexual behavior. MA (5mg/kg) or saline vehicle was administered once daily for 3 days to adult ovariectomized rats primed with ovarian steroids. MA treatment significantly increased the number of proceptive events and the lordosis response compared to hormonally primed, saline controls. The effect of MA on the neural circuitry underlying the motivation for sexual behavior was examined using Fos immunoreactivity. In the medial amygdala and the ventromedial nucleus of the hypothalamus, nuclei implicated in motivated behaviors, ovarian hormones and MA independently enhance the neuronal activation, but more striking was the significantly greater activation induced by their combined administration. Increases in dopamine neurotransmission may underlie the MA/hormone mediated increase in neuronal activation. In support of this possibility, ovarian hormones significantly increased tyrosine hydroxylase (the rate limiting enzyme in dopamine synthesis) immunoreactivity in the medial amygdala. Thus our present data suggest that the interactions of MA and ovarian hormones leads to changes in the neural substrate of key nuclei involved in mediating female sexual behaviors, and these changes may underlie MA's ability to enhance these behaviors. 2009 Elsevier Ltd. All

  11. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    Science.gov (United States)

    Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.

    2016-01-01

    Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PaperClip PMID:26871628

  12. Protective role of AgRP neuron's PDK1 against salt-induced hypertension.

    Science.gov (United States)

    Zhang, Boyang; Nakata, Masanori; Lu, Ming; Nakae, Jun; Okada, Takashi; Ogawa, Wataru; Yada, Toshihiko

    2018-06-12

    In the hypothalamic arcuate nucleus (ARC), orexigenic agouti-related peptide (AgRP) neurons regulate feeding behavior and energy homeostasis. The 3-phosphoinositide-dependent protein kinase-1 (PDK1) in AgRP neurons serves as a major signaling molecule for leptin and insulin, the hormones regulating feeding behavior, energy homeostasis and circulation. However, it is unclear whether PDK1 in AGRP neurons is also involved in regulation of blood pressure. This study explored it by generating and analyzing AgRP neuron-specific PDK1 knockout (Agrp-Pdk1 flox/flox ) mice and effect of high salt diet on blood pressure in KO and WT mice was analyzed. Under high salt diet feeding, systolic blood pressure (SBP) of Agrp-Pdk1 flox/flox mice was significantly elevated compared to Agrp-Cre mice. When the high salt diet was switched to control low salt diet, SBP of Agrp-Pdk1 flox/flox mice returned to the basal level observed in Agrp-Cre mice within 1 week. In Agrp-Pdk1 flox/flox mice, urinary noradrenalin excretion and NUCB2 mRNA expression in hypothalamic paraventricular nucleus (PVN) were markedly upregulated. Moreover, silencing of NUCB2 in the PVN counteracted the rises in urinary noradrenalin excretions and SBP. These results demonstrate a novel role of PDK1 in AgRP neurons to counteract the high salt diet-induced hypertension by preventing hyperactivation of PVN nesfatin-1 neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. ELAV proteins along evolution: back to the nucleus?

    Science.gov (United States)

    Colombrita, Claudia; Silani, Vincenzo; Ratti, Antonia

    2013-09-01

    The complex interplay of post-transcriptional regulatory mechanisms mediated by RNA-binding proteins (RBP) at different steps of RNA metabolism is pivotal for the development of the nervous system and the maintenance of adult brain activities. In this review, we will focus on the highly conserved ELAV gene family encoding for neuronal-specific RBPs which are necessary for proper neuronal differentiation and important for synaptic plasticity process. In the evolution from Drosophila to man, ELAV proteins seem to have changed their biological functions in relation to their different subcellular localization. While in Drosophila, they are localized in the nuclear compartment of neuronal cells and regulate splicing and polyadenylation, in mammals, the neuronal ELAV proteins are mainly present in the cytoplasm where they participate in regulating mRNA target stability, translation and transport into neurites. However, recent data indicate that the mammalian ELAV RBPs also have nuclear activities, similarly to their fly counterpart, being them able to continuously shuttle between the cytoplasm and the nucleus. Here, we will review and comment on all the biological functions associated with neuronal ELAV proteins along evolution and will show that the post-transcriptional regulatory network mediated by these RBPs in the brain is highly complex and only at an initial stage of being fully understood. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Effects of tamoxifen on neuronal morphology, connectivity and biochemistry of hypothalamic ventromedial neurons: Impact on the modulators of sexual behavior.

    Science.gov (United States)

    Sá, Susana I; Teixeira, Natércia; Fonseca, Bruno M

    2018-01-01

    Tamoxifen (TAM) is a selective estrogen receptor modulator, widely used in the treatment and prevention of estrogen-dependent breast cancer. Although with great clinical results, women on TAM therapy still report several side effects, such as sexual dysfunction, which impairs quality of life. The anatomo-functional substrates of the human sexual behavior are still unknown; however, these same substrates are very well characterized in the rodent female sexual behavior, which has advantage of being a very simple reflexive response, dependent on the activation of estrogen receptors (ERs) in the ventrolateral division of the hypothalamic ventromedial nucleus (VMNvl). In fact, in the female rodent, the sexual behavior is triggered by increasing circulation levels of estradiol that changes the nucleus neurochemistry and modulates its intricate neuronal network. Therefore, we considered of notice the examination of the possible neurochemical alterations and the synaptic plasticity impairment in VMNvl neurons of estradiol-primed female rats treated with TAM that may be in the basis of this neurological disorder. Accordingly, we used stereological and biochemical methods to study the action of TAM in axospinous and axodendritic synaptic plasticity and on ER expression. The administration of TAM changed the VMNvl neurochemistry by reducing ERα mRNA and increasing ERβ mRNA expression. Furthermore, present results show that TAM induced neuronal atrophy and reduced synaptic connectivity, favoring electrical inactivity. These data suggest that these cellular and molecular changes may be a possible neuronal mechanism of TAM action in the disruption of the VMNvl network, leading to the development of behavioral disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels

    Science.gov (United States)

    Serotonin 2C receptors (5-HT2CRs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis ,and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT2CRs have no...

  16. Short-term memory and critical clusterization in brain neurons spike series

    Science.gov (United States)

    Bershadskii, A.; Dremencov, E.; Yadid, G.

    2003-06-01

    A new phenomenon: critical clusterization, is observed in the neuron firing of a genetically defined rat model of depression. The critical clusterization is studied using a multiscaling analysis of the data obtained from the neurons belonging to the Red Nucleus area of the depressive brains. It is suggested that this critical phenomenon can be partially responsible for the observed ill behavior of the depressive brains: loss of short-term motor memory and slow motor reaction.

  17. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    Science.gov (United States)

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  18. α-MSH Influences the Excitability of Feeding-Related Neurons in the Hypothalamus and Dorsal Vagal Complex of Rats

    Directory of Open Access Journals (Sweden)

    Hong-Zai Guan

    2017-01-01

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is processed from proopiomelanocortin (POMC and acts on the melanocortin receptors, MC3 and MC4. α-MSH plays a key role in energy homeostasis. In the present study, to shed light on the mechanisms by which α-MSH exerts its anorectic effects, extracellular neuronal activity was recorded in the hypothalamus and the dorsal vagal complex (DVC of anesthetized rats. We examined the impact of α-MSH on glucose-sensing neurons and gastric distension (GD sensitive neurons. In the lateral hypothalamus (LHA, α-MSH inhibited 75.0% of the glucose-inhibited (GI neurons. In the ventromedial nucleus (VMN, most glucose-sensitive neurons were glucose-excited (GE neurons, which were mainly activated by α-MSH. In the paraventricular nucleus (PVN, α-MSH suppressed the majority of GI neurons and excited most GE neurons. In the DVC, among the 20 GI neurons examined for a response to α-MSH, 1 was activated, 16 were depressed, and 3 failed to respond. Nineteen of 24 GE neurons were activated by α-MSH administration. Additionally, among the 42 DVC neurons examined for responses to GD, 23 were excited (GD-EXC and 19 were inhibited (GD-INH. Fifteen of 20 GD-EXC neurons were excited, whereas 11 out of 14 GD-INH neurons were suppressed by α-MSH. All these responses were abolished by pretreatment with the MC3/4R antagonist, SHU9119. In conclusion, the activity of glucose-sensitive neurons and GD-sensitive neurons in the hypothalamus and DVC can be modulated by α-MSH.

  19. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture

    OpenAIRE

    Sabado, Virginie; Vienne, Ludovic; Nagoshi, Emi

    2017-01-01

    Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN) generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Droso...

  20. Brain Innate Immunity Regulates Hypothalamic Arcuate Neuronal Activity and Feeding Behavior

    NARCIS (Netherlands)

    Reis, Wagner L.; Yi, Chun-Xia; Gao, Yuanqing; Tschöp, Mathias H.; Stern, Javier E.

    2015-01-01

    Hypothalamic inflammation, involving microglia activation in the arcuate nucleus (ARC), is proposed as a novel underlying mechanism in obesity, insulin and leptin resistance. However, whether activated microglia affects ARC neuronal activity, and consequently basal and hormonal-induced food intake,

  1. Repetitive and retinotopically restricted activation of the dorsal lateral geniculate nucleus with optogenetics.

    Directory of Open Access Journals (Sweden)

    Alexandre Castonguay

    Full Text Available Optogenetics allows the control of cellular activity using focused delivery of light pulses. In neuroscience, optogenetic protocols have been shown to efficiently inhibit or stimulate neuronal activity with a high temporal resolution. Among the technical challenges associated with the use of optogenetics, one is the ability to target a spatially specific population of neurons in a given brain structure. To address this issue, we developed a side-illuminating optical fiber capable of delivering light to specific sites in a target nucleus with added flexibility through rotation and translation of the fiber and by varying the output light power. The designed optical fiber was tested in vivo in visual structures of ChR2-expressing transgenic mice. To assess the spatial extent of neuronal activity modulation, we took advantage of the hallmark of the visual system: its retinotopic organization. Indeed, the relative position of ganglion cells in the retina is transposed in the cellular topography of both the dorsal lateral geniculate nucleus (LGN in the thalamus and the primary visual cortex (V1. The optical fiber was inserted in the LGN and by rotating it with a motor, it was possible to sequentially activate different neuronal populations within this structure. The activation of V1 neurons by LGN projections was recorded using intrinsic optical imaging. Increasing light intensity (from 1.4 to 8.9 mW/mm² led to increasing activation surfaces in V1. Optogenetic stimulation of the LGN at different translational and rotational positions was associated with different activation maps in V1. The position and/or orientation of the fiber inevitably varied across experiments, thus limiting the capacity to pool data. With the optogenetic design presented here, we demonstrate for the first time a transitory and spatially-concise activation of a deep neuronal structure. The optogenetic design presented here thus opens a promising avenue for studying the function

  2. Astrocyte-secreted factors modulate a gradient of primary dendritic arbors in nucleus laminaris of the avian auditory brainstem.

    Directory of Open Access Journals (Sweden)

    Matthew J Korn

    Full Text Available Neurons in nucleus laminaris (NL receive binaural, tonotopically matched input from nucleus magnocelluaris (NM onto bitufted dendrites that display a gradient of dendritic arbor size. These features improve computation of interaural time differences, which are used to determine the locations of sound sources. The dendritic gradient emerges following a period of significant reorganization at embryonic day 15 (E15, which coincides with the emergence of astrocytes that express glial fibrillary acidic protein (GFAP in the auditory brainstem. The major changes include a loss of total dendritic length, a systematic loss of primary dendrites along the tonotopic axis, and lengthening of primary dendrites on caudolateral NL neurons. Here we have tested whether astrocyte-derived molecules contribute to these changes in dendritic morphology. We used an organotypic brainstem slice preparation to perform repeated imaging of individual dye-filled NL neurons to determine the effects of astrocyte-conditioned medium (ACM on dendritic morphology. We found that treatment with ACM induced a decrease in the number of primary dendrites in a tonotopically graded manner similar to that observed during normal development. Our data introduce a new interaction between astrocytes and neurons in the auditory brainstem and suggest that these astrocytes influence multiple aspects of auditory brainstem maturation.

  3. Reduced neurophysin immunoreactivity in rat suprachiasmatic nucleus parallels dissociation of circadian feeding rhythm in constant light

    NARCIS (Netherlands)

    Steinhorst, B; Mai, JK; Rietveld, WJ

    Several distinct neuronal populations can be outlined in the suprachiasmatic nucleus (SCN) by employing immunohistochemistry. Understanding their interaction may serve as the key to the proc esses involved in the generation of circadian rhythms by the SCN. 15 adult rats were exposed to constant dim

  4. Development of the preoptic area: time and site of origin, migratory routes, and settling patterns of its neurons

    International Nuclear Information System (INIS)

    Bayer, S.A.; Altman, J.

    1987-01-01

    Neurogenesis and morphogenesis in the rat preoptic area were examined with [ 3 H]thymidine autoradiography. For neurogenesis, the experimental animals were the offspring of pregnant females given an injection of [ 3 H]thymidine on two consecutive gestational days. Nine groups were exposed to [ 3 H]thymidine on embryonic days E13-E14, E14-E15, E21-E22, respectively. On postnatal day P5, the percentage of labeled cells and the proportion of cells originating during 24-hr periods were quantified at four anteroposterior levels in the preoptic area. Throughout most of the preoptic area there is a lateral to medial neurogenetic gradient. Neurons originate between E12-E15 in the lateral preoptic area, between E13-E16 in the medial preoptic area, between E14-E17 in the medial preoptic nucleus, and between E15-E18 in the periventricular nucleus. These structures also have intrinsic dorsal to ventral neurogenetic gradients. There are two atypical structures: (1) the sexually dimorphic nucleus originates exceptionally late (E15-E19) and is located more lateral to the ventricle than older neurons; (2) in the median preoptic nucleus, where older neurons (E13-E14) are located closer to the third ventricle than younger neurons (E14-E17). For an autoradiographic study of morphogenesis, pregnant females were given a single injection of [ 3 H]thymidine during gestation, and their embryos were removed either two hrs later (short survival) or in successive 24-hr periods (sequential survival). Short-survival autoradiography was used to locate the putative neuroepithelial sources of preoptic nuclei, and sequential survival autoradiography was used to trace the migratory waves of young neurons and their final settling locations. The preoptic neuroepithelium is located anterior to and in the front wall of the optic recess

  5. Orexin inputs to caudal raphé neurons involved in thermal, cardiovascular, and gastrointestinal regulation.

    Science.gov (United States)

    Berthoud, Hans-Rudolf; Patterson, Laurel M; Sutton, Gregory M; Morrison, Christopher; Zheng, Huiyuan

    2005-02-01

    Orexin-expressing neurons in the lateral hypothalamus with their wide projections throughout the brain are important for the regulation of sleep and wakefulness, ingestive behavior, and the coordination of these behaviors in the environmental context. To further identify downstream effector targets of the orexin system, we examined in detail orexin-A innervation of the caudal raphe nuclei in the medulla, known to harbor sympathetic preganglionic motor neurons involved in thermal, cardiovascular, and gastrointestinal regulation. All three components of the caudal raphe nuclei, raphe pallidus, raphe obscurus, and parapyramidal nucleus, are innervated by orexin-A-immunoreactive fibers. Using confocal microscopy, we demonstrate close anatomical appositions between varicose orexin-A immunoreactive axon profiles and sympathetic premotor neurons identified with either a transneuronal retrograde pseudorabies virus tracer injected into the interscapular brown fat pads, or with in situ hybridization of pro-TRH mRNA. Furthermore, orexin-A injected into the fourth ventricle induced c-Fos expression in the raphe pallidus and parapyramidal nucleus. These findings suggest that orexin neurons in the hypothalamus can modulate brown fat thermogenesis, cardiovascular, and gastrointestinal functions by acting directly on neurons in the caudal raphe nuclei, and support the idea that orexin's simultaneous stimulation of food intake and sympathetic activity might have evolved as a mechanism to stay alert while foraging.

  6. Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration.

    Science.gov (United States)

    Umeshima, Hiroki; Nomura, Ken-Ichi; Yoshikawa, Shuhei; Hörning, Marcel; Tanaka, Motomu; Sakuma, Shinya; Arai, Fumihito; Kaneko, Makoto; Kengaku, Mineko

    2018-04-05

    Somal translocation in long bipolar neurons is regulated by actomyosin contractile forces, yet the precise spatiotemporal sites of force generation are unknown. Here we investigate the force dynamics generated during somal translocation using traction force microscopy. Neurons with a short leading process generated a traction force in the growth cone and counteracting forces in the leading and trailing processes. In contrast, neurons with a long leading process generated a force dipole with opposing traction forces in the proximal leading process during nuclear translocation. Transient accumulation of actin filaments was observed at the dipole center of the two opposing forces, which was abolished by inhibition of myosin II activity. A swelling in the leading process emerged and generated a traction force that pulled the nucleus when nuclear translocation was physically hampered. The traction force in the leading process swelling was uncoupled from somal translocation in neurons expressing a dominant negative mutant of the KASH protein, which disrupts the interaction between cytoskeletal components and the nuclear envelope. Our results suggest that the leading process is the site of generation of actomyosin-dependent traction force in long bipolar neurons, and that the traction force is transmitted to the nucleus via KASH proteins. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  7. Prolyl carboxypeptidase in Agouti-related Peptide neurons modulates food intake and body weight

    Directory of Open Access Journals (Sweden)

    Giuseppe Bruschetta

    2018-04-01

    Full Text Available Objective: Prolyl carboxypeptidase (PRCP plays a role in the regulation of energy metabolism by inactivating hypothalamic α-melanocyte stimulating hormone (α-MSH levels. Although detected in the arcuate nucleus, limited PRCP expression has been observed in the arcuate POMC neurons, and its site of action in regulating metabolism is still ill-defined. Methods: We performed immunostaining to assess the localization of PRCP in arcuate Neuropeptide Y/Agouti-related Peptide (NPY/AgRP neurons. Hypothalamic explants were then used to assess the intracellular localization of PRCP and its release at the synaptic levels. Finally, we generated a mouse model to assess the role of PRCP in NPY/AgRP neurons of the arcuate nucleus in the regulation of metabolism. Results: Here we show that PRCP is expressed in NPY/AgRP-expressing neurons of the arcuate nucleus. In hypothalamic explants, stimulation by ghrelin increased PRCP concentration in the medium and decreased PRCP content in synaptic extract, suggesting that PRCP is released at the synaptic level. In support of this, hypothalamic explants from mice with selective deletion of PRCP in AgRP neurons (PrcpAgRPKO showed reduced ghrelin-induced PRCP concentration in the medium compared to controls mice. Furthermore, male PrcpAgRPKO mice had decreased body weight and fat mass compared to controls. However, this phenotype was sex-specific as female PrcpAgRPKO mice show metabolic differences only when challenged by high fat diet feeding. The improved metabolism of PrcpAgRPKO mice was associated with reduced food intake and increased energy expenditure, locomotor activity, and hypothalamic α-MSH levels. Administration of SHU9119, a potent melanocortin receptor antagonist, selectively in the PVN of PrcpAgRPKO male mice increased food intake to a level similar to that of control mice. Conclusions: Altogether, our data indicate that PRCP is released at the synaptic levels and that PRCP in AgRP neurons contributes to

  8. Effect of agmatine on locus coeruleus neuron activity: possible involvement of nitric oxide

    Science.gov (United States)

    Ruiz-Durántez, Eduardo; Ruiz-Ortega, José A; Pineda, Joseba; Ugedo, Luisa

    2002-01-01

    To investigate whether agmatine (the proposed endogenous ligand for imidazoline receptors) controls locus coeruleus neuron activity and to elucidate its mechanism of action, we used single-unit extracellular recording techniques in anaesthetized rats. Agmatine (10, 20 and 40 μg, i.c.v.) increased in a dose-related manner the firing rate of locus coeruleus neurons (maximal increase: 95±13% at 40 μg). I1-imidazoline receptor ligands stimulate locus coeruleus neuron activity through an indirect mechanism originated in the paragigantocellularis nucleus via excitatory amino acids. However, neither electrolytic lesions of the paragigantocellularis nucleus nor pretreatment with the excitatory amino acid antagonist kynurenic acid (1 μmol, i.c.v.) modified agmatine effect (10 μg, i.c.v.). After agmatine administration (20 μg, i.c.v.), dose-response curves for the effect of clonidine (0.625 – 10 μg kg−1 i.v.) or morphine (0.3 – 4.8 mg kg−1 i.v.) on locus coeruleus neurons were not different from those obtained in the control groups. Pretreatment with the nitric oxide synthase inhibitors Nω-nitro-L-arginine (10 μg, i.c.v.) or Nω-nitro-L-arginine methyl ester (100 μg, i.c.v.) but not with the less active stereoisomer Nω-nitro-D-arginine methyl ester (100 μg, i.c.v.) completely blocked agmatine effect (10 and 40 μg, i.c.v.). Similarly, when agmatine (20 pmoles) was applied into the locus coeruleus there was an increase that was blocked by Nω-nitro-L-arginine methyl ester (100 μg, i.c.v.) in the firing rate of the locus coeruleus neurons (maximal increase 53±11% and 14±10% before and after nitric oxide synthase inhibition, respectively). This study demonstrates that agmatine stimulates the firing rate of locus coeruleus neurons via a nitric oxide synthase-dependent mechanism located in this nucleus. PMID:11877321

  9. Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Teppei Noda

    2018-02-01

    Full Text Available Primary auditory neurons (PANs play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs, comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs. The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs.

  10. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li; Wu, Zhou; Baba, Masashi [Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582 (Japan); Peters, Christoph [Institute fuer Molekulare Medizin und Zellforshung, Albert-Ludwings-Universitaet Freiburg, D-79104 Freiburg (Germany); Uchiyama, Yasuo [Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo (Japan); Nakanishi, Hiroshi, E-mail: nakan@dent.kyushu-u.ac.jp [Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582 (Japan)

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  11. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    International Nuclear Information System (INIS)

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-01-01

    Research highlights: → Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. → CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. → CB-deficiency significantly increased the mean survival ratio of injured neurons. → Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy-induced mortor neuron

  12. Deconfinement of quarks and gluons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    2011-01-01

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals the anomalies. They were predicted as the signals of the deconfinement phase transition and observed by NA49 collaboration in Pb+Pb collisions at the CERN SPS. This indicates the onset of the deconfinement in central nucleus-nucleus collisions at about 30 AGeV.

  13. Galanin neurons in the intermediate nucleus (InM) of the human hypothalamus in relation to sex, age, and gender identity

    NARCIS (Netherlands)

    Garcia-Falgueras, Alicia; Ligtenberg, Lisette; Kruijver, Frank P. M.; Swaab, Dick F.

    2011-01-01

    The intermediate nucleus (InM) in the preoptic area of the human brain, also known as the sexually dimorphic nucleus of the preoptic area (SDN-POA) and the interstitial nucleus of the anterior hypothalamus-1 (INAH-1) is explored here. We investigated its population of galanin-immunoreactive (Gal-Ir)

  14. The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep.

    Science.gov (United States)

    Cheng, Guanliang; Coolen, Lique M; Padmanabhan, Vasantha; Goodman, Robert L; Lehman, Michael N

    2010-01-01

    Recent work in sheep has identified a neuronal subpopulation in the arcuate nucleus that coexpresses kisspeptin, neurokinin B, and dynorphin (referred to here as KNDy cells) and that mediate the negative feedback influence of progesterone on GnRH secretion. We hypothesized that sex differences in progesterone negative feedback are due to sexual dimorphism of KNDy cells and compared neuropeptide and progesterone receptor immunoreactivity in this subpopulation between male and female sheep. In addition, because sex differences in progesterone negative feedback and neurokinin B are due to the influence of testosterone (T) during fetal life, we determined whether prenatal T exposure would mimic sex differences in KNDy cells. Adult rams had nearly half the number of kisspeptin, neurokinin B, dynorphin, and progesterone receptor-positive cells in the arcuate nucleus as did females, but the percentage of KNDy cells colocalizing progesterone receptors remained high in both sexes. Prenatal T treatment also reduced the number of dynorphin, neurokinin B, and progesterone receptor-positive cells in the female arcuate nucleus; however, the number of kisspeptin cells remained high and at levels comparable to control females. Thus, sex differences in kisspeptin in the arcuate nucleus, unlike that of dynorphin and neurokinin B, are not due solely to exposure to prenatal T, suggesting the existence of different critical periods for multiple peptides coexpressed within the same neuron. In addition, the imbalance between inhibitory (dynorphin) and stimulatory (kisspeptin) neuropeptides in this subpopulation provides a potential explanation for the decreased ability of progesterone to inhibit GnRH neurons in prenatal T-treated ewes.

  15. Crosstalks between kisspeptin neurons and somatostatin neurons are not photoperiod dependent in the ewe hypothalamus.

    Science.gov (United States)

    Dufourny, Laurence; Lomet, Didier

    2017-12-01

    Seasonal reproduction is under the control of gonadal steroid feedback, itself synchronized by day-length or photoperiod. As steroid action on GnRH neurons is mostly indirect and therefore exerted through interneurons, we looked for neuroanatomical interactions between kisspeptin (KP) neurons and somatostatin (SOM) neurons, two populations targeted by sex steroids, in three diencephalic areas involved in the central control of ovulation and/or sexual behavior: the arcuate nucleus (ARC), the preoptic area (POA) and the ventrolateral part of the ventromedial hypothalamus (VMHvl). KP is the most potent secretagogue of GnRH secretion while SOM has been shown to centrally inhibit LH pulsatile release. Notably, hypothalamic contents of these two neuropeptides vary with photoperiod in specific seasonal species. Our hypothesis is that SOM inhibits KP neuron activity and therefore indirectly modulate GnRH release and that this effect may be seasonally regulated. We used sections from ovariectomized estradiol-replaced ewes killed after photoperiodic treatment mimicking breeding or anestrus season. We performed triple immunofluorescent labeling to simultaneously detect KP, SOM and synapsin, a marker for synaptic vesicles. Sections from the POA and from the mediobasal hypothalamus were examined using a confocal microscope. Randomly selected KP or SOM neurons were observed in the POA and ARC. SOM neurons were also observed in the VMHvl. In both the ARC and POA, nearly all KP neurons presented numerous SOM contacts. SOM neurons presented KP terminals more frequently in the ARC than in the POA and VMHvl. Quantitative analysis failed to demonstrate major seasonal variations of KP and SOM interactions. Our data suggest a possible inhibitory action of SOM on all KP neurons in both photoperiodic statuses. On the other hand, the physiological significance of KP modulation of SOM neuron activity and vice versa remain to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure.

    Science.gov (United States)

    Ciriello, J; Caverson, M M; McMurray, J C; Bruckschwaiger, E B

    2013-10-10

    Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo

  17. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus.

    Science.gov (United States)

    Chachlaki, Konstantina; Malone, Samuel A; Qualls-Creekmore, Emily; Hrabovszky, Erik; Münzberg, Heike; Giacobini, Paolo; Ango, Fabrice; Prevot, Vincent

    2017-10-15

    Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFP Vglut2 , EYFP Vgat , and GFP Gad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes. © 2017 Wiley Periodicals, Inc.

  18. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice

    Science.gov (United States)

    Estrogens act in the ventromedial hypothalamic nucleus (VMH) to regulate body weight homeostasis. However, the molecular mechanisms underlying these estrogenic effects are unknown. We show that activation of estrogen receptor-a (ERa) stimulates neural firing of VMH neurons expressing ERa, and these ...

  19. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    Science.gov (United States)

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  20. Long-term subregion-specific encoding of enhanced ethanol intake by D1DR medium spiny neurons of the nucleus accumbens.

    Science.gov (United States)

    Renteria, Rafael; Buske, Tavanna R; Morrisett, Richard A

    2018-03-01

    The nucleus accumbens (NAc) is a critical component of the mesocorticolimbic system and is involved in mediating the motivational and reinforcing aspects of ethanol consumption. Chronic intermittent ethanol (CIE) exposure is a reliable model to induce ethanol dependence and increase volitional ethanol consumption in mice. Following a CIE-induced escalation of ethanol consumption, NMDAR (N-methyl-D-aspartate receptor)-dependent long-term depression in D1 dopamine receptor expressing medium spiny neurons of the NAc shell was markedly altered with no changes in plasticity in D1 dopamine receptor medium spiny neurons from the NAc core. This disruption of plasticity persisted for up to 2 weeks after cessation of ethanol access. To determine if changes in AMPA receptor (AMPAR) composition contribute to this ethanol-induced neuroadaptation, we monitored the rectification of AMPAR excitatory postsynaptic currents (EPSCs). We observed a marked decrease in the rectification index in the NAc shell, suggesting the presence of GluA2-lacking AMPARs. There was no change in the amplitude of spontaneous EPSCs (sEPSCs), but there was a transient increase in sEPSC frequency in the NAc shell. Using the paired pulse ratio, we detected a similar transient increase in the probability of neurotransmitter release. With no change in sEPSC amplitude, the change in the rectification index suggests that GluA2-containing AMPARs are removed and replaced with GluA2-lacking AMPARs in the NAc shell. This CIE-induced alteration in AMPAR subunit composition may contribute to the loss of NMDAR-dependent long-term depression in the NAc shell and therefore may constitute a critical neuroadaptive response underlying the escalation of ethanol intake in the CIE model. © 2017 Society for the Study of Addiction.

  1. Lipopolysaccharide-induced neuronal activation in the paraventricular and dorsomedial hypothalamus depends on ambient temperature.

    Directory of Open Access Journals (Sweden)

    Samuel P Wanner

    Full Text Available Systemic inflammatory response syndrome is associated with either fever or hypothermia, but the mechanisms responsible for switching from one to the other are unknown. In experimental animals, systemic inflammation is often induced by bacterial lipopolysaccharide (LPS. To identify the diencephalic and brainstem structures involved in the fever-hypothermia switch, we studied the expression of c-Fos protein, a marker of neuronal activation, in rats treated with the same high dose of LPS (0.5 mg/kg, intravenously either in a thermoneutral (30 °C or cool (24 °C environment. At 30 °C, LPS caused fever; at 24 °C, the same dose caused profound hypothermia. Both fever and hypothermia were associated with the induction of c-Fos in many brain areas, including several structures of the anterior preoptic, paraventricular, lateral, and dorsal hypothalamus, the bed nucleus of the stria terminalis, the posterior pretectal nucleus, ventrolateral periaqueductal gray, lateral parabrachial nucleus, area postrema, and nucleus of the solitary tract. Every brain area studied showed a comparable response to LPS at the two different ambient temperatures used, with the exception of two areas: the dorsomedial hypothalamic nucleus (DMH, which we studied together with the adjacent dorsal hypothalamic area (DA, and the paraventricular hypothalamic nucleus (PVH. Both structures had much stronger c-Fos expression during LPS hypothermia than during fever. We propose that PVH and DMH/DA neurons are involved in a circuit, which - depending on the ambient temperature - determines whether the thermoregulatory response to bacterial LPS will be fever or hypothermia.

  2. Dynamic Neuron-Glia Interactions in an Oscillatory Network Controlling Behavioral Plasticity in the Weakly Electric Fish, Apteronotus leptorhynchus.

    Science.gov (United States)

    Zupanc, Günther K H

    2017-01-01

    The involvement of glial cells in the regulation of physiological functions is being increasingly recognized, yet their role in plasticity of neural oscillators has remained largely elusive. An excellent model system to address the latter function is the pacemaker nucleus of the weakly electric fish, Apteronotus leptorhynchus . This brainstem oscillator drives the fish's electric organ discharge in a one-to-one fashion, with median frequencies of 880 Hz in males and 740 Hz in females. Morphometric analysis of the pacemaker nucleus has shown that astrocytes outnumber mature neurons seven-fold, and oscillator neurons even 200-fold. A similar dominance of astrocytes occurs among the adult-born cells that differentiate into glia and neurons. The astrocytes form a dense meshwork of cells interconnected by gap junctions. The degree of association of astrocytic fibers with the neural oscillator cells, and the gap-junction coupling between individual astrocytes, exhibit a sexual dimorphism, which parallels the sexual dimorphisms in the output frequency of the pacemaker nucleus, and ultimately in the electric organ discharge of the fish. It is hypothesized that the dynamics in astroglial structure mediate differences in the capacity to buffer potassium, which increases during the generation of action potentials. These differences, in turn, affect the excitability of the neural oscillator cells, and thus the output frequency of the pacemaker nucleus. Comparison of the pacemaker nucleus with other brain oscillators suggests that modulation of the output activity is one of the chief functions of the interaction of glia with the neural oscillator cells.

  3. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge.

    Science.gov (United States)

    Wang, Yu-Feng; Sun, Min-Yu; Hou, Qiuling; Hamilton, Kathryn A

    2013-04-01

    The neuropeptide vasopressin is crucial to mammalian osmotic regulation. Local hypoosmotic challenge transiently decreases and then increases vasopressin secretion. To investigate mechanisms underlying this transient response, we examined the effects of hypoosmotic challenge on the electrical activity of rat hypothalamic supraoptic nucleus (SON) vasopressin neurons using patch-clamp recordings. We found that 5 min exposure of hypothalamic slices to hypoosmotic solution transiently increased inhibitory postsynaptic current (IPSC) frequency and reduced the firing rate of vasopressin neurons. Recovery occurred by 10 min of exposure, even though the osmolality remained low. The γ-aminobutyric acid (GABA)A receptor blocker, gabazine, blocked the IPSCs and the hypoosmotic suppression of firing. The gliotoxin l-aminoadipic acid blocked the increase in IPSC frequency at 5 min and the recovery of firing at 10 min, indicating astrocytic involvement in hypoosmotic modulation of vasopressin neuronal activity. Moreover, β-alanine, an osmolyte of astrocytes and GABA transporter (GAT) inhibitor, blocked the increase in IPSC frequency at 5 min of hypoosmotic challenge. Confocal microscopy of immunostained SON sections revealed that astrocytes and magnocellular neurons both showed positive staining of vesicular GATs (VGAT). Hypoosmotic stimulation in vivo reduced the number of VGAT-expressing neurons, and increased co-localisation and molecular association of VGAT with glial fibrillary acidic protein that increased significantly by 10 min. By 30 min, neuronal VGAT labelling was partially restored, and astrocytic VGAT was relocated to the ventral portion while it decreased in the somatic zone of the SON. Thus, synergistic astrocytic and neuronal GABAergic inhibition could ensure that vasopressin neuron firing is only transiently suppressed under hypoosmotic conditions. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Neuronal Correlates of Fear Conditioning in the Bed Nucleus of the Stria Terminalis

    Science.gov (United States)

    Haufler, Darrell; Nagy, Frank Z.; Pare, Denis

    2013-01-01

    Lesion and inactivation studies indicate that the central amygdala (CeA) participates in the expression of cued and contextual fear, whereas the bed nucleus of the stria terminalis (BNST) is only involved in the latter. The basis for this functional dissociation is unclear because CeA and BNST form similar connections with the amygdala and…

  5. Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.

    Science.gov (United States)

    Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto

    2006-11-06

    Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.

  6. Autoradiographic assessment of [3H]proline uptake by neurons of epileptogenic mirror focus

    International Nuclear Information System (INIS)

    Khudoerkov, R.M.

    1985-01-01

    Epileptogenic mirror focus was produced in the left parietal area of the rat brain by cobalt implantation into the contralateral hemisphere. On the 14th day after cobalt implantation [ 3 H]proline was injected into both experimental and control rats (without cobalt). The incorporation of [ 3 H]proline in neurons of layers III and V of the parietal brain cortex and neurons of the nucleus lateralis thalami was investigated by the autoradiography technique. A statistically reliable increase in [ 3 H]proline uptake was observed in neurons of layer III (31%) and in neurons of layer V (41%) of the epileptogenic mirror focus. The other neuronal types revealed no reliable changes. The morphological and functional aspects of the altered protein metabolism during epileptogenesis are discussed. (author)

  7. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons.

    Science.gov (United States)

    Mounien, Lourdes; Marty, Nell; Tarussio, David; Metref, Salima; Genoux, David; Preitner, Frédéric; Foretz, Marc; Thorens, Bernard

    2010-06-01

    The physiological contribution of glucose in thermoregulation is not completely established nor whether this control may involve a regulation of the melanocortin pathway. Here, we assessed thermoregulation and leptin sensitivity of hypothalamic arcuate neurons in mice with inactivation of glucose transporter type 2 (Glut2)-dependent glucose sensing. Mice with inactivation of Glut2-dependent glucose sensors are cold intolerant and show increased susceptibility to food deprivation-induced torpor and abnormal hypothermic response to intracerebroventricular administration of 2-deoxy-d-glucose compared to control mice. This is associated with a defect in regulated expression of brown adipose tissue uncoupling protein I and iodothyronine deiodinase II and with a decreased leptin sensitivity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons, as observed during the unfed-to-refed transition or following i.p. leptin injection. Sites of central Glut-2 expression were identified by a genetic tagging approach and revealed that glucose-sensitive neurons were present in the lateral hypothalamus, the dorsal vagal complex, and the basal medulla but not in the arcuate nucleus. NPY and POMC neurons were, however, connected to nerve terminals from Glut2-expressing neurons. Thus, our data suggest that glucose controls thermoregulation and the leptin sensitivity of NPY and POMC neurons through activation of Glut2-dependent glucose-sensing neurons located outside of the arcuate nucleus.

  8. Hypoxia silences retrotrapezoid nucleus respiratory chemoreceptors via alkalosis.

    Science.gov (United States)

    Basting, Tyler M; Burke, Peter G R; Kanbar, Roy; Viar, Kenneth E; Stornetta, Daniel S; Stornetta, Ruth L; Guyenet, Patrice G

    2015-01-14

    In conscious mammals, hypoxia or hypercapnia stimulates breathing while theoretically exerting opposite effects on central respiratory chemoreceptors (CRCs). We tested this theory by examining how hypoxia and hypercapnia change the activity of the retrotrapezoid nucleus (RTN), a putative CRC and chemoreflex integrator. Archaerhodopsin-(Arch)-transduced RTN neurons were reversibly silenced by light in anesthetized rats. We bilaterally transduced RTN and nearby C1 neurons with Arch (PRSx8-ArchT-EYFP-LVV) and measured the cardiorespiratory consequences of Arch activation (10 s) in conscious rats during normoxia, hypoxia, or hyperoxia. RTN photoinhibition reduced breathing equally during non-REM sleep and quiet wake. Compared with normoxia, the breathing frequency reduction (Δf(R)) was larger in hyperoxia (65% FiO2), smaller in 15% FiO2, and absent in 12% FiO2. Tidal volume changes (ΔV(T)) followed the same trend. The effect of hypoxia on Δf(R) was not arousal-dependent but was reversed by reacidifying the blood (acetazolamide; 3% FiCO2). Δf(R) was highly correlated with arterial pH up to arterial pH (pHa) 7.5 with no frequency inhibition occurring above pHa 7.53. Blood pressure was minimally reduced suggesting that C1 neurons were very modestly inhibited. In conclusion, RTN neurons regulate eupneic breathing about equally during both sleep and wake. RTN neurons are the first putative CRCs demonstrably silenced by hypocapnic hypoxia in conscious mammals. RTN neurons are silent above pHa 7.5 and increasingly active below this value. During hyperoxia, RTN activation maintains breathing despite the inactivity of the carotid bodies. Finally, during hypocapnic hypoxia, carotid body stimulation increases breathing frequency via pathways that bypass RTN. Copyright © 2015 the authors 0270-6474/15/350527-17$15.00/0.

  9. Comparative study of c-Fos expression in rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress.

    Science.gov (United States)

    Zhang, Yu-Yu; Cao, Guo-Hong; Zhu, Wen-Xing; Cui, Xi-Yun; Ai, Hong-Bin

    2009-06-30

    Restraint water-immersion stress (RWIS) of rats induces vagally-mediated gastric dysfunction. The present work explored the effects of different durations of RWIS on neuronal activities of the dorsal vagal complex (DVC) and the nucleus ambiguous (NA) in rats. Male Wistar rats were exposed to RWIS for 0, 30, 60, 120, or 180 min. Then, a c-Fos immunoperoxidase technique was utilized to assess neuronal activation. Resumptively, c-Fos expression in DVC and NA peaked at 60 min of stress, subsequently decreased gradually with increasing durations of RWIS. Interestingly, the most intense c-Fos expression was observed in the dorsal motor nucleus of the vagus (DMV) during the stress, followed by NA, nucleus of solitary tract (NTS) and area postrema (AP). The peak of c-Fos expression in caudal DMV appeared at 120 min of the stress, slower than that in rostral and intermediate DMV. The c-Fos expression in intermediate and caudal NTS was significantly more intense than that in rostral NTS. These results indicate that the neuronal hyperactivity of DMV, NA, NTS and AP, the primary center that control gastric functions, especially DMV and NA, may play an important role in the disorders of gastric motility and secretion induced by RWIS.

  10. Activation of Supraoptic Oxytocin Neurons by Secretin Facilitates Social Recognition.

    Science.gov (United States)

    Takayanagi, Yuki; Yoshida, Masahide; Takashima, Akihide; Takanami, Keiko; Yoshida, Shoma; Nishimori, Katsuhiko; Nishijima, Ichiko; Sakamoto, Hirotaka; Yamagata, Takanori; Onaka, Tatsushi

    2017-02-01

    Social recognition underlies social behavior in animals, and patients with psychiatric disorders associated with social deficits show abnormalities in social recognition. Oxytocin is implicated in social behavior and has received attention as an effective treatment for sociobehavioral deficits. Secretin receptor-deficient mice show deficits in social behavior. The relationship between oxytocin and secretin concerning social behavior remains to be determined. Expression of c-Fos in oxytocin neurons and release of oxytocin from their dendrites after secretin application were investigated. Social recognition was examined after intracerebroventricular or local injection of secretin, oxytocin, or an oxytocin receptor antagonist in rats, oxytocin receptor-deficient mice, and secretin receptor-deficient mice. Electron and light microscopic immunohistochemical analysis was also performed to determine whether oxytocin neurons extend their dendrites into the medial amygdala. Supraoptic oxytocin neurons expressed the secretin receptor. Secretin activated supraoptic oxytocin neurons and facilitated oxytocin release from dendrites. Secretin increased acquisition of social recognition in an oxytocin receptor-dependent manner. Local application of secretin into the supraoptic nucleus facilitated social recognition, and this facilitation was blocked by an oxytocin receptor antagonist injected into, but not outside of, the medial amygdala. In the medial amygdala, dendrite-like thick oxytocin processes were found to extend from the supraoptic nucleus. Furthermore, oxytocin treatment restored deficits of social recognition in secretin receptor-deficient mice. The results of our study demonstrate that secretin-induced dendritic oxytocin release from supraoptic neurons enhances social recognition. The newly defined secretin-oxytocin system may lead to a possible treatment for social deficits. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  11. Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus

    International Nuclear Information System (INIS)

    Claudiani, Pamela; Riano, Elena; Errico, Alessia; Andolfi, Gennaro; Rugarli, Elena I.

    2005-01-01

    Most cases of autosomal-dominant hereditary spastic paraplegia are linked to mutations in SPG4 encoding spastin, a protein involved in microtubule dynamics and membrane trafficking. In pyramidal neurons of the motor cortex and in immortalized motor neurons, spastin is localized to the synaptic terminals and growth cones. However, in other neurons and in proliferating cells spastin is prevalently nuclear. The mechanisms that determine targeting of spastin to the nucleus or the cytoplasm are unknown. We show here that the SPG4 mRNA is able to direct synthesis of two spastin isoforms, 68 and 60 kDa, respectively, through usage of two different translational start sites. Both isoforms are imported into the nucleus, but the 68-kDa isoform contains two nuclear export signals that efficiently drive export to the cytoplasm. Nuclear export is leptomycin-B sensitive. The cytoplasmic 68-kDa spastin isoform is more abundant in the brain and the spinal cord than in other tissues. Our data indicate that spastin function is modulated through usage of alternative translational start sites and active nuclear import and export, and open new perspectives for the pathogenesis of hereditary spastic paraplegia

  12. Responses of Nucleus Tractus Solitarius (NTS) early and late neurons to blood pressure changes in anesthetized F344 rats.

    Science.gov (United States)

    Kolpakova, Jenya; Li, Liang; Hatcher, Jeffrey T; Gu, He; Zhang, Xueguo; Chen, Jin; Cheng, Zixi Jack

    2017-01-01

    Previously, many different types of NTS barosensitive neurons were identified. However, the time course of NTS barosensitive neuronal activity (NA) in response to arterial pressure (AP) changes, and the relationship of NA-AP changes, have not yet been fully quantified. In this study, we made extracellular recordings of single NTS neurons firing in response to AP elevation induced by occlusion of the descending aorta in anesthetized rats. Our findings were that: 1) Thirty-five neurons (from 46 neurons) increased firing, whereas others neurons either decreased firing upon AP elevation, or were biphasic: first decreased firing upon AP elevation and then increased firing during AP decrease. 2) Fourteen neurons with excitatory responses were activated and rapidly increased their firing during the early phase of AP increase (early neurons); whereas 21 neurons did not increase firing until the mean arterial pressure changes (ΔMAP) reached near/after the peak (late neurons). 3) The early neurons had a significantly higher firing rate than late neurons during AP elevation at a similar rate. 4) Early neuron NA-ΔMAP relationship could be well fitted and characterized by the sigmoid logistic function with the maximal gain of 29.3. 5) The increase of early NA correlated linearly with the initial heart rate (HR) reduction. 6) The late neurons did not contribute to the initial HR reduction. However, the late NA could be well correlated with HR reduction during the late phase. Altogether, our study demonstrated that the NTS excitatory neurons could be grouped into early and late neurons based on their firing patterns. The early neurons could be characterized by the sigmoid logistic function, and different neurons may differently contribute to HR regulation. Importantly, the grouping and quantitative methods used in this study may provide a useful tool for future assessment of functional changes of early and late neurons in disease models.

  13. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Directory of Open Access Journals (Sweden)

    Elodie Barat

    Full Text Available The substantia nigra pars reticulata (SNr is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN, which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied.In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A receptors were involved in this effect.Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  14. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Science.gov (United States)

    Barat, Elodie; Boisseau, Sylvie; Bouyssières, Céline; Appaix, Florence; Savasta, Marc; Albrieux, Mireille

    2012-01-01

    The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN), which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied. In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity) while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A) receptors were involved in this effect. Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  15. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.

    Science.gov (United States)

    Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T

    2013-11-01

    Neurons are highly dependent on oxidative metabolism for their energy